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helpful discussions and numerical results for the finite element solutions,
and to Dr. L.E. Whitford for the computer analysis associated with this
work.
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SECTION I
INTRODUCTION

’ In the contemporary technology of structural composite materials,
major deficiencies exist with respect to our ability to determine the stress
field within a multilayered composite laminate. In most cases, even a
superficial or qualitative understanding of the nature of the stress field in

regions of steep stress gradients has not been established. A notable ex-

AT B AETN SR UL M i

ception is the approximate treatment [1,2] of the classical free edge prob-

lem in laminate elasticity [3,4], however, similar treatments have not

been advanced for other laminate stress concentration problems. In the

i absence of a practical means of laminate stress analysis, it is not possible
to develop an understanding and general characterization of the various
insidious failure modes which have been demonstrated in composite laminates

E [2,5,6,7,8]. The latter references all document heterogeneous damage

development which varies through the laminate thickness and suggest the
importance of defining the stress field within each layer, particularly in

regions of stress concentration, where classical lamination theory [9,10]

errs badly [4,11, 12]. This is contrasted to the ultimate failures of cer-
tain laminates in the presence of stress risers, which only seem to depend
upon the overall laminate properties [13, 14], rather than the details of

the stacking sequence, although the details of the damage development and

TSRS M A e = 5

growth in these laminates are a function of stresses in the individual layers

[15].

e S e

Although the finite element method is widely used in the design of
practical composite structural elements, e.g. [16], its application is
limited to determination of force (per unit length), rather than stress dis-

tributions. This is accomplished through the assumption of a simplified

displacement field-that which is assumed in classical lamination theory.

e e

This permits one to define effective elastic properties of the laminate as a

whole, and to compute integrated values of the in-plane stress components
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across the laminate thickness. In fact, once the force distribution has
been defined, the associated layer stresses may be computed, however, as
mentioned earlier, this procedure is not generally reliable. At present,
therefore, determinations of failure loading and mode of failure in practi-
cal composite structures are based primarily on experimentation with pro-
totype bodies. These commcnts are not made with the intention of dis-
paraging the contemporary practice since the presence of structural com-
plexity in the form of holes, connections, edges, and discontinuities in
thickness of many-layered composites may overwhelm any attempted analy-

tical technique.

The basic limitation imposed by numerical solutions to the laminate
elasticity problem has been illustrated in a recent paper by Wang and
Crossman [17] in their treatment of the free edge class of boundary value
problems. In order to achieve a realistic prediction of the stress field by
use of the finite element method, sixteen elements in the thickness direc-
tion were required within each layer in the region of steep stress gradients.
A total of 196 elements per layer were employed. To accomodate such a
large array, it became necessary to employ a special matrix storage
scheme for the purpose of reducing computer storage and running time.
Similarly, Pipes [18] required a lengthy extrapolation procedure in con-
junction with the finite difference method in order to achieve a satisfactory

solution for a two layer free edge boundary value problem.

Another approach to the problem of laminate stress analysis, e.g.,
Rybicki [19], utilizes larger elements that possess a more complex stress
field. Stanton, Crane, and Neu [20] employ a tricubic isoparametric
discrete element and a2 system to automate the construction of finite ele-
ment models. The latter approach effects an appreciable reduction in data
input requirements. This added efficiency seems to be the major advantage
of ''large element'' formulations, as the number of degrees of freedom is

comparable to those employed in the more routine methods. Despite the

PAprar s e




S

e AT 8 3 5

AR AT

A L

B e
L I i o v RS Lh

A OGN

AFML-TR-77-114

refinements, however, computed laminate stress fields are not universally
accurate, as another feature of laminate elastic analysis, i.e., the presence
of stress singularities, is a severe obstacle to the execution of numerical
elasticity solutions. Unfortunately, the order of these singularities has not
been defined for anisotropic layers, i.e., the extension of Bogy's work on

isotropic quarter-planes [21] has not been accomplished.

On the other hand, approximate theories have been proposed in
attempts to execute realistic laminate stress analysis. The most popular
of these is the aforementioned classical lamination theory, op. cit. [9,10].
While this theory has been shown to yield reasonably accurate stress calcu-
lations in certain classes of boundary value problems under a limited range
of geometric parameters [22,23,24], its assumptions are too restrictive
for general application. Theories incorporating laminate '"shear deforma-
tion'" [25,26] lead to accurate deflections in bending problems but offer no
hope for improved stress computations, c.f. [26]. The higher-order plate
theory derived by Whitney and Sun [27] was applied by Pagano [28] to
examine the interlaminar normal stress distribution in the free edge bound-

ary value problem but only on a plane of symmetry.

The prominent common feature of the theories discussed in the pre-
vious paragraph is an assumed displacement field that is continuous across
the entire laminate thickness. The theories differ only in their specific
choice of the assumed displacements. This displacement assumption, how-
ever, guarantees discontinuous tractions at interfaces between layers of
different elastic moduli except under elementary loading conditions. Fur-
ther, the edge (traction) boundary conditions appropriate to this approach
are, in general, insufficient to guarantee equilibrium of sub-regions con-

taining the edge boundary under the known (pointwise) tractions, .op. cit. [28]%

*In order to guarantee equilibrium of a given sub-region containing the edge
boundary, we must have the freedom to prescribe at least 5 traction bound-
ary conditions (3 force components and 2 couples) on its edge. Therefore,
if we wish to guarantee equilibrium of each layer of a laminate, we need at
least 5N edge boundary conditions, where N is the number of layers in the
laminate.
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Hence, use of this displacement approach and possible extensions to allow
even higher order variations through the thickness, is unacceptable for

laminate stress field analysis.

Another class of approximate laminate theories represent attempts to
generalize those discussed above and are based upon the assumption that the
displacement components are linear functions of z, the thickness coordinate,
within each layer. In this formalism then, the displacements are piecewise
continuous functions. Among the theories which rely on this approach are
the so-called effective stiffness theories pioneered by Sun, Achenbach, and
Herrmann [29,30]- Sun and Whitney [31] treated various theories in this
class and demonstrated that, given displacement continuity at all interfaces,
the number of field equations depend on N (number of layers) only when
traction continuity at interfaces is ignored. Otherwise, the number of field
equations is only dependent on the generality of the initial assumption, i.e.,
whether the linear term in z for transverse displacement w is included or
dropped. Hence the number of field equations is constant for all laminates.
Since the same statement can be made with respect to the number of edge
boundary conditions, the deficiency of the aforementioned theories {9, 10,
25,26,27) with respect to sub-region equilibrium applies to the present
class as well. The latter theories do, however, yield a more realistic de-
termination of effective laminate dispersion characteristics, which provided
the motivation for their development. The assumption of piecewise linear
displacements, as well as w = w(x,y), leads to the theory of Srinivas [32],
in which the number of field equations and edge boundary conditions does
depend upon the number of layers. Therefore, interface traction continuity
conditions cannot be satisfied [31]. Furthermore, in this theory, the inter-
laminar normal stress, which has been shown to be responsible for delam-
ination failures [2], has been neglected. Despite the accurate results
obtained for vibration frequencies, deflection, and axial stress in the parti-
cular bending problems treated in [32], the theory is not generally applicable

for laminate stress analysis.
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Finally, an approach suggested by Pagano [28], i.e., treatment of
each layer as a plate governed by the Whitney-Sun theory [27], lacks
generality since it can be shown that less than 5N edge traction boundary
conditions are available in that approach. Furthermore, as a consequence
of interface displacement continuity, the natural edge traction boundary
conditions are coupled, i.e., they involve functions of the tractions acting
on two (adjacent) layers. Thus, extension of this approach by allowing
higher orde: displacements is not advisable, since, as in the previous
approaches, proper equilibrium of each layer under its prescribed tractions

cannot be enforced.

The previous discussion has defined a clear need to examine new
approaches for laminate stress analysis. All known approximate laminate
theories are based upon assumed displacement fields, which as we have
seen, lead to results lacking credibility. Therefore, in this work, we shall
set down requirements to be satisfied by an acceptable laminate field
theory and proceed to develop a self-consistent theory in accord with the
requirements, which are: a) All six stress components are non-zero in
general; b) Traction and displacement continuity conditions at interfaces
between adjacent layers are satisfied; c) Consider a region within the lamin-
ate that is arbitrarily located except that it is bounded by any two of the
parallel interfaces of the laminate. We shall require that the computed
stress field acting on the surfaces of the arbitrary region, in conjunction
with the prescribed traction boundary conditions (pointwise, in the elasticity
sense) on those portions of the external laminate boundary which lie in the
region, satisfy the conditions of vanishing resultant force and moment iden-
tically. Thus, every layer must satisfy this requirement, which we shall
henceforth refer to as ''layer equilibrium'. This implies that the appro-
priate force variables in the field theory are force and moment resultants

(per unit length) acting on the cross sections of a layer and interlaminar

stresses on its interfacial surfaces, Although sub-regions not bounded by
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interfacial planes need not satisfy layer equilibrium, in problem solving,
additional interfaces may be introduced conceptually to improve solution
accuracy. In fact, we may view the purpose of this work as an examination
of effectiveness of mathematical laminate models in which the response is

defined in terms of force and moment resultants and interlaminar stresses.

Although the above requirements do not define a unique theory, we

shall treat the simplest theory within this class in the present work. The

theory is based upon a variational theorem derived by Reissner [33] and

permits the treatment of discontinuous interfaces, i.e., interface cracks.
Known solutions for the free edge boundary value problem in laminate
elasticity, where pronounced stress gradients occur, will be utilized to

assess the consequences of the present concepts.
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SECTION II

VARIATIONAL PRINCIPLE FOR LAMINATES

The physical problem of interest in the present work is that of a lam-
inate which is built of anisotropic elastic layers of uniform thickness and is
subjected to prescribed tractions and/or displacements on its boundary.

The body is bounded by a cylindrical edge surface and upper and lower faces

that are parallel to the interfacial planes. Since it is necessary to consider
both traction and displacement continuity conditions at the various inter-
faces, it is logical to examine Reissner's variational theorem [33] as a

mechanism to develop the appropriate field equations.

Reissner has shown that the governing equations of elasticity can be

obtained as a consequence of the variational equation

G =10 (1
where
3 s f Fav - [ 7uds (2)
v S’
and
B %(r.lj(ui’j+uj,i)-w (3)

In the above equations, W is the strain energy density expressed in terms of
the stresses oij(i,j =1,2,3), Vis the volume, S the entire surface, “r'l the
prescribed tractions, u, the displacement components, and S' is the portion
of the boundary on which one or more traction components are prescribed.
In what follows, we shall letS' represent the portion of the boundary on
which one or more displacement components are prescribed. Summation
over the range of repeated subscripts will be understood in this work. It is

also understood that both stresses and displacements are subjected to var-

iation in the application of eq. (1).
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We shall now express the form of eq. (1) for the laminated body,
which is composed of N layers, the volumes of which are represented by
Vk(k =1,2,+++ N). For conceptual purposes, we may let the layers be
numbered consecutively from the bottom (k = 1) to the top (k = N). Thus

we get, by definition

g‘ ; (k)
e [E i e L W] ¥y ‘s/?iuids 5
k=1

Vi '

where the superscript (k) attached to the bracket signifies that each variable
within the bracket is associated with the kth layer. We shall also incor-

porate expansional strains eij [34 ], or strains produced in the absence of

stress, in the present theory, so that

W = W(cij, eij) (5)

Substituting (4) into (1), making some trivial manipulations, and applying

the Green-Gauss Theorem gives

N u, .+u, . (k)
1,) 1,1 oW )
b3 f [( 2 = e, ) B ] ¥y

ij
Vi (6)

N (k) (k)
-/7i6uids + kZl f rodu ds = 0

(k)

where Sk is the surface enclosing Vk and r. are the tractions components

acting onSk. We should recognize that the surfaces Sk and Sk+l contain

a common region. namely, the interface between the respective layers.
Hence, we shall define surface Ik as the portion of Sk which contains the
top of the kth layer. We also let I;' represent the portion of Ik that does
not belong to either S' or §''. Observing that the edges of the layers, as

well as the top of the Nth layer and bottom of the first layer, all belong

to S, eq. ( 6) may be expressed as
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2 ( i - 6. - o ou | av + [(r-7)6uds
2 dc.. B, - dfed o d k b
| ij '

L

(7)

N-l/(k) (k) (k+1) (k+1)
+ r.6u.dS + Z fr. e o By D =D
" k:II{;'

Clearly, the vanishing of the volume integrals requires satisfaction of the
equilibrium equations and stress-displacement relations within each layer.
The vanishing of the surface integrals on S' and S' require that one term
of each of the products (rlul, U5, r3u3) be prescribed at each point on S
since éui is arbitrary on S' and it vanishes onS'. Finally, the integrals
over I{(" (k=1,2,+++N-1) vanish when tractions and displacements are
continuous in these regions. Hence, eq. (7), which represents the state-

ment of Reissner's theorem for laminated bodies, will be applied in the

derivation of our approximate laminate theory in the next section.
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SECTION III

DEVELOPMENT OF THEORY

Consider a single layer of thickness h within the laminate. We let x
and y represent the coordinates in the midplane of the layer, which is
bounded by the planes z = + h/2 and the cylindrical edge surface whose
intersection with the midplane is called .. The region enclosed by L will
be denoted by R. The interlaminar stresses Toi Lo and ryz at the top of
the layer are denoted by Py t2, and Sy respectively, while the corres-
ponding stresses at the bottom of the layer are designated as P tl, and 5)-
Superscripts (k), which identify the layers, will be dropped except when

they are needed for clarity.

The simplest assumption consistent with realistic stress analysis is

that the in-plane stress components* are linear functions of z, viz,

N 12M =z
o R S B
1 X h h3
_EZ 12M z
S Uy =R o) 3 (8)
h
N 12M =z
= = + X
- Bl rxy 13

where Nx' U Mxy are functions of x and y only. Obviously, these functions
represent the usual force and moment resultants arising in plate theory.
We have also indicated the symbols for the stress components in contracted

notation since this system will be convenient for future developments.

* Note that we refrain from assuming the form of the displacement field |
in accordance with the objectionable features of that approach described
earlier.
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We now substitute (8), along with the values of the interlaminar stresses

at z = + h/2, into the differential equations of equilibrium, which leads to

the following distributions

= 3N
(P, *P,) (12z2 1) % (P pl)(40z3 = 6z>+ 7 (1 422)+15Mz(22
L =L = = —_— e — e ——
3 Z 4 h2 4 h3 h/ 2h hZ h2 h
3v
- = A2, +(_s.l_t2 12 .Z_Z. &1k + __Y_ 1 iz_i (9
LR e Lo 2 2h ( & 2) )
h h
oy =8 = (-t )E+(t1+t2) (1zz2 - 1)+ U (1- 422)
5 XZ 2 15 h 4 hZ 2h h2
where the shear resultants Vx’ Vy and the functions Nz’ MZ
given by
h/2
(NZ. Mz) = f crz(l,z)dz (10)
-h/2

are functions of x and y alone. The functions on the right hand side of
egs. (8) and (9) are not all independent as they are related via equilibrium
and continuity considerations, but these relations will be subsequently

developed by means of the variational equation (7).

In general, the strain energy density of an elastic anisotropic body

is given by

W = lSi_cr.o',+o'

0 o e (i,j=1,2°+°6) (11)

where contracted notation has been employed, with Sij representing the
compliance matrix and e, the engineering expansional strain components.
Since structural composite laminates are generally built such that each
layer possesses a plane of elastic symmetry parallel to xy, we shall treat

this material class (monoclinic) in this work although generally anisotropic
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layers may be treated without difficulty. For monoclinic symmetry with

respect to the xy plane, the compliance matrix takes the form

r —
91
‘ f 512 S22
a. - 5. g £ SYMM.
0 0 0 s
44 G
0 0 0 S, S,
| 16 e 536 ¢ 0 4t
-» while
s Sp S, =0
(13)
e5 = 2e13 = 0

for monoclinic symmetry,

We now substitute eqs. (8), (9), and (11), taking account of (12) and

(13), into the variational equation (7), which yields

3 N By (2 8, 12M 2\ s, 12M 2
Z < Uil = e N + - N 4+ ==L
i % x. h X 2 h y 2
3 k=1 ' h h
i R -h. /2
: (k)
S b bt TR SR A LT TR S I
: 13 4 hZ 4 h3 h 2h h2
30M 3 S 12M =z 6N 126M z
2 z e 4z . =d® N+ Xy X 4 X
; 33 B2 h xy 2 / h B3
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(1L cont'd)
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3V 2 (t,-t.)
+ =X l-i -S 2 lz+
2h 2 45 h
L

(14 cont'd)

(e Hal o 10, ® :
2 o

3V 422) (8s,-65)) (8s,+8s,) [, 2
+ = =5 ———— g

38V 2 (s,-s.) (s.+s.) 2
+ y 1_42) ¥ “-z+w’x .S 2 lZ+ 12 12z -l)

f 2h h2 45 h 4 hZ
3V 2 (t,~t.) (t. +t.) 2
5 Zhy e 4z2 i 555 2h 1 _ 14 2 12; "
h h
| y 3Vx 1 4z2 (6t2-6t1) o (6t1+6t2) 1222 , ; 36Vx : 422
3 2h hZ h 4 hZ 2h h2
I?.MX xz lZMx z . IZsz o
o B e e ny,y+ ———-Y—-Lz Hta by F 6L HE) 3 - o
h h h
N & 12Mx <2 12M z - 12V =z 6
5 Xy, X ——X’—+N + . +8 -5 +6(s +s)—-—~—Y- ==
2 Y 2 25 1 2'h 2 h
h h h
i 2
t t z (tl x+t2,x) 12z ] + 3Vx,x ] 4z2
1%, " 4,20 P - 5 2h ~ 2
L h h
(s +s ) v 2
(e » 2 . 1.y Z,y 122 e S 4z
2,y 1,yh 4 hZ 2h h2

2
z 3 20z
teRE TR e 1)
h h

N-1

+{(ri-?'i)6uids+ { rbuds+ Y
' " =1 e

3 3

12NzZ 3OMZ 1 lZz2
h h

4 > > 6w>(k)dxdydz
h

(k) (k) (k+1)(k+l)
(r. Su, + r, OSu )Ydl, = 0
i i i k
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where u, v, and w are the x, y, and 2z components of displacement, re-
spectively, e e e, and exy are the engineering expansional strain
y

components, and h represents the thickness of the kth layer.

k
Since we have made no assumption regarding the displacement field,
the integrations with respect to z in (14) give rise to weighted average dis-
placements and displacements at the interfaces. Therefore, we make the
definitions
- A o 2z 4z2 2dz
(£, £%, ) = f £(L, 57— ) 5 (15)

-h/2

where f may represent either u, v, or w. We also let Uy, V5, W, represent

1’ w1 the

corresponding functions at the bottom of the layer. Furthermore, for

the displacement components at the top of the layer and u, v

internal consistency in the theory, we express the prescribed tractions on

the appropriate portions of boundary L as follows

1 IZK'/Inz
% SRR
1 121\71nsz
'nsz -}; an+ 2 (16)
h
T ?)_+('1+72’ ETAR ST (1
nz 2 'Vh 4 hZ 2h P hZ

where n and s are local coordinates, which are respectively normal and
tangent to L. We note that ‘i’l and ?’2 give the values of shear stress 'Fnz at
the bottom and top of the layer, respectively. No restrictions are placed
on the nature of the boundary tractions and/or displacements over the re-
mainder of the laminate boundary. We may now perform the integration of

(14) with respect to z. Taking (15) and (16) into account, we get
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= 6Nx hi = )
! kZl /] h (E Rl hex- slle_ SIZNy- S] 3Nz- Slény)+ h (—2- v'y
= R

6N

Z :,':_ - w:
- hey- SIZNx- SZZNy- SZ3Nz_ SZ6ny)+ n 3w hez Sl3Nx S

23Ny

S_.h 6N

6 33 Xy =
"% S33NZ - S36ny+ 10 (pl+p2) + > (u, y+v'x)- hexy— S N

126Mx hZ
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N -S
y 3 h
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My- R M- S36Mxy
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z h
X,X VDA hz +pl-p2- 6 (tl,x+t2,x+ Sl,y Z,Y

{p,tp;) .2
1 2. . h
= sk = —_— — -
ty ow LNz e +12(t1,x tZ,x+sl,y
o |V, %V
4 X, X Y,y .2
| h

+6ty(u,t B =S, T,

- S )
60 h
+ MZ + S(pl- pz)- > (tl,x+t2,x+ s +s

555T5)+ ﬁtl(- u1+ a_- 545

(17 cont'd)

+s8 )

2,y

l,y Z,y)

Q,- SSSQS) + 8sZ (v, + By

5
}‘
= S44T4~ S4sT) 488, (- v +a,-5,Q,-5,.Q0) + 6P, (W, +Y,- S5,R,) ;
:
o z
(k) b
+8p,(-w, + Y- 333R1) dxdy+ kzl (t 5)0u, + (s, 52)6v
i
N
o (k) - 2 ¢
+(p,- B,) 6w, dxdy - Z f/ (t,-F)8u, +(s - F))6v
k=l o 1
Kk
(19 N su_ 8u_ 1
+ (p-pow, || dxdy + 1;1 [ (N-N) 5= +(N__-N_ )2 f
Rt i
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2V N=l (k) (k) (k) (k)
h o« ~mY b _af(k)
+ (rz- rl) 2 ow +3(r1+r2- h> 3 ow ds + kZ t26u2+ s, 6v2
—II!II
(k) (k) (k+1) (k+1) (k+1) (k+1) (k+1) (k+1) (17 cont'd)
+ P, 6w2 - tl éul -8 6v1 - Py ﬁwl dxdy = 0

where the region Bk refers to the bottom of the kth layer, while, as before,
Ik is the top of the kth layer, and again, primes refer to regions in which
traction boundary conditions are prescribed and double primes denote re-
gions of prescribed displacement. The functions which are integrated
over L' and L' are given by symbols previously defined, except that in this
case, n, s, and z components are employed. Also, in (17), the following

contractions are introduced

3 . (4sl- sz)h XI
4 - 30 T 10
’ 5 (4t,- t,)h :r_&
5 3 30 10
* i (4s,- 5 )b : Xx
4 @ 30 10
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The appropriate field equations and boundary conditions in the present
theory follow from eq. (17). However, further manipulations are necessary
to develop these relations as all variations appearin% i(nk§17) a(rf not inde-
pendent. In particular, the interlaminar stresses t,, s, and p. (i = 1,2),

(k) (k) (i & k
as well as the interfacial displacements ul, vx’ w, i’ may or may not be

independent of each other, depending upon the nature of the prescribed con-

ditions along the interfacial planes. To examine this question, consider the

7 contribution to the variational integral 6J of the terms involving 6pi and

3 | 6w (i =1,2) at the interface layers k and k+ 1. Let this portion of §J be

g denoted by J) (k =1,2,+++ N-1). The following treatment can be applied
‘ in the same manner for the terms involving 6ti and é'>ui and also for those

involving {Ss.1 and 6vi.

Reference to (17) shows that

g (k) [(k) (k) (k) (k) (k) (k+1)  (k+l) (k+1) (k+l) (k+l)
- f - S,, Ry)ép, + (-w + ¥ - S, R ) bp |dxdy
(k) (k) (k) (k+1) (k+1) (k+1)
j; + ff (p2 pZ) bw, - (p1 - ';Tl ) 6w1 dxdy (19)
r

(k) (k) (k+1) (k+1) (k) (k) (k+1) (k+1)

* ff (p2 6w2 =Py 6w1 ) dxdy + ff (p 6w - P 6wl )dxdy
Ivv g

"t
Ik

we shall consider in detail two types of boundary conditions appropriate to a

’ RO I
R e

region of the two surfaces constituting an interface, viz., continuity of p and
w, and prescribed p on one surface while w is specified on the other. From

these results, the appropriate treatment for other combinations of prescribed

traction and displacement will be quite evident., Considering the continuous

! interfacial region first, we have, in such a region,




AFML-TR-77-114

in region I”ll' Substituting eqs. (20) and their first variations into (19)

yields

4 (k) J'I (k) (k) (k) (k+l) (k+1) (k+1) (k)
: 6Jp = ( Yy | - S33R2 + e S33 R1 ) 6p2 dxdy (21)
3 I
E | k
| (k) (k)
{ w(}}(ere G.Tp represents the contribution of If{” to the integral 6Jp. Since
)

: g - 6p2 is arbitrary in this region, the function in parenthesis must vanish,

hence the boundary conditions for a continuous interfacial region are given

i by
4 (k) (k+1)
pZ = pl

(k) (k) (k) (k+1) (k+1) (k+1)

Y - S35 Ry ¥ Vi Bl By 3 4 tee

(k)
We observe that the interfacial displacements w. are absent from the

governing equations in this region.

We now consider an interfacial region in which mixed boundary con-

ditions are prescribed, e.g.,

(k)

e e e e S e e S



R 1 L = AR it s S s R T— il'” --.:A:.._._m...

AFML-TR-77-114

(k+1) (k) (k) (k+1)

In this case, 6p1 and 6w2 are arbitrary, while 6p2 and 6wl vanish in the

region. Putting these results into (19) while dropping integrals which do

not pertain to the given region leads to the expressions

(k) (k)
: 4 P = P.
i 2 2 o
‘ (k+1) (k41) (k+1)  (k+1)
! vy - S33 Ry = W,
(k) (k+1)

which characterize a region where P, and w_ are prescribed. Equations

1
analogous to (22) and (24) may be derived for the remaining interlaminar

stresses ti, s and their associated displacements v, Vo, respectively.

Other combinations of boundary conditions are treated in similar fashion.

The results will be presented later. For interface conditions of the type

1
%
f
5
g
A
']
o

(23), we see that the oan interfacial displacement that will appear in the
(k+1)

1’
this is true in general, i.e., only prescribed interfacial displacement

governing equations is W which is a prescribed function. It follows that

functions enter the governing equations, hence, interfacial displacements

are not treated as dependent variables in the present theory.

G e
R TR S AT R,

Returning to eq. (17), we now develop the appropriate field equations

and boundary conditions by setting to zero the coefficients of the arbitrary

R e ST

functions (first variations). The field equations, which consist of the elastic
constitutive relations and the differential equations of equilibrium, must be

satisfied within each layer and are given by

Constitutive Equations:

il A Rt SRS MG 3 1L
R i S NS AR

u,
3 h <—§ - ) = ’
& °x Slle+ SIZNy+ Sl3Nz+ Slény W
4 v,
i S o A 2s 7
: h( 5 . > S Nt SZZNy+ S, 4N+ Szé\lxy (25)
! i
i
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6 Hgq®
3w - hez = Sl3NX+ SZ3Ny+ —5-533Nz+ S3 ny- b g (pl+ P,
(G, +'G,X >
o 2 = exy , SléNx+ SZéNy+ S36Nz+ S66ny
he o«
— u, = S M+S..M +S. .M +5 M
1 2
4 X 11 e 2y 13 e, M6 Xy (25 cont'd)
h2 #
T, = S;,M + SZZMy+ S, M+ SZbey
S h2
5h 3. @) = S M +S .M + LS M +S, M+ —5— (P~ P,
4 = TaM e e Yes s T8k 3y 28 ‘P~ P2
h2
h o ox S
7 (u,y+ Vi) = S Mt stMy+ Sy M, + SééMxy
S S
3 (= 4v" 6 45
4(W’y' Q,Y+ h) =t (S44vy+s45Vx)- o (st 80 57 (518
S S
0 SR R N 55
- (w,x- W,x+—h ) e (S45Vy+ SSSVX)- 1o (sl+ sz)- 10 (tl+ tz)

Equilibrium Equations:

N + N +t,-t = 0
X, X XY,y 2 1
ny,x+ NY:Y + sz- s1 = 0
ZOMz
Vi, xt Yy, vt B Ere e tet ety ey
M _+M vV + 2 (t, +t = 0
X, X xy, ¥y = 2 "1 2) =
h 3 \
Mxy,x s vy+ z(sl+sz) = 0 (26) 1
(p,tpP yh %
1 2 h
Ny 2 2z (tl.x' tZ.xJr *1,y SZ.Y) gy
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+s
» X

h
{ xS - —
LR U 1,y

(26 cont'd)

The vanishing of the remaining arbitrary functions within the region, after
taking possible interdependence into account as noted earlier, leads to
expressions that must be satisfied within each interfacial plane. These
interface equations depend on the nature of the prescribed conditions on the

interfacial planes and are given by

Interface Conditions:

a) Continuity (k = 1,2,+-+ N-1)

(k)

£

(k)

52

(k)

B3
(k) (k) (k) (k) (k)
By = T4 Tg = B4 ¥
(k) (k) (k) (k) (k)
By Sg5 Ty - s55 Ts
(k) (k)

Yy - S35

(k) (k)
tz = 1:2 or
(k) (k)
s, = Eiz or

+

i

(k+1)
= tl
(k+1)
A )
(k+1)
A P,
(k+1)  (k+1) (k+1)  (k+1) (k+1)
By ot B 9y - S W
(k+1)  (k+1) (k+1)  (k+1) (k+1)
G = oRgy Wy % Bgp H
(k) (k+1) (k+1) (k+1)
B TR L Ol YR

b) Prescribed Tractions and/or Displacements (k = 1,2+ *N-1)

(k) (k) (k) (k) (k) i})
PE™"4s 4 = "85 "2
(k) (k) (k) (k) (k) (k)
By=S4g Ty = S4sTg = -9

i

(27)

(28)
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(k) (k) (k) (k) (k) (k)

P, = P, e Yo" BagBa = =Wy

(k#1) (k+1) (k+1) (k+1) (k+1) (k+1) (k+1)  (k+1)

b TSy ox ep - Sy Qy - S5 Ry = §,

(k+1) (k+1) (k+1) (k41) (k+1) (k+1) (k+1)  (k+1)

sl = s1 or 114-544 Q4 - S45 Q5 = v1

(k+1) (k+1) (k1) (k+1) (k+1)  (k+1)

pl ?l or Yl S S33 Rl = «'1 (28 cont'd)

where egs. (28) are to be understood in the sense that, at each interface,
any combination which contains one equation from each line can be used to
represent the interface boundary conditions in any region of the interface

for which (27) are not prescribed.

Finally, vanishing of the exterior surface integrals in (17) lead to

the definition of the natural boundary conditions in this theory, i.e.,

Boundary Conditions:

a) Edge Surface

For the edge surface, one term from each of the following products

must be prescribed for each layer (superscripts k are omitted)

3V r1 + r2
N &, N G, M e, M _ 4, <__n ~ —‘—_'> %,
n n ns s n n ns s h 2

rAY (29)
% n AN
o= T %y ('1”2 T )

b) Top Surface

The boundary conditions on the top surface are the same as the first

three lines of (28) with k = N.

c) Bottom Surface

The boundary conditions on the bottom surface are the same as the

last three lines of (28) with k = 0.
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This completes the development of the present theory. We observe
that the governing equations, (25) ~ (28), plus the boundary conditions on
the top and bottom surfaces, constitute a system of 23N equations in terms
of a like number of unknowns. The system can be reduced to 13N equations
by solving (25) for the force and moment resultants in terms of the weighted
displacement functions and interlaminar stress components and substituting
into the remaining equations. From (29), we see that 7N edge conditions
are required in this theory. In the event that only edge tractions are pre-
scribed in a given boundary value problem, these 7N edge functions may
be taken to be the 3N force resultants, 2N moment resultants and 2N inter-

laminar shear stresses at the top and bottom of every layer.

Clearly, the requirements established in the introductory section are
all satisfied by the present theory, in particular, the principle of ''layer
equilibrium''. Furthermore, the generality of the interface conditions,
(27)and (28), allow for the presence of interfacial cracks in the treatment
of specific boundary value problems. Finally, the usual (physically mean-
ingful) equations of equilibrium are represented by the first, second,
fourth, and fifth of (26), along with a linear combination of the third and
seventh of (26).
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SECTION IV

COMPARISON WITH FINITE ELEMENT RESULTS

In this section we shall relate the response predicted by the present
theory to that given by numerical elasticity solutions for several problems
of practical and theoretical interest. We shall treat the class of boundary
value problems known as the free edge problem in which a laminate of finite
width is subjected to a uniform axial strain g e[4]. The origin of
coordinates is located at the center of the laminate and each layer is rein-
forced by a system of parallel fibers oriented at an angle 8 with the x-axis
as shown in Fig. 1. The fibers in the various layers all lie in planes para-
llel to xy, and the laminate is symmetric, i.e., 8(z) = 6(-z). In the analy-
sis of the stress field, which is only a function of y and z, each layer is
treated as a homogeneous, anisotropic body represented by its effective

moduli and stresses will be denoted by functions of the form f(y, z).

Comprehensive results based upon the finite element method have
recently been presented by Wang and Crossman [17] for this class of
boundary value problems in laminate elasticity. Hence, that work will be
employed here to compare specific results given by the present theory.
Two particular laminates; [0, 90], in which the values of @ ir consecutive
layers are 09, 909, 90°, 0°, and [+ 45], in which the orientations are
450, -459, -450, 459, will be examined in this study. The layers are of
equal thickness h, the laminate width is 2b = 16h, and the moduli in the

planes of elastic symmetry of each layer are given by

3 6. _: _ & 6L
E“ = 20x10 psi , E22 = E33 = 2.1x10 psi
3 2 2 6__.
G12 = G13 = G23 = .85 x 10 psi
v = = v = ,L21

12 13 23
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where 1, 2, and 3 refer to the fiber, transverse, and thickness directions,

respectively, and v for example, is the Poisson ratio measuring strain

in the transverse dilrzection due to uniaxial tension in the fiber direction.

In Figs. 2-5, we compare various features of the response for the
[#45] laminate as given by the present theory [ 35] and the finite element
solution of [17]. The values of N in these figures correspond to the number
of sub-layers used in the present theory to model one-half of the laminate.
Thus, N = 6 implies that each physical layer of thickness h in the body has
been modeled by three sub-layers, each of thickness h/3, while N = 2 indi-

cates that each physical layer is treated as a unit.

In Figs. 2 and 3 are shown the distribution of o and 'xy' respectively,
along the width of the laminate at the center of the top (physical) layer. The
functions given by the present theory were computed via eqs. (8). The
results for N = 6 and the finite element solution are nearly coincident for
all values of y, while the N = 2 results differ by only a few percent in the

boundary layer region.

Even the N = 2 result agrees quite well with that of the finite element
solution for the width distribution of 'xz at the :|:45o interface. However,
a singularity is expected at this level at the free edge [4,17]. The presence
of a singularity introduces some ambiguity in the finite element solution, so
that the curve given here involves some judgement in the interpretation of
the numerical results. On the other hand, the singularity is manifested in
a different way in the present theory, i.e., the stress component Vi at the
singular point grows with increasing values of N. Whether a finite limit is
approached for large N has not been established. This situation is similar
to the rise in average stress in the element adjacent to the singular point
as the element size decreases in the finite element method. However, the
present theory contains no singularity (see [ 35]), consequently the compu-

ted stress distribution is an exact solution in this formulation. The growth
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of stress component rxz(b,h) with N is shown in Table 1. The result for

N = 3 represents the average given by the case in which the lower layer is
represented by 2 sub-layers and the upper layer by one, and the opposite
situation, although the two results are nearly identical. The same inter-
pretation is invoked for N = 5. Unfortunately, because of the magnitudes of
the numbers involved in the solution approach employed in [35], values of
N larger than 6 could not be considered. Clearly, the manner in which
singular behavior is portrayed in the present theory needs further study.

In particular, the approach by which one correlates the analytical results

with delamination failure tests needs consideration.

Although displacement components are not dependent variables in the
present theory, the weighted displacement functions can be used to approxi-
mate them with the aid of an assumed variation within each layer. For
example, if we assume that axial displacement u is a linear function of z

within each layer, by use of (15) we can show that

z (30)

where Zh is measured from a local coordinate system at the center of the
kth layer. Agreement between this approach and the finite element result
for axial displacement distribution across the width of the top surface is

quite good as shown in Fig. 5.

In Fig. 6, the distribution of > along the width direction on the cen-
tral plane (z = 0) of the [0,90] laminate is shown. Clearly, the present
theory with N = 6 agrees quite well with the finite element result, while the
N = 2 result appears accurate except in a region very close to the free edge.
Not shown on the figure is the result for N = 4, which has a very slight hump

near the free edge and attains a maximum value close to the N = 6 result.

Figure 7 illustrates the width-dependence of e at the interface be-

tween the 0° and 900 layers, where in contrast to Fig. 6, a singularity is

28
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expected at the free edge owing to the discontinuity in elastic properties.
The finite element solution gives strong evidence of the singularity since
extreme variability occurs in the neighborhood of (b,h). Because of this,
the finite element results are somewhat subjective in this region. Again,
the N = 6 result is closer to the finite element curve than that of N = 2, As
before (Fig. 4), the present theory yields finite maximum stresses which

appear to grow monotonically with increasing N at the singular point.

Comparative results for the distribution of ryz at the 0° - 90° inter-
face are shown in Fig. 8. The present theory satisfies the traction-free
boundary condition, however, whether the finite element solution, or indeed,
an exact elasticity solution, satisfies this condition (see [36]) is not known.
However, generally reasonable agreement can be observed. According to
the new theory, it appears that the function is approaching a finite peak value,
although we cannot be certain until the solution for larger values of N is

determined.

Variation of transverse displacement v at the top surface is shown in
Fig. 9. The values in the present theory were defined by approximating
the layer displacement as a linear function of z, which leads to an equation
of the same form as (30). Excellent agreement is seen to occur between

the two solution techniques.,

An extremely steep stress gradient at an (apparent) singularity in
o, was reported by Rybicki and Pagano [37] for a free edge problem in
which one layer was isotropic. Using the moduli given in [ 37], compara-
tive results are shown for the distributions of - at the interface (Fig. 10)
and central plane (Fig. 11), where comparable agreement with previous

results can be observed.
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CONCLUDING REMARKS

We have derived an approximate theory for the stress analysis of
laminated bodies which resolves the difficulties involved in previous theories
based upon assumed displacement fields. This theory is based upon Reissner's
variational principle and assumed in-plane stresses that are linear functions
of thickness coordinate z within each layer. While the appearance of 13N

field equations and 7N edge conditions may seem to be overly cumbersome

in actual problem solving, this level of detail is required to compute real-

istic global stress fields. The present theory guarantees satisfaction of

S e T e ey e ey e oz

: "layer equilibrium' and allows the prescription of combinations of inter-

facial tractions and displacements which permit treatment of such condi-

tions as interfacial continuity or cracks.

Comparison with existing solutions of the laminate free-edge class of
boundary value problems, in which very steep stress gradients occur, has

led to encouraging results., Although certain highly localized details of the

stress field have been expunged when each layer was modeled as a single
unit, this approach may be adequate for purposes of structural design. If
this is not the case, based on the present study, the introduction of two or
three sub-layers will produce dramatic improvements in accuracy. Alter-
natively, one may incorporate higher order terms in z into eqgs. (8) to
develop more accurate theories satisfying the basic requirements set forth
here. Such theories may eliminate the need for the use of sub-layers, but
will obviously lead to greater complexity in the solutions of specific bound-

ary value problems.

The situation regarding singularities remains somewhat nebulous

since the precise nature of the singular stress field in the vicinity of an

i interface at an edge has not been established. We can state however, that
the finite element solution can be severely hampered by the presence of

elastic stress singularities, and stress field determination in their vicinity
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may become quite subjective. On the other hand, the present theory con-
tains no edge singularities, an advantage from the problem solving view-
point, however, examples have demonstrated a tendency for the computed
maximum stress to grow with decreasing sub-layer thickness. Thus,
problem solving has become simplified, but a method to interpret the stress
predictions needs to be developed. We should notice, however, that the
singularities given in effective modulus theories are mathematical artifacts
in the treatment of fiber reinforced laminated bodies. This has been dis-
cussed in [ 37, 38], where support was given to the use of integrated stresses
rather than point stresses in failure analysis. This point, together with

the automatic satisfaction of layer equilibrium, as well as the capability

for objective determination of laminate stress fields, favor the use of the
present theory over approaches based upon numerical solutions of the
elasticity equations. Unfortunately, this work, along with that of [35] and
[17], demonstrate the extreme difficulties associated with aitempts to
realistically define the stress fields in laminates consisting of very many

layers.
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TABLE 1.

GROWTH OF MAXIMUM STRESS WITH N IN [ £ 45]

6 :
., (Psh) / 10 e (psi)

1.664

1.798

2.017

2.102

2.213
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