
~
‘

AO—A040 601 fl(fl4A$4 AEROSPACE CORP UTPPAfl N V RESEARCH DtPT F/S 20/6PART IAL DIFFERENTIAL RATE EQUATIONS FOR A SILEVEL. AUSORSER. (U)
DCC 77 S J PERNICK

UNCLASSIFIED RN—oils

A~~~~
l liii, 

_____________________________Afl48 P’~

U L’_ _

_ _  

U

END
O ATh

F I L M E D

2— 7~
ODC

‘ I

/p -
~ 

- ________________



RM-646

PARTIAL DIFFERE NT IAL RATE

EQUATIONS FOR A BILEVEL

ABSORBER

December 1977

4 

0
p.

~TAT~ IUIT £
I ~— ~ — fSIE~~~I



r~’ y--- 
~~~~~~~

i i i
Gru eman Research Depar tment Memorand tnn RM -646

PARTIAL DIFFERENTIAL RATE EQUATIONS
t t FOR A BILEVEL ABSORBER*

by

B. J.

System Sciences

L

December 1977

*Portions of this memor andu m have been accepte d for publication
in Applied Optic4

APProved ~~~~~~~~~~~~~~~~~~~~~~~~~

‘ D D C
L~LIUT1CH 3TATD.I~~’r 9



F~ T 1 T
~~~~~ i

ABSTRACT

The interaction of a directed beam of radiation with an

absorber is described using a two level model; transmitted light
intensities and level populations are treated as functions of

temporal and spatial independent var iables ; and the general

rate equat ions are given as partial differential equations .

Additionally , combinations of mater ial constants are identified
as scale parameters and used to express the rate equations in

nondimensional form as a hyperbolic partial differential equation

in cononical form. One integration yields a time-independent

relat ionship between two transmitted beam intensities at different
wavelengths . Also described are several calibration experiments
to evaluate material parameters .
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INTRODUCTION

This memorandum describes our work in investigating the

performance of an optically excited absorption system. A general

two level model is used to describe the process of photo-induced
transitions in an absorbing material. One particular application

of interest concerns the use of photochromic and liquid crystal-

photoconductor devices as unconventional photographic media for

optical data processing applications -- e.g., input data recording
and adaptive spatial matched filters. Since these devices do not

require image development after exposure, they are attractive

alternates to film recording in those applications where speed

of recording is a factor. In addition, a variety of photochomics
find use in opthalmic components, graphic arts, and displays
(Ref. 1); thus the results of this investigation are also of value

in these areas.

In general the rate equations descriptive of the two level

model have a broad scope and are useful as well In such other

areas as laser beam propagation, optical cross-section measurements

(Ref. 2), photochemistry (Ref. 3), atomic and molecular beam
spectrocopy (Ref. 4), dye laser excitation (Ref. 5), and laser

isotope enrichment (Ref. 6). In the first two cases interest is

primarily focused on characteristics of the attenuated light beam,
for the latter examples energy level population dynamics are of
concern.

This memorandum focuses on a two level model representing a
photo-absorption process and considers spatial as well as temporal

dependencies. The inclusion of an independent spatial variable is
‘ necessary to account for the fact that all absorbing atoms or

molecules do not experience the same light level. Light has

1
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already been absorbed in passage through the material. Furthermore,
since the absorption interaction is a nonlinear process , one
cannot simply scale over the different spatial or time intervals
nor scale from low to high power excitation levels as would be
the case for a linear system. Thus , both the energy level
populations and transmitted beam irradiance are functions of sample
thickness as well as t ime , and the material will not exhibit simple
exponent ial absorption properties . For example , the transmitted
beam will initially be strongly attenuated due to a relatively
large ground state population (for a ground state transition).
Subsequent ly the transmitted beam irradiance could then increase
due to changes in the energy level populations , simulating a self-
induced transparency effect.

The interaction with two light beams at different wavelengths
is also a topic of interest since the spectral absorpiton of the

material influencing the response at one wavelength can affect

the absorption properties at the other wavelength. This feature

provides a basic reason for using such material in the above

mentioned optical processing applications. As a result, data
recording can be accomplished within an insignificant development

time. With such purpose in mind, the following model analysis

could lend itself towards optimization in the choice of materials

and also suggests a favorable means to tailor or synthesize new
material parameters for these applications (Ref. 7).

In brief, this work deals with a set of fundamental rate

equations that encompasses several special cases previously studied
by other investigators. A number of material constant groupings

-

. 
are found in the restructure of the rate equations in terms of
nond imensional variables . In effect , a smaller number of basic

L
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(material constants) factors are used to describe the behavior

of the absorber-radiation interaction and to greatly simplify the

analysis. When two light beams of different wavelengths interact

1 with the absorber , a time- independent relationship has been
found between the beam intensities after passage through the
material. This property suggests that measurements of light
intensity at one wavelength can be used as a probe to infer the
light intensity level at the other wavelength . In addition, several
methods are demonstrated that provide estimates for a number of

-~~ these material constants from calibration experiments. A photo
is. chromic material is used as a convenient “two-level” absorber

- to illustrate the calibration procedures. No attempt is mad’e

here to integrate numerically the restructed general rate equations

- - for particular situations.

3
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II
~~~~

IWO LEVEL RATE EQUATIONS

Two unidirectional, beams of excitation and of probing radiation
are at normal incidence to the boundary face of the absorber
material , as shown in Figure 1. It is assumed that the probe
beam is much weaker than the excitation beam. For generality, the

wavelengths of the excitation and probing beams, ?~ and ?2,
respectively, are considered to be different. (Both beams need

not be of different wavelengths; for example , the polarization
state of the weaker probe beam could be different from the I -

polarization state of the excitation beam, assuming that the absorber
material is polarization insensitive.) It is also assumed that
light scattered out of either beam is not significant for homogeneous
materials and can be neglected. Thus, only the absorption
properties in the direction of propagation are of concern. For

the one-dimensional geometry considered here, both beams are of
uniform intensity in any plane normal to the direction of
propagation along the x-axis , but vary with distance x and time t.

Let Il — 11 (x,t) represent the excitation light intensity

and 12 — 12 (x,t) the probe light intensity. If NL (x,t) denotes
the number of absorber molecules in the lower energy level per unit
volume, and Nu (x,t) the number density of absorber molecules
in the upper energy level, then the total number density is

N0 — NL + Nu const. (1)

The rate of decrease of excitat ion light intensity in the
direction of propagat ion is g iven by

(2)

4

— - ~~ _~~~~_



- ~~—‘--— - 
~~~~~~~~~~ ~~~~ - --,~~- ~~~~~~ — --- —----— - - —--~~~~~~~~~~~~~~~~~~~~~~~ ,~~~~~ -~

-
~~~~~

I
- - 

where aLl. ~~ are the absorption cross-sections at 
wavelength ?~

for the lower and upper levels , respectively, and a represents the
— absorption rate due to a host material interaction, if any.

Similarly the rate of decrease of probe light intensity is given

by

i i-

- - ~~~~~~~~

‘ — (aL2 NL +au2 NU +~~
) 12 

(3)

where the absorption constants have similar meaning to those for

— B Eq. (2).

- Changes in the number densities NL 
and are given by the

population rate equations as

H
~t aL1 L1 NL I1 aU1 U1 NU I1

+ a~~ $~~ NL 12 - a
~2 U2 Nu 12 Nui~ (4a)

and

~ NT
4b

The quantities Ll’ ~~ ~~ U2 are the quantum efficienc ies for

each particular absorption reaction and w is the “life time” or

decay time constant for the upper energy state. As a realistic

and practical situation we shall assume that both excitation and

probe beams are uniform across the plane of incidence and constant

in time. Consequent ly , the initial and boundary conditions are

* The units for I~ and I, are photons/se9cmn
2. The fa~tor hv is

used to convert to units of ergs/sec-’cm or watts/cm , when h
is Planck’s constant and v is the frequency of light.

5
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(O,t)~~~A1

12 (O ,t) — A2
(5)

- .
NL (x,O) —

In the event that the materii~l is initially unexcited then — 0

an~ NLe — N0.

Other investigators have worked with less general two level
models . Var iations from their results are due to specific assumptions
made concerning the importance of selected terms in the governing
equations. It is worth while to note briefly these differences

from the more general rate equations stated above. In dealing with

a photochromic material Baldwin (Ref.8) treats changes in the

upper energy level number dens ity due only to absorption transitions
from the lower to the upper level and spont aneous decay down from the
upper level. This is equivalent to setting CI

U1 ul a~~
aU2 u2 — 0 in Eq. (4) . In addition, he also takes a — 0 in Eq. (2)
and cYL2 — — 0 in Eq. (3). The photochromic rate equations studied

by Mohn (Ref. 9) are equivalent to setting aL2 L2 — 0 in Eq. (4)

and aL2 — — 0 in Eq. (3). Tomlinson (Ref. 10) deals with a
model set of equations equivalent to setting l/t — 0 and does not

include the influence of a probe irradiation; i.e., terms containing

12 and Eq. (3) are not included in his analysis. Together with a

clever transformation of variables, he demonstrates an integral

relationship designated as the “Photochromic Function.” In

Ohtsuka’s (Ref. 1].) formulation of the rate equations, pertaining
to laser beam propagation, there is no distinction made between

absorption coefficients since both probe and excitation wavelengths

are the same. In addition, his analysis assumes the condition
equivalent to setting aLl L1 — 

~~~~~~~. ~~~~~~~~
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It is advantageous to introduce other variables and parameters

in the rate equations . Let
S.

— I~ e~~, J1 (O,t) — A1, J2 — 12 e , J2 (O,t) — A2,

(6)

-. — ~ (y,0) — 0,y — NOaLl x

- 
Equations (2), (3), and (4a) become

- i  (7)
- - 

y aLl J
-
- i - ~•

- ~ 2. 
— - + 

aU2
_0
L2) 

~~] 

‘
~2 

(8)

~11
— a~1 Ll (l-~) ~1 

exp (.ay/N aLl) - a
~1 •~il ~ 

exp (-ay/NOaLl)

+ ~~ •~~ (l- r~) ~2 
exp (-

~
y/NOaLl) - a

~2 U2 ~ exP (-
~

Y/NOaLl)

- - r ~/ r  (9)
-1

With the further substitutions

- - 
— l/t 0Ll Ll’ ~2O — lIT a~~ 1.2’ ~ — t/T

p — J1/J10, p(0,?~) — A1/J10, S — J2~~20~ s(O ,?~) — A2 /J 20

!. (10)
K1 

— a
~1 

0UlIaLl Ll’ ~2 — a
~2 U2 /aL2 L2 ’

a1 — (aUl/aLl) - 1, a2 — cYL2/aLl, a3 — (a
~2 - aW )/aLl - 

-
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Equations (7) through (9) are reduced to I
~~~~~~~- - ( l+ a 1 i~) p  (11) .1

— - (a2 + a3 r~) s (12)

— (1- ~-K1 ~) p exp (- ~~/N0 aLl) :~
+ (l-i~-K~ r~) s exp (-~y/N0a~1) - (13) 

-

Further simplifications can be made. Introduce the new - -

variable q(y, ?) from

p q • exp (-y) (14)
r 

- ii
where

— A1/J10 (15) -

Also introduce another variable r(y,~ ) us ing 
-

a — r • exp (-a2y) (16) 
- - I

where 1
r(0,?) — A2/J20 (17)

In terms of the new set of dependent variables q, r , and ~ and .1
independent variables y and ?~., the rate equations, Eqs. (11), (12),

and (13) reduce to -

(18) 1

in r — - a3 r~ (19)

-I
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(l-i

~

) q 

:

_b
lY - ~ q

+ (l-i~)r e 
b2y - i~ r e 

b2y - (20)

where the constants

— 1 + (cz/N aLl), b2 — a2 + (~/N0 aLl) (21)

- - A FIRST INTEGRATION

- ,  An Important integral is obtained by eliminat ing the cotmnon ~ -
- term in Eqs. (18) and (19). Integration with respect to the y
- variable results in

- 

r — c q
V
, v a3/a1 — (a,~2 

- aL2 )/ (a Ui 
— aLl) (22)

As a consequence of the boundary conditions imposed on the var iables
q and r , the arbitrary function of integration in Eq. (22) is
just a constant C. Note that if both excitation and probe beams are

of different wavelength (implying unequal absorption coefficients)

one expects that in general the ratio v ~ 1. However, for equal
wavelengths the ratio is identically unity (Ref. 11).

The three first order partial differential equations in

Eqs. (18) through (20) are reduced to the pair of equations.

l n q— - a  -r~oy 1

— (l--~) q e
1
~i~
’ - i-i q e 1

~l~ (23)

+ (l_~) C q V e
_b
2Y _ K ~~~~C q V e 2 Y _ i ~

- - 
- The two level system is now described in terms of the var iables
- - q, r, and ~~, governed by Eqs. (22) and (23).

9
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REDUCTION TO A SECOND-ORDER EQUATION

For purposes of numerical evaluation, it is more convenient
to deal with a single higher order differential equation rather
than with a pair of first order equations. Equations (23) are
combined to form a second order partial differential equation in J

terms of one of the variables, q or i~. By far the simplest - -

equation is obtained if the r~ variable is eliminated from the
pair of equations. In terms of a new variable z, where

l n q — z + b 1 y (24)

one finally has the lengthy general result

— - ~i+ic~~ [
~ 

+ b1 eZ] 
- a

1 e
1 - - b1

- a1 c e’~ e
VblY e

b2Y + (‘~~2)(~~~
+b
1)] 

(25)

This second order partial differential equation is obviously
“highly nonlinear” and can only be solved numerically. As an
alternative we will consider simplifications that are practical
as well as physically meaningful.

Assume that interactions with the probe beam can be neglected.

That is, terms in Eq. (4a) containing the absorption cross-sections

aL2, a~2 
are to be neglected in this analysis. The net result

is to discard the last term in Eq. (25). (Surely if there is no

probe light then C — 0 and this term will vanish.) With this

assumption and the transformation

u (y,?)— ln (l+K1) + z
(26)

— ln (aLl Ll + a~i 
+ in I

~ 
(x,t) - 

j -

10
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r~v ~~~~~~~~~~~~~~~~~~~~~
then Eq. (25) reduces to

I 
___ — - [(l~~

u
) ~~ + b3 e

U + b
1]

1- or , dividing by b1

— 

- 

I _ _ _ _ _  

— -  

[
(1+et’) y) + b e ÷ l l  (27)

-~ where

a1 + (l+Ki) b1 a~~(•Ll44lll) a
b — —  — + (28)

- - (1+1(1) aLl•Ll+aUl•Ul NOaLl

The ~~
- variable is related to the quant ity u as

* — (_
b1/~1) (1 + 

~(~~y) ) (29)

- 

- 
- 

. 
Equation (27) can be integrated numerically, subject to the

- 
- 

initial-boundary conditions

u (0 ,7) — in 
[T 

(aLl~L1 + a
~1.~ 1)]  + ln A1

~ (b y) — — (a
1 

r~ (y, O) + b1)/ b1 — - 1 (30)

where a zero initial value for the upper level population has been
assumed in Eq. (5) (note that this assumption for the initial

- 
- - 

- 
- population distribution can be altered without modification of any

prior results). Equation (27) is recognized as a hyperbolic
partial differential equation in canonical form.

- 11
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With no probe beam present there are six material constant -

groups that must be known in order to achieve a numerical solution. ISpecif ically, these quantities are b1, 
~~ 

and -- terms that
appear explicitly in Eqs. (27) and (28). In addition, the
scaling quantities N0 °L1’ r, and the constant term in the boundary

condition of Eq. (30), (namely, aLl Ll + a
~1 •~~) must also be

given. Furthermore, if a weak probe beam is present in the system,

then a seventh constant must be known, namely v . Note that the -

quantities A1 and A2 are experimentally controlled parameters
independent of the material understudy. Likewise, the thickness -

of the sample, x, is assumed known. In the following sections , we -

present a few experimental procedures that can be used to determine

-
- 

- some of these needed constants from a given material sample.

-
-
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EVALUATION OF THE MATERIAL CONSTANTS

1 This section discusses several experimental methods that are

useful for material parameter estimation. Specific photochromic
data are presented as a convenient means to illustrate the procedures.

- -- 
STEADY STATE SOLUTION

- .. The steady state conditons are found from Eq. (27). Setting
- - - the partial derivative with respect to ?~. equal to zero and

separating variables leads to

U —
-
~~~~~ .. l + e  ~~ -

U dy 3
‘1’ 3’ e

- . 
where the - symbol denotes the steady state value of the variable,

- - 

(e.g., lim u (y,7) ~i as t -* s.). With the substitution

- 

w — (b1/b3) + eu (32)

one has

r 1 1-(b1/b3) 1
- 

Lw_ b11b3 - J dw — - b1 dy
Upon integration,

- (1-(b1/b3)) • in [e’~ + (b1/b3)] — - b1 y + const (33)

The constant of integration is evaluated using the boundary conditon

at y — 0; namely, Eq. (5c).

The variable u (y,7) and the originally introduced quantity I~
(x ,t) are related by

13
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I
u — in (aLl Ll + a

~1 ui)]  + in I
~ 

(34) 1
t Thus , at the entrance face x — 0 the steady state value 

-

~i (0) — in 
[

~~
. (aLl Ll + a~i •ui)] +ln A1 ! 1

(35)
— in 
[
(l+K l)/J1O] + in A1

Using this result to evaluate the constant term in Eq. (33) , one

finally has

in (11/A1) - - (bl/b3)) in ((i1/A1) + b5~ 
1

~ (36) j
— - b1 y - (i - (bl/b3)) ln

(l 
+ b
51 

-

where is the steady state value of I~ measured after the excitation

beam has traversed a distance x through the material. The constant

b5 is defined as 
1

b5 b1 
j10/b3 A1 (1 + (37) j

11. 

(N0~~,~ + a)
— r ~~(aLl~Ll+aUl•Ll)+NOaLLaUi (•Lf •Ul ) 

- -

The quantities b1, b3, and b5 
are known in terms of the material

constants whereas I~, A1, and x are experimentally 
controlled or measured -

values. In principle, Eq. (36) can be used to help evaluate the material j

constants from experimental data. Unfortunately, the functional
form of this equation only all allows for “trial-and-error” estimates. j

-

~ 14
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A useful simplification is possible if we consider a “small
signal approximation” where — A1 (1-i) for which i << 1. The

logarithmic terms in Eq. (36) can be replaced with the approximations

in (l— i)~~— I 
-

ln (l+b5 i/l+b5) 
‘
~
‘ - i/(1+b5)

• with which Eq. (36) simplifies to

b b3 (l+b5) 
-

b +  b b ~ 
— constant Y (38a)

- . 1 3 5

Thus, for the “small signal case , ” the fractional change in transmitted
- - excitation light is linearly proportional to the thickness y. The

slope of this linear relation can be easily related to several

material constants

b b (l+b ) A a a
b1 + b3 

b5 
— A1 (1+1(1) + J10 

+ ~ + N~ aLl ~ 
8b)

S D4ULT&NEOUS ‘IWO- BEAN INTENS ITY MEASUREMENTS

Figure 2 shows the experimental system used to measure the

transmitted light levels in both excitation and probe beams after
passage through a specific photochromic absorber sample. The argon

laser 448 nm line was used for sample excitation and the helium-neon
laser 633 nm line served as the probe light in this demonstration.

A photochromic film similar to that employed by Baldwin (Ref. 8)
(type 63’07l, American Cyanainid Co.), was used in these demonstrations.

The wavelength sensitivity of this material is well suited for use
with the blue-green argon laser lines for excitation together with the
helium-neon light as a probe beam. Both laser beams were spatially

15



filtered, expanded, and collimated to illuminate uniformi - L portion

of the film. A beam splitter directed both beams ont~ ~~e film - i

and shutters were used to control exposure times. Transmitted

- : beams were separated using narrow band pass filters and detectors - .

monitored the individual changing beam intensities in time. - a

At every instant in time the excitation and probe beam
intensities, after passing through the absorber , are related by
Eq. (22). In terms of the measured beam intensities one derives from - -

Eq. (22) and the boundary conditions of Eq. (5) the result

in I2~~ v in I~ + (in A2 - v in A1 + y (v b1 — b2)] (39)

Thus, a plot of the quantities in 12 vs in I~ should be linear with
slope v and intercept equal to the value of the last three bracketed
terms in Eq. (39). - Figure 3 illustrates how well a straight line 1
represents the demons tratión experimental results . The least -

square fit value of v — ~ 0.66 faIls within Baldwin’s range of 
1values (v  — - 0.65 to - 0.95). No numerical estimates were obtained 

-

from the intercept value in this demonstration since the experimental 
)data were not corrected for reflectivity losses at the front face

of the photochromic film and only relative beam intensities were -

- 

- 
measured.

POST-EXCITATION DECAY

The time ~ ns tant t can be found from decay measurements of the
excited state population after removal of the excitation beam. The 11
probe beam is used to monitor the decay rate. We first assume that

• 
the interact ion between probe radiation and excited state population 

- I

can be neglected as a consequence of using a very weak probe beam

or of small cross section values. The rate equations similar to 
J

Eqs. (19) and (20) are now

]

16 J
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I..

~~ l n r— - a 3~~ 
(40)

:: (41)

- . 
with the initial distribution r~ (y,O)E ~~ 

(y) * 0. That is, an

excited state population is created and exists at the time when

- - 
the excitation beam is just removed. The decrease in excited

state population density affects the probe light transmission

- 
characteristics.

Integration of Eq. (41) is straightforward, resulting in the

well-known exponential decay, ~ (y,7) — m~ (y) exp (-7). Sub-

I I stituting this result into Eq. (40) and integrating with respect

to the y-variabie finally yields

in 12 — in S2 + a3 [i - e_t1T]f (y) dy (42)

The quantity 
~2 ~ 

12 (y,O) represents the initial probe ligh
t

intensity level transmitted through the absorber.

The change of the helium-neon probe light after excitation

of the photochromic absorber was measured in the demonstration

experiment previously mentioned. Figure 4 illustrates the variation

of the probe beam light level at several points in time after the

excitation beam is removed. In accord with Eq. (42) the quantity

in 12 should vary as an exponential function of time. The curves

• shown in the figure represents matches to the experimental data pcints
using the functional form of Eq. (42) for three values of r. A

value of -r — 1900 sec was found to offer the best overall curve
— ‘ fit. This estimated value for w is higher than that reported by

Baldwin (Ref. 8), namely, 1100 < r  < 1400 sec.

17
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A less restrictive model allows for an interaction between the

probe radiation and the level populations. As a practical measure —

assume now that the interaction involves only the excited level by

setting a~~ — 0 in Eqs. (8) and (9). Since I~ (x,t) — J1 (x,t) — 0 --

after excitation one has

~~
2 — - a 3~~~J2

(43)

- ~1~y/N~, aLl
— i a~2 U2 ~2 rie

The quantity J2 cannot be normalized as before with respect to the
term since the latter is not defined when aL2 — 0, (see Eqs. (10)).

Instead, we normalize with respect to the quantity i a~2 •u2 
--

by defining 
- 

I
S = ’r a ~2~~~ 2 J 2 (44)

With this substitut ion Eq. (43) becomes 
I

(45)-~yiN0 Li
~~11

If the quantity ~ is zero or can be neglected then the coupled 
- 

I
Eqs. (45) can be integrated.

With the transformations I -

• S — e n , ~~~~~~ (46)

Equations (45) finally reduce to

~~~~~~~— - ( l+e~) (47) 
.1
:1

• 18 -
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-: Differentiation of the first of Eqs. (47) with respect to ?~
-
~~~~~ yields
s. -

( Q + e )  (48)

-- Integration first with respect to y and then with respect to 7

results in

(dQ
I — — - 7 + f (y) (49)

J Q+e -IC

• where C is evaluated from the boundary conditions at y — 0 and
- - - is given by

- 

C — - ln CA2 T a
~2 U2 ] - A2 ~ 

a
~2 U2 (50)

Finally , in terms of the variable one has

~ J2(~~1) d

J [ln(J2/A2)+ra~2$~2(J2 A2)J 
—

J2(y,0) 
(51)

The integral is to be evaluated numerically. The combination of

terms r a
~2 •112 

appear as a single item to be determined utlimately
from the numerical integration and match to the experimental data.

The arbitrary function of integration f(y) can be found from the

steady-state properties, i.e., i~ (y,co) 0 and J2 (y,co) — A2.
Thus , with the above mentioned approximations the material constants
i and a

~2 u2 can be found from experimental data. (Note that

Mohn’s (Ref. 9) treatment of optical bleaching for a photochromic

material suggests an approximation for which Eq. (51) can be

19
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integrated to estimate the material constants. When applicable,
this estimated value could be used in a recursive fashion to refine

the numerical integration.) -

LINEARIZED PARTIAL DIFFERENTIAL EQUATION APPROXDIATION -

We consider simpiifications to the second order equation,

Eq. (27). As a first assumption set a — 0. Consider an expansion 
-

of the quantity u about a particular quiescent value of Ii, say

< I~ >, in the form

— in N (aLl Ll + 0
~~. Ul~ 

< I~ >] + in 11/<11> (52)

us ing Eq. (26). The small signal approximation I~~~ < I~ > + 6 -

suggests that -

u ~ in [‘r(aLi •Ll + a
~i •~~) (I~> ] + in (l+6/<Ii)) (53)

-
.

where u0 is a constant . With this s implification Eq. (27) becomes

2 u u
-~~~~air . [ (l+e 0)~~~~+b3 e 0 +b 1] (54)

Equation (54) is a linear partial differential equation which cay

• be readily integrated subject to the init ial-boundary conditions - -

of Eq. (30). The solution for this linearized problem, expressed
in terms of the quantity I~ (x,t), can be written as

20
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• I ~ioin Il m A 1 
- 

L 
l+(l+K1)<I1>/310 

+ I ~

S .  

—l 
(55)

a1<I~>/J10 I i (l+K1)<I1>+ l+(l+K1)<11>/J10 
y exp 1 + 

7j

(Note, the second term in Eq. (55) would be identical to a “small
signal” steady state result of Eq. (38) in accord with the assumptions

— J10 A1. The last term in Eq. (55) vanishes in steady state.)

Figure 5 shows several measured I~ - t data points from the

demonstration experiment and a curve fit determined from the
• functional form of Eq. (55) as A + B exp (-Ct). The constants A,

B, and C were evaluated from the measurements at the later time
intervals t — 400, 500, and 600 sec. From the computed exponential
factor , C , and using the value r — 1900 sec obtained previously,

one find that the quantity (l+K ) <I >/J — 3. For example,
assuming the value K 1 and <I > of the order of 1 p watt/cm

one finds that J is also of the order of 1 p watt/cm . (Baldwin’ s

(Ref. 8) equivalent value for is about 20 p. watts/cm .) In
addition, the computed value of B in the above mentioned exponential

form leads to an estimate of the product a1 y — - 10. This result
implies that the ratio aUL/cYLl is much less than unity as
expected (see Eq. (10)).

21
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SUP*IARY

The accomplishments of this work are threefold: First , general
rate equations have been developed either as a pair of first order
or a single second order partial differential equations. As

previously noted, these equations have a broad scope and are - -

useful to model absorption phenomena and energy level population

changes. The procedure was shown to be valuable for the

identification of significant ir.. cerial constant groupings as
characteristic constants ; that is, several scale parameters and non- - -~

dimensional groups are new physical insights to the problem.

Secondly , the reduction of the descriptive equations to a hyperbolic
partial differential equation in canonical form is another Important
result that implies relative simplicity and accuracy for numerical

evaluations . In addition , an integral solution was derived
relating probe and exictation beam intensities in the form of a time-
independent power law (see Eqs . (22) or (39)). This result suggests
a new experimental technique for monitoring the excitation beam.
Finally, several experimental methods were presented in which the
calibration test data could be analyzed to estimate a number of

material constants . A photochromic was used as a convenient
demonstration media.

-I-
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APPENDIX A - NUMERICAL INTEGRATION PROGRAM

I To accommodate a numerical Integration procedure, the

hyperbolic differential equation of Eq. (27) can be expressed as

~ ~~~~~~7)~~S~ 
— f(u , ~‘~/~(b1y))* £ (A l)

- 
together with the initial value-boundary value conditions of Eq. (30)

- 
written as

u (o ,?) — C

L (A—2)

- _ _

• ~

- 

~ 
at ~ — 0 or equivalently

:: • 
u ( y ~o ) — - b 1y 4 C  (A-3)

For convenience set b1 — 1, (equivalent to redeflnthg the y-variabie).

Integration of Eq. (A-i) in terms of the differential or step
size &~. yields

• 
— +f ~~~ (A-4)

- y,?~~)~
- Also the change in the u-var iable for a step change y can be

- - ~ -~ written as

-

~~~ J u[(y+~y), (i~~7))
. u(y,Q+&)) +~~~~ •t~y (A-5)

- 
- y, ,’~+&~

t

• 

~

• A-i

~~~ I1.~i_ 

~~~~~~~~~~~~~~~~~~~~~~~ 
- 
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To obtain the recurrence formulas upon which the integration - i -

scheme is based let

, y — s . ~~y (A-6)

where n, a are integers. Thus, Eqs. (A-4) and A-5) become

~ I 
— + f(a ,n) O7 (A-7)

a, n+]. s,n

u ((s+1), (n+l)) — u (s , (n+1)) + t y (k8)

s ,n+l

together with the initial value-boundary value conditions -

u (o ,n)— C

~ I 
— — i or u(s ,o ) — — s  • A y + C  (A l)

B ,0 :1 -
For simplicity in notation define

U — u(a,n)s,n 
-

I (A-lO)

a,n

Finally, the recurrence formulas are 
-

(s ,n)A? I
U.+i~~~i

U83~.,.i
+D5~~~.i 

.
~~
y (A—li)

II
U5,0 — —  a ’  A y + C  .1

- .1
F~H
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-

- representing a first order integration scheme. The numerical

procedure consists of solving Eqs. (A-il) for the quantity
• over a ra nge of values

s~~~O to s m~~ n O to nm~~ (A-i2)

A program for the solution of Eqs . (A-il) is given in Figure
A-l. The interpretations of several program variable are stated

• 
in Table A-i. Initial-boundary conditions are stored on files,

-• 

(see program statement 1242). The values of Us n  and D9~~
— • 

- computed during the run are also stored on files, (see program
~~. statement 1320). Solution of the recurrence equations is carried

out between statements 1372 and 2220. An output file, (see statement
2050) consists of exponentiated u-values at a fixed value of n(or7~)
over a range of s(or y) values.

At the starting value of the interger n, the change in tie
variable U5 with s is calculated over the range of s-values and
subsequent ly stored. The value of u is increased by unity and the
computations are repeated. The final computed values of U ands,n
D5 ~ 

are stored in file format, to be used as input values when the
program is run again.

Note that in this vers ion of the program only ~~~~ steps in n are
utilized due to computer storage limitations , i.e., N 9—2. To go
beyond ~~~ steps requires program changes in the arguments of
statement numbers 2140 and 3600.

I:-
________________ 

-
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TABLE A-i - SIGNIFICANT PROGRAM VARIABLES

Computer
Program Mathematical
Variable Equivalent

C ln[w(aLi•Ll + a~i•~i)J +inA1
B - b

3/b1
T

L Ay

N9
MS initial value of n
Si 5

Ni ,I( n - -

F f
U(sl,K) n
D(sl ,K)
S exp (U)/exp (C)

G3,C4 accuracy test variables

V 

. 1

r

• A—4
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- I

-: PHOTOS
1000 LONG U7 D7,S
11110 LONG B( 1~~~~~~2]~~Ut 1~~00~~2 i
1020 LUNG C~ E,A , E :4 ,T ,L ,M~ , M2 .G1~ G2 ,F
1021 LONG Fl

—~~~ 1030 DIM H$ E8]
a— 1031 DIM G$ E 8 ] ~ F$ E8]

1040 DIM U*(8]~ D$(8]
I.— 1050 DIM E$ [8)~ I4 $ [ 8]

1060 MAT D=ZER
1070 MAT Ij~ ZER
1€180 FILES * ,* ,*~i* ,*

-- 1090 PRINT “ INPUT EOUNDAR’ -
~ CONDITION C=?

• 1100 INPUT c
1110 PRINT “ INPUT PARAM ETER b=2”
1120 INPUT ~

- 1130 PRINT ‘ T I M E STEP T~ ? A ND SPACE STEP L~ ?’
• 1140 INPIJ T I

1141 INPIJT L- - 1150 PRINT “ INPUT THE NIJMBER OF STEPS IN L M2= ’
-~ 1160 INPUT M2

— - 1170 PRINT “INF UT THE STARTING TIME STEP M5= ”
1180 INPUT MS- - 1185 PRINT

- 1 186 PR I NT “HO N MANY TI ME STEPS N9’? ”- 11 87 I N P Ij T N 9
- - 1190 C1=C

1200 E1=B
- . 1210 T 1=T

1220 L1=L
- 1230 M3 =M5

1240 M4= M2
- • 1242 PRINT ‘ W HAT AR E THE INITIAL. CONDITION FIL.E NAMES?”

1243 INPUT F$
1244 INPUT G$
1245 PRINT F$~ G$
1246 ASSIGN F$~ 3 ,Y1
1248 ASSIGN G$~ 4~ Y 1
1250 PRINT ‘F ~UUNtIAR? CONDITION C= ” Cl

• 1260 PRINT PARAMETER IN DIFF. EQ. s= ” ;E: l
1270 PRINT ‘TIME STEP T= IT 1
1280 PRINT “SPACE STEP L= ’ L 1
1290 PRINT ‘ STA RT ING TIME STEP M5= ;M3
1300 PRINT NO. OF SPACE STEPS M2= ” ;M4

Fig. A-l Computer Program for the Solution
of the Recurrence Formulas of Eq. (A-li)

— (l of 3)
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130 1 PRINT
1:302 I - P I N T  “ N’~~ ” N 9
1310 PRINT “START r-1 E~ T TIME STEP )15
1311 PR I NT
i~~28 I-PHIl - - Il-4 F’ I..IT U4: AND 1$ F I L E  N~A ME’ :’ ’
l~~21 FR i l l  I “

1:~3U 1r~pL’ T U$ -

1 3:3 1 I N F’ LI 1•• LI $ 
• 

- -

1-340 ASSIGN U$’ 1~ 
‘i i

1-350 PRINT Y1
1 i—I J I-i Iul- -l 114 , -‘ I
1:3 0 F- PIt-l i Y i L1$ [1$
1.:~:71 F’RINT
13~ 2 FOE F:,~~1 TO N9
1 :35i3 ,:~‘ i - i : i

1- ::90 51= 1
1395 K=0
14011 F I:I F- N i  1 Ti: M5+R7+ 1
1410 REAL’ *3 F1
1412 IF K=2 THEN 14:3 0
1415 IF FI1< u-15 -*R7 — 2 THEN 14:3 8
1417
1428 U[Si~~K ]=F1
14311 NE: ::-::T Ni
1 lJ~ F E TI1I F
I 14¼i Fi ll  i - i  III ‘Ii — I
I 4~ 8 REAl .’ #2 17
i4’:- 0 LIE S i,  1 J~~LI7 - 

-

1 4 8  lIE:- - : I :3 1
1488 I-OR 51=1 TO F12
1498 READ #1 U7
1500 IJ[91~ 1 ]=Ll 7
1510 NE:- - :T si
1520 I-~= 1
1530 FOF-: 5 1=1 TO :t i ~’ — 1 3
1540 F=1+E:~::P(LI L~ ; i ,KJ : :
15S~ F-~ ’ F ~~D E - 1 - ~F ‘+ 1-F I ’ ! ’  _ J ~~F I
1560 F~ -F -

1573 r’ I : s l,K+ i  j=LIE :E ; i i F : : . j - +F~-T - I
1’ ’ II III 1 + t , F  + 1  J — I l [  1~~F 4 l II  II 1~~F + 1 J ÷ L

~ i— ( I L  1~ F + 1  I-— il L I i
1~ IIH I~ — ii ijIj I
11 11-1 I F  i;i G THE N l~~ ii

13:ii I~ ,. =II1 •• 1 +- !d- 4~ ] — I I E  i f i  i
1 53~1 14 = . 000 1
I I I-I  I I ‘ , — ‘~ I F- I t II I i  -fl I
I- 1

~ii I- Il- -I I IE I I I  T H I E Fl ’  I ’

1~•:68 19=1
i 71i F F I NT  ~F . 1  ~l ~~~~~~~ 1
11:80 si~~i,~ 

- -

1698 NE~cl Si -

1700 IF Q9= 1 THEfl 2220
1~ :5I’ F~: : ~~ 

—

r
Fig. A-l Computer Program for the Solution

of the Recurrence Formulas of Eq. (A-li)
(2 of 3)
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1

‘ 
1E:6L1 RESTORE *1
.1~ 70 REST~~~ ~ 2 - - - V -

L900 FOR J= 1 T O M2
1910 A UEJ , K)
1920 PRINT *1 A
19:3 0 N E~ I -J

c 1935 GOT O 3~~ O
1940 FOR J=1 TO ( M2 — 1)
1950 B4= D(J ,K~1960 PR INT *2 G4
1970 NEXT J
1980 PRINT #1 ;END
1990 PRINT *2;EHD
2000 RESTORE #1

- 21310 RESTO RE *2
2040 NE::::T P7- . 2050 PRINT “INPUT THE OUTPUT FILE NAME H$= ’ -

2060 INPUT H$
2061 PR INT
2070 CR EATE Y1 ,H$ ,2 ,2 56
2080 IF Y 1=0 THEN 2110
~‘090 P R I N T  “ CAN ~ T OPEN TH E H$ FILE”
2 100 GOb 22 20
2110 ASSI G N H$,5~~Y 1
2120 F’R INT Y i ;H$

• - 21:30 FO R J=1 TO M2 STEP (M2/ 30>
2140 S=ULJ~ 2 ] — C -

• 2150 S=EXP~ S:
-

• 216.8 PRINT #5 ;3
- 2170 PRINT S

2180 NEXT J• 2190 PRINT #s ; END
- 2210 RESTORE #5

2215 FRINT *4 ;EN D
• - 2220 END

:3000 S1=M2
:31~ O FOR J=1 TO ( M5+ R7—2
:3200 READ #4 ;F1.

• 3500 NEXT
:3600 F1 =UES1~ 2]

- :37013 PRINT *4~ F1
.3705 IF R7=N9 THEN 4000

- 3800 RESTORE #4
- 4000 GO TO 1940

Fig. A-l Computer Program for the Solution
- - of the Recurrence Formulas of Eq. (A-il)

(3 of 3)
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