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SEC TION I

INTRODUCTION

In the contemporary technology of structural  composite mater ia ls ,

major deficiencies exist with respect to our ability to determine the s t ress

field within a multilayered composite laminate . In most cases , even a

superficial or qualitative understanding of the nature of the s t ress  field in

reg ion s of steep st ress gradients has not been established. A notable ex-

ception is the appr oximate treatment [1 , 2] of the classical f ree  ed ge prob-

lem in laminate elasticit y [3 , 4 J ,  however , si milar t reatments have not

been advanced for other laminate stress concentration problems . In the

absence of a practical means of laminate stress analysis , it is not possible

to devel9p an understanding and general characterization of the various

insidious fai lure  modes which have been demonstrated in composite laminate s

[2 , 5 , 6 , 7 , 81. The latter references  all document heterogeneous damage

development which varies through the laminate thickness and suggest  the

importance of defining the stress field within each layer , par t icular l y in

reg ion s of stress concentration , where classical lamination theory [ 9, 10]

errs badl y [4 , 1 1, 1 2 ] .  This is contrasted to the ultimate fai lures of cer-

tain laminates in the presence of s tress r i sers , which onl y seem to depend

upon the overall laminate properties [13 , 14] , rather than the details of

the stacking sequence , although the details of the damage development and

growth in these laminates are a function of s t resses  in the individual layers

[ 15] .

Al though the fini te element method is widel y used in the design of

prac tical composite s t ructural  elements , e . g .  [1 6] ,  its app l ica t ion  is

limited to determination of fo rce (per unit length) ,  ra ther than s t ress  dis-

t r ibutions.  This is accomplished throug h the assu mption of a simp lified

displacement field-that which is assumed in classical lamination theory.

This permits  one to define effective elastic properties of the laminate as a

whole , and to compute integrated values of the in-plane s t ress  components



-• 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

-~~~~_...---- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-•.•

~~ 
-

~~~~~~~~~~~~~~~~ 
-- - - -.- --• • _- .

AFML-TR-77-1 14

acros s the laminate thickness. In fact , once the force  distribution has

been defined , the associated layer stresses may be computed , however , as

mentioned earlier , this procedure is not generally reliable. At present ,

therefore, determinations of failure loading and mode of failure in practi-

cal composite s t ructures  are based primarily on experimentation with pro-

totype bodies. These comir~ nts are not made with the intention of dis-

paraging the contemporary practice since the presence of structural com-

plexity in the form of holes , connec tions, ed ges , and discontinuities in

thickness of many-layered composites may overwhelm ~~~ attempted analy-

tical technique .

The basic limitation imposed by numerical solutions to the laminate

elasticity problem has been illustrated in a recent paper by Wang and

Crossman [17] in their treatment of the free edge class of boundary value

problems . In order to achieve a realistic prediction of the stress field by

use of the finite element method , sixteen elements in the thickness three-

• tion were required within each layer in the reg ion of steep stress gradients.

A total of 196 elements per layer were employed. To accornodate such a

large array,  it became necessary to employ a specia l matrix storage

scheme for the purpose of reducing computer storage and running time .

Similarly, Pipes [18] required a lengthy extrapolation procedure in con-

junction with the finite c~ifference method in order to achieve a satisfactory

solution for a two layer free edge boundary value problem.

Another approach to the problem of laminate stress analysis , e . g . ,

Rybicki [ 19], utilizes larger elements that possess a more complex s t ress

field . Stanton , Crane , and Neu [20 ] employ a tr icubic isoparametric

discrete element and a system to automate the construction of finite ele-

ment models. The latter approach effects an appreciable reduction in data

input requirements. This added efficiency seems to be the major advantage

of “large element” formulations, as the number of degrees of freedom is

comparable to those employed in the more routine methods . Desp ite the

2
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refinement s , however , computed laminate stress fields are not universally

accura te, as another feature of laminate elastic anal ysis , i .e. , the presence

of stress singularities , is a severe obstacle to the execution of numerical

elasticity solutions. Unfortunately, th e orde r of these singulari t ies has not

been de f ined f or anisotr opic layer s , i .e . , the extension of Bogy ’s wor k on

isotropic quar te r -planes [2 1] has not been accomplished.

On the other hand , approximate theo r ies have been proposed in

att empts to execute rea lis tic lamina te stress analysis. The most popular

of these is the a f orementioned classical lamina ti on theor y, op. cit. [9, 10]

While this theory has been shown to yield reasonably accurate stress calcu-

lati ons in ce rtain classes of bounda ry value pr oblems under a limited r ange

of geometr ic  parameters [22 , 23 , 24] ,  its assumptions are too restrictive

f or general application. Theories incorporating laminate “ shear deforma-

tion ” [25 , 26 ] lead to accurate deflections in bending problems but offe r no

hope for improved stress computations , c . f .  [2 6 ] .  The higher-order plate

theory de r ived by Whitney and Sun [2 7]  was applied by Pagano [28 ] to

examine the interlaminar normal stress distribution in the free edge bound-

ary value problem but only on a plane of symmetry.

The prominent common feature of the theories discussed in the pre-

vious para graph is an assumed displacement field that is continuous across

the entire laminate thickness. The theories diffe r only in their speci f ic

— choice of the assumed displacements. This displacement as sumpt ion , how-

ever , guarantees discontinuous tractions at interfaces between layers of

different  elastic moduli except under elementary loadin g condi tions . Fur-

ther , the ed ge ( t r ac tion) boundary conditions appr opr iate to th is approach

• ar e , in general , insuf ficient to guarantee equilibrium of sub-region s con-

taining the edge boundary under the known ( pointwise) tractions , op. cit . [ 28] ~

*In order to guarantee equilibrium of a given sub- reg ion containing the ed ge
boundary, we must have the freedom to prescribe at least 5 traction bound-
ary condi tions (3 force components and 2 couples) on its edge. Therefore ,
if we wish to guarantee equilibrium of each layer of a laminate , we need at
least SN ed ge boundary conditions , where N is the number of layers in the
laminate.

3
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Hence , use of this d isp lace ment approach and possible extensions to al low

• even higher order va riations throug h the thickness , is unacceptable for

laminate stress field anal ys is .

Another class of approximate laminate theories represent  attempts to

gener alize those discussed above and are based upon the assumption that the

dis placem ent component s a re  linear func t ion s of z , the thickness coordinate ,

within each layer. In this formalism then , the displacements are  p iecewise

con tinuous functions . Among the theories which rel y on this approach are

the so-called effective st iffness theories pioneered by Sun , Achenbach , and

Herrmann [29, 30 ] .  Sun and Whitney [31] treated various theories in this

class and demonstrated tha t , given disp lacement continuity at all in ter faces ,

the number of field equations depend on N (number of layers)  onl y when

4 traction continuity at in ter faces is ignored. Otherwise , the number of f ield

equations is only dependent on the gen erality of the initial assumption , i . e . ,

whether the linear term in z for t ransverse disp lace ment w is included or

dropped. Hence the number of field equations is constant for all laminates.

Since the same statement can be made with respect to the number of ed ge

boundary condition s , the deficiency of the aforementioned theories [9, 10,

25, 26 , 27] with respect to sub-reg ion equilibrium applies to the present

class as well. The latter theories do , however , y ie ld a more realistic de-

termination of effective laminate dispersion characteristics , which provided

the motivation for their development. The assumption of piecewise linear

displacements , as we ll as w = w(x ,y ) , leads to the theory of Sriniva s [3 2 ] ,

in which the number of field equations and edge boundary conditions does

depend upon the number of layers.  Therefore , interface tract ion c ont inu i ty

conditions cannot be satisfied [3 1 ] .  Fur thermore , in this  theory , the inter-

laminar nor mal str ess , which has been shown to be responsible  for delarn -
• ination fa i lures  [ 2 ] ,  has been neg lected. Desp ite the accura te  resu l t s

obtained for vibration frequencies , def lection , and axial  s t ress  in the parti-

cular bending problems treated in [3 2 ] ,  the theory  is not general ly  app licable

for laminate s tress anal ysis .

4 .~ H
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Finall y, an approach suggested b y Pagano [28], i . e . ,  t rea tment  of

each layer as a plate governed by the Whitney- Sun theory [2 7 ] ,  lacks

generalit y since it can be shown that less than 5N ed ge traction bou ndary

conditions a re available in that approach. Fur thermore , as a consequence

of interface displacement continuity , the natural  ed ge traction bo undary

conditions are coupled , i .e . , they involve functions of the tractions acting

on two (adjacent) layers .  Thus , extension of this approach by allowing

higher orde: displacements is not advisable , since , as in the previous

approaches , prope r equilibrium of each layer under its prescribed tractions

cannot be enforced.

The previous discussion has defined a clear need to examine new

• approaches for laminate stress analysis.  All known approxi mate laminate

• theories are based upon ass umed displace ment fields , which as we have

-

. 
seen , lead to results lacking credibil i ty.  There1~ore, in this work , ~e shall

set down requirements to be satisfied by an accep table laminate field

theory and proceed to develop a self-consis tent  theory in accord with the

requirements , which are: a) All six stress components are non-zero  in

general ; b) T raction and displacement continuit y cond itions at interfaces

be tween adjacent layers are sat isf ied;  c) Consider a region within the lamin-

ate that is arbi t rari ly located except that it is bounded by any two of th e

• paralle l interfaces of the laminate. We shall require that the computed

• stress field acting on the surfaces of the a rb i t ra ry  region , in conjunction

with the prescribed traction boundary conditions (pointwise , in the elasticity

sense) on those portions of the external laminate boundary which lie in the
• region , sat i sf y the condi tions of vanishing resultant force and moment iden-

• tical ly. Thus , every  layer must  satis fy this requirement , which we sha ll

hence f or th refe r to as ‘layer equilibrium ’ . This implies that the appro-

pr iate force  variables in th e f ield theor y are f or ce and moment resultant s

• ( per unit length ) acting on the cross sections of a layer and inter laminar

stresses on its interfacial surfaces . Although sub-reg ion s not bounded b

y5
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- interfacial planes need not satisf y layer equilibrium, in problem solving,
- • additional interfaces may be introduced conceptually to improve solution

accuracy. In fact , we may view the purpose of this work as an examination

of effectiveness of mathematical laminate models in which the response is

defined in terms of force and moment resultants and interlaminar s tresses.

Although the above requirements do not defin e a unique theory, we
• shall treat the simplest theory within thi s class in the present work.  The

theory is based upon a variational theorem derived by Reissner  [33] and
- permits the t reatment of discontinuous inte rf aces , i . e . ,  in terface cracks .

Known solutions for the free ed ge boundary value problem in laminate

elasticity, where pronounced str ess gradient s occ u r , wi ll be utilized to

assess the consequences of the present concepts.

I

i_i 
•

h
6
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SECTION II

VARIATIONAL PRINCIPLE FOR LAMINATES

The physical problem of in terest in the present work is that of a lam-

• m a te which is built of anisotropic elastic layers of uniform thickness and is

• - subjected to prescribed tractions and/or displacements on it s boundary.

• The body is bounded by a cylindrical edge surface and upper and lower faces

that are parallel to the interfacial planes. Since it is necessa ry to consider

both trac tion and disp lacement continuity conditions at the various inter-

faces , it is logical to examine Reissner ’s va riati onal theorem [33] as a

mechanism to develop the appropriate field equations .

Reissner has shown that the governing equations of elasticity can be

obtained as a consequence of the variational equation

0 (1)

where

J = I FdV - f  7u.dS (2)
JV S’

and

F = o ..(u. + ~~~ . .) - W (3)• 2 i~ i ,j  j , i

In the above equations , W is the strain energy densi ty expressed in terms of

the str esses o ..(i ,j  = 1, 2 , 3), V is the volume , S the entire surface , T the

presc ribed tractions , u . the displacement components , and S’ is the portion

of the boundary on which one or more traction components are prescribed .

In what follows, we shall le tS”  represent the portion of the boundary on

which one or more displacement components are prescribed. Summation

over the range of repeated subscri pts will be understood in this work. It is
-

• also under stood that both str esses and displacements are subjected to var-

ia tion in th e applic ation of eq. (1) .

7

~
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We shall now express the form of eq. (1) for the laminated body,

• which is composed of N layers, the volumes of which are represented by

V
k

(k = 1,2,’’’ N). For conceptual purposes, we may let the layers be

numbered consecutively from the bottom (k = 1) to the top (k N). Thus

we get , by def init ion

= 

k~~~1 \r k 

+ u ~~~
)
~~ w]~~~ dvk -/~iu ids (4)

where the superscript (k) attached to the bracket signifies that each variable

within the bracket is associated with the kth layer. We shall also incor-

porate expansiona l strains e .• [34],  or strains produced in the absence of

stress , in the present theory, so that

:1 W = W (o ~~ e
~~

) ( 5)

Substituting (4) into (1 ) ,  making some trivial manipulat ions , and applying

• the Green-Gauss Theorem gives

N u . • +u . ( k)

k~~~l I [( j~~~~

2 

~~~~~‘ 
- - r

1j~~~6u1 ] dV k
(6)

N (k) (k)
- 

f1&u. dS + 
k~~~1 

f  r . 5u. dSk = 0

(k)
where is the surface enclosing Vk 

and r. are the tractions components

acting OflS k~ 
We should recognize that the sur faces  S

k and con tain

a common reg ion. namely,  the interface between the respective layers .

Hence , we shall define s urf ace as th e port ion of Sk which contains the

top of the kth layer.  We also let J~
’ represent  the portion of that does

not belong to either S’ o r S ” . Observing that the ed ges of the layers,  as

well as the top of the Nth layer and bottom of the f i r s t  layer , all belong

to S, eq. ( 6) may be expressed 
a s 8
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k~~~l Vk 

- - 

~~~~~~

(7)
-
: N- 1 (k) (k) ( k + l )  ( k + l )

+ 
,[r

. ôu .d S +  ~~~~~~( r . öu . + r . 6u . )  dlk = 0

Clearly, th e vanishing of the volume in tegrals r equir es satisfaction of the

equilibrium equations and s tress-displacement relations within each layer.

The vanishing of the surface integrals on S’ and S’ require that one term

of each of the products ( r
1u 1, r 2u2, r3u 3) be prescr ibed at each point on S

since 5u . is arbi trary onS’  and it vanishes o n S” . Fina lly, the integrals

over Ij~’ (k = 1, 2 , . ‘‘N- 1) vanish when tractions and disp lacemen ts are

continuous in these regions . Hence, eq. (7) , which represents the state-

men t of Reissner ’s theorem for laminated bodies , will be app lied in the

derivation of our approximate laminate theory in the next section .

I 
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SECTION III

DEVELOPMENT OF THEORY

Consider a sing le layer of thickness h within the laminate . We let x
and y represent the coordina tes in the midplane of the laye r , which is

bounded b y the planes z = ~ h/ 2  and the cy lindrical ed ge surface whose

intersection with the midplane is called L. The reg ion enclosed by L will

be denoted by R. The interlamina r stresses 0 , r , arid r at the top ofz xz yz
the layer are denoted by p2. t2, and s2, respectively, while the corres-

ponding stresses at the bottom of the layer are desi gnated as p 1, t 1 . and s 1 .
Supe rscr i pts (k) , which identify the layers , will be dropped except when

they are needed for clari ty.

The simplest assumption consistent with realistic st ress anal ysis is

that the in—p lane stress components* are linear functions of z , viz ,
N l2M z

0 l = °
~x = +

N l 2M z
= = + (8)2 y h 

h
3

N l2M zxy xy
= I. = +6 xy h h 3

where N ” ~ M are functions of x and y only. Obviously, these func t ions

represent the usual force and moment resultants arising in plate theory.
We have also indicated the symbols for the stress components in contracted

notation since this system will be convenient for future developments.

* Note that we refrain from assuming the form of the displacement field
in accordance with the objectionable features of that approach described
earlier.

10
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We now substitute (8), along with the values of the interlaminar stresses

at z = * h/2 , into the differential equations of equilibrium, which leads to

the following dis tr ibutions

(p 1+p 2 ) / 12z2 \ 2~~~l~ /40z 3 - 6z\ 
3N

~ I 4z
2
\ 

l5M
12 8z

3

~ ~~1) ÷ 
~ ~~~~ 

hJ 2h~~~~~~~ Z J 2  ~~h~~~13

(s +s ) 2 3V 2

~4 
?yz

_ ( 5
2 5 1) h + ~ 2 

(12 .~~~~~
.. 
~) + ~ (~ 

-
~

-) (9)

- , (t +t ) 2 3V 2
= txz = (t2- 

t 1) ~ + 1
4 

2 ( l 2 z  - i) + Zh (
i~ 4 Z )

where the shear resultants V , V and the functions N , Mx y z z

given by

1
h/2

(N , M )  = J 0 z( 1
~ 

z)dz ( 10)

-hIZ

are functions of x and y alone . The functions on the right hand side of

eqs. (8) and (9) are not all independent as they are related via equilibrium

and continui ty considerations , but these relations will be subsequently
- • 

• •~ developed by means of the variational equation (7) .

In general , the strain energy density of an elastic anisotropic bod y

• is given by

w = 4 S~~o-j o~ + o- .e. ( i , j  1, 2 ’s  ‘6) ( 11)

where contracted notation has been employed , with S 1.  representing the

compliance matrix and e . the engineering expansional strain components .

Since structural composite laminates are generally built such that each

layer possesses a plane of elastic symmetry parallel to xy, we shall treat

this material class (monoclinic) in this work although generally anisotropic

11
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layers may be treated without difficulty . For monoclinic symmetry  with

respect to the xy plane , the compliance matrix takes the form

-
S11

~12

S~ = S
13 

S
23 

S
33 

SYMM.

0 0 0 S44 ( l 2 ~
0 0 0 S

45 
S
55

~~l6 S26 S36 0 0 S66~

while

= 2e 23 = 0

( 13)
e5 = 2e

13 
= 0

for monoclinic symmetry,

We now substitute eqs. (8) ,  (9) ,  and (11) ,  taking account of (12)  and

(13),  into the variational equation (7) ,  which yields

h / 2  i t /N k S ,‘ l2M z S l2M z~

~ ff f < u , - e - P~ ç N +  
h2 p ~N + 

h 2 )
p~ 

_h
k /Z

~ [~~l~~~21l2z
2 

- ~~~ 
(P 2 -P 1)

(40~~
3 

~~~~~~~~~~~~~ 
+ 

(ia)
- \, h2 ) 

~\ h 3 hJ 2h \. h21

30M / 3\ S / 1ZM ~\ foN 126M z \
+ 

z (. :-±
~) 

- —1-~~~~N + 
xy x~~~ x

h 3 h 2 h x y h 2 h h
3 l
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(lit corit ’d)

~~~~~~~~~~~~ (NX
+

l2M
~~
) 

- ~22 
(Ny

+
12
~~~Z)

[
~ 1+~2 ( l zZ

z 

i) 
~
1 2~~~1~ (4oz

3 

~
);S

23 

~~~~~~z
2 ) ÷

~~~~~
M (~)] - 

h 3 h

/‘6N 126M z S 12M z S / 12M z
+ 3

y ) + w,~~- ~~ p ~
N

~ + 
h2

~~~ 
- 

~~~ ~Ny + ~~~~

~ 

~ 
Pz) 

(

~~~~2 

1) 

( PZ - Pi ) 

(i 
±~±)

~~~~~~~~~

Z 

~~~~~~~~~ 
(N XY

+ 
12M x~ z)~ 

h

~~(6j
1:
:p2 ) 

-

~ ‘z ~~~ (4o~ 6z\ 36N ( 4z
2’
\ 

306M ( 4z~+ 

~ h~ 
- + 2h ~l- —

~) 
+ 

h
3 ~~~~~~~

- ~~~~~~~~~ 

(NX
+

l2
~~~~~~

) 

- 

~& (Ny +
12

~~Y Z)

- [
~ 1 +~2 (l2z

2 
- 
1) 

+ ~~~~~~ 

~ 
-

+ ~ (.. ±

~ ) 
+ 

~~~~ 
(
~ ~~

] 
- 

~~~~~ (
~~

÷ X Y ) ~ ~

÷ ~~z) + , +~~~, 
~~~~ 

~~~~~~~~~ ~~~~~~~~~~~ (i~~~ - i)
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( 114 cont ’d)

+ 
3V 

~~~~~~~ 

4
2)1 

- [ (t
2
-t

1
) 

+ 
( t
1
+t
2) (l2z

2 
- )

+ 
~~~~~~~~~ (

~ 
4
2)]

~ [(5s~
_6s

i) 
~ + 

(6s~~+ 65 z) 
(l2z

2 
- )

+ 
3
~~~ Y 

~~~ 
+ u, +w , -S45 

[(s2
_ s

l
) 

+ ~~~~~~ (12Z
2 

-

+ -~~~~~~~~~ 

(
~~~~

Z)] - S55 
[(t2

_ t
1
) (t

1
+t2) 

(izz

z 

- l~

+ E!:;~ (~ 
- 
4
2

,
)] ~ [(ot 2~

ot l ) 
+ 

(ot
l;6t2) 

(

~~~2 
- 

1) 
+ ~~~~ (

~ 
4
2)]

r 12M z 12M z 12V
- I  N + 

X ,X + N  + 
xy, y 

~~ - t + 6(t +t - ~~~~ I -
~~~~~

L ~~~~~~~~ h
2 xy,y h

2 2 1 1 2 h 
h
2 j  h

12M z 12M z 12V
- 

[N X Y X
+ 

h~ 
+ N y y + 

h2 + s 2 - s 1 + 6 ( s 1 +s 2)~~~- 
h2

F z ~~~~~~ ~ ~~~~~ \ 3V ( 4z
2

- [(t 2 , ~— t l x ) h + 4 - + Zh ~~~~~~~~ ~~~~~~~~~

( s  +s ) 2 3V 2
+ (s

z y~~
S i y )

~~ 
+ 4 

2~~ (i z~ - 
i) 

+ ~~‘Y (
~~

)
2 l2N z 30M 2

+ 6(p 1+p 2 )~~~+~~~ (p 2~~p 1) ~ ~~1) 
- 

h 3 + 
h 3 (l

a
;)] 

6w>~~~dxd ydz

+ £ (~~-~~)6u.dS + ~~ r .bu 1dS + 
~~ 

f ( r . 
~~~ 

+~~~~
‘ 

~~
YdIk = 0

14
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where u, v, and w are the x , y, and z components of displacement, re-

spectively, 
~~~ ~~~ ~~~ 

and exy are the engineering expansional strain

components, and h
k 
represents the thickness of the kth layer.

Since we have made no assumption regarding the disp lacement field ,

the integrations with respect to z in (14) give rise to weighted average dis-

placements and displacements at the interfaces.  Therefore , we make the

definitions

h /Z  2
(1, f*, = f(1 , , ‘

~~
-
~~~~

- ) -
~-j~~ 

(15)
-h/2 

h

where f may represent either u , v , or w. We also let u2, v2, w2 represent

the displacement components at the top of the layer and u 1, v 1, w 1 the

cor r esponding functions at the bottom of the layer. Furthermore , for

internal consistency in the theory, we express the presc r ibed tractions on

the appropriate portions of boundary L as follows

/ lZM z
— 1 —  na- = j~~(~,,

N +  
h
2

/ 12~~ z1 1 —  usr = — E N  + (16)ns h \n s  h
2

2 3~ 2
= + 

2 (lzz - i) + _
~~~~~~

- 

(i
... .±-

~
_ )

where n and s are local coordinates , which are respectively normal and

tangent to L. We note that T and ~ give the values of shear stress ~ at
the bottom and top of the layer , respectively. No restrict ions are placed

on the nature of the boundary tractions and/or displacements over the re-
mainder of the laminate boundary. We may now perform the integration of
(14) with respect to z, Taking (15) and (16) into account , we get

- 15
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~~l 
~~ ‘

~~~~~

- he
r- S1i

N
~~ 2N~~ Si3N

~~ 
Si6 Nxy ) +  ~~~ ~~~~~

¶ - h e -  S12 N -  S22 N - S 23N -  S26 N )+ ~~~~ ~3w~ - h e -  S
13

Nx~ 
S23 N

- 
~~~ 

S33N~ - S
36N

~~~+ ~~ (P 1 +P
2] 

+ h
xY [

~ 
~~~~~ y +~~~~~ hexy~ 

Si6 N
~

• 1 lZö M h 2
- S26N~

_ S36N~~ 
S66Nxyj 

+ 
h
3 

X 

~~~ 
u*,

x~ 
S11M -  S12M -  S13M

- 12GM 
h
2

- Si6 M
xy

) +  
h 3 ~T ~~~~~~~ S12M~

_ S22 My~ S23 M~~ SZ6MXY
)

12&M [
+ 

h
3 

~ [ -~
.h 

~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~ 
S
33

M~ - S36 M~~

S h2 12bM r 2I: - 
~~ 

(P
1-P2)] 

+ 
h
3 [

~ 
( U *)

y
+ V *I

x
) 

~
Si6 Mx~

Sz6 My 
(17)

- 

:

3 6 z  S66MX~~ + 
~~~ 

+ 
~~ ~~~~~~ ~~ ~~~ 

(S45 V y +S 55 Vx
)

-

~~~ +~~~~~ (sl +s 2)+~~~~~(ti +t 2)] 
+ ÔV~ [

~ 
+~~~(~~~y

_ 
~~~~~

(s +s )+~~~~ (t +t )1 - ~~~(N +N + t  -t )- ~~~(N + N  +s  - s10 1 2 10 1 2 2 x,x xy,y 2 1 2 xy,x y,y 2

- 6u* 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ~~~ [M xy x +M y y~~
V y +

~~
( s i +

IL 
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(17 cont’d)

r 20M
- o~ [Vx x + V

y y
+ 

h
2 + P 1-P2 

- 
~ 

(t1~~~+t z~~~+ s l y +s z y)]

r (p +p2) h2 1
+~~ 6w* I N - h  1 + — ( t  -t +s  - s  ) I
h z 2 12 1,x 2,x l ,y 2,y

~~~

+ 5t
2

(u
2
+ 

~~~
- S~5

T4- S55T5) +  5t
1
(- u

1
+ a

5
- S
45
Q
4- 

S55Q5) + &s~ 
(v
2
+ 
~~

- S
44T4- S45

T
5
) +&81 (- 

v1 + a 4 - S44Q4- S45Q5) + 5p2
(w
2+ Y2-S33R2)

+ 5p 1( - w 1 + y1-S
33

R 1) ~~~~dxdy+ 
~~~ 

ff [(t2~~2
)5u

2
+(s

2~~~2
)6v

2

5w
2] 

(k) dxdy - 

~~~ 
f f  [(ti

_
~~1

)6u
1
+ (s

1
_
~~1

)6v
1

(

t 

+ (P l~~~l )5w
l]

~~~dxdY + 

~~l 
f ~ 

( N - s )  -? ~~~~~~~~~~~~~~~

5u’~ Su 3V t + r 3V r + r

I 
+ 3(M~~~~~ )~~~~~ + 3(M ~~~~~~~~~~~~ ~ 

1

z)1~~~
o
~~

+ [ r ~~ ~~~ 
(~~~ - fl} ~~~~~ [

~
+
~ ~~~~ 

- 3(~~ + ) +  

~
] ~ S

AI(k)d

+ 

~~l JJ (
t2

buz+s2ov2+p2
ow2)~~~dxd

y_ 
ff(t1

5u
1
+s

1
8v

1 +p 1
5w

1)~
’
~dxdy

+ I N
I~~~~~ 

+ 
N~~9

2

5U
5 

+ 

3M~ Su~ 
+ 

3M
:s

su
+ (
~ 

-
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÷ ( T
I

) * +3( r
2H 

h
5A~~

(k)
d + ~j [ (~ + ~

(k) (k) (k+1) (k+l) (k+l) (k+1) (k+l) (k+1)’] (17 cont’d)

+ p
2 

6w 2 - t
1 

5u~ - S
1 

6v
1 

- p
1 

6w
1 J dxd y = 0

where the region Bk refers to the bottom of the kth layer , while , as be f or e,

is the top of the kth layer , and again , primes refer  to reg ions in which

traction boundary condition s are prescribed and double primes denote re-

gions of pr escribed di splacement. The functions which are integrated

over L’ and L” are given by symbols previously de f ined , except that in this

case , n , s , and z components are employed. A lso , in (17) ,  the following

contractions are introduced
(4s - s )h V

Q - 
1 2

4 
- 

30 10

( 4 t - t ) h  V
- 

1 2  x
- 

30 10

(4s - s  )h V
= 

2
30

1 
-

(4t-t)h V
- 

2 1 x
5 

- 
30 10

- 

(6p1+p2)h2- 7N h± 30M

R
2J  

70h

a:)  
= ~ h~~, 

~~
- 

~~ ~~
, ~~ v* * (~~~ 

w

::) =

V
1 3 * 3 A —

J = - -~~w ~

I
18
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The appropriate field equations and boundary conditions in the present

theory follow from eq. (17) . However , further manipulations are necessary

to develop these relations as all variations appearing in (17) are not inde-
(k’~ (k)  (k )

pendent. In particular, the interlaminar stresses t , s , and p. ( i  = 1 , 2),
(k) (k) (k) ’- ~ I

as well as the interfacial displacements u~, v1, w~, may or may not be

independent of each other, depending upon the nature of the prescribed con-

diti ons along the interfacial planes. To examine this question , consider th e

contribution to the variati onal integral bJ of the terms involving §p. and

-• 6w . (i = 1 ,2) at the interface layers k and k+ 1. Let this portion of Sf be
1 (k ~denoted by ~‘J’ (k = 1,2,~~” N - i) .  The following treatment can be applied

in the same manner for the terms involving St. and Su . and also for those
1 1

involving 6s . and Sv . .
1. 1

Reference to (17) shows that

( k) r (k) (k) ( Ic) (k) (k) (k+ 1) (k+ 1) (k+ 1 ) (k+ 1) (k+ I~6j
1 

= f f L ’~’~ 
+ V2 - S

33 
R2 )6p2 

-1’ (- w
1 + - S

33 
R
1 ) 6p~J

dxdy

‘Ic r (k) (k) (Ic) (k+1) (k+l) (k+1)]
+ if L~’~z P2

) Sw
2 ~P1 ) Sw 1 J dxdy (19)

(k) (k) (k+1) (k+1) (k) (k) (k+1) (k+l)
+ 

ff 
(p
2 

6w~ - p
1 

Sw
1 ) dxdy + 

ff 
(p

2 
Sw 2 - p

1 
Sw

1 
)dxdy

I’, I I I ,
k k

we shall consider in detail two type s of boundary conditions appropriate to a

reg ion of the two surfaces constituting an interface, v iz . ,  c ontinuity of p and

w , and prescribed p on one surface while w is specified on the other. From

these results , the appropriate treatment for other combinations of pr esc r ibed

traction and displacement will be quite evident. Considering the continuous

interfacial region f i rs t , we have , in such a region ,

- -
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(k) (k+ 1)
p2 = p

1
(20)

(k) (k+1)
w2 = w1

in region t’~~. Substituting eqs. (20) and their first variations into (19)
yields

(k) (k) (k) (k) (k+1) (k+1) (k+l) (k)
= II ~~ 

- S
33
R2 + - S

33 
R

1 ) 5p2 
dxdy (21)

III,
k

- • ( Ic ) (k)
where 65” r epresents the contribution of I” to the in teg ral 55 , Since

(k) p k p
• 5p2 

is ar bit r ary in this re gion , the function in parenthesis must  vanish ,

hence the boundary conditions for a continuous interfacial  reg ion are given

by
(k) (k + 1)
p2 = p 1

(k) (k) (k) (k+1) (k+1) (k-fl)
- S

33 
R2 + ‘

~
‘l 

- S
33 

R
1 

= 0 (22)

4::. (k)
We observe that the interfacial displacements w~ are absent from the

governing equations in this region.

We now consider an interfacial  reg ion in which mixed boundary con-

ditions are prescribed, e . g . ,

(k) (k)
p2

(23)

(k+1) (k-fl )
w

l 
= ~vl

20

--  - -  — • -- - -



_ _ _  ~~~~~~~~~~~~~~~~~~~ 

~~~~ 

- -

AFML-TR-77-I 14

(k+1) (k) (k) (k+1)
In this case, 5p

1 
and Sw

2 
are arbitrary, while 6p2 and Sw1 

vanish in the

region. Putting these results into (19) while dropping integrals which do

not pertain to the given region leads to the expressions

(k) (k)
p2 - p2 (24)

(k-fl) (k+l) (k-fl) (k+1)

~~~~~ 
S
33 

R
1 

=

(k) (k+l)
which characterize a region where p2 and w 1 are prescribed. Equations

analogous to (22) and (24) may be derived for the remaining interlatninar

stresses t~, s . and their associated displacements u., v~, respectively .

Other combinations of boundary conditions are treated in similar fashion .

The results will be presented later. For interface conditions of the type

(23), we see that the only interfacial displacement that will appear in the
(k- f l )

• governing equations is 
~~~

, which is a prescribed function . It follows that

this is true in general , i .e. , only prescribed interfacial displacement

functions enter the governing equations , hence , interfacial displacements

are not treated as dependent variables in the present theory.

Returning to eq. (17) ,  we now develop the appropriate field equations

and boundary conditions by setting to zero the coefficients of the arbi t rary

functions ( f i r s t  variations).  The field equation s , which consis t of th e elastic

constitutive relations and the differential  equations of equilibrium, must be

satisfied within each layer and are given by

Constitutive Equations:
f _a,

h~~—~~- e )  = S N + S N + S N + S N
2 x 11 x 12 y 13 z 16 xy

,V ,

h 1 —~- - e ) = S N + S  .N +S N +S N (25)
\ 2 y / 12 x 2~ y 23 z 26 xy
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S h

3w~- he~ 
= S13N~

.fS 23N
~

+ ~~S
33

N z + S 36N
xy ~~

f u , +v ,
h~ ~ x ) = S N - f S N + S  N + S  N

2 xy 16 x 26 y 36 z 66 xy

h
2

= S M + S  M + S  M + S  M
4 x 11 x 12 y 13 z 16 X~ (2~ cont’d)

2
= S M + S  M + S  M + S  M

4 y 12 x 22 y 23 z 26 xy

S h
2

-
~~~~~ (3~~- w) 

= S13Mx + S 23My + ~~ S
33

M + S 36M
~~~+ 

3z~s (P 1 P2)

~~~ (u?~~+ v
~
’
~~

) = S1S
M
X+ S26My+ S

36
M +  S66M

~~ ~~~~~~~~ 
~~~~~~~~~~~~~~~~ = ~~ (S44Vy + S 4s Vx)

~ i~~~ z~~ 
~~~~ (t

1
+t
2)

~~~~~~~~~~~ ~~~~~~ = ~~~
(S45V~ + S ssV~)~ 

~~~

Equilibrium Equations:

N + N  + t - t  = 0
x , x xy, y 2 1

N + N  + 8 - s  = 0
xy,x y,y 2 1

20M
V
x,x+ V

y,y
+ 

h
2 

+ 
~~1 

- 
~~

(t
1~~

+ t2~~
+ 
~~~~~ ~2,y

> - 0

M +M _ V + ~~~~( t + t )  = 0
x ,x xy , y x 2 1 2

M + M  - V + ~-(s + 5  ) = 0 (26)
xy,x ~~~~ ~ 2 1 a

(p 1+ p 2)h h2
N -  — + — ( t  - t  + 8  - s  ) = 0
z 2 12 1 ,x 2 ,x l ,y 2,y

Ii

22 
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60M h
V
x,x

+ V
y,y

+ 
h
2 + 5

~~ 1~ Pz
)_
~~~

(t
1,x

+t
z,x

+8
I ,y

+8
2,y

) = 0

(26 corxt’d)

The vanishing of the remaining arbitrary functions within the region, after

taking possible interdependence into account as noted earlier , leads to

expressions that must be satisfied within each interfacial plane . These

interface equation s depend on the nature of the prescribed conditions on the

interfacial planes and are given by

Interface Conditions:

a) Continuity (Ic = 1, 2,’’. N-I)

(k) (k+1)
t2 

= t
i

(k) (k+1)

~2 
=

— 
(k) (k-fl)

4-I p2 
= p

1 
(27)

(k) (k) (k) (k) (k) (k+1) (k-fl) (k-fl) (k-fl) (k+1)

~34 
- S44 T~ - S45 T5 + a4 

- S44 Q4 - S45 
Q
5 

= 0

(k) (k) (k) (k) (k) (k+l) (k+1) (k+1) (k+1) (k+1)
- S45 T4 

- S55 T5 + a
5 

- S45 Q4 - S
55 

Q
5 

0

( Ic) (k) (k) (k-fl) (k+1) (k+l)

V2 - S
33 

R2 + - S
33 

R
1 

= 0

b) Prescribed Tractions and/or Displacements (k = 1,Z’”N-l)
(k) (k) (k) (k) (k) (Ic) (Ic) (k)
t2 

= or - S45 T~1 - 555 T5 
= -

(Ic) (k) (k) (k) (k) (k) (k) (k) (28)

= or - S44 T4 - S45 T5 = -

23
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(k) (k) (k) (k) (Ic) (k)
= or V2 

- S
33 

R2 
= -

(k+1) (k-fl) (k+1)(k+l)(k+1) (k+1)(k+1) (k-fl)
t
1 

= 

~~~~ 

or a5 
- S45 

Q4 - S
5~ 

Q
5 

=

(k+1) (k-fl) (k-fl) (k+1)(k+1) (k+1) (k-fl) (k+1)

~1 
= or a4 

- S44 Q4 - ~45 ~ 5 
= “1

-

• 

(k+1) (k+1) (k-fl) (k+l) (k-fl) (k-fl )
= or - S33 

R
1 

= 

~~~~~ 

(28 corit ’d)

where eqs. (28) are to be understood in the sense that, at each interface,

any combination which contains one equation from each line can be used to

represent the interface boundary conditions in any region of the interface

for which (27) are not prescribed.

Finally, vanishing of the exterior surface integrals in (17) lead to

the definition of the natural boundary conditions in this theory, i .e. ,

Boundary Conditions:

a) Edge Surface

For the edge surface , one term from each of the fol lowing products

must be prescribed for each layer (superscr ipts Ic are omitted)
,‘3V r + r  ‘

~

N i 1 , N 11 , M u *, M u* ,(~~~~~~
_ 1

n n  ns 5 n n  ns s \ h 2 /

2V (29 )
( r

z 
- r

1
) w~, (~ + -

b) Top Surface
The boundary condition s on the top surface are the same as the first

three lines of (28) with k = N.

c) Bottom Surface

The boundary conditions on the bottom surface  are the same as the

last three lines of (2 8)  with k = 0.

24
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This completes the development of the present theory. We observe

that the governing equations, (25) - (28), plus the boundary conditions on

the top and bottom surfaces , constitute a system of 23N equations in terms

of a like number of unknowns. The system can be reduced to 1 3N equations

by solving (25) for the force and moment resultants in terms of the weighted

displacement functions and interlarninar stress components and substituting

into the remaining equations. From (29), we see that 7N edge conditions

are required in this theory. In the event that only edge tractions are pre-

scribed in a given boundary va lue problem , these 7N edge functions may

be taken to be the 3N force resultants , ZN moment resultants and ZN inter-

laminar shear stresses at the top and bottom of every layer.

Clearly, the requirements established in the introductory section are

all satisfied by the present theory, in particular, the principle of “layer

equilibrium”. Furthermore, the generality of the interface conditions,

(27)and (28), allow for the presence of interfacial cracks in the treatment

of specific boundary value problems . Finally, the usual (physically mean-

ingful) equations of equilibrium are represented by the first, second,

fourth, and fifth of (26), along with a linear combination of the third and

seventh o f ( 2 6 ) .

ti
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SECTION IV

COMPARISON WITH FINITE ELEMENT RESULTS

In this section we shall relate the response predicted by the present

theory to that given by numerical elasticity solutions for several problems

of practical and theoretical interest. We shall treat the class of boundary

value problems known as the free edge problem in which a laminate of finite

width is subjected to a uniform axial strain e = e[4]. The origin of

coordinates is located at the center of the laminate and each layer is rein-

forced by a system of parallel fibers oriented at an ang le 9 with the x- axis

as shown in Fig. 1. The fibers in the various layers all lie in planes para-

lid to xy, and the laminate is symmetric , i.e., 9(z) = 9(-z). In the analy-

sis of the stress field , which is only a function of y and z, each layer is

treated as a homogeneous , anisotropic body represented by its effective

moduli and stresses will be denoted by functions of the form f(y, z) .

Comprehensive results based upon the finite element method have

recently been presented by Wang and Crossman [17] for this class of

boundary value problems in laminate elasticity. Hence , that work will be

employed here to compare specific results given by the present theory.

Two particular laminates; [0, 90], in which the values of 0 it consc-cutive

layers are 00, 900, 900, 00, and [* 45],  in which the orientations are

450 , .450 , _ 450 , 45°, will be examined in this study. The layers are of

equal thickness h , the laminate width is 2b = l6h, and the moduli in the

planes of elastic symmetry of each layer are given by

E
11 

= 20 x l06psi , E22 = E
33 

= 2.1 x lO
6
psi

= 0
13 

= 0
23 .85 x lO 6psi

V
12 

= V
13 

= V
23 .21

-- 
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where 1 , 2, and 3 refer to the fiber , transverse , and thickness directions ,

respectively, and v 12, for example, is the Poisson ratio measuring strain

in the transverse direction due to uniaxial tension in the fiber direction.

In Figs. 2-5 ,  we compare various features of the response for the

[±45] laminate as given by the present theory [35] and the finite element

solution of [17]. The values of N in these figures correspond to the number

of sub-layers used in the present theory to model one-half of the laminate .

Thus, N = 6 implies that each physical layer of thickness h in the body has

been modeled by three sub-layers, each of thickness h/3, while N = 2 indi-

cates that each physical layer is treated as a unit.

In Figs. 2 and 3 are shown the distribution of and rxy~ 
respectively,

along the width of the laminate at the center of the top (physical) layer. The

functions given by the present theory were computed via eqs . ( 8). The

results for N = 6 and the finite element solution are nearly coincident for

all values of y, wh ile the N = 2 results diff er by only a few percent in the

boundary layer region.

Even the N = 2 result agrees quite well with that of the finite element

solution for the width distribution of r at the ±45 ° interface. However ,
xz

a singularity is expected at this level at the free edge [4 , 17] .  The presence

of a singularity introduces some ambiguity in the finite element solution , so

that the curve given here involves some judgement in the interpretation of

the numerical results . On the other hand , the singulari ty is manifested in

a different way in the present theory, i .e . ,  the stress component • at the

singular point grows with increasing values of N. Whether a finite limit is

approached for large N has not been established. This situation is similar

to the rise in average stress in the element adjacent to the singular point 
-

•

4 as the element size decreases in the finite element method . However , the

present theory contains no singularity (see [35]) ,  consequently the compu-

ted stress distribution is an exact solution in this formulation . The growth

27
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of stress component r
~~(b

, h) with N is shown in Table 1. The result for

• N = 3 represents the average given by the case in which the lower layer is

represented by 2 sub- layers and the upper layer by one, and the opposite

situation, although the two results are nearly iden tical, The same inter-

pretation is invoked for N = 5. Unfortunately, because of the magnitudes of

the numbers involved in the solution approach employed in [35], values of

N larger than 6 could not be considered. Clearly, the manner in which

singular behavior is portrayed in the present theory needs further study.

In particular, the approach by which one correlates the analytical results

with delamination failure tests needs consideration.

Although displacement components are not dependent variables in the

present theory, the weighted displacement functions can be used to approxi-

mate them with the aid of an assumed variation within each layer. For

-~ I example , if we assume that axial displacement u is a linear function of z

within each layer , by use o f ( 15 )  we can show that
— *

U
k 

= 

U
k ~~k (30)

where Z
k 

is measured from a local coordinate system at the center of the

kth layer. Agreement between this approach and the finite element result

for axial displacement distribution across the width of the top surface is

• quite good as shown in Fig. 5.

In Fig. 6, the distribution of a- along the width direction on the cen-

tral plane (z 0) of the [0,90] laminate is shown. Clearly, the present

theory with N = 6 agrees quite well with the finite element res’ilt, while the

N = 2 result appears accurate except in a region very close to the free edge.

Not shown on the fi gure is the result for N = 4 , which has a very slight hump

near the free ed ge and attains a maximum value close to the N 6 result .

Figure 7 illustrates the width-dependence of a- at the interface be-

tween the 0° and 900 layers , where in contrast to Fig. 6 , a singularity is

28
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expected at the free edge owing to the discontinuity in elastic properties.

The finite element solution gives strong evidence of the singularity since

extreme variability occurs in the neighborhood of (b , h).  Because of this ,

the finite element results are somewhat subjective in this region. Again ,

the N = 6 result is closer to the finite element curve than that of N = 2. As

before (Fig.  4), the present theory yields finite maximum stresses which

appear to grow rnonotonically with increasing N at the singula r point.

Comparative results for the distribution of r at the 0° - 900 inter-yz
face are shown in Fig. 8. The present theory satisfies the traction-free

boundary condition , however , whether the finite element solution , or indeed ,

-• an exact elasticity solution , satisfies this condition (see [36])  is not known .

However , generally reasonable agreement can be observed . According to

the new theory, it appears that the function is approaching a finite peak value ,

although we cannot be certain until the solution for larger values of N is

determined.

Variation of transverse displacement v at the top surface is shown in

Fig. 9. The values in the present theory were defined ty  approximating

the layer displacement as a linear function of z , which leads to an equation

of the same form as ( 30) . Excellent agreement is seen to occur between

the two solution techniques.

An extremely steep stress gradient at an ( apparent) singularity in

a- was reported by Rybicki and Pagano [37] for a free edge problem in

_ ! 
which one layer was isotropic. Using the moduli given in [37] ,  compara-

tive results are shown for the distributions of a- at the interface (Fig .  10)

and central plane ( Fig. 11), where comparable agreement with previous

‘-~ results can be observed.

29
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CONCLUDING REMARKS

We have derived an approximate theory for the stress analysis of

laminated bodies which resolves the difficulties involved in previous theories

based upon assumed displacement fields. This theory is based upon Re issner ’ s

4 variational principle and assumed in-plane stresses that are linear functions

of thickness coordinate z within each layer. While the appearance of 13N

field equations and 7N edge conditions may seem to be overly cumbersome

in actual problem solving , this level of detail is required to compute real-

istic global stress field s . The present theory guaranfres satisfaction of

“layer equilibrium” and allows the prescription of combinations of inter-

facial tractions and displacements which permit treatment of such condi-

tions as interfacial continuity or cracks.

Comparison with existing solutions of the laminate free-edge class of

boundary value problems , in which very steep stress gradients occur, has

led to encouraging results . Although certain highly localized details of the

stress field have been expunged when each layer was modeled as a single

unit , this approach may be adequate for purposes of structural  design . If

this is not the case , based on the present study, the introduction of two or

three sub-layers will produce dramatic improvements in accuracy.  Alter-

natively, one may incorporate higher order terms in z into eqs. (8) to

develop more accurate theories satisfying the basic requirements set forth

here. Such theories may eliminate the need for the use of sub-layers , but

will obviously lead to greater complexity in the solutions of specifi c bound-

ary value problems.

The situation regarding singularities remains somewhat nebulous

since the precise nature of the singular stress field in the vicinity of an

interface at an edge has not been established. We can state however , that

the finite element solution can be severely hampered by the presence of

elastic stress singularities , and stress field determination in their vic ini ty

30
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may become quite subjective. On the other hand , the present theory con-

tains no edge singular ities, an advantage from the problem solving view-

point, however, examples have demonstrated a tendency for the computed

maximum stress to grow with decreasing sub-layer thickness. Thus,

problem solvin g has become simplified , but a method to interpret the stress

predictions needs to be developed . We should notice , however , that the

singularities given in effective modulus theories are mathematical artifacts

in the treatment of fiber reinforced laminated bodies. This has been dis-

cussed in [37, 38], where support was given to the use of integrated stresses

rather than point stresses in failure analysis. This point, together with

the automatic satisfaction of layer equilibrium, as well as the capabilit y

for objective determination of laminate stress fields , favor the use of the

present theory over approaches based upon num erical solutions of the

elasticity equations . Unfortunately, this work , along with that of [35] and

[ 17] ,  demonstrate the extreme difficulties associated with aUempts to

realistically define the stress fields in laminates consisting of very many

layers.

31
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TABLE 1. GROWTH OF MAXIMUM STRESS WITH N IN [
~ 

45]

N (b ,h) / io 6 
€ (psi)

- 2 1.664

- 3 1.798

4 2 .017

- 5 2 .102

6 2 . 2 1 3
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