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ABSTRACT 

The well-known, general-purpose structural analysis program ICES-STRUDL 

has been used extensively at M.I.T. Lincoln Laboratory since its public release 

in 1967.  Since that original release, several updates, issued by the original 

developers and the ICES Users Group, have produced changes in programs and 

documentation.  Likewise, additional development and enhancement of ICES-STRUDL 

have occurred at M.I.T. Lincoln Laboratory on those areas (such as finite ele- 

ments, dynamics, etc.) specifically of interest to the Laboratory. 

This report describes the finite element capabilities in the M.I.T. 

Lincoln Laboratory version of ICES-STRUDL and can therefore serve as a user's 

manual.  Sections are devoted to specification of finite element geometry, ele- 

ment properties, and element loading.  Finite element modelling considerations 

are discussed and three examples are presented to illustrate capabilities often 

needed at the Laboratory, but not described in other ICES-STRUDL documentation. 
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I.   FINITE ELEMENT GEOMETRY SPECIFICATION 

1.  Planar Element Coordinate System 

Each planar finite element in a STRUDL problem has associated with it a 

coordinate system in which the results for that element are expressed. This 

coordinate system is independent of the type of element and depends only upon 

the orientation of the plane of the element.  It is called the planar element 

coordinate system. 

The use of such a reference frame enables the element results (stresses 

and strains) for all of the elements in a particular plane to be output with 

respect to a common reference frame. This makes the interpretation of output 

a relatively easy task, since similar results are all expressed in the same 

directions. 

The planar element coordinate system of a triangular element (nodes 1, 2, 

3) is illustrated in Figure 1.1 for the general case. 

The orientation of the element affects the determination of its planar 

element coordinate system. The planar system is located as follows (refer to 

Figure 1.1): 

(1) The planar Z axis is normal to the plane of the element.  Its 

positive direction is determined by applying the right-hand rule 

to the node order given in the ELEMENT INCIDENCES command. 

(2) The planar Xp axis coincides with the intersection of the element 

plane and the global X Y_ plane. 

(3) The projection of the planar Y axis onto the global Z axis is 
r Li 

defined to be positive in the same direction as the global Z axis. 

(4) The planar X axis is defined to be positive in the direction 

determined by the right-hand rule. 

The triangular element shown in Figure 1.1 has relative node numbers 1, 2, 3 

which correspond to the nodes listed in the ELEMENT INCIDENCES for the element, 



INTERSECTION OF 
ELEMENT PLANE 
WITH XY   PLANE 

GG 

Figure 1.1.  Planar element coordinate system (general) 

The only exception to the above rules for location of the planar element 

coordinate system occurs when the element lies in a plane parallel to the 

global X„Y plane. The planar element coordinate system of such a triangular 

element is illustrated in Figure 1.2. 

The planar system for an element which lies in a plane parallel to the 

global X„Y„ plane is located as follows (refer to Figure 1.2): 

(1) The planar Z axis is normal to the plane of the element.  Its posi- 

tive direction is determined by applying the right-hand rule to the 

node order given in the ELEMENT INCIDENCES command. 

(2*) The planar Xp axis is located parallel to the global Xp axis and 

is positive in the same direction as the global X axis. 
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Figure 1.2.  Planar element coordinate system (|  LYJ GG' 

(3*) The planar Y axis is defined to be positive in the direction deter- 

mined by the right-hand rule. 

The triangular element shown in Figure 1.2 has relative node numbers 1,2, 3 

which correspond to the nodes listed in the ELEMENT INCIDENCES for the element, 

2.  LOCAL and GLOBAL Joints 

The JOINT COORDINATES command has been modified to provide the capability 

for analyzing a structure comprised of plates which do not lie in global planes. 

If all finite elements attached to a joint are co-planar (in other than a 

global plane), and no members are incident on the joint, the joint could be 

declared LOCAL.  This LOCAL specification would cause the solution at the joint 

to be carried out in the planar element coordinate system; thus eliminating po- 

tential instabilities in the stiffness matrix caused by rotation into the 

global coordinate system. 



All input for a LOCAL joint must be referred to the planar element coor- 

dinate system (e.g., JOINT RELEASES, JOINT LOADS, etc.).  All output (e.g., 

displacements) for a LOCAL joint are also referred to the planar element coor- 

dinate system. 

Joints connected only by elements lying in one of the three global planes 

(X^Y„, X~Z„, or Y Z ) should be referred to as GLOBAL joints for ease in des- 

cribing input and interpreting output.  Similarly, joints connected by co-planar 

elements (in other than a global plane) should be referred to as SUPPORTed 

GLOBAL joints, and JOINT RELEASES (with THETA angles if needed) should be used 

to constrain the directions of potential instability. 

Three cases exist in which joints should not be described as LOCAL joints. 

These are: 

(1) Nodes at which elements are incident in more than one plane. 

(2) Nodes at which incident elements are all parallel to global planes 

(instabilities will not be generated and the reduced number of 

unknowns will automatically be used). 

(3) Nodes at which members are incident. 

In case (1) above, the specification of LOCAL will lead to incorrect re- 

sults.  In case (2), the specification of LOCAL will change the orientation 

of the input loads and output results to the planar element coordinate system. 

In case (3), the node cannot be specified as LOCAL, as an error message will 

result, and it will be processed as if a GLOBAL specification had been given. 

Joints 7, 8, 9 and 13, 14, 15 in Figure 1.3 illustrate case (1) above and 

must be described as GLOBAL, since they are nodes at which elements are incident 

in more than one plane. Nodes 5 and 17 illustrate case (2) and are described 

as GLOBAL since their incident elements are parallel to global planes.  Node 11 

may be described as a LOCAL joint but is better described as a SUPPORTed GLOBAL 

joint with associated JOINT RELEASES and THETA angles.  Nodes at which the edge 

members are incident illustrate case (3) and must be described as GLOBAL. 
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Figure 1.3.  Example of LOCAL/GLOBAL joint designation. 



5.   Element Nodal Listing 

The connectivity of element nodes (or joints) is described by listing the 

joints associated with each element in the ELEMENT INCIDENCE command. 

For planar elements having only corner nodes, the joints are listed con- 

secutively around the element boundary, starting at any arbitrary corner node. 

For planar elements having side nodes, the corner nodes are listed first and 

then the side nodes. 

The mid-side nodes for the LST and LSR elements must be listed in the 

JOINT COORDINATES command, but one does not have to specify the joint coordi- 

nate values.  This also pertains to the isoparametric IPQQ (or IPQS) and IPCQ 

elements when the boundary is straight and the mid-side node is located at the 

1/2- or 1/3-points, respectively. The PRINT Joint COORDINATES command, given 

TN-77-17(l-4) 

Figure 1.4.  Nodal sequence for planar elements. 



after an ANALYSIS command, will print the computed joint coordinates of the 

unspecified mid-side nodes.  Before an ANALYSIS is performed, however, the 

values will be zero. 

The nodal sequence for planar elements is illustrated in Figure 1.4.  Note 

that numbering may proceed in either a clockwise or counterclockwise direction, 

lor planar results to make sense on a given plane however, it is preferable to 

choose one direction for all elements on that given plane. 

The relative node numbering for tridimensional elements having only corner 

joints, such as the IPLS and TRIP elements, is obtained by numbering an arbitrary 

iz« 
TN-77-17(l-5) 

Outward 
Pointing 
Normal 
To Face 

Figure 1.5.  Nodal sequence for tridimensional elements. 



face. The face is numbered by proceeding around the boundary of the face in a 

direction such that an outward-pointing normal is produced by applying the 

right-hand rule to the node ordering.  The back face is then numbered by pro- 

ceeding in the same direction from the joint directly back of the first num- 

bered node.  Refer to Figure 1.5. 

The scheme for the tridimensional IPOS element is similar. One works from 

the front face to the mid-face nodes and then to the back face. All side nodes 

on the front face are numbered similar to planar element side nodes before pro- 

ceeding to the mid-face nodes.  Refer to Figure 1.6. 

Figure 1.6.  Nodal sequence for IPQS element. 



4.  Convention for Stress Output 

Stress and strain results for the planar elements are output with respect 

to the element planar coordinate system. Actual stresses are output for the 

plane stress/strain elements, while stress resultants are output for the plate 

bending elements.  (These stress resultants are in units of shear and moment 

per unit length.) Refer to Figure 1.7 for positive sign convention. 

Figure 1.7:     Sign convention for planar element stresses. 

Principal stress and principal strain values are available for some plane 

stress/strain elements with the angle between the principal directions and the 

planar coordinate system also printed. 

Stress and strain results for the tridimensional elements are output with 

respect to the global coordinate system.  Principal stresses and strains are 

also available. Refer to Figure 1.8 for positive sign convention. 



Figure 1.8.  Sign convention for tridimensional element stresses, 
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II.   FINITE ELEMENT PROPERTY SPECIFICATION 

1.  Element Type Selection 

The structural TYPE command for finite element analysis consists of options 

for specifying various finite element types. 

PLANE STRESS and PLANE STRAIN specify two-dimensional problems varying 

only with respect to Xp and Yp.  This includes the surface and body forces, 

which also must be planar and independent of 1  .    Two degrees-of-freedom are 

defined at each node, usually the u and v displacements in the element planar 

coordinate system. 

In PLANE STRESS problems the out-of-plane normal stress is considered to 

sgligible, \ 

In other words, 

be negligible, while the in-plane stresses are assumed to be independent of Z . 

a  = T   = T   =0. z     xz     yz 

and     a , o , T independent of z. 
x  y  xy r 

These statements violate certain compatibility equations, but can be shown to 

be a reasonable assumption for thin plates. 

In PLANE STRAIN problems the out-of-plane strain is considered to be zero, 

while the in-plane strains are assumed to be independent of Z .  In other words, 

e  = y   = Y   =0 z     xz     yz 

and     e , e , y independent of z. 

The corresponding physical requirement which justifies this assumption is that 

the thickness is significant relative to the representative X and Yp dimen- 

sions. 

PLATE BENDING specifies problems where only bending deformations need to 

be considered.  Plate bending formulations include three degrees-of-freedom at 

each node; usually the displacement w in the direction normal to the plane 

11 



of the element, and the rotations 8 and 6 in the element planar coordinate 

system. The effect of transverse shear flexibility is ignored. 

PLATE specifies a combination of PLANE STRESS and PLATE BENDING in which 

the uncoupled stiffnesses of the two components are superimposed to represent 

a three-dimensional thin flat plate. 

TRIDIMENSIONAL specifies problems where a three-dimensional state of stress 

exists in the body and requires solid elements rather than planar ones. 

At least one TYPE command must precede an ANALYSIS command. A suggested 

means of specification is to associate the TYPE command with the ELEMENT INCI- 

DENCES command and to input the element incidence data for all elements of the 

same type at the same time. This also makes it easy to identify related ele- 

ments at a later time. Since the TYPE command is noted for elements when pro- 

cessing ELEMENT INCIDENCES, it is possible to combine PLANE STRESS and PLANE 

STRAIN elements in the same ANALYSIS. 

The currently available STRUDL finite elements are listed in Tables 2.1 - 

2.4 for the element types described in this section.  In addition, each finite 

element is described in detail in the Appendix.  The following properties are 

available for these elements unless noted otherwise: 

(1) Isotropic, orthotropic, and anisotropic material. 

(2) Lumped and consistent mass matrices. 

(3) Element loadings (described in Section III) consisting of: 

a. Edge Forces 

b. Surface Forces 

c. Body Forces 

d. Thermal Forces 

e. Initial Strains 

12 



TABLE 2.1 

PLANE STRESS/STRAIN ELEMENTS 

ELEMENT 
NAME SHAPE NO.  OF 

NODES 
COMMENTS 

CSTG '£>.. 3 

PSR 
PSRCSH 

> o 

4 4LZ 
1 J 

2 

IPLQ 
IPLQCSH a; 4 

LST £*. 6 

LSR 

4        7       3 •rr 1' 
2 

8 
1       5 

IPQQ •a* 
1       5        2 

8 

UTLQ1 4 'P" 
IPCQ 

4      10      9   3* 

12 

13 



TABLE 2.2 

PLATE BENDING ELEMENTS 

ELEMENT 
NAME SHAPE NO. OF 

NODES COMMENTS 

CPT 

1*^ 

3 No edge or body  forces 

BPR 
4   m             i i 3 

4 No edge or body forces n i •   * •2 

PBQ1 a; 4 No edge or body forces 

TABLE 2.3 

PLATE ELEMENTS 

ELEMENT 
NAME SHAPE NO. OF 

NODES COMMENTS 

SBCT "£>•. 3 No initial  strains 

14 



TABLE 2.4 

TRIDIMENSIONAL ELEMENTS 

ELEMENT 
NAME SHAPE NO. OF 

NODES COMMENTS 

TRIP 

3j> *2 

>5 

6 

IPLS 
IPLSCSH 

8J- 

1 

5>- 
i4^——i 

p—•• f 7 

n. 
8 

IPQS 
81^3 " f6J* 14 

5            2 

20 

15 



2.  Thermal Expansion Coefficients 

The initial strains due to temperature are evaluated from: 

where 

e  = AT a 

e  = vector of initial strains 
*0 

ci  = vector of thermal expansion coefficients 

AT = temperature differential 

The thermal expansion coefficient directions correspond to the planar 

element coordinate system for planar elements and to the global coordinate 

system for tridimensional elements. 

The ELEMENT PROPERTIES command is used to input the thermal expansion 

coefficients when the material is orthotropic or anisotropic. 

CTE   [CAX]  vl       [CAY]  v2   [CAZ]  v3 

[CSXY]  v4   [CSXZ]  v5   [CSYZ]  v& 

where v,, v2, v3 = axial thermal expansion coefficients 

v4' v5' v6 = snear thermal expansion coefficients 

If the material is isotropic, the shear thermal expansion coefficients 

are zero and the axial thermal expansion coefficients are a constant value a. 

We can input a with the CONSTANTS command, since 

a  = a  = a  = a 
x     y     z 

a   = a   = a   =0 xy     xz     yz 

16 



3.  Rigidity Matrix Description 

The ELEMENT PROPERTIES command is used to input element type, thickness, 

and, optionally, the material rigidity matrix. The planar stretching rigidity 

matrix, D  , is defined as the relationship between in-plane stresses and 

strains, and is expressed as: 

a 
~S  \  y 

xy Y xy 

The planar bending rigidity matrix, rjR, relates the stress couples and the 

bending deformations as follows: 

/ M 

M xy 

= £B 

-w, 

-w, 

xx 

yy 

-2W, xy 

The rigidity matrix, £,, for the tridimensional case is defined in the same 

manner as the planar stretching rigidity matrix, i.e., 

M 
a 

xy 

xz 

T 
\ yz 

£3 

Y xy 

Y xz 

iyy* 1 

17 



Since the thickness, h, of the plate bending elements is assumed constant, 

3 

£B 12 ~S 

If the material is orthotropic or anisotropic, we input D„  or D, using 

the ELEMENT PROPERTIES command. The tridimensional rigidity matrix D is input 

by rows (6x6 array), as is the planar rigidity matrix D_ (3x3 array). The 
-2 

units are expressed in FL  terms (usually psi), but depend on the UNITS speci- 

fications. 

RIGIDITY MATRIX NC 1C 

ROW i, 
11 In 

where: 

1C 

i. 

11 

ROW i n nl nn 

n 

nn 

number of columns in the 'rigidity matrix; 

row numbers of the rows being specified; 

values in the ridigity matrix. 

The rigidity matrix for planar elements is specified in the planar ele- 

ment coordinate system, while the rigidity matrix for tridimensional elements 

is specified in the global coordinate system. 

If the material is isotropic, we input E, v with the CONSTANTS command 

since D' for plane strain can be computed internally as: 

~ S 
(1+v) (l-2v) 

(1-v) 

V 

0 

v    0 

(1-v)  0 

(l-2v) 

2 
.0 

18 



and D„ for plane stress as: ~S    r 

~S 
1-v 

1   v   0 

v   1   0 

0   0 ±* 

The isotropic tridimensional rigidity matrix may also be expressed by in- 

putting E, v with the CONSTANTS command, since 

~3 
(1+v) (l-2v) 

(1-v) V V 0 0 0 

V (1-v) V 0 0 0 

V V (1-v) 0 0 0 

0 0 0 
(1-2V) 

2 0 0 

0 0 0 0 
(l-2v) 

2 0 

0 0 0 0 0 
(l-2v) 

When treating a laminated plate, the equivalent homogeneous stretching 

and bending ridigity matrices are generated by defining D„ and DD as follows: 

~S    h layers ~i"i 
^       D.h. 

~B    ,3  layers  J ~i 
dz 

It sometimes happens that orthotropic planar rigidity exists in a local 

element orientation.  It is then necessary to transform the orthotropic local 

rigidity matrix, D  ,   to an anisotropic planar rigidity matrix, JJ . 

£p = T Dt T ~0 ~L ~a 

19 



where the stress transformation^T is given by: 

cos w 

sin 0 

sin 20 

sm 6 

cos 8 

sin 20 

sin 20 

sin 20 

cos 20 
_ 

An example of such a transformation is illustrated in Figure 2.1 for an ortho- 

tropic edge.  The positive sign convention for stresses and rotations in the 

local and planar reference frames is also illustrated. 

Note: 0 is positive when 

X is rotated from 

+X toward +Y 

Figure 2.1.  Example of rigidity matrix transformation. 
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4.  Stiffness/Mass Matrix Description 

The stiffness and mass matrices are expressed in partitioned form, where 

each submatrix is identified by its hyperrow and hypercolumn subscripts, i and 

j, respectively. Each submatrix is a square array whose order is the number 

of degrees of freedom per node. The degrees of freedom at each node must con- 

form to those of the element whose "type name" is given. The partitioned form 

of the matrix is: 

Ml 
i 

i 
i 

i 

j«ij 
i 

i 

i 

i 

! K. i Mn 
i 

i i 

K.. 
~il i 

i 

i 
i*ij 

i 

i 

: K. i ~in 
i 

i i i 

~nl 
i 

i 

i 

!   K   . i ~nj i 

i 

: K i ~nn 

K. . 

11 

ml 

lm 

mm 

Since it is symmetric, only the unique, non-zero partitions need be given 

(i.e., only the diagonal partitions and either the upper OR lower off-diagonal 

partitions).  If a submatrix has non-zero terms only on the diagonal, the 

DIAGONAL form (as shown in the command description) may be used. 

MASS 

STIFFNESS 

SUBMATRIX 

(MATRIX)   [NODES]   n   [NDF]  m 

/ \ 

< 

vn, . . .v, 
11      lm 

v .. ... v L ml       mm 

DIAGONAL v 11 mm 
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where 

n = number of nodes of the element; 

m = number of degrees of freedom per node; 

i = hyperrow subscript of the submatrix being specified; 

j = hypercolumn subscript of the submatrix being specified; 

vn, . . v   = stiffness values for the submatrix being specified. 
11     mm b    r 

The number of hypercolumns (or hyperrows) in the element stiffness/mass 

matrix will be equal to the number of nodes, n.  The number of columns (or 

rows) within each submatrix is equal to the number of degrees of freedom per 

joint, m.  For example, a triangular plane stress element having three nodes 

will have three hypercolumns (and hyperrows), while the number of columns (or 

rows) within each submatrix will equal two (corresponding to the u, v nodal 

degrees of freedom at each joint). 

Again, the stiffness/mass matrix is specified in the planar element coor- 

dinate system for planar elements, and in the global coordinate system for 

tridimensional elements.  Units conversion is not performed for stiffness ma- 

trix components.  They must be given in metric units of meters, and newtons. 

5.   Special DUMMY Element Specification 

When describing ELEMENT PROPERTIES, it is necessary to specify an element 

"type name" (e.g., CSTG, IPLQ, etc.) even if the stiffness/mass matrix is in- 

put directly.  This "type name" is used to identify the program name to be 

called within certain element procedures (e.g., stiffness/mass matrix genera- 

tion, loads generation, stress backsubstitution, stress/strain output, etc.). 

For this reason a special type name, DUMMY, has been added to allow ele- 

ment information such as stiffness/mass matrices to be input without specify- 

ing a unique element "type name".  Load generation, stress backsubstitution, 

and output are bypassed for this special element, since it lacks the necessary 

information to compute and store them. 
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The specification of degrees of freedom for this DUMMY element is given 

in the ELEMENT PROPERTIES command as: 

DOF I DX  DY  DZ  RX  RY  RZ } 

These nodal degrees of freedom are global degrees of freedom, and must be the 

same at all nodes. 

6.  Element Similarities Specification 

When an element is similar to another, it is possible to take advantage of 

element similarities to reduce the computation time.  For this purpose, the 

two elements need not be identical.  Differences may exist in applied loads, 

boundary node support conditions, and geometric orientation.  This similarity 

is specified with the ELEMENT PROPERTIES command as: 

SAME (AS) 

V 
/ PLANAR  [TH4]  V. 

ROTATED [TH1]  V   [TH2J  V2   [TH3]   V ) 

(BUT LOADINGS) 

where: 

v v 
V V  V V 2'  3 

element name 

values of the global rotation angles 9 , 9 , 6 

value of the planar rotation angle 9 

When an element is identical to another, only the identifier for the 

second element needs to be given in the similarity specification.  If, however, 

their geometric orientation with respect to the global (or planar) coordinate 

system is different, it is necessary to specify rotation angles.  The angles 

23 



TH1, TH2, and TH3 indicate how the base element is to be rotated in the 

global reference frame so that it coincides with the similar element (refer 

to Figure 2.2). 

TN-77-17(2-2) 

Y, 

Figure 2.2.  Rotation angles for element similarities. 

Note that if planar elements are to be rotated, the three-axis rotation 

procedure is extremely cumbersome. Since the element planar coordinate sys- 

tems are known for both elements, it is possible to use the angle TH4 to in- 

dicate how the planar base element is to be rotated in the planar reference 

frame so that it coincides with the similar planar element. 
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When the element loads applied to the similar element differ from those 

for the base element, it is necessary to specify the option BUT LOADINGS. 

However, this is not necessary if the only difference in loadings involves 

applied joint loads or displacements. 

7.  Examples of ELEMENT PROPERTIES Specification 

(1) Element type and thickness 

ELEMENT PROPERTIES 

1 TO 15 TYPE 'LSR' THICK 0.5 

(2) DUMMY Element Type and Stiffness/Mass Matrix 

ELEMENT PROPERTIES 

1 TO 10 TYPE 'DUMMY' DOF DX DZ - 

STIFFNESS MATRIX NODES 2 NDF 2 

SUBMATRIX 1   1  DIAG 87575.   98700. 

SUB 1   2  51500.   47000. 

35000.   63735. 

SUB 2  2  DIAG  75000.   841000. 

MASS MATRIX NODES 2 NDF 2 

SUB 1   1  DIAG   .015   .015 

SUB 2   2  DIAG   .015   .015 

(3) Element type, thickness, thermal expansion coefficients, and 

rigidity matrix. 

ELEMENT PROPERTIES 

1001 TO 1016 TYPE 'CSTG' THICK 0.1  - 

CTE  10.33E-6  10.67E-6 CSXY 0.94E-6 

RIGIDITY MATRIX  NC  3 

ROW 1        0.15156D+07   0.43313D+06   0.46849D+05 

ROW 2 0.43313D+06   0.15891D+07   0.57063D+05 

ROW 3        0.46849D+05   0.57063D+05   0.57226D+06 
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(4)  Element type and similarities 

ELEMENT PROPERTIES 

1 TYPE 'PSR' THICK 1. 

2 TO 60 SAME AS 1 

61 TO 120 SAME AS 1 ROTATED TH4 90. 
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III.       FINITE ELEMENT  LOADING SPECIFICATION 

1.       Edge Forces 

Element loads acting on the exterior boundaries of plane stress/strain 

finite elements or on the edges of tridimensional finite elements must be con- 

verted into consistent joint loads. These consistent joint loads are defined 

as "work equivalent" forces: 

nodes 

E 
i = 1 

P. 
1 

6u.  = 
l / p • 6u dS 

where u. P. are the nodal displacements and equivalent joint loads, respect- 

ively. As can be seen by the right-hand side of the above equation, these 

equivalent joint loads depend on the assumed element displacement expansion, 

u, as well as on the load intensities, p. 

EDGE FORCES may be specified under the ELEMENT LOADS command as: 

list EDGE FORCES EDGE 

LOCAL 

PLANAR 

GLOBAL 

LX  v 

LY  v2 

LZ  v3 

(variable) 

(variable)  • VARIABLE 

VX Xj x2 

YYyi y2 
VZ Z. z2 

where: list 

i, 

v2» V3 
x. 

=    list of elements for which edge forces are applied; 

= edge number where load is being applied; 

= value of the load components for uniform loading; 

= value of X, Y, Z load components at node j for 
variable loading. 

(Units of applied load are force/unit length) 
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The edge numbers for planar elements are defined by the nodal order in 

the ELEMENT INCIDENCES command.  The first pair of corner nodes define EDGE 1, 

the second pair EDGE 2, etc., until all edges have been defined. 

TN-77-17(3-l) 

EDGE 3 

EDGE 4 EDGE 2 

EDGE 1 

Figure 3.1.  Edge numbering for planar elements. 

If the VARIABLE loading specification is used, the nodal ordering on the edge 

proceeds from corner node to corner node in the same direction as the ELEMENT 

INCIDENCE ordering (e.g., nodes 3, 9, 10, 4 define edge 3 in Figure 3.1). 

The edge numbers for tridimensional elements are also defined by the ele- 

ment nodal listing in the ELEMENT INCIDENCES command. The first numbered face 

(front face) defines the first group of edge numbers, the edges connecting the 

front face and back face define the second group of edge numbers, and the back 

face edges are defined last. Edge numbering for the IPLS, IPQS, and TRIP tri- 

dimensional elements are illustrated in Figures 3.2-3.4, respectively. 
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Edfle Node ordering 

1 1 2 

2 2 3 

3 3 4 

4 4 1 

5 1 5 

6 2 6 
7 3 7 

8 4 8 

9 5 6 
10 6 7 

11 7 8 

12 a 5 

Figure 3.2.  Edge numbering for IPLS element. 

TN- 77-17(3-3) 

Edge Nod e ordering 

1 1 5 2 

2 2 6 3 

3 5 7 4 

4 4 8 1 

5 1 9 13 

6 2 10 14 

7 3 11 IS 

8 4 12 16 
9 13 17 14 

10 14 18 15 

11 15 19 16 

12 L6 20 13 

Figure 5.3.  Edge numbering for IPQS element. 
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Edge Node ordering 

1 1 2 

2 2 3 

3 3 1 

4 1 4 

5 2 s 
6 3 6 

7 4 5 

8 s 6 
11 6 4 

Figure 3.4.  Edge numbering for TRIP element. 

EDGE FORCES acting on tridimensional elements must be specified as 

GLOBAL loads.  If EDGE FORCES acting on planar elements are specified as 

GLOBAL, the loads will be transformed into the PLANAR element coordinate sys- 

tem for consistent load calculations. 

For planar stress/strain elements a LOCAL coordinate system is established 

at each node in the following manner (refer to Fig. 3.5): 

(a) Z is determined by nodal ordering of the ELEMENT INCIDENCES command. 
Li 

(b) Xj is the normal to the edge at a joint (positive in the outward- 

pointing direction). 

(c) Y is the tangent to the edge at a joint (positive direction being 
Li 

determined from right-hand rule on Z and X . 
I.      L 

Yr io 
Figure 3.5.  Local coordinate system for edge loads, 

30 



2.  Surface Forces 

Element loads acting on the surfaces of planar or tridimensional elements 

must also be converted to consistent joint loads (refer to Edge Forces for 

description of this conversion). 

SURFACE FORCES are specified under the ELEMENT LOADS command as: 

list SURFACE FORCES (FACE i ) 

LOCAL 

PLANAR 

GLOBAL 

PX Vl 1 
PY V2 
PZ V3 

where: list 

i, 

V V V3 

(variable) 

=  list of elements for which surface forces are applied; 

=     face number of tridimensional element where load 
is applied; 

= value of the load components for uniform loading; 

(variable)  = refer to Edge Forces description. 

(Units of applied load are force/unit area). 

SURFACE FORCES can be specified as either PLANAR or GLOBAL for planar 

finite elements. The LOCAL option is not allowed.  If SURFACE FORCES acting 

on planar elements are specified as GLOBAL, the loads will be transformed into 

the planar element coordinate system for consistent load calculations. The 

FACE i specification must not be given for planar elements, since it is clear 

where the load is to be applied.  The variable option is not available for 

plate bending elements. 

SURFACE FORCES can be specified as either LOCAL or GLOBAL for tridimen- 

sional elements. The LOCAL coordinate system refers to the transformed curvi- 

linear coordinates (refer to Figure 3.6). 

(a) Z is the outward-pointing normal to the surface. 

(b) X is parallel to edges 1 and 3 of the transformed coordinate axes. 

(c) Y is parallel to edges 2 and 4 of the transformed coordinate axes. 
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|TN-77-17(3-6) 

CURVILINEAR COORDINATES TRANSFORMED  LOCAL 
COORDINATES 

Figure 3.6.  Local coordinate systems for surface loads. 

The face numbers for tridimensional elements are defined by the nodal 

order in the ELEMENT INCIDENCES command. The first numbered face is always 

FACE 1, and the back face is always FACE 2. The connecting faces are then 

numbered in the same direction as the node numbering (FACE 3  »-FACE N) . 

The nodal ordering for each face is started at the first node encountered for 

that face in the nodal list.  The remaining nodes on the face are ordered by 

proceeding around the face in a direction such that an out ward-pointing normal 

is produced by applying the right-hand rule to the node ordering. 
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Face Mode Ordering 

1 1     2 3 

2 4    6 5 

3 1     4 5     2 

4 2     5 6    3 

5 1     3 6    4 

TN-77- •17(3-7) 

Figure 3.7.  Face numbering for TRIP element. 

Face Node Ordering 

1 1 2 3    4 

2 5 8 7     6 

3 1 5 6     2 

4 2 6 7     3 

5 3 7 8    4 

6 1 4 8     5 

TN- •77- •17(3-8) 

Figure 3.8.  Face numbering for IPLS element. 
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Face 

1 

2 

3 

4 

5 

6 

Node Orderin £ 

15 2 6 3 7 4 8 

13 20 16 19 15 18 14 17 

1 9 13 17 14 10 2 5 

2 10 14 18 15 11 3 6 

3 11 15 19 16 12 4 7 

1  8 4 12 16 20 13 9 

TN-77-17(3-9) 

Figure 3.9.  Face numbering for IPQS element. 

3.  Body Forces 

Forces, such as dead load, often act on a finite element throughout the 

entire body of the element. These body forces must be converted into consis- 

tent joint loads (as detailed under Edge Forces) for each finite element. 

BODY FORCES may be specified under the ELEMENT LOADS command as: 

where: 

list BODY FORCES r PLANAR) GLOBAL) 

• 

BX vl 
BY V2 
BZ V3 
(variable)  / 

list      = list of elements for which body forces are prescribed; 

v , v_, v_ = value of the load components for uniform loading; 

(variable) = refer to Edge Forces description. 

(Units of applied load are force/unit volume). 
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BODY FORCES must be specified only as GLOBAL for tridimensional elements, 

However, they may be specified as either PLANAR or GLOBAL for planar finite 

elements.  If BODY FORCES for planar finite elements are specified as GLOBAL, 

the loads will be transformed into the planar element coordinate system for 

consistent load calculation. 

4.  Thermal Forces 

Temperature changes and thermal gradients acting on finite elements also 

require conversion to equivalent consistent joint loads (as detailed under 

Edge Forces) for each finite element. 

Thermal forces may be specified under either the ELEMENT or JOINT TEMPERA- 

TURE commands as: 

CHANGE v, 

list GRADIENT 

fX v2 LOCAL 

GLOBAL 

where: list 

V V3' V4 

= a list of joints/elements at which the thermal 
forces are applied; 

= value of temperature change, T; 

= value of X, Y, Z thermal gradients (i.e., 3T/3X, 
3T/3Y, and 3T/3Z). 

Coefficients of thermal expansion must be given for all elements connected to 

joints which are subjected to JOINT TEMPERATURES and for all elements subjected 

to ELEMENT TEMPERATURES. 

When only a coarse description of the thermal distribution is known, it is 

often simplest to use the ELEMENT TEMPERATURE form of the command. On the 

other hand, if variations in temperature are well defined and rapidly changing 

across an element, it would be better to use the JOINT TEMPERATURE form of the 
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command.  In this latter case, equivalent nodal forces due to temperature are 

generated by assuming the temperature expansion coincides with the displacement 

expansion. 

Plane stress/strain elements and tridimensional elements use only the 

temperature CHANGE to generate thermal forces, while plate bending elements 

use only temperature GRADIENT information. Only the plate elements make use 

of both temperature CHANGE and temperature GRADIENT data. 

Temperature GRADIENTS can be either LOCAL or GLOBAL. However, if LOCAL 

is specified, the only applicable load component is Z which defines a gradient 

normal to the surface.  If GLOBAL is given, the component of the gradient vec- 

tor normal to the plate will be calculated and used. The in-place components 

will be discarded. 

5.  Initial Strains 

If any initial strains are present in a finite element from such sources 

as imperfect fit, etc., then they must be accounted for in the model. The 

elastic strain (i.e., the only one that produces stress) can be expressed as 

e = £ - e„ - e , where e is the total strain, e is the thermal strain, and 

e is the initial strain. 

Since the deformed shape of the structure under total loading (external 

loads, thermal strain, initial strain) is desired, equivalent consistent joint 

loads are generated for the thermal strain and initial strain effects. The 

final elastic strains (those computed by STRUDL) are then obtained by sub- 

tracting the input values of thermal strain and initial strain from the total 

strains computed from the displacements. 

These initial strains may be specified with the ELEMENT INITIAL STRAINS 

command as: 

list 

AXIAL [X] v:  [Y]  v2  [Z]  v3 

SHEAR  [XY]  v4  [XZ]  v5  [YZ]  v 
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where: 

list       = a list of elements for which initial strains are 
prescrihed; 

v , v_, v  = values of initial axial strains; 

v., vr,  v,    = values of initial shear strains. 
4   5  6 

The initial strain components must be given in the GLOBAL reference frame 

for tridimensional elements and in the PLANAR reference frame for planar 

elements.  The strain curvatures, rather than strains, are specified in the 

case of plate bending elements.  Therefore, initial strains must not be 

specified for plate elements, as inconsistencies will result.  (Plate elements 

may be remodeled as overlaid plane stress and plate bending elements if ini- 

tial strains are present.) 
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IV.   FINITE ELEMENT MODELING CONSIDERATIONS 

1.  Convergence and Accuracy of Model 

One objective of the analyst when using finite elements to model a struc- 

ture is to generate results sufficiently accurate to satisfy his requirements. 

To have confidence in his results, he must know their level of accuracy (i.e., 

establish a "percentage of error" from the "true answers"). He also wants his 

results to converge to the "true solution" as the finite element mesh is made 

finer. 

Two basic criteria must be satisfied to assure convergence. 

(1) Any required state of constant strain (including rigid body 
movement) can be reproduced on an element; 

(2) Displacements must be continuous between adjacent elements. 

If these criteria are met, the solution represents an upper-bound on the total 

potential energy. The potential energy can be made to converge monotonically 

if successively finer modeling retains the nodes of the previous models.  If 

the second criterian is unsatisfied, these non-compatible elements will still 

converge if the first criterion above is satisfied. However, a monotonic con- 

vergence cannot be guaranteed, and bounds on the potential energy are not es- 

tablished.  Non-compatibility is often associated with plate bending elements 

(e.g., CPT and SBCT). However, these non-compatible elements have often been 

shown to exhibit better convergence characteristics than compatible elements 

which use complex displacement expansions. 

In generating the finer mesh, nodes may be added, but none may be removed 

or eliminated.  In addition, the displacement expansions of the elements must 

not be a function of the element size or orientation. 

Since convergence can be assured for all finite element models, one sim- 

ple method of assessing accuracy is available. The problem can be analyzed 

with successively finer meshes, whose successive results will approach the 
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true solution.  The results of successive refinements as a function of the 

number of degrees of freedom allow the true solution to be approximated by 

extrapolation.  This process of successive refinements can be terminated 

whenever the analyst feels he has achieved sufficient accuracy. 

It must be remembered that the degree of refinement required for a parti- 

cular analysis is a function of both the geometry of the structure being ana- 

lyzed and its loading environment.  Finer meshes, or higher-order elements, 

are generally required in areas of high stress gradients.  High stress gradi- 

ents are indicated by large stress differences in adjacent elements.  If 

structural loadings do not generate any such high stress gradients, a finer 

grid will not be required.  Similarly, if a curved boundary is being modeled, 

elements with straight edges can never model the problem exactly, but several 

higher-order elements may give excellent results with significantly less ex- 

pense . 

Convergence and accuracy studies should be standard procedure for any 

finite element analysis in order that the analyst can estimate his errors and 

account for them. 

2.   Interpretation of Results 

To obtain the results of a finite element analysis, it is necessary to 

use the LIST command.  Available for output are the nodal displacements and 

element stresses and strains.  Reactions and loads (statics check results) 

are not available in problems containing finite elements. 

Since the stresses in a finite element problem are a function of deriva- 

tives of the displacements, the displacement results will converge more quickly 

than the stresses.  Therefore, acceptable displacement results are often ob- 

tained for a mesh which is significantly coarser than that required to obtain 

acceptable stress results.  One technique which enables the analyst to improve 

his stress results without resorting to re-analysis using a finer discretiza- 

tion is stress averaging.  The basic assumption is that if the displacements 

are accurate, the stresses, on the average, should also be good. 
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Several variations of the stress averaging technique exist, all of which 

result in a smoothing of the stress pattern over the structure: 

(1) Nodal Stress Averaging 

The analyst may be interested in a set of stress values at the nodes, 

If this is the case, the stresses from all of the elements incident on 

that node may be averaged (the sum of the stresses in a given direction 

divided by the number of incident elements).  If the elements have stress 

values at the nodes, those stresses may be used.  If the elements have 

constant stresses, those constant values may be used.  In either case, 

the result is a smoothing of the set of stress values at particular 

points in the structure. 

(2) Element Stress Averaging 

Alternatively, the analyst may be interested in a good approximation 

of the stresses in the elements.  If this is the case, the stresses from 

each of the nodes may be averaged.  If the elements are constant stress 

elements (i.e., there are no nodal stresses), the constant stress value 

may be used. 

It must be noted that this sort of averaging technique may not be valid 

in stress fields where the smoothing would tend to mask areas of high stress 

gradients. 

In summary, the intent of this section has been to point out the fact 

that while displacement results may be sufficiently accurate for a particular 

problem, it may be appropriate to interpret the resulting stresses somewhat 

more loosely, due to the inaccuracies which may have been introduced by the 

original finite element modeling assumptions. 

The output currently available for the STRUDL finite elements is listed 

in Table 4.1. In addition, each finite element is also further described in 

the Appendix. 
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EXAMPLES 

1.   Plane Stress Example 

A solid cantilever beam (see Figure 5ol) will be modeled using plane stress 

finite elements.  The cross-section is rectangular, 12 inches in depth, 6 inches 

in thickness, and 120 inches in length. A concentrated end load (P • 10 kips) 

and a uniform loading (w = 0.8 kips/ft) are to be investigated. Tip deflection 

of the beam is desired. 

I 
h = 121 

f 
-r > 

P = 10 kips I 
W = 0.8 kips/ft i 

+ + + * + + * + ** + + + *+:EE 
] 

L= 120 

t = 6" 

E = 10,000 ksi 

v    =   0. 0 

TN-77-17(5-l) j 

Figure 5.1.  Solid cantilever beam. 

Since the tip deflection is the desired output (rather than stresses), 

it is possible to use the CSH elements and reduce the number of linear dis- 

placement finite elements (PSR, IPLQ) required for this model.  It should also 

be noted that it is possible to use only one quadratic displacement finite ele- 

ment (e.g., LSR, IPQQ) since the theoretical displacement function for this 

example happens to be quadratic. 

IPLQ and IPLQCSH elements were selected for the model.  They also were 

used to illustrate how edge loads (w • 0.8 kips/ft) can be applied to the ele- 

ments. A typical 2-element model is shown in Figure 5.2. 

',* 

/ 
/ 

Figure 5.2.  Finite element model of beam. 
TN-77-17(5-2) 
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It should be noted that adding joints 7, 8, 9 in Figure 5.2 does not im- 

prove the tip displacements at all. Even though the number of finite elements 

is doubled, the element aspect ratio has also been doubled, and no improvement 

in tip deflection is obtained.  This illustrates the importance of proper dis- 

cretization for proving convergence of a finite element model. 

A typical input deck for this example is listed in Figure 5.3, while the 

results are illustrated in Figure 5.4. Two cases were considered:  (1) a long 

beam (h/L = 0.1) in which bending dominates; and (2) a short beam (h/L • 0.5) 

in which shear deformation is important. 

It should be noted that the CSH elements provide almost exact results for 

the loading cases illustrated in this example. 

STRUDL 'IPLQCSH' 'PLANE STRESS EXAMPLE' 
JOINT COORDINATES 
1 0. 0. SUPPORT 
2 0. 12. SUPPORT 
3 60. 0. 
4 60. 12. 
5 120. 0. 
6 120. 12. 
JOINT RELEASES 
2 FORCE Y 
TYPE PLANE STRESS 
ELEMENT INCIDENCES 
113 4 2 
2 3 5 6 4 
ELEMENT PROPERTIES 
1 2 TYPE 'IPLQCSH' THICK 6. 
CONSTANTS 
E 10.E6 ALL 
P0ISSON 0. ALL 
UNITS KIPS FEET 
LOADING 1 
JOINT LOADS 
6 FORCE Y -10. 
LOADING 2 
ELEMENT LOADS 
1 2 EDGE FORCES EDGE 3 LOCAL UNIFORM LY -.8 
DUMP TIME 
STIFFNESS ANALYSIS 
UNITS INCHES 
LIST DISPLACEMENTS JOINT 5 
FINISH 

TN-77-17(5-3) 

Figure 5.3.  Input listing of STRUDL model of beam. 
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M = l,2 

CSH 
ELEMENTS 

% 

Concentrated    2o - 
Load (P)-H 

W 
1 I 1.1 I I 

N  Elements-*- 

L  
elements V Beam J 

—' V    I     ' CSH 
1 /ELEMENTS 

100.    T   t   I    ?> 

Uniform 
Load (W)' 

% 

M = l,2 
T—r 

40 

20 

REGULAR 
ELEMENTS   H 

1_1 I I     I    I 
4 
N 

8 

Figure 5.4.  Results of solid cantilever example. 
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2.  Fracture Mechanics Example 

The quadratic isoparametric elements (IPQQ> IPQS) existing in STRUDL have 

been shown1  to embody 1/^/lF singularity for calculating stress intensity fac- 

tors of elastic fracture mechanics. The singularity is obtained by placing 

those mid-side nodes near the crack tip at the quarter points. 

The STRUDL input file need not be changed to accommodate fracture analy- 

sis, except that the coordinates of the quarter-side nodes must be specified. 

The distance from the quarter-side nodes to the crack tip should probably be 

between 2 - 3% of the crack length.  Elastic fracture mechanics problems that 

can be treated are Mode I (crack opening), Mode II (crack sliding), or combined 

Modes I and II (refer to Figure 5.5). 

TN-77-17(5-5) 

Opening I[      Slid mg 

Figure 5.5.  Elastic fracture mechanics modes. 
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Since STRUDL permits thermal loading, the effects of cracks on structures sub- 

jected to various thermal environments can also be studied. 

In order to compute the stress intensity factors K and KT , the displace- 
[21 

ments at the quarter-side nodes must be found.  The following equations   may 

then be used to evaluate them. 

un + — */— /cosa (2K - 1) cos cos — 
4G    1 2TT    ( L 2 2J 

-  sina     (2K +  1)   sin sin —\\   +     */~   < cosa     (2K 
L 2 2_| j 4G    f 2TT    ( L 

[2K  -  3)   cos — +  cos —    \ 
2 2 J J 

Q 

+  3)   sin — +  si 
2 

36~| n7j 

^ sina   |(2K  -  1)   cos cos — 
2 2 

vn  + — */—   { sina     ( 
4G T2TT   ( 

:osa     ( r...      .     8 .     30 
(2K +  1)   sm — -  sin — 

2 2, 

[( -  cosa   | (2K  -   3)   cos — +  cos — 
2 2 

] 
\  +   -/— /sina     (2K 

j        4G     T2TT   ( L 
+  3)   sin — +  sin 

2 1] 

where un and v„ are the unknown displacements of the crack tip, u and v are 

the displacements at the quarter-side nodes, G is the shear modulus, a is the 

angle of the crack as measured positive counterclockwise from the x axis, and 

r and 6 are the crack tip centered polar coordinates of the quarter-side nodes 

The quantity K is dependent on the problem type: 

K  = 
3 - 4v (plane strain or axisymmetric) 

(3 - v)/(l + v) (plane stress) 
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where v is Poisson's ratio.  It should be noted that this displacement assump- 

tion, when properly differentiated to yield strains and stresses, yields the 
-1/2 correct singularity for stresses at the crack tip, i.e., a.. = a. . (r   .6) r lj IJ   

v ' 
which tends to infinity as r tends to zero. 

Consider a steel  compact tensile specimen,  5  inches  square with a 1.5-inch 

crack and a 1 psi tensile  loading on the top surface.    A 2-element model of 

the  specimen is shown in  Figure 5.6. 

Crack 

1 psi 

PTrrrrm 
7j 

1 

kl.5" 

10     1,1 

>/fr/>      'ifr/l' 

12 

3.5"- 

13 -~T 

8      2.5" 

'l nli 

TN-77-17(5-6) 

E = 30(10)" psi 

v  = 0. 3 

t    = 1 inch 

Note: Joints 2, 4, and 6 are quarter-side nodes, 

Figure 5.6.  Finite element model of fracture specimen. 

The singularity of strains at the crack tip is evidenced by the Jacobian 

of transformation from curvilinear space to Cartesian space.  This singularity 

is bypassed during strain calculations and a warning is printed indicating the 

node at which the singularity occurs (i.e., this should be the node at the 

crack tip).  For example, for the above problem 
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**** STRUDL WARNING 4.35 - JACOBIAN VANISHED FOR ISOPARAMETRIC ELEMENT 1 
AT INTEGRATION POINT   2 

**** STRUDL WARNING 4.35 - JACOBIAN VANISHED FOR ISOPARAMETRIC ELEMENT 2 
AT INTEGRATION POINT   1 

where node 3 is the integration point noted in both warning messages. 

In order to achieve enough accuracy in the output displacements, it is 

necessary to apply a larger (e.g., 1000 psi) tensile stress on the top surface 

and also request 9 digits of output data by the OUTPUT DECIMAL 9 command.  The 

input listing of the data deck for this example is listed in Figure 5.7. 

STRUDL 'IPQQ' 'FRACTURE MECHANICS EXAMPLE' 
JOINT COORDINATES 
1 0.   0. 
2 1.125  0. 
3 1.5  0.   SUPPORT 
4 2.375  0.   SUPPORT 
5 5.   0.   SUPPORT 
6 1.5   .625 
7 
8 
9  0.   2.5 
10 
11     1.5  2.5 
12 
13  5.   2.5 
JOINT RELEASES 
4  5  FORCE  X 
TYPE PLANE STRAIN 
ELEMENT INCIDENCES 
1 1 3 11 9 2 6 10 7 
2 3 5 13 11 4 8 12 6 
ELEMENT PROPERTIES 
1 2 TYPE 'IPQQ' THICK 1. 
CONSTANTS 
E 30.E6 ALL 
POISSON .3 ALL 
LOADING 1 
ELEMENT LOADS 
1 2 EDGE FORCES EDGE 3 GLOBAL UNIFORM LY - 1000. 
DUMP TIME 
STIFFNESS ANALYSIS 
OUTPUT DECIMAL 9 

TN-77-17(5-7) LIST DISPLACEMENTS JOINTS 2 4 6 
FINISH 

Figure 5.7.  Input listing of STRUDL model of fracture specimen. 
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The number of quarter-side nodes surrounding a crack tip affects the ac- 

curacy of computation of the stress intensity factors.  Several grids were used 

for the above problem and convergence to the exact solution was extremely good. 
1/2 The exact answer for KT is 4.016 psi-in  .  Convergence is illustrated in 

Figure 5.8. 
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TN-77-17(5-8) 

80 h 

u.  70 
O 

Z60|- 

c* 50 
LU a. 0 

— 

88 
93 

96% 

1 1 1 1 
2 4 6 8 

NUMBER   OF QUARTER-SIDE NODES 

Figure 5.8.  Convergence of K for fracture specimen. 

49 



3.  Super Finite Element Generation Example 

The construction of super finite elements (or substructures) is often re- 

quired to analyze large structures. These super finite elements contain only 

those degrees of freedom needed for structural coupling and those additional 

degrees of freedom needed to accurately reflect the stiffness and mass proper- 

ties of the structural component. 

Consider a flat plate, support frame, and torque tube assembly (modeled 

as simply as possible in Figure 5.9 for illustrative purposes).  The honeycomb 

plate section consists of .05" facesheets on a .95" thick core. 

Figure 5."§T Finite element model of plate assembly. 
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The assembly connects to the total structure at joints 10 and 12. Thus, it is 

possible to obtain a proper stiffness representation for the above assembly 

with one super finite element (or member) connecting only those two joints. 

A proper mass representation would probably require some additional degrees 

of freedom to be considered for both mass and stiffness matrix development. 

Since STRUDL does not compute reactions at supports for problems contain- 

ing finite elements, it is necessary to obtain them in another way. Two addi- 

tional joints '10A' and '12A' are constructed differing only from joints 10 

and 12 by some very small AX (in this case, .01 inches). These two additional 

joints are then made SUPPORTS and rigid-linked (accomplished by specifying very 

large cross-sectional properties) by two members to their corresponding real 

joints.  The MEMBER FORCES in these two rigid-link members should be identical 

to the reactions if one is careful to keep the sign convention straight.  (It 

should be simple to transform the results from the member coordinate system 

into the global coordinate system). 

The calculation of the equivalent plate thicknesses to use for the planar 

ELEMENT PROPERTIES is rather straightforward (refer to Section II-3).  The 

modulus of elasticity of the plane stress and plate bending elements is chosen 

to be that of the honeycomb plate. Their thicknesses are then computed to be: 

(stretching)  h  =  2 h. = 0.10 inch 

B y^: (bending;     hR = ".»/24 h. ( - )2 = 0.67 inch 

One interesting observation should be made at this time.  The flat plate 

is intentionally modeled with triangular finite elements to illustrate that 

skew symmetric answers will be obtained for this otherwise perfectly symmetric 

problem. This skew symmetry can be eliminated by overlaying an equal number of 

finite elements whose diagonals run the other way, and then modifying the plate 

thicknesses of all the elements (stretching h' = .5 h,, and bending 

hB = Y7^- 
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The stiffness matrix relates loads and displacements. One column of this 

matrix can be constructed by displacing a SUPPORTed degree of freedom one unit, 

while constraining all others, and then listing the reactions at those other 

SUPPORTed degrees of freedom. There are 12 degrees of freedom needed for con- 

struction of the super finite element stiffness matrix, and thus, 12 loading 

conditions are required. 

Loads acting on the assembly are also transferred to the coupling nodes. 

The reactions at the fully SUPPORTed coupling nodes represent the super finite 

element loads to be applied to the coupling nodes in subsequent models. 

Note that OUTPUT DECIMAL 2 is specified in Figure 5.10 before listing 
7 

member forces, so that the large stiffness matrix values (of order 10 ) will 

not overflow the output field. Also, OUTPUT BY MEMBER has been specified so 

that the output from the 12 loading cases will be presented under each member 

separately. 

As mentioned earlier, note the lack of agreement in the marked terms in 

Figure 5.11 between the skewed triangular model and the overlaid symmetric 

triangular model.  Non-zero coupling terms are generated for the skewed tri- 

angular model even though coupling does not really exist. This illustrates 

very vividly that care should be exercised when constructing finite element 

models with triangular elements. 

The member forces (really reactions) are then used as stiffness matrix 

data for input to another model with no loss of information by this reduction 

in problem size.  While a MEMBER could have been selected to input the stiff- 

ness matrix data just generated, a DUMMY finite element was chosen instead, 

in order to illustrate the input technique for finite element stiffness matrix 

input.  The input portion of the data deck pertaining to the DUMMY element 

specification is listed in Figure 5.12. 
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STBODL 'SUPER' 'SUPER FINITE 
JOINT COORDINATES 

ELEMENT GEIIRATIOI' 

1 0. 0. 15. 
2 25 0. 

0. 
15 
15 . 

TN-77-17(5-10) 
3 50 
4 0. 0. C . 
5 25 0. 0. 
6 50 0. 0. 
7 0. 0. - 15 . 
8 25 0. -15. 
9 50 0. -15. 
10 0. -10. 2. ELEMENT PROPERTIES 
•104 — ( 01 -10. 2. SOPPORT        101 TO 116 TYPE 'CSTG' THICK .05 
11 25. -10. 2. 201 TO 216 TYPE 'CPT* THICK .5313 
12 50. -10. 2. MEMBER PROPERTIES PRISMATIC 
• 12A 50. 01 -10. 2. SUPPORT       5 TO 12 AX 3. IX 20. II 10. IS 10 
TYPE PLANE STRESS 13 14 AX 30. IX 200. II 100. IZ 1 
ELEMENT INCIDENCES CONSTANTS 
101 4 2 1 E 10.E6 ALL 
102 2 4 5 POISSON .3 ALL 
103 1 5 2 LOADING 1 
101 5 1 4 JOINT DISPLACEMENTS 
105 5 3 2 •10A« DISP X 1. 
106 3 5 6 LOADING 2 
107 2 6 3 JOINT DISPLACEMENTS 
108 6 2 5 •10A' DISP Y 1. 
109 7 5 4 LOADING 3 
110 5 7 8 JOINT DISPIACEHENTS 
111 4 8 5 • 10A' DISP Z 1. 
112 8 4 7 LOADING 4 
113 8 6 5 JOINT DISPLACEMENTS 
in 6 8 9 •10A' ROT X 1. 
115 5 9 6 LOADING 5 
116 9 5 8 JOINT DISPLACEMENTS 
TYPE PLATE BENDING •10A" ROT Y 1. 
ELEMENT INCIDENCES LOADING 6 
201 u 2 1 JOINT DISPLACEMENTS 
202 2 4 5 •10A' ROT Z 1. 
203 1 5 2 LOADING 7 
204 5 1 4 JOINT DISPLACEMENTS 
205 5 3 2 •12A" DISP X 1. 
206 3 5 6 LOADING 8 
207 2 6 3 JOINT DISPLACEMENTS 
208 6 2 5 •12A' DISP I 1. 
209 7 5 4 LOADING 9 
210 5 7 8 JOINT DISPLACEMENTS 
211 4 8 5 •12A' DISP Z 1. 
212 8 4 7 LOADING 10 
213 8 6 5 JOINT DISPLACEMENTS 
214 6 8 9 '12A" ROT X   1. 
215 5 9 6 LOADING 11 
216 9 5 8 JOINT DISPLACEMENTS 
TYPE SPACE FRAME •12A' ROT Y 1. 
MEMBER INCIDENCES LOADING 12 
5 1 10 JOINT DISPLACEMENTS 
6 7 10 '12A' ROT Z 1. 
7 2 11 DUMP TIME 
8 8 
9 3 
10 9 

11 
12 
12 

STIFFNESS ANALYSIS REDDCE BAND 
OUTPUT BY JOINT 
LIST DISPLACEMENTS ALL 

II  IV  II OUTPUT DECIMAL 2 
\*    I \i OUTPUT BY MEMBER 
13 • 0A» 1C LIST FORCES 13 14 
14 12 '12A« FINISH 

Fig.5.10.  Input listing of STRUDL model used in super finite element 
generation. 
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SKEHED   TRIA4G1JLAB   MODEL TN-77-17(5-ll) 

BEBBER TOECES 

BEBPER         LOADI1G 

1 3 

JOIBT          / 
A HAL SHEAS    I SHEAR   Z TCPSIOK BOBEBT.    I none n z 

1 101 608215.69 3.53 105.98 1578. 36 71398.31 -178095.50 
10 -648215.69 -3.53 -105.98 -1578.36 -71399.37 178095.50 

2 10> 3.53 \ 11978.57 802.67 3185.35 -21315.01 371129.50 
10 -3.53 1 -11978.57 -802.67 -3165.35 21306.98 -371279.69 

3 101 105.98 \ 802.67 26598.18 120931.06 -665205.31 18758.21 
10 -105.98 / -802.67 -26598.18 -120931.06 661939.37 -18750.21 » 10A 1578.39 1 3185.56 120931.06 1096715.00 -3012881.00 76995.91 
10 -1578.39 / -3185.56 -120931.06 -1096715.00 3011671.00 -76961.06 

5 1CA 74398.31 -21311.95 -665205.31 -3012880.00 30660912.0 -1263116.00 
10 -74398.31 21311.95 665205.31 3012880.00 -306 51256.0 1263203.00 

6 10A -178095.50 371129.11 18758.19 76991.81 -1263116.00 16216325.0 
10 178095.50 -371129.11 -18758.19 -76991.81 1263229.00 -16212580.0 

7 10A -618215.69 -3.53 -105.98 -1578.39 -71398.31 178095.50 
10 618215.69 3.53 105.98 1578.39 71399.37 -978095.56 

K 10A -3.53 -11971.31 -802.66 -3185.53 21311.95 -379129.12 
10 3.53 11971.31 802.66 3185.53 -21306.92 379279.37 

9 1CA -105.98 -802.66 -26581.77 -120931.06 665205.25 -18758.15 
10 105.96 802.66 26581.77 120931.06 -661939.37 18750.12 

10 10A -1578.39 -3185.21 -120931.06 -1096711.00 3012881.00 -76993.19 
10 1578.39 3185.21 120931.06 1096711.00 -3011672.00 76961.37 

11 10A -79699.25 -18831.31 -661115.06 -3006211.00 2612610.00 325132.12 
10 79699.25 18831.31 661115.06 3006211.OC -2605996.00      ^•-325320.19 

12 10A 178272.00 371587.37 21391.12 82310.31 197239.Ilj «T        2982628.00 
10 -178272.00 -371587.37 -21391.12 -82310.31 -197153.31 -2178882.00 

PROBLEB - SOPEB STBBETRIC TRIAWGULAR BODEL 

BEBBER EOBCES 

BEBBER         LOADIHC 

13 
1 

JOIBT          / 
AXIAL SHEAR    y 

 //— 
SHE1B   Z TOBSIOB BOBEBT   I BOBEBT   Z 

101 6983*6.87 0.00 0.00 0.02 78655.31 -479487.50 
10 -698396.87 -0.00 -0.00 -0.02 -78655.31 479487.50 

2 101 0.00 \ 19986.55 812.47 3198.29 -20319.92 374886.81 
10 -0.00  1 -14986.55 -812.47 -3198.29 20311.80 -374736.94 

3 101 o.oo T 812.97 26650.64 121072.00 -666327.25 20319.86 
10 -0.00  / -812.17 -26650.64 -121072.00 666060.69 -20311.76 

1 101 0.03  1 3198.21 121072.06 9110196.00 -3028019.00 79987.19 
10 -0.03 / -3198.21 -121072.06 -9110196.00 3026803.00 -79955.25 

5 10A 78655.31 -20319.99 -666327.25 -3028013.00 30806912.0 -1287286.00 
10 -78655.31 20319.99 666327.25 3028013.00 -30800240.0 1287083.00 

6 101 -179187.50 371886.75 20319.84 79986.69 -1287286.00 16272879.0 
10 179187.50 -371886.75 -20319.84 -79986.69 1287083.00 -16269130.0 

7 101 -6983*6.87 -0.00 -0.00 -0.02 -78655.31 479487.50 
10 6483*6.87 0.00 0.00 0.02 78655.31 -479487.50 

a 101 0.00 -11989.50 -812.47 -3198.18 20319.95 -374887.00 
10 -0.00 19989.50 812.47 3198.18 -20311.83 374737.12 

9 101 0.00 -812.*7 -26642.73 -121079.81 666327.69 -20319.91 
10 -0.00 812.47 266*2.73 121071.81 -666061.25 20311.79 

10 101 0.02 -3198.32 -121071.81 -1110231.00 3028016.00 -79987.62 
10 -0.02 3198.32 121071.81 1110231.00 -3026805.00 79955.62 

11 10A -78655.31 -20319.86 -666327.62 -3028016.00 2522800.00 — 270884.56 
10 78655.31 20319.86 666327.62 3028016.00 -2516137.00  ^^'-271087.75 

12 10A 479*87.56 374887.00 20319.95 79987.37 270884.69- •          2478964.00 
10 -«79«87.56 -374887.00 -20319.95 -79987.37 -271067.87 -2475215.00 

Figure 5.11.  Comparative STRUDL results for differing triangular meshes 
(skewed vs. symmetric). 
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TYPE SPACE FRAME 

ELEMENT INCIDENCES 

15 10 12 

ELEMENT PROPERTIES 

15   TYPE 'DUMMY'   THICK  1.    DOF  DX DY DZ RX RY RZ 
STIFFNESS MATRIX   GLOBAL   NODES 2   NDF 6 

TN-77-17(5-12) 

SUBMATRIX 1 
648346. 

1 - 
0. 0. 0. 78655. -479487 

0. 14986. 812. 3198. -20319. 374886 

0. 812. 26650. 121072. -666327. 20319 

0. 3198. 121072. 4110196. -3028014. 79987 

78655. -20319. -666327. -3028013. 30806912. -1287286 

-479487. 374886. 20319. 79986. -1287286. 16272879 

SOBMATRIX 2 
-648346. 

1 - 
-0. -0. -0. -78655. 479487 

0. -14989. -812. -3198. 20319. -374887 

0. -812. -26642. -121074. 666327. -20319 

0. -3198. -121074. -4110231. 3028016. -79987 

-78655. -20319. -666327. -3028016. 2522800. 270884 

479487. 374887. 20319. 79987. 270884. 2478964 

SOBMATRIX 2 
648346. 

2 - 
0. -0. -0. 78655. -479487 

0. 14990. 812. 3197. 20319. -374886 

-0. 812. 26656. 121072. 666327. -20319 

-0. 3198. 121072. 4110195. 3028013. -79985 

78655. 20319. 666327. 3028013. 30806912. -1287286 

-479487. -374886. -20319. -79985. -1287286. 16272876 

Figure  5.12.     Partial   listing of STRUDL super  finite element model 
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APPENDIX 

Description of Finite Elements 
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Element Type:  'BPR' - Bending Plate Rectangle 

Shape § Node Order 

Y 

Nodal Unknowns:  DZ, RX, RY 

Results: Planar stress couples 
and strain curvatures 
at each node. 

Element Loads: 

Uniform out-of-plane 
surface forces 

References: 

Element Characteristics: BPR is a flat rectangular element with four nodes, 

the corner points.  Its transverse displacement expansion is 

a1 + oux + ay + a.xy + a^x + a,y + a_x + agy + ax y 

+ a1Qxy + anx y + a^xy 

The expansions for the rotations are the derivatives of that for w.  The ele- 

ment satisfies inter-element compatibility with respect to translation, but, 

since only two nodal values for normal slope are available along each side, 

the quadratic variation is not unique and the normal slope is not continuous, 

The solution will converge as the mesh size is reduced, but the convergence 

will not be monotonic, due to the incompatibility of normal slope. 
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Element Type:  'CPT' - Compatible Plate Triangle 

Nodal Unknowns:  DZ, RX, RY 

Results: Planar stress couples 
and strain curvatures 
at each node. 

Element Loads: 

Uniform out-of-plane 
surface forces 

References:  4 

Element Characteristics:  CPT is a flat triangular element with three nodes, 

the corner points.  The element is divided into two triangles with the fol- 

lowing displacement expansion: 

2 2 
wT    -    a.  + a„x + a_y + a.x    + arxy + a_y 

I 12 y 4 5 7' 

(}(2  "  W   /   a8  - IaS + agxy    + agy 

These expansions are not complete cubics, since they contain no x y terms. 

The expansions for the rotations are the derivatives of that for w. w and 

8w 
-r— are continuous across the interior boundary, x = 0.  The normal slope 

varies linearly along each edge.  The missing terms cause displacement com- 

patibility not to be completely satisfied along side 1-2, since the displace- 

ment expression involves nodal quantities for the third node.  The accuracy 

of the element is quite good, however, in spite of this incompatibility. 
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Element Type:  'CSTG' - Constant Strain Triangle 

Shape § Node Order: 

3 

V 

Nodal Unknowns:  DX, DY 

Results:  Planar stresses and 
strains at centroid. 

•** X 

Element Loads: 

In-plane surface, 
body, and edge forces 

References:  3, 5, 6 

Element Characteristics:  CSTG is a triangular element with three nodes, the 

corner points. The element stiffness matrix is computed based on displace- 

ment expansions of the following form 

X = al  + a2x + a3y 

which yield a linear displacement field over the element and along each side. 

The stresses and strains are thus constant over the element. 
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Element Type:  'IPCQ' - Isoparametric Cubic Quadrilateral 

Shape $ Node Order 

10 

Nodal Unknowns:  DX, DY 

Results:  Planar stresses and 
strains at each node. 

Element Loads: 

In-plane surface, 
body, and edge forces 

References:  7, 8 

Element Characteristics:  IPCQ is a flat quadrilateral element with 12 nodes, 

the 4 corner points, and the 8 third-points of each side.  The displacement 

expansions are of the form 

2     2     3     2       2 
X = a    + a2C + a?n + a4£n + a5n + a^    + a?i    + ag5 n 

+ a^n 

3      3       3 
• + a10n + a^n £ + a12£ n 

which yields a quartic field over the element, but a cubic variation along 

the edges. E,  and n are generalized curvilinear coordinates which vary from 

-1 to +1 across the element.  The sides of IPCQ may be initially curved if 

the coordinates of the midside nodes are not colinear with the corner nodes. 

If coordinates are not specified for the midside nodes, they will be com- 

puted assuming that the sides are straight. 
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Element Type:  'IPLQ' - Isoparametric Linear Quadrilateral 
'IPLQCSH' - Isoparametric Linear Quadrilateral - Constant 
  Shear 

Shape £ Node Order: Nodal Unknowns:  DX, DY 

Results:  Planar stresses and 
strains at each node. 

Element Loads: 

In-plane surface, 
body, and edge forces 

References '>,   9 

Element Characteristics:  IPLQ is a flat quadrilateral element with 4 nodes, 

the corner points.  The displacement expansions are of the form 

X a1  + a2C + a3n + a^r) 

which yields a quadratic field over the element, but a linear variation along 

the edges.  £ and n are generalized coordinates which vary from -1 to +1 

across the element. 

IPLQCSH is a flat quadrilateral element with 4 nodes, the corner points. 

The displacement expansions are the same as the IPLQ, but the assumed shear 

strain variation in the X-direction is different.  The shear strain variation 

for the IPLQ is assumed to be a constant in the X-direction and equal to the 

centroidal value of the element; whereas, the shear strain varies linearly 

in the IPLQ.  The resulting formulation tends to given better results than 

the IPLQ for problems in which the in-plane forces are generated by overall 

bending. 

The stiffness matrix is generated by numerical integration, rather than 

explicitly, and results in an element with performance characteristics and 

accuracy similar to the PSRCSH element.  The formulations are identical if 

the element is rectangular in shape. 
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Element Type:  'IPLS' - Isoparametric Linear Solid 
'IPLSCSH' - Isoparametric Linear Solid - Constant Shear 

Shape £ Node Order: 
Nodal Unknowns:  DX, DY, DZ 

Results:  Global stresses and 
strains at each node. 

Element Loads: 

Surface, body, 
and edge forces 

References 7, 8, 9 

Element Characteristics: IPLS is a six-sided solid element each of whose 

faces is quadrilateral. The element has 8 nodes, the corner points. The 

displacement expansions are of the form 

X al + a2^ + a3n + a4^ + a5^n + a6^ + a7n^ + a8^ 

which yields a  cubic field through the element, a quadratic field on the 

faces, and linear displacements along the edges. E,,   r\,   c,  are generalized 

coordinates which vary from -1 to +1 across the element. 

IPLSCSH is a six-sided solid element each of whose faces is a quadrilat- 

eral.  The element has 8 nodes, the corner points.  The displacement expan- 

sions are the same as for the IPLS, but the assumed shear strain variation in 

the X-direction is different.  The shear strain variation for the IPLSCSH is 

assumed to be constant in the X-direction and equal to the centroidal value 

of the element; whereas, the shear strain varies linearly in the IPLS.  The 

resulting formulation tends to given better results than the IPLS for the 

problems in which the structure is being subjected to overall bending. 
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Element Type:  'IPQQ' - Isoparametric Quadratic Quadrilateral 

Shape £ Node Order: Nodal Unknowns:  DX, DY 

Results:  Planar stresses and 
strains at each node. 

Element Loads: 

In-plane surface, 
body, and edge forces 

References:  7, 8 

Element Characteristics:  IPQQ is a flat quadrilateral element with 8 nodes, 

the corner points and the midpoints of each side.  The displacement expan- 

sions are of the form 

2     2     2       2 
X = Olj + a2C + a3n + oyiS + a^ + a6n + a?C n + a^r, 

which yields a cubic field over the element, but a quadratic variation along 

the edges.  £ and r\  are generalized curvilinear coordinates which vary from 

-1 to +1 across the element.  Although the stiffness matrix is generated by 

numerical integration, rather than explicitly, the result is an element with 

performance characteristics and accuracy similar to the LSR element. The 

sides of IPQQ may be initially curved if the coordinates of the midside nodes 

are riot colinear with the corner nodes.  If coordinates are not specified for 

the midside nodes, they will be computed assuming that the sides are straight 
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Element Type:  'IPQS' - Isoparametric Quadratic Solid 

Shape 5 Node Order: 

>- X, 

Nodal Unknowns:  DX, DY, DZ 

Results:  Global stresses and 
strains at each node. 

Element Loads: 

Surface, body, 
and edge forces 

References:  7, 

Element Characteristics:  IPQS is a six-sided solid element each of whose 

faces is a quadrilateral. The element has 20 nodes, the corner points and 

midpoints of each edge. The displacement expansions are of the form 

2      2 
X = a + a2C + a3n + a^  + a^n + a^c,  + aynC + ag£nC + otg£ + a^n 

+ anC2 + a12?
2H + a13?

2^ + a14^ 
+ ai5n 5 + a16C£ + a1?nC 

2 2 2 
+ alg? n£ + °<ig£n ? + a20£rK 

which yields a quartic field through the element, a cubic field on the faces, 

and quadratic displacements along the edges.  £, n, and £ are generalized 

curvilinear coordinates which vary from -1 to +1 across the element.  The 

edges of IPQS may be initially curved if the coordinates of the midside nodes 

are not colinear with the corner nodes.  If coordinates are not specified 

for the midside nodes, they will be computed assuming that the edges are 

straight. 
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Element Type:  'LSR' - Linear Strain Rectangle 

Shape § Node Order: Nodal Unknowns:  DX, DY 

Results:  Planar stresses and 
strains at the corner 
nodes. 

Element Loads: 

In-plane surface, 
body, and edge forces 

References 10 

Element Characteristics:  LSR is a flat rectangular element with 8 nodes, 

the corner points and the midpoints of each side.  The sides must be straight 

initially.  The displacement expansions are of the form 

2     2     2       2 
X = a. + a_x + a7y + a xy + ax + a,y + a_x y + a0xy 

which yields a cubic displacement field over the element, but a quadratic 

variation along the boundaries.  The displacement along each boundary depends 

only upon the nodal quantities on that boundary, satisfying inter-element 

displacement compatibility. 
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Element Type:  'LST* - Linear Strain Triangle 

Shape § Node Order: 
Nodal Unknowns:  DX, DY 

Results:  Planar stresses and 
strains at the 
corner nodes. 

Element Loads: 

In-plane surface, 
body, and edge forces 

References:  11 

Element Characteristics:  LST is a flat triangular element with 6 nodes, the 

corner points and the midpoints of each side.  The sides must be straight 

initially.  The displacement expansions are expressed in terms of the tri- 

angular coordinates £.. , £_, E,    as follows: 

X = £«i(2*i -1))  + 4(hh  + hh  + hh) 
i = l 

These expansions yield a complete second-degree polynomial, giving a quad- 

ratic displacement field over the element and along each boundary.  The dis- 

placements along each boundary depend only upon the nodal quantities on that 

boundary, satisfying inter-element displacement compatibility. 
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Element Type:  'PBQ1' - Plate Bending Quadrilateral 

Shape § Node Order: Nodal Unknowns:  DZ, RX, RY 

Results: Planar stress couples 
and strain curvatures 
at each node. 

Element Loads 

Uniform out-of-plane 
surface forces 

References:  10 

Element Characteristics:  PBQ1 is a flat quadrilateral element with 4 nodes, 

the corner points.  The stiffness matrix is formed as the average of the 

matrices generated by summing the stiffnesses of the two pairs of triangles 

formed by diagonals across the element. 

K1234 = 2 j [K123 + K134j  +  [.K124 + K234j [ 

The triangles used in this case are CPT's. The resulting solution will con- 

verge as the mesh size is reduced, and the results are more accurate than the 

worst combination of triangles, but less accurate than the best.  Being com- 

posed of CPT's, the absolute accuracy is relatively good in any case. The 

stress results are best when the triangular areas are nearly the same; i.e., 

the quadrilateral is a parallelogram. 

68 



Element Type:  *PSR' - Plane Stress Rectangle 
'PSRCSH' - Plane Stress Rectangle - Constant Shear 

Shape § Node Order: Nodal Unknowns:  DX, DY 

Results:  Planar stresses and 
strains at the centroid. 

Element Loads 

In-plane surface, 
body, and edge forces 

References:  3, 5, 6, 9 

Element Characteristics: PSR is a rectangular element with 4 nodes, the cor- 

ner points. The element stiffness matrix is computed based upon displacement 

expansions in the local coordinate system of the following form 

X = a1 + a2x  + a3y + a4xy 

which yields a quadratic displacement field over the element, but a linear 

variation along the edges. 

PSRCSH is a rectangular element with 4 nodes, the corner points.  The 

displacement expansions are the same as for the PSR, but the assumption con- 

cerning the shear strain variation in the X-direction is different.  The shear 

strain variation for the PSRCSH is assumed to be a constant in the X-direction 

and equal to the centroidal value of the element; whereas the shear strain 

varies linearly in the PSR.  The resulting formulation tends to give better 

results than the PSR for problems in which the in-plane forces are generated 

by overall bending. 
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Element Type:  *SBCT' - Stretching S Bending Compatible Triangle 

Shape § Node Order: Nodal Unknowns:  DX, DY, DZ, RX, RY 

Results:  Planar stresses and 
strains at centroid; 
planar stress couples 
and strain curvatures 
at each node. 

Element Loads: 

Uniform out-of-plane surface 
forces.  In-plane surface, body, 
and edge forces. 

References:  12 

Element Characteristics: SBCT is a flat triangular element with 3 nodes, the 

corner points.  The element stiffness matrix is the sum of the CSTG and CPT 

stiffness matrices and is generated as an overlay of those two elements.  The 

in-plane and out-of-plane stiffnesses and displacements are uncoupled.  The 

in-plane formulation is plane stress. 
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Element Type:  'TRIP' - Triangular Prism 

Shape § Node Order: Nodal Unknowns:  DX, DY, DZ 

Results:  Global stresses and 
strains at the nodes. 

Element Loads 

Surface, body, 
and edge forces 

References: 

Element Characteristics:  TRIP is a five-sided solid element containing two 

triangular faces and three quadrilateral faces.  The element has 6 nodes, the 

corner points.  The displacement expansions are of the same form as the IPLS 

elements, but the quadrilateral front and back faces are allowed to degenerate 

to triangles.  This expansion yields a quadratic field on the quadrilateral 

faces, and a linear field on the triangular faces and along the edges. 
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Element Type:  'UTLQ1' - Unequal Transition Linear Quadrilateral - 1 Node 

Shape $ Node Order: Nodal Unknowns:  DX, DY 

Results:  Planar stresses and 
strains at the nodes, 

Element Loads 

In-plane surface, 
body, and edge forces 

References:  13 

Element Characteristics:  UTLQ1 is a flat triangular element with 4 nodes, 

the corner points and one midpoint on the first side.  The displacement ex- 

pansions are expressed in terms of the triangular coordinates i  ,  E, ,  £ 

as follows: 

x - £ («i 2h -1) + *& 
i = l 

These expansions will yield a quadratic displacement field over the element 

and along the first side, and a linear displacement field over the remaining 

two sides.  The displacements along each boundary depend only upon the nodal 

quantities on that boundary, satisfying inter-element displacement compati- 

bility. 
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