AD-A04	8 589 SIFIED	IIT RE THE IM SEP 77	SEARCH	INST A PRO EBERGE	ANNAPOL POSED A	IS MD CTIVE B	ECAC-PR	ATCRBS	PERFOR	MANCE I 8-76-C-	F/6 17/ N TET 0017 NL	7 C(U) .	
	OF ADI A048589						A CONTRACTOR OF						
					$\frac{1}{2} = \frac{1}{2} = \frac{1}$		Name (Constraints) Name (Rent -		Hard Strength of the second se			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								· 雅君服書					
					The second secon			END DATE FILMED 2-78 DDC					
4													

THE IMPACT OF A PROPOSED ACTIVE BCAS ON ATCRBS PERFORMANCE IN THE WASHINGTON, D.C., 1981 ENVIRONMENT

IIT Research Institute Under Contract to DEPARTMENT OF DEFENSE Electromagnetic Compatibility Analysis Center Annapolis, Maryland 21402

JAN 1 1 1978

September 1977

FINAL REPORT

Document is available to the public through the National Technical Information Service, Springfield, Virginia 22161

AD NO. FILE COPY

the party of the second of the second

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research & Development Service Washington, DC 20590

Notice

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

DDC B if Section Sector D Sector Sector	SITA	W. He Section	
STANDARD CONTRACTOR STANDARD CONTRACTOR STANDARD CONTRACTOR STANDARD CONTRACTOR STANDARD STAN	000	B if Section	
SIL 201 LOT DISTRIBUTION/ATAP ARKITY CODES SPECIAL	114-10-1	(r_J	
DISTRIDUTION/AVAP KEN ITY CODES Spectru	91.01	1 ^{3 1}	
	914 MC2010/11	1000/10/1AU 450/1TV - 200	15
	97. 613731927	IEN/ATMY BEN AT COR SPE	E S CI.W.
A	GISTERIO I CASTERIO I	HENYLYNY MEN MY COO Spr	E S CI.W.

The state of the state of the state

18) ECAC, FAA/AD (19) PR-77-037, 77/24 4 ECHNICAL REPORT STANUARD TILL PAGE 3. Recipient's Catalog No. 2. Government Accession No. 1. Report No. FAA-RD-77-140 we and Subtitle THE IMPACT OF A PROPOSED ACTIVE BCAS ON ATCRBS. 977 Sept PERFORMANCE IN THE WASHINGTON, D.C., 1981 Performing Organization ENVIRONMENT. Author's) 8. Performing Organization Report No. Norman Theberge of IIT Research Institute ECAC-PR-77-037 Performing Organization Name and Address DoD Electromagnetic Compatibility Analysis Center 11 CT or Grant No North Severn DOT-FA70WAI-175 Task 32-A-1 Annapolis, MD 21402 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address U.S. Department of Transportation FINAL Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20590 15. Supplementary Notes Performed for the Spectrum Management Staff, Systems Research and Development Service, FAA. 16. Abstract A computer model of the proposed active Beacon Collision Avoidance System (BCAS) was developed to investigate the impact of BCAS on the Air Traffic Control Radar Beacon System (ATCRBS) ground system. Predictions were made for the early 1981 Washington, D.C., environment. Two ground environments were simulated, an all-ATCRBS environment and a 25%/75% Discrete Address Beacon System (DABS)/ATCRBS mix. Airborne fruit rates and the effect of BCAS/DABS mode power programming on interference were also predicted. AJOUA F19628-96-C- ØØ17, DO JAN 1 1 1978 18. Distribution Statement 17. Key Words Document is available to the public AIR TRAFFIC CONTROL RADAR BEACON SYSTEM (ATCRBS) BEACON COLLISION AVOIDANCE SYSTEM (BCAS) through the National Technical Infor-DISCRETE ADDRESS BEACON SYSTEM (DABS) mation Service, Springfield, VA 22161 ELECTROMAGNETIC COMPATIBILITY 20. Security Classif. (of this page) UNCLASSIFIED 21. No. of Pages 22 Price 19. Security Classif. (of this report) 48 UNCLASSIFIED Form DOT F 1700.7 (8-69) 295 3ØØ i

PREFACE

The Electromagnetic Compatibility Analysis Center (ECAC) is a Department of Defense facility, established to provide advice and assistance on electromagnetic compatibility matters to the Secretary of Defense, the Joint Chiefs of Staff, the military departments and other DoD components. The Center, located at North Severn, Annapolis, Maryland 21402, is under executive control of the Assistant Secretary of Defense for Communication, Command, Control, and Intelligence and the Chairman, Joint Chiefs of Staff, or their designees, who jointly provide policy guidance, assign projects, and establish priorities. ECAC functions under the direction of the Secretary of the Air Force and the management and technical direction of the Center are provided by military and civil service personnel. The technical operations function is provided through an Air Force sponsored contract with the IIT Research Institute (IITRI).

This report was prepared for the Systems Research and Development Service of the Federal Aviation Administration in accordance with Interagency Agreement DOT-FA70WAI-175, as part of AF Project 649E under Contract F-19628-76-C-0017, by the staff of the IIT Research Institute at the Department of Defense Electromagnetic Compatibility Analysis Center.

To the extent possible, all abbreviations and symbols used in this report are taken from American Standard Y10.19 (1967) "Units Used in Electrical Science and Electrical Engineering" issued by the USA Standards Institute.

Morman Theberg

NORMAN THEBERGE Project Engineer, IITRI

Approved by:

THOMAS A. ANDERSON Colonel, USAF Director

Reviewed by:

. M. DETERDING

Director of Contractor Operations

m.a. Sheath

M. A. SKEATH Special Projects Deputy Director

Men Van Koue Multiply ky To Find Symbol Men Multiply ky To Find Symbol LENCH LENCH											
interview 2.3 cutimeters cm cm millimeters cm cm interview 0 continents cm cm cm cm cm interview 0 cm cm cm cm cm cm interview 0 cm cm cm cm cm cm interview 0 cm cm cm cm cm cm AREA Area cm cm cm cm cm cm Area cm cm cm cm cm <	-	Mhan You Know	Multiply by LENGTH	To Find	Symbol	lanlanda Internetional Iss Iss	Symbol	When You Know	Multiply by LENGTH	To Find	Symb
With Index 30 entimeters cm entimeters 0.4 inches Miles 16 kiloneters 0.4 inches 0.4 inches AREA A 1 kiloneters 0.4 inches 0.4 inches Antex 0.8 externation 0.8 inches 0.4 inches Antex 0.8 externation 0.8 inches 0.4 inches Antex 0.8 externation 0.8 externation 0.8 inches Antex 0.8 externation 0.8 externation 0.8 externation Antex 0.4 externation 0.8 externation 0.8 externation Antex 0.4 externation 0.8 externation 0.8 externation Antex 0.4 externation 0.8 externation 0.8 externation <t< td=""><td>-</td><td>nches</td><td>.2.5</td><td>centimeters</td><td>£</td><td>s</td><td>WE</td><td>millimeters</td><td>0.04</td><td>inches</td><td>.<u>e</u></td></t<>	-	nches	.2.5	centimeters	£	s	WE	millimeters	0.04	inches	. <u>e</u>
Max 1.8 Interest Images 2.3 Ret AREA Area Images Images Images Images Images Images Area Images Images Images Images Images Images Images Images Area Images Images Images Images Images Images Images Images Area Images Images Images Images Images Images Images Images Area Images Images Images Images Images Images Images Images Area Images Images Images Images <t< td=""><td>-</td><td></td><td>8</td><td>centimeters</td><td>Ę</td><td></td><td>C</td><td>centimeters</td><td>0.4</td><td>inches</td><td>.<u>e</u></td></t<>	-		8	centimeters	Ę		C	centimeters	0.4	inches	. <u>e</u>
Matrix AFA meters 1.1 words AFA AFA meters 1.1 words AFA 0.8 square meters 0.1 words career with 0.8 square meters 0.1 words career 0.8 square meters 0.1 words career 0.4 words 0.5 square meters 0.1 words career 0.4 words 0.5 square meters 0.1 words career 0.4 words 0.5 square meters 0.1 words career 0.6 words 0.5 <td>- '</td> <td></td> <td>8.0</td> <td>meters</td> <td>ε.</td> <td>e.</td> <td>E</td> <td>meters</td> <td>3.3</td> <td>feet</td> <td>t,</td>	- '		8.0	meters	ε.	e.	E	meters	3.3	feet	t,
ARA Area Connects Conn		F	2	kilometers	Ē		E	meters		yards	*
AFA AFA Gener forts 65 square continents m ² square continents m ² square continents 0.6 square continents 0.16 square continents 0.16 square continents 0.16 square refersts m ² square refersts 12 square refersts 12 square refersts m ² square refersts 12 square refersts			AREA			" " " "	Ex	kilometers	97		=
terrer in 0.0 te		There inches	55	toulare centimetere	5m2				AREA	1	
Cutere views cutere miles Class cutere relation		quere feet	60.0	square meters	"E	۱۳ ۱	cm2	souare centimeters	016	soluare inches	
Equare miles 2.6 quare kilometers km3 quare kilometers 0.4 quare kilometers quare kilometers <th< td=""><td>-</td><td>quare yards</td><td>0.8</td><td>square meters</td><td>"E</td><td></td><td>e e</td><td>solution motors</td><td></td><td>source varde</td><td></td></th<>	-	quare yards	0.8	square meters	"E		e e	solution motors		source varde	
Ects 0.4 Netters Na Name Name <th< td=""><td></td><td>quare miles</td><td>2.6</td><td>square kilometers</td><td>km2</td><td>1'' 1'' </td><td>km²</td><td>souare kilometers</td><td>10</td><td>souare miles</td><td></td></th<>		quare miles	2.6	square kilometers	km2	1'' 1''	km²	souare kilometers	10	souare miles	
MASS (weight) MASS (weight) Outcest 28 gams 0.35 weight) Dounds 0.45 gams 0.35 ouncest Dounds 0.45 titlograms 2 punds (20001b) VOLUME 1 titlograms 2 VOLUME millitiers millitiers 0.35 ouncest 15 millitiers 0.3 gams 0.03 huid ouncest 16 millitiers 0.3 millitiers 0.3 millitiers 16 0.35 titers 0.35 millitiers 0.35 millitiers 16 0.35 titers 0.35 uters 0.35 outer 16 0.35 titers 0.35 outer 0.35 outer 17 0.35 titers 0.35 outer 0.35 outer 16 0.35 titers 0.35 titers 0.35 outer 18 0.35 titers 0.35 <t< td=""><td>-</td><td>Cres</td><td>0.4</td><td>hectares</td><td>2</td><td></td><td>2</td><td>hectares (10,000 m²)</td><td>25</td><td>acres</td><td></td></t<>	-	Cres	0.4	hectares	2		2	hectares (10,000 m ²)	25	acres	
Outcosts 28 gams 0.46 Kilograms 1 Current 0.46 Kilograms 1 22 pounces Formition 0.46 Kilograms 1 22 pounces Formition 0.46 Kilograms 22 pounces Formition 0.46 Kilograms 22 pounces Formition 0.46 Kilograms 22 pounces Formitiers m milliters 1 interviewe VOLUME m milliters 0.035 ounces Volume 0.24 iters 1 iters 0.03 Outer 0.24 iters 1 iters 0.03 Outer 0.35 iters 1 iters 0.16 Outer 0.36 iters 1 iters 0.36 Outer 0.36 iters 1 iters 0.36 Outer 0.36 iters 1 iters 0.36 Outer 0.36 iters 0.36 iters 0.36 Outer 0.36 iters 1 iters 0.36 Outer 0.36 iters 0.36 iten			MACC (maint								
Outcoin bounds 28 bounds gams bounds 38 bounds gams bounds 035 bounds ounces bounds 1/2000bin 0.45 bounds kilograms 1 22 bounds 0.005 bounds ounces 1/2000bin 0.45 bounds kilograms 22 bounds 0.005 bounds ounces 22 bounds pounds 1/2000bin 0.45 bounds kilograms 1 bounds 1 bounds 1 bounds 1 bounds 1 bounds 1/2000bin 0.45 bounds inters 1 bounds 1 bounds 1 bounds 1 bounds 1 bounds 1 bounds 1/2000bin 0.24 bounds 1 bounds 0 bounds 1 bounds 1 bounds 1 bounds 1 bounds 1 bounds 1/2000bin 0.24 bounds 1 bounds 1 bounds 1 bounds 1 bounds 1 bounds 1/2000bin 0.25 bounds 1 bounds 1 bounds 1 bounds 1 bounds 1 bounds 1/2000bin 0.25 bounds 1 bounds 1 bounds 1 bounds 1 bounds 1 bounds 1/2000bin 0.25 bounds 1 bounds 1 bounds 1 bounds 1 bounds 1/2000bin 0.25 bounds 1 bounds 1 bounds 1 bounds 1/2000bin 0.25 bounds			USIAM) SCHW			ופו יוין		-	MASS (weight)	1	
pounda 0.45 kilogeans ka short toons 2000 lb) 2000 lb	0	NUCES	38	Grams	•	י ייויין ס			0.035	Dunner	•
Abort tons (2000 ls) 0.9 tonnes 1 tonnes 1 intert tons (2000 ls) (2000 ls) (2000 ls) 1 i inters 1 inters (2000 ls) 0 1 milliters m milliters 0.03 fund ounces 10 0 1 1 milliters 0.03 fund ounces 0.03 fund ounces 10 0.24 1 1 1 1 1 inter 1 10 0.23 1 1 1 1 1 inter 10 0.24 1 1 1 1 1 10 0.25 1 1 1 1 11 0.25 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1<	-	punde	0.45	kilograms	6¥	, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ka	kilograms	2.2	bounds	5 4
Count Volume Volume 5 milliliters m testescons 5 milliliters m tuid ounces 30 milliliters 0.03 tuid ounces tuid ounces 30 milliliters 0.03 tuid ounces 0.23 iters 1 0 1 outs iters 1 0.03 tuid ounces 0.36 iters 1 0.03 tuid ounces 0.38 iters 1 1 outs outs 0.03 tuiters 1 0.03 quarts outs 0.03 tuiters 1 1 outs outs 0.03 tuite	-	hort tons	0.9	tonnes	1	1°1°		tonnes (1000 kg)	11	short tons	
VOLUME taspoons 5 milliters milliters milliters 003 fluid ounces 15 milliters milliters milliters milliters 1003 fluid ounces 16 milliters milliters milliters 1003 fluid ounces 10 milliters 0.26 gallons cubic meters 35 c		101 0007)				""			WOLLING.		
tespons 5 milliters m milliters 003 fluid ounces 15 milliters 003 fluid ounces 15 milliters 100 mill		51	VOLUME			01 ' ' '			AOLOME	1	
Testopons 5 milliters m testopons 15 milliters 106 quarts tuid ounces 30 milliters 1 0.6 quarts tuid ounces 0.47 titers 1 0.6 quarts tuid ounces 0.6 titers 1 0.6 quarts tuid ounces 0.6 titers 1 0.6 quarts tuid ounces 0.7 titers 1 0.6 quarts outs 0.03 titers 1 1.3 cubic reterts 3 oubic varids 0.03 cubic meters 35 cubic reterts 1.3 cubic reterts oubic text 0.03 cubic meters 35 cubic reterts 1.3 cubic reterts oubic text 0.03 cubic meters 35 temperature 365 (then Fahrenheit tamperature 0.76 cubic meters 32 temperature 365 (then Fahrenheit tamperature sold stat cabic meters 32 temperature 365 (then Fahrenheit tamperature sold stat cabic meters 32 temperature 365 (then Fahrenheit tamperature sold stat					-	1	Ē	milliliters	0.03	fluid ounces	Ŧ
tublespoors 15 militites m iters 1.06 quarts fuid ounces 30 militites m iters 1.06 quarts fuid ounces 0.3 iters 0.47 iters 0.26 quarts pins 0.47 iters 1 0.6 quarts pins 0.47 iters 1 0.26 quarts pins 0.65 iters 1 3 cubic meters 3 quarts 0.05 iters 1 3 cubic meters 3 quarts 0.03 cubic meters 1 3 cubic meters 3 quarts 0.03 cubic meters 1 3 cubic meters 3 qubic feat 0.03 cubic meters 1 3 cubic vards oubic meters 1 1 1 1 1 qubic feat 0.03 cubic meters 1 3 cubic vards oubic meters 1 0.76 cubic meters 1 3 temperature oubic meters 1 0 0 0 1 1 fabrenheit 1 1 0	-	tespoons	2	milliliters	Ē	6 ''''	-	liters	2.1	pints	ā
Nul ounces 30 milliters mill iters 0.26 gellons runs 0.24 iters 1 1 1 1 1 pins 0.47 iters 1 1 1 1 1 pins 0.47 iters 1 1 1 1 1 pins 0.47 iters 1 1 1 1 1 puns 0.95 iters 1 1 1 1 1 puns 0.95 iters 1 1 1 1 1 puns 0.8 iters 1 1 1 1 1 puns 0.16 cubic meters 3 3 cubic reters 3 3 puls 0.76 cubic meters 1 1 1 1 1 puls 0.76 cubic meters 1 1 1 1 1 puls 0.76 cubic meters 1 1 1 1 puls puls puls 1 1 1 1 puls puls puls 1 1 1 1 <td< td=""><td></td><td>ablespoons</td><td>15</td><td>milliliters</td><td>ĩ</td><td> " ''''</td><td>-</td><td>liters</td><td>1.06</td><td>quarts</td><td>8</td></td<>		ablespoons	15	milliliters	ĩ	" ''''	-	liters	1.06	quarts	8
Out Out Out Out Out Out Out 1 1 1 1 1 Out 047 1 1 1 0 Out 036 1 1 1 0 Out 038 1 1 1 0 Out 033 0 0 0 1 Out 0.03 0.05 0 0 0 Image: Finite 0 0 0 0 0 Image: Finite 0 0 0 0 0 Image: Finite 0 0 0 0 0	- '	Inid ounces	06	milliliters	Ē.		- .	liters	0.26	gallons	
Prints U.4/ Littles I Prints U.4/ Littles I Q05 Littles I Q16 Littles Littles Q16 Littles Littles Q16 Littles Littles Q17 Cubic meters m3 Q16 Cubic meters m3 Q17 Cubic meters m3 Q17 Cubic meters m3 Q17 Cubic meters m3 Q17 Cubic meters m3 Cubic meters m3 N Cubic meters m3 N Fahrenheit G1 G1 Fahrenheit G2 Casisus Particing Temperature G3 Rubersture Cobic of a state Q2 Rubersture Cobic of a state Q3 Cubic of a state Q4 G4 Q5 G4 Q6 Q6 Q6 Q6 <t< td=""><td>-</td><td>8</td><td>17.0</td><td>liters</td><td></td><td> " ""</td><td>°E '</td><td>cubic meters</td><td>35</td><td>cubic feet</td><td>Ŧ</td></t<>	-	8	17.0	liters		" ""	°E '	cubic meters	35	cubic feet	Ŧ
All All Temperature All aubic fact 0.03 utiers 1 - aubic varids 0.03 cubic meters m ³ N aubic varids 0.76 cubic meters m ³ N fabrenheit 5/9 (sther chance add 32) temperature fabrenheit 5/9 (sther chance add 32) temperature aubic strains subtracting temperature add 32) temperature 20 chance 0 0 0 0 0	- '	Put of	141	liters			"E	cubic meters	1.3	cubic yards	>
Construction C		tions -	6.0	liters		• 111			X.		
cubic yeards 0.76 cubic meters m ³ ^N ^C		this fact	200	Cubic meters		 		=	MPERATURE (exact)	
TEMPERATURE (exact) Temperature add 32) temperature Fahrenheit 5/9 (after Calsius °C ° temperature 20 °C ° ° 20) temperature 20 0 0		ubic yerds	0.76	cubic meters	°e	° '1' 2	°c	Celsius	9/5 (then	Fahrenheit	•
Fahrenheit 5/9 (after Celsius °C			TEMPERATURE	(exact)			10.1	temperature	add 32)	temperature	
Fahranheit 5/9 (after Calsius °C				1		- ' 			10 10 10 10		
	-	Fahrenheit temperature	5/9 (after subtracting 32)	Celsius temperature	ç	1. [1. [1.] 1. [1.] 1.] 1. [1.] 1.] 2. [1.] 1.] 1.] 1.] 1.] 1.] 1.] 1	* *	. 9	98.6 120	* # 8	

÷

the side town burger the a second by a first the burger of

FAA-RD-77-140

and the second

iii

FEDERAL AVIATION ADMINISTRATION SYSTEMS RESEARCH AND DEVELOPMENT SERVICE SPECTRUM MANAGEMENT STAFF

STATEMENT OF MISSION

The mission of the Spectrum Management Staff is to assist the Department of State, Office of Telecommunications Policy, and the Federal Communications Commission in assuring the FAA's and the nation's aviation interests with sufficient protected electromagnetic telecommunications resources throughout the world to provide for the safe conduct of aeronautical flight by fostering effective and efficient use of a natural resource-the electromagnetic radio-frequency spectrum.

This objective is achieved through the following services:

- Planning and defending the acquisition and retention of sufficient radio-frequency spectrum to support the aeronautical interests of the nation, at home and abroad, and spectrum standardization for the world's aviation community.
- Providing research, analysis, engineering, and evaluation in the development of spectrum related policy, planning, standards, criteria, measurement equipment, and measurement techniques.
- Conducting electromagnetic compatibility analyses to determine intra/inter-system viability and design parameters, to assure certification of adequate spectrum to support system operational use and projected growth patterns, to defend the aeronautical services spectrum from encroachment by others, and to provide for the efficient use of the aeronautical spectrum.
- Developing automated frequency-selection computer programs/routines to provide frequency planning, frequency assignment, and spectrum analysis capabilities in the spectrum supporting the National Airspace System.
- Providing spectrum management consultation, assistance, and guidance to all aviation interests, users, and providers of equipment and services, both national and international.

EXECUTIVE SUMMARY

The proposed active Beacon Collision Avoidance System (BCAS) analyzed in this report provides the collision-avoidance function for BCAS-equipped aircraft against aircraft with either Air Traffic Control Radar Beacon System (ATCRBS) or Discrete Address Beacon System (DABS) transponders. This system actively elicits replies from other beacon-equipped aircraft in the vicinity by transmitting both ATCRBS- and DABS-type interrogations. The Federal Aviation Administration (FAA), the system proposal developer, requested the Electromagnetic Compatibility Analysis Center (ECAC) to perform this analysis.

A computer model of the proposed active BCAS was developed. The model simulates interrogations generated by aircraft equipped with BCAS and merges these signals with those generated by the ground system in the DABS/ATCRBS Performance Prediction Model (PPM).

Predictions were made to determine the impact of active BCAS electromagnetic emissions on the ATCRBS ground interrogator located at Washington, D.C., National Airport for the hypothetical 1981 environment. Predictions were made for an all-ATCRBS interrogator ground environment and for a mixed environment of 25% DABS sensors and 75% ATCRBS interrogators. Predictions were also made to determine fruit rates at an airborne interrogator and to evaluate the effects of variations in the BCAS/DABS power programming scheme.

The performance of the ground system is determined with and without BCAS-equipped aircraft in the environment. The performance is determined statistically in terms of reply hit-miss histories, target detection and mode Λ (identity) and mode C (altitude) validation. Other interference conditions, such as individual garbles and reply blanking by DABS roll-call fruit, are also investigated.

v

EXECUTIVE SUMMARY (Continued)

Based on the predictions, it was determined that deploying active BCAS in the 1981 Washington, D.C., environment will result in a slight reduction in aircraft reply probability, but not sufficiently to impact the ATCRBS ground receiver/processor performance.

Other predictions showed that instantaneous fruit rates at an airborne BCAS of up to 7200/s could be expected at 20,000 feet and that DABS power programming had no effect on BCAS-generated interference in the Washington ATCRBS environment.

vi

TABLE OF CONTENTS

Subsection

Page

SECTION 1

INTRODUCTION

BACKGROUND											•		1
OBJECTIVE	•						•						2
APPROACH .													2

SECTION 2

SYSTEM DESCRIPTION

ATCRBS/DABS AIR TRAFFIC SURVEILLANCE SYSTE	MS	•		•	•	•	•	•	3
ATCRBS			•	•			•		3
DABS	•				•				4
BCAS - GENERAL			•		•	•			4
BCAS/ATCRBS MODE	•		•			•	•	.•	6
Low-Density Procedure							•		6
High-Density Procedure (Whisper-Shout) .					•				8
ATCRBS Mode Jitter	•		•						9
BCAS/DABS MODE			•						9
Alarm Volume		•					•		9
Squitter Acquisition		•							9
Initial Range Acquisition									11
Tracking Outside Horizontal Alarm Volume			•						11
Tracking Inside Horizontal Alarm Volume									12
DABS BCAS Mode Interrogation Rates							1		12

SECTION 3

MODEL DESCRIPTION

GENERAL				•			•		•	•			•	•		•		•	•		•	13
DABS/A	гсі	RBS	5 1	Pe	rfe	or	ma	nce	e I	Pr	ed	ic	tic	on	M	ode	e1					14

TABLE OF CONTENTS (Continued)

Subsection

Page

SECTION 3 (Continued)

BCAS SIMULATION	ROUTINE	•	•			•	•		•		•	•		•	•	•		19
Simulation of	BCAS/ATCRBS					•	•			•	•	•	•	•	•			20
Simulation of	BCAS/DABS .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21

SECTION 4

ANALYSIS

ATCRBS INTERROGATOR PERFORMANCE		•	•	•	25
Aircraft Deployment					26
Ground-Based DABS DCU Transponders			•		26
Ground Interrogator of Interest					26
Ground Interrogator Environment	 •				29
PERFORMANCE PREDICTIONS					30
Reply Performance					30
Fruit Rates					32
Target Detection and Code Validation					33
Individual Transponder Reply Probability .					33
Fruit Rates at the BCAS				•	34
DABS Power Programming					35

SECTION 5

SUMMARY OF RESULTS AND CONCLUSIONS

RESULTS					•	•	•	•	•	•	•	•	•	•	•	•	•	•	37
CONCLUSIONS													•						38

LIST OF ILLUSTRATIONS

Figure

1	ACTIVE BCAS SYSTEM	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5	
2	BCAS/ATCRBS MODE															7	

TABLE OF CONTENTS (Continued)

LIST OF ILLUSTRATIONS (Continued)

Figure

n		
Р	ap	e
-	- 6	

3	BCAS/DABS MODE	10
4	DABS/ATCRBS PPM FLOW DIAGRAM	16
5	BCAS FLOW DIAGRAM	24
6	DCA 1981 AIRCRAFT DEPLOYMENT	27

LIST OF TABLES

Table

1	BCAS RELATIVE POWER LEVELS (ATCRBS MODE STEPS AND	
	DABS MODE POWER PROGRAMMING)	8
2	DABS/ATCRBS PPM INPUTS	14
3	DABS/ATCRBS PPM I CHARACTERISTICS	15
4	DABS/ATCRBS PPM OUTPUTS	19
5	1981 DCA AIRCRAFT DEPLOYMENT DISTRIBUTION	28
6	LOCATION AND CHARACTERISTICS OF DCA VICTIM	
	INTERROGATOR	29
7	SIMULATION RESULTS AT THE DCA INTERROGATOR	31
8	BCAS IMPACT ON TRANSPONDER PERFORMANCE	34

Section 1

SECTION 1

INTRODUCTION

BACKGROUND

The Federal Aviation Administration (FAA), which is responsible for aviation safety, was directed by Congress to find a reliable Collision Avoidance System (CAS). Several systems that are compatible with the existing FAA Air Traffic Control Radar Beacon System (ATCRBS) signal formats have been proposed. These systems are generally referred to as Beacon Collision Avoidance Systems (BCAS). These systems are either active or passive. Passive systems monitor replies elicited by ground-based interrogations. Active systems transmit interrogations from airborne interrogators.

One currently proposed BCAS,¹ as analyzed in this report, has a signal format which is compatible with the signal formats of both the existing ATCRBS and the proposed Discrete Address Beacon System (DABS). This BCAS is intended to provide the CAS function in a mixed environment of DABS- and ATCRBS-transponder-equipped aircraft. It is an active system capable of interrogating both DABS- and ATCRBSequipped aircraft as opposed to passive systems that monitor the existing signal environment.

Active BCAS interrogations may degrade the ATCRBS/DABS ground system by causing additional transponder dead time, thus lowering the probability of reply and impacting processor performance when combined with increased fruit rates. The FAA tasked ECAC to investigate the impact of active BCAS operation on ATCRBS performance in a hypothetical Washington, D.C., area early 1980's environment (based on the 1975 environment increased by 20%). Two ground environments,

¹Preliminary Draft, Active BCAS Engineering Requirement, FAA, Washington, D.C., 1 June 1976.

one consisting of only ATCRBS interrogators and the other a 25%/75% mix of DABS sensors/ATCRBS interrogators, were considered.

OBJECTIVE

The objective of the analysis was to determine the electromagnetic impact of active BCAS on ATCRBS in the postulated Washington, D.C., early 1980's environment.

APPROACH

Using the time-event-store DABS/ATCRBS Performance Prediction Model (PPM), appended with a submodel of the active BCAS, an analysis was conducted to determine the impact of active BCAS electromagnetic emissions on the performance of the ATCRBS ground system.

The performance of the ATCRBS was predicted with and without the active BCAS in the Washington, D.C., common ATC environment, which was generated from Suitland enroute site radar target printouts supplemented with FAA forecasts for future air environments. Baseline performance was established in the runs made without BCAS. There were 198 transponder - equipped aircraft in the early 1980 postulated environment, 154 of which were assumed to be BCAS-equipped with DABS transponders, with the remaining 44 aircraft assumed to be equipped with ATCRBS transponders with both mode A (identity) and mode C (altitude) capability. Two ground environments were modeled. One, consisting entirely of ATCRBS interrogators, was selected from ECAC's IFF files. The other, consisting of 25% DABS sensors and 75% ATCRBS interrogators, was created by changing FAA site interrogators to DABS sensors. ATCRBS ground system performance was evaluated in terms of the predicted ability of the ground system to detect targets, and validate mode A and mode C codes. The model was also used to perform a parametric analysis of the power programming feature of the BCAS, and to predict fruit rates at an airborne BCAS interrogator.

Section 2

SECTION 2

SYSTEM DESCRIPTION

ATCRES/DABS AIR TRAFFIC SURVEILLANCE SYSTEMS

ATCRBS

The ATCRBS² consists of airborne transponders, ground-stationed interrogator, antenna system, and processing equipment. ATCRBS interrogations are transmitted at the rate of several hundred per second using a narrow beam $(1^{\circ}-4^{\circ})$ antenna which rotates to cover a full 360° of azimuth several times per minute.

All aircraft equipped with ATCRBS transponders and that are within line-of-sight and located in the antenna mainbeam can reply. Interrogators may elicit 20 or more replies from each aircraft within the mainbeam.

The principal information determined from the replies consists of aircraft range, azimuth, identification, and altitude. The system processor automatically displays this information for use by the air traffic controller.

The increase in air traffic and number of ground interrogators has in turn increased demands on this system, thus taxing its viability, and has led to the development of DABS as a replacement of ATCRBS. A complete description of ATCRBS can be found in Reference 2.

²"U.S. National Standard for the IFF MARK X (SIF)/Air Traffic Control Radar Beacon System Characteristics," Agency Order 1010.51A FAA, Washington, D.C., March 1971.

Section 2

DABS

DABS³ is being designed to be compatible with the existing ATCRBS, because the transition will be gradual and the air traffic control (ATC) function must be maintained while both ATCRBS and DABS transponders and interrogators are in use.

In addition to the ATC function, the DABS system has the capability of providing intermittent positive control (IPC), an automatic ground-based conflict detection and resolution service.

The principal difference between ATCRBS and DABS is the use of discretely addressed interrogations by DABS. Since each aircraft has a unique address, it will reply only to its unique address once a track has been initiated. By tracking each aircraft and using the unique address capability, DABS is able to schedule interrogations both to minimize uplink transmission rates and prevent synchronous garble. A complete description of DABS is contained in Reference 3.

BCAS - GENERAL

The active BCAS (FIGURE 1) analyzed in this report is intended to provide the collision avoidance function during the evolution of DABS IPC and in areas outside ground IPC coverage thereafter. It is designed to detect and track ATCRBS- or DABS-transponder-equipped aircraft that present a possible collision threat to the BCAS-equipped aircraft. Active BCAS uses airborne DABS and ATCRBS interrogators operating at low interrogation rates to obtain altitude, range and range rate data of aircraft in the surrounding environment.

³Drouilhet, P. R., *DABS: A System Description*, FAA-RD-74-189, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA, 18 November 1974.

Marine Proverse of

Section 2

FIGURE 1. ACTIVE BCAS.

The BCAS computer establishes and updates a track of encountered aircraft in altitude and range, determines potential collisions and then displays to the pilot the appropriate avoidance-maneuver procedure.

The BCAS system also requires deployment of a ground-based DABS desensitization control unit transponder at each airport where aircraft separations resulting from normal ATC procedures would result in unacceptably high false alarm rates. These DABS transponders would be interrogated by BCAS-equipped aircraft and the resulting replies recognized as coming from a desensitization control unit (DCU). BCAS will then compute its own range and altitude to the DCU and terminate its own CAS function within range and altitude limits specified in the desensitization unit ground-to-air link.

Section 2

The two modes of BCAS operation, ATCRBS and DABS, are described in detail below.

BCAS/ATCRBS MODE

In the ATCRBS mode (FIGURE 2), BCAS interrogates on mode C (altitude mode) using both the top- and bottom-mounted antennas. At altitudes above 10,000 feet, 500 watts is transmitted from the top antenna and 125 watts from the bottom antenna, less transmission line losses. At altitudes below 10,000 feet, the BCAS airborne interrogator transmitter output power is reduced by 6 dB, since the required coverage range is decreased.

The ATCRBS mode interrogation procedure is a function of the garble (overlapping reply level) at the BCAS receiver. A low-density interrogation procedure is employed when the number of detected overlapping replies is less than four. A high-density interrogation procedure is employed when the number of detected overlapping replies is four or more.

Low-Density Procedure

When less than four overlapping replies are received, a fullpower mode C interrogation is transmitted from the top antenna. Approximately 350 μ s later, after receiving replies, a P1-P2 suppression pulse pair is transmitted from the top antenna at the same power as the interrogation. Those transponders that received the interrogation from the top antenna will be suppressed by this procedure. While they are still suppressed (approximately 20 μ s after transmission of the P1-P2 suppression), a mode C interrogation is transmitted from the bottom antenna. This procedure is repeated once per second.

Section 2

Section 2

High Density Procedure (Whisper-Shout)

When four or more overlapping replies are detected, a procedure (FIGURE 2) designed to subdivide the air traffic population into smaller groupings is employed. This technique has previously been called "whisper-shout." A series of eight interrogations/suppressions is transmitted from the top antenna at the relative power levels shown in TABLE 1. The maximum transmitter output peak power is assumed to be 500 watts, as for the ATCRBS transponder. This procedure takes advantage of the variation in transponder sensitivity, aircraft antenna pattern and range to subdivide the aircraft population into smaller groups, by suppressing all aircraft previously interrogated before transmitting the next interrogation. By subdividing the aircraft population in this manner, the number of overlapping replies is reduced to a level that the BCAS computer can handle. The spacing used between successive interrogations is approximately 350 µs. Prior to each interrogation, except the first, a P1-P2 suppression pulse pair is transmitted at the power of the previous interrogation. This procedure is repeated once per second.

TABLE 1

BCAS RELATIVE POWER LEVELS (ATCRBS MODE STEPS AND DABS MODE POWER PROGRAMMING)

Step	Power Relative to Maximum ^a (dB)
1	-19
2	-16
3	-14
4	-12
5	-10
6	- 8
7	- 4
8	0 (maximum)

a₅₀₀ watts

Section 2

ATCRBS Mode Jitter

To prevent synchronous interference while interrogating in the ATCRBS mode, BCAS spaces ATCRBS interrogation trials at 1 + k second intervals, where k is randomly assigned a value between +0.1 and -0.1. This procedure is referred to as jitter.

BCAS/DABS MODE

In the BCAS/DABS mode (FIGURE 3), the BCAS interrogator listens for DABS aircraft transmissions (squitter) and interrogates individual aircraft using the DABS aircraft discrete address. Active interrogations are made during initial range acquisition, when tracking outside the horizontal alarm volume and when tracking inside the horizontal alarm volume. The alarm volumes and tracking procedures are described below.

Alarm Volume

There are two alarm volumes associated with the DABS mode as shown in FIGURE 3: the vertical alarm volume, which is the airspace 2000 feet above and below the BCAS aircraft; and horizontal alarm volume, which is the airspace within a variable distance of 1 to 11 nmi. Horizontal alarm volume is a function of closure rate and is computed as 1 nmi plus the closure rate in nmi/s times 30 seconds.

Squitter Acquisition

Deployment of active BCAS will require that each DABS transponder-equipped aircraft transmit a squittered reply containing altitude and address information at a rate of approximately once per second. BCAS receivers listen to these squittered transmissions and

NAME OF T

Sect n 2

Section 2

compute altitude separation and altitude closure rate between their own aircraft and the DABS-equipped intruder. When these computations indicate that the intruder will penetrate the vertical alarm volume, BCAS directs addressed interrogations to the intruder aircraft. If the intruder aircraft is above the BCAS aircraft, the top antenna is used for these interrogations; if it is below, the bottom antenna is used.

Initial Range Acquisition

The initial range interrogation procedure consists of a maximum of eight interrogations (at a maximum power of 500 watts) to obtain range and range rate of the intruding aircraft. The actual number of interrogations (2-8) used is a function of reply overlaps and missing replies and will be discussed later. The BCAS computer uses range and range rate information to determine if the intruding aircraft has entered or will enter the horizontal alarm volume. If there are no replies to the initial range acquisition attempt, the procedure will be repeated at 10-second intervals as long as the aircraft remains in the vertical alarm volume.

Tracking Outside Horizontal Alarm Volume

While an intruder aircraft remains outside the horizontal alarm volume, but within the vertical alarm volume, it will be tracked by discretely addressed active BCAS interrogations. The time at which the intruder aircraft could reach the horizontal alarm volume plus 1 nautical mile is estimated based on the assumption of a maximum closure rate of 1000 knots. Active interrogations are sent out at this time to update the track. The maximum time allowed between updates is 10 seconds and the minimum, 1 second. A maximum of eight interrogations per update interval are transmitted until two successful interrogations are completed.

Section 2

Tracking Inside Horizontal Alarm Volume

When an aircraft enters the horizontal alarm volume, a power programming scheme is employed which attempts to interrogate at reduced power as the aircraft range is reduced. Eight power levels (the same relative levels as shown in TABLE 1 for the ATCRBS mode) are used. During the first 5 seconds of tracking in the horizontal alarm volume, DABS interrogations are transmitted at full power (500 watts). If not more than three successive interrogation failures occur during this time, the power level is reduced one step and held at the new power setting for 5 seconds. This process continues until the minimum usable power is reached. If three successive failures occur, the power is raised a step.

DABS BCAS Mode Interrogation Rates

The rate at which BCAS interrogates DABS aircraft is a function of the number of missing and overlapped replies.

While tracking an aircraft within the horizontal alarm volume plus 1 nautical mile, BCAS continuously interrogates at a rate that varies from one to four interrogations per second. If replies are garbled (four or more overlapping replies), the rate is four interrogations per second. If there are missed replies, the interrogation rate is two per second. If replies are successfully received (neither missed nor garbled) the rate is one interrogation per second.

While tracking outside the horizontal alarm volume plus 1 nautical mile, interrogations occur until two successful replies are returned or a maximum of eight interrogations are transmitted.

Section 3

SECTION 3

MODEL DESCRIPTION

GENERAL

The computerized model used to simulate active BCAS operation in the DABS/ATCRBS environment consists of a BCAS submodel merged with ECAC's DABS/ATCRBS PPM (Performance Prediction Model). The model is written in FORTRAN V and is run on ECAC's Univac 1110 Computer.

The DABS/ATCRBS PPM consists of a number of subroutines that simulate the operation of a DABS or ATCRBS victim interrogator in an environment consisting of both DABS and ATCRBS sensors and transponders. The performance of an interrogator of interest is predicted in terms of transponder reply histories, fruit rate, and automated processor target detection and code validation.

The active BCAS routine models the operation of all the airborne BCAS interrogators in the environment. It generates DABS BCAS interrogation and ATCRBS BCAS interrogation and suppression arrival times at each airborne transponder. These BCAS signals are then merged with the signal environment created by the ground system interrogators at the input to the transponder model in the DABS/ATCRBS PPM.

The model is run with and without the BCAS submodel to evaluate the impact of BCAS on ground system performance. A more detailed description of the BCAS routine and the DABS/ATCRBS PPM follows.

Section 3

DABS/ATCRBS Performance Prediction Model

The DABS/ATCRBS/IFF MARK XII System PPM or DABS/ATCRBS PPM provided the foundation for the BCAS modeling and analysis effort. The DABS PPM was originally developed as part of the DABS Spectrum Management Program to provide a prediction capability that simulates the proposed coexistence of the DABS and ATCRBS air traffic control systems.

The DABS/ATCRBS PPM is a time-event-store model of the system functions of the DABS and ATCRBS. The standard model inputs consist of the three basic categories listed in TABLES 2 and 3.

TABLE 2

DABS/ATCRBS PPM INPUTS

Transponder Environment
Latitude Longitude Altitude Output Power Receiver Sensitivity Mode Capability Antenna Type

Section 3

TABLE 3

DABS/ATCRBS PPM I CHARACTERISTICS

Interrogator Environment Selection Radius Range Factor STC Characteristics ATCRBS\Processor Target Detection Parameters Target Start Begin Validation Target End Target Detection Threshold Range Bin Size or Correlation Simulation Time

Input. The simulation cycle for the DABS/ATCRBS PPM is one pulse repetition period (PRP) of the victim interrogator or interrogator-of-interest (I_0) . For DABS sensors, one PRP is defined as the time between transmissions of all-call interrogations. A flow diagram of the DABS/ATCRBS PPM is shown in FIGURE 4. Subroutine INPUT, shown in the figure, performs the basic functions of reading in all input data, performing the interrogator file radius cull, and ordering the environmental data into the appropriate arrays for efficient access by later routines.

Channel Management. The main loop of program execution begins in subroutine ACTIVE. In ACTIVE, all DABS sensors search their active target list to determine which targets, based on last reported range and azimuth, are expected to be in the mainbeam during the present simulation cycle. The active target list is maintained in subroutine ACTIVE by means of a target list update which is accomplished for all DABS sensors in the simulated environment. The target list update is based on the results of past all-call and rollcall transactions attempted with DABS-equipped aircraft.

and the second second

.

the second se

Section 3

Section 3

DABS Scheduling. After completing the channel management portion of the program in subroutine ACTIVE, program control is passed to subroutine ROLCAL. ROLCAL establishes the all-call and roll-call interrogation times for the present simulation cycle. Roll-call transactions are scheduled to the appropriate targets in decreasing range order and are spaced so as to avoid synchronous garble and overlapping of the transmit and receive functions.

Uplink Power Cull. The arrival times of all types of interfering interrogations and suppressions for each DABS- or ATCRBS-equipped aircraft in the I_0 's mainbeam are established in subroutines DABINT and P1-P2. First, the coupling between the interferer and I_0 antennas is determined based on their respective rotation rates and the clapsed time from the last simulation cycle. Subroutine PLOSS is accessed to calculate the received signal strength at the transponder based on free-space path loss, sensor output power, line loss, and sensor and aircraft antenna gains. If the signal level is greater than the transponder sensitivity, the interrogation or sidelobe suppression time is stored in the appropriate array.

Transponder Models. Subroutine OVRLAP simulates the operation of the transponder. For either a DABS- or ATCRBS-equipped aircraft, the arrival time of the I_o interrogation is compared with the arrival times of each type of interfering signal (other interrogation or SLS). OVRLAP then determines whether the I_o interrogation signal is decoded depending on the dead time attendant to each interfering signal. Other interference devices, such as false sidelobe suppressions and intermode garble, are also checked by the transponder model. The model then outputs the reply times generated by the signal environment for all replies which pass the downlink power cull. These times are based on the transmission time of the interrogation, the propagation time and the processing time at the transponder.

Section 3

Downlink Power Cull. The calculation of nonsynchronous reply arrival times is accomplished in subroutines FRUIT and SLFRT, with FRUIT determining I_0 mainbeam arrival times and signal strengths and SLFRT performing the same operations for the I_0 sidelobes. The model operation in these subroutines calculates the arrival time and signal strength of fruit replies to the I_0 . Those replies which pass the downlink power cull are retained for the processor routines.

DABS Processor. Several target evaluators are built into the model to accommodate variations in the types of FAA processors. The basic routine is subroutine PROCES, which simulates the processing of DABS all-call and roll-call replies. PROCES receives as input the arrival times of each type of reply, synchronous and nonsynchronous, entering the processor. The arrival times are checked for overlaps, and a determination is made as to whether the valid replies are decoded correctly based on the location and length of the error, the type of overlapping reply, and the relative signal strengths.

ATCRBS Processor. The simulation of the ATCRBS processor, subroutine ATEVAL, maintains hit and miss counts for each in-process target, and correlates replies whose time-of-arrival places them in the range bin appropriate to the type of processor used with the I_o . The times-of-arrival are also used to determine reply overlaps. Garble flags are maintained for each target in the course of simulating code validation processes.

Output. The model outputs are summarized in TABLE 4. The outputs from the DABS and ATCRBS target processors are fed back to the beginning of the simulation cycle, subroutine ACTIVE. Another cycle is then initiated based on the completion of roll-call transactions, the acquisition of new targets by all-call, and the transition of old targets out of and new targets into the mainbeam of the I.

Section 3

TABLE 4

DABS/ATCRBS PPM OUTPUTS

Transponder Performance

Probability of reply to the I for each aircraft

Target run lengths

Reply histories

Reply arrival times Location of missed replies in run length Cause of missed replies Identity of interferer

Interrogator-of-Interest Performance

Fruit rate after each simulation cycle

ATCRBS All call Roll call

Fruit reply times and garbles

Valid reply times

ATCRBS target detection summaries

Target declaration Code validation indicator Azimuth and range Target start and end azimuths

DABS transactions

Reply times Garble conditions Azimuth and range

BCAS SIMULATION ROUTINE

The BCAS routine provides the DABS/ATCRBS PPM with arrival times of BCAS signals at each transponder in the modeled environment by creating arrays that store the arrival times of four types of signals

Section 3

that may arrive at each transponder from all deployed BCAS. The four signal types are:

1. ATCRBS interrogations

2. ATCRBS suppressions

3. DABS interrogations with the address of the DABS target transponder

4. DABS interrogations with an address other than that of the DABS target transponder.

Simulation of BCAS/ATCRBS

The BCAS routine generates all BCAS ATCRBS mode interrogation and suppression times. To determine the BCAS interrogation schedule in the ATCRBS mode, it is necessary to first determine if the BCAS is operating in a low-density environment (transmitting one interrogation and one suppression per second) or a high-density environment (transmitting the 8-step power programming procedure).

The state of each BCAS (less than four overlapping replies for low-density operation and four or more for high-density operation) is determined by combining the number of synchronous overlapping desired replies with the asynchronous arrival of fruit overlaps. The number of synchronous overlaps is determined by finding the maximum number of ATCRBS aircraft contained in any 1.65-nmi range increment about the BCAS aircraft. These aircraft will return replies that overlap a 20.3- μ s reply train length. The number of asynchronous replies is found by assuming a Poisson arrival distribution of airborne fruit obtained through interaction with the DABS/ATCRBS PPM.

Once the BCAS routine determines which BCAS interrogators are in power programming, a power cull between each BCAS interrogator and ATCRBS-equipped aircraft is made to determine the rate at which

Section 3

signals arrive above the ATCRBS transponder sensitivity. The BCAS routine assumes the ATCRBS-transponder-equipped aircraft receive on bottom-mounted antennas. The random jitter feature of the BCAS/ATCRBS interrogation mode is simulated by pseudorandomly generating the time of the first interrogation in an ATCRBS trial. During the lowdensity operation a P1-P2 suppression pulse pair follows this interrogation by 330 μ s. The P1-P2 interrogation pulse pair from the bottom antenna is scheduled 20 μ s after the suppression. During highdensity operation, the additional six interrogations from the top antenna and the one from the bottom antenna are scheduled at 350- μ s intervals. Each is preceded by a P1-P2 suppression pulse pair 20 μ s prior to the interrogation.

Simulation of BCAS/DABS

To simulate the DABS signal environment, all DABS outputs of one BCAS are found. These outputs are then passed against all aircraft transponders in the modeled environment. Two arrays, one with arrival rates of DABS interrogations having the DABS target address and one with DABS interrogations having addresses other than that of the target aircraft, are maintained. The BCAS routine cycles through all BCAS-equipped aircraft and updates the arrival rate arrays by adding the effects of each BCAS as its outputs are created.

The BCAS routine uses the following step-by-step procedure to generate the signal environment at any one DABS aircraft:

1. Check identification to insure target aircraft is DABS-transponder-equipped.

2. Eliminate from consideration any DABS aircraft that remain outside the BCAS vertical alarm distance (±2000 feet) during the simulation.

Section 3

3. Compute the power levels of the squittered DABS replies received by the subject BCAS from the target aircraft and eliminate the aircraft from consideration if the reply is received below the BCAS receiver sensitivity.

4. Compute the power levels of the BCAS interrogations received by the DABS aircraft and the power levels of the DABS aircraft replies received by BCAS. If no communication is established, the BCAS interrogation rate will be 8 interrogations every 10 seconds for an effective rate of 0.8 interrogations per second. (Initial range acquisition is repeated at 10-second intervals.)

5. Compute range and range rate if communication link is established in step 4. Compute horizontal alarm volume as the distance required for separation to be reduced to 1 nmi in 30 seconds at the current range rate. If range is within the horizontal alarm volume, BCAS transmissions are scheduled in step 6; if outside this volume, in step 7.

6. Compute the signal environment for BCAS to DABS aircraft inside the horizontal alarm volume. The model computes the expected interrogation rate for continuous tracking and assumes the minimum power programming level capable of establishing communication with each DABS aircraft with respect to each BCAS aircraft. The Engineering Requirement (Reference 1) of the proposed BCAS system states that the rate of interrogation will be one per second while replies are successfully elicited; two per second when any replies are missed; and four per second when any replies are garbled. Test data⁴ supplied to ECAC shows the probability of successfully decoding a DABS reply, P(dc), as a function of fruit rate and received power level. This information is used in the model to compute the probability of garble, P(g) = 1-P(dc). The probability of a target miss P(m) is obtained from the target reply history through interaction

⁴McDonald, T. S., *BCAS DABS Reply Processing Performance Analysis*, Report No. 42W-5062, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA, 8 October 1976.

Section 3

with the DABS/ATCRBS PPM. When replies are neither garbled nor missed, a successful target hit is assumed with the probability of a hit, P(h) = 1-P(g)-P(m)+P(m) P(g). Thus, the expected interrogation rate for any BCAS-DABS couplet E(INTRT) is computed as E(INTRT) = $1 \times P(h) + 2 \times P(m) + 4 \times P(g)$. The upper bound is four interrogations per second.

7. Compute the signal environment for BCAS to DABS aircraft outside the horizontal alarm volume. Outputs occur at variable time intervals such that the track may be updated at the time predicted for the DABS aircraft to be within 1 nmi of the horizontal alarm volume assuming a closure rate of 1000 knots. The model uses the probabilities discussed in step 6 to obtain the expected number of interrogations required to obtain two successful replies (hits). The maximum per interval is limited to eight. Thus, from two to eight interrogations will be scheduled per update interval. The maximum update interval is assumed to be 10 seconds and the minimum, 1 second. The maximum allowable interrogation rate is four per second.

The aperiodic scheduling of the active BCAS DABS mode interrogations is simulated by a uniform distribution of transmission times. The distribution of transmission times is based on the expected interrogation rate generated in steps 6 and 7 above. A flow diagram of the BCAS simulation routine is shown in FIGURE 5.

Section 3

FIGURE 5. BCAS FLOW DIAGRAM.

24

STATES AND A PROPERTY OF

marine to start a second to a find

Section 4

SECTION 4

ANALYSIS

ATCRBS INTERROGATOR PERFORMANCE

To determine the impact on ATCRBS performance at the Washington, D. C., terminal of deploying active BCAS in the airborne environment, the ATCRBS ground performance with and without active BCAS was predicted. The performance of an ATCRBS ground interrogator is based on the ability of the ground system to detect targets, and to validate mode A (identity) and mode C (altitude).

Because active BCAS transmits ATCRBS interrogations and suppressions and DABS interrogations, the total dead time of transponders within its range is increased, thereby potentially degrading the ability of the ground system to detect targets. The additional replies elicited by the active BCAS interrogations appear as fruit to the ground system, potentially degrading the DCA ARTS III processor's ability to validate mode A and mode C.

The following dead times were assumed for this analysis:

BCAS Transmission	Transponder Type	~Transponder Dead Time (µs)
ATCRBS Interrogation	ATCRBS	60
ATCRBS Suppression	"	35
DABS Interrogation	d hortefligth, and they	35
ATCRBS Interrogation	DABS	35
ATCRBS Suppression	SERVICE SHALL IS A SHARE	35
DABS Interrogation (at transponder address)	a din belaise at	200
DABS Interrogation (not at transponder address)	TO FAILS "SETARATE	35

Section 4

Aircraft Deployment

The aircraft deployment used for the analysis was based on predicted 1981 air traffic densities for the Washington, D.C., National Airport (DCA) area. To obtain the hypothetical deployment, a 1975 target listing from the Suitland enroute site was augmented with an assumed growth rate of 3% per year. The resulting deployment contained a total of 198 transponder-equipped aircraft within a radius of 200 nmi^a around DCA. Of the total, 154 were assumed to have BCAS equipment including a DABS transponder. The remaining 44 aircraft were assumed to have ATCRBS transponders with mode C and mode A capability.

The deployment is shown in FIGURE 6 and the distribution of aircraft in range and altitude is shown in TABLE 5.

Ground-Based DABS DCU Transponders

In addition to the airborne transponder deployment described above, approximately 25% of all airports (all FAA sites including DCA) were assumed to have DABS transponders serving as DCU's located on the ground approximately 1 nmi from the ATC interrogator.

Ground Interrogator of Interest

The analysis was conducted to predict the impact of active BCAS on the performance of the ATCRBS interrogator located at DCA. The interrogator is associated with an ARTS III processor. TABLE 6 is a list of the characteristics of this interrogator.

The 200 nmi radius was chosen since aircraft within this radius can contribute fruit to the DCA ground receiver.

.

1

Section 4

Section 4

TABLE 5

Altitude		Range		
Altitude (1000-foot Increments)	Number of Aircraft in Increment	Range Increment (Nautical Miles)	Number of Aircraft in Increment	
0-1	4	0-5	7	
1-2	7	5-10	9	
2-3	9	10-15	7	
3-4	16	15-20	17	
4-5	11	20-25	8	
5-6	18	25-30	12	
6-7	12	30-35	8	
7-8	12	35-40	8	
8-9	5	40-45	6	
9-10	8	45-50	11	
10-11	7	50-55	3	
11-12	1	55-60	4	
12-13	4	60-65	10	
13-14	0 .	65-70	4	
14-15	4	70-75	4	
15-16	11	75-80	9	
16-17	2	80-85	8	
17 18	2	85-90	3	
10 10	2	90-95	5	
10-19	4	95-100	5	
19-20	1	100-105	4	
20-21	0	105 110	7	
21-22	2	110 115	7	
22-23	2	115 120	1	
23-24	3	120 125	7	
24-25	5	120-125	1	
25-26	1	123-130	1	
26-27	0	130-135	2	
27-28	2	135-140	2	
28-29	3	140-145	2	
29-30	3	145-150	4	
30-31	5	150-155	3	
31-32	2	155-160	3	
32-33	0	160-165	1	
33-34	9	165-170	2	
34-35	0	170-175	1	
35-36	4	175-180	1	
36-37	2	180-185	2	
37-38	1	185-190	3	
38-39	0	190-195	2	
39-40	3	195-200	2	
40-41	0			
41-42	2	and the second second		
42-43	0			
43-44	1			

1981 DCA AIRCRAFT DEPLOYMENT DISTRIBUTION

Section 4

TABLE 6

LOCATION AND CHARACTERISTICS OF DCA VICTIM INTERROGATOR

Latitude	38° 51' 42" N
Longitude	77° 02' 02" W
Total Height	40 feet
Peak Power	0.1 kW
Receiver Sensitivity	-87 dBm
Scan Rate	13 RPM
PRF	Staggered
SLS Type	Improved SLS
Range of Receiver	200 nmi
Mode Sequence	3/A, 3/A, C
Mainbeam Gain	+21 dBi
Sidelobe Gain	- 7 dBi
Backlobe Gain	-19 dBi
Mainbeam Width	4°
Sidelobe Width	56°
Backlobe Width	300°
Interrogator	ATCBI-0004
Primary Radar Nomenclature	ASR-0007
Directional Antenna	Hazeltine-Tapered
STC Curve (Initial Depth)	40 dB

Ground Interrogator Environment

÷

The ground interrogator environment consisted of all 219 interrogators (including special-purpose) within a 500-nmi^a radius of Washington, D.C.

^aThe 500-nmi radius was selected since aircraft within range of the DCA ground receiver may reply to some of these interrogators.

Section 4

Predictions were made with all the interrogators operating in a present-day ATCRBS configuration, and then with a mix of 25% DABS sensors/75% ATCRBS interrogators. Only FAA-controlled interrogators were selected to be DABS sensors.

PERFORMANCE PREDICTIONS

Four simulation runs were made. The all-ATCRBS ground environment and the 25%/75% DABS/ATCRBS ground environment were run both with and without BCAS.

Reply Performance

TABLE 7 shows these predictions as referenced to the DCA central interrogator. The average transponder probability of reply to ATCRBS given in the table is found by dividing the total number of transponder replies to the DCA interrogations for a complete 360° scan of the DCA mainbeam by the total number of interrogations in the same scan. Deploying BCAS caused four replies to be lost over one scan in both ground environments. There are 198 aircraft within range of DCA that receive approximately 18 valid interrogations per scan summing to approximately 18 x 198 (3564) valid interrogations per scan. The four replies lost due to BCAS, therefore, degrade the average probability of reply by approximately one part per thousand, as can be seen in the table.

TABLE 7 also shows the range of individual probabilities. Deploying BCAS did not significantly affect the range or distribution of individual reply probabilities. The approximate distribution of lost replies for all runs remained as follows:

65% lost	no replies	10%	lost	two re	epli	cs	
15% lost	one reply	10%	lost	three	to	six	replies

Section 4

TABLE 7

SIMULATION RESULTS AT THE DCA INTERROGATOR

Performance Criteria	A11-ATC Ground Envi	CRBS	25%/75% DABS/ATCRBS Ground Environment		
-	Without BCAS	With BCAS	Without BCAS	With BCAS	
Average Transponder Prob. of Reply	0.957	0.956	0.963	0.962	
Individual Transponder Prob. of Reply Range	0.66-1.0	0.66-1.0	0.66-1.0	0.66-1.0	
Maximum Reduction ^a in Individual Transponder Reply Prob. due to BCAS	ngor aprila ngor aprila nghaogènt	5.6%	10630 210074 10630 210074 1163 2103 116	5.6%	
ATCRBS Fruit Rate	1211/s	1245/s	801/s	843/s	
Roll Call Fruit Rate	. 0	22/s	31/s	54/s	
Replies Blanked due to Roll Call Fruit	is . Martin and an and a second	12	17	29	
All-Call Fruit Rate	0	0	128/s	130/s	
Mode A Validation Probability	1.0	1.0	1.0	1.0	
Mode C Validation Probability	0.99	0.99	0.99	0.99	

^aFour aircraft lost one reply each.

^bLoss of replies not sufficient to cause loss of code validation.

Section 4

There are approximately 18 interrogations per mainbeam scan, so each lost reply represents a degradation in individual reply probability of 5.6% on any one scan. The four replies lost due to deploying BCAS occurred at four different aircraft such that the maximum reduction in individual reply probability was 5.6%.

Fruit Rates

The three types of fruit arriving at the DCA interrogator receiver are defined as follows:

ATCRBS fruit - ATCRBS replies elicited by ATCRBS and DABS interrogators other than the DCA interrogator.

ROLL CALL fruit - DABS transponder replies to addressed interrogations.

ALL CALL fruit - DABS replies elicited by DABS all call interrogations.

The ATCRBS fruit rate increased slightly, as shown in TABLE 7 when BCAS was deployed. The reduction in ground interrogation rate accompanying the 25%/75% DABS/ATCRBS ground system resulted in the expected reduction in fruit rate when compared to the all-ATCRBS ground environment.

The presence of DABS roll call fruit at the DCA interrogator caused the receiver to be blanked out to ATCRBS replies for the duration of a DABS reply. The DABS reply consists of an 8- μ s preamble followed by a data block of 56 or 112 bits, each of which is 1 μ s long. Assuming a long reply (120 μ s), the presence of DABS roll call fruit caused the ATCRBS interrogator receiver to be blanked to ATCRBS replies for a time equal to 120 μ s x (roll call fruit rate due to BCAS). TABLE 7 indicates that BCAS contributes 22 roll call fruit

Section 4

per second and will therefore cause blanking 0.26% of the time. The rate of DABS roll call fruit due to the 25% DABS/75% ATCRBS ground system alone is 31/second or 0.37% blanking. The corresponding number of lost replies at the receiver is also shown in the table. Replies lost due to DABS roll call fruit did not affect target code validation for the simulation.

Target Detection and Code Validation

All targets were detected by the ARTS III processor for all performance runs made for this analysis. Mode A code was validated for all targets and performance runs. Two aircraft failed mode C code validation for all performance runs. These two aircraft appeared in the mainbeam at approximately the same azimuth and were separated in range by less than a reply length, resulting in a synchronous garble condition.

Individual Transponder Reply Probability

TABLE 8 summarizes the effect of deploying BCAS upon airborne transponders. The average increase in dead time was 1700 μ s which corresponds to a long-term average reduction in probability of reply of 0.17%. The maximum increase in dead time (8700 μ s) corresponds to a 0.87% reduction in reply probability.

Those aircraft that receive above-average BCAS-induced suppression and interrogation rates are located near the center of the aircraft deployment. Three aircraft experienced BCAS-generated dead time in excess of 6000 μ s; however, they did not lose replies due to BCAS. Their locations are (referenced to DCA):

Bearing	Range	Altitude
19.5 degrees	11.1 nmi	7200 feet
0.0 degrees	2 nmi	3000 feet
3.0 degrees	2 nmi	2500 feet

TABLE 8

BCAS IMPACT ON TRANSPONDER PERFORMANCE

Average Increase in Dead Time	1700 µs
Maximum Increase in Dead Time	8700 µs
Average ATCRBS Interrogations Due to BCAS	7.6/s
Maximum ATCRBS Interrogations Due to BCAS	30.0/s
Average ATCRRS Sumpression Due to BCAS	11.6/5
Maximum ATCERS Suppression Due to BCAS	54 0/s
Maximum Arcabo Suppression Due to Dako	54.075
Average DABS Interrogation at "Others" Address	13.9/s
Maximum DABS Interrogation at "Others" Address	115.1/s
Average DABS Interrogation at "Own" Address	1.9/s
Maximum DABS Interrogation at "Own" Address	10.5/s

Fruit Rates at the BCAS

In addition to the runs described above, ECAC was tasked to make one run with an airborne BCAS interrogator as the victim to predict the level of airborne fruit. The one run was made with the aircraft 20,000 feet above Washington, D.C., and an all-ATCRBS ground interrogator environment assumed. The average fruit rate over one scan was 4000 per second. The maximum instantaneous fruit rate during any one pulse repetition period was 7200 fruit/second.

DABS Power Programming

ECAC was also tasked to determine the effects of DABS power programming schemes on the simulation results. A run was made assuming all BCAS would interrogate aircraft within their horizontal alarm volumes at full power. A 60- μ s increase per second in dead time resulted at one of the airborne transponders. DABS power programming had no detectable effect on ground system performance. The aircraft distribution in the Washington, D.C., area was such that only four of the BCAS aircraft had one DABS aircraft each in their horizontal alarm volumes. This resulted in only a small part of the total BCAS/DABS mode interrogations taking place under power programming. Consequently, using power programming did not reduce interference.

Section 5

SECTION 5

SUMMARY OF RESULTS AND CONCLUSIONS

RESULTS

1. Active BCAS-induced interference resulted in a maximum predicted loss of one desired reply on any one Washington, D.C., (DCA) interrogator mainbeam illumination. A loss of one reply occurred for four separate targets. Reply loss was independent of changes in the ground environment.

2. The average predicted ATCRBS fruit rate at DCA increased approximately 3% with the inclusion of active BCAS interrogators in the environment. BCAS/DABS interrogations generated 22 rollcall fruit per second at the DCA terminal for the all-ATCRBS ground environment case. A 74% increase in roll-call fruit resulted for the mixed DABS/ATCRBS ground environment case when the BCAS was deployed. Twelve desired replies were blanked by the additional roll-call fruit over a period of one scan.

3. ARTS-III target detection and code validation predictions were unchanged in all cases with the inclusion of active BCAS.

4. Predicted ATCRBS fruit rates at an airborne BCAS (20,000 feet) averaged 4000/s with instantaneous rates reaching 7200/s.

5. DABS power programming did not affect the predicted performance of the ATCRBS in the DCA terminal environment.

section 5

CONCLUSIONS

1. Deploying active BCAS in the 1980's Washington, D.C., environment will result in a slight reduction in aircraft reply probability.

2. Deploying active BCAS in the 198^J Washington, D.C., environment will not impact the DCA ATCRBS ground receiver/processor performance.

3. DABS power programming is unnecessary in the Washington terminal environment used for this analysis.