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INTRODUCTION

In what follows we present a mathematical model for pre-
diction of linear elastodynamic response of metal matrix compo-
site penetrators. Although it is recognized that for the appli-
cations envisaged , the anelastic effects are the dominant ones,
a study of linear elastic behavior is of importance inasmuch
as it yields information about the composite properties required
for simulation, using , for example, the HELP code~~~~where
material strength is not neglected. ~

If a rod of a fiber—reinforced composite is subjected
to impact at one of its ends, longitudinal waves propagate
through the rod in such a manner that on the macroscopic scale
transverse normal stresses and axial shear stress are zero
at least to the first degree of approximation. Thus the prob—
lein is essentially one of uniaxial stress rather than uniaxial
strain. Since most of the approximate modelst2

~
31 for longitudi-

nal wave propagation in the direction of the fiber axis in a
unidirectional fiber reinforced composite treat the case of
uniaxial strain only, it is worthwhile to develop an analogous
model for the case in which the primary mode of propagation
induces a state of uniaxial stress.

The geometry of the system we have analyzed is shown in
Figure 1. It consists of a single, circular cylindrical fiber
embedded in a concentric circular cylinder of the matrix whose
outer surface is stress free. Although it would be more
realistic to ror~sider a rod reinforced by multiple fibers, our
model leads to simpler analysis and is expected to provide
adequate estimates for the gross mechanical response of the
composite rod penetrator.

• We first derive a binary mixture theory for the rod,

using the asymptotic technique developed by Hegemier. ~~ As
a result of this analysis, we are also able to obtain (1) the

Young’s modulus for the composite in the direction of the fiber1
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axis and (2) the Poisson ’s ratio These results, together
with the results of the corresponding uniaxial strain analy—

yield an estimate of one more composite property as
will be shown in one of the following sections. Thus, three
of the five moduli required for transversely isotropic composites

i ~ can be determined using the expressions derived in this report.
Although these properties have previously been obtained else-
where, [6] our approach is somewhat different, as will be
obvious from the exposition.

2

FORMULATION

• 
With the geometry and coordinate system shown in Figure

:~ 
1, axisynunetric motion of the rod is described by the follow—

• ing equations:

A. Conservation of Momentujii -

- 

~~~~ + A a~ (
~
,
~

)= ~
(
~

) a~ u,~~

~~~~ 

+ A a— (
~

,
~

)_ A ~~~
) 

= (2)

B. Constitutive EQuations

- , (x) X~+2~ 
‘

~~~ 
~~~
‘ (a)

~rr = X’ ‘
~+2ii ~: (3)

~ee ~
‘+2~i

j’(a) (a.—~~
a) 

+ a._
~i~~)) (4 )

2 
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11
C. Interface Conditions

~ (l) = ~(2), ~(1) = ~ (2)

• a t P= P1 (5)

~ (2) ~ (1) = ~ (2)• xr xr rr rr

D. Free Surface Conditions

= o , = 0 at ~ = r2 (6)

I
E. Apprcpriate Bound~ry_and Initial Data

In the above set of equations, which defines a well posed
boundary value problem in (~‘,P,t) plane, we have used the super-
script a to identify the fiber (a=l) and the matrix (ct=2) . The
abject of the subsequent analysis is to eliminate the P coordi—

• nate under the assumption that composite microdimension P2 is
much smaller than signal wave length ~~

‘ for problems of interest.
For this purpose we introduce the definitions:

‘K Typical signal wavelength •

) = Composite Young’s modulus in the axialrn direction

~ (m) = Composite density

C (m)  E (m)~
1’

~
’
( m )  

t(m) = 
~
‘C (m) (7)

£

Cx , r , t) (~/X , r/r2, t~t m~

(A ,~i)  ( a )  (I~i’) /E(m)

(Oxx~C0xr~ 7Oe~
Crr) 

(a) 
~~~~~~~~~~~~~~~ 

(a),,~

3 
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(ux,Eur)
(a) 

=

It is noted here that at this stage of analysis, the
appropriate mixture modulus 

~ (m) 
and density 

~
‘
(m) are not

known; however, they will be determined in a later section.

In terms of the variables defined in Eq. (7), the initial

boundary value problem (1-6) reduces to the following equations.

A. Conservati!on_ of Momentum

+ 
~ 

a~ (ra,~~) = 
(a)a2u(a) (8)

• 
e2 a~a~~ + 

~~
. a~, (ra~~~) — ____ 

= c2 a~u~~ (9)

B. Constitutive Ecpiations

(ci) (ci)
A+2u A A

arr = A A+2u A arur (10)

a00 A A A+2~.i ur/r

= u~~) ( a u  + c2axur) 
(11)

C. Interface Conditions

= ~~~~~~ U~~
1
~ =

a t r = r 1 
(12)

~,(2) a~
’
~ ~

(2)
rr rr ’ xr xr

4

I, 
_ _ _  

_ _ _ _ _
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• 
•
~ 

D. Free Surface Conditions

~~~~~ 
0, ~~~~~~~~~~ = O a t r = l  (13)

MIXTURE THEORY

To derive an approximate theory that includes the ef-
• fect of material inhornogeneity, we first define averaged and

partial quantities by

f (c& a) (x,t) = 

A Cci) f  f (ci) (x,r,t) dA (14)

• ~~( a)

f(aP)(x ,t) n (ci) f(cta) (X~~) (15)

for a dependent variable f, where

(O ,r1], cz~
2
~ (r1,l) (16)

wr~, A~
2
~ ~ — A~1~ (17)

~(a) = A~°~/ir . (18)

Obviously, the quantity n~~ denotes the volume fraction of
the a constituent. If the axial momentum equation (8) is now
averaged according to (14) and the relevant interface and
free surface conditions are utilized , we obtain the following
equation for conservation of average axial momentum:

— ~~~~~~~~~~ — (19)

— ~~~~~~~~~~ P (20)

where P is an interaction term reflecting the axial momentum

transfer from the matrix to the fiber, and is given by

5

-.

~ 

-- 
-- -- - - -- -

~~~~
-- --

~~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~: , 
•-
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Hr
P 2r ~

(a) (x,r,t) (21)1 xr

Equations (19) and (20), which are basic to the approximate
analysis of wave propagation in a composite rod, are to be
complemented by appropriate constitutive relations for partial
stresses and the interaction term P. Such relations are
most easily obtained through an asymptotic scheme which shall
now be pursued.

Asymptotic Expans ions

The system (8—13) contains the parameter ~
2, which is

square of the ratio of rod radius to the signal wavelength.
For problems of interest here, this quantity is much smaller
than unity. Hence we expand all the dependent variables in
a power series in this parameter; thus, we write

h(x,r,t,E) 

~~ 

~2n h (2~) (x ,r,t) (22)

for any dependent variable h. If the expansion (22) is sub—
stituted into (8—13), a hiearchy of models is obtained by
retaining the terms corresponding to different values of n.
The simplest theory can be derived from the zeroth order system,
the first equation of which is obtained from (11). Thus, we
have

~ ~
(a) 

= 0 (23)r X ( 0 )

so that

~~~~~~ (x,r,t) — ~~~~~~ (x,t) (24)

From the zeroth order expansion of the radial momentum equa-
tion (9) and the necessary constitutive equations, interface

6

~~~~ ~~~~ -.-
-~~~~~~~~~~~~

,
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and free surface conditions we obtain the following:

In-Plane Stress Problem

arcrr~o) + ~ , (a~~~~ 0)  — aee(0)) = 0 (25)

arr(0) 
= A

~~~
aXu~~~) 

1 
+ 

A+2~ A 
(ci) 

arur 
(26)

1 A A+2i.i u / r

• 
a (0 )  

= 0 at r = 1 (27)

arr (O) = arr (O) U~~~~~) = U~~~~~) at r = r1 (28)

If the boundary value problem (25-28) is solved subject to the
condition that u~~~) be bounded at r = 0 , we obtain

U~~~~~) = B W r (29)

U~~~~~) = 
A~

2
~ + B~

2
~r (30)

where

A~2~ ~(l) [3
1 - B ( 2 )j  (31)

and

8
(a) 

= 
~~~ bUB aXU

~~~~) (32)

B— i

7

• :

~ 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
: ~
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I

The elements of the matrix ba8 in Eq. (32) can be expressed in• I terms of the material properties by the following equations~

b11 X~
1
~ [x

(2) 
+ ~~~~~ (1 + n(l))j/2D

• 

b12 = ~~~~~~~~~~~~~~ b21 = ~~~~~~~~~~~~~~ (33)

b22 = A~
2
~ (p

11) 
+ ~~~~~~~~~~ + X (1))/2D

• 
• 

where

7 D _ [ ( X ~~
’) + ~(1)) {A

(2) 
+ ~

(2) (1 +
- 

+ ~
2Y2

~ (A
2 

+ u (2))1 (34)

Using (29—31) we can obtain constitutive relations for the
partial stresses in the following manner. First, from (10)
we have:

aXX (O) = (X+23i)~~ aXuXCO ) + A (
~~ ~ a r (ru~~~~)) (35)

so that on using (14,15) we obtain

a
XX ( O )  

= (A+2~i)’
2P
~ ~~~~~~ + 2 A~

2
~ {u2~~ )x.1~t

— rlur(O) (x,ri~t)J (36a)

a
) 

= (x+2~) 
(19) 

~~~~~~ 
+ 2X~~~ [r1u~~~ (x~r1~t)]

(36b)

If (29-32) are now substituted into (36), we finally obtain

8
p



• I 2 

R-340l

a~~
2

~~~ 
— (Ba)

xx(0) C
8 

aXuXCO)
8=1

where

C
~~8 

= 6a8 (X+ 2~~)~~~~~ + 2A (a)n (a)b~$ , ~~~~ 
(38)

with 
~~ 

denoting the Kronecker delta. It can easily be shown
that the matrix C

~8 
is symmetric, i.e.,

c12 = c21 (39)

AXIAL SHEAR PROBLEM A~~_~~E_I~~E~~CTIQN TERM

To obtain the constitutive relation for the interaction
term P, we use the zeroth order expansion for the axial momen-
tum equation, which is

a XaX X ( O )  + 
~ 

3r (ra,~~ O)) = ø (a) a 2u (ct) , (40)

To (40) we append the necessary constitutive equations, inter-
face and free surface conditions:

axr (O) 
(a) 

13rUx(2) + a xur (o) } (41)

axr (O) = axr (O) = ~~~~~~
-_ at r = r1 (42)

axr (O) = 0 at r 1 (43)

It is noted here that in (42) we have used the definition (21)
~

• 

with replaced by Grx(0)~
We now use (35,41) in (40) to obtain differential

equations for ~~~~~ which turn out to be
-~ x~~ ,

9 

—- -~ -- -• —---- -j -—- — -
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(‘a) (2) C )
r ar [r arux(2) = Q ~ (x,t)

where ~~~ represents terms in (40) which are independent
of the radial coordinate. We can, however, relate Q~~ to
the interaction term by integrating (44) over and using
(42), (43) and (29) through (31). The final result of
this procedure is

Q(ci) 
= _ (_ 1 ) a 

~~~~ 
- 2u~~~~a~

B
~~~ (45)

Equation (44) can now be solved in conjunction with (41-43)
and (45) yield u,~~~) and , consequently , the displacement
fields u

~ 
correct to 0Cc ) .  Thus , we obtain -

= U~~~~~) + c 2
H 1

(X , t) + 
~~~ (~~ i~~

-m-

— 2 a B a’)) r2 (46a;

= U~~~~~) + c2H1(x,t) + ~
2 f_ ~~ 

— ~ n~~’~
— ~(l) — £n r2 + r2)~ — 1 a~

B
~

2
~ (~~(1) Ln ~(l) — ~~~U)

- n~~ ~n r2 + r2)+ ~. a X
B

(1) 
(~

d1) Ln ~(l) - ~(l)

— n(~~ in r2)J (46b)

where g1(x,t) is an undetermined function. To proceed further,
(46) is averaged according to (14) to yield

-

~~~~~

• - -
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~
(la) 

= U
3~~~~) + c2H1 + ~

2 n
8 [(1~~(1) 

- 2

(47a)

(2a) 
— 

(1) 
+ 

2 
+ 

2 [P 1 1 fin ~ hI)
— Ux ( o )  ~ H1 c 1~ u~3’~ 

2
~n~

2
~ ~

+ _ _ _ _ _  

1 
~x~~~~(~~(2)- 

in fl
( )  

+ 
1+n(’))

• 

+ ~~ a~ B~
1
~ (n-~~~ in n (1)) 1 (47b)

From (47) we obtain the desired expression for P in terms of
average displacements, i.e.,

(2a) Cia) 2
= 2 

u
~ + :~: 

a~B~~~c~~ (48)

a=1

where

= ___ - 

~(2) (2) (3~~~cl) 
+ 

2 inn
)]

= - 

~ j [n
(1) (

~ 
+ 
2 t f lf l

)] 
(49b

~

(2) 
+ ~~~ (i + ~(2) + 

~~~~~~~~~~ 

nW

) 
(49c)

In order to complete the formulation we replace U~~~~~) in (32)

by the corresponding averages, i.e., bY u~ ; this procedure
furnishes

_ _ __ _
_ j
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P (2a) Cia) 2 a 2 (aa)
— 2 + ~(a) (50)

£ 
~ ~~~~~

where

2
~(a) = E ~ (8) b8~ 

(51)
8=1

In a similar fashion, we drop the subscript zero from the
variables in (37), thus, obtaining,

C~~
8 ~~~~~~ 

(52)

COMPOSITE PROPERTIES
-

The foregoing analysis completes the construction of
an approximate theory for longitudinal wave propagation in a
composite rod, which is given by the equations (19)-(20), (33)-
(34) and (49) through (52). To obtain the mixture Young ’s
modulus from these equations we eliminate from them all of the
variables except ~~~~~ to obtain

• + 2c12 + c
22) 

a~ — (~u~ + ~(2P)) a~

+ 0 C€ 2j ~
(la) 

= 0 (53)

Equation (53) suggests the definition of mixture density ac—
cording to

~~(m) — ‘~(1p) + ~(2p) (54)

12

~~~~-~~~ - ~~~~
-

~~~~~
-

• • ~~~~~~~~~~~~~~~~~~ •~~~~~~~~--~~~~~~~~~~~~~~~~ — — - •~~~~ 

-
~
-

~~
-- 

_ _
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We choose the mixture modulus such that the coefficient of

in (53) is unity. This choice, together with (7, 33, 34 and

38), furnishes

E (m) = (~~
i + 2jTW) ~(l) + (r

2 + 2jT(2)) ~(2) —

(54)

where

-
~ 

• ~~
-; 

= n )~~
’
~ [r (i) fr(2) + ~(2) (

~ 
+

+ 5~.(2) ~~~~~~(2 )
fl (2 ) }  + ~~~~~~~

- 

• 

+ r~
2
~ (r

(1) 
+ ~(1) +

= (r m + ~(l)) 
f
~~(2) + ~ (2) (i + n (1))J

+ 
2)~~C2 ) 

(rC2 
+ jj’(2)) (55)

To obtain one of the mixture Poisson ’s ratios , we
first note that the stress-strain relations for a transversely
isotropic material are given, in part, by

~~~ 
1 

~
‘xr ~xr

ega = 

~~xr E/E 
~ r

Ex/’Er a00 (56)

rr “xr \)
rEx’Er E/E arr

Thus, if an infinitely long circular cylinder of unit radius
is subjected to uniaxial stress,

Ur (X
~
l) — - V~~;~~~U

13
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On the other hand , for the composite cylinder, we have, from
(39)— (31), that

ur C O) (x ,l, t) = ~~ ~~ 
n )baBaXu~~~) 

(58)
a=l 8=1

If we now set

• a u~’~ = a a u (59)x xCO ) x x(0) X
~~~

we obtain

u~(~)(x ,lD t) ~~ 
n~ b~Bl.5.~ (60)

a=l B=1 J
A comparison of (57) and (60) suggests the definition of equi-
valent Poisson ’s ratio Vxr for the composite by

~xr — 
~~~ 

(61)

a—I 8=1

Finally, on using (33-34) and reverting to dimensional material
properties, we obtain

V = 
[
.x’(l) 

(r
2 

+ 2~~2)) ~
(l) 

+ ~‘(2) (~~
i + ~~

l)

+ i~ 2) ) n ( 2 )j ~i2~ (62 )

where 5 is given by (55).
As was mentioned in the introduction, we can obtain one

more combination of material properties by using the results

of the corresponding uniaxial strain analysis.12’5~ To do

• -
~ 

•1~ -~~~~ - -~~ -~ - - ~1•• j :~ ~~~~~



• R — 3 4 01

so, we have, from (56) that, in case of uniaxial strain,

1
— 

ECe) ~~~ 
(63)

where

= 1/ 

~ 
~l — 

~~~~ 

(64)

For the composite,the axi1al Young ’s modulus E~ 
is given by

• ! in (54) and the modulus under uniaxial strain is ob—Cm) (25tam ed from ‘

E
~
e) = = (rc1 + 2~~1)) D

Cl) 
+ (~~

c2) 
+ 21i’(2)) (2)

— (r c1 
— ~~ ‘( 2 )) ~~~~

/ E (65)

where

I 
E 

~ (l)~~(2) [ (r
2 + ~~~. ( 2 ))  

~~~~~ (r dl) 
+ ~.(l)) ~(2) +

• ( 6 6 )

Thus , using (64,65) we obtain

I 

- 

(l—v )~~
’ Er = E ( )  (i 

— /2v 2 (67)

Thus, from the results given here, we can determine the combina-
tion (1

~ Vr )
~~~Er for the composite . In closing this section, we

note that if, following (7], we set

Vr — + n~
2
~ V~

2
~ (68)

15 
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where V~~~~ denotes the Poisson’s ratio for the ci constituent,
• we can use (67) to obtain the transverse Young’s modulus, Er?

of the composite. Thus the only composite property that re-
mains to be determined is the axial shear modulus to be used
in

0rx 2~~ erx (69)

We can calculate from the expression given in (6), i.e.,
from

— 2 ~~~~~~~ (1) —(2) (2)

X 
~~~~~ ~

—
~:-(2) (1+n 01)

Thus, all the elastic moduli of the composite can be calculated
from the expressions (54, 62, 67, 68 and 70).

~uMERIçAL_RESULTS

• Using the expressions given here for the composite
properties, we have calculated the elastic moduli and Poisson’s
ratios for five sets of material combinations as a function of

- • the fiber volume fraction. The constituent properties used
for these calculations are shown in Table 1. The calculated
composite properties are given in Tables 2 through 6. From
these tables it can easily be concluded that calculation of the
Poisson’s ratio ~~~ by using the rule of mixtures, which was
used for computing V

r P does not entail any significant loss
of accuracy.

From the results shown in these tables, various elas-
tic wave speeds can very easily be calculated since the
density of the composite is obtained simply by the rule of
mixtures. Although the dispersion curve for time harmonic
longitudinal waves in the composite rod can also be computed

• using the theory derived in this report, we have chosen not

3.6

- _ _ _ _ _ _



- ‘~~~~~~~~
- ‘

— - 

R—3401

to do so since dispersive phenomena are not expected to be
• important factors in materials selection for metal matrix

composite penetrators.

CONCLUDING REMARKS

I ‘ A binary mixture theory has been derived for propagation
of longitudinal waves in a composite rod, which is proposed
a simple model for metal matrix composite penetrators. Theory

- includes the effect of material inhomogeneity and exhibits• i ” dispersive character typical of composite materials.

Expressions for computing the composite material proper-

• ties have been presented , and have been used to calculate the
composite moduli for five sets of material combinations as a
function of fiber volume fraction .

I

-~~~~~~~~~~
_  

17 
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TABLE 1

CONSTITUENT ELASTIC PROPERTIES

Young ’s
Modulus Poisson ’s

(GPa) Ratio

Aluminum 606 1—T6 69 0.33p
Steel 1010 200 0.29

Lead 14 0.43

• SiC on W Substrate 427 0.19
I

-

• 
- Aluminum PP 345 0.27

Thornel 50 Gr 393 0.20

Tungsten Wire 407 0.28
p

$

p

I

$
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TABLE 2

COMPOSITE ELASTIC PROPERTIES
ALUMINA FP FIBERS IN ALUMINUM MATRIX

Axial
Shear

• Fiber Young’s Moduli Poisson’s Ratio Modulus
• Volume E E V V

Fraction X(GPa) r r xr (GPa)

0.2 124 97 0.318 0.316 34
*

0.4 180 129 0.306 0.303 45

1 0.6 235 171 0 .294  0.291 62

0.8 290 235 0.282 0.280 88

)

I)

2].

S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - - -



~~
— —_ c- ”— ——— ‘

~~~~~~~~~ 
— ___

- • l—*_._•~___•__~ • _ ~___ . — -- ——
R—3401

¶ TABLE 3

COMPOSITE ELASTIC PROPERTIES
- THORNEL 50 Gr FIBERS IN ALUMINUM MATRIX

Axial
Shear

Fiber Young ’s Moduli Poisson ’s Ratio Modulus
Volume E E V V

~~~~•; 

Fraction X (GPa) r 
- 

xr (GPa)

0.2 134 103 0.304 0.300 ~ 35

0.4 199 140 0 .278 0.272 47

0.6 264 189 0 252 0.246 66

0.8 328 264 0 .226  0 .222  98
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• TABLE 4
p 

COMPOSITE ELASTIC PROPERTIES
Sic (ON W SUBSTRATE) FIBERS IN STEEL MATRIX

Axial
Shear

Fiber Young ’s Moduli Poisson ’s Ratio Modulus
Volume B E ‘ Vr V 1JX
Fraction X (GPa) r xr (GPa)

0.2 246 237 0.270 0.268 91

0.4 291 277 0.250 0 .247 107

0.6 336 321 0.230 0.227 126

0.8 382 370 0.210 0.208 150
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TABLE 5

k I COMPOSITE ELASTIC PROPERTIES

TUNGSTEN WIRE FIBERS IN STEEL MATRIX

Axial
Shear

Fiber Young ’s Moduli Poisson ’s Ratio Modulus
• Volume E E v V• Fraction X (GPa) r r xr

0.2 241 230 0.288 0.288 89

• 0 . 4  2 8 3  2 5 4  0 . 2 8 6  0 . 2 8 6  102

0.6 324 303 0.284 0.284 118

0.8 366 350 0.282 0.282 136
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TABLE 6
I COMPOSITE ELASTIC PROPERTIES

ALUMINA PP FIBERS IN LEAD MATRIX

• Axial
-~ Shear
I Fiber Young’s Moduli Poisson’s Ratio Modulus
- Volume E E V V

Fraction X (GPa) r r xr (GPa)

• 
0 . 2  8 0  39 0 . 3 98  0 . 3 9 5  7

0.4 146 59 0.366 0.362 11

0 . 6  213 90 0 . 33 4  0 . 3 3 0  17

0.8 278 150 0.302 0.299 33
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