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A NATURAL APPROACH FOR DETECTING .CAUSAL
RELATIONSHIPS IN TIME SERIES

Frederick W. Morgan, Clemson University
M. Edwin Ireland, Clemson University

I.. Introduction

A post hoc data analysis in hopes of identi-
fying causal relationships between variables is
one that should be regarded with a great deal of
suspicion. One need merely consider the etymo-
logy of the word "malaria" to realize that unless
all factors, or variables, are taken into consid-
eration or experimentally controlled erroneous
conclusions concerning cause and effect may be
reached.t It is for this reason that statisti-
cians prefer to speak in terms of “predictability"
or "correlation" rather than "causation".

In economics, however, a great deal of re-
search has recently been published concerning
causal realtionships between economic variables.
The basis for this research stems from a defini-
tion of causality given by C. W. J. Granger
(1964). Basically this definition states that if
one can predict the future values of one variable
xt using all past values of all other variables

in this system better than when predicting future

xt using all past values of all other variables

in this system except those of Yc' then Yt causes

xt. It is important to note that this definition
contains a universe of variables related in some
system. In reality, of course, it is impossible
to measure all the factors in the system. Hence
it may appear that Yt is causing xt when indeed

a third variable is causing both xt and Yt'
Granger is careful to point this out in his dis-
cussion of the definition.

The inability to measure
the universe certainly exists
ever, when an economic theory indicates that a
change in one variable should cause a change in
another, it may be necessary to identify a statis-
tical relationship between these variables, a
relationship which could quite possibly be causal
but could not be proven. Thus, though some
critics may argue the use of the word "causality"”,
we shall use this term with the understanding of
what it connotes in this situation. Wholesale
use of techniques for identifying casuality with-
out sound economic reasons for justifying such
techniques should be avoided.

Granger's definition of causality is impor-
tant in that not only does it appeal to our in-
tuition as a reasonable definition, it also lends
itself to statistical analyses for causality de-
tection. The appropriate analysis to be used,
though, is not apparent. 1In the next section we
propose some analyses that seem natural in this
situation but which should not be used because of
certain deficiencies. The elimination of these
deficiencies leads to what we propose for cau-
sality which is given in the fourth section.

This discussion will consist of a universe of
only two variables, however, the extension to
more than two variables follows readily.

all variables in
in economics. How-

Repririted from the 1976 Business and Economic Statistics
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II. The Process of Elimination
In Granger's definition one is concerned
with being able to predict one variable from
past values of itself and another variable.

a criterion of goodness of the prediction
Granger employs mean squared error. Thus one's
initial attempt at determining if Yt causes xt

As

would be to regress present xt on past xt and Yt

according to

= .
R e ] R TN
(2.1)

+ooet Y +
bt S

where ct~NID(0,02). A significant F-ratio for
testing Ho: bi =0,i=1, ..., m, would imply

causes X _. This result, though, would

€
surely be suspect because in most economic cime
series a definite trend exists with respect to
time. This trend in time present in both series
could manifest itself in the significance of the
coefficients in the Yt series when indeed Yt

that Yt

does not cause xt.

The next consideration then would be the re-
moval of or an adjustment for the time variable.
In the terminology of time series analysis our
aim becomes the transformation of the original
series to stationary time series. We use the
term "stationary" to describe a time series with
constant mean having autocovariance a function
only of the lag between observations. This con-
dition on the autocovariance function iwplies
also constant variance. Departure from constant
variance may be corrected via some transformation
as the logarithm. As indicated by Box and
Jenkins (1976) stationarity with respect to the
mean can be achieved by suitably differencing
the individual series involved. For example, if
a linear trend is present in the data then one
would consider the series Ut = xt - xt~1' Had

the trend had a single periodic component then a
second difference would be required, namely,
' = - &
Ut Ut Ut—l
We return then to the regression model (2.1)
where we realize now that the xt and Yt are the

results of the differencing necessary to produce
stationarity. New problems arise, however, that
cause the results of a classical regression anal-
ysis based on the F-test to be suspect. The
standard assumptions for the F-test are that the
values of the dependent variable are normally
and independently distributed and that the

values of the independent variables are fixed.

In our situation the values of the "dependent"
variable are not necessarily independent (and, in
fact, are most often correlated). Furthermore

"
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ependence is not due to correlated
uld be adjusted for) but due to
he "independent" variables are not
Fixed but m. In fact the "dependent" vari-
able at tiﬁq F is one of the "“independent" vari-
ables qg-gdﬁq uture time t + k. It is this
structure-that arouses questions concerning the
distribution of the regression statistic and thus
the validity of the test.

It should also be noted that this regression
technique at this point fails for another impor-
tant reason. It has been shown [Jenkins-Watts,
p. 338, (1968)] that even if xt and Yt are inde-

pendent processes having autoregressive structure
that spurious cross-correlations are possible.

These spurious cross-correlations could manifest
themselves in significant values for some of the
Yt coefficients in (2.1) implying causality when

in fact none exists.
III. A More General Model

Since the regression model (2.1) has been
shown to have serious deficiences in the ensuing
analyses, we next consider two different models
and the relationship between them. The models to
be considered are the univariate autoregressive-
moving average representation for each of two
series, xt and Yt' and the bivariate autoregres-

sive representation of xt and Yt jointly. The
series xt and Yt are assumed to be appropriately

transformed or differenced so that each series is
covariance stationary. Furthermore, we shall
assume that the true causal relationship has re-
mained in the residuals xt and Yt' although this

assumption may be sensitive to the nature of the

prefiltering (especially when nonlinear trans-

formations to achieve stationarity are used).
The univariate models are:

01(8) Xt = 61(3) u,
(3.1)

02(8) Yt = 92(8) i

’ e ’ e
where 01 @2, 1 and 2

nomials in B (where kat = xt'k) having constant

term 1 and u, and vt are white noise processes.

are finite degree poly-

The processes are strictly autoregressive if
ﬁi(B) =1, 1i=1, 2, and strictly moving averages

if Oi(B) =1, i =1, 2.
and Yc are stationary implies that the roots of

The assumption that xt

oi(z) = 0 lie outside the unit circle. We can

subsequently rewrite (3.1) as

|
8
¢ 1 (B) 1

-1
2 (B) 82

(B) ut = 91 (B) u

(3.2)

Y. -9

¢ (B) M 02 (B) v,

t

where 01-1 (B) and 02-1 (B) are infinite series in
B provided they are not identically 1.

i
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The bivariate autoregressive representation
is given by

P(B)  Q(B) [-x a
3 T S (3.3)
R(B)  S(B) Lv b

t it
where P, Q, R, and S are polynomials of the form
A(B) = [ a B
k=0

k

with the constant term in P and S strictly 1 and
a_ and b, are white noise series with

a | r y
. & L‘t+k bc#k] . "
|l \

The series are stationary if the roots of

(diagonal), k=0

, k$0

P(2) Q(z)
=0
R(2) S$(2)

lie outside the unit circle.

The relationship between these two repre-
sentations can be given in terms of their white
noise innovations. From (3.2) we can rewrite

(3.3) as
P(B) Q(B) rél(B) 0 1 ut] 7 at
R(B) S(B) i 0 02(8) th bt
or
P(B) GI(B) Q(B)Gz(B) u, 5 a
R(B) 01(3) S(B)ez(B)J vt bt
which with substitutions of the form
P*(B) = P(B) 01(8) yields
*
rﬁ'(a) Q*(B) ut L a
R* (B) S*(B) vt“ bt i
Fe. Fo.
Expressing L in terms of the yields
v b
€ Lt
\.1':l F(B) S*(B) -F(B) Q*(B) a,
th -F(B) R*(B) F(B) P*(B) bt
which in single equation becomes
u, = F(B) S*(B) a, - F(B) Q*(B) bt
(3.4)

LR -F(B) R*(B) e ¥ F(B) P*(B) bt '
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where F(B) = 1/[P*(B) S*(B) - Q*(B) R*(B)]. Thus

u and Ve are related to one another via ‘t and tt

according to (3.4). It is this pair of equations
that can be used to determine the causal rela-
tionship between u, and Ve that is, between xt

and Yt'
If no causal relationship exists between xt

and Yt' then Q(B) = R(B) = 0 and (3.4) reduces to

that is, the white noise innovations ut and vt

have cross correlation zero for all lags.
Under a null hypothesis of no causality and as-

suming that at and bt are Gaussian, a regression

of’ut on past, present, and future vt based on

the standard test statistic which does indeed
follow an F distribution should find no signifi-
cant coefficients.

In the case of unidirectional causality,
say Y! causing xt' R(B) = 0. Substituting these

into (3.4) yields

et Q%) 2
e P 2t T pem) svm St Mt B

u

* (3.5)
e ™ bt .

Assuming for now no instantaneous causality, the
*(B)

P*(B) S*(B)
constant term zero. Thus ut is a function of

operator is a polynomial in B having

past v, Rewriting the first equation in (3.5) to

&

express v_ in terms of u produces

t

-1
o = | canibeaBl S*(B)
Ve [p-(a) sv@ | Y tor 2% (38

The operator on u will contain terms of the

form a'”, m>0 (as well as B'n terms perhaps),
implying that Ve will be a function of future ut

(as well as possibly present and past vt). A
forward stepwise regression finding u, a function

t
possibly present and past ut would thus indicate

of only past v_ and Ve a function of future and

that Yt causes xt.

A closer look at (3.5) might arouse some
concern about an ordinary least square regres-

sion of ut on vt. In general, the first term At

is a moving average in a_ and the second term Bt

t
is a moving average in b_. Thus each term re-
presents an autocorrelated series. The nature of
this autocorrelation is such that when At is

4
have uutocorrohtion-ok at lag k in order that

correlated Py at lag k the second term B, must

ut be white noise. 1In a regression ut on vt it
is clear that At represents the error in the re-

gression. It is well known that such autocorre-
lation among the error terms can result in bi-
ased estimates of the variances cf the least
squares estimator of the regression coefficients
(see Appendix A). This causes concern in that
one might ten? to reject true null hypotheses
more often than the significance level of the
test would indicate or one might tend to not re-
ject a false null hypothesis when indeed he
should. As indicated in Appendix A the nature of
the autocorrelation of the "independent" vari-
able determines which of the above is the situ-
ation. In the case of unidirectional causality
when using a forward stepwise regression, it is
easy to see that at each step the next possible
"independent" regression variable to enter the
model is indeed uncorrelated. In this case the
estimator of the error variance is asymptotically
unbiased and for small samples the bias should be
negligible (our simulations using around 80 ob-
servations have indicated no consistent bias in
estimates of the error variance). Hence the use
of ordinary least squares in a forward stepwise
regression is valid.

In the case where Yt causes xt (or xt

causes Yt) and instantaneous causality is

present, the polynomials Q*(B), P*(B), and S*(B)
each have constant term 1. Thus u_ will be a
function of present and past v, an similarly in
(3.6) v, a function of present and past u, -
Hence the criterion for instantaneous causality.
(It should be noted that this criterion only
identifies the existence of instantaneous cau-
sality. Whether xt causes Yt' Yt causes xt, or

instantaneous feedback cannot be determined.)

When feedback is present in the system,
both Q(B) and R(B) are nonzero polynomials in B
with constant term zero (assuming no instantane-
ous causality). Equation (3.4) may now be ex-
pressed as

ut = AI(B) a, + Bl(B) bt

v, = AZ(B) a

¢ + BZ(B) bt

t

where Al and 52 have constant term 1 and Az and

Bl have constant term 0. Considering ut as a

linear combination of the Ve implies
- a @A ey +
b i TSl t

=1
[BI(B) - A (B)A2 (B)Bz(B)I bt

1

Now Alll)A;1 contalns'neqntivu powers of B as
well as positive powers. Thus u, is a function
of past, future, and possible present values of

Voo A symmetric argument holds for v as a func-

tion of u, Hence the criterion for determining

feedback in the system. As in the unidirectional
[ 1]
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case the absence of autocorreliation in the
"independent" regressor variables substantiates
the validity of ordinary least squares for the
regressions.

IV. The Resulting Procedure

In summary, the procedure that has arisen
naturally from the earlier discussion is outlined
as follows:

1. Individually transform (e.g., taking the nat-
ural logarithm of the observations) or dif-
ference (e.g., taking the first difference to
remove a linear trend) each time series to
yield covariance stationary residual series
denoted by xt and Yt'

2. Individually model each series, xt and Yt, as

an autoregressive-moving average process ac-
cording to the techniques developed by Box
and Jenkins (1976).

3. Filter xt and Yt according to their estimated

models to yield the white noise innovations

u, and Ve respectively.

4. Use a forward stepwise regression of ut on
future, present, and past values of vt and a
similar regression of Ve on u,.

5. Determine the causal relationship as follows:
a. No causality, =-- u, is not a function of

any of the future, present, or past

values of v, nor is v, a function of any

such ut'
b. Yt causes xt (and similarly for xt causing
Yt) but not instantaneously -- u, is a

function only of past v_ and Ve is a func-

tion of future and poss:bly present and
past u, - ‘

c. Instantaneous causality -- u, is a func-
tion of only present and past Ve and Ve is
a function of only present and past ut'

d. Bi~directional causality -- ut is a func-
tion of future, present, and past Ve and
similarly vt a function of future, present,

mdputur

We advocate this procedure because (1) it
generalizes to the multivariate case and there-
fore serves as a basis for the detection of cau-
sality in systems of two or more variables and
(2) the use of a stepwise regression serves not
only to determine the direction of causality but
also to determine the causality lag. The latter
is an important step in system identification.
For example, consider that unidirectional cau-

sality has been detected from Yt to xt' From

our regression analysis we have estimated
Rl - /) ) S5

P (B) S*(B) in (3.5) and from our original
modelling we have estimated 91(" and ez(n). A

Box-Jenkins analysis of the residual series “t

will yield an estimate of P*(B) and hence P(B).
Since S*(B) = 1 an estimate for Q*(B) can be ob-
tained and hence Q(B). From this analysis, then,
we can estimate the original model

[pm
0 S(B) Y

L . Lt

(knowing that R(B) = 0 in this case).

Q(B)

V. Applications of the Procedure

In order to demonstrate the application of
this procedure in bivariate situations the re~
sults of a simulation and an analysis of two
economic times series are given. The results
concerning the economic time series are quite
interesting in that they differ from any other
results yet published.

For the simulation 88 observations were
generated for each of two series xt and Yt ac-

cording to

¥ow - IX + Y + a

t SRS e G ko Sonsot oo

Y = .75¥, _ - .5Y _, +b, b -NID(O,1) .

Due to the choice of coefficients the processes
are stationary. A Box-Jenkins modelling of the
series individually yielded

X, = .97
975X, _

e - .297xt_

- .357
o ut 25 2

1 2 8

.= .BSOYt_1 - '465Yt-2 e
Upon filtering each series to yield u, and Ve

and performing forward stepwise regressions of u,

on v, and vt on u., the models obtained were

+ .27

o ik =3 t-4

.28
. + .2 vt

2

- 3 + error

Svt_5
2

(F"G‘ = 11.25 R" = .41 D.W. = 2.61)

& +
v, = 36“t4 error

= + '16“t¢

2 3

2

( = 21.03 R = .39 D.W. = 2.47)

F2.66

These results indicate causality from Y to xt.

t
It is also interesting to note the magnitude of
the Durbin-Watson statistics indicating the an-
ticipated serial correlation for the error terms.

Applying our technique to quarterly obser-
vations of the money supply and GNP for the pe-
riod 1953 through 1974, we arrived at the follow-
ing model for GNP:

Gt = (1-B) ln (GNP)

(G

o = <007) = .449(G,_, - .007) + E

g, = E, = (G, = .007) - .449(G,_, = .007) .

p—
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That is the first differences of the natural log
of GNP, which is approximately equivalent to the
rate of growth from quarter to quarter (a trans-
formation necessary to achieve stationarity) can
be modeled as a simple first order autoregres-
sive (AR) process.

For money (Ml), the model is

“t = (1 ~-B) 1ln (Hl)t .

(M,

= +004) = .63(M__, - .004)

1
+ zt - .2592t_m

’l =2 = (l&' .004)
- .63(M 1 - .004) + .2592

10

That is, the first differences of the natural
logs of money is described by an autoregres-
sive - moving average (ARMA) model. The resid-
uals of these correctly filtered series, 9, and
m, can now be used in a regression to test for
causality.

Using a forward selection regression pro-
cedure combined with the properly prefiltered
values of money and GNP, we arrived at the fol-
lowing models:

g, = .49

t mt-2 ‘68'":-

+ .42m - .54m
t

3 +1 t+3

(.1850) (.1874) (.1831) (.1880)

R = (2775 F{4,65) = 6.2408 D.W. = 2,41

m = -.1359gt_ + .190].!;':*3

3
(.0649) (.0647)
R = ,1573 F(2,67) = 6.2520 D.W. = 2.1097 ,

where the values in parentheses below the coef-
ficients are the standard errors of the regres-

sion coefficients. In both regressions, the st
are small but still significant at the .05 level.

Of course, when evaluating this Rz, it must be
remembered that the values used in the regres-
sion were the residuals of previous models.
Hence, the explanatory power of these models is
actually quite good. Since coefficients of
future values appear in both regressions signif-
icantly different from zero, we have identified
a bidirectional or feedback relationship between
money and income.

APPENDIX A
Consider the model

y-ext*l

t t

where xt and zt are zero mean processes with lt

having variance a: and autocorrelation Dk- The

variance of the ordinary least squares estimator
b of B given by

-1
b= (x'x)  x'y

is
. -1 . . -1
var (b) = (x'x) = x'Vx(x'x)
where
v = uz2 —1 4 b
< WER S RS RS
o R IR, ©t Pp-2
Oy y Prsa B i .1
It is easy to show that
n-1
+
2 izlxixi 1
var (b) = _2Z 1+ 2
n 1 g 2
e A 3
X, o] 1
1 "
L
n=-2
leixi+2
+ 2 —
2 3 2
X,
i=1 ?t
+ .. +
X X
ln
2p
n-1n 2
L x,
i=1 ?t
” 2
= 2 K
'z‘ 2
X,
T

)4 4 022 were known, then the usual least squares

2
)

estimator of the variance Hence if the

2
x

guy 1

x, are autocorrelated with the same sign as the

-
°k then the ordinary least squares estimator will

underestimate the true variance of b; if auto-
correlated with opposite sign, the estimator will
overestimate the variance of b.

Similarly it can be shown that the residual
sum of square for least squares estimator has

expectation (n-K) c.z.




In estimating 022 the same relationships hold as

above accentuating the bias in estimating the
variance of b using ordinary least squares.
It should be noted, however, that if the

x, are uncorrelated, the affect of the auto-

correlated errors vill likely be neglible. In
fact in this case the estimators are asymptoti-
cally unbiased.

1"l'!'u; word malaria means "bad air". This term
came into usage because it was thought that
people contracted the disease from the air
present in swampy, lowlying areas when in fact

HEgh o R ]
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the only known carrier is the anopheles
mosquito.
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