
U .k7 - ______________

- .D—Afl8 517 SYSTEM 1TA MONICA C ...IF r,~ VIC

SOFTWARE .‘.h.EMENT GUIDEBOOK: VERIFICATION .(U)
AUG 77 H $.~. - FINFER F19628—76—C—0236 aUNCLASSIFIED SOC—TM—51,... - ESO—TR—77—263 Pt

ti U
_ _

END

2-78
~oc

p

~~‘‘~~~~~ ~TI :~~~
-

~

_ _

ESD-TR- 77-263

K SOF TW ARE ACQUISIT ION MANAGEMENT
G UIDEBOOK: V E R I F I C A T I O N

System Development Corporation
2500 Colorado Avenue
Santo Monica, CA 90406

August 1977

Approved for Pubflc Release;
Distribution Unlimited.

:;~—~
Prepared for

0~C) DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
j C..) ELECTRONIC SYSTEMS DIVISION

LU HANSCOM AIR FORCE BASE, MA 01731

DC/~~ U-

~ g~~~fl~Lll?fl
1~~~~

J
~~~

9 19b0 
~~~

1111 . 1.bUUU3LJ

I

~T~T~T ~~

LEGAL NOTICE

r When U.S. Government draw ngs, speci fications or other data ore used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, fuinished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sel l any patented
invention that may in any way be related thereto.

OTHER NOT ICES

Do not return this copy. Retain or destroy.

“This technica l report has been reviewed and is approved for
publication .”

I -
‘

•~L
WILLIA}1 J. WHITE, Capt , USAF JOHN C. MOTT-SMIT}1
Project Engineer Project Leader

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

a

JOHN T. HOLLAND, Colonel , USAF
Ch ief , Techniques Engineering Division

FOR THE CO~ 4ANDER

/~~~~~~
~~~~~~~~~~~~~~~~L

TORU YAMAMO~b , Colone l , USAF
Director , Computer Systems Engineering



••
~~~~~~~~

•=
~

•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECURITY CLAsSIFICATION OF THIS PAGE (WRon Daf a

U~~~1~~
EPORT DOcUMENTAT iON PAGE READ INSTRUCTION S

~~~ r ~~ PO~ 2. GOVT ACCE cI~~I~~N T 5  CATALO G MUMu~~~
—_

ES R-?7—263 I ~~~t4?UC _& k1t.tf2~~
’
“I

~~~ 4 . T ~~~~~ (j id S~btitI.I .s~—~-.-re II RUPSIIT t I C OVER

C
l

) 

_ _ _

~ OFTWAR E bCQUISITION~~%ANAGEMENT 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~ UIDEBOO~~ VERIFICATION , ~~. ~~~~~~ ~~~~~~~~~~ N~ M RER

— -~~~~~~ 
— -  ~~~~ _TM~57727~~2/O2frZ7. AUTHQ$(.J S~ USIITRA ST IrLani lti r I uI(R(a)

~7 Ma~~~~~~~ Me~~~ ~~~ %2846-c~~~~~ 4

I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJ ECT . TASK
System Development Corporation7 

A REA 6 WORK UNIT HUMSERS

• 2500 Colorado Avenue
Santa_Monica ,_CA_ 90406 _____________II. CONTROLLING OFFICE NAME AND ADDRESS 11. !P~~R — ~~~~~Deputy for Command and Management Systems /1 ~~ ~77I• Electronic Syst.ms Division aa ti urs.n

• Honscom AFB, MA 01731 
___________________________

14. MONITORING AGENCY MANE 6 AO DRESS(lt dili.rsnt from Cantrof tln4 Oh io.) IS. SECURITY CLASS. (of thl. r •p ort)

UNCLASSIFIED
• IS.. OECLASS IFICATIO N/ OOW NGRAO ING

5. DISTRISUTION STATEMENT (of thi. R.poee)

Approved For Public Release; Distribution Unlimited.

IT. DISTRISUTION STATEMENT (of th. ab.tract .nt.r.d in Block 20. If dUf .r.nt front R.port)

IS. SUPPLEMENTA RY NOTES

tro1I~~
15. CIV WORDS (ConUms. on r.v. ,.. aid. If n.c... y ond ld.nti fr b~ block ni~~b~e)

Computer Program Verification Software Acquisition nag~er~~~
CPCI Verification Software Verification • ~

\ Design Verification Verification 
- .•• -

\~ Requirements Verification
ASST RACT (Conlffiu. on avI.s• aId. It n.c.a.a.? atd id.ntSty by block nomb.r)

This report is one of a series of Software Acquisition Management Gu4~~ which
provide information and guidance for ESD Program Office personnel who are harged with
planning and managing the acquisition of command, control, and communica ions system
software procured under Air Force 800 series regulations and related software ~acquisition
management concepts. It provides a review of the software verificatidn practices and
procedures employed by industry and set forth in relevant DoD and Air Force regulations, ‘

~~-
—-• /

DD I JAN 73 1473 EDITION OF I NOV IS IS OSSOLETE ~~~~~~~~~ ,t l . 
1 

_ 
~ ii

SICUAI?Y CLA$~~Ft CATION OF TM t ( ~~ on~~~~
(

~~~~~ d) 4


_ ~~~~

• SECURITY CLASSIFICATION OF THIS PAGE(W6.N Daf. Znl., .d)

20. Abstract (co& t)

~~~ specificatlâns, and standardS. It specifically: d~~~~s verification~”~~escribes the
softwar. related plan&ng, system engineering, and testing activities, carried out by

• the Program Office and the contractor, which lead to Computer Program Configuration
Item (CPCI) verification; and references specific software techniques and tools required
to CPCL verification.

r.14A,AIAIIUIY ~ •

A~L i~7~~~ ci~L/d III -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ lIt


—
~~~~~ =—

~~~~‘~u-~~’~~~~~ 
•

~~~rr -~~~~~~ - - -~~ — - -— 
~

• 
-• _ _ _ _ _ _ _ _ _ _ _ _ _

I• 11

PREFA CE

• The Verification Guidebook is one of a series of Software Acquisiti on Manage-
ment (SAM) Guidebooks intended to help ESD Program Office personnel in the
acquisition of embedded software for command , control and communications
systems. The contents of the guidebooks will be revised periodically to re-
flect changes in software acquisition policies and practices as wel l as feed-
back from guidebook users .

This report was prepared by System Develooment Corporation (SDC ) under the
direction of the Computer Systems Engineeri ng Directorate (MCI) of the
Electronic Systems Division (ESD) , Air Force Systems Command (AFSC). Contri-
butions were made by: Mr. J. Mott-Smi th and Captain W . Wh ite (ESO/MCI);
Mr. J. Trachtenberg (AFALD/AQE); Mr. M. Landes (RADC/ISI); Mr. M. Mieziva
(ESD/EN); Mr. M. Zymaris (ESD/DRT); Mr. 0. Peterson (The MITRE Corporation);
Captain J. Haughney (AFCS/LO); and Mr. G. Gehlauf (AFLC/LOAK).

The Software Acquisition Management Guidebook series is currently planned to
• cover the following topics (National Technical Information Service accession

numbers for those already published are Shown in parentheses):

Regulations, Specifications and Standards (AD-A016401 )

Contracting for Software Acquisition (AD-A020444)

~ I Monitoring and Reporting Software Developmen t Status
• (AD—A016488)

Statement of Work Preparation (AD-.A035924)

Reviews and Audi ts

Computer Program Configuration Management
Computer Program Development Specification (Requirements Soecification)

Softwa re Documentation Requirements (AD-A027051 )

Verification

• Validation and Certification

Overview of the SAM Guidebooks

Software Ma intenance
Software Quality Ass ur ance

iii 1



— ..
~~~~ ~

— —

Software Cost Estimation and Measurement

Software Development and Maintenance Facilities
(AD-A038234)

Life Cycle Events (AD-A037l15)

Ir

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



• 
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~__~_.SW’~~ ~~~~~~~~~~~~~~ 

-
~~~• -— 

••~ 
~~~~~~~~~~~~~

P ~~~

- • -- - —••---••---•-. •• • •-—-•--•—----— -.••———-——.-.——•-— •• • • • • • •• _...••__~~••~~,•-_

~~._•_•_•• • • -.•••••— • ••‘ • —• • - • • • • • - -- • • — • • • - • • • •

TABLE OF CONTENT S
Page

• PREFACE 1
• LIST OF FIGURES 6

SECTION 1 - INTRODUCTION 7
1.1 Purpose 7
1.2 Verification, Validat i on , and Certification Defined 7

1.2.1 Verification 8
1.2.2 Validation 10
1.2.3 Certification • 12

1.3 Relationship to Other Guidebooks 12
1.4 Contents 12

SECTION 2 - REQUIREMENT S VERIFICATION 15
2.1 Contractor Activities 15
2.2 P0 VerIfication Activities (Validation Phase) 17

• 2.2.1 Determination of Va1Td~tion Phase ~Support Products 17
2.2.2 System Requirements Review 18
2.2.3 System Design Review 19

2.3 P0 Verification Activities (Ful l —Scale Develop-
ment Phase) 20
2.3.1 Eval uation of the Contractor’s CPOP 20
2.3.2 Authentication of the Development

(Part I) Specification 22
2.3.3 Review of the Contractor’s CPCI

DT&E Plan 23

SECTION 3 — DESIGN VERIFI CATION 25
3.1 Contractor Activities 25
3.2 P0 Activities 25

3.2.1 Prel iminary Design Review 25
3.2.2 Critical Design Review 28
3.2.3 Review of the Contractor’s CPCI

• DT&E Procedures . 29

-

3~~~
-

-
~~~~~~~~~~~~~~-.- -~~~~~~ • -- -

TABLE OF CONTENT S (cont’d )

Page

SECTION 4 - COMPUTER PROGRAM VERIFICATION 31
4.1 Contractor Internal Testing 32

4.1 .1 CPC Code and Test 33
4.1.2 CPC Incremental-Integration Testing 36

4.1.2.1 Program Production Library 37
4.1.2.2 Off-the-Shelf-Routines 37
4.1.2.3 Timing and Sizing Analyses 38
4.1.2.4 Tools to Ensure Thoroughness

of Testing 38
• 4.1.2.5 Contractor Internal-Change
• Control Procedures 39

4.1.3 CPCI Testing 39
4.2 Qual ification Testing 41

• 4.2.1 Preliminary Qualification Tests 42
4.2.2 Formal Qualification Test 43

APPENDIX A - SUPPORT TOOLS & TECHNIQ UES FOR COMPUTER PROGRAM
DEVELOPMENT & TESTING • 45

1. Requirements Verification 45
1.1 Evaluation Techniques 45

1.1.1 Simulation . . .  46
1.1.2 Performance Monitoring 46
1.1.3 Synthetic Programs 47
1 .1 .4 Benchmarks 47
1.1.5 Kernels 47

1.2 Development Specification Methodology 47
2. Design veri fication  48
2.1 Design Tools and Techniques 48

2.1.1 Simulation 48
2.1.2 Top—Down Design 49
2.1.3 Design Language 49
2.1.4 Decision Tables 49

2.2 Documentation Techniques 50

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~
•
~n’• -•— —~~~~~ •—.-— — —v--•• ~— - ~~~~~~~--• 

- .
~
,- ,

~~
. .

~~~~~~ ••~~ • ••_-•_ -.•____•_____ .___~••~~~~~~~~~~~~
_-t • - - •• • •

TABLE OF CONTENTS (cont’d)

Page

APPENDIX A (cont’d)

3.1.2 Data Base Tools 52
3.1.3 Consistency Analyzer 53
3.1.4 Overlay Analyzer 53

3.2 Programming Standards 53~
3.2.1 Specific Programming Standards 54
3.2.2 Existing Tools for Enforcing or Auditing

Programming Standards 55

3.3 Testing Tools 55
3.3.1 Module and CPC-Level Testing Aids 56
3.3.2 CPC-Incremental Integration Aids 57

j 3.3.3 CPCI Testing Aids 58

3.4 Project-Support Aids 59

APPENDIX B - GLOSSARY 61

APPENDIX C - BIBLIOGRAPHY - MILITARY SPECIFICATIONS AND STANDARDS . . 66

I I

5

- • -• -~~- - ~~~~~~~~~~~~~~~~~~~ ~~—

________ -
~~~~~~~~~~~~~~~~~~~~~~

• • - 
• • • - - -~~ • • • -  —.~~--~~~~ 

-
~~~r ~~~~~~~~~~ • -

LIST OF FIGURES

Figure Page
1. The Scope of Veri fication, Validation , and Certi fication . . 8

• 2. Major Verifi cation-Rel ated Products 10
3. Verification , Validat ion , and Certification 16
4. CPC Code and Test 34
5. CPC Incremental-Integration Testing 36

6

- ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

— —,~w— ~~~r r ~~r~~
-~~~~~~~~ ——~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-__

SECTION 1 - IN TRO DU CTION

1.1 PURPOSE

This Verification Guidebook is designed to assist the Program Office and i t s
Software Director in planning and managing the implementation of software
verification concepts and requirements as they relate to military Comand ,
Control and Communications system software acquisition management. It
provides a review of tne verification practices and procedures employed by
industry and set forth in relevant Department of Defense and Air Force
regulations , specifications , and standards. This guidebook describes those
Computer Program Configuration Item-oriented system engineering and test
activities which lead to verification. It:

• Defines the term “verif ication ” and distinguishes it from
the terms “val idation ” and “certification ” .

• Describes the software—related planning, system engineering,
and testing activities , carried out by the Program Office
(P0) and the contractor, which lead to Computer Program
Configuration Item (CPCI) ver fication .

• References specifi c software techniques and tools required
in CPCI verification.

• References appropriate Department of Defense (DoD) and Air
Force Regulations , Specifications, and Standards (RSSs)
that establish the basis for CPCI verification .

1.2 VERIFICATION , VALIDATION, AND CERTIFICATION DEFINED

Verifi cation is CPCI oriented. It begins wi th system and software engineering
activiti es, which lead to CPCI defini tions and to the CPCI_Development Sped —
ficatlon, and ends with the qualification of the CPCI.

Valida tion is system oriented. It begins wi th the System Specification an’i
concludes at the end of System Development Test and Evaluation (DT&E).

Certification is a user-oriented , sy~tem—1evel activity and occurs during
Operational Test and Evaluation (OT&E).

Figure 1 illustrates verificati on , val idati on , and certification within the
context of this guidebook series by showing: (1) the five phases of system
acquisition plotted along an arbitrary time line ; (2) the major software re-
la ted products ; and (3) arrows relating the products to the baselines against
which they are evaluateu or tested. Each arrow is labeled to indi cate the

7

hIA~~

__ ~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~ _ _

• specific review test or audit during which the product is evaluated . In
addition , the arrows are labeled to indicate which of the three processes is
involved (verification , validat ion , or certification). The fol l owing para-
graphs define the terms verification , val idation , and certification within

- this context. These definitions also serve_to distinguish the subject matter

~~ of this guidebook from tnat of the Validation d Cert~fi~itf~W gui debook
—

CONCEPTUAL VALIDATION FULL-SCALE DEVELOPMENT PHASE

VERIFICATI ON -

CPT&E
VERIFICAtION

___________ ___________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ CPCI ~~~~~~~~~~~~~~~~~~~~~~~

~~~
J f f VERIFICATION

I SRR(SDR I PQr/FqT 7FCA
V VERIFICATION V~R~F~CATION

SYS~~~ DT& F
VALIDATION

OT&~CERTIFICATION
- - -• - .---• - - • --- - --• - -•- --- - - —

~~ — -

•~~ — r - - _ _ _ _ _ _ _ _
•

Figure 1. The Scope of Veri fication , Val idation , and Certi fi cation

L2.l Verifi cation

Veri fication , as used In this guidebook series , is the iterati ve process of
determining whether the product of selected steps of the CPCI-development pro-
cess fulfills the requiremen ts levied by the previous step. Specific task
areas that make up the CPCI verifi cati on process incl ude :

• System engineering analytical activiti es carried out to ensure
that the CPC I Develo pment (Part I) Speci f icati ons reflect the
requi rements allocated from the System Specification (verifying
the Development Speci ficati on). (See Section 2.)

8

- ~~--~~~--- •~~ -•

- : ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~IT~T’7i

•

• Design evaluation activities carried out to ensure that the
CPCI design continues to meet the requirements of the Develop-
rnent Specifi cation as the design proceeds to greater levels
of detail [Preliminary and Cri tical Design Reviews (PDR and
CDR)]. (See Section 3.)

• Informal testing of the CPCI and its components [Computer
Program Test and Evaluation (CPT&Efl carried out by the con-
tractor at his discretion to assist in development, provide
visibility of progress, and prepare for formal testing.
(See Section 4.)

• • Formal testing of the CPCI carried out by the contractor in
accordance with Air Force-approved test plans and procedures
to verify that the CPCI fulfills the requirements of the
Development Specification and to provi de the basis for CPCI
acceptance by the Air Force [Prelimi nary Qualification Test
(PQT) and Formal Qual ification Test (FQT)]. (See Section 4.,)

The CPCI contractor is responsible for most of the CPCI verification tasks al-
though the P0 monitors and controls his performance by authenticating the
Development Speci fication , participating in design reviews , approving the test
documentation, witness ing the execution of formal tests, and approving and
~accepting test results. The CPCI Development Specification provides the base-
l ine against which the CPCI is verified (Qualifi ed). Verification has the basic

- Quality Assurance (QA) objective of ensuring that the developing CPCI retains
its equivalency to the current baselined specification as design and develop-
ment proceed to increasingly l ower l evels of detail. Thus at the System
Design Review (SDR), the contractor must show that the requirements to be in-
cluded in the Development Specification are traceable to the System Specifica-
tion. At PDR and CDR the contractor must demonstrate the equivalency of each
successively detailed design to the baselined Development Specificati on .
During qual i fication [PQT, FQT , and Functional Conf igura t ion Audi t (FCA)], the
contractor must demonstrate that the coded programs meet the Development Soeci-
fication requi rements. Finally, an audit , the Physical Configuration Audit
(PCA), is held to verify that the Product (Part II) Specifi cation is a true
representation of the coded and tested CPCI. In summary , verification com-
prises system engineering and computer programmi ng-oriented eva l uation and
testing activi ties carried out at the Computer Program Compone JCPc) anA _ __ -

CPCI levels by the CPCI contractor and monitored by the P0. (See the “Reviews
and Aüdfti G~i~ebóok’~ f descri pti~~s of the acti vities _to be conducted atFCA and PCA.)

- - -

9

•—

~

,-—--—_—-.-.—
~~~~~~~~~~~~~~~ ~~~~r—.-.— ~~~~~ ‘~ 

- -

This guidebook discusses verification in terms of activi ties which are to be
• performed by the PC. Much of the guidebook is wri tten in terms of veri fica-

tion actions which the P0 (either alone or assisted by an i ndependent contrac-
tor) must perform. To assist the P0 in evaluating contractor proposals , plans
and progress , the guidebook also discusses veri fication activities oerformed
by the development contractor. Figure 2 identifies the major veri fication-
related , products and mi lestones which are discussed in this gui debook.

• 
• 

• VALIDATION PHASE FULL-SCALE DEVELOPMENT (FSD) PHASE

Product See Product See

System Engi neering & 2.1 & 2.2 Development (Part I) 2.3.2
Software Engineering Specification
Studies (Technical
Reports) CPCI DT&E Pl ans 2.3.3

• Development (Part I 2.2 Computer Program 2.3.1
Specification) Development Plan

(CPDP)
- 

CPCI Design 3.1 & 3.2

CPCI DT&E Procedures 3.2.3 
•

CPC I 4

Figure 2. Major Verification-Related Products

1 .2.2 Val idation 
•

Val idation, as used in this guidebook series , comprises those evaluation ,
integration , and test activities carried out at the system l evel to ensure
that the system being developed satisfies the requirements of the System
Specification . While the validation process has sign i ficant software impl i-
cations , a software val idation process, distinct from the system validation
process , cannot be isolated since all eva l uation and test activities that
make up validation are focused at the system level .

10



~~~~
.,

~~~~
-.-•-• ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ “ ‘ ‘~~~~~~~~~~~~~~~~~~~ “~~~~~~~~~~~~~~ — — ~~~~~~~~~~

--

• Specifi c val idati on tasks (see “Validat ion and Certification Guidebook” for a• detailed description of these tasks) include :

- - • • System engineering activiti es carried out to ensure that the
-

• requirements in the System Specification accurately respond
to the operational needs called for in the Required Operational
Capability (ROC) (validating the System Specification).

• • Configuration Item (CI) integration activities (including
CPCI integration) carried out to assemble and check out quali-
fled CIs as a fully functioning system (installation and check-
out).

• Test Planning and executi on activiti es carried out during
System OT&E tó demonstrate that the completed s.ystem
meets the requi rements called for in the System Specification
(val idating the system).

• Major software-oriented subtasks can be readily identified wi thin each of the
above tasks . Nevertheless , it is not productive to try to define a separate
software val idation process. To do so implies that the CPCIs qualifi ed during
the verification process receive separate and distinct treatment during system
DT&E and that some special recourse is availabl e to the PC if the qualifi ed
CPCIs do not meet system requirements. Such is usually not the case. However,
the P0 shoul d certainly plan and carry out system val idation in a manner that
ensures the comprehensive test and evaluation Of the software subsystem.*
Furthermore, analysis of system test results may require detailed examination
of software performance.

The P0 is directly responsible for carrying out the validation orogram although
it is usually a contractor-supported activity.** During the Conceptual Phase
the ROC provides the primary baseline for validati ng the System Specification .
The tasks of val idating the System Specification , integration, and checkout
fall wi thin the system engineering responsibilities of the P0. Validating
tne system Itself is the responsibility of the Test Director. In summary,
val idation comprises using-~coninand oriented , functionally scoped , systemengineering, integration , and testing carried out at the system l evel by the

• PC staff, supported as necessary by contractor personnel . -

*The software subsystem is the aggregate of CPCIs In the I~i 7
~~See AFR 800-14, Vol ume I,paragraph 5-3c. 

- - • • - -

11



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - —  ~~~~~~~-- — - - - 
-—

• — ~
_

•

1.2.3 Certification

Certi fication, as used in this guidebook series , refers to the using command’s
agreement , at the concl us ion of OT&E, that the acqui red system satisfies its
intended operational mission. During OT&E the system has undergcne test and
evaluation aimed at assuring operati onal effectiveness and suitability under
operational conditions.

1.3 RELATIONSHIP TO OTHER GUIDEBOOKS

Thi s guidebook does not stand alone in providing information on verification.• The Overview guidebook establishes a frame of reference for the whole guide-
book series . The Validati on and Certi ficati on guidebook provides more detai l

• on System Requi rements Reviews (SRRs) and SDRs . The Reviews and Audi ts guide-
book provides more i nformati on on the engineering design reviews and configura—

• tion management audi ts. The Software Documentation Requirements guidebook
covers test planning and reporti ng documentation. Finally, the Configuration
Management guidebook provides information on configuration management proce-
dures related to veri f icat ion , parti:cularly on confi guration control duri ng
DT&E. An effective verification program must incorporate the concepts pre-
sented in all of these guidebooks.

-
——

1.4 CONTENTS

The subsequent contents of this guidebook include three sectiàns and three appen-
dixes, as follows: - - • . - _____•

~~~~~~~~~~~

_ _ - -

• Section 2 - Requirements Verification. Addresses requirements verifi-
cation from initia.l CPCI definition until authentication of the
Development-- (Part I) Specification and verification of the contractor ’s
CPCI DT&E plan. Discusses contractor activities (2.1); P0 verifica-
tion activities during the Val idation Phase, incl uding determination

• of Val idation Phase support products, SRR , and SDR (2.2 through 2.2.3);
-
~~~ P0 verification activities during the Full-Scale Development Phase,

Includ ing eval uation of the contractor’s CPDP , authentication of the
Development Specification, and review of the contractor ’s CPCI DT&E
plan (2.3 through 2.3.3).

ft • Section 3 - Design Verification. Covers design verification activities
• which occur during the Ful l -Scale Development Phase. Discusses

contractor activities (3.1); P0 activIties , Includ ing PDR , CDR , and
review of the contractor ’s CPCI DT&E procedures (3.2 through 3.2.3).

I ~ • Section 4 - Computer Program Veri fication. Discusses computer
program verification activities In terms of (1) informa l testing of
the CPCI and its components as carried out by the contractor at his
discretion and (2) formal testing of the CPCI as carried out by the
contractor In accordance with Air Force-approved test plan s

12
_ _ J

-., , ~~ ~~~~~~~~~~~~~~

-.---

• LL — ~~~~~~~~~ - -- - - ~~~~ —---~~~~ ~~~~

and procedures. Specifically addresses contractor-internal testing,
including CPC code and test, CPC incremental-integration testing , and
CPCI testing (4.1 through 4.1.3); qualification testing , includ ing

--
PQTs and FQT (4.2 through 4.2.2).

• • Appendi x A — Support Tools and Techniques for Computer Program
Development and Testing. Describes support tools and techniques
that aid ~in computer program development and testing.

• Appendix B - Glossary. Defi nes terms and acronyms used in this
guidebook.

• Appendix C - Bibl iography. Provides a list of RSSs , techn ical
books , an d papers that are particularly relevant to the subject
of software veri fication. •_ ______ _ _

~~~

_ —-

-

- I

I

:1

13
(Page 14 blank)



~
: — -• 

~~~~~~~~~~ 

— ~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~ ~~~~~ W~~J!~~~~~~~~~~~~~7

--- - - ---—-

SECTION 2 - REQUIREMENTS VERIFICATION

This section discusses requirements verification from initial CPCI definition
until authentication of the Development (Part I) Specification and verification
of the contractor’s CPCI DT&E plan. CPCI requirements verification at this
time, is focused on the engineering and test planning activities , products , and
review points~ ass ociated wi th the all ocation of performance requi rements and
the veri fication of these requirements as stated in the CPCI Development Speci-
ficati on. These engineering activities are normally conducted during the
Validati on Phase. The engineering process is essent ial ly a decomposition of
the system requirements from a higher (user-oriented) level to lowe r and lowe r

• levels of functional , design , and test detail. Requirements Veri fication is
concerned wi th assuring (veri fyi ng) that each succeeding level of requirements

• is consistent wi th the previous level of presentati on.

Veri fication is illustrated in Figure 3 and contrasted wi th va l ida t ion and
certification . The successive development of speci fications -from the System
Specification to the CPCI Development (Part I) Specification is shown with

N arrows i ndi cating the verification of each product against the previous
product.

2.1 CONTRACTOR ACTIVITIES

The main development activi ties leading from the System Speci fication are
normal ly the responsibility of the contractor. However , the preparation of

- - the Development (Part I) Specification may also be accomplished by in—house
Government resources . The fol lowing di scussion assumes that the activities
associ ated wi th Validation Phase engineeri ng activi ties are performed by a
contractor sel ected by a competi tive procurement.

The contractor ’s major product duri ng the Val idation Phase is the Development
(Part I) Specification. This specif1ca~ion contains the performance require-
ments for the CPCI and becomes the authenticated basel ine for Full-Scale
Development.

-
. The Validation Phase contract should require the contractor to assess the

- -: merits of alternative approaches to meetin g contractua l requirements using
trade studies, data collections , analytical modeling, or simulati on studies.

• Standard si mul ation methods or systeth—~~eci fl~~ietfiOds , sucIi i~ benchiiiarlsynthetic , and kernel programs, and instruction ml xes,Thiay bii.~séd to model
the critical characteristics of a proposed system on a specific computer ,
or to evaluate Its probable performance on a variety of computers . These
techniques are further described In Appendix A , 1.1. The type of study
that should be conducted depends upon the type and quantity of data needed ,

_

•

•

~
•— —,--

~
----—.~~

.
~~~~~~~~~~ 

.-_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ :;~-‘~ ‘~~‘ w~~~~r’N— —..-- ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

-___—I-a 

-
_____

VERIFICATION, VALIDAT iON & CERTIFICATION
OPERATIONAL MAINTENANCE
_ _ _  _ 7

I OPEAAT IONA L
ROC 4 —f TEsra

EVALUATION
_____________ 

CERTiFICATION ______________

s r v~ 
1 VAL IDATION SYSTEM

SPECIFICATION INTEGRATION

~~~~ I
DEVELOPMENT 14 QUALIFICATION
SPECIFICATION J msrs

VERIFICATION

L_i PRELIMINARY

[

INTEGRATION

_ _ _ -

U ~~~~~~~~ _____[DESIGN TESTS

cOOE DEBUG

FIgure 3. VerifIcation , Val ida tion, and Certification

16

___________ _ _

-.~~~~~~~~~~ r~~~ ’r•

the comp l exity of the manipulation/comput ation being examined , and the time
and resources allocated for the study. Engineering studies should normally
be conducted only for those alternati ves whi ch appear to offe r si g n i f i cant

• payoffs in relation to system objectives , such as total cost , schedules , and
• - operati onal perfo rmance .

2.2 P0 VERIFICATION ACTIVITIES (VALIDATION PHASE)

During the Validation Phase, the P0 performs requirements verification by
reviewing the contractor ’s system and CPCI software engineering activities
aimed at scoping ~the CPCIs, tracing functions from the• system segments tothe CPCIs, and detailing performance requirements for each CPCI. The P0’s
CPCI verification review milestones are the SRR and the SDR. These reviews
are further defined in the Software Quality Assürance guidebook and the

- • Reviews and Audi ts guidebook . System—oriented review activities (valida-
tion) are discussed in detai l in the Validation and Certification guidebook .

2.2.1 Determination of Validat ion Phase Support Products

The Validation Phase should begin with a baseline System Specification and a
Test and Evaluation Master Plan (TEMP) . However , prior to the start- of the
Validation Phase, the P0 should determine the need for studies to support the
allocation of requirements to CPCI5. Later these studies will provide the
basis for software engineering decisions and for CPCI verification . Such
studies include :

• Functional -Al l ocation Trade Studies. A series of studies intended
to evalua te the alloca tion of system requirements to hardware ,
software , and personnel . They include design optimization , inter-
face simpl i fication , hardware/software tradeoffs, and human engi-
neering studies. •

- - -

.Sizi nç~ and Timi ng Analyses. The first of an iterati ve ser ies of
activiti es designed to develop storage and timing budgets based

- - on software performance and design requi rements.

• Risk-Identi fication -Studies. Studies that force the identi fi cati on,
descri ption, ranking, and prioritization of risks in the software
development process.

All the above studies can be required by tailoring the “Technical Reports”
DiD (OI-S-359 1) to the specific needs of the program.

17

—
— ~~~~~~~~

,
~~~~~J___  .z.,—..._ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

- -  —- --  -“v 
~~~~~~~~~~ 

— -uu~— -~~~~~~~~~ - - ~~~ - - -
— -

-
—

Addi tional Validation Phase activities which impact the requirements veri fica-
tion process include:

• Software Test Planning Activi ties. Early test pl anning decisions
directly impact the CPCI verification process. For Instance, the
software maintenance requirements reflected in the System Speci fi-
cation impact software support tools and documentation. (See the
Software Develonment and Maintenance Faciliti es guidebook for
additional information.)

• The Contractor’s System Engineering Management Plan (SEMP). The
overall system development process is described in this document.
The detailed CPCI plans and schedules should be consistent wi th

• the SEMP.

• The Contractor’s Computer Program Development Pl an. An Ini tial
CPDP may be requi red at the start of the Validati on Phase, but
the details for a complete CPDP are not available unti l the end
of the Validati on Phase. Many veri ficati on activiti es are
dependent on the detailed schedules presented in the CPDP. The
CPDP should be monitored and updated to reflect any changes In
the contractor ’s software development methodology and pl ans.

2.2.2 System Requirements Review

The SRR is the first formal revi ew of the Validation Phase. It shoul d be con-
ducted early In the phase, but it may be scheduled as a periodi c review meet-
ing. The SRR provides the P0 with (1) an early evaluation of the contractor’s
Initial Validation Phase activi ties and (2) InsIght into the adequacy of the
initial allocation of the data processing requi rements to CPCIs . (See AFR
800-14, Vol ume II, Section 4-9a.) A System Engineering/Technical Direction
(SE/TD) contractor may be used at this point in the software acquisiti on
cycle to assist the P0 w Ith the eval uation . (See the Reviews and Audi ts
guidebook for a detal led discussion of SRR activi ties.) Requirements

-vérTflcatlon activities this time shoul d ensure that
- -

• The pl anned system engineering activities are responsive to the SOW.

• Mission requirements are fully understood by the contractor.

• Total life cycle cost requi rements are understood and will be
considered by the contractor in defining CPCIs.

• Risk identi fication and analysis will be emph asized wi th reference
to technical , cost, and schedule factors.

A
18

• !~
!
~~

UI
~~~~~~~~~~~~~~~~~~~~  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘
~~~~ ~~~~~~

- c-•’~~~
-. ‘ -

~~~~~~~~~~
-
~~

—— —- •- -—-------•-•.• —--—•.-~~~~~~~~ ~~~~~~~~ —-----•---•---•-• - -• — --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2.2.3 System Design Review 
- - - - --  - -

The- SDR is the final progress review before the Development (Part I) Specifica-
tion Is completed. At the SDR, the contractor submits technical reports based
on the system—engineering tasks completed during the Val idation Phase. The
primary requirements veri fication objective at thi s time is to ensure that
the major development risks have been identi fied and ei ther reduced or
elimi nated. Engineering analyses or simulati ons shoul d be verified to demon-
strate that a feasible design is available for all Identified risk areas. In
addi tion , sensitivity analyses shoul d be verified to evaluate the magnitude
of errors in the engineering analyses or simulations which can be tolerated
without endangering the goals of the Full-Scale Development Phase. The P0
should verify that all research and development efforts conducted to minimi ze
risk are completed before Ful l—Scale Development is allowed to begin.

The SD should verify the validity , adequacy , and correctness of the material
submitted by the contractor at SDR by assuring that:

• Each tradeoff is clearly identifi ed. -
‘

• All assumptions are Identified.

• All constraints placed on the Development (Part I) Specification
are identified and justified.

• Alternative approaches were considered. He should also
determine if there should be further analysis to support
the alternati ves .

• • The alternatives were objecti vely compared and selected . —

• The characteristics of the chosen alternatives are
- -- traceable to requl reman ts. 

_____________

• 

- 

• 

- -  

. The performance requi rements j~sTffled b~T t1ië e eertng ~tudies -

are well documented and properly communicated. (Al though the
trade studies contain design information, they are not intended
to force design approaches upon the Full-Scale Development Phase
contractor. Instead, they support the performance requi rements
contained In the Development Specification.)

In addition , the P0 must verify both the equivalency of the evolving Develop-
ment Specification to the System Specificati on and the results of system
engineering tasks which led to that Devel opment Specification by assuring that:

• The system engineeri ng analyses performed by the contractor
support the performance requiremen ts for the selected CPCIs.

19



~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~‘ ~~~~~ -— ~~~~~~
- ‘~~~~~~~~~~~~ - — - - • ~~~-- .~~~~~~~ —

~--~-~~~~~~~~~--- -~~~- - - --
-

I

• All the defined requirements of the CPCIs are traceable to the
• System Specification.

• The CPCI to CPCI and CPCI to CI Interface definitions are
complete, consistent, and compatible.

• All the technical problems (high-risk $tems) have been identified
and solt4tions have been proposed. Typical risk areas include :

- Incompatibilities between CPCI performance requi rements and
hardware capacities.

- Processing requirements not performed by previous systems or
verified by simulations , prototypes, or analytical methods.

- Entering Full-Scale Development wi th unproven hardware or
unproven support software.

2.3 P0 VERIFICATION ACTIVITIES (FULL-SCALE DE”ELOPMENT PHASE)

This discussion is concerned with P0 requirements-verification activities
during the Full—Scale Development Phase. The major P0 verificati on activiti es
Include :

• Eval uation 0-f the CPDP .

• Authenticati on of the Development (Part I) Specification .
- -

• Review of the contractor’s CPCI DT&E Plan .
- - -

2.3.1
-
Eval uation of the Contractor’ s CPDP S

The CPDP i s a planning document , not a requi rements document. However , as a
planning document It Includes the contractor’s description of many activi ties
which relate directly to the CPCI verification process , such as his develop-
ment and test methods, controls over the developing CPCI, and his detailed
schedules and mi lestones. The SD’S evaluati on of the CPDP, at a min imum,
should verify that:

• Contractor test responsibilities are assigned to an i ndepert~ient
i ndividual or group .

• The contractor ’ s test methodology identi fies the tool s to be
used and states their purpose. .

1~~

20

r ~ - - ~- ._~~~ [T~~
-

~~~~~~~~~~~~~~ 
-

- - 

• The development and support tools descri bed in the CPDP are the
s ame as those listed in Section 4 of the Development Speci fication
and In the CPCI DT&E plan.

• The sequence of test activities is identi fied and schedul ed.

• The test sequence is compatible with the sequence of desi gn and
code ; and wi th the expected availability of test support software
and equipment.

• There is a plan for maintenance of all equipmen t needed for
ver if i cation.

• The test schedules are consistent wi th the estimated size and
complexity of the functions to be tes ted.

• The CPDP documents the contractor’ s plan for controlling the
developing CPCI.

• The CPOP documents how the contractor will control and account
for problem reports and their resolution.

• The CPOP identifies how the contracts will provi de visibility
into his CPT&E activi ties. (Provi ñ for programer notebooks
with up—to-date status is one eff tive method for providing
visibility.)

• The contractor ’ s proposed design methodology is clearly explained .
(For example , just stating that he will perfo rm top down design is
not sufficient. He shoul d show how he will monitor his down design
and verify that it has been met.)

• The CPDP shows how the contractor will verify CI timing requirements .
The CPDP should indi cate the contractor’s plan if timing requirements
are not met.

• The CPDP provides a pl an for growth, modulari ty , and ease of modi fi-
ficatlon . •

• The CPDP shows show the contractor will verify that his documenta-
tion Is correct.

21



:~~~ -
-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

2.3.2 Authentication of the Development (Part I) Spec i f ication

Authentication of the Development Specification is the P0’s performance
requirements verification prior to baselining . Prefe’-~ably this activity shouldbe accompl ished prior to beginning the Ful l -Scale Devel~pment Phase becausethe Development Specification is the contractual baseline for Full-Scale
Development. However, in no case shoul d authentication be allowed to extend
past POR. See the Requirements Speci ficiti on guidebook for a compl ete 

- -  

- •

descri pt io n of the purposes , uses , and contents of the CPCI Developmen t
Spec i fication.

In performing requirements verification of the Development Specifi cation , the
SD should assure that:

• The specifi cation clearly distinguishes between each requi remen t
and informati on that does not constitute a requirement. (Al l
“shall” 4tatements should be requirements.)

• The specification demonstrates the contractor ’s understandi ng of
the primary mi~~ion by his statements of CPCI requirements.

• The performance requirements are suffi ciently detailed so that each
function to be performed by the CPCI is fully described in erfor-
mance terms. For example:

- All CPCI inputs and outputs must be completely and fully
described so they c an be designed an~~~ st~4._ -

- All  t imin g requi rements mus t be explici tly stated , both
individually and for the CPCI as a whole.

- Error processing logic must descri be CPC I performance when
Improper, incorrect , or out of range inputs are received.

• Interface compatibility has been established between the CPCI and
other CI5.

• All system lim its and capacities are compatible with the System
- — 

Specification .

• All man—machine interfaces Impacting the CPCI are fully descri~ e~ .

• ,1,1l adaptation data requirements are defined (e.g. ,  radar posi t i ons ,
• a i r  bas e loca t ions , etc . ) .

• All required new technology or design methodology has been oroven
during the Validation Phase.

22

Lk



— — P— — -

~~~rr - —-

~~~~

---- —— —- P  - - 

~~

--- - ---- ---- - - -

• Test facilities are responsive to the requiremen ts iden tif ied  in
-
~~ 

Section 4 of the CPCI Development Specifi cati cn .

2.3.3 Review of the Contractor ’ s CPCI DT&E P lan

The CPC I DT&E (formerly Category I Test) plan provides the basis for CPCI
qualification testi ng (PQT and FQT). Data Item Description (DID) DI-T-3703
describes the format and the content of the CPCI DT&E plan. The test plan
should  be del ivered at the end of the Validation Phase. It should  be updated
prior to PDR.

Ir. veri fying the CPCI DT&E plan , the SD should assure that:

• All CPC I performance r~qi.~irèthe~ts can be demonstr ated

• The qualification test environment is sufficient to demonstrate
CPCI performance.

• The plan is wri tten in accordance with the DID , as tailored for
this specifi c contract .

• If any porti ons of the CPCI have been excl uded from the test plan ,
the reasons for their exclusion have been satisfactorily explained .

• The plan conforms to the requirements of Section 4 of the CPCI
Development Specifi cation. 

_____ ________ ____

• The qual ificati on requirements of the test plan have been related
to specific requirements as stated in Section 3 of the Development
Specifi cati on.

• The methods for determining performance are identified (e.g.,
analysis of recorded data , examinat ion of d isplays , etc.).

• The test plan i denti fies the requirements to be sati sfied during
CPT&E , PQT , FQT , or System DT&E. ( Requirements whi ch cannot be
demonstrated until System DT&E shoul d also be included in the
System DT&E_plan~ .

• The locati on and schedu le for each test is identi fied.

• Any limi tations on test implementati on and accomplishment of test
objecti ves are described . If any of the limi tations impair the
validi ty of the tests , then qualificati on of the CPCI should be
delayed unti l a sufficient test envi ronment can be obtained to
veri fy its performance. 

“

~

-

~~ ~~~~~



— 
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~ 

— ‘IUII~

• Satisfactory plans for the preparation of input data are provided
and that all necessary input methods and tool s are described and
will be available when needed.

• Test responsibilities are clearly defined .

• All necessary personnel , facili ties , equipment , and related CPCIs
are specified and that their availability is scheduled .

• Procedures are established to:

- Revise or update the test plan
- Document and revise the test procedures

- Document the test reports

• The planned test schedules are compatible wi th the development
schedule.

24 -

_ _ _ _
I

--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~ ~~~~~~~~~~~~~

SECTION 3 - DESIGN VERIFICATION

This section covers design verification activities which occur during the
Full-Scale Development Phase. Software design activities actually begin
during the Validation Phase as system or software engineering studies which
support the feasibility of the Development (Part I) Specification. Verifi-
cation of the initial design is an integral part of the requirements
ver i fica tion acti viti es whi ch occur at SDR. Although the design developed
during the Validation Phase is usually included in the Full-Scale Develop—
ment Phase design , it need not be. The Ful l -Scale Development Phase contrac-
tor is usuall y çon&a~tid at tliiDeveiopment

_ (Pa~ _J) Speci fication level and
is responsible for developing the desi tóTsatisfy thi ’eqüirements of the
Development Speci fi cation . Des ign veri fication is performed by both the
contractor and the P0.

3.1 CONTRACTOR ACTIVITIES

The contractor ’s primary engineering activities during the Full-Scale
Development Phase are aimed at producing the CPCI design . The P0 reviews
the developing design at the overall-CPCI level during PDR and at the
de-tailed—CPC l evel during CDR. The contractor retains responsibility for his
design throughout the reviews an-d can change the design as necessary to meet
his contractual Development (Part I) Specification requirements.

3.2 P0 ACTIVITIES

This discussion is concerned with P0 design verification activities which
include :

• PDR

• CDR
• Review of the contractor ’s CPCI DT&E procedures

3.2.1 Preliminary Design Review

CPCI design is based upon the performance requirements in the Development
(Part I) Specification . Initial CPCI design results in the development of
the structure or architecture of the CPCI. It defines the CPCI , and
describes the sequence or priorities of CPC operations. This initial design
is reviewed by the P0 at PDR. Following PDR , the contractor develo ps the
design of each CPC to a level of detail sufficient for program coding to
begin. This detailed design Is reviewed by the P0 at CDR . (See the Rev i ews
and Audi ts guidebook for a detailed discussion of these engineeri ng design
reviews.)

25

Wh ile the CPCI representation differs , the objective at both PDR and CDR is
essentially identical , i.e., to determine that:

• The design approach for the CPCI will satisfy the
performance requ irements of the Development Specification .

• The functional interfaces between the ~PCI and otherCPCIs are compl ete and correct.

• The design is compatible with the timing requirements.

• The test requirements and test tools are sufficient to
determine if the CPCI meets the requ i rements of the
Development Specification .

The PDR provides the P0 with a formal technical review of the contractor ’s
progress in developing a design approach for a CPCI. For verification
purposes, the P0 is concerned with the identification of CPCs and the
al location of CPCI performance requirements to the CPCs .

The contractor presents his overall CPCI design at PDR. If called for in
the contract, the des ign may be documented in a Subsystem Design Analysis
Report* or In a draft of ~~~~~~~~~~~~~ of the Product (Part IL) Specifi-
cation (Sections 1 , 2, 3, 3.1; see Appendix VI of MIL—STD—483),_otherwise, the
design may be described in informal working papers or by~~ó~tract~i~~rësenta-tiofls.

- - .

— — - - - .

The design information** presented _by the contractor should include :

• An identification and description of the CPC structure
of the CPCI, including the functional description of
each CPC and input/output data .

• A requirements traceability matrix.

• Detailed storage allocation charts.

• Data base structure and organization .

• Studies to verify sizing , timing , and computational
accuracy of CPCI elements .

• Updated CPCI DT&E plans.

*See Software Documentati or Requirements guideboo k for a descripti on of the
Subsystem Design Analysis Report (DI— S-3 581).

~~See Software Maintenance guidebook for POR review 3f features w~i :h f~c~1i
tate the development of maintainable softw are .

26 I i


~~~~~~
—- - - -

~~
-

~~~~~~~ . T~~ ~~ - -  ~~~~~~~~~~~~~~~~~r 1 - --  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~ • -• ~~~~~~~~~~~~~ ‘III~- ~~~~--—-- - . - - -.- .~~~~~~~~~—~~~~~~~~~~~ --~~~~~~
— - - - -- - -_______

The P0 shoul d have sufficient time to prepare for the PDR (review material
should be availabl e at least two to four weeks pr ior to PDR)*.

-
The P0 may

identify problem areas to be explored and suggestions for additional
studies, but since the PDR is a review of the design under the control of the
contractor, the P0’s suggestions should not be Interpreted as direction or
approval of the contractor’s design approach, but rather approval of a
successful PDR . For options availabl e to the P0 at POR , with regard to
approval/contingent approval/disapproval , refer to MIL-STD-l52lA, Section 4,
Paragraph 4.2.4, and Appendix C.

The results of the PDR shoul d i ncl ude identification of deficiencies in the
CPCI design aporoach. All resul ts and conclusions must be documented In
the minutes of the POR. P0 design verification at PDR should be based on

-

. :- determining i f:

• All the requirements of the Development (Part I)
Specification have been addressed. (The allocation
of each Part I performance requirement to one or more
CPCs should be shown.)

• The requirements to be satisfied by each CPC have been
identified.

• The CPCI design is of sufficient detail -for detailed
CPC design to take place.

• The CPCI design and the development support tools are
compatible.

• The struct ure of the CPCI data base is established , i n c l u d i n g
organization and intended functional uses.

• The CPCl cóñtràl flow is established :
- Processing priorities are described
- Startup/startover design is shown

• The design methodology described in the CPDP is reflected
in the contractor’TTdeiign . -— — —

~~~~~ time may vary wi th the complexity of the CPCI..
-

. 

27



-,-,-- -‘--—.----—...- ——- -—— -.——- — 
~~~~~~~~~~~~~~~~~~~~~~~~~ 7•~ ‘!~ ~~~~~~~ ~~~~~~~~~~~~~~~ 

-
- .—.—— -—-_ --- -

- . - -

3.2.2 Critical Design Review

The CDR i s a formal technical review , or series of reviews , held upon the
completion of the detailed design of each CPCI , or an increment of related

- CPCs in the case of a large and complex CPCI. The purpose of holding incre-
mental CDRs is to minimize the amount of time required to develop a large ,
compl ex CPCI by reviewing the detailed design of an increment of related
CPCs when ready, rather than waiting until the design of the entire CPCI
is ready for review. Incremental development of functional areas also
al lows design, code , and test activities to be schedul ed separately, resul ting
in better control and visibility in the development of each increment. The
primary purpose of the CDR is to establish compatibility of the CPCs with the
CPCI design structure presented at the PDR . The successful compl etion of the
CDR allows the development to continue with CPC code and test activities.

-
- The foll owing information should be availabl e to the P0 to conduct a

satisfactory CDR*:

• Identification and description of all modules , includ ing
functional description , input/output data , range of values ,
data files required , and internal data descriptions .

• A detailed description of interfaces, including modul e—to-
module within a CPC, module—to-module among CPCs, and
modul es within a CPC to external interfaces.

• Detailed flow charts or their equivalent (e.g., HIPO diagrams)
for eac h CPC . -

• A detailed requirements traceability matrix showing how
each Development Specification requirement is al located
to one or more CPCs.

• Internal CPC data structure and organization.

• Approved ECPs (since PDR) a n d l e contractor ’s eval uat ion
of their effect on the design approach and the development
schedules . -

• Test procedures to accompany the test plan , if not
submi tted prior to CDR.

• Updated sizing and timing estimates for each CPC or
each program module.

*Further technical review questions for CDR , with respect to the develop-
ment of maintainable software, are contained in the Software Maintenance

- guidebook.

28

- -

_c~
-
~
-

~~~~~~~~~~~~~~~ 
— ..- — - -- - ______ ~~

— 
~
.- —

rr— -

~~~~~~

- -

~

-
—

~~~~~~~~~~~

——---—-

~~~

- --—

~~~~~~ ~~~~~~~~~

- . .

As for the PDR, the P0 and the review team must have sufficient time to
prepare for the COR. Since a successful CDR signals the beginning of the
coding and testing process the P0 must determine whether the contractor ’s
design is compatible with the design presented at PDR.

• Design verification at CDR Is often tedi ous since it Is and shoul d be directed
- - at a detailed ~~~~~~~~~~~~~~~~~~~~~ - 

The contractor should have preceded çDR
wi th a series of design_wa lkthroug~~ conducted by each designer and per~for!~!.~.
ed by one or more techrr-cal reviewers. To the extent feasible , the P0 -

should also conduct very detailed CDRs, because any design deficiencies
found and corrected prior to the start of coding will save significant time
and effort during later test and integration activities .

Design verification at CDR should reflect the following goals:

• The design presented at CDR should be a refinement (i.e.,
more detailed ) of the design presented at PDR.

• The design should be suitable for the problem posed by the
requirements, e.g., the CPC timing and sizing estimates
shoul d be indicative of success in meeting the design
constraints of the interfacing equipment and the spare
capacity/growth requirements.

• The data base shoul d be completely defined .

• All Development Specification requirements should be allocated
to specific modules within CPCs .

• All requirements for the design of interfaces between CPCs
shoul d be addressed.

• The design should be sufficiently detailed to begin coding . 
-

3.2.3 Review of the Contractor’s CPCI DT&E Procedures

The CPCI DT&E procedures should be availabl e for review by the time of the
CDR for the corresponding functional area. In reviewing the CPCI DT&E
procedures, the SD should assure that:

• There is a test procedure for each qualification test.
Generally, each procedure will cover one or more
functional areas.

• All the performance functions to be tested have been
Identified . EReference shoul d be made to Section 4 of the
Development (Part I) Specification.] 

-

29



T~•~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -~~~~ - _-~~~~w~-_ 
- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

----------~~ - __ -- - :  
-- - - - -- - _ _

• The method for determining if each test condition is met is
stated, e.g., visual observation, data reduction and analysis ,
special timing analysis. This part of the test procedure should
al so be compatibl e with Section 4 of the Development Specification .

-• • The location , schedule , contractor , and individual skill-l evel -

responsibil iti es have been established for the necessary briefing,
test, debriefing , and analysis activities -

• The procedures have appl icabl e references to the associated:
test plan , CPCI Development Specification (specific paragraphs),
manuals , positional handbooks , and documentation for support
programs or equipment.

• There are procedures (or reference to procedures) for operating
the CPCI to be tested.

• The detailed test description is adequate. The P0 or the
technical reviewer should run through a step by step review
of the procedure, shoul d anticipate contingencies , and should
ensure that sufficient information (or necessary references)
are available for the tests to proceed.

NOTE

Detailed CPCI DT&E procedures can be extremely
valuable for continued verificati on of the CPCI
during deployment. However, to retain their
val ue the P0 must ensure that they are contin-
ually updated as ECPs are installed .

N -

30

-

~

-

~

- -

~

-~



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _________ ~~~~ 

— -- - _

rr- — ----
~~~~~

--- - -
~~~~~~~~~~ - --- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - •--

SECTION 4 - COMPUTER PROGRAM VERIFI CATION

This section discusses the following computer program verification activities :

• Informal testing of the CPCI and Its components [Computer Program
Test and Evaluati on (CPT&E ) carri ed out by the contractor, at his
discretion , to support his development activities , provide visi-
bility of progress, and prepare for formal testing.

• Formal testing of the CPCI carried ~~ b~i thi~contractor in
accordance with Air Force-approved test plans and procedures
to verify that the CPCI ful fills the requirements of the
Development (Part I) Specification and to provide the basis
for CPCI acceptance by the Air Forc e [Preliminary Qualification
Test (PQT) and Formal Qual i fication Test (FQfl].

CPCI verification is based on the following documents:

• Dé~iClopmént (Part I) Spièifiâatlon (see the Requiremen ts 
- •

Speci ficatIon guidebook and Section 2 of this guidebook)

• CPCI DT&E plan (see 2.3.3).

• CPCI DT&E procedures (see 3.2.3).

In addition , particular attention shoul d De paid to the requirements for CPCI
verification during :

• Authentication of the Development Specification (see 2.3.2).

• Preliminary Design Review (see 3.2.1).

• Criti cal Design Review (see 3.2.2).

The entire process of CPCI verification Is the reverse of design where analysts
start from a global definition of the system and proceed with successive
layers of detail , finally resulting in a detai led CPCI design from which coding
activities may be Initiated . CPCI verification , on the other hand , usuall y
proceeds from (1) the detailed—CPC level in a simulated environment , to (2)
the execution of a smal l Increment of functionally-related CPCs, to (3) the
operation of all CPCs, together in a live , or nearly live , environment. Top-
down programing calls for a variation of this method whereby key control
and input handling programs are developed and tested first.

31



~~~~~~~~~~~~~~ -— -—--.-- -• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 

~~~~—.-‘- —---- .~~ -. rr —~~
-

~~~~~--.
-
~-~~~~~~‘~~~~~~~~~~~~~

,— - -

The top-down philosophy calls for CPC implementation to be planned to avoid
simul ated inputs , where possible. The structure of the entire CPCI is initially
represented by stubs which (1) contain very bri ef non—functional code or (2)
may simulate each CPC ’s operation by performing abbreviated functions. The
stubs are replaced as each coded CPC becomes available.

4.1 CONTRACTOR INTERNAL TESTING

Contractor internal testing (CPT&E) consists of CPC code and test (see 4.1.1),
CPC-i ncremental integration testing (see 4.1.2), and CPCI testing (see 4.1.3),
CPT&E is the contractor ’s CPC/CPCI-design shakedown testing. The incremental
coding and testing activities of CPT&E may span nearly the entire Full-
Scale Develo pment Phase , overlapping with PQTs and terminating when the
contractor has completed his i nternal CPCI testing and is ready for FQT.

CPT&E activities are the contractor ’s responsibility and there are usually -
no contractual constraints on the methodol ogy employed by the contractor.
However, there are several ways for the SD to gain visibility into contractor
progress during CPT&E. The first and most comon way is through effective
use of PQTs which can be scheduled throughout CPT&E (see 4.2.1). Contractor-
del ivered PQT and FQT plans , procedures, and reports provide further visibil ity .
Other ways include an on—site P0 representative with specific access to
specific personnel , visibility into prograniner notebooks, monthly progress
reports, and monthly status meetings to report and discuss technical as
well as administrative progress.

The process of translating the software design into executable programs is a
multi-step operation using many implementation test tools and techniques.
The emphasis on the contractor ’s work during CPT&E is not imediately
directed at veri fication of performance criteria , but instead at implemen-
tation of the software design that has been shown by previous design activi-
ties to meet the specified performance standards. Since performance
criteria are a result of analyses of operational requirements and the
proposed design has been correlated with the performance cri teria , CPT&E
verification activities are directed primarily at determining that the program—
med instructions are accurate, consistent, and compatible with the detailed
computer program draft Product (Part II) Specification.

CPT&E as presented in this discussion , shoul d be used by the P0 to eval uate
verification information in the CPDP (see AFR 800-14, Volume II) an•d as
supported by the contractor ’s QA and configuration management plans. It is
applicable to the development of most CPCIs. Although this discussion is
aimed directly at the devel opment of application software, the verification
activities are the same for support software (compilers , test tools ,
operating systems, etc.).

32



w.-.-
~
- 

~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~ ~~~~‘‘~~~~ ~~~~~~~~~~ 

— - - -~~ - ———----------------•------ -.-.-‘ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 

4.1.1 CPC Code and Test

CPC coding is the translation of the technical solution of a particular
problem into a set of machine-readable instructions for the performance of
specific computer operations. The coding process also includes :

• Observance of established , project-specific, administrati ve —

codi ng conventions and standards, such as tagging conven-
tions or coment requirements.

• Generation of global data defini tions used by the CPC, 
--

where appropriate . 
- 

--

• Adherence to technical , project-supported, programing tech-
niques , such as structured programming or decision table
methodology.* 

-

Prior to CPT&E the contractor should have:

• Selected the programing language and the associated l anguage
aids -(see Appendix A , 3.1.1).

• Ensured that project programmers are familiar wi th the
selected language.

• Ensured that project programmers fully understand the design
methodology to be used (e.g., top—down programing).

• Structured the data base and provided the necessary data
base support tools [e.g., a communications pool (COMPOOL)].

The adequacy of the contractor’s verification activities is indicated by:

• The contractor’s manual and automated procedures for obtaining
visible outputs for both programmers and management at each
step of the -i mplementation process (see Appendix A).

• The manual and automated methods used to Incorporate changes in
software design , thus affecting the code and test processes
(see Appendix A).

• The project tools and aids used in support of coding and con-
structing the CPCs and data base (see Appendix A , 3.1).

• The project coding conventions and standards and the mechanisms
for enforcing those standards (see Appendix A , 3.2) .

“See Appendix A , 2.1 and 2.2. 
-

33



-. 
~~ 

______ —- ~~~~~~~~~~ - ---~~w~~--~-

I 

- -

~~~~~

CPC testing (also referred to as subprogram testing or parameter testing)
is that testing performed by contractor personnel and directed at assuring
the internal accuracy and consistency of each CPC befor4- integration with
other functionally-related CPCs. CPC testing begins with each module or
unit of code and continues until the entire CPC is developed and tested.
Specifically, each CPC must be tested as a unit (see Figure 4) to verify that:

• All possibl e inputs to the CPC are correctly interpreted .

• Arithmetic and logical -functions assigned to the CPC are
correc tly processed .

• Coding conventions and standards are incorporated in the
impl ementation of the CPC.

• Outputs are correct and consistent with the
•
i nput data.

INPUTS

~ ~~~~~~~~~~~~~~~~~~~~~~ OUTPUTS
1
:

Figure 4. CPC Code and Test

CPC testing activities incl ude: -

N
• Preparing test data

• Compiling or assembling the CPC and reviewing the outputs.

• Running the test data .

• Examining test run results. -

• Identi fying and correcting errors.

• Repeating each CPC-level testing step unti l the CPC
-

operates as the programmer ’s design intended . -

a
34

F

. ‘~~~
-~~‘ ‘ P r

- ~~~~~~~~~~~ -- -- - ----.- —~~~~~~~~~~ - -•--~~ - -•-- - - -- --- --- - - -

CPC test ing may al so identify re nt~Jr_modificatipns to increase
efficiency and mainta inability, ~p ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

and to change the program when testing or the contractor ’s internal audit
procedures indicate that program qual ity is unacceptable.

CPC debugging consists of extracting syntax and logic errors, or “bugs ” , from
the software. During CPC debugging each area of code is tested with sample
extreme, and Illegal (out of range), data ~ia1uis to ensure that the cädeoperates as it was designed . Early stages of debugging rely heavily upon
the programmer ’s desk-checking of computer-produced listings , despite tools
such as traces , dumps , test drivers , test-case generators , and data-reduc - -

tion programs.* One essential quality of debugging tools at this stage is
that they assist the testing process without requiring insertions of l arge
amounts of code into the program which:

• May significantly alter CPC performance.

• May generate additional errors because of the additional code.

• May hide pre-existing bugs until the added code is removed .
—

the pF~jrammi~jmethodology used by the contractor fmpacts thi selectión of
-

test tools used. For example , top-down development reduces the need for test
drivers, whereas bottom-up development ge~eral1y requi res more test drivers .

Debugging on a CPC level is complete when all necessary tests have been executed
wi thout error and there is demonstrable evidence that the algori thms are com-
plete and correct. The quanti ty and quality of the tests used for CPC testing
are highly dependent upon the contractor ’s internal test ef.fOrt and upon the

—-

individual programmer’s approach and habits . The test data used for CPC test-
ing are derived from analyses of internal design specifications and simulation
of the CPCI ’s environment. Sometimes a contractor uses an independent pro-
graninêi’ or test team for the testing of eacW CPC . This approach is more often
used in later stages of testing , specifically CPCI testing in preparation for
PQT and FQT .

Review of programmer notebooks by either the contractor or represen~tativeof the P0, if authorized by the contractor, can provide visibility into the
status of CPC code and test activities . Sufficient information should be
available to:

• Relate detailed CPC development schedules to current status.

• Ensure that design and coding standards are known and followed.

• Relate the design as presented at COR to the actual CPC design .

*$~~ Appendix A , 3.3.1.
______ __________- - ____

T •7~~~ ~~~~~~~~~~

• Ensure that the CPC reflects all approved and schedu l ed ECPs.

• Verify that the design and programming methods descri bed in the
CPDP are indeed being followed .

4.1.2 CPC Incremental-Integration Testing

After suc~ess-fu complet n o P t g, the Cl Cs re combined for CPC
incremental -integration testing (see Figure 5). CPC incremental-integration
testing is directed at resolving design , logic , data definition , and interface
errors existing in the combined operation of two or more CPCs. CPC incremental-
integration testing focuses On :

• A sequential integration of functionally-related CPCs.

• Using outputs of one CPC as inputs to the next.

• Verifying that CPCs operate as designed and according to
performance requirements . —

• Conducting dry runs in preparation for PQTs.

INPUT S ~~~~~~~~~~ ..~~~ -~~~ -

OUTPUTS

Figure 5. CPC Incremental-Integration Testing

Generall y, the CPCs are integrated by combining functionally-related CPCs. In
that way meaning ful test case data relating to a specific function can be
generated by the CPC5 themselves , rather than by test drivers . CPC integra-
tion can then pro~è~d incrementfn~~larger numbers of CPCs to provide the
input , processing, and output functions needed for complete testing. This
approach results in more efficient test-case generation .

In top-down implementation , CPC code and test are accomplished together with
CPC incremental-integration testing . Using this approach , the responsible
programmer tests each CPC , upon completion of coding , by linking it into the

36

- ‘~~~~~~~~~~~~

already developed higher-l evel CPCI structure and emulating l ower-level
logic using stubs. In this manner , outputs from a proven CPC are used to
provide test inputs for the CPC undergoing test. This method features
increased testing of key CPCs in an environment more closely approximating

- the intended operational environment.

Individual CPC testing shoul d verify that each function was executed correctly
with input parameters set first to singl e values and then to a wide range of
values . Similarly, the integrated CPCs should be tested to verify that all
functions perform correctly for appropriate singl e data values , as well as
for multiple inputs covering an entire range of appl icable data values .

A ids for CPC incremental-integration testing include:

•
-

~~ Program Production Library (PPL)

• Off-the-shel f routines (operating system and utility l i b r a ry
- routi nes)

• Timi ng and sizing analyses
-

• Tools to ensure thoroughness of testing
-

- • The contractor’s internal-change control procedures

4.1.2.1 Program Producti on Library
-

A PPL*, whether automatic or manual , shoul d be used to catalog test cases,
program CPCs , load CPCs , and maintain data dictionaries . Using a PPL , main-
tenance of program versions and test case information by either a programer
or a project librarian can be systematic and relatively simple. Performance
data on the evolving CPCI can be readily accumulated and a log of integration
and CPCI test runs identifying components of each test can be maintained.

4.1.2. 2 Off-the-Shelf Routines

The operating system and the program master utility/library routines associated
with the development computer are important aids to efficient CPC incremental-
integration testing. Library routines include collections of standard , multi -

- purpose programs used by the operating system to provide efficient hardware!
software interfaces of proven mathematical accuracy as needed by the miss ion
software. Should certain system i nput or outpu t capabiliti es be unava ilable

~See Appendix A , 3.4. See also the lionitoring and Reporting Software
Development Status guidebook.

- - -

37 i~-j
- ~~~~~~~r~~~~~~~~ - ~ - - . _~ — -_-~~~~-~~~~~~~~ - _______

- -- - _ - - .- .- -.-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r~~”y’-~~ - 

~~~~~~~~~~~~~~ 
—

or insufficient for the developing software , auxiliary routines must be pro-
vi ded to augment the existing system. Un less these routines are thoroughly
checked out prior to thei r acquisiti on , CPC-integration testing may i nadver-
tently become a tes t vehicle for them.

4.i.2 .3 Timing and Sizing Analyses

Al though timing and sizing analyses are ordinarily conducted early i n the
Val idati on Phase , the CPC integration testi ng activities are the fi rst oppor-
tunity for the contractor to col lect functi onal performance data related to
timing and sizing. Sizing data , at this time , are fairly accurate , but timing
data are still rudimentary because test inputs are often generated by the

-

computer and timing does not yet refl ect the operational environment. However ,
the contractOr should compare these results with his earlier analysis predic-
tions to begin confi rmi ng their accuracy and to identify potential problem
areas. Since timing and sizing problems often require expensive and time con-
suming hardware or software redesign solutions , they should be identi fied as
early as possible.

4 .1 2 4 Tools to Ensure Thoroughness of Testing
- The quality of CPCI-integration testing depends , in part , on the coverage of

the condi tions tested and the range of values used in the input stream. There
are many test tool s currently availabl e to improve the qual ity of CPC i~cre-
mental-integration testing. However , their suitability to a given test pro-
gram is limi ted by the specific computer configuration used and by the specifi c
test requirements . Examples of such tools follow :

• Test-case generators , test beds , and test-data simulators can
provide data va lues that span the range , domain , and distri bu-
tion of the program ’ s expected inputs .

• Test-output tools include those tools that record , reduce , and
analyze the data generated by the program in functionally pro-
cessing input data. -

• Automated flow charts* are sometimes used in the late stages
of CPC incremental-integration testing when the development
organization must supply detailed flow charts for the Product
(Part II) Specification . However, they are more often used
in CPCI—qualification testing since changes to program code
require a totally new analysis of the syntax by the flow—chart
program.

*See Appendix A , 3.4.

38

-~~~~~~~~~~~~~~~~~~ - -- -- -~~~~~~~~ -

• Execution analysis prog~.ams*, are generally applied to CPC
incremental-integration testing after an increment has success-
fully been debugged. They are intended to veri fy the percent
of the code tested by accumulating the instructi on—execution
data of test cases used in the testing process. They identify
the code executed by the test(s), the number of test cases
run, and sometimes, the range of values appl ied to specific
parameters duri ng each test. ~xecution analysis programs alsoassist in determining the need for addi tional test cases for
areas not covered by previous testing, or superfl uous code
not reached by any other instruction. They also provide manage-
ment visibility into the amount of code exercised duri ng testing.

4.1.2.5 Contractor Internal-Change Control Procedures

The contractor ’s internal -change control procedures become especially impor-
tant duri ng CPC incremental-integration testing. These procedures are

- - documented in the contractor’s configuration management plan . (See Con-fig-
uration Management guidebook.) They are particularly important for veri fica-
tion because:

- ___________ _ _ _ _ _

• All test personnel must know the content and status of the
software they are testing . -

• The up—to-date status of all problems must be disseminated to
prevent wasteful rework by uninformed personnel .

• The status of all problems and P0-approved changes must be
known by the contractor ’ s test director so he can determine
when retesting is required .

4.1.3 CPU Testing

CPCI testing by the contractor is primarily a dry run of FQT , but it is a
necessary part of CPT&E because it completes the iterative process of testing,
correcting, and retesting. If individual CPC and CPC incremental-integration
testing has continually emphasized testing to design limi ts, CPCI testing
becomes a device to verify for the contractor ’s management that the FQT will
be passed successfully. Initially, CPCI testing focuie n veri fying the
total CPCI design . However, the major effort soon shifts toward verifying
that the CPCI , inc luding all of its related components , satisfies the
requirements of the Development (Part I) Specification.

*See Appendix A , 3.3.2.

A ____-

~

--~~~~-- -- - 1ff

_____ — v ~~nflr ~~~~~~~~~~~~~~~~~~ —7-

- - - ----~~~.—_-._ ,_.
~~.*—~~~~~~~~~~~~~~ - - -—~~~ - ..__~~i.-

_.__ ___ ._ _ _

The purpose of CPCI testing is to veri fy that all the components of the C~CI
interface together to perform their required functions while not exceeding the
limits of tolerances and qualification criteria.

The test plans , procedures , and test data used during the contractor ’ s CPCI
testing should closely relate to those submitted for PQTs and the FQT . The
test plans , procedures , and rel ated data used in CPT&E are usually not
del iverabl e or available for scrutiny by the SD , unless contractually specified
through the inclusion of a Data Accession List on the Contract Data Require-
ments List (see Software Documentation Requirements guidebook).

-

The .test tools used duri ng the contractor ’ s CPCI tests are the same as those
used during CPC incremental-integration testi ng . However , the use of such
tools shoul d be limi ted since the intent of CPCI testing is to ensure the per-
formance o the CPCI in the operational envi ronment. Obviously, it may. still
be necessary to use simulated input data generated by tools and processors to
record , analyze , and reduce output data . It may also be necessary to use hard-
ware , fi rmware , or softwar€ . ~rnulation techniques * for repl i ca ti ng ac hi ne or
sof tware functions unavailable to thé CPCI unti l a later time . Especial’ y
important to CPCI testing, however , is the execution of the CPCI to verify its
own performance , not perturbed by unnecessary use of test tools. -

The contractor may specify in Section 4 of the Development Specification that a
-test , or ser ies of tes ts , run during CPT&E should be run only once because of
the high costs incurred in the testing process. This may be particularly
applicable to obtaining test results supporting critical timing data . In
this situati on , the contractor requests that the P0 accept CPT&E results as
qualification of that requirement in lieu of a PQT or an FQT of that require-
ment. The contractor has the opti on of submi tting an ECP to request the
acceptance of CPT&E results in the event he has not so specified in the
Development Specification . The P0 may approve or disapprove the request in
either case , but shou l d cons i der suc h factors as cos t, adequacy of test plans
~nd procedures , and criticality of the perfo rmance requirement involved when
processing the approval/disapproval . [See MIL-STD-483(USAF), Appendix VI .]

The contractor may also defer CPT&E testing of a particular CPC or CPCI inter-
face unti l operationally -configu red equipment is available. This also must be
specified in Section 4 of the Development Specification [See MIL-STD-483 ~USAF),Appencily VI.] . See 2 .3.3 for a list of determinations that must be made by
the SD when reviewinc CPU DT&E plans and 3.2.3 for a similar list regarding
CPCI DT&E procedures .

*See Appendix A , 3.3.3.

40

— —
~~

—..- — --- — —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -- - --~~~~~~ - - . .
—. —~~-~- --~~—-~~~~~—-~~~~~—--. -~ -- -

4.2 QUALIFICATION TESTING

• Qualification testing is the formal*, contractor CPCI testing which is witnessed
by the Air Force. It consists of PQT and FQT.

The test plans , procedures , schedul es , and personnel for qual ification testing
- shoul d be planned prior to initiation of CPT&E. Initial test plans for formal
testing are submitted with the Development (Part I) Specification and updated
after PUiL Prior to formal testing , P0 approval of test plans and procedures
shou’d consider such factors as: 

.
— - —

• Q~~jification Criteria. Formal testing is conducted to ensure that
the CPCI satisfies tWe qualification cri teria stated in the Develop-
ment Specification and mutually agreed upon by the P0 and the
contractor. The test plans and procedures used to demonstrate the
CPCI shoul d be designed so that each performance feature is obser-
vable and measurable. Each test shoul d be designed so that the
results can be evaluated by inspection , avoiding ambiguous or
subjective evaluation problems between the contractor and the P0.
To avoid confusion regarding the achievement of qua1ificatiän and~~to avoid redundant testing , qualification tests for any given per-
formance requirement shoul d not overlap.

• Test Documentation. The test documentatici supporting formal qual - 
—

ification testfng is prepared well in advance of the testing and
sets forth the testing scenario, including objectives , inputs ,
events, expected outputs , etc. The personnel and time needed to
produce the support documentation and to perform, observe , and
eval uate the tests may be significant. Consequently, the number
and amount of scheduled formal tests shoul d be minimi zed . Careful
review and analysis of the draft test plans and procedures may
result -In substantial changes to the proposed testing activity .
Hence, draft test documents should be submitted in sufficient
time to allow for careful analyses by the P0 and possible revision
by the contractor .

• Visibility into Criti cal Performance Areas. Test plans and
procedures must be Organized to adequately demonstrate the perfor-
mance of critical components of the CPCI , e.g., high-risk tech—
nological areas and suspected marginal performance areas. The
selected order of tests should approximate the order of priorities
for development of critical performance and high risk capabilities .

*I’Formal” testing is that portion of CPCI testing which is conducted in
accordance with Air Force-approved test plans to verify that the CPCI
fulfills requirements of the Development Specification . [See AFR 800-14,
Volume II , Section 5—3 ,a,(2)].

/ 41 -
~~~


—.--. --.--— ----.--—.•--———. - - - —.—- ——.—-.
~~~~

-- 
~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 

- -.
~~~~~~~~ 

- ——‘-
~~~~~~~~

—
~~

—--——- -

_ _-

- - C

— • Procedures for Retest. Because a qualification test may fail ,
- - -

-

- di sclose a need for redesi gn , refi nement , or reevaluation , or may - -

cause a dispute between the contractor and the P0, a systematic
approach for retesting must be established before test pl ans and
procedures are approved and qualification testi ng is initi ated.

4.2.1 Prelimi nary Qual ification Tests

PQTs are planned , scheduled, and performed by the contractor at his develop-
ment facility to provide visibility into work progress and to demonstrate to
the . PO that the design meets its performance requirements. PQTs are conducted

- in accordance wi th P0-approved test plans and procedures, and test reports
submi tted in accordance with the Contract Data Requiremen ts List. PQTs are
generally schedul ed during contractor CPT&E on a sequential basis , often
corresponding in sequence to the reviews of the design in a series of CDRs
to provide visibility as the CPCs are devel oped. Each PQT is designed to
demonstrate the performance capabilities of a group (or increment) of
functionally-related program modules or CPCs. A PQT should demonstrate a
CPCI function , especially those functions which are critical to the CPCI.
[See AFR 800-14 Vo luiue Uj_ Secti on 5—3 , a ,(?),(afl . A PQT _~s planned and -

scheduled by the contractor according to his estimate of when~the functioncan be demonstrated.

PQT procedures must be carefully i~~itf,~Tzed to ensure that PQTs will provide
an interim demonstration of the contractor ’s progress in the development
process. PQTs are intended for visibility into time or performance critical
CPC5, or functions , not for their qualification. Overly detailed testing,

- refl ecting CPCI design , structure , and internal operation (such as parameter
testing at the CPC l evel), does not provide visibility and may even obscure
appraisal of technical adequacy.

The PQT differs from the FQT in two major areas, as follows:

• PQT test coverage may be more detailed and the test results
may include intermediate processing data , i.e., data coninunicated
between CPCs , but not a required output of the CPCI. An
entire range of data values may be used for a specific parameter
to demonstrate functional processing and error processing for
il1~~al values .

• , PQTs arc’ conducted at the contractor ’s development site and may
include only minimal hardware/software interface testing. They
may also use the contractc~ ’ s CPT&E test tool s and techniques ,
especially simulation of input data , emulation of hardware or
other C ’CIs , and output data processors .

42


~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
.. . 

~~~~~~~~~~~~~~ .
— —7- - -_-.

~
- -.- — — -~~~~~~~ - -~~~~~ ----- — _______

4.2.2 Formal Qual i fication Test

FQT is a comprehensive test of the integrated CPCI , performed by the contrac-
tor and witnessed by the P0, to verify that the CPCI meets the performance
requirements as stated in the Development (Part I) Specification. FQTs are
conducted in accordance with P0-approved test pl ans and procedures, generally
with qualified operationally—configured equipment. FQT normally takes place
at a location providing the required equipment capability or at the System

- .- DT&E site . It shoul d be completed prior to the beginning Of System DT&E.
If the required equipment configuration is not availabl e, or if there are

- performance requirements that cannot be verified in the CPCI DT&E environ—
ment, they must be so stated in-Section 4 of the Development (Part I)
Specification. The requirements are then qualified in the System DT&~~• environment and the FCA for this CPCI is suppleme nted by an FQR of the CPCI.
For CPCIs that are not dependent upon total system availability , such as
support packages, qualification testing is usually conducted at the contractor ’s
site. However , the computer configuration used for qualification at the -

contractor’s site should be sufficiently similar to the operational configura-
tion that no doubts remain about ‘?CI qualification .

If the CPCI DT&E plans and procedures have been adequately reviewed (see 2.3.3
• and 3.2.3) the SD’s verification activities at FQT include making the fol lowing
determinations:

• That FQT proceeds in- accordance with the test plans and
procedures. If -not, each variance should be reviewed to
determine its impact upon the qualification tests.

• That all problems are reported and status is maintained .
Any def-~-iencies not corrected prior to completion of FQTshould ~e noted in the FCA minutes (auditing of test results).

• That any features of the test environment which may obscure
- d-s fficulties in the CPCI are identified . Such features may
- include :

- Simul ated inputs wt~ich are not representative of live inputs .
— Inadequately verified timing situati ons.

- Computer hardware and software different from operational -
configuration.

—

- Insufficient or non—representative site—unique adaptation data .

•
- Use , duri ng FQI , of support software that has not been

previously qual ified .

43
(Page 44 blank)

— —“7----— —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .‘ 7 —‘- ‘——~

:—— ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~ ,~ ~~~~~~~~~

- 7- - - ~~~~~-. - - --—- ~~~-~---- ~~~~~~~~~~.-—• —-— - — ----.-----

- - - -  -- 

APPENDIX A - SUPPORT TOOLS & TECHNIQUES FOR
COMPUTER PROGRAM DEVELOPMENT & TESTING

Appendix A Is organized to correspond with the stages of verification described
in Sections 2, 3, and 4 of this guidebook. It describes the types of support
tools and techniques which aid in computer program development and testing*.
They must be carefully selected to satisfy the program-specific development
or verification requirements and the associated hardwa re and software config-
urations . Their primary purpose is to make the software development process
easier. However , they al so aid the verification process by providing systematic
and dependable aids to the system engineering and testing processes.

This appendix discusses the applicability of selected aids to distinct verifi-
cation and validation tasks. Because of the large number of tools existing
for specific applications on specialized computers, thi s d i scuss ion_describes

— generic aids rather than specific tools. - _____-

1. REQUIREMENTS VERIFICATION

This discussion addresses evaluati on techniques and Development Specification
methodologies which can be used to assi~~j~erformance requirements_verification .

1.1 EVALUATION TECHNIQUES

The various evaluation techniques used during the Validation Phase have had
varying degrees of success in verifying performance requirements . Such
techniques incl ude:

• Simul ation

• Performance monitoring
• Synthetic programs
• Benchmarks
• Kernel s

Be aware that many of the techniques described differ in the interpretation
and use of the results rather than in the evaluation approach used .

*For further information on softwa re tools , see S4AI1SO TR-75-184 and MITRE
WP-2 101 7.

45

_ _  _ _  -



-— ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- u-~-~~~~~~~~~~~~~~~ ry- —- ----~~ 
—

~
-
~~~~ 

-
~~~~~~~rr - 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 .1.1 Simul ation

Simulation is one of the most powerful techniques currently availabl e for
verification of system concepts. Simulation is the process of studying
specific system characteristics by the use of models exercised over a period 

- -of time and a variety of condit ions for the_purpose of evaluating alternatives ,
timing data, system capacitiis, perfó rn~nci , and~~d~iti~ii ñt~~withi i~ thi ~confines of that system.

For the Conceptual and Validation Phases, it is not necessary to examine all
the design details of the system, so a simplifi ed model can be used to gather
information directly pertaining to that system ’s functional performance. The
result of the model i ng studies shoul d provide sufficient data to verify the
specific system concept. However, the simplification benefits of simulation
can also be its drawbacks. Some simulations are too simplified to be meaning—

- — ful . There is currently no universal modeling program capable of simulating
any proposed computer configuration for all systems. Al so, there is a wide

- 

-- 
variety of simulation methods , most of which are too costly in time and money
to develop and use effectively. Sometimes the structure of required data is
complex and a large quantity is required . Obtaining sufficient data to cover

• the time and conditions to be simulated can be costly and time consuming and
.inay complicate the analysis. However, once the strengths and weaknesses of
simulation are recognized it can be a very effective tool to aid in selection
evaluation , performance projection, and verification of performance require-
ments .

1.1.2 Performance Monitoring

Performance monitoring is the process of col l ecting data on the performance
of an existing system for the purpose of evaluating or improving performance
or reconfiguring the system. Performance monitori ng may al so be used in the
design of new systems when the instruction set and frequency of use is pro-
jected to be similar to an existing system. T~.e process incl udes both thecollec tion and the analysis of performance data, and can be accompl ished by H
hardware, software, or a combination of both. A hardware monitor is a unit
attached directly to a computer ’s circuitry to obtain and record instruction H
execution, data transfer, and control information. Hardware monitoring tech-
nlques are generally easy to install and use and do not perturb the processes
under eval uation. They can also obtain occurrence and duration data of simul -

- - 

taneous events. A software monitor is a computer program that collects per-
formance data on system operation . Software monitoring techniques interrupt
the normal programed procedures to obtain required information at strategic
points during the operation of the system under test.

46



— 1.1.3 Synthetic Programs

A synthetic program is a set of executable instructions , includ ing I/O opera-
tions, files , and operating system resource requirements written for the pur-
pose of representing various computer demands inherent in the system under
study. Al though synthetic programs offer flexibility in providing a wide
range of measurement parameters (e.g., run priorities , projected job mix) ,
the lack of standa rd synthetic programs makes selecti on eva luation between
proposed hardware configurations difficult. Synthetic programs are also
used for performance projection and performance monitoring.

1.1.4 Benchmarks
A benchmark program is an existing operational program used for performance
projection or selection evaluation of computer equipment upon which the
benchmark is executed. A benchmark, or series of benchmarks , can demonstrate
computer operational differences (e.g., CPU performance, I/O channel perfor-
mance , device management characteristics) while demonstrating software
(specifically compiler) speed and execution. Requirements in the selection
of the appropriate benchmark must include such factors as the type of selec-
tion mix, I/O requi rements , and the job mix. Numerous benchmarks may be

4 required to sufficiently evaluate the system hardware and software character-
istics.

1.1.5 Kernel s

A kernel program is wri tten to evaluate timing info rmation about a specifi c
computer. It represents a partial or complete translation of the time-cri tica l
part of an applicati on algori thm (utilizing a compl ete , or nearly complete ,
Instruction set for a given machine). Kernel programs usually do not include
a comprehensive set of I/O operations as they are restricted to user applica-
tion functions . Kernel programs may be qui te large and complex , requiri ng
time for code, checkout, and mul tiple runs to obtain accurate timi ng data.
They generally provi de little_Information about the effects of the operating —

system; some compiler dat may be available through analysis of object code . -

The program methodology or code efficiency of the kernel itsel f must be con-
sidered in evaluating the resul ts of kernel operations. The use of kernel
programs contributes to hardware evaluation and performance monitoring rather
than to software evaluation.

- 1 .2 DEVELOPMENT SPECIFICATION METHODOLOGY -

The CPCI Development (Part I) Speci fication is one result of the system engi-
neering effort of the Validation Phase. There is presently much research work
being done in the fiel d of performance requirements speci fication methodology ,
including analysis of: problems found to exist In specifi cation documents ; a
machine—processable language to state system requirements ; and procedures to

47



_ _

verify consistency , completeness, and correctness of requirements . There
currently exists no reliable tool or technique that can effectively aid in the
translation of the system requirements (including the system environment and
Interactions , performance cri teri a , and operati onal functions ) Into a design-

- 
Independent documen t speci fying user needs and system data processing functional
requirements. Such government owned tools as CARA (Computer Assiste d Require-

- ments Analysis) are still under devel opment and evaluation . The problem of
- 
adapt1ng a common language, such as English , into a formal language for re—
qui r~’-~ents speci fication has not yet been ~p]v ed.~~ . _ _ _ 

--~~~~ - - — - -

2. DESIGN VERIFICATION

This discussion addresses desi gn aids which can be used in the Ful l —Scale
Development Phase to support the translation of performance requirements [as
stated in the Development (Part I) Specification~ into a computer programdesign of sufficient detail to begin CPC coding. Such aids incl ude:

• Design tool s and techniques

• Documentation techniques
- 

• Design review techniques

2.1 DESIGN TOOLS AND TECHNIQUES
The design tools and techniques used to support definition of CPC performance
requirements, interfaces, and data base definitions , include :

• S~imuTatThn

• Top-down design

• Design language

• Decision tables

These tool s and techniques are discussed In the following paragraphs .

2.1.1 SImulation

Simulati on tools used during CPCI and CPC design are Intended to verify that
the design will satisfy the performance requi rements. Veri fying that the
CPCI~will meet the performance requirements , using analytical methods only, is
difficult due to the complex external envi ronment , operating system interactions ,
and , in some cases , incomp lete or inconsistent specifications. The use of
simulation or modeling is Intended to provide sufficient i n-formation during
the design process to detect inconsistencies or evaluate altornative equations
In the definition and structure of the CPC speci fications. Outputs from various
simulati on techniques are used in trade-off analyces to determine feasibl e
CPCI design. -

- - - - 

43

- -- —--- - -  -- ---  —--- - -



— 

— -

~~~~~~~~~~ 

_•.j——
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— 7 - ”
~

’ ’
~ii_iiT -‘-‘—-L~

-,_.,,.•__ —r 
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

- - -

2.1.2 Top—Down Design -

Top—down design isam anua l , analyt i cal, design method which is compatible
with structured programing techniques . The primary purpose of top-down desi gn
Is to simplify the overall CPCI structure, thereby reducing the probability of
design errors and inconsistencies. Top-down methodology is based on the pri n-
ciple of hierarchical development. That is , a system is composed of successive
jjyers of more and more theoretical operations , beginning with very abstract
operations at the user l evel and ending with primitive , or bas ic , operations at
the machine level . Top—down design implies that the control and interaction
of CPC5 is defined from the top (the user level) to the bottom (the machine
l evel). Also , the design activity is constrained (and error prone alternati ves
eliminated) by controlling the interface interactions between levels of CPCs in
such a manner so as to “hide ” l ower l evel operations and associated data from
hi gher control levels. This has the effect of reducing information transfer
interfaces between CPCs. Top—down design is a mechanism used to obtain a clear
and consistent functional flow of the CPCI , while attempting to minimize CPC
interfaces and indiscriminate use of data. This technique simplifies both the
process of design and the verification of desi gn .

2.1.3 Design Language
- A program design language is a formal l anguage used to describe the control

structure and organization of a program by translating design specifications
into computer instructions by a processor. Program desi gn languages are not

- currently advanced to the state where they are capable of translati ng a
machine— i ndependent data processing probl em into a structured set of program
modules . However, they may be used for determining control flow design alter-
natives while documenting the design process as it evol ves . The use of a pro-
gram design language has the potential to assist in the veri fication of speci-
fications .

2.1.4 Decision Tables -

Decision tables are a mechanism which can be used to represent informati on on
program conditi ons , rules , and acti ons In a tabular form that can be automati-
cally translated to executabl e code by a processor. Decision tables are a
tabular representation of the design whi ch can be used to clari fy the control
flow of decision alternati ves by presenting the information in a concise and
understandable format. Howe ver, decision tables are most effective when they
represent the conditions of a relatively small application area or algori thm
and are not generally used In large , real-time , or mul tiprocessing software
appl ications.

49

a _ _ _ _ _ _ ____________ _ _ _ _ _ _ _ _ _ -
-

- - -

2.2 DOCUMENTATION TECHNIQUES

A l imi ted number of techniques for design documentation are currently used in
the design process, most of which attempt to graphically represent control
flow and functional processing. There has been a move away from traditional
flowcharting documentation methods with the advent of structured programing
techniques , but at the same time there appears to be a clearer recognition of
the information reqUi red to adequately represent components in the system
design .

Design documentation techniques incl ude:

• HIPO (Hierarch’~ plus Input-Proces s-Output) Charts. A HIPO
chart is a device for representing functional system design
in a hierarchical manner. Each graphical representation pre-
sents a functional process and its subprocessing relation-
ships , as well as the flow of input and output for each pro-
cess , or subprocess. HIPO charts depict software functions

- - -

rather than control flow or data requi rements.

• Flow Charts. A flow chart is a graphical representation of
a solution to a prob-lem or algori thm in which predefined
symbols are used to represent specifi c functions, sequences
of operations , equi pment usage, control flow, data manipu-
lati ons , etc. Flow charts may be used for depicting system ,
subsystem, or program leve l design . Design flow charts are
disti nct from computer-generated flow charts produced from
source code. Al though structured programing techniques
deemphasize the use of flow charts as a design aid , design
flow charts still provide an effective mechanism for repre-
senti ng functi ons and functional relati onships wi thin and
between computer programs and system components. Flow charts
remain one of the most ~~~~~~~~~~~~~~~ representing CPC
functional relationships and

~j~~archii~~
_

• Decision Tables. Decision tables in addi tion to their design
evaluati on uses are sometimes used to document program condi-
tions , rules , and actions in a tabular , easy-to-read format.

2.3 DESIGN REVIEW TECHNIQUES

There are two types of design reviews being used by contractors on software
development projects, individua l and team reviews . Individual design reviews
have always been used in software development. Basically, this technique
consists of having designers analyze each other ’s design specif ication to
verify its correctness and consistency . A team review is a more formalized
process in which a group of experts rigorously examine - the desi gn of a grou~i
of functionally-related CPCs to detect errors and inconsistencies.

50

- ~~~
- -

The use of both individual and team reviews has been an integral part of the
software design process for many years, but team reviews are currently receiv-
ing renewed attention due to structured programing technology . The purpose
of a rigorous design review is to discover potential errors and inconsistencies
early in the Ful l -Scale Development Phase when such errors are relatively easy
to correct and when costs associated wi th error correction are low . The
allocation of Development (Part I) Specification requirements on a paragraph—
by-paragraph basis to one or more CPCs provides a checklist for use at design
reviews. Team reviews may have an additional benefit of providing junior
project personnel wi th a learning mechanism for evo lv i ng system design , and
management personnel wi th visibility for verifying work progress.

3. COMPUTER PROGRAM VERIFICATION

The following implementation aids (programing tools , programing standards ,
testing tools , and project support aids) are widely used in the software
industry to support computer program coding and testing activities.

3.1 PROGRAMMING TOOLS

Programing tools are used to translate a program design specification into a
- - set of machine—readable instructions or an organized repository of information ,

i.e., a data base, used and set by the CPCI . Such tool s include :

• Compilers/assemblers
• Data base tools

• Consistency analyzers

• Overlay analyzers

These tools are discussed in more detail in the following paragraphs. Al so ,
related aids that attempt to verify consistency and conformity to the estab-
lished project programing methodology are discussed .

3.1 .1 Compilers/Assemblers

Programing languages and their associated compilers are some of the most sig-
nificant programing toofs ivailibli to the contractor for use in the Full-
Sca le Develóprneñt Phase . Al~~~ügñ~~hicrit éria for selecting the programing
language do nat genera1T~ incl ude the quality and quantity of compiler-dependent aids , these aids constitute a large proportion of the tools availabl e
to the contractor for the verification process. Some of the niôre widely used
tools and aids associated wi th programing languages include :

51

_ _ _ _ _ _ _

_~~~Ti ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—

~~
-—

~
-

~~~~~~~ 

- 

— ~~~~~~~~~~~~

• Set-Use Matrix/Cross Reference Analysis: This tool is a program
associated with compilers and provides information on the usage of
program l abel s, tags , data variabl es, cons tan s , or other pro gram
elements. The information usually includes the name , a set-use
indicator , and the location(s) in the program where the identified
item is set and used. The set-use matrix provides a static trac~’
of data flow. A set-use matrix can be obtained for a CPCI by
utilizing sophisticated system monitors wh ich use the compiler-
generated output for each CPC as input . This type of set-use matrix ,
also referred to as a cross-reference analysis , is then generated
for all data variables used and set by each of the CPCs in the
CPCI. It is also possible to obtain cross-reference informati~in onother system components , such as files and macros.

• Reformatter. A reformatter is a program used to.restructure 
-

the presentation of source code. Symbolic program modules
are input to the program along with reformatting conventions .
The reformatter outputs the symbolic program according to the 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ and the ou tput i s the
same symbolic program In a more readable format. For example , a

-

reformatter can be used to provide standardized indentation.

3.1.2 Data Base Tools

One of the means for comunication between system elements is a globally de-
fined data base which contains informati on required by CPC5 in performing
their required functions. Sometimes the structure and contents of the data
base are sufficiently complex to requi re tools to build and main tain the
information contained in the data base. Some of the tools associated with a
data base incl ude :

• Comunications Pool Generator (COMPOOL) . A program and asso-
ciated data definition language that allows commonly accessed —

data to be centrally defined and controlled . The data defini-
tions are input to the program according to its language speci-
fications , processed (or compi led), and the output Is a data
dictionary available for use by a semblers , compilers , link
edi tors, and data reduction and execution programs . The data
definition l anguage generally requires a parameter descri ption ,
sca l i ng factors , and sometimes value ranges . The use of this
type of tool allows system data definitions to be centrally
controlled so that they do not have to be defined by each pro-
grammer responsible for CPCs that use system data . Central
contro l of the data base definitions is a feature which enhances
the verification proc ess by limiting the scope of possible errors .

52

_ _

• Data Definition Program. A program that provides the capability
of controlling central data definitions through wh ich CPCs ,
written in differing programing languages (P1.1 , COBOL , JOVIAL ,
FORTRAN), are able to more eas ily communica te w ith eac h other.
It also provides a methodology for making changes to system data
so that the new definitions will be consistently refl ected in
all communicating CPCs .

• Data Base Analyzer. A program which analyzes the usage of data
variables by CPCs and indicates whether the CPC inputs , uses ,
sets , or outputs the variable. This program is similar to a
set-use matrix or cross-reference analysis.

3.1.3 Consistency Analyzer
- -

At least the following types of consistency analyzers exist to aid analysis
of data used by computer programs :

-

. Unit Consistency Analyzer. A tool which analyzes the syntax of
- - -

program modules wri tten in a specific programing language
to verify consistent usage of globally defined data elements by
that module. The purpose of the 001 is to ~~ u~~_~flat the - - -- - - -

set /use of parameters by each CPC i~ consistent w ith the
- system parameter definition.

• Interface Consistency A nalyzer. A tool that audits the defi -
-

nitions and declarations of module interfaces for cornpatibi-
lity and consistency .

-

3.1 .4 Overlay Analyzer

This type of tool can be used either during design or in the early steps of
coding. Its primary purpose is to analyze core memory requi rements
to provide information on overlay s tructure to the programmers . The input
to an overl ay analyzer is the esti ri ated (o ç~uaJ) core reQuirements and a
l ist of external CPC names and data references for each module. The out-
put is a report containing information needed for overl ay planninq.

3.2 PROGRAMMING STANDARDS

Programing standards should be described by the contractor in his Full-Scale
Development Phase proposal and should be fi nalized as part of the CPCI design
activiti es . Programmi ng standards are used to achieve better quality and mo re
consistent products , while contributing to mai ntainability , testabil i ty , and
reliability . The need for programming standards has been obvious for s ome
t ime , a l t hough it has sometimes been difficu l t to e iforce established standards.
The following discussion is concerned with specif ic programming standards and
existing too ls desi gned to enforce or audit programming standards .

53

__________________ - - ~~~~~~~~~~~~~~~~~~ A


~~~~~~~~~~~~~~~~~~~

—

~~~~~~~~~

—-

~~

—- - -
~~-- -:~~— --‘--‘- - —~~~

- — -----. -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

——,----—..-----.
~~

- - 
-

3.2.1 Specific Programming Standards

A few of the more widely, used programing standards , which  can a lso  be
automatically audited , i nc lude :

• Module Size Limi tations. To aid comprehension and reduce compl exity ,
maximum module size standards are established and exceptions granted
only when necessary to implement a well-conceived desi gn. The intent
of a size limitation standard for modules is to (1) improve readability
for both testing and maintenance purposes ; (2) simplify the develop-
merit process; (3) enhance module control ; and (4) isolate common
code for use by multipl e modules. Feasible limits for module size
vary, since there is a compromise between ease of reading and ability
of implementing logical functions. Structured programing advocates
suggest that a modul e shoul d be contained on one page of output
listing since multipage program constructs are harder to follow and
page turning breaks concentration . If timing requirements are
critical , che size limitations set by the contractor may cause some
decrease in program efficiency . -

• CPC Orqanization. To enhance readability and logic clarity , a 
- -

- - 
meaningful unit of source text (a descr iption of a procedure , a
macro that performs a clearl y defined task , or a data definition)
should be kept to one page because indentation suffers between
pages . The unit of source program text for each CPC shoul d
include and be organized as follows :

— Initial commentary section describing function
- Source text for the CPC logic
- Local (CPC-unique) procedures or in—line routines
- Local data base definitions -

.

- Definitions of referenced system data base elements .

• -  Program Constructs. To enhance readability and eliminate
intri cate logic that is diffi cult to veri fy , only closed
logical structures should be employed in the constructi on
of CPCs , if the language permi ts. Closed logical structures

— are thos e which have a singj e entry and a single exi t point. 
- -

Use of the GOTO instruction Is limi ted to branching within
the confines of the construct s.

• Indentation. To increase readability , indentation can be a prima ry
means of imparting structure to the source program listing and ,
where supported by the program language , can be used to show the
fl ow of control and the scope of definition . 

-
- -

54



TW~

• Naming Conventi ons. To aid readability , tes tability , and
main tainability , names used in computer programs (procedure
or macro names, data identifiers and statement l abels)
should be meaningful . Naming conventi ons should uniquely
identi fy each CPCI component and all CPCI symbols (variables ,

- 
constants , and statement l abel s) shared_by more than one
CPC. - The naming conventions must be easily understood to
achieve maximum benefit. -

3.2.2 Existi ng Tools for Enforcing or Audi ti ng Programming Standards

Existing tools that can be used to enforce or audit programming standards
i nc lude :

• Code Auditor. A program that analyzes the syntax of a CPC
(according to the rules of the specific language) to examine each
~~~~~~~~~~~~~~~~~~~~~~~~~~ iih&d côcf r conVenti6ns. This

type of tool is constrained both by the specific language
syntax rules and the project-specific programming conventions
making it inapplicable for multi-development projects . However ,
it has been found to be an effective mechanism for eva luating
adherance to standards and improving both verification and
maintenance activities .

• Structured Programming Precompiler. A program , also called a
macro processor, which accepts structured programming constructs
not supported by the specific language compiler and translates
the construct s into compatible source language statements. The
output consists of the altered source code which can then be
compiled by the specifi c language processor.

3.3 TESTING TOOLS

This discussion is concerned with those tools that are appl i cable to the
veri fication activities inherent in the development of large computer systems.
At CPC-level testing, the selection and use of test tools should depend upon
the tool providin g sufficient information to demonstrate the following:

• The CPC ’s internal logical construction .

• The CPC ’ s input test case data , including nominal , default ,
n u l l , critical , maximum , and minima l data values .

• Integri ty of the CPC ’ s output data .

• Data base integrity , before and after CPC execution .

55

I~~t - - - - - - - - - - - ~~~~

- -

• The CPC ’s instruction-execution frequency and related
t i m i n g info rmation .

For CPC-incremental integration testing, selection and use of test tools
should consider how the tool provides information on the following factors:

• CPC interface integrity .

• Input data that is representative of the actual or live data .

• Instruction execution frequency and timing data .
-

• Core allocation data .

• Data base integrity , before , during, and after CPC operation .

• Output data integrity , such as message and display fo rmats .
-

The following discussion is concerned with specific aids and is presented in
terths of module and CPC—l evel , CPC-incremental integration , and CPCI testing
aids .

3.3.1 Module and CPC—Level Testing Aids

Module and CPC—level testing aids , or debugging tools , are designed to help
the programmer locate an error in program code that causes abnormal behavior
or termination to occur with a given set of inputs. Debugging aids assist in
tracing the execution of software by allowing the examination of the contents
of machine registers and memory representing the operational environment in
wnich the software will be executed . The following aids are frequently used
for module and CPC-level testing:

• Trace. A computer program used to record data cn program execution
and machine environment. Data may be collected when selected
portions of code or a selected class of instructions operate.

• Dump. A program which outputs all or selected oortions of memory
after program operations or at specifi ed points in program operation .

56

i D ~fv~~. A computi~ program wh ich provides inputs for otherprograms by simulating its operational environment. Dri vers
range in complexity from a simple sequence of calls to env i ronment
simul ation routines or complex data generation and simulated
time-dependent operations.

• Data Reduction Programs. A program that translates mach ine
output into a format more easily read by project personnel .
In some cases , these types of programs subject machine output
to statistical or analytical analyses be.fore outputing the
listing.

• Test-Case Generator. A program , or set of manual procedures ,
designed for the purpose of preparing test data for a specific
piece of software. Most test—case generators involve some
statistical algorithms for frequency distributions or random

- number generators for generating a wide distribution of input
data values. The specifications for a test-case generator are
dependent on the specifications of the software for which data
is generated , such as range of values , variabl e types, error
conditions. (This class of tools is separate and distinct from
automatic test-case generatQrs which are still being researched
and are not applicable to C~ systems.) -

3.3.2 CPC-Incremen tal Integration Aids

Many of the tools discussed for module and CPC-level testing are also used
for CPC incremental integration testing , such as dumps , data reduction
programs , and test-case generators. Additional tools used for CPC integra-
tion testing concentrate on verifying that the basic algorithms operate
together correctly by displaying information derived from analysis of the
CPC ’s external specifications as defined in the draft Product (Part II)
Specification. The following additional tools are used for CPC integration
test ing :

• Automatic Execution Analy sis. A program that analyzes the
syntax of a CPC to instrument the source code. Instrumenta-
tion is the process of generating and inserting instructions
at strategic program l ocations. The modi fied program is
then compi led and linked with the recording routines . The
instrumentati on is transparent to the programmer. The CPC
is executed with user-supplied test case data and the execu-
tion of the CPC is dynamically recorded via the instrumenta-
tion . The output data from this type of tool descri bes the
execution frequency of each statement and sometimes includes
information_concerning Input data processing. The output

57

• — -‘
—

- -~~---r~
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

‘— — .,:~ -~~
- ‘ -

~ -~‘ -
~ 

_______________.. • —~~~~~~~~~ .--— -~ 
—- 

—.,

data are used to~ generate d more exhaust ive set of test _
cases , or to id enti fy code tnat is ineffi~ient or superfl uous .

-
~~ 

-
, 

It does not prove the program correct in any way , but it does
_provide an indlcatio~~Of_the amount of testing appl ied to the

- 
CPC . The output generated by automatic , execution-analysis
tools, for a moderately sized program with a minimum set of
test cases , takes time to obtain , analyze , and understand. An
instrumented program may take as much as -50 100 percent longer
to operate on a single test case than the non—instrumented
vers ion of the program on the same test case. However, auto—
matic execution analysis provides a quanti tative measure oF

- 
the percentage of a computer program whi ch wa s tested.

• Dynamic Anal ysis of System Structure. A program which
outputs listings of the CPCI or subsystem structure when it
is prepared for execution, such as link editors and loaders.

~~~~~~~~~~~~~~~~~~~~~~~~~ on the contents of each
load CPC , by specifying the external references made by
each CPC within the CPCI. ____________

- 3.3.3 CPCI Testing Aids

In addition to the tools di scussed in 3.3.2 , the following tools can be

used to assist 1n CPCI_testing: - --

• Emulators. Hardware and/or mic ro—code used to permi t one
computing system to execute computer programs wri tten for
another system. Emulati on is a technique which allows the
performance of each instructi on to replicate the characteri s-
tics of the original machine , except for speed of operati on.
Emulation differs from simulati on in that in simul ation
there is not necessarily an identica l set of program instruc-
tions and/or common instructions are not necessarily executed
in the same precise manner. Emulati on may also be used in
earlier stages of testing when the target computer is not
available . In this case, module—leve l testing and integra-
tion testing may be performed on a host machine emulating
the target machine.

• Operating and Performance Measurement Tools. These tools
require that the parameters impacting indiv idual CPCI per-

- formance, as well as the interaction and dependence of
• those parameters upon each other, be identi fied so that

the tools are able to measure specifi c performance charac-
teri s tics such as operating time , core/periphera l storage
transfer requi rements , and memory used . Some performance
measurement tools -al so contain algori thms for processing
and analysis of the data .- (See 1.1.2.) -

58

3.4 PROJECT-SUPPORT AIDS

The development of large complex systems requires another set of tool s to
• support analysis , programmers , and management, and indirectly support the

veri fication process. Project-support aids are a combination of technical
an d managerial procedures and may be manual , automatic , or a combination of
both. Project-support aids incl ude:

.
-

• Program Production Libr~~y.~ A program production library (PPL)
-

is a system of administrative procedures and files designed to
~èstablish and control computer program and test case files ,enforce esta bli shed progra mming s tandards , and provide infor-

-
mati on and visibility for both project management and pro-

• granining personnel . The use of the PPL helps to coordinate
the status of CPCs under development, while also helping to
automate configuration control procedures. This is accomplished
by storing program modules and test data in a data base and
maintaining status and control records on the contents of the

__ da~~~a~e. ____________

• Project Monitor. An automatic or s’emi-automatic tool used
to provide management , planning, and control information of

• software under devel opment. These tool s are used to build
• a project data base containing detailed schedul e informa-

tion for collecting and reporting the status of program
devélopmént. They also are ~iI~d to keep track of di ffirent
components of the CPCI , descri be their interrelationships ,
and monitor the progress of their completi on . Schedules
for CPCs may be plotted , and error reports and resolutions
may be tracked. The relationships between specificati ons ,
CPCIs, CPCs, test requi rements, and test plans can be main-
tained In the data base and reported as traceability veri-
fication matri xes . Matching of test plans and procedures
wi th requirements may also be accomplished . Project rnoni-

— — - tors are used to p~~vi4 ~~~~~~~~~~~~~~~~~~~~~~ on
wor k pro gress for the evo lv ing CPCI , but they are sometimes
cumbersome and expensive to use because they require detailed
and current input data on all system elements to be effective.

• Chief Programmer Team. A contra~tór oi ganizational concept used
in Full-Scale Development which structures job assignments by
individual specialization and clearly defines the relationships
between team members. Al though primarily directed at software
development , the chief programmer concept aids verification
through its internal review and testing activities . The
team Is headed by a highly competent chief programmer, whose
nrinc-’pal job Is -to design ,. code, and test the critical segments
of the code and to- allocate speci fic programming assignments . A

- - •

-

~~
__ _ _ _ _

‘

-

-

-

backup programmer ~~~~~~~~~~~~~~~ gn of the -p~~g~ã n d ~~ t a s ai evaluator , but is not hel d responsible
for the code . A program secretary is responsibl e for mai n-
taining the project records , project notebook, and the PPL.
Other programmers and- analysts perform duties as designated by
the chief programmer. The enti re team usually consists of
five to nine people. The software produced under this concept
Is the shared responsibility of the team as a whole. The
chief programmer concept features visibility into work assign-
rnent and communication between team members .

• Automati c Flowcharters. A program that analyzes the syntax
• of a program i.n a specifi c language to graphical ly represent

the control flow of the source code. Some automatic flowcharters
incorporate programmer comments in the graphic display outputs .
Most automated flowcharters do not analyze usage of data variables,
although they often reflect where data is set and used .

60

~

--

~

-

~

- - -~~~~~~~-~-~~
- -

- ____________
—- - .—•• -

~~~~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- _ _ _ _ _ —-- --t— - -a a.. - - - — ~~~~~~~~~~~~~~

APPENDIX B - GLOSSARY - -

•

--

This appendix consists of (1) definitions of major terms used throughout
— this guidebook and (2) acronyms and abbreviations used herein.

DEFINITIONS
.Certlflcation. As used In this guidebook, certi ficati on refers to the usin g

.
command ’s approval , at the concl usion of OT&E, that the acquired system

• satisfies its intended operational mission.

Computer Program Component (CPC?. A functionally or logically disti nct part
of a computer program distinguished for purposes of convenience in design-
Ing and speci fying a compl ex computer program as an assembly of subordi-
nate elements . -

Computer Program Confi guration Item (CPCI). A computer programming end Dro-
duct whose development and subsequent modi fication is subject to con-
figuration management.

Computer Pro~ram Development Plan (CPOP). The CPDP is a plan that identifies
the actions needed to develop and del iver computer program configuration
items and necessary support resources .

Computer Programming Test and Eval uation (CPT&E). Tests conducted prior to
and in parallel with prel iminary or formal qual ification tests . These
tests are oriented primarily to support the design and development
process. (AFSCM/AFLCM 310-1).

Critical Design Review (Computer Program). A formal technical review of the
design as depicted by the speci ficati on and flow diagrams , suffi ciently
detailed to enable the programmer to code , compile , and debug a computer
program, to assure that design requi rements have been met before coding

—
~~~~~~~~~ begins. 

-

Development (Par t I or Type B5) Speci ficati on. A document which speci fi es the
require~ nts pecular to the design, develo~ment, f~~cti~ ,a1_ p e f ~~1nance ,
test, and quallficit1ài~àf the confi güratio~ item. It establishes per-
formance cri teri a and test criteria for which the program shal l be
designed/developed [MIL-STD -483(USAFfl . 

____________  - 

Development Test & Evaluation (DT&E). That testing and evaluation of indivi-
dua l components , subsystems, and , i n cer tain cases , the complete system,
which is conducted predominantly by the contractor.

Formal Qualifi cation Review (FQR).. The test, inspection , or a~alyti cal pro-
cess by which products at the end Item or cri tical item level ar-u yen -.
fled to have met specific procuring activi ty contractual performance
requirements (specifications or equivalent). This review does not apply
to requirements veri fied at FCA [MIL-STD-l521A(USAF)~ .~ -

61



— 
.- •-

~~ ~w_—_ •,,.~~— ‘--r-- ~‘ ~~~~~~~
— ~~~a

—~~----- --~~~~~~
--

~~~~ --~~~~~~~~~~~~~~~~~~~~~ -

Formal Qualifi cation Tests (FQT). A formal test conducted in accordance wi th
the Air Force—approved test plans and designed to be a complete and
comprehensive test of the CPCI prior to FCA. It is conducted after the
design process culminates (AFR 800-14, Vol . II).

Functional Configuration Audit (FCA). A formal audi t to validate that the
deve lopment of a confi guration item (CI) has been completed satisfactorily
and that the CI has achieved the perfo rmance and functional charactenis-
tics speci fied in the functi onal or al located configuration identification.

Physical Confi guration Audi t (PCA) . A technical examination of a desi gnated -

configurati on item (CI) to veri fy that the CI “as built” conforms to the
technical documentati on which defines the CI.

Prelimi nary Design Review (POR). A formal review of the prelimi nary design of
a system functional area or a configurati on i tem to establish system corn-
patibility of the design , identify speci fic engineering documentation and
define physical and functional interface relati onships .

- Preliminary Qualifi cation Tests (PQT). A formal test conducted in accordance
wi th Air Force—approved test plans and designed to be an incremental pro-
cess which provides visibility and control of the computer program devel-
opment duri ng the time period between CDR and FQT. A PQT should be con-
ducted for those functions which are critical to the CPCI (AFR 800-14,
Vol. I I) .

Product Specification. A document or seri es of documents which contai n the
detailed technical description of the CPCI as designed and coded. It is
a complete description of all routines , limi ts, timi ng , flow, and data

—~~~~~

base characteristics of the computer program , limits , timing, flow, and data
coded instructions . Equivalent to “Part II CPCI specifi cation ” or “Type
C5 specification ” .

Program Production Library (PPL). A group of manual or automated procedures
used to control and keep records of the developing software.

System Design Review (SDR). The SDR is conducted to evaluate the optimization ,
correlation , compl eteness , and risks associated wi th the allocated tech-
nical requirements.

System Engi neering Management Plan (SEMP). The SEMP is a comprehensive plan
on how the contractor will manage and conduct his integrated engineering
effort.

System Requi rements Review (SRR). The SRR is a system engineeri ng review to
ascertain the adequacy of the contractor’s efforts in defining system
requirements . It will be conducted when a sign i ficant portion of the
system functional requirements has been established .

62


~~~~ii i . ~~~~~
- i~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

System Speci ficati on. A document wh ich states all the necessary technical and
mission requirements in terms of performance, allocates requirements to
functional areas (or configuration i tems), defines the i nterfaces between

-
-, or among the functi onal areas (or configuration i tems), and includes the

test provisions to assure the achievement of all requirements.

Test & Evaluation Master Plan (TEMP). The TEMP is an overall plan which iden-
tifies and integrates the efforts and schedul es of all test and checkout
activities to be accomplished in the system development program .

Val idation. As used in this guidebook , comprises those evaluation , integra-
tion , and test activities carried out at the system level to ensure
that the system being developed satisfies the requirements of the
System Specification . While the validation process has significant
software impl ications , a software validation process, distinct from
the system validation process, cannot be isolated since all evaluation
and test activities that make up validation are focused at the system
level .

Veri fication The iterative process of determ~~ing whether the pro CföI ei~hstep of the Computer Program Confi guration Item (CPCI) development
process ful fills all of the requirements levied by the previous step .

63

1

~ W ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~
.- ~~~~~~~~~~

ACRONYMS AND ABBREVIATIONS

AFR. Air Foroe Regulations

AFSC . Air Force Systems Command

C3. Command, Control, and Communications

CDR. Critical Design Review

CI. Configuration Item

COMPOOL. Communications Pool

CPC. Computer Program Component

CPCI . Computer Program Configuration Item
-

- CPDP. Computer Program Development Plan

CPT&E. Computer Program Test and Evaluation

DID. Data Item Descri ption

DoD. Department of Defense

DT&E. Development Test and Evaluation

ESO . Electronic Systems Division

FCA . Functional Configuration Audit

fiQ~
. Formal Qual i f icat ion Review -

E9L. Formal Qual ification Test - -

FSD . Full-Scale Development

GFE . Government Furnished Equipment .

HOL. Higher Order Language

MIL-STO. Military Standard

OT&E. Operational Test and Evaluation

64

i!~ ~~ ~~~~~~~~~~~~~~~~~ ~~~~~~
-c- -- •

~~

-

~~~~
—

~~ 
-

~~ 
—

~~~ 
—

— —

- ••-•—. — •— .•i.__._••_••_ •_•_ .__ —. ~~

PCA. Physica l Configuration Audit

- j POR . Preliminary Design Review

-
~ P0. Program Offi ce

PPL . Program Production Library

EQI. Preliminary Qual ification Test

Q~
. Quality Assurance

RAUC . Rome Air Development Center

ROC . Required Operational Capability

RSSs. Regul ations , Specifications , and Standards

SAM. Software Acquis ition Management

SD. Softwa re Director

System Design Review

SEMP. System Engineering Management Plan

SE/TD. System Engineering Technical Direction

TEMP. Test and Evaluation Master Plan

TR. Technical Report

USAF . United States Air Force

65

- -
~~~~~~~~~~~

---
~
--- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~-- -~~-- - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~ ,..~ ~~~~~~~~~~~~~~~~~~~~ 
— - -- •

APP ENDIX C - BIBLIOGRAPHY
MILITARY SP ECIFICATIONS AND STANDARDS

MIL-5TD-483(USAF); “Configuration Management Practices for Systems, Equipment ,
Munitions , and Computer Programs ; “ DoD; 12 Apri l 1971 .

- - — ____

MIL-STD-490; “Specification Practices ;” DoD; 30 October 1968 .

MIL-STD-499A; “Engi neering Management;” DoD; 1 May 1974.

MIL—STD—l52lA(USAF); “Technical Reviews and Audits for Systems, Equi pment, and
Computer Programs ;” DoD; 1 June 1976.

AIR FORCE AND SUBORDrNATE COMMAND DOCUMENTS

AFR 65-3 ; ~‘Configuration Management ;” USAF ; 1 July 1974.

AFR 80-14; “Test and Evaluation; ” USAF ; 19 July 1976.

AFR 800-2; “Engineering for Defense Systems ;” LJSAF; 16 March 1972 .

AFR 800—14; “Acquisition Management; ” Volume I-Mana gement of Computer
Resources in Systems; 12 September 1975; Volume Il-Acquisition and Support
Procedures for Computer Resources in Systems; 26 September 1975; USAF .

-

AFSCM /AFLCM 310-1 ; “Contractor Data Management ;” Volume 1, Management of
Contractor Da ta and Reports; USAF(AFSC /AFLC); 30 August 1969.

AFSCM /AFLCM 375-7; “Configuration Management for Systems , Equipment , Munitions ,
and Computer Programs ;” USAF (AFSC /AFLC); 31 March 1971 .

AFSCP 800—3; “A Gui de for Program Management; ’ USAF; 9 Apri l 1 976.

AFSC DH 4—2; “Computer Program Testing;” Chapter 5-Electronic Systems
Test and Evaluation ; AFSC; 10 Apri l 1 971

- RADC-TR-74-300; “Structured Programming Series ;” Volume XV , Val i dation and
Veri fication Study ; USAF(RADC); May_1975.

- -

66

~

~~~~~~~~— -:



DATA ITEM DESCRIPTIONS 
-

DI-E-3029 , AGENDA — Design Reviews , Audi ts and Demonstrations

DI-E-3i08 , Configurati on Management Plan 
- 

- 
—

D !-E-3ll8 , Minutes of Formal Reviews , Inspections and Audits

DI-E-3l l9A , Computer Program Development Specification I
DI-E-3 120A , Computer Program Product Specifi cations

- 

I
DI—S — 358l , Subsystem Design Analysis Report 

-

CI -S~3591A , Technical Reports 1
DI-S—3606 , System/Desi gn Trade Study Reports

DI—S—3 0567 , Computer Program Development Plan (CPDP) 
-

- 

DI-T-3703 , Category I Test Plan Procedure s (Computer Program)

Dl-T-3 7l7, Category I Test Report (Computer Program)

67 -

- ~~W~~~~~---~ 
___________________- - T~~~~~~~ — - ~-~~~ - - -~~~



- ~~~~ — - 
- - 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
‘ -‘ 

- - — — 

~~~~~~~
- -—

~

----— - ----

F
r

F
GENERAL REFERENCES

“A Definitional Framework; ” Hertzel , W.C ; Program Test Methods; Hetzel , W.C.
(Ed); Prentice—Hall , Inc.; Englewood Cl iffs , N.J.; 197~ .

“An Overview of Bugs ;” Schwartz, J.T. ; Debugging Techniques in Large Systems ;
Ru st in , R. (Ed.); Prentice—Hal l , Inc.; Englewoo d C li ffs , N.J.; 1971 .

“A Pers pec ti ve on System Perfo rmance Evalua tion; ” Drumond , M.E.; IBM ~~Journal, No. 4; 1969.

“Automation Aids for Reliable Softwa re ;’ Re ife r, D.J.; SAMSO Report TR-~~Aerospace Corporation; El Segundo , CA.; August 1975 .

“Computer Program Veri fication/Validation/Certification ;’ Re i fer , D.J . ;~• TOR -O074(4 112-5); Aerospace Corporation ; El Segundo , CA.; May 1974 .

“Computer Selection Methodology ;” Tinunpeck , E.M.; Computer Surveys, Vol . 5 ,
No. 4; December 1973.

“Configuration Management of Computer Programs by the Air Force : Principles
and Documentation,” Searl e , L.V. , Nei l , G.; AFIPS Conference Proceedings;
Vol . 30; April 1967.

“Data Requirements for Productivity and Reliability Studies; ” Finfer , M. C.;
TM—5542/0O3/Ol , System Development Corporation ; Santa Monica , CA.;
June 1976.

“Debugging Under Simulation; ” Supnik , R.M.; Debugging Techniques in Large
Systems ; Rustin , R. (Ed.); Prentice-Hall , Inc. ; Eng l ewood Cliffs ,
N.J.; 1971 .

“Developing and Testing a Large Programing System , OS /360 Time Sharing
Option ;” Scherr , A.L.; Program Test Methods; Hetzel , W. (Ed.);
Prentice—Hall; Englewood Cliffs , N.J.; 1973.

“Interim Report On the AIDS Invento ry Project; ” Reife r, D. J.; SAMSO TR-75 — 184 ;
Prepared by Aerospace Corp.; 16 July 1975 .

“On the Feasibility of Software Certi fication ; “Keirs tead , R. E.; Stanford
Research rnsti tute Project 2385 for National Science Foundation
(Grant No. GJ 36903xl).

“Performance Evaluat i on and Mon itor ing;” Lucas , H. C.; Compute r Surveys,
• Vol . 3 , No. 3; September 1971.

*The discussions in thi s guidebook on requirements verif ication , design veri fi-
cati on , and computer ~r~gram veri fication differ in coverage from Reifer ’ s
CODEVER , SPECVER , RE QVER , and SYSVER.

- -

68 ~~~~~~~~~~~~~

~

—‘ —.---

~~~~~~~ ~~~~~~ 
‘
~~~~

—

~ ‘~
— — .——-w.’-’- —‘-•-

~
-. .

~~~~~~~~ ~
-•— -- .—.- -.— —,. — -. 

—“
.. ~~~~~~~~ 

_.— .s.’.. —-—- _.  - -  _ -

“Precompiler Speci fi cations ;” Tinanoff , N.; RADC TR 74-300; Structured Program-
ming Series, Vol . II; IBM ; Gai thersburg , MD.; May 1975.

“Program Design Study;” Kraly , T.M. , et al; RADC TR 74—300; Structured Program-
ming Series, Vol . VII I; IBM ; Gaithersburg , MO.; May 1975.

“Program Production Library Programer’s Guide ;” Bratman , H., Cudney , P.F. ,
Johnson , B.G.; TM-5l75/600/O0, System Development Corporation ; Santa
Monica , CA .; August 1973.

“Quantitati ve Aspects of Software Val idati on ;” Rubey , R.J.; Proceedings of
Internati onal Conference on Reliable Software ; Pgs . 245—25 1 ; IEEE;
Apri l 1975.

“Reliable Software Through Composite Desi gn; ” Meyers , G.J.; Petrocell i/
Charter; New York , N.Y.;  1975 .

“Software Reliability;” Meyers , G.J.; John Wiley and Sons , Inc., New York ,
N.Y.;  1976 .

“Software Requi rements Analys is; ” Kass iakoff , A., Sle i ght , T.P.; Paper
presented at Conference on Software Management in Defense Systems and
Other Federal Programs ; ACM/IEEE; 1976 .

“Structured Programing: Techniques for Developing Reliable Software Systems ;”
Bratman , H.; SP-3693; System Development Corporati on ; Santa Monica , CA .;
December 1972.

“Sumary Notes of a Government/Industry Software Sizing and Costing Workshor ;”
ESD-TR—76-l66 ; IJSAF (ESD); Bedford , MA. ; October 1974.

“System Management As pects of Computer Program Test and Activation; ”
Henderson , R.L., Searle , L.V.; Th-3361/000/Ol , System Development
Corporation; Santa Monica , CA.; August 1967.

“Sys tem Simulation ;” Gordon , G.; Prentice—Hall; Englewood Cliffs , N.J.; 1969.

“System Management Applied to Large Computer Programs in BUIC III; Rev i ew
of Experi ence ;” Searl e , L.V. , Rosove , P.E. , Sydow , E.H.; ESD-TR-69-302;
Air Weapons Surveillance and Control SPO; USAF (ESD); Bedford , MA .; 1969.

“The Program Development Process; ” Aron , J.D.; Phillipines : Adison-Wes ley ; 1974 .

69

_ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



___-fl ,-___ —-- - - -~~- -- -— - - • - - - - - --- --- —- — - —-— - - ~~~~~~~~~ — -

“The Software Er~gineeri ng Facility ;” Irvine , C.A., Brackett, J.; Document
553—37; Softech ; Waltham , MA. ; October 1974. 

--

“Val idation and Verification Study;” Smith , R.L.; Structured Programing
Series , Vol . XV; IBM ; Gaithersburg , MD.; May 1975.

“Verification and Validation of Defense and Space Systems Software;”
#76.6455.11-002; TRW ; June 1976.

70
(Last Page)  

_____________ _______



,--- 1.
~~~~~.•’

—--
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

-
~ 

-. 

~~~~~ 
,- -.

~
.--—

~~
-.-•.--- —,- •.-—.----

~
-,—

- -~~~
- - ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~-—-- —- .— - - ~ - . j ,~~~~

-- ------- --•• -~~~
—.

~~~~~__ .  - - --—~~-.~~~r — ~~~1 j-_~~ -

C0~~~T sa~~r

- 

Softwam Verificat~.on Gu.tdebook

Reviewer ’s Name: Reviewer’s Organization:

- Comments:

11
Please return to: Hq ESD/MCIT (Stop 36) 

-

Hanscom AFB, MA 01731

- - - -~~ -
. 

~~ -~~~~~___________


