~ «D=A048 577 SYSTEWM «TA MONICA Cn.lF rre 9ie

il SOF TWARE ~noEMENT GUIDEBOOK: VERIFICATION,.(U)
AUG 77 H bBn. - FINFER F19628-76-C=0236
UNCLASSIFIED SDC=TM=57 re. . .a/02 ESD=TR=77=-263 NL

lor |
ADADSBETT

|

ADAO:4857"¢’

s

o
dbG FILE CcoPY;

) \;!J

F’

ESD-TR-77-263 ~

SOFTWARE ACQUISITION MANACEMENT
GUIDEBQOK: VERIFICATION

System Development Corporation
2500 Colorado Avenue
Santa Monica, CA 90406

August 1977

Approved for Public Release;
Distribution Unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

il i

ke

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, fuinished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

"This technical report has been reviewed and is approved for
publication."

Y. T

WILLIAM J. WHITE, Capt, USAF JOHN C. MOTT-SMITH
Project Engineer Project Leader

JOHN T. HOLLAND, Colonel, USAF
Chief, Techniques Engineering Division

FOR THE COMMANDER

Trtee Hacosiils

TORU YAMAMOTO, Colonel, USAF
Director, Computer Systems Engineering

Fsvarers

h

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

EPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM -

2. GOVT ACCE

et

éOFﬂNARE ACQUISITIONyANAGEMENT
UIDEBOOK: VERIFICATION /

=

;_;r/(f auuz /‘Qg o ‘

NUMBER

7 AUTHOR(s,
Harvey/Bratman
Marcia C/Finfer

MBER(s)

@) FI9628-76-C-0236 | |

S

9. PERFORMING ORGANIZATION NAME AND ADORESS
System Development Corporation

2500 Colorado Avenue L/
Santa Monica, CA 90406

10. PROGRAM ELEMENT, P OJ!CT TASK
AREA & WORK UNIT NUMBER

1. CONTROLLING OFFICE NAME AND AOORESS
Deputy for Command and Management Systems

Electronic Systems Division
Hanscom AFB, MA QI73I

&

//M]

feldee M ER-OPPRGES

N

T8 MONITORING A_LGE' NCY NAME & ADORESS(/{ different from Controlling Office) | 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

e S o ——
18. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

A T j

Computer Program Verification
CPCI Verification

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Software Acquisition Manag'qm'gp}
Software Verification ... |

Design Verification Verification i sty

Requirements Verification |
ABSTRACT (Continue on reverse side I{ necessary and identify by block number) ! I i

This report is one of a series of Software Acquisition Management Cuod'e which

provide information and guidance for ESD Program Office personnel who are gharged with
planning and managing the acquisition of command, control, and communications system
software procured under Air Force 800 series regulations and related software lacquisition

- management concepts. It provides a review of the software verificatién practices and
procedures employed by industry and set forth in refevant DoD and Air Force regulctions, >

DD g :g:lfn]473 EDITION OF | NOV 68 |S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When D

adaos - Y

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (con't)
>r‘ specifications, and standards. It specifically:
software related planning, system engineering,

ta CPCl verification.

1

‘e Saction
Butf Section

WVALABLITY (O0E$
Eﬁrﬁm
‘R

oox

J

2
|

BN

the Program Office and the contractor, which lead to Computer Program Configuration
ltem (CPCI) verification; and references specific software techniques and tools required

dgr:s\‘" veriﬁcaﬁon;"'pciescribes the
and testing activities, carried out by

SECURITY CLA“I'!CA‘NQN OF THIS PAGE(When Data Entered)

PREFACE

The Verification Guidebook is one of a series of Software Acquisition Manage-
ment (SAM) Guidebooks intended to help ESD Program Office personnel in the
acquisition of embedded software for command, control and communications
systems. The contents of the guidebooks will be revised periodically to re-
flect changes in software acquisition policies and practices as well as feed-
back from guidebook users.

This report was prepared by System Develooment Corporation (SDC) under the
direction of the Computer Systems Engineering Directorate (MCI) of the
Electronic Systems Division (ESD), Air Force Systems Command (AFSC). Contri-
butions were made by: Mr. J. Mott-Smith and Captain W. White (ESD/MCI);
Mr. J. Trachtenberg (AFALD/AQE); Mr. M. Landes (RADC/ISI); Mr. M. Mleziva
(ESD/EN); Mr. M. Zymaris (ESD/DRT); Mr. D. Peterson (The MITRE Corporation);
Captain J. Haughney (AFCS/LO); and Mr. G. Gehlauf (AFLC/LOAK).
The Software Acquisition Management Guidebook series is currently planned to
cover the following topics (National Technical Information Service accession
numbers for those already published are shown in parentheses):

Regulations, Specifications and Standards (AD-A016401)

Contracting for Software Acquisition (AD-A020444)

Monitoring and Reporting Software Develooment Status
(AD-A016488)

Statement of Work Preparation (AD-A035924)

Reviews and Audits

Computer Program Configuration Management

Computer Program Development Specification (Requirements Soecification)
Software Documentation Requirements (AD-A027051)

Verification

Validation and Certification

Overview of the SAM Guidebooks

Software Maintenance

Software Quality Assurance

Software Cost Estimation and Measurement

Software Development and Maintenance Facilities
(AD-A038234)

Life Cycle Events (AD-A037115)

o s R A i . o - ooy sl i et S i

s aun & Cha

TABLE OF CONTENTS

Page
BREE O s o v iR e e e T e R L IR S o g M 1
EROT BREFRGURES s o % o 7 Rt it p e T R e ot e T b 6
SEETIONT ~ INFPRRIBMCTREAN . o n b e ae e o (& m hnm b w e W 7
g O R T T TR e NN e G ey S e - DR N LY Y 7
1.2 Verification, Validation, and Certification Defined... 7
Tsdsl - Nerfficatdon = . ol e e s s aie e ol 8
T2z Nalbddation: & o r e L e 10
[dnc SR gl D e S R SRS R ke R 12
1.3 Relationship to Other Guidebooks 12
LN e T, o R W s S S e R O e NI 12
SECTION 2 ~ REQUIREMENTS VERIFECATION . . < ¢ . & ¢ ¢ 6 0 s o0 s o & » 15
2.1 Contractor Activities ' . ¢ @ o « o c ¢« v s o v s o & 15
2.2 PO Verification Activities (Validation Phase). 17
2.2.1 Determination of Validation Phase '
SUPPOPrE Products . « < ¢ v i o ¢ s b e e s 17
2.2.2 System Requirements Review 18
2.2.3 System Design Review 19
2.3 PO Verification Activities (Full-Scale Develop-
o e e SR B 20
2.3.1 Evaluation of the Contractor's CPDP 20
2.3.2 Authentication of the Development
(Part I) Specification « ¢« ¢ ¢ o & & 22
2.3.3 Review of the Contractor's CPCI
UNSE AR E T o ra e R S R e e e e e e 23
SECTION 3 - DESIGN VERIFICATION . . . & & ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o & 25
3.1 Contractor Activities . . . « ¢ ¢ ¢« o v « ¢ o « & & & 25
3.2 POREEIVIRI®S o o v v aEe s R e e o e 25
3.2.1 Preliminary Design Review 25
3.2.2 Critical Design Review 28
3.2.3 Review of the Contractor's CPCI
__ DT&E Procedures R RE. 29

S S

TABLE _OF CONTENTS (cont'd)

SECTION 4 - COMPUTER PROGRAM VERIFICATION« ¢ o ..

4.1

4.2

Contractor Internal Testing« . ¢« . ..
4.1.1 CPC Code And Test . « o o ¢ o s sis o & % w's
4.1.2 CPC Incremental-Integration Testing
4.1.2.1 Program Production Library
0ff-the-Shelf-Routines
Timing and Sizing Analyses
Tools to Ensure Thoroughness
g testang e o8 NN L e w s
= 3 Contractor Internal-Change
Control Procedures
4.1.3 CPOL'TERRING .+ ¢ o 5 s v s s .08 5 & 5 = = =

Qualification Testing. . « «~ ¢ v s i s s 5 s & w's & s
4,2.1 Preliminary Qualification Tests
4.2.2 Formal Qualification Test

d) el e
. . .
n NN
. aEtairaty
HWN

(3}

» & o

APPENDIX A - SUPPORT TOOLS & TECHNIQUES FOR COMPUTER PROGRAM
DEVELOPMENT & TESTING MO L o

| 7
1.1

2.2
2.3

3.1

Requirements Verification

Evaluation Techniques .« « <« .o o v o5 o 5 5 & & 5 o
Bl B STRREETOINE 5 6 e ¥ % woh L bl 6 s, e
1.1.2 Performance Monitoring . « o o « + o 6o 5 o «
1.1.3 Synchnetic Progvalls . o « o o v o o % 5 v 4w
1.1.8 BONCIIEPKRS o v o von v o wow s o, % & » v & s
DaleD ROPTERS . ¢ v qi o Tirgan Miow 2Bas i g W e Bl e k- B e

Development Specification Methodology
Design Verifieattion . . . « o ¢ v wdiv o wsw e s s

Design Tools and Techniques
2obsl CIMINALHION oo s o v 4.6 8 @ e e w
2.1.2 Top=-Down Design . . . + « ¢« ¢« = ¢« ¢ ¢« ¢« ¢« ¢ ¢ &
2.1.3 Design Language . . « « « ¢« « « ¢ ¢ v ¢ ¢ & o &
C.d:8 DecisSton TaDIES « ¢ « ¢ ¢« ¢ ¢ v 0 s 0w e e oo

Documentation Techniques« . . . « .« . ..
Design Review Techniques
Computer Program Verification :

Progroamming TOOIS .« ¢ « o o v ¢ ¢ o « ¢ v« s & & o »
3.1.1 Compilers/Assemblers

s

e A

TABLE OF CONTENTS (cont'd)

i Page
i
1 APPENDIX A (cont'd)

g 3.1.2 Data Base ToONS ..« ¢ s . so sy s o e imp o e 52
=g 3.1.3 Consistency Analyzer . . « . o .s o o o » o 53
i 3.1.4 Overlay Analyzer ¢ v ¢ v o o o« « 53
»g 3.2 Programming Standards 53°
{ 3.2.1 Specific Programming Standards 54

| 3.2.2 Existing Tools for Enforcing or Auditing
| Programming Standards 55
k| 3 TEsetilg Nodlls Fer i e R R S o S 55
3.3.1 Module and CPC-Level Testing Aids 56
3.3.2 CPC-Incremental Integration Aids 57
g 3.3.3 CPCL Tasting RTdS . <« & + s « s » s « v o & & 58
k 3.8 Profect=Support Alds . . .« i « v vy w s s ow s 59

:

: APPENDEY B~ BROESARE s fi o st e b e el e e 61
APPENDIX C - BIBLIOGRAPHY - MILITARY SPECIFICATIONS AND STANDARDS . . 66

Sl e e g R s

Figure

AP wn —~
.

LIST OF FIGURES

Page
The Scope of Verification, Validation, and Certification. . 8
Major Verification-Related Products 10
Verification, Validation, and Certification 16
CPE CadelandiTast i ot nd o e Lol (R Ry L R e 34
CPC Incremental-Integration Testing 36
6

e

bt

Y T—

SECTION 1 - INTRODUCTION

1.1 PURPOSE

This Verification Guidebook is designed to assist the Program Office and its
Software Director in planning and managing the implementation of software
verification concepts and requirements as they relate to military Command,
Control and Communications system software acquisition management. It
provides a review of the verification practices and procedures employed by
industry and set forth in relevant Department of Defense and Air Force
regulations, specifications, and standards. This guidebook describes those
Computer Program Configuration Item-oriented system engineering and test
activities which lead to verification. It:

o Defines the term "verification" and distinguishes it from
the terms "validation" and "certification".

o Describes the software-related planning, system engineering,
and testing activities, carried out by the Program Office
(PQ) and the contractor, which lead to Computer Program
Configuration Item (CPCI) verification.

o References specific software techniques and tools required
in CPCI verification.

e References appropriate Department of Defense (DoD) and Air
Force Regulations, Specifications, and Standards (RSSs)
that establish the basis for CPCI verification.

1.2 VERIFICATION, VALIDATION, AND CERTIFICATION DEFINED

Verification is CPCI oriented. It begins with system and software eng1neer1ng
activities, which lead to CPCI definitions and to the CPCI Development Speci-
fication, and ends with the qua]ificat1on of the CPCI.

Validation is system oriented. It begins with the System Specification and
concludes at the end of System Development Test and Evaluation (DT&E).

Certification is a user-oriented, system-level activity and occurs during
Operational Test and Evaluation (OT&E).

Figure 1 illustrates verification, validation, and certification within the
context of this guidebook series by showing: (1) the five phases of system
acquisition plotted along an arbitrary time line; (2) the major software re-
lated products; and (3) arrows relating the products to the baselines against
which they are evaluated or tested. Each arrow is labeled to indicate the

““, e

e

7

specific review test or audit during which the product is evaluated. In

addition, the arrows are labeled to indicate which of the three processes is

involved (verification, validation, or certification). The following para-

graphs define the terms verification, validation, and certification within

this context. These definitions also serve to distinguish the subject matter e
" of this guidebook from that of the Validation wnd Certification guidebook.

L PRODUCTION | '
CONCEPTUAL VALIDATION
FULL-SCALE DEVELOPMENT P PHASE : i
PHASE l PHASE I B DEPLOYMENT , .
PHASE 1

PCA

VERIFICATION | g

[VERIFICRTTON | l | i

REQUIRED ; ' '
| YSTEN I.__psvenomm [PRODUCT INTEGRATED PERATIONA |
e Epscmmro SPECIFICATI SPEC. (DRAFT) Cret SYSTEM T |

4 APOR/COR._
VERIFICATION
SRR Pﬁr%gg
ON TION

3 SYSTEM DTAF
3 VALIDATION i

g < - e v g, 7 < ’)

Figure 1. The Scope of Verification, Validation, and Certification :

t
}

1.2.1 Verification

Verification, as used in this guidebook series, is the iterative process of . 3
determining whether the product of selected steps of the CPCI-development pro-
cess fulfills the requirements levied by the previous step. Specific task
areas that make up the CPCI verification process include:

e System engineering analytical activities carried out to ensure
that the CPCI Development (Part I) Specifications reflect the
requirements allocated from the System Specification (verifying
the Development Specification). (See Section 2.) ;

o e Lol cngs

<

e s s i Y

@ Design evaluation activities carried out to ensure that the
CPCI design continues to meet the requirements of the Develop-
ment Specification as the design proceeds to greater levels
of detail [Preliminary and Critical Design Reviews (PDR and
COR)]. (See Section 3.)

e Informal testing of the CPCI and its components [Comouter
Program Test and Evaluation (CPT&E)] carried out by the con-
tractor at his discretion to assist in development, provide
visibility of progress, and prepare for formal testing.

(See Section 4.)

e Formal testing of the CPCI carried out by the contractor in
accordance with Air Force-aporoved test plans and procedures
to verify that the CPCI fulfills the requirements of the
Develooment Specification and to provide the basis for CPCI
acceptance by the Air Force [Preliminary Qualification Test
(PQT) and Formal Qualification Test (FQT)]. (See Section 4.)

The CPCI contractor is responsible for most of the CPCI verification tasks al-
though the PO monitors and controls his performance by authenticating the
Development Specification, participating in design reviews, approving the test
documentation, witnessing the execution of formal tests, and approving and

"accepting test results. The CPCI Development Specification provides the base-
‘1ine against which the CPCI is verified (Qualified). Verification has the basic
-Quality Assurance (QA) objective of ensuring that the developing CPCI retains

its equivalency to the current baselined specification as design and develop-
ment proceed to increasingly lower levels of detail. Thus at the System
Design Review (SDR), the contractor must show that the requirements to be in-
cluded in the Development Specification are traceable to the System Specifica-
tion. At PDR and CDR the contractor must demonstrate the equivalency of each
successively detailed design to the baselined Development Specification.

During qualification [PQT, FQT, and Functional Configuration Audit (FCA)], the
contractor must demonstrate that the coded programs meet the Development Soeci-
fication requirements. Finally, an audit, the Physical Configuration Audit
(PCA), is held to verify that the Product (Part II) Specification is a true
representation of the coded and tested CPCI. In summary, verification com-
prises system engineering and computer programming-oriented evaluation and
testing activities carried out at the Computer Program Component (CPC) and
CPCI Tevels by the CPCI contractor and monitored by the PQ. (See the "Reviews
and Audits Guidebook" for descriptions of the activities to be conducted at

FCA and PCA.)] SR R vy T

2
&
v

” v Sk
i ETRE T PR UL T TS PP N S0 et v € L |y 2 oy SV 4 i -
e, - m i
e it i DI EN——

This guidebook discusses verification in terms of activities which are to be
nerformed by the PO. Much of the guidebook is written in terms of verifica-
tion actions which the PO (either alone or assisted by an independent contrac-
tor) must perform. To assist the PO in evaluating contractor proposals, plans
and progress, the guidebook also discusses verification activities performed
by the development contractor. Figure 2 identifies the major verification-
related, products and milestones which are discussed in this guidebook.

e
VALIDATION PHASE FULL-SCALE DEVELOPMENT (FSD) PHASE
Product See Product See
System Engineering & 2.1 & 2.2 Development (Part I) 2.3.2
Software Engineering Specification
Studies (Technical
Reports) CPCI DT&E Plans 2.3.3
Development (Part I 2.2 Computer Program 231
Specification) Development Plan
(CPDP)
CPCI Design 3.0 % 3.2
CPCI DT&E Procedures 3.2.3
CPCI 4

Figure 2. Major Verificétion-Re]ated Products

.1.2.2 Validation

Validation, as used in this guidebook series, comprises those evaluation,
integration, and test activities carried out at the system level to ensure
that the system being developed satisfies the requirements of the System
Specification. While the validation process has significant software impli-
cations, a software validation process, distinct from the system validation
process, cannot be isolated since all evaluation and test activities that
make up validation are focused at the system level.

10

FCCUIP TS

r— vy

e b A i b

- -

Specific validation tasks (éee "Va]i&at{bn and Cerfificaiion Gufdebook" for a
detailed description of these tasks) include:

e System engineering activities carried out to ensure that the
requirements in the System Specification accurately respond
to the operational needs called for in the Required Operational
Capability (ROC) (validating the System Specification).

e Configuration Item (CI) integration activities (including
CPCI integration) carried out to assemble and check out quali-
fie? CIs as a fully functioning system (installation and check-
out).

e Test Planning and execution activities carried out during
System DT&E to demonstrate that the completed system
meets the requirements called for in the System Specification '
(validating the system).

Major software-oriented subtasks can be readily identified within each of the
above tasks. Nevertheless, it is not productive to try to define a separate
software validation process. To do so implies that the CPCIs qualified during
the verification process receive separate and distinct treatment during system
: DT&E and that some special recourse is available to the PQ if the qualified

: CPCIs do not meet system requirements. Such is usually not the case. Hewever,
the PO should certainly plan and carry out system validation in a manner that
ensures the comprehensive test and evaluation of the software subsystem.*
Furthermore, analysis of system test results may require detailed examination
; of software performance.

The PO is directly responsible for carrying out the validation orogram although

it is usually a contractor-supported activity.** During the Conceptual Phase

the ROC provides the primary baseline for validating the System Specification.

The tasks of validating the System Specification, integration, and checkout ‘

' fall within the system engineering responsibilities of the PO. Validating i

E tne system itself is the responsibility of the Test Director. In summary, |
|

_ validation comprises using-command oriented, functionally scoped, system
i engineering, integration, and testing carried out at the system level by the
: PO staff, supported as necessary by contractor personnel. -

*The software subsystem is the aggregate of CPCIs in the system. }
**See AFR 800-14, Volume II, paragraph 5-3c. . 1

n

—

S & AR TURIR o

BURRTE<IIRNES 1 TR e AR NSRRI RSN W EEE SRARa R T R P ORES

N S Tea A RGN

o ikt

1.2.3 Certification

Certification, as used in this guidebook series, refers to the using command's
agreement, at the conclusion of QOT&E, that the acquired system satisfies its
intended operational mission. During OT&E the system has undergcne test and
evaluation aimed at assuring operational effectiveness and suitability under
operational conditions.

1.3 RELATIONSHIP TO OTHER GUIDEBOOKS

This guidebook does not stand alone in providing information on verification.
The Overview guidebook establishes a frame of reference for the whole guide-
book series. The Validation and Certification guidebook provides more detail
on System Requirements Reviews (SRRs) and SDRs. The Reviews and Audits guide-
book provides more information on the engineering design reviews and configura-
" tion management audits. The Software Documentation Requirements guidebook
covers test planning and reporting documentation. Finally, the Configuration
Management guidebook provides information on configuration management proce-
dures related to verification, particularly on configuration control during

An effective verification program must incorporate the concepts pre-

| sented in all of these guidebooks.) b A
1 4 CONTENTS

The subsequent contents of this guidebook 1nc1ude three sections and three appen-
dixes, as follows: , -

o Section 2 - Requirements Verification. Addresses requirements verifi-

cation from initial CPCI definition until authentication of the
Development (Part I) Specification and verification of the contractor's
CPCI DT&E plan. Discusses contractor activities (2.1); PO verifica-
tion activities during the Validation Phase, including determination
of Validation Phase support products, SRR, and SDR (2.2 through 2.2.3);
PO verification activities during the Full-Scale Development Phase,
including evaluation of the contractor's CPDP, authentication of the
Development Specification, and review of the contractor's CPCI DT&E
plan (2.3 through 2.3.3).

Section 3 - Design Verification. Covers design verification activities
which aoccur during the Full-Scale Development Phase. Discusses
contractor activities (3.1); PO activities, including PDR, CDR, and
review of the contractor's CPCI DT&E procedures (3.2 through 3.2.3).

Section 4 - Computer Program Verification. Discusses computer

program verification activities in terms of (1) informal testing of
the CPCI and its components as carried out by the contractor at his
discretion and (2) formal testing of the CPCI as carried out by the
contractor in accordance with Air Force-approved test plans

12

and procedures. Specifically addresses contractor-internal testing,
including CPC code and test, CPC incremental-integration testing, and
CPCI testing (4.1 through 4.1.3); qualification testing, including
PQTs and FQT (4.2 through 4.2.2).

%gpendix A - Support Tools and Techn1qyes for Computer P;;gram
velopment and Testing. Uescribes support tools and techniques
that aid -in computer program development and testing.

Appendix B - Glossary. Defines terms and acronyms used in this
guidebook.

Appendix C - Bibliography. Provides a 1ist of RSSs, technical
books, and papers that are particularly relevant to the subJect
of software verif1cat1on

13

(Page 14 blank)

R AR it " AT
e S o F N -

i A A B

i RN S D055 o 2 T SRR

R e e

SECTION 2 - REQUIREMENTS VERIFICATION

This section discusses requirements verification from initial CPCI definition
until authentication of the Development (Part I) Specification and verification
of the contractor's CPCI DT&E plan. CPCI requirements verification at this
time, is focused on the engineering and test planning activities, products, and
review points associated with the allocation of performance requirements and
the verification of these requirements as stated in the CPCI Development Speci-
fication. These engineering activities are normally conducted during the
Validation Phase. The engineering process is essentially a decomposition of
the system requirements from a higher (user-oriented) level to lower and lower
levels of functional, design, and test detail. Requirements Verification is
concerned with assuring (verifying) that each succeeding level of requirements
is consistent with the previous level of presentation.

Verification is illustrated in Figure 3 and contrasted with validation and
certification. The successive development of specifications from the System
Specification to the CPCI Development (Part I) Specification is shown with
arrows indicating the verification of each product against the previous
product.

2.1 CONTRACTOR ACTIVITIES

The main development activities leading from the System Specification are
normally the responsibility of the contractor. However, the preparation of
the Development (Part I) Specification may also be accomplished by in-house
Government resources. The following discussion assumes that the activities
associated with Validation Phase engineering activities are performed by a
contractor selected by a competitive procurement.

The contractor's major product during the Validation Phase is the Development
(Part I) Specification. This specification contains the performance require-
ments for the CPCI and becomes the authenticated baseline for Full-Scale
Development.

The Validation Phase contract should require the contractor to : assess the
merits of alternative approaches to meeting contractual requirements using
trade studies, data collections, analytical modeling, or simulation studies.
Standard simu]ation methods or system-Spec1fic methods, such as benchmark,
synthetic, and kernel programs, and instruction mixes, may be used to model
the critical characteristics of a proposed system on a specific computer,
or to evaluate its probable performance on a variety of computers. These
techniques are further described in Appendix A, 1.1. The type of study
that should be conducted depends upon the type and quantity of data needed,

15

I T——

VERIFICATION, VALIDATION & CERTIFICATION

OPERATIONAL MAINTENANCE
OPERATIONAL
ROC <t TEST&
EVALUATION
CERTIFICATION
SYSTEM VALIDATION SYSTEM
L — INTEGRATION
SPECIFICATION ool
I ==
/
cpel cPCl
DEVELOPMENT QUALIFICATION
SPECIFICATION r TESTS
\ VERIFICATION /
l cPC
PRELIMINARY
‘ | ¢———————| INTEGRATION
DESIGN Tss'rg

\ /

DETAILED lo | crc

DESIGN TESTS
4 /
CODED

Figure 3. Verification, Validation, and Certification

16

S oMbt

the complexity of the manipulation/computation being examined, and the time
and resources allocated for the study. Engineering studies should normally
be conducted only for those alternatives which appear to offer significant
payoffs in relation to system objectives, such as total cost, schedules, and
operational performance.

2.2 PO VERIFICATION ACTIVITIES (VALIDATION PHASE)

Dur1ng the Va11dat1on Phase, the PO performs requirements verification by
reviewing the contractor's system and CPCI software engineering activities
aimed at scoping the CPCIs, tracing functions from the system segments to
the CPCIs, and detailing performance requirements for each CPCI. The PO's
CPCI verification review milestones are the SRR and the SDR. These reviews
are further defined in the Software Quality Assurance guidebook and the
Reviews and Audits guidebook. System-oriented review activities (valida-
tion) are discussed in detail in the Validation and Certification guidebook.

2.2.1 Determination of Validation Phase Support Products

The Validation Phase should begin with a baseline System Specification and a
Test and Evaluation Master Plan (TEMP). However, prior to the start of the
Validation Phase, the PO should determine the need for studies to support the
allocation of requirements to CPCIs. Later these studies will provide the
basis for software engineering decisions and for CPCI verification. Such
studies include:

e Functional-Allocation Trade Studies. A series of studies intended
to evaluate the allocation of system requirements to hardware,
software, and personnel. They include design optimization, inter-
face s1mp11f1cat1on, hardware/software tradeoffs, and human engi-
neering studies. :

e Sizing and T1m1ng Analyses. The first of an iterative series of
activities designed to develop storage and timing budgets based
on software performance and design requirements.

e Risk-Identification Studies. Studies that force the identification,
description, ranking, and prioritization of risks in the software
development process.

A1l the above studies can be required by tailoring the "Technical Reports"

DID (DI S- 3591) to the specific needs of the program.

17

Additional Validation Phase activities which impact the requirements verifica-
tion process include:

® Software Test P1ann1n Activities Early test planninrg decisions
directly impact the CgCI verification process. For instance, the
software maintenance requirements reflected in the System Specifi-
cation impact software support tools and documentation. (See the

Software Develonment and Maintenance Facilities guidebook for
additional information.)

e The Contractor's System Engineering Management Plan (SEMP). The
overall system development process 1s described in this document.
The geta11ed CPCI plans and schedules should be consistent with
the SEMP

e The Contractor's Computer Program Development Plan. An initial
CPDP may be required at the start of the validation Phase, but
the details for a complete CPDP are not available until the end
of the Validation Phase. Many verification activities are
dependent on the detailed schedules presented in the CPOP. The
CPDP should be monitored and updated to reflect any changes in
the contractor's software development methodology and plans.

2.2.2 System Requirements Review

The SRR is the first formal review of the Validation Phase. It should be con-
ducted early in the phase, but it may be scheduled as a periodic review meet-
ing. The SRR provides the PO with (1) an early evaluation of the contractor's
initial Validation Phase activities and (2) 1nsight into the adequacy of the
initial allocation of the data processing requirements to CPCIs. (See AFR
800-14, Volume II, Section 4-9a.) A System Engineering/Technical Direction
(SE/TD) contractor may be used at this point in the software acquisition
cycle to assist the PO with the evaluation. (See the Reviews and Audits
guidebook for a detailed discussion of SRR activities.) Requirements
‘verification activities at this time should ensure that: ;

o The planned system engineering activities are responsive to the SOW.
e Mission requirements are fully understood by the contractor.

e Total life cycle cost requirements are understood and will be
considered by the contractor in defining CPCIs.

e Risk identification and analysis will be emphasized with reference
to technical, cost, and schedule factors.

18

2.2.3 System Design Review

The SDR is the final progress review before the Development (Part I) Specifica-
tion is completed. At the SDR, the contractor submits technical reports based
on the system-engineering tasks completed during the Validation Phase. The
primary requirements verification objective at this time is to ensure that

the major development risks have been identified and either reduced or
eliminated. Engineering analyses or simulations should be verified to demon-
strate that a feasible design is available for all identified risk areas. In
addition, sensitivity analyses should be verified to evaluate the magnitude

of errors in the engineering analyses or simulations which can be tolerated
without endangering the goals of the Full-Scale Development Phase. The PO
should verify that all research and development efforts conducted to minimize
risk are completed before Full-Scale Development is allowed to begin.

S BN e iy et TN Ay (D T AR A S = b

——

SO S SRR
'

o NN e AT |

e The system engineering analyses performed by the contractor

The SD should verify the validity, adequacy, and correctness of the material
submitted by the contractor at SDR by assuring that: !

Each tradeoff is clearly identified.

A1l assumptions are identified.

T —

A1l constraints placed on the Development (Part I) Specification
are identified and justified.

Alternative approaches were considered. He should also : i
determine if there should be further analysis to support
the alternatives. : i

The alternatives were objectively compared and selected. e

The characteristics of the chosen alternatives are
traceable to requirements.

‘e The performance requirements justified by the en

In addition, the PO must verify both the equivalency of the evolving Develop-
ment Specification to the System Specification and the resglts of system g
engineering tasks which led to that Development Specification by assuring that:

ineering Studies
are well documented and properly communicated. %Although the

trade studies contain design information, they are not intended

to force design approaches upon the Full-Scale Development Phase
contractor. Instead, they support the performance requirements
contained in the Development Specification.)

support the performance requiremeqts for the selected CPCIs.

19

R R R S L e i

PRUEE T - TP

Al R s FB s B R

ISR

e —

e

e

e All the defined requirements of the CPCIs are traceable to the

System Specification

The CPCI to CPCI and CPCI to CI interface definitions are
complete, consistent, and compatible.

A11 the technical problems (high-risk items) have been identified
Typical risk areas include:

and solutions have been proposed.

- incompatibilities between CPCI performance requirements and

hardware capacities.

- Processing requirements not performed by previous systems or
verified by simulations, prototypes, or analytical methods.

- Entering Full-Scale Development with uﬁproven hardware or

unproven support software.

2.3 PO VERIFICATION ACTIVITIES (FULL-SCALE DEVELOPMENT PHASE)

This discussion is concerned with PO requirements-verification activities
during the Full-Scale Development Phase.
include:

Evaluation of the CPDP.

The major PO verification activities

e Authentication of the Development (Part I) Specification.

. Rev1ew of the contractor 'S CPCI DT&E Plan.

2 3 1

Eva]uat1on of the Contractor s CcPDP

The CPDP 1s a p]ann1ng document, not a requ1rements document

planning document it includes the contractor's description of many activities

¢

However. as a

which relate directly to the CPCI verification process, such as his develop-

" schedules and milestones.
should

verify that:

Contractor test responsibilities are assigned to an indeper€ent

individual or group.

»

The contractor's test methodology identifies the tools to be
used and states their purpose.

20

b

- ment and test methods, controls over the developing CPCI, and his detailed
The SD's evaluation of the CPDP, at a minimum,

The development and support tools described in the CPDP are the
same as those listed in Section 4 of the Development Specification
and in the CPCI DT&E plan.

The sequence of test activities is identified and scheduled.

The test sequence is compatible with the sequence of design and
code; and with the expected availability of test support software ,
and equipment. i

There is a plan for maintenance of all equipment needed for f
verification. *

The test schedules are consistent with the estimated size and
complexity of the functions to be tested.

The CPDP documents the contractor's plan for controlling the
developing CPCI.

The CPDP documents how the contractor will control and account
for problem reports and their resolution. |

The CPDP identifies how the contractd' will provide visibility
into his CPT&E activities. Prov1§!pn for programmer notebooks
with up-to-date status is one efféCtive method for providing
visibility.)

The contractor’ s proposed des1gn methodology is clearly exp1a1ned
(For example, just stating that he will perform ton down design is
not sufficient. He should show how he will monitor his down design
and verify that it has been met.)

The CPDP shows how the contractor will verify CI timing requirements.
The CPOP should indicate the contractor's plan if timing requirements
are not met.

The CPDP provides a plan for growth, modularity, and ease of modifi-
ficatian.

The CPDP shows show the contractor will verify that his documenta-
tion is correct.

21

2.3.2 Authentication of the Development (Part 1) Spec1f1cat1on

Authent1cat1on of the Deve]opment Spec1f1cat1on is the PO's performance
requirements verification prior to baselining. Preferably this activity should
be accomplished prior to beginning the Full-Scale Develepment Phase because

the Development Spec1f1cat1on is the contractual baseline for Full-Scale
Development. However, in no case should authentication be allowed to extend
past PDR. See the Requirements Specification guidebook for a complete
description of the purposes, uses, and contents of the CPCI Development
Specification.

In performing requirements verification of the Development Specification, the
SD should assure that:

e The specification clearly distinguishes between each requirement
and information that do2s not constitute a requirement. (A1l
"shall" gtatements should te requirements.)

e The specification demonstrates the contractor's understanding of
the primary migion by his statements of CPCI requirements.

o The performance requirements are sufficiently detailed so that each
function to be performed by the CPCI is fully described in nerfor-
mance terms. For example: i

icifibeaicat sacs i -

- A1l CPCI inputs and outputs must be completely and fully

_ described so_they can be designed and tested. 5

- A1l timing requirements must be explicitly stated, both
individually and for the CPCI as a whole.

- Ervor processing logic must describe CPCI performance when
improper, incorrect, or out of range inputs are received.

o Interface compatibility has been established between the CPCI and ‘l
other Cls. '

e All system limits and capacities are compatible with the System
WSpecif1cation

e A1l man-machine 1nterfaces 1mpact1ng +he CPCI are fully describeAd.

o All adaptation data requirements are defined (e.g., radar positions,
air base locations, etc.).

o All required new technology or design methodology has been proven
during the Validation Phase.

22

S IR TR e e g

S ———

o Test facilities are responsive to the requirements identified in
Section 4 of the CPCI Development Specificaticn.

2.3.3 Review of the Contractor's CPCI DT&E Plan

The CPCI DT&E (formerly Category I Test) plan provides the basis for CPCI
qualification testing (PQT and FQT). Data Item Description (DID) DI-T-3703
describes the format and the content of the CPCI DT&E plan. The test plan
should be delivered at the end of the Validation Phase. It should be updated
prior to POR.

Ir. verifying the CPCI DT&E plan, the SD should assure that:

o A1l CPCI performance requirements can be demonstrated.

e The qualification test environment is sufficient to demonstrate
CPCI performance.

e The plan is written in accordance with the DID, as tailored for
this specific contract.

o If any portions of the CPCI have been excluded from the test plan,
the reasons for their exclusion have been satisfactorily explained.

e The plan conforms to the requirements of Section 4 of the CPCI

The qualification requirementS of the test plan have been related
to specific requirements as stated in Section 3 of the Development
Specification.

¢ The methods for determining performance are identified (e.g.,
analysis of recorded data, examination of displays, etc.).

¢ The test plan identifies the requirements to be satisfied during
CPT&E, PQT, FQT, or System DT&E. (Requirements which cannot be
demonstrated until System DT&E should also be included in the
System DT&E plan].

e The location and schedule for each test is identified.

¢ Any limitations on test implementation and accomplishment of test
objectives are described. If any of the limitations impair the
validity of the tests, then qualification of the CPCI should be
delayed until a sufficient test environment can be obtained to
verify its performance.

|

i

e s NG kR -

Satisfactory plans for the preparation of input data are provided
and that all necessary input methods and tools are described and
will be available when needed.

Test responsibilities are clearly defined.

A11 necessary personnel, facilities, equipment, and related CPCIs
are specified and that their availability is scheduled.

Procedures are established to:

- Revise or update the test plan

- Document and revise the test procedures
- Document the test reports

The planned test schedules are compatible with the develooment
schedule.

24

SECTION 3 - DESIGN VERIFICATION

This section covers design verification activities which occur during the
Full-Scale Development Phase. Software design activities actually begin
during the Validation Phase as system or software engineering studies which
support the feasibility of the Development (Part I) Specification. Verifi-
cation of the initial design is an integral part of the requirements
verification activities which occur at SDR. Although the design developed
during the Validation Phase is usually included in the Full-Scale Develop-
ment Phase design, it need not be. The Full-Scale Development Phase contrac-
tor is usually contracted at the Development (Part I) Specification level and _
is responsible for developing the des1gﬁ“t6_§at1sfy “the requirements of the
Development Specification. Design ver1f1cat1on is performed by both the
contractor and the PO.

3.1 CONTRACTOR ACTIVITIES

The contractor's primary engineering activities during the Full-Scale
Development Phase are aimed at producing the CPCI design. The PO reviews

the developing design at the overall-CPCI level during PDR and at the
detailed-CPC level during CDR. The contractor retains responsibility for his
design throughout the reviews and can change the design as necessary to meet
his contractual Development (Part I) Specification requirements.

3.2 PO _ACTIVITIES

This discussion is concerned with PO design verification activities which
include:

e PDR
e CDR
® Review of the contractor's CPCI DT&E procedures

3.2.1 Preliminary Design Review

CPCI des1gn is based upon the performance requirements in the Development
(Part I) Specification. Initial CPCI design results in the development of
the structure or architecture of the CPCI. It defines the CPCI, and
describes the sequence or priorities of CPC operations. This initial design
is reviewed by the PO at PDR. Following PDR, the contractor develops the
design of each CPC to a level of detail sufficient for program coding to
begin. This detailed design is reviewed by the PO at CDR. (See the Reviews
and Audigs guidebook for a detailed discussion of these engineering design
reviews.

25

While the CPCI representation differs, the objective at both PDR and CDR is
essentially identical, i.e., to determine that:

e The design approach for the CPCI will satisfy the
performance requirements of the Development Specification.

e The functional interfaces between the CPCI and other
CPCIs are complete and correct.

e The design is compatible with the timing requirements.

o The test requirements and test tools are sufficient to
determine if the CPCI meets the requirements of the
Development Specification.

The PDR provides the PO with a formal technical review of the contractor's
progress in developing a design approach for a CPCI. For verification
purposes, the PO is concerned with the identification of CPCs and the
allocation of CPCI performance requirements to the CPCs.

The contractor presents his overall CPCI design at PDR. If called for in

the contract, the design may be documented in a Subsystem Design Analysis
Report* or in a draft of selected sections of the Product (Part II) Specifi-
cation (Sections 1, 2, 3, 3.1; see Appendix VI of MIL-STD-483), otherwise, the
design may be descr1bed in informal work1ng _papers or by contractor oresenta-

tions.

e An identification and description of the CPC structure
of the CPCI, including the functional description of
each CPC and input/output data.

e A requirements traceability matrix.

o Detailed storage allocation charts.

e Data base structure and organization.

e Studies to verify sizing, timing, and computational
accuracy of CPCI elements.

e Updated CPCI DT&E plans.

*See Software Documentatior Requirements guidebook for a description of the
Subsystem Design Analysis Report (DI-S-3581). '
**See Sofiware Maintenance guidebook for POR review of features which facili

tate the development of maintainable software.

26

W,

T

The PO should have sufficient time to prepare for the PDR (review material
should be available at least two_to_four weeks prior to PDR)*. The PO may

identify problem areas to be explored and suggestions for additional

studies, but since the PDR is a review of the design under the control of the

contractor, the PO's suggestions should not be interpreted as direction or
approval of the contractor's design approach, but rather approval of a
successful PDR. For options available to the PO at PDR, with regard to
approval/contingent approval/disapproval, refer to MIL- cTD -1521A, Section 4,
Paragraph 4.2.4, and Appendix C.

The results of the PDR should include identification of deficiencies in the
CPCI design approach. Al1 results and conclusions must be documented in
the minutes of the PDR. PO design verification at PDR should be based on
determining if:

A11 the requirements of the Development (Part I)
Specification have been addressed. (The allocation
of each Part I performance requirement to one or more
CPCs should be shown.)

The requirements to be satisfied by each CPC have been
identified.

The CPCI design is of sufficient detail for detailed
CPC design to take place.

The CPCI design and the development support tools are
compatible.

The structure of the CPCI data base is established, including
organization and intended functional uses.

The CPCI control flow is established:

- Processing priorities are described
- Startup/startover design is shown

The design methodo]ogy described in the CPDP is refTecfed-
in the contractor's design.

*This time may vary with the complexity of phe‘CPCI.

27

3.2.2 Critical Design Review

The CDR is a formal technical review, or series of reviews, held upon the
completion of the detailed design of each CPCI, or an increment of related
CPCs in the case of a large and complex CPCI. The purpose of holding incre-
mental CDRs is to minimize the amount of time required to develop a large,
complex CPCI by reviewing the detailed design of an increment of related

CPCs when ready, rather than waiting until the design of the entire CPCI

is ready for review. Incremental development of functional areas also

allows design, code, and test activities to be scheduled separately, resulting
in better control and visibility in the development of each increment. The
primary purpose of the CDR is to establish compatibility of the CPCs with the
CPCI design structure presented at the PDR. The successful completion of the
CDR allows the development to continue with CPC code and test activities.

The following information should be available to the PO to conduct a
satisfactory CDR*:

e Identification and description of all modules, including
functional description, input/output data, range of values,
data files required, and internal data descriptions.

o A detailed description of interfaces, including module-to-
module within a CPC, module-to-module among CPCs, and
modules within a CPC to external interfaces.

o Detailed flow charts or their equivalent (e.g., HIPO diagrams)
for each CPC. :

o A detailed requirements traceability matrix showing how
each Development Specification requirement is allocated
to one or more CPCs.

e Internal CPC data structure and organization.

e Approved ECPs (since PDR) and the contractor's evaluation
of their effect on the design approach and the development
schedules.

o Test procedurés to accompany the test plan, if not
submitted prior to CDR.

e Updated sizing and timing estimates for each CPC or
each program module.

*Further technical review questions for CDR, with respect to the.deve1op-
ment of maintainable software, are contained in the Software Maintenance
"~ guidebook. : _

28

—

As for the PDR, the PO and the review team must have sufficient time to
prepare for the CDR. Since a successful CDR signals the beginning of the
coding and testing process the PO must determine whether the contractor's
design is compatible with the design presented at POR.

Design verification at COR is often tedious since it is and should be directed
at a detailed analysis of the design. The contractor should have preceded CDR

with a series of design wa]kthrOughs conducted by each designer and perform- _

ed by one or more technical reviewers. To the extent feasible, the PO’
should also conduct very detailed CDRs, because any design def1c1enc1es
found and corrected prior to the start of coding will save significant time
and effort during later test and integration activities.

Design verification at CDR should reflect the following goals:

e The design presented at CDR should be a refinement (i.e.,
more detailed) of the design presented at PDR.

e The design should be suitable for the problem posed by the
requirements, e.g., the CPC timing and sizing estimates
should be indicative of success in meeting the design
constraints of the interfacing equipment and the spare
capacity/growth requirements.

o The data base should be completely defined.

@ All Development Specification requirements should be allocated
to specific modules within CPCs.

e All requirements for the design of interfaces between CPCs
should be addressed.

o The design should be sufficiently detailed to begin coding.

3.2.3 Review of the Contractor's CPCI DT&E Procedures

The CPCI DT&E procedures should be available for review by the time of the
COR for the corresponding functional area. In reviewing the CPCI DT&E
procedures, the SD should assure that:

e There is a test procedure for each qualification test.
Generally, each procedure will cover one or more
functional areas.

e A1l the performance functions to be tested have been

identified. [Reference should be made to Section 4 of the
Development (Part I) Specification.]

29

The method for determining if each test condition is met is

stated, e.g., visual observation, data reduction and analysis,
special timing analysis. This part of the test procedure should
also be compatible with Section 4 of the Development Specification.

The location, schedule, contractor, and individual skill-level
responsibilities have been established for the necessary briefing,
test, debriefing, and analysis activities. T

The procedures have applicable references to the associated:
test plan, CPCI Development Specification (specific paragraphs),
manuals, positional handbooks, and documentation for support
programs or equipment.

There are procedures (or reference to procedures) for operating
the CPCI to be tested.

The detailed test description is adequate. The PO or the
technical reviewer should run through a step by step review
of the procedure, should anticipate contingencies, and should
ensure that sufficient information (or necessary references)
are available for the tests to proceed.

NOTE

Detailed CPCI DT&E procedures can be extremely
valuable for continued verification of the CPCI
during deployment. However, to retain their
value the PO must ensure that they are contin-
ually updated as ECPs are installed.

30

SECTION 4 - COMPUTER PROGRAM VERIFICATION

This section discusses the following computer program verification activities:

o Informal testing of the CPCI and its components [Computer Program
Test and Evaluation (CPT&E) carried out by the contractor, at his
discretion, to support his development activities, provide visi-
bility of progress, and prepare for formal testing.
e Formal testing of the CPCI carried out by the contractor in
accordance with Air Force-approved test plans and procedures
to verify that the CPCI fulfills the requirements of the
Development (Part I) Specification and to provide the basis
for CPCI acceptance by the Air Force [Preliminary Qualification
Test (PQT) and Formal Qualification Test (FQT)].

CPCI verification is based on the following documents:

o Development (Part I) Specification (see the Requirements
Specification guidebook and Section 2 of this guidebook)

e CPCI DT&E plan (see 2.3.3).
e CPCI DT&E procedures (see 3.2.3).

In addition, particular attention should pe paid to the requirements for CPCI
verification during:

e Authentication of the Development Specification (see 2.3.2).
e Preliminary Design Review (see 3.2.1).
e Critical Design Review (see 3.2.2).

The entire process of CPCI verification is the reverse of design where analysts
start from a global definition of the system and proceed with successive

layers of detail, finally resulting in a detailed CPCI design from which coding
activities may be initiated. CPCI verification, on the other hand, usually
proceeds from (1) the detailed-CPC level in a simulated environment, to (2)

the execution of a small increment of functionally-related CPCs, to (3) the
operation of all CPCs, together in a live, or nearly live, environment. Top-
down programming calls for a variation of this method whereby key control

and input handling programs are developed and tested first.

31

The top-down philosophy calls for CPC implementation to be planned to avoid
simulated inputs, where possible. The structure of the entire CPCI is initially
represented by stubs which (1) contain very brief non-functional code or (2)

may simulate each CPC's operation by performing abbreviated functions. The
stubs are replaced as each coded CPC becomes available.

4.1 CONTRACTOR INTERNAL TESTING

Contractor internal testing (CPT&E) consists of CPC code and test (see 4.1.1),
CPC-incremental integration testing (see 4.1.2), and CPCI testing (see 4.1.3),
CPT&E is the contractor's CPC/CPCI-design shakedown testing. The incremental
coding and testing activities of CPT&E may span nearly the entire Full-

Scale Development Phase, overlapping with PQTs and terminating when the
contractor has completed his internal CPCI testing and is ready for FQT.

CPT&E activities are the contractor's responsibility and there are usually

no contractual constraints on the methodology employed by the contractor.
However, there are several ways for the SD to gain visibility into contractor
progress during CPT&. The first and most common way is through effective

use of PQTs which can be scheduled throughout CPT&E (see 4.2.1). Contractor-
delivered PQT and FQT plans, procedures, and reports provide further visibility.
Other ways include an on-site PO representative with specific access to

specific personnel, visibility into programmer notebooks, monthly progress
reports, and monthly status meetings to report and discuss technical as

well as administrative progress.

The process of translating the software design into executable programs is a
multi-step operation using many implementation test tools and techniques.
The emphasis on the contractor's work during CPT&E is not immediately
directed at verification of performance criteria, but instead at implemen-
tation of the software design that has been shown by previous design activi-
ties to meet the specified performance standards. Since performance
criteria are a result of analyses of operational requirements and the
proposed design has been correlated with the performance criteria, CPT&E
verification activities are directed primarily at determining that the program-
med instructions are accurate, consistent, and compatible with the detailed
computer program draft Product (Part II) Specification.

CPT&E as presented in this discussion, should be used by the PO to evaluate
verification information in the CPDP (see AFR 800-14, Volume II) and as
supported by the contractor's QA and configuration management plans. It is
applicable to the development of most CPCIs. Although this discussion is
aimed directly at the development of application software, the verification
activities are the same for support software (compilers, test tools,
operating systems, etc.).

32

Sy e r—

Gkl e Lk o i St
———— —— :

4.1.1 CPC Code and Test

CPC coding is the translation of the technical solution of a particular
problem into a set of machine-readable instructions for.the performance of
specific computer operations. The coding process also includes:

e Observance of established, project-specific, administrative
coding conventions and standards, such as tagging conven-
tions or comment requirements.

e Generation of global data definitions used by the CPC,
where appropriate. 1

® Adherence to technical, project-supported, programming tech-
niques, such as structured programming or decision table
methodology. *

= NP

% Prior to CPT&E the contractor should have: ,
i e Selected the programming language and the associated language
1 aids (see Appendix A, 3.1.1). |
% e Ensured that project programmers are familiar with the 3
é selected language.
[
] o Ensured that project programmers fully understand the design
&é methodology to be used (e.g., top-down programming).

¢ Structured the data base and provided the necessary data
base support tools [e.g., a communications pool (COMPOOL)].

The adequacy of the contractor's verification activities is indicated by:
o The contractor's manual and automated procedures for obtaining

visible outputs for both programmers and management at each
step of the implementation process (see Appendix A).

b e The manual and automated methods used to incorporate changes in
software design, thus affecting the code and test processes
] (see Appendix A).

e The project tools and aids used in support of coding and con-
structing the CPCs and data base (see Appendix A, 3.1).

¢ The project coding conventions and standards and the mechanisms
for enforcing those standards (see Appendix A, 3.2).

*See Appendix A, 2.1 and 2.2.

33

o

i RN o) - 3

CPC testing (also referred to as subprogram testing or parameter testlng)

is that testing performed by contractor personnel and directed at assuring

the internal accuracy and consistency of each CPC beforé integration with
other functionally-related CPCs. CPC testing begins with each module or

unit of code and continues until the entire CPC is developed and tested.
Specifically, each CPC must be tested as a unit (see Figure 4) to verify that:

e All possible inputs to the CPC are correctly interpreted.

e Arithmetic and logical functions assigned to the CPC are
correctly processed.

e Coding conventions and standards are incorporated in the
implementation of the CPC.

o Outputs are correct and consistent with the 1nput data.

INPUTS i
| QUTPUTS
CPC R s
i A R
e
" Figure 4. CPC Code and Test
CPC testi;‘_é—é—cti Vi t'i es ing]u—d_e: % T e e - i

¢ Preparing test data

¢ Compiling or assembling the CPC and reviewing the outputs.
e Running the test data.

o Examining test run results.

o Identifying and correcting errors.

¢ Repeating each CPC-level testing step until the CPC
operates as ;he programmer's design intended.

%
34

Ty

T

CPC testing may also identify requirements for T mod1f1cat1ons to increase

efficiency and maintainability, to meet coding convent1on§_gnq_§§;ndards,

and to change the program when testing or the contractor's internal audit
procedures indicate that program quality is unacceptable.

CPC debugging consists of extracting syntax and logic errors, or "bugs", from
the software. During CPC debugging each area of code is tested with sample
extreme, and illegal (out of range), data values to ensure that the code
operates as it was designed. Early stages of debugging rely heavily upon

the programmer's desk-checking of computer-produced listings, despite tools
such as traces, dumps, test drivers, test-case generators, and data-reduc-
tion programs.* One essential quality of debugging tools at this stage is
that they assist the testing process without requiring insertions of large
amounts of code into the program which:

® May significantly alter CPC performance.
e May generate additional errors because of the additional code.

e May hide pre-existing bugs until the added code is removed.

The programming methodology used by the contractor impacts the selection of
test tools used. For example, top-down development reduces the need for test
drivers, whereas bottom-up development geperally requires more test drivers.

Debugging on a CPC level is complete when all necessary tests have been executed
without error and there is demonstrable evidence that the algorithms are com-
plete and correct. The quantity and quality of the tests used for CPC testing
are highly dependent upon the contractor's internal test effort and upon the
individual programmer's approach and habits. The test data used for CPC test-
ing are derived from analyses of internal Jesign specifications and simulation
of the CPCI's environment. Sometimes a contractor uses an independent pro-

grammer or test team for the testing of each CPC. This approach is more often
used in later stages of testing, specifically CPCI testing in preparation for
PQT and FQT.

Review of programmer notebooks by either the contractor or represedtative
of the PO, if authorized by the contractor, can provide visibility into the
status of CPC code and test activities. Sufficient information should be
available to:

o Relate detailed CPC development schedules to current status.

o Ensure that design and coding standards are known and followed.

o Relate the design as presented at CDR to the actual CPC design.

*See Appendix A, 3.3.1.

o Ensure that the CPC reflects all approved and scheduled ECPs.

e Verify that the design and programming methods described in the
CPDP are indeed being followed.

4.1.2 CPC Incremental-Integration Testing

After successful completion of CPC testing, the CPCs are combined for CPC
incremental-integration testing (see Figure 5). CPC incremental-integration
testing is directed at resolving design, logic, data definition, and interface
errors existing in the combined operation of two or more CPCs. CPC 1ncrementa1-

integration testing focuses on:

e A sequential integration of functijonally-related CPCs.
e Using outputs of one CPC as inputs to the next.

e Verifying that CPCs operate as designed and according to
performance requirements.

e Conducting dry runs in preparation for PQTs.

INPUTS — ¥
- = QUTPUTS
cpPC cpe cPC
A B c

Figure 5. CPC Incremental-Integration Testing

Genera11y, the CPCs are 1ntegrated by comb1n1ng funct1ona]1y related CPCs In
that way meaningful test case data relating to a specific function can be
generated by the CPCs themselves, rather than by test drivers. CPC integra-
tion can then proceed, 1ncreﬁéﬁfﬁng larger numbers of CPCs to provide the
input, processing, and output functions needed for complete testing. This

approach results in more efficient test-case generation.

In top-down implementation, CPC code and test are accomplished together with
CPC incremental-integration testing. Using this approach, the responsible
programmer tests each CPC, upon completion of coding, by 1inking it into the

36

already developed higher-level CPCI structure and emulating lower-level
logic using stubs. In this manner, outputs from a proven CPC are used to
provide test inputs for the CPC undergoing test. This method features
increased testing of key CPCs in an environment more closely approximating
the intended operational environment.

Individual CPC testing should verify that each function was executed correctly -
with input parameters set first to single values and then to a wide range of
values. Similarly, the integrated CPCs should be tested to verify that all
functions perform correctly for appropriate single data values, as well as

for multiple inputs covering an entire range of applicable data values.

Aids for CPC incremental-integration testing include:

@ A Program Production Library (PPL)

o Off-the-shelf routines (operating system and utility library
routines)

e Timing and sizing analyses
| @ Tools to ensure thoroughness of testing

e The contractor's internal-change control pfocedures

4.1.2.) .Prggram Production Library

A PPL*, whether automatic or manual, should be used to catalog test cases,
program CPCs, load CPCs, and maintain data dictionaries. Using a PPL, main-
tenance of program versions and test case information by either a programmer
or a project librarian can be systematic and relatively simple. Performance
data on the evolving CPCI can be readily accumulated and a log of integration
and CPCI test runs identifying components of each test can be maintained.

4.1.2.2 Qff-the-Shelf Routines

The operating system and the program master utility/library routines associated
with the development computer are important aids to efficient CPC incremental-
integration testing. Library routines include collections of standard, multi-
purpose programs used by the operating system to provide efficient hardware/
software interfaces of proven mathematical accuracy as needed by the mission
software. Should certain system input or output capabilities be unavailable

*See Appendix A, 3.4. See also the Monitoring and Reporting Software
Development Status guidebook.

37

or insufficient for the developing software, auxiliary routines must be pro-
vided to augment the existing system. Unless these routines are thoroughly
checked out prior to their acquisition, CPC-integration testing may inadver-
tently become a test vehicle for them.

4.1.2.3 Timing and Sizing Analyses

Although timing and sizing analyses are ordinarily conducted early in the
Validation Phase, the CPC integration testing activities are the first oppor-
tunity for the contractor to co]]ect functional performance data related to
timing and sizing. Sizing data, at this time, are fairly accurate, but timing
data are still rudimentary because test inpuis are often generated by the
computer and timing does not yet reflect the operational environment. However,
the contractor should compare these results with his earlier analysis oredic-
tions to begin confirming their accuracy and to 1dent1fy potent1a1 problem
areas. Since timing and sizing problems often require expensive and time con-
suming hardware or software redesign solutions, they should be identified as
early as possible.

4.1.2.4 Tools to Ensure Thoroughness of Testing

© The quality of CPCI-integration testing depends, in part, on the coverage of
the conditions tested and the range of values used in the input stream. There
are many test tools currently available to improve the quality of CPC incre-
mental-integration testing. However, their suitability to a given test pro-
gram is limited by the specific computer configuration used and by the specific
test requirements. Examples of such tools follow:

® Test-case generators, test beds, and test-data simulators can
provide data values that span the range, domain, and distribu-
tion of the program's expected inputs.

o Test-output tools include those tools that record, reduce, and
ana]yze the data generated by the program in funct1ona11y pro-
cessing input data.

o Automated flow charts* are sometimes used in the late stages
of CPC incremental-integration testing when the development
organization must supply detailed flow charts for the Product
(Part II) Specification. However, they are more often used
in CPCI-qualification testing since changes to program code
require a totally new analysis of the syntax by the flow-chart
program.

*See Appendix A, 3.4,

38

Siok sk e

= YT T T Ty

R sl UM . iy

TN

SE a4

y
i

T T T R

o Execution analysis programs®, are generally applied to CPC
incremental-integration testing after an increment has success-
fully been debugged. They are intended to verify the percent
of the code tested by accumulating the instruction-execution
data of test cases used in the testing process. They identify
the code executed by the test(s), the number of test cases
run, and sometimes, the range of values applied to specific
parameters during each test. Execution analysis programs also
assist in determining the need for additional test cases for
areas not covered by previous testing, or superfluous code
not reached by any other instruction. They also provide manage-
ment visibility into the amount of code exercised during testing.

4.1.2.5 Contractor Internal-Change Control Procedures

The contractor's internal-change control procedures become especially impor-
tant during CPC incremental- 1ntegrat1on testing. These procedures are

" documented in the contractor's configuration management plan. (See Config-

uration Management guidebook.) They are particularly 1mportant for verifica-
tion because:

o All test personnel must know the content and status of the
software they are testing. :

o The up-to-date status of all problems must be disseminated to
prevent wasteful rework by uninformed personnel.

e The status of all problems and PO-approved changes must be
known by the contractor's test director so he can determine
when retesting is required.

4.1.3 CPCI Testing

CPCI testing by the contractor is primarily a dry run of FQT, but it is a
necessary part of CPT&E because it completes the iterative process of testing, -
correcting, and retesting. If individual CPC and CPC incremental-integration
testing has continually emphasized testing to design 1imits, CPCI testing
becomes a device to verify for the contractor's management that the FQT will

be passed successfully. Initially, CPCI testing focuses on verifying the

total CPCI design. However, the major effort soon shifts toward verifying

that the CPCI, including all of its related components, satisfies the
requirements of the Development (Part I) Specification.

*See Appendix A, 3.3.2.

" 39

”WM &3 e Ll —

The purpose of CPCI testing is to verify that all the components of the CPCI
interface together to perform their required functions while not exceeding the
1imits of tolierances and qualification criteria.

The test plans, procedures, and test data used during the contractor's CPCI
testing should closely relate to those submitted for PQTs and the FQT. The
test plans, procedures, and related data used in CPT&E are usually not
deliverable or available for scrutiny by the SD, unless contractually specified
through the inclusion of a Data Accession List on the Contract Data Require-
ments L1st (see Software Documentat1on Requirements gu1debook)

The test tools used during the contractor's CPCI tests are the same as those
used during CPC incremental-integration testing. However, the use of such
tools should be limited since the intent of CPCI testing is to ensure the per-
formance of the CPCI in the operational environment. Obviously, it may still
be necessary to use simulated input data generated by tools and processors to
record, analyze, and reduce output data. It may also be necessary to use hard-
ware, f1rmware or software emulation techniques™ for replicating machine or
software funct1ons unavailable to the CPCI until a later time. Especially
important to CPCI testing, however, is the execution of the CPCI to verify its
own performance, not perturbed by unnecessary use of test tools.

The contractor may specify in Section 4 of the Development Specification that a
-test, or series of tests, run during CPT&E should be run only once because of
the high costs incurred in the testing process. This may be particularly
applicable to obtaining test results supporting critical timing data. In
this situation, the contractor requests that the PO accept CPT&E results as
qualification of that requirement in 1ieu of a PQT or an FQT of that require-
ment. The contractor has the option of submitting an ECP to request the
acceptance of CPT&E results in the event he has not so specified in the
Development Specification. The PO may approve or disapprove the request in
either case, but should consider such factors as cost, adequacy of test plans
and procedures, and criticality of the performance requirement involved when
processing the approval/disapproval. [See MIL-STD-483(USAF), Appendix VI.]

The contractor may also defer CPT&E testing of a particular CPC or CPCI inter-
face until operationally-confiqured equipment is available. This also must be
specified in Section 4 of the Development Specification [See MIL-STD-483 (USAF),
Appendix VI.]. See 2.3.3 for a list of determinations that must be made by

the SD when reviewing CPCI DT&E plans and 3.2.3 for a similar list regarding
CPCI DT&E procedures.

*See Appendix A, 3.3.3.

40

4.2 QUALIFICATION TESTING

Qualification testing is the formal®, contractor CPCI testing which is witnessed
by the Air Force. It consists of PQT and FQT.

The test plans, procedures, schedules, and personnel for qualification testing

- should be planned prior to initiation of CPT&E. Initial test plans for formal
testing are submitted with the Development (Part I) Specification and updated
after PUR. Prior to formal testing, PO approval of test plans and procedures
should consider such factors as: -

e Qualification Criteria. Formal testing is conducted to ensure that
the CPCT satisfies the qualification criteria stated in the Develop-
ment Specification and mutually agreed upon by the PO and the
contractor. The test plans and procedures used to demonstrate the
CPCI should be designed so that each performance feature is obser-
vable and measurable. Each test should be designed so that the
results can be evaluated by inspection, avoiding ambiguous or
subjective evaluation problems between the contractor and the PO.
To avoid confusion regarding the achievement of qualification and™
to avoid redundant testing, qualification tests for any given per-
formance requirement should not overlap.

¢ Test Documentation. The test documentaticn supporting formal qual-
ification testing is prepared well in advance of the testing and
sets forth the testing scenario, including objectives, inputs,
events, expected outputs, etc. The personnel and time needed to
produce the support documentation and to perform, observe, and
evaluate the tests may be significant. Consequently, the number
and amount of scheduled formal tests should be minimized. Careful
review and analysis of the draft test plans and procedures may
result in substantial changes to the proposad testing activity.
Hence, draft test documents should be submitted in sufficient
time to allow for careful analyses by the PO and possible revision
by the contractor.

e Visibility into Critical Performance Areas. Test plans and
procedures must be organized to adequately demonstrate the perfor-
mance of critical components of the CPCI, e.g., high-risk tech-
nological areas and suspected marginal performance areas. The
selected order of tests should approximate the order of priorities
for development of critical performance and high risk capabilities.

*TFormal" testing is that portion of CPCI testing which is conducted in
accordance with Air Force-approved test plans to verify that the CPCI
fulfills requirements of the Development Specification. [See AFR 800-14,
Volume I1, Section 5-3,a,(2)].

4]

e Procedures for Retesf. Because a‘qua1ificétioh test'ﬁéy féi1,

disclose a need for redesign, refinement, or reevaluation, or may
cause a dispute between the contractor and the PO, a systematic
approach for retesting must be established before test plans and
procedures are approved and qualification testing is initiated.

4.2.1 Preliminary Qualification Tests

PQTs are planned, scheduled, and performed by the contractor at his develop-
ment facility to provide visibility into work progress and to demonstrate to
the PO that the design meets its performance requirements. PQTs are conducted

. in accordance with PO-approved test plans and procedures, and test reports

submitted in accordance with the Contract Data Requirements List. PQTs are
generally scheduled during contractor CPT&E on a sequential basis, often
corresponding in sequence to the reviews of the design in a series of CDRs
to provide visibility as the CPCs are developed. Each PQT is designed to
demonstrate the performance capabilities of a group (or increment) of
functionaily-related program modules or CPCs. A PQT should demonstrate a
CPCI function, especially those functions which are critical to the CPCI.
[See AFR 800- 14 Volume II; Section 5-3, a,(2),(a)]. A PQT is planned and’
scheduled by the contractor according to h1s ‘estimate of when the function
can be demonstrated.

PQT procedures must be carefully scrut1n1zed to ensure that PQTs will provide
an interim demonstration of the contractor's progress in the development
process. PQTs are intended for visibility into time or performance critical
CPCs, or functions, not for their qualification. Overly detailed testing,
reflecting CPCI design, structure, and internal operation (such as parameter
testing at the CPC level), does not provide visibility and may even obscure
appraisal of technical adequacy.

The PQT differs from the FQT in two major areas, as follows:

o PQT test coverage may be more detailed and the test results
may include intermediate processing data, i.e., data communicated
between CPCs, but not a required output of the CPCI. An
entire range of data values may be used for a specific parameter
to demonstrate functional processing and error processing for
illegal values.

e PQTs are conducted at the contractor's development site and may
include only minimal hardware/software interface testing. They {
may also use the contractor's CPT&E test tools and techniques,
especially simulation of input data, emulation of hardware or
other CPCIs, and output data processors.

42

4.2.2 Formal Qualification Test

FQT is a comprehensive test of the integrated CPCI, performed by the contrac-
tor and witnessed by the PO, to verify that the CPCI meets the performance
requirements as stated in the Development (Part I) Specification. FQTs are
conducted in accordance with PO-approved test plans and procedures, generally
with qualified operationally-configured equipment. FQT normally takes place
at a location providing the required equipment capability or at the System

--DT&E site. It should be completed prior to the beginning of System DT&E.

- If the required equipment configuration is not available, or if there are

" performance requirements that cannot be verified in the CPCI DT&E environ-
ment, they must be so stated in-Section 4 of the Deve]opment (Part I)

3 Spec1f1cation The requirements are then qualified in the System DT&E

- environment and the FCA for this CPCI is supplemented by an FQR of the CPCI.
For CPCIs that are not dependent upon total system availability, such as
support packages, qualification testing is usually conducted at the contractor's
site. However, the computer configuration used for qualification at the
contractor's site should be sufficiently similar to the operational configura-

- tion that no doubts remain about £PCI qualification.

. If the CPCI DT&E plans and procedures have been adequately reviewed (see 2.3.3
.. and 3.2.3) the SD's verification activities at FQT 1nc1ude making the fo110w1ng
. determinations:

e That FQT proceeds in accordance with the test plans and
procedures. If not, each variance should be reviewed to
determine its impact upon the qualification tests.

e That all problems are reported and status is maintained.
Any deficiencies not corrected prior to completion of FQT
should be noted in the FCA minutes (auditing of test results).

|
E & That any features of the test environment which may obscure
5 : difficulties in the CPCI are identified. Such features may
i ' include:
- Simulated inputs which are not representative of live inputs.
- Inadequately verified timing situations.

- Computer hardware and software different from operational.
configuration.

- Insufficient or non-representative site-unique adaptation data.

- Use, during FQT, of support software that has not been
previously qualified.

43
(Page 44 blank)

R T A

ki

1.1 EVALUATION TECHNIQUES

APPENDIX A - SUPPORT TOOLS & TECHNIQUES FOR

COMPUTER PROGRAM DEVELOPMENT & TESTING

Appendix A is organized to correspond with the stages of verification described
in Sections 2, 3, and 4 of this guidebook. It describes the types of support
tools and techniques which aid in computer program development and testing*.
They must be carefully selected to satisfy the program-specific development

or verification requirements and the associated hardware and software config-
urations. Their primary purpose is to make the software development process
easier. However, they also aid the verification process by providing systematic
and dependable aids to the system engineering and testing processes.

This appendix discusses the applicability of selected aids to distinct verifi-
cation and validation tasks. Because of the large number of tools existing
for specific applications on specialized computers, this discussion describes
generic aids rather than specific tools. e e e g

1. REQUIREMENTS VERIFICATION

This discussion addresses evaluation techniques and Development Specification
methodologies which can be used to assist performance requirements verification.

The various evaluation techniques used during the Validation Phase have had
varying degrees of success in verifying performance requirements. Such
techniques include:

Simulation

Performance monitoring

Synthetic programs

Benchmarks

Kernels

Be aware that many of the techniques described differ in the interpretation
and use of the results rather than in the evaluation approach used.

‘*For further information oh>soffw§§é tools, seéthMSO TR-75-184>and MITRE
WP-21017.

45

e

RS

s,

AN el 23 B s i B TETIN NI

PO, S SRR T L WEEEY SR

.. 2 3 el WL LTS R

B T
s DAL SRR

. RS

1.1.1 Simulation

Simulation is one of the most powerful techniques currently available for
verification of system concepts. Simulation is the process of studying
specific system characteristics by the use of models exercised over a period

of time and a variety of conditions for the purpose of evaluating alternatives,

timing data, system capacities, performance, and constraints within the
confines of that system.

For the Conceptual and Validation Phases, it i3 not necessary to examine all
the design details of the system, so a simplified model can be used to gather
information directly pertaining to that system's functional performance. The
result of the modeling studies should provide sufficient data to verify the
specific system concept. However, the simplification benefits of simulation
can also be its drawbacks. Some simulations are too simplified to be meaning-
ful. There is currently no universal modeling program capable of simulating
any proposed computer configuration for all systems. Also, there is a wide
variety of simulation methods, most of which are too costly in time and money
to develop and use effectively. Sometimes the structure of required data is
complex and a large quantity is required. Obtaining sufficient data to cover
the time and conditions to be simulated can be costly and time consuming and

.'may complicate the analysis. However, once the strengths and weaknesses of

simulation are recognized it can be a very effective tool to aid in selection
evaluation, performance projection, and verification of performance require-
ments.

1.1.2 Performance Monitoring

Performance monitoring is the process of collecting data on the performance
of an existing system for the purpose of evaluating or improving performance
or reconfiguring the system. Performance monitoring may also be used in the
design of new systems when the instruction set and frequency of use is pro-
jected to be similar to an existing system. The process includes both the
collection and the analysis of performance data, and can be accomplished by
hardware, software, or a combination of both. A hardware monitor is a unit
attached directly to a computer's circuitry to obtain and record instruction
execution, data transfer, and control information. Hardware monitoring tech-
niques are generally easy to install and use and do not perturb the processes
under evaluation. They can also obtain occurrence and duration data of simul-
taneous events. A software monitor is a computer program that collects per-
formance data on system operation. Software monitoring techniques interrupt
the normal programmed procedures to obtain required information at strategic
points during the operation of the system under test.

46

s 1o

TR TEEN——

o TR TR T s G AT,

RS RAE T s a

e g -

1.1.3 Synthetic Programs

A synthetic program is a set of executable instructions, including I/0 opera-
tions, files, and operat1ng system resource requ1rements written for the pur-
pose of represent1ng various computer demands inherent in the system under
study. Although synthetic programs offer flexibility in providing a wide
range of measurement parameters (e.g., run priorities, projected job mix),
the lack of standard synthetic programs makes selection evaluation between
proposed hardware configurations difficult. Synthetic programs are also

used for performance projection and performance monitoring.

1.1.4 Benchmarks

A benchmark program is an existing operational program used for performance
projection or selection evaluation of computer equipment upon which the
benchmark is executed. A benchmark, or series of benchmarks, can demonstrate
computer operational differences (e.g., CPU performance, I/0 channel perfor-
mance, device management characteristics) while demonstrating software
(specifically compiler) speed and execution. Requirements in the selection
of the appropriate benchmark must include such factors as the type of selec-
tion mix, I/0 requirements, and the job mix. Numerous benchmarks may be
required to sufficiently evaluate the system hardware and software character-
istics.

1.1.5 Kernels

A kernel program is written to evaluate timing information about a specific
computer. It represents a partial or complete translation of the time-critical
part of an application algorithm (utilizing a compiete, or nearly complete,
instruction set for a given machine). Kernel programs usually do not include
a comprehensive set of I/0 operations as they are restricted to user applica-
tion functions. Kernel programs may be quite large and complex, requiring
time for code, checkout, and multiple runs to obtain accurate timing data.

They genera]]y provide little information about the effects of the operating

system; some compiler data _may be available through analysis of object code.
The program methodology or code efficiency of the kernel itself must be con-
sidered in evaluating the results of kernel operations. The use of kernel
programs contributes to hardware evaluation and performance monitoring rather
than to software evaluation.

1.2 DEVELOPMENT SPECIFICATION METHODOLOGY

The CPCI Development (Part I) Specification is one result of the system engi-
neering effort of the Validation Phase. There'is presently much research work
being done in the field of performance requirements specification methodology,
including analysis of: problems found to exist in specification documents; a
machine-processable language to state system requirements; and procedures to

47

SARRICR S = TRIIE

A A

AR R SRR e S D E A U B

SRR e i e

verify consistency, completeness, and correctness of requirements. There
currently exists no reliable tool or technique that can effectively aid in the
translat3on of the system requirements (including the system environment and
interactions, performance criteria, and operational functions) into a design-
~independent document specifying user needs and system data processing functioral
requirements. Such government owned tools as CARA (Computer Assisted Require-

. ments.AnaIysis) are still under development and evaluation. The problem of
adapting a common language, such as English, into a formal language for re-

| quire.ents specification has not yet been solved :

2. 'DESIGN VERIFICATION

e e

This discussion addresses design aids which can be used in the Full-Scale
Development Phase to support the translation of performance requirements [as
stated in the Development (Part I) Specification] into a computer program
design of sufficient detail to begin CPC coding. Such aids include:

e Design tools and techniques
e Documentation techniques
o Design review techniques

2.1 DESIGN TOOLS AND TECHNIQUES

The'design tools and techniques used to support definition of CPC performance
requirements, interfaces, and data base definitions, include:

e SimuTation

e Top-down design
e Design language
e Decision tables

These tools and techriques are discussed in the following paragraphs.

2.1.1 Simulation
Simulation tools used during CPCI and CPC design are intended to verify that

the design will satisfy the performance requirements. Verifying that the
CPCI'will meet the performance requirements, using analytical methods only, is
difficult due to the complex external environment, operating system interactions,
and, in some cases, incomplete or inconsistent specifications. The use of
simulation or modeling is intended to provide sufficient information during

the design process tc detect inconsistencies or evaluate alternative equations
in the definition and structure of the CPC specifications. Outputs from various
simulation techniques are used in trade-off analy<es to determine feasible

CPCI design.

43

layers of more and more theoretical operations, beginning with very abstract

" A program design language is a formal language used to describe the control

. currently advanced to the state where they are capable of translating a

2.1.2 Top-Down Design

Top-down design is a manual, analytical, design method which is compatible

with structured programming techniques. The primary purpose of top-doyn.deSTgn
is to simplify the overall CPCI structure, thereby reducing the probability of
design errors and inconsistencies, Top-down methodology is based on the prin-
ciple of hierarchical development. That is, a system is composed of successive

operations at the user Tevel and ending with primitive, or basic, operations at
the machine level. Top-down design implies that the control and interaction i
of CPCs is defined from the top (the user level) to the bottom (the mach1ne' 3
level). Also, the design activity is constrained (and error prone alternatives :
eliminated) by controlling the interface interactions between levels of CPCs in
such a manner so as to "hide" lower level operations and associated data from
higher control levels. This has the effect of reducing information transfer
interfaces between CPCs. Top-down design is a mechanism used to obtain a clear
and consistent functional flow of the CPCI, while attempting to minimize CPC
interfaces and indiscriminate use of data. This technique simplifies both the
process of design and the verification of design.

2.1.3 Design Language

structure and organization of a program by translating design specifications
into computer instructions by a processor. Program design languages are not

machine-independent data processing problem intc a structured set of program

modules. However, they may be used for determining control flow design alter-

natives while documenting the design process as it evolves. The use of a pro-

g:am design language has the potential to assist in the verification of speci-
cations.

2.1.4 Decision Tables

Decision tables are a mechanism which can be used to represent information on
program conditions, rules, and actions in a tabular form that can be automati-
cally translated to executable code by a processor. Decision tables are a
tabular representation of the design which can be used to clarify the control
flow of decision alternatives by presenting the information in a concise and
understandable format. However, decision tables are most effective when they
represent the conditions of a relatively small application area or algorithm
and are not generally used in large, real-time, or multiprocessing software
applications.

49

2.2 DOCUMENTATION TECHNIQUES

A limited number of techniques for design documentation are currently used in
the design process, most of which attempt to graphically represent control
flow and functional processing. There has been a move away from traditional
flowcharting documentation methods with the advent of structured programming
techniques, but at the same time there appears to be a clearer recognition of

the information required to adequately represent components in the system
 design,

Design documentation techniques include:

e HIPO (Hierarchy plus Input-Process-Output) Charts. A HIPO
chart is a device for representing functional system design
in a hierarchical manner. Each graphical representation pre-
sents a functional process and its subprocessing relation-
ships, as well as the flow of input and output for each pro-
cess, or subprocess. HIPO charts depict software functions
rather than control flow or data requirements.

symbols are used to represent specific functions, sequences
of operations, equipment usage, control flow, data manipu-
lations, etc. Flow charts may be used for depicting system,
subsystem, or program level design. Design flow charts are
distinct from computer-generated flow charts produced from
source code. Although structured programming techniques
deemphasize the use of flow charts as a design aid, design
flow charts still provide an effective mechanism for repre-
senting functions and functional relationships within and
between computer programs and system components. Flow charts
remain one of the most effective methods for representing CPC
functional relationships and hierarchies.

. Decision Tables. Decision tables in addition to their design
evaluation uses are sometimes used to document program condi-
tions, rules, and actions in a tabular, easy-to-read format.

2.3 DESIGN REVIEW TECHNIQUES

There are two types of design reviews being used by contractors on.softwafe
development projects, individual and team reviews. Ind1v1dua[design reviews
have always been used in software development. Basicg]]y, this technique
consists of having designers analyze each other's design specification to
verify its correctness and consistency. A team review is a more formalized
process in which a group of experts rigorously examine. the des1gn of a groun
of functionally-related CPCs to detect errors and inconsistencies.

50

BV R O S ¢ > Cxud s o8 SEUE S R s na tr e b - ' i :

- - —

The use of both individual and team reviews has been an integral part of the
software design process for many years, but team reviews are currently receiv-
ing renewed attention due to structured programming technology. The purpose
of a rigorous design review is to discover potential errors and inconsistencies
early in the Full-Scale Development Phase when such errors are relatively easy
to correct and when costs associated with error correction are low. The
allocation of Development (Part I) Specification requirements on a paragraph-
by-paragraph basis to one or more CPCs provides a checklist for use at design
reviews. Team reviews may have an additional benefit of providing junior
project personnel with a learning mechanism for evolving system design, and
management personnel with visibility for verifying work progress.

3. COMPUTER PROGRAM VERIFICATION

The following implementation aids (programming tools, programming standards,
testing tools, and project support aids) are widely used in the software
industry to support computer program coding and testing activities.

3.1 PROGRAMMING TOOLS

: Programming tools are used to translate a program design specification into a
k- 4 " set of machine-readable instructions or an organized repository of information,
i.e., a data base, used and set by the CPCI. Such tools include:
: o Compilers/assemblers
!ii e Data base tools
' o Consistency analyzers
e Overlay analyzers

; These tools are discussed in more detail in the following paragraphs. Also,
- related aids that attempt to verify consistency and conformity to the estab-
lished project programming methodology are discussed.

3.1.1 Compilers/Assemblers

Programming languages and their associated compilers are some of the most sig-
nificant programming tools available to the contractor for use in the Full-
Scale Development Phase. Although the criteria for selecting the programming

language do not generally include the quality and quantity of compiler-
dependent aids, these aids constitute a large proportion of the tools available
to the contractor for the verification process. Some of the more widely used
tools and aids associated with programming languages include:

51

e Set-Use Matrix/Cross Reference Analysis. This tool is a program
associated with compilers and provides information on the usage of
program labels, tags, data variables, constants, or other program
elements. The information usually includes the name, a set-use
indicator, and the location(s) in the program where the identified
jtem is set and used. The set-use matrix provides a static trace
of data flow. A set-use matrix can be obtained for a CPCI by
utilizing sophisticated system monitors whigh use the compiler-
generated output for each CPC as input. This type of set-use matrix,
also referred to as a cross-reference analysis, is then generated
for all data variables used and set by each of the CPCs in the
CPCI. It is also possible to obtain cross-reference informatiun on
other system components, such as files and macros.

o Reformatter. A reformatter is a program used to.restructure
the presentation of source code. Symbolic program modules
are input to the program along with reformatting conventions.
The reformatter outputs the symbolic program according to the
requested reformatting conventions; and the output is the

- same symbolic program in a more readable format. For example, a
] reformatter can be used to provide standardized indentation.

3.1.2 Data Base Tools

One of the means for communication between system elements is a globally de-
fined data base which contains information required by CPCs in performing
their required functions. Sometimes the structure and contents of the data
base are sufficiently complex to require tools to build and maintain the

information contained in the data base. Some of the tools associated with a
data base include:

o Communications Pool Generator (COMPOOL). A program and asso-

| clated data definition Tanguage that allows commonly accessed

| data to be centrally defined and controlled. The data defini-

| tions are input to the program according to its language speci-
fications, processed (or compiled), and the output is a data
dictionary available for use by assemblers, compilers, link
editors, and data reduction and execution programs. The data
definition language generally requires a parameter description,
scaling factors, and sometimes value ranges. The use of this
type of tool allows system data definitions to be centrally
controlled so that they do not have to be defined by each pro-
grammer responsible for CPCs that use system data. Central
control of the data base definitions is a feature which enhances
the verification process by Timiting the scope of possible errors.

52

e Data Definition Program. A program that provides the capability
of controlling central data definitions through which CPCs,
written in differing programming languages (PL1, COBOL, JOVIAL,
FORTRAN), are able to more easily communicate with each other.
It also provides a methodology for making changes to system data
so that the new definitions will be consistently reflected in
all communicating CPCs.

e Data Base Analyzer. A program which analyzes the usage of data
variables by CPCs and indicates whether the CPC inputs, uses,
sets, or outputs the variable. This program is similar to a
set-use matrix or cross-reference analysis.

3.1.3 Consistency Analyzer

At least the following types of consistency analyzers exist to aid analysis
of data used by computer programs:

e Unit Consistency Analyzer. A tool which analyzes the syntax of
program modules written in a specific programming language
to verify consistent usage of globally defined data elements by
_that module. The purpose of the tool is to ensure that the _
set/use of parameters by each CPC is consistent with the
system parameter definition.

o Interface Consistency Analyzer. A tool that audits the defi-
nitions and declarations of module interfaces for compatibi-
1ity and consistency.

3.1.4 Overlay Analyzer

This type of tool can be used either during design or in the early steps of
coding. Its primary purpose is to analyze core memory requirements

to provide information on overlay structure to the programmers. The input
to an overlay analyzer is the estimated (or actual) core requirements and a

list of external CPC names and data references for each module. The out-
put is a report containing information needed for overlay planning.

3.2 PROGRAMMING STANDARDS

Programming standards should be described by the contractor in his Full-Scale
Development Phase proposal and should be finalized as part of the CPCI design
activities. Programming standards are used to achieve better quality and more
consistent products, while contributing to maintainability, testability, and
reliability. The need for programming standards has been obvious for some
time, although it has sometimes been difficult to enforce established standards.
The following discussion is concerned with specific programming standards and
existing too?s designed to enforce or audit programming standards.

53

. b —
RGN S NS € 15 o s e o it Sl e il oy e i { i i - il R ARG A a g e . -~
R A it R R SR i e & i 4 ’ " ’

B TR ————— = - e i s R R s

e

3.2.1 Specific Programming Standards

A few of the more widely, used programming standards, which can also be
automatically audited, include:

e Module Size Limitations. To aid comprehension and reduce complexity,
maximum module size standards are established and exceptions granted
only when necessary to implement a well-conceived design. The intent
of a size limitation standard for modules is to (1) improve readability
for both testing and maintenance purposes; (2) simplify the develop- :
ment process; (3) enhance module control; and (4) isolate common
code for use by multiple modules. Feasible 1imits for module size
vary, since there is a compromise between ease of reading and ability
of implementing logical functions. Structured programming advocates
suggest that a module should be contained on one page of output
listing since multipage program constructs are harder to follow and
page turning breaks concentration. If timing requirements are
critical, che size limitations set by the contractor may cause some
decrease in program efficiency.

e CPC Organization. To enhance readability and logic clarity, a
meaningful unit of source text (a description of a procedure, a
macro that performs a clearly defined task, or a data definition)
should be kept to one page because indentatian suffers between
pages. The unit of source program text for each CPC should
include and be organized as follows:

- Initial commentary section describing function

- Source text for the CPC logic

- Local (CPC-unique) procedures or in-line routines
- Local data base definitions

L

- Definitions of referenced system data base elements.

e Program Constructs. To enhance readability and eliminate
intricate logic that is difficult to verify, only closed _ .
logical structures should be employed in the construction ¢
of CPCs, if the language permits. Closed logical structures
are those which have a single entry and a single exit point.

“Use of the GOTO instruction is limited to branching within
the confines of the constructs.

o Indentation. To increase readability, indentation can be a primary
means of imparting structure to the source program listing and,
where supported by the program language, can be used to show the
flow of control and the scope of definition.

54

e Naming Conventions. To aid readability, testability, and

maintainability, names used in computer programs (procedure
or macro names, data identifiers and statement labels)

should be meaningful. Naming conventions should uniquely
identify each CPCI component and all CPCI symbols (variables,
~constants, and statement labels) shared by more than one

CPC. The naming conventions must be easily understood to
achieve maximum benefit.

3.2.2 Existing Tools for Enforcing or Auditing Programming Standards

Existing tools that can be used to enforce or audit programming standards
include:

e Code Auditor. A program that analyzes the syntax of a CPC
Zaccord1ng to the rules of the specific 1anguage) to examine each
~statement for adherance to established coding conventions. This
type of tool is constrained both by the specific language
syntax rules and the project-specific programming conventions
making it inapplicable for multi-development projects. However,
it has been found to be an effective mechanism for evaluating
adherance to standards and improving both verification and
maintenance activities.

e Structured Programming Precompiler. A program, aiso called a
macro processor, which accepts structured programming constructs
not supported by the specific language compiler and translates
the constructs into compatible source language statements. The
output consists of the altered source code which can then be
compiled by the specific language processor.

3

3.3 TESTING TOOLS

This discussion is concerned with those tools that are applicable to the
verification activities inherent in the development of large computer systems.
At CPC-level testing, the selection and use of test tools should depend upon
the tool providing sufficient information to demonstrate the following:

e The CPC's internal logical construction.

e The CPC's input test case data, including nominal, default,
null, critical, maximum, and minimal data values.

e Integrity of the CPC's output data.

e Data base integrity, before and after CPC execution.

55

T ——

e ST e Wi A i ll

- - — - s et o o SR AL 2%,

e The CPC's instruction-execution frequency and related
timing information.

For CPC-incremental integration testing, selection and use of test tools
should consider how the tool provides information on the following factors:

e CPC interface integrity.

e Input data that is representative of the actual or live data.
o Instruction execution frequency and timing data.

e Core allocation data. |
e Data base integrity, before, during, and after CPC operation. ;

o_ Output data integrity, such as message and display formats.

The following discussion is concerned with specific aids and is presented in
terms of module and CPC-level, CPC-incremental integration, and CPCI testing
aids.

3.3.1 Module and CPC-Level Testing Aids

Module and CPC-level testing aids, or debugging tools, are designed to help
the programmer locate an error in program code that causes abnormal behavior
or termination to occur with a given set of inputs. Debugging aids assist in
tracing the execution of software by allowing the examination of the contents
of machine registers and memory representing the operational environment in
wnich the software will be executed. The following aids are frequently used
for module and CPC-level testing:

e Trace. A computer program used to record data cn program execution
and machine environment. Data may be collected when selected
portions of code or a selected class of instructions operate.

e Dump. A program which outputs all or selected portions of memory
after program operations or at'spe;ified points in program operation.

56

e Driver. A computer program which provides inputs for other
programs by simulating its operational environment. Drivers
range in complexity from a simple sequence of calls to environment
simulation routines or complex data generation and simulated
time-dependent operations.

[Data Reduction Programs A program ‘that translates machine
output into a format more easily read by project personnel.
In some cases, these types of programs subject machine output
to stat1st1ca1 or analyt1ca] analyses before outputing the
listing.

o Test-Case Generator. A program, or set of manual procedures,
designed for the purpose of preparing test data for a specific
piece of software. Most test-case generators involve some
statistical algorithms for frequency distributions or random
number generators for generating a wide distribution of input

“data values. The specifications for a test-case generator are
dependent on the specifications of the software for which data
is generated, such as range of values, variable types, error
conditions. (This class of tools is separate and distinct from
automatic test-case generatgrs which are still being researched
and are not ‘applicable to C° systems

3.3.2 (CPC-Incremental Integration Aids

Many of the tools discussed for module and CPC-level testing are also used
for CPC incremental integration testing, such as dumps, data reduction
programs, and test-case generators. Additional tools used for CPC integra-
tion testing concentrate on verifying that the basic algorithms operate
together correctly by displaying information derived from analysis of the
CPC's external specifications as defined in the draft Product (Part II)
Specification. The following additional tools are used for CPC integration
testing:

e e ———— e, ———

® Automat1c Execut1on Analysis. A program that ana]yzes the
syntax of a CPC to instrument the source code. Instrumenta-
tion is the process of generating and inserting instructions
at strategic program locations. The modified program is
then compiled and linked with the recording routines. The
instrumentation is transparent to the programmer. The CPC
is executed with user-supplied test case data and the execu-
tion of the CPC is dynamically recorded via the instrumenta-
tion. The output data from this type of tool describes the
execution frequency of each statement and sometimes includes
information concerning 1nput data process1ng The output

57

|
!
!
|
i
|

7 0 i i SRy

data are used to generate a more exhaustive set of test
cases, or to identify code tnat is inefficient or superfluous.
It does not prove the program coriect in any way, but it does
__provide an indication of the amount of testing applied to the
CPC. The output generated by automatic, execution-analysis
tocls, for a moderately sized program with a minimum set of
;e§t,g§$gsl“§§ge§_time>ggvgbggjg,"analyze, and understand. An:
instrumented program may take as much as 50-100 percent longer
to operate on a single test case than the non-instrumented
version of the program on the same test case. However, auto-
matic execution analysis provides a quantitative measure of
the percentage of a computer program which was tested.

e Dynamic Analysis of System Structure. A program which
outputs Tistings of the CPCI or subsystem structure when it
is prepared for execution, such as link editors and loaders.

The output provides information on the contents of each
load CFC, by specifying the external references made by
each CPC within the CPCI.

"3.3.3 CPCI Testing Aids

In addition to the tools discussed in 3.3.2, the following tools can be
used to assist in CPCI testing:
e FEmulators. Hardware and/or micro-code used to permit one

computing system to execute computer programs written for
another system. Emulation is a technigue which allows the ,
performance of each instruction to replicate the characteris- ,
tics of the original machine, except for speed of operation. 1
Emulation differs from simulation in that in simulation
there is not necessarily an identical set of program instruc- 3
tions and/or common instructions are not necessarily executed
in the same precise manner. Emulation may also be used in
earlier stages of testing when the target computer is not
available. In this case, module-level testing and integra-
tion testing may be performed on a host machine emulating
the target machine.

e Operating and Performance Measurement Tools. These tools
require that the parameters impacting individual CPCI per-
formance, as well as the interaction and dependence of
those parameters upon each other, be identified so that
the tools are able to measure specific performance charac-
teristics such as operating time, core/peripheral storage
transfer requirements, and memory used. Some performance
measurement tools .also contain algorithms for processing
and analysis of the data. (See 1.1.2.) :

58

o e

3.4 PROJECT-SUPPORT AIDS

The development of large complex systems requires another set of tools to
support analysis, programmers, and management, and indirectly support the
verification process. Project-support aids are a combination of technical
and managerial procedures and may be manual, automatic, or a combination of
Project-support aids include: <

e Program Production Library. A program production 1ibrafy (PPL) .

'+ gramming personnel. The use of the PPL helps to coordinate

e Project Monitor. An automatic or semi-automatic tool used

is a system of administrative procedures and files designed to

“establish and control computer program and test case files,

enforce established programming standards, and provide infor-
mation and visibility for both project management and pro-
the status of CPCs under development, while also helping to
automate configuration control procedures. This is accomplished
by storing program modules and test data in a data base and
maintaining status and control records on the contents of the

- __data base. RN

to provide management, planning, and control information of
software under development. These tools are used to build
a project data base containing detailed schedule informa-
tion for collecting and reporting the status of program

"~ development. They also are used to keep track of different

components of the CPCI, describe their interrelationships,
and monitor the progress of their completion. Schedules
for CPCs may be plotted, and error reports and resolutions
may be tracked. The relationships between specifications,
CPCIs, CPCs, test requirements, and test plans can be main-
tained in the data base and reported as traceability veri-
fication matrixes. Matching of test plans and procedures
with requirements may also be accomplished. Project moni-

_ __ _ tors are used to provide the contractor with visibility on

work progress for the evolving CPCI, but they are sometimes
Cumbersome and expensive to use because they require detailed
and current input data on all system elements to be effective.

o Chief Programmer Team. A contractor organizational concept used

in Full-Scale Development which structures job assignments by
individual specialization and clearly defines the relationships
between team members. Although primarily directed at software
development, the chief programmer concept aids verification
through its internal review and testing activities. The

team is headed by a highly competent chief programmer, whose
principal job is to design, code, and test the critical segments
of the code and to allocate specific programming assignments. A

59

e

e

e N M

e

backup programmer may assist him_in the design of the
“program and act as an evaluator, but is not held responsible
for the code. A program secretary is responsible for main-
taining the project records, project notebook, and the PPL.
Other programmers and analysts perform duties as designated by
the chief programmer. The entire team usually consists of
five to nine people. The software produced under this concept
is the shared responsibility of the team as a whole. The
chief programmer concept features visibility into work assign-
ment and communication between team members.

Automatic Flowcharters. A program that analyzes the syntax

of a program 1n a specific language to graphically represent

the control flow of the source code. Some automatic flowcharters
incorporate programmer comments in the graphic display outputs.
Most automated flowcharters do not analyze usage of data variables,
although they often reflect where data is set and used.

60

Y Sy e sen

T

~ APPENDIX B - GLOSSARY 8

This appendix consists of (1) definitions of major terms used throughout
this guidebook and (2) acronyms and abbrev1at1ons used here1n

DEFINITIONS

.Certification. As used in this guidebook, certification refers to the using

command's approval, at the conclusion of OT&E, that the acquired system
satisfies its intended operational mission.

Computer Program Component (CP€). A functionally or logically distinct part
of a computer program distinguished for purposes of convenience in design-
ing and specifying a complex computer program as an assembly of subord1-
nate elements.

Computer Program Configuration Item (CPCI). A computer programming end pro-
duct whose development and subsequent modification is subject to con-
figuration management.

Computer Program Development Plan (CPDP). The CPUP is a plan that identifies
the actions needed to develop and deliver computer program configuration
items and necessary support resources.

Computer Programmin? Test and Evaluation (CPT3E). Tests conducted prior to
and 1n parallel with preliminary or formal qualification tests. These
tests are oriented primarily to support the design and development
process. _(AFSCM/AFLCM 310-1).

Critical Design Review (Computer Program). A formal technical review of the
design as depicted by the specification and flow diagrams, sufficiently
detailed to enable the programmer to code, compile, and debug a computer
program, to assure that design requirements have been met before coding
begins.

Development (Part I or Type BSE Sgecificat1on A document which specifies the
requirements pecular to the design, development, functional_performance,

test, and qualification of the configuration 1tem It establishes per-
formance criteria and test criteria_ for which the program shall be
designed/developed [MIL STD-483(USAF)]

Development Test & Evaluation (DT&E). That testing and evaluation of indivi-
dual components, subsystems, and, in certain cases, the complete system,
which is conducted predominantly by the contractor.

Formal Qualification Review (FQR).. The test, inspection, or analytical oro-
cess by which products at the end item or critical item ievel are veri-
fied to have met specific procuring activity contractual performance
requirements (specifications or equivalent). This review does not aoply
to requirements verified at FCA [MIL STD- 1521A(USAF)]

61

s e e

Formal Qualification Tests (FQT). A formal test conducted in accordance with
the Air Force-approved test plans and designed to be a complete and
comprehensive test of the CPCI prior to FCA. It is conducted after the
design process culminates (AFR 800-14, Vol. II).

Functional Configuration Audit (FCA). A formal audit to validate that the
development of a configuration item (CI) has been completed satisfactorily
and that the CI has achieved the performance and functional characteris-
tics specified in the functional or allocated configuration identification.

Physical Configuration Audit (PCA). A technical examination of a designated
configuration 1tem (CI) to verify that the CI "as built" conforms to the
technical documentation which defines the CI.

Preliminary Design Review (PDR). A formal review of the preliminary design of
a system functional area or a configuration item to establish system com-
patibility of the design, identify specific engineering documentation and
define physical and functional interface relationships.

‘Preliminary Qualification Tests (PQT). A formal test conducted in accordance
with Air Force-approved test plans and designed to be an incremental pro-
cess which provides visibility and control of the computer program devel-
opment during the time period between CDR and FQT. A PQT should be con-
du?tedlgor those functions which are critical to the CPCI (AFR 800-14,
Vol. II).

Product Specification. A document or series of documents which contain the
detailed technical description of the CPCI as designed and coded. It is
a complete description of all routines, limits, timing, flow, and data Fea
base characteristics of the computer program, limits, timing, flow, and data
coded instructions. Equivalent to "Part II CPCI specification" or "Type
C5 specification”.

Program Production Library (PPL). A group of manual or automated procedures
_7.used to control and keep records of the developing software.

System Design Review (SDR). The SDR is conducted to evaluate the optimization,
correlation, completeness, and risks associated with the allocated teci-
nical requirements.

System Engineering Management Plan (SEMP). The SEMP is a comprehensive plan

on how the contractor will manage and conduct his integrated engineering
effort.

System Requirements Review (SRR). The SRR is a system engineering review to
ascertain the adequacy of the contractor's efforts in defining system
requirements. It will be conducted when a significant portion of the
system functional requirements has been estqblished.

62

R e e AR

T ——

-

LT B S AR

EREIR S S LS S R T

78
i
3
0
9
Ve
t
W

-

System Specification. A document which states all the necessary technical and
mission requirements in terms of performance, allocates requirements to
functional areas (or configuration items), defines the interfaces between
or among the functional areas (or configuration items), and includes the
test provisions to assure the achievement of all requirements.

Test & Evaluation Master Plan (TEMP). The TEMP is an overall plan which iden-
tifies and integrates the efforts and schedules of all test and checkout

activities to be accomplished in the system development program.

Validation. As used in this guidebook, comprises those evaluation, integra-
tion, and test activities carried out at the system level to ensure
that the system being developed satisfies the requirements of the
System Specification. While the validation process has significant
software implications, a software validation process, distinct from
the system validation process, cannot be isolated since all evaluation
and test activities that make up validation are focused at the system

level.

Verification. The iterative process of determining whether the product of each

step of the Computer Program Configuration Item (CPCI) development
process fulfills all of the requirements Tevied by the previous step.

63

e -

DB Ut a2 s L

RN

A ¢

b
3
§
1

ACRONYMS AND ABBREVIATIONS

Air Force Regulations

Air Force Systems Command

Command, Control, and Communications
Critical Design Review
Configuration Item

Communications Pool

Computer Program Component

Computer Program Configuration Item
Computer Program Developme;t Plan
Computer Program Test and Evaluation
Data Item Description

Department of Defense

Development Test and Evaluation
Electronic Systems Division
Functional Configuration Audit
Formal Qualification Review

Formal Qualification Test
Full-Scale Development

Government Furnished Equipment
Higher Order Language

Military Standard

Operational Test and Evaluation

64

Ao -
et d s M s BT

LR =

RS 2

AR R

e

PCA.
POR.

PO.

PRL.

PQT.
QA.
RADC.
ROC.
RSSs.
SAM.
SD.
SOR.
SEMP.
SE/TD.
TEMP.
1R.
USAF..

Physical Configuration Audit
Preliminary Design Review

Program Office

Program Production Library

Preliminary Qualification Test

Quality Assurance

Rome Air Development Center

Required Operational Capability
Regulations, Specifications, and Standards
Software Acquisition Management
Software Director

System Design Review

System Engineering Management Plan
System Engineering Technical Direction
Test and Evaluation Master Plan
Technical Report

United States Air Force

65

APPENDIX C - BIBLIOGRAPHY

MILITARY SPECIFICATIONS AND STANDARDS

MIL-STD-483(USAF); "Configuration Management Practices for Systems, Equipment,
Munitions, and Computer Programs;" DoD; 12 April 1971.

MIL-STD-490; "Specification Practices;" DoD; 30 October 1968.

MIL-STD-499A; "Engineering Management;" DoD; 1 May 1974.

MIL-STD-1521A(USAF); “Technical Reviews and Audits for Systems, Equipment, and
Computer Programs;" DoD; 1 June 1976.

AIR FORCE AND SUBORDINATE COMMAND DOCUMENTS

AFR 65-3; "Configuration Management;" USAF; 1 July 1974.
AFR 80-14; "Test and Evaluation;" USAF; 19 July 1976.

AFR 800-2; "Engineering for Defense Systems;" USAF; 16 March 1972.

AFR 800-14; "Acquisition Management;" Volume I-Management of Computer
Resources in Systems; 12 September 1975; Volume IT-Acquisition and Support
Procedures for Computer Resources in Systems; 26 September [9/5; USAF.
AFSCM/AFLCM 310-1; "Contractor Data Management;" Volume 1, Management of
Contractor Data and Reports; USAF(AFSC/AFLC); 30 August 1969.

AFSCM/AFLCM 375-7; "Configuration Management for Systems, Equipment, Munitions,
and Computer Programs;" USAF (AFSC/AFLC); 31 March 1971.

AFSCP 800-3; "A Guide for Program Management;" USAF; 9 April 1976.

AFSC DH 4-2; "Computer Program Testing;" Chapter 5-Electronic Systems
Test and Evaluation; AFSC; 10 April 1971

" RADC-TR-74-300; "Structured Programming Series;" Volume XV, Validation and
Verification Study; USAF (RADC) ; May 1975.

66

DATA ITEM DESCRIPTIONS

DI-E-3029, AGENDA - Design Reviews, Audits and Demonstrations
DI-E-3708, Configuration Management Plan

DI-E-3118, Minutes of Formal Reviews, Inspections and Audits
DI-E-3119A, Computer Program Development Specification
DI-E-3120A, Computer Program Product Specifications
DI-S-3581, Subsystem Design Analysis Report

LI -S-3591A, Technical Reports

DI-S-3606, System/Design Trade Study Reports
'DI-5-30567, Computer Program Development Plan (CPDP)
VDI-T-3703, Category I Test Plan Procedures (Computer Program)
DI-T-3717, Category I Test Report (Computer Program)

67

GENERAL REFERENCES

“A Definitional Framework;" Hertzel, W.C.; Program Test Methods; Hetzel, W.C.
(Ed); Prentice-Hall, Inc.; Englewood C1iffs, N.J.; 1973.

“An Overview of Bugs;" Schwartz, J.T.; Debugging Technigues in Large Systems;
Rustin, R. (Ed.); Prentice-Hall, Inc.; Englewood CTifts, N.J.; 197*.

“A Perspective on System Performance Evaluation;" Drummond, M.E.; IBM Systzm
Journal, No. 4; 1969.

"Automation Aids for Reliable Software;" Reifer, D.J.; SAMSO Report TH-'%
Aerospace Corporation; E1 Segundo, CA.; August 1975.

"Computer Program Verification/Validation/Certification;" Reifer, D.J.;*
TOR-0074(4112-5) ; Aerospace Corporation; E1 Segundo, CA.; May 1974.

“Computer Selection Methodology;" Timmpeck, E.M.; Computer Surveys, Vol. 5,
No. 4; December 1973.

"Configuration Management of Computer Programs by the Air Force: Principles
and Documentation," Searle, L.V., Neil, G.; AFIPS Conference Proceedings;
Vol. 30; April 1967.

"Data Requirements for Productivity and Reliability Studies;" Finfer, M. C.;
TM-5542/003/01, System Development Corporation; Santa Monica, CA.;
June 1976.

"Debugging Under Simulation;" Supnik, R.M.; Debugging Techniques in Large
Systems; Rustin, R. (Ed.); Prentice-Hall, Inc.; Englewood CTiffs,
N.d.; 1971.

"Developing and Testing a Large Programming System, 0S/360 Time Sharing
Option;" Scherr, A.L.; Program Test Methods; Hetzel, W. (Ed.);
Prentice-Hall; Englewood Cii?fs, N.J.; 1973.

“Interim Report On the AIDS Inventory Project;" Reifer, D. J.; SAMSO TR-75-184;
Prepared by Aerospace Corp.; 16 July 1975.

"On the Feasibility of Software Certification; "Keirstead, R. E.; Stanford
Research Institute Project 2385 for National Science Foundation
(Grant No. GJ 36903x1).

"Performance Evaluation and Monitoring;" Lucas, H. C.; Computer Surveys,
Vol. 3, No. 3; September 1971.

*The discussions in this guidebook on requirements verification, design verifi-
cation, and computer program verification differ in coverage from Reifer's
CODEVER, SPECVER, REQVER, and SYSVER.

68

"Precompiler Specifications;" Tinanoff, N.; RADC TR 74-300; Structured Program-

ming Series, Vol. II; IBM; Gaithersburg, MD.; May 1975.
“Program Design Study;" Kraly, T.M., et al; RADC TR 74-300; Structured Program-

ming Series, Vol. VIII; IBM; Gaithersburg, MD.; May 1975.

“Program Production Library Programmer's Guide;" Bratman, H., Cudney, P.F.,
Johnson, B.G.; TM-5175/600/00, System Development Corporation; Santa
Monica, CA.; August 1973.

"Quantitative Aspects of Software Validation;" Rubey, R.J.; Proceedings of
International Conference on Reliable Software; Pgs. 245-251; IEEE;
April 1975.

"Reliable Software Through Composite Design;" Meyers, G.J.; Petrocelli/
Charter; MNew York, N.Y.; 1975.

“Software Reliability;" Meyers, G.J.; John Wiley and Sons, Inc., New York,
NEY. ; T976.

"Software Requirements Analysis;" Kassiakoff, A., Sleight, T.P.; Paper
presented at Conference on Software Management in Defense Systems and
Other Federal Programs; ACM/IEEE; 1976.

"Structured Programming: Techniques for Developing Reliable Software Systems;"
Bratman, H.; SP-3693; System Development Corporation; Santa Monica, CA.;
December 1972.

"Summary Notes of a Government/Industry Software Sizing and Costing Workshon;"
ESD-TR-76-166; USAF (ESD); Bedford, MA.; October 1974.

"System Management Aspects of Computer Program Test and Activation;"
Henderson, R.L., Searle, L.V.; TM-3361/000/01, System Development
Corporation; Santa Monica, CA.; August 1967.

"System Simulation;" Gordon, G.; Prentice-Hall; Englewood Cliffs, N.J.; 1969.
‘System Management Applied to Large Computer Programs in BUIC III; Review

of Experience;" Searle, L.V., Rosove, P.E., Sydow, E.H.; ESD-TR-69-302;
Air Weapons Surveillance and Control SPO; USAF (ESD); Bedford, MA.; 1969.

"The Program Development Process;" Aron, J.D.; Phillipines: Adison-Wesley; 1974.

69

A L VAR TR W i e xR ST M ——

N P

&

e o

S Bt TR SR 054 425

i

R

o “-’ = ST e

“The Software Engineering Facility;" Irvine, C.A., Brackett, J.; Document
553-37; Softech; Waltham, MA.; October 1974.

"Validation and Verification Study;" Smith, R.L.; Structured Programmin
Series, Vol. XV; IBM; Gaithersburg, MD.; May 1975.

"Verification and Validation of Defense and Space Systems Software;"
#76.6455.11-002; TRW; June 1976.

70
(Last Page)

e bl

i R R . L g S5 ot B

R Y U

COMMENT SHEET

Software Verification Guidebook

Reviewer's Name:

Comments:

Please return to: Hg ZSD/MCIT (Stop 36)

Hanscom AFB, MA 01731

Y

T

Reviewer's Organization:

