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ABSTRACT

The interaction of a directed beam of radiation with an
absorber is described using a two level model; transmitted light
intensities and level populations are treated as functions of
temporal and spatial independent variables; and the general
rate equations are given as partial differential equationms.

% Additionally, combinations of material constants are identified

as scale parameters and used to express the rate equations in
nondimensional form as a hyperbolic partial differential equation
in cononical form. One integration yields a time-independent
: relationship between two transmitted beam intensities at different
[ wavelengths. Also described are several calibration experiments

to evaluate material parameters.
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INTRODUCTION

This memorandum describes our work in investigating the
performance of an optically excited absorption system. A general
two level model is used to describe the process of photo-induced
transitions in an absorbing material. One particular application
of interest concerns the use of photochromic and liquid crystal-
photoconductor devices as unconventional photographic media for
optical data processing applications -- e.g., input data recording
and adaptive spatial matched filters. Since these devices do not
require image development after exposure, they are attractive
alternates to film recording in those applications where speed
of recording is a factor. 1In addition, a variety of photochomics
find use in opthalmic components, graphic arts, and displays
(Ref. 1); thus the results of this investigation are also of value

in these areas.

In general the rate equations descriptive of the two level
model have a broad scope and are useful as well in such other .
areas as laser beam propagation, optical cross-section measurements
(Ref. 2), photochemistry (Ref. 3), atomic and molecular beam
spectrocopy (Ref. 4), dye laser excitation (Ref. 5), and laser
isotope enrichment (Ref. 6). In the first two cases interest is
primarily focused on characteristics of the attenuated light beam, |
for the latter examples energy level population dynamics are of

concern.

This memorandum focuses on a two level model representing a

. oL R L 2 s e i

photo~absorption process and considers spatial as well as temporal
dependencies. The inclusion of an independent spatial variable is
necessary to account for the fact that all absorbing atoms or
molecules do not experience the same light level. Light has




already been absorbed in passage through the material. Furthermore,
since the absorption interaction is a nonlinear process, one

cannot simply scale over the different spatial or time intervals
nor scale from low to high power excitation levels as would be

the case for a linear system. Thus, both the energy level
populations and transmitted beam irradiance are functions of sample
thickness as well as time, and the material will not exhibit simple
exponential absorption properties. For example, the transmitted
beam will initially be strongly attenuated due to a relatively
large ground state population (for a ground state transition).
Subsequently the transmitted beam irradiance could then increase
due to changes in the energy level populations, simulating a self-
induced transparency effect.

The interaction with two light beams at different wavelengths
is also a topic of interest since the spectral absorpiton of the
material influencing the response at one wavelength can affect
the absorption properties at the other wavelength. This feature
provides a basic reason for using such material in the above
mentioned optical processing applications. As a result, data
recording can be accomplished within an insignificant development
time. With such purpose in mind, the following model analysis
could lend itself towards optimization in the choice of materials
and also suggests a favorable means to tailor or synthesize new
material parameters for these applications (Ref. 7).

In brief, this work deals with a set of fundamental rate
equations that encompasses several special cases previously studied
by other investigators. A number of material constant groupings
are found in the restructure of the rate equations in terms of
nondimensional varjables. In effect, a smaller number of basic
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(material constants) factors are used to describe the behavior

of the absorber-radiation interaction and to greatly simplify the
analysis. When two light beams of different wavelengths interact
with the absorber, a time-independent relationship has been

found between the beam intensities after passage through the
material. This property suggests that measurements of light
intensity at one wavelength can be used as a probe to infer the
light intensity level at the other wavelength. In addition, several
methods are demonstrated that provide estimates for a number of
these material constants from calibration experiments. A photo-
chromic material is used as a convenient "two-level" absorber

to illustrate the calibration procedures. No attempt is made

here to integrate numerically the restructed general rate equations

for particular situations.
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TWO LEVEL RATE EQUATIONS -4

Two unidirectional beams of excitation and of probing radiation
are at normal incidence to the boundary face of the absorber 331
material, as shown in Figure 1. It is assumed that the probe
beam is much weaker than the excitation beam. For generality, the
wavelengths of the excitation and probing beams, xl and kz,
respectively, are considered to be different. (Both beams need
not be of different wavelengths; for example, the polarization
state of the weaker probe beam could be different from the
polarization state of the excitation beam, assuming that the absorber
material is polarization insensitive.) It is also assumed that
light scattered out of either beam is not significant for homogeneous
materials and can be neglected. Thus, only the absorption
properties in the direction of propagation are of concern. For
the one-dimensional geometry considered here, both beams are of
uniform intensity in any plane normal to the direction of
propagation along the x~-axis, but vary with distance x and time t.

Let I = Il (x,t) represent the excitation light intensity
and I = 12 (x,t) the probe light intensity. If NL (x,t) denotes
the number of absorber molecules in the lower energy level per unit
volume, and NU (x,t) the number density of absorber molecules
in the upper energy level, then the total number density is

N° - NL + NU = const. (1)

The rate of decrease of excitation light intensity in the

direction of propagation is given by
oI

St - (opy Np 4oy g+ ) Iy (2)




where %1’ %1

for the lower and upper levels, respectively, and o represents the

are the absorption cross-sections at wavelength kl

*
absorption rate due to a host material interaction, if any.
Similarly the rate of decrease of probe light intensity is given

by

31
3;2-- - (opy N + oyy Ny + B) I, (3)

where the absorption constants have similar meaning to those for
Eq. (2).

Changes in the number densities NL and NU are given by the
population rate equations as

>
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o2 %12 Ny Ip = 9y %2 Ny I~ Nyyo (4a)

and

(4b)

Q| o/
22
"

!

Q| o/
2|2

The quantities ‘Ll’ ¢U1’ °L2’ °U2 are the quantum efficiencies for
each particular absorption reaction and v is the "life time" or
decay time constant for the upper energy state. As a realistic
and practical situation we shall assume that both excitation and
probe beams are uniform across the plane of incidence and constant
in time. Consequently, the initial and boundary conditions are

The units for I, and I, are photons/secscm”. The fagtor hv is
used to convert o unifs of ergs/sec-cm” or watts/cm”, when h
is Planck's constant and v is the frequency of light.
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11 (0,t) = Al

I, (0,t) = A,

NU (x,0) = NUo

NL (x,0) = NLo

(3)

In the event that the material is initially unexcited then NUo = 0
anda NLo = No'

Other investigators have worked with less general two level
models. Variations from their results are due to specific assumptions |
made concerning the importance of selected terms in the governing i
equations. It is worth while to note briefly these differences )
from the more general rate equations stated above. In dealing with
a photochromic material Baldwin (Ref.8) treats changes in the
upper energy level number density due only to absorption transitions
from the lower to the upper level and spontaneous decay down from the

upper level. This is equivalent to setting %L ’Ul = 0p9 ¢L2 -

oy2 u2 = 0 in Eq. (4). In addition, he also takes o = 0 in Eq. (2)
and 0o ™ p = 0 in Eq. (3). The photochromic rate equations studied
by Mohn (Ref. 9) are equivalent to setting 912 °L2 = 0 in Eq. (4)
and 0o ™ p = 0 in Eq. (3). Tomlinson (Ref. 10) deals with a

model set of equations equivalent to setting 1/7 = 0 and does not
include the influence of a probe irradiation; i.e., terms containing
1, and Eq. (3) are not included in his analysis. Together with a
clever transformation of variables, he demonstrates an integral
relationship designated as the "Photochromic Function." 1In
Ohtsuka's (Ref. 11) formulation of the rate equations, pertaining

to laser beam propagation, there is no distinction made between
absorption coefficients since both probe and excitation wavelengths
are the same. 1In addition, his analysis assumes the condition

equivalent to setting

%1 *11 * % ‘v
6
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It is advantageous to introduce other variables and parameters
in the rate equations. Let

ax Bx e
I =1, e, 3 (0,8) = Ay, Ty =T, e, T (0,t) = A,,
(6)
n = Ny/N,, n (y,0) = 0,y = Nyo, x
Equations (2), (3), and (4a) become

oJ o,

sta-f1+ (2 -1 a]g %)
y Ll

oJ o. Oyn=0
il S 12 212
dy % { 91 i o9 ) T]] Js (8)

°L1 (1-7) J; exp (-ay/NocLl) " n °U1 n J; exp (-ay/NocLl)
010 (A=n) J, exp (-By/Njo; 1) = Oyp Oyg N I exp (-ﬁy/NOGLl)

(9

With the further substitutions

Ji0 = 1/t o1 %L1 Jo0 = 1/t 99 o0 A= t/T

(10)

K} = %1 %u1/%11 110 Ko = %2 Cu2/%L2 ‘L2

a) = (oyy/0p9) = 1, ay = 015/01,, a3 = (o, = ,)/0p,
7




..
]
1
|
i

Equations (7) through (9) are reduced to . é
Le-q@ramoe ) -u
.

%g---(a2+a3n)s (12) -

%f'- (1-1-K; n) p exp (-oy/N )

+ (117K, 1) s exp (By/N q,) = 0 (13)

Further simplifications can be made. Introduce the new
variable q(y,\) from

P=4q " exp (-y) (14)
where

a(0,%) = A,/3;, (15)
Also introduce another variable r(y,A) using

8 = r « exp (-azy) (16)
where

r(0,7) = Ay/J,, (17)

In terms of the new set of dependent variables q, r, and n and

i independent variables y and ), the rate equations, Eqs. (11), (12),
1

and (13) reduce to

-

oy

{ g% lnq= - a; n (18)
Inr = - az 1 (19)
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+ (1-n)r e P2V . Ky nr e 22 - n (20)
where the constants

b, =1+ (a/No °L1)’ b, = a, + (B/N_ o (21)

o Ll)
A FIRST INTEGRATION

An important integral is obtained by eliminating the common 7 -
term in Eqs. (18) and (19). Integration with respect to the y -
variable results in

r=Caq’, vsas/a = (qp = o)/ oy = opp) (22)

As a consequence of the boundary conditions imposed on the variables
q and r, the arbitrary function of integration in Eq. (22) is

just a constant C. Note that if both excitation and probe beams are
of different wavelength (implying unequal absorption coefficients)
one expects that in general the ratio v f 1. However, for equal
wavelengths the ratio is identically unity (Ref. 11).

The three first order partial differential equations in
Eqs. (18) through (20) are reduced to the pair of equations.

3

aylnq’-a

;R

& . 7. “b.y . -b,y
O (1-1) g e 1 Kl nqe 1 (23)

+ (1-7) C qv e-bzy - K2 ncC qv e-b2y -7

The two level system is now described in terms of the variables
q, r, and n, governed by Eqs. (22) and (23).




REDUCTION TO A SECOND-ORDER EQUATION

For purposes of numerical evaluation, it is more convenient
to deal with a single higher order differential equation rather
than with a pair of first order equations. Equations (23) are
combined to form a second order partial differential equation in
terms of one of the variables, q or n. By far the simplest
equation is obtained if the n variable is eliminated from the
pair of equations. 1In terms of a new variable z, where

lIngq=2z + b1 y (24)

one finally has the lengthy general result
i"--(lﬂ() r SRR R TR
JyoA 1 dy s B dy 1

- 1
- C V2 evbly a b,y [1 + (—.':?) (%; + bl)] (25)

This second order partial differential equation is obviously
"highly nonlinear" and can only be solved numerically. As an
alternative we will consider simplifications that are practical
as well as physically meaningful.

Assume that interactions with the probe beam can be neglected.
That is, terms in Eq. (4a) containing the absorption cross-sections
O 9s Oyp are to be neglected in this analysis. The net result
is to discard the last term in Eq. (25). (Surely if there is no
probe light then C = 0 and this term will vanish.) With this
assumption and the transformation

2 (y,\) = 1In (1+K1) + z
(26)

= In [1’ (oLl oLl + %u1 ‘Ul)] + 1n 11 (x,t)

10
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then Eq. (25) reduces to

2
B ey u

or, dividing by b1

2 b
o"u Ju 3 u
a(bly)a-,\ - [ (1+eu) a(bly) + bl e + 1]

where

o8 + ) by o (o) S
3 (1+K,) o 1%L1toutor Mo

The n- variable is related to the quantity u as

b —ou
ne ( 1/31) 1+ a(bly) )

Equation (27) can be integrated numerically, subject to the

initial-boundary conditions

i €00y = in [1‘ R cmom)] +1nA;

i 5 £

=0

where a zero initial value for the upper level population has been

27

(28)

(29)

(30)

assumed in Eq. (5) (note that this assumption for the initial

population distribution can be altered without modification of any

prior results). Equation (27) is recognized as a hyperbolic

partial differential equation in canonical form.

11
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With no probe beam present there are six material constant
groups that must be known in order to achieve a numerical solution.
Specifically, these quantities are bl’ Kl' and a, -- terms that
appear explicitly in Eqs. (27) and (28). In addition, the
scaling quantities NooLl’ 7, and the constant term in the boundary
condition of Eq. (30), (namely, 91 °L1 + 9y 001) must also be
given. Furthermore, if a weak probe beam is present in the system,
then a seventh constant must be known, namely v . Note that the
quantities A and A, are experimentally controlled parameters
independent of the material understudy. Likewise, the thickness
of the sample, x, is assumed known. In the following sections, we
present a few experimental procedures that can be used to determine
some of these needed constants from a given material sample.

12




EVALUATION OF THE MATERIAL CONSTANTS

This section discusses several experimental methods that are

useful for material parameter estimation. Specific photochromic

data are presented as a convenient means to illustrate the procedures.

STEADY STATE SOLUTION

The steady state conditons are found from Eq. (27). Setting
the partial derivative with respect to A equal to zero and
separating variables leads to

lite _ du_._,
T dy
(bl/b3) + e

3 (31)

where the - symbol denotes the steady state value of the variable,
(e.g., lim u (y,N) = u as t = »). With the substitution
u
W= (b1/b3) + e (32)

one has

1-(b,/b,)
- -
[wv(blle) v ] it e

Upon integration,

u - (1- (b1/b3)) « 1n [e:1 + (bl/b3)] - - b1 y + const (33)

The constant of integration is evaluated using the boundary conditon

at y = 0; namely, Eq. (5¢).

The variable u (y,A\) and the originally introduced quantity I1

(x,t) are related by

13
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Lk

bl _f”‘:}_’»’i&i’ﬁ.’{_’ Ed

ue=ln ['r (o, *11 * %1 ‘01)] +1n1, (36
Thus, at the entrance face x = 0 the steady state value
u (0) = In [1‘ (°L1 .Ll + o ‘Ul)] +1n Al

(35)
= 1n [(1+K1)/J1°] + 1n A

Using this result to evaluate the constant term in Eq. (33), one
finally has

1n (iI/Al) . (1 - (b1/b3)) 1n {('il/Al) + b5

=-byy- (1 - (b1/b3)) ln{l + by
where il is the steady state value of I, measured after the excitation

beam has traversed a distance x through the material. The constant
b. is defined as

(36)

5
b5 = bl JlO/bS Al 1+ Kl) 37)
# ﬁl (N o” + a)
T

a0y 191 1+9%1°1.1) %11 %1 (1" *ur)

The quantities bl’ b3, and b5 are known in terms of the material

constants whereas 11, Al, and x are experimentally controlled or measured
values. In principle, Eq. (36) can be used to help evaluate the material

constants from experimental data. Unfortunately, the functional
form of this equation only all allows for "trial-and-error" estimates.

14
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A useful simplification is possible if we consider a "small
signal approximation" where il - Al (1~1) for which 1 << 1. The
logarithmic terms in Eq. (36) can be replaced with the approximations

In (1-1)¥ - i
- 2 -
In (1+bg 1/1+b5) :I./(1+b5)
with which Eq. (36) simplifies to

_ b b (b

i .
b, + b, b,

y = constant ° y (38a)

Thus, for the "small signal case," the fractional change in transmitted
excitation light is linearly proportional to the thickness y. The
slope of this linear relation can be easily related to several
material constants

blb3 (1+b5) i Ala1 955 a
bl + b3 b5 Al (1+K1) + JlO No oL1

(38b) é

SIMULTANEOUS TWO-BEAM INTENSITY MEASUREMENTS

Figure 2 shows the experimental system used to measure the
transmitted light levels in both excitation and probe beams after
E passage through a specific photochromic absorber sample. The argon
E laser 448 nm line was used for sample excitation and the helium=-neon
laser 633 nm line served as the probe light in this demonstration.
A photochromic film similar to that employed by Baldwin (Ref. 8)
4 , (type 63+071, American Cyanamid Co.), was used in these demonstrationms.
: The wavelength sensitivity of this material is well suited for use
with the blue-green argon laser lines for excitation together with the
helium-neon light as a probe beam. Both laser beams were spatially

15




filtered, expanded, and collimated to illuminate uniforml- . portion
of the film. A beam splitter directed both beams ontu .ane film

and shutters were used to control exposure times. Transmitted

beams were separated using narrow band pass filters and detectors
monitored the individual changing beam intensities in time.

At every instant in time the excitation and probe beam
intensities, after passing through the absorber, are related by
Eq. (22). In terms of the measured beam intensities one derives from
Eq. (22) and the boundary conditions of Eq. (5) the result

1n I,=v In I1 + [1n A2 - viln Al +y (v b1 - bz)] (39)

Thus, a plot of the quantities 1ln 12 vs 1ln 11 should be linear with
slope v and intercept equal to the value of the last three bracketed
terms in Eq. (39j.' Figure 3 illustrates how well a straight line
represents the demonstration experimental results. The least

square fit value of v = = (.66 falls within Baldwin's range of

values (v = - 0.65 to - 0.95). No numerical estimates were obtained
from the intercept value in this demonstration since the experimental
data were not corrected for reflectivity losses at the front face

of the photochromic film and only relative beam intensities were

measured.
POST-EXCITATION DECAY

The time constant T can be found from decay measurements of the
excited state population after removal of the excitation beam. The
probe beam is used to monitor the decay rate. We first assume that
the interaction between probe radiation and excited state population
can be neglected as a consequence of using a very weak probe beam
or of small cross section values. The rate equations similar to
Eqs. (19) and (20) are now

16
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1%; Inyr = - a; 1 (40)
L. (41)

with the initial distribution n (y,0)= % (y)# 0. That is, an
excited state population is created and exists at the time when
the excitation beam is just removed. The decrease in excited
state population density affects the probe light transmission

characteristics.

Integration of Eq. (41) is straightforward, resulting in the
well-known exponential decay, n (y,\) = T, (y) exp (=A). Sub-
stituting this result into Eq. (40) and integrating with respect
to the y-variable finally yields

- y
Inl,=1nS, +a 1-e"‘/"] (y) dy (42)
2 N £ o ) ¥

The quantity S, = i, (y,0) represents the initial probe light
intensity level transmitted through the absorber.

The change of the helium-neon probe light after excitation
of the photochromic absorber was measured in the demonstration
experiment previously mentioned. Figure 4 illustrates the variation
of the probe beam light level at several points in time after the
excitation beam is removed. 1In accord with Eq. (42) the quantity
In I, should vary as an exponential function of time. The curves
shown in the figure represents matches to the experimental data pcints
using the functional form of E;. (42) for three values of t. A
value of v = 1900 sec was found to offer the best overall curve
fit. This estimated value for v is higher than that reported by
Baldwin (Ref. 8), namely, 1100 L7 < 1400 sec.

17




A less restrictive model allows for an interaction between the
probe radiation and the level populations. As a practical measure
assume now that the interaction involves only the excited level by
setting O = 0 in Eqs. (8) and (9). Since I1 (x,t) = Jy (x,t) = 0
after excitation one has

dJ
—l -
dy T 430 4,

/ (43)
o) “By/N, o1
ST T T oyp Oy Jp me oy

The quantity J, cannot be normalized as before with respect to the
Jzo-term since the latter is not defined when Opp = 0, (see Eqs. (10)).
Instead, we normalize with respect to the quantity T %2 %u2

by defining

S =7 oy, 4y Iy (44)
With this substitution Eq. (43) becomes

s _ . '
dy &3 N =
45)
'BY/N (
%&._ LB o Ll

If the quantity B is zero or can be neglected then the coupled

=N

Eqs. (45) can be integrated.
With the transformations
S= eQ. n= e’ (46)

Equations (45) finally reduce to

«0 i Haoq@+

oy * ~az e, 0N eg) (47)

18
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Differentiation of the first of Eqs. (47) with respect to X
yields

2
-3 @+ ed (48)

Integration first with respect to y and then with respect to A
results in

dQ
Q+eQ+C

-2+ £ (y) (49)

where C is evaluated from the boundary conditions at y = 0 and
is given by

Finally, in terms of the variable J2, one has

Jo (3,7) a3,
B = = =NMf
f 3, L1003, /8y +ray 0y, 05740 ] (53)
J,(y,0)

The integral is to be evaluated numerically. The combination of
terms T %2 ¢U2 appear as a single item to be determined utlimately
from the numerical integration and match to the experimental data.
The arbitrary function of integration f(y) can be found from the
steady-state properties, i.e., N (y,») = 0 and Jy (y,2) = A,.

Thus, with the above mentioned approximations the material constarnt s
Tand T o 2 °U2 can be found from experimental data. (Note that

U
Mohn's (Ref. 9) treatment of optical bleaching for a photochromic

material suggests an approximation for which Eq. (51) can be




Y

integrated to estimate the material constants. When applicable,
this estimated value could be used in a recursive fashion to refine

the numerical integration.)
LINEARIZED PARTIAL DIFFERENTIAL EQUATION APPROXIMATION

We consider simplifications to the second order equationm,
Eq. (27). As a first assumption set a = 0. Consider an expansion
of the quantity u about a particular quiescent value of Il’ say
< Il >, in the form

u=ln [7 (cm_ °n1 * ‘m "111) <1 >] + 1In 11/<11> (52)
using Eq. (26). The small signal approximation Il'a < 11 >+ 6
suggests that

uln [t(o,; 09 + 0y ¢y) <Ip> 1+ 1n (1+8/<1,>) (53)

~u + 5/< 11 >

where u is a constant. With this simplification Eq. (27) becomes

2 u u
- - o o
aya)\‘“-[(1+e )%}%+b3e +b1] (54)
Equation (54) is a linear partial differential equation which can
be readily :I.n_tegrated subject to the initial-boundary conditions
of Eq. (30). The solution for this linearized problem, expressed
in terms of the quantity 11 (x,t), can be written as

20




a
]<I]>
In I, > loA, - °1 +1] v
Ml 1+(1+K1)<11>/J10
(55)
a.<1.>/J
. y Bkt

(14K, )<L, >
TH(1+K, )<, >/ , 7 ©*P Lk A

(Note, the second term in Eq. (55) would be identical to a "small
signal" steady state result of Eq. (38) in accord with the assumptions
<11> ‘-*Jlo a Al' The last term in Eq. (55) vanishes in steady state.)

Figure 5 shows several measured I -t data points from the
demonstration experiment and a curve fit determined from the |
functional form of Eq. (55) as A + B exp (-Ct). The constants A,

B, and C were evaluated from the measurements at the later time
intervals t = 400, 500, and 600 sec. From the computed exponential
factor, C, and using the value < = 1900 sec obtained previously,
one find that the quantity (1+K1) <Il>/J =~ 3, For example,
assuming the value K, ~ 1 and <I,> of the order of 1 n watt/cmz,

one finds that JlO is also of the order of 1 watt:/cm . (Baldwin's

(Ref. 8) equivalent value for J10 is .about 20 u watts/cm vy I8

addition, the computed value of B in the above mentioned exponential
form leads to an estimate of the product a4 y == 10. This result
implies that the ratio %Y / oy, is much less than unity as

expected (see Eq. (10)).




SUMMARY

The accomplishments of this work are threefold: First, general
rate equations have been developed either as a pair of first order
or a single second order partial differential equations. As
previously noted, these equations have a broad scope and are
useful to model absorption phenomena and energy level population
changes. The procedure was shown to be valuable for the
identification of significant macerial constant groupings as
characteristic constants; that is, several scale parameters and non-
dimensional groups are new physical insights to the problem.
Secondly, the reduction of the descriptive equations to a hyperbolic
partial differential equation in canonical form is another important
result that implies relative simplicity and accuracy for numerical
evaluations. In addition, an integral solution was derived
relating probe and exictation beam intensities in the form of a time-
independent power law (see Eqs. (22) or (39)). This result suggests
a new experimental technique for monitoring the excitation beam.
Finally, several experimental methods were presented in which the
calibration test data could be analyzed to estimate a number of
material constants. A photochromic was used as a convenient

demonstration media.
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Fig. 3 A Linear Fit to Simultaneous Two-Beam Light
Intensity Measurements after Both Beams are
Transmitted Through the Absorber
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APPENDIX A = NUMERICAL INTEGRATION PROGRAM

To accommodate a numerical integration procedure, the
hyperbolic differential equation of Eq. (27) can be expressed as

2 du
5‘2%3)‘& - £(u, (b, y))AE (A-1)

together with the initial value-boundary value conditions of Eq. (30) ;
|

written as
u (o,\) =C
(A-2)
Erjh*-‘ - -]
«(b1Y)
at A = 0 or equivalently
u (y40) = = byy +C (A-3)

For convenience set b1 = 1, (equivalent to redefining the y-variable).

Integration of Eq. (A~l) in terms of the differential or step
size A) yields

u & 4
o %‘; & E A% (A-4)
Y, MAN Y,A

Also the change in the u-variable for a step change y can be

written as
u[(y+y), (MAN]= u(y, (MaN)) + ?y‘ Ay (A-5)
¥, MAN

e B L R B ST
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To obta:Ln the recurrence formulas upon which the integration
scheme is based let

A=mn - AA » y=8 Ay (A-6)

where n, 8 are integers. Thus, Eqs. (A-4) and A-5) become

- N

A -
%; dy + £(s,n) AN (A=7)
s, ntl s,n
U ((s4), (D)) = u (s, (a+1)) + 2 by (a-8)
s,ntl
together with the initial value~boundary value conditions
u (o,n) = C
% m =1 oru(s,0) ==-s8 -Ay+¢C (A-9)
8,0
For simplicity in notation define
U o u(s,n)
Da,n - g (A-10)
s,n
Finally, the recurrence formulas are
DS,M-J.": - Ds,n + £ (s,n)AN
Uu-o-l,u-l-l. e Us.n-i-l 2 Ds,n-l-l Ay (A-11)
Uo,n = C

U o--a*Ay+C
A-2




representing a first order integration scheme. The numerical

procedure consists of solving Eqs. (A-1l1) for the quantity U’ e
over a range of values

s =0 to S n=0ton (A-12)

A program for the solution of Eqs. (A-11l) is given in Figure
A-1l. The interpretations of several program variable are stated
in Table A-1l. 1Initial-boundary conditions are stored on files,
(see program statement 1242). The values of Us,n and Ds,n
computed during the run are also stored on files, (see program
statement 1320). Solution of the recurrence equations is carried
out between statements 1372 and 2220. An output file, (see statement
2050) consists of exponentiated u-values at a fixed value of n(or))

over a range of s(or y) values.

At the starting value of the interger n, the change in the
variable Vi with s is calculated over the range of s-values and
]
subsequently stored. The value of u is increased by unity and the

computations are repeated. The final computed values of Us & and

Ds o 8re stored in file format, to be used as input values when the
? 5

program is run again.

Note that in this version of the program only two steps in n are
utilized due to computer storage limitations, i.e., N 9=2. To go

beyond fwo steps requires program changes in the arguments of
statement numbers 2140 and 3600.




TABLE A-1 - SIGNIFICANT PROGRAM VARIABLES

Computer
Program
Variable

Er‘-—:wo

N9

Sl
N1,K

U(sl,K)
D(sl,K)

G3,G4

Mathematical
Equivalent

1n[‘r(oL10L1 + GUI‘UI)J +1nA,
b3/b1

AN

by

n
max

initial value of n

s,n

O c mB3 o

8s,n
exp (U)/exp (C)

accuracy test variables

PPV SRR
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FHOTOS

1688 LOHG UP.D7
TETE LOHG DL 1S
1EEE LUHG CTaBs Ay
1821 LOMG F1i
1828 DIM HELS]
1831 DIM G#LS1.F$L 2]

1848 DIM U2 1.D$L 2]

18568 DIM ExLal. Wl 2]

1888 MAT D=ZER

1878 MAT U=ZER

1828 FILES #2%.%2%,%

1828 FRIWT 'lHPUT BEOUHDARY COMDITION C=%"

11688 IHFUT

1118 PRINT "IHPUT FARAMETER E=%"

IMFUT B

FREIMT “TIME STEF T=% AND SPACE STEF L=%"
IMFUT T

IHFPUT L

FRINT "IMPUT THE HUMBER OF STEPS IM L Mz="
THFUT Mz

FEIMT "IHFUT THE STAHRTIMG TIME STEF Ms="
ITHFUT M

FRIMT

FRIMT "HOW MAHY TIME STERS W2t

IMFUT Mo

Ci=C

El=E

Ti1=T

L.1=L.

e i

Ma=pa

5
)
E

21 UL 1588, 2]
G TalaMBaME. CGLaGENF

IMFUT F#
IMPUT G#
FRINT F#sG#
ASSIGH FEy 3241
SEIGH GErdatl
FRIMT "BOUMDARY COMDITIONW C="3§C1
FRIMT " PRARAMETER IM DIFF. ER. E="iEl
PRINT "TIME STEP T="iTl
PRINT "SPACE STEP L="§L1i
FEIMT "STARTIMG TIME STEF MS="iMZ
PRINT "HO. OF SFACE STEPS M2="iM4

S B B de fo o fa 00 PO e (5D 00 03 00 02 —J O L B e £ B
S OO T O G T O O O D O ) T L O O O e O
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(2R X
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@S

Fig. A-1 Computer Program for the Solution
of the Recurrence Formulas of Eq. (A-1ll)
(1 of 3)

FRIMT "WHAT ARE THE IWITIAL COMDITION FILE MAMESS"




=TT

FRIMT

e FREINT " Hus" i

' FRIMT "STHRT HEST TIME STEF M5 = "iMS+HI
FEREIHT

FEINT " THFUT LE AHD LE FILE HAME:S"
FELTHT "

THPUT L#

IHFUT D&

FESTGH LiFs1at]

FREIMT 13

TGH Tigs&s

FREIMT 18 UEs DE

FRINT

¢ EOR F.—l LTS ] e

F“P Mil=1 TO pME+RET+1
READ #3iF1
IF E=2 THEH 1438
IF Hi<oMS+RY~22 THEM 143
[
H[ B A
=W Wl
< DFE #3
LR Sl T CHE- S
e ;H:..' L|I

hPx)
—
R

rnk :1 1 TO Mg
FEAD #1507
LES L1 I=107
HEAT &1
k=l
FlR Sl=1 T CHM2-13
Fel+ESP ol S1ak 10
FaeOFeDD 5ok 1o+ Bk I'H' kb
Fa-F
I'l Ill"l""" _I 1][, "
H|:1+15}+1J H E
IL-1~}+1] JTI
[F Gl s THEM 1eS5a
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Fig. A-1 Computer Program for the Solution
of the Recurrence Formulas of Eq. (A-1ll1)
(2 of 3)
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R R

TS

i
b’«:
B

SATH
SREE
298
=188
2116
Sl
2138
21408
2158
“S1ER
217
Slae
2198
2218
2215
2228
aEa8
2198
g ]
2EeE
AEEa
VBB
RER )
SEBH
G BB

RESTURE #1. .
RESTORE #2° . .
FOR J=1 TO mz
A=ULJy K]
PRINT #13H
MEXT J
GOTO 20909
FOR J=1 TO (M2-1)
B4=DC Js kK ]
PRINT #23 B4
NEXT J
PRINT #13END
PRINT #Z23END
RESTORE #1
RESTORE #2
MEXT R7
PRINT "INFUT THE OUTPUT FILE HAME H$="
INPUT H$
PRINT
CREATE Y1sH$,2,256
IF ¥1=8 THEN 2118
FRINT “ CAM'T OPEM THE H$ FILE”
GOTO 2282
ASSIGN HEs S v1
PRINT ‘t13iH$
FOR J=1 TO M2 STEP (M2-30)
S=UL Js 21~
S=EXPIS)
PRIMT #5i%
PRINT &
MEXT J
PRIMT #53END
RESTORE #5
PRINT #43END
END
G1=M2
FOR J=1 TO CMS+R7-2)
READ #43F1
HEXT
Fl=Ul51:2]
PRINT #4iF1
IF R7=H% THEH 4800
RESTORE #4
GOTO 1948

Fig. A-1 Computer Program for the Solution

of the Recurrence Formulas of Eq. (A-1ll)
(3 of 3)
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