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ABSTRACT

A one-dimensional model (Camp, 1976) is used to simulate ocean thermal
structure response to synoptic scale atmospheric forcing data at six loca-
tions for a period of 20 days in August 1974 and 40 days from 21 November
to 31 December 1974. The atmospheric forcing data (Solar Radiation, Total
Heat Flux and Marine Winds) were obtained from Fleet Numerical Weather Cen-
tral (FNWC) Primitive Equation and Marine Wind Models.Data used to initial-
ize and verify the ocean thermal structure originated from bathythermo-
graph data stored at FNWC. Length of simulation ranged from 72 hours to
36 days and was limited by the length of continuous historical data avail-
able for study. Results show the forcing functions contain sufficient re-
solution to define diurnal and synoptic time scale events. When the model
is run using these forcing functions it produces changes in the mixed-layer
depth and mixed-layer temperature on the same time scales. The magnitude
of these changes ranged typically from diurnal fluctuations of 20 m/day
and .3°C during summer conditions to synoptic scale deepening of 50 m and
cooling by 2°C in 36 days during winter conditions. These results were
verified when observations were present in this area. The capability now
exists to produce real time dynamic ocean thermal profiles in areas of
infrequent observations and also to forecast changes in ocean thermal

structure up to 72 hours from the time of an observation.
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I. INTRODUCTION AND BACKGROUND

The ocean thermal structure affects Naval Operations particularly in
the field of Antisubmarine Warfare (ASW) since acoustic sensor perform-
ance is influenced by the ocean medium. This influence leads to enhance-
ment or degradation of acoustic sensor capabilities. Therefore to
optimize mission effectiveness it is necessary to have an accurate de-
scription of the ocean medium, determine the impact of the medium on the
acoustic sensor and modify tactics/operations accordingly. Fleet
Numerical Weather Central (FNWC) is currently providing acoustic perform=-
ance products to operational forces. These products are based on an
ocean thermal structure analysis derived from Bathythermograph (Bathy)
observations and ocean thermal structure history. Methods and details
are found in the U. S. Naval Weather Service Numerical Environmental
Products Manual (1975). The major shortcoming of this analysis is that
determination of the ocean thermal structure is dependent on the fre-
quency and density of observations. Currently about 200 Bathy observa-
tions are taken each day in the Northern Hemisphere so that a major por=-
tion of the ocean thermal structure analysis is essentially a time-
averaged history. The sophistication of current and future generation
acoustic performance models dictates that oceanic conditions be deter-
mined, simulated and forecast with better precision and resolution than
FNWC currently provides, particularly in areas of infrequenty Bathy
observations.

Numerous research models exist which have parameterized the processes

that determine the ocean thermal structure. Factors such as advection,
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diffusion, heat and salinity, momentum and turbulent energy transfer,
and profile stability all interact to produce a dynamic ocean thermal
structure. The influence of these factors depends on the time and

space scales of the events/phenomena to be modeled. The one-dimensional
modeling effort began with Kraus and Turner (1967) and was followed by
Denman (1973), Pollard, Rhines and Thompson (1973), Elsberry, Fraim and
Trapnell (1976), Kim (1976) and Camp and Elsberry (1977). Each of these
groups modeled the physical processes that determine the ocean thermal
structure with varying degrees of success.

Camp and Elsberry (1977) demonstrated that, given initial ocean
thermal structure information and sequential weather reports at Ocean
Weather Ship (OWS) locations, a one-dimensional model could simulate
much of the upper ocean thermal response to atmospheric fluctuations of
heat and stress. It is the purpose of this study to determine the |
feasibility of using this dynamic ocean model to provide ocean thermal
profiles based on atmospheric forcing data derived from synoptic-scale
FNWC fields. Although the model is structured so that modification can
be made to tailor or tune specific processes to meet local conditions,
it is not the intention of this study to tune the Camp and Elsberry model
with the observed data. 1In view of the confidence limits of the
operational data it is difficult to separate data errors from the errors
attributable to parameterization of the physical processes. Neither is
the purpose to demonstrate the superiority of this particular model over
other available models. Another point to be exphasized is that this
model is not applicable to all oceanic regimes, in particular those

dominated by advective or salinity effects. Rather it is intended to
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demonstrate that dynamic models can be used to produce ocean thermal

profiles which respond to physical processes and are representative of

real world conditions. 1In determining the feasibility of coupling the |
dynamic model with the synoptic scale atmospheric forcing fields three
factors were evaluated: 1) initialization from Bathy observations

provided by FNWC; 2) atmospheric forcing function resolution and vari-

ability; and 3) model results.
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II. MODEL THEORY

The Camp (1976) model used in this study uses an energy balance
approach to determine the ocean thermal structure response to atmos-
pheric forcing. For modeling purposes the thermal structure of the
ocean is represented to a depth of NAZ by N isothermal slabs of AZ =
2.5 m thickness. Surface heat and energy fluxes are computed and the
resulting energy distributed within the water column over a time in-
terval of At = 1 hr. For each time interval the model begins by deter-
mining the magnitude and direction of the heat flux at the atmosphere/
ocean interface and calculating the temperature change in the water
column caused by the heat flux. The resulting temperature profile is

given by the following equations:

At
F Heersey ™ Y T PoCo 10T (0, e0) % (0, e%)” B (az,tn)!

At

Tyierae) = Tneey t 5oCp (98 naz,e%) ~ 95 (-(w+1)Az, t4) ]

In these equations QS represents solar radiation while QT represents
the sum of latent, sensible and back radiation at the interface during
the interval t* between t and t+At. Positive values of QS indicate
flux into the ocean while positive values of QT represent heat flux
into the atmosphere. Solar radiation is distributed below the surface
by absorbing 50% in the first meter and absorbing the remainder as
EXP(-YZ2). The extinction coefficient, Y, remained constant at .002

em ! for this study after Camp (1976).

12
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The resulting temperature is tested for positive gradients. This
test for convective instability is valid if: a) advection processes
are negligible in comparison to the processes which distribute heat
vertically from the air/ocean interface; b) density changes due to
salinity variations are negligible within the well-mixed layer of the
water column; and c) density changes due to compressibility are negli-
gible within the well-mixed layer. If instability is found, the water
column is mixed until the temperature profile becomes stable. Mixing
results in an isothermal layer from the surface to the depth of free
convection. The change in potential energy caused by free convection

(APEC) is calculated by:

NN-1 NN-1
z : =1 z : X
/GTZdz = e APE (N) = 5 P ga(Aa) e N(’I.‘N TN+1) (1)

in which 8T = change in temperature resulting from free convection,

2 . For free convection, APE
AZ fo)

D = depth of free convection and NN =
< 0.

Mixiné of stable profiles requires an expenditure of energy. Assum-
ing a steady state for the turbulent energy so there is no storages.

The quantity of energy available for turbulent mixing at the N+1 level

is governed by the following equation:

= + -
ET En Ec Ep

In this equation E_ = turbulent kinetic energy available for mixing

W
for N levels, En = mechanically generated turbulent kinetic energy for
N levels, Ec = turbulent kinetic energy generated by free convection

for N levels, and Ep = quantity of turbulent kinetic energy previously

13
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expended to mix the layer to depth N. These quantities are defined

by:
3
Em = [p W EXP (-NAZ/H]At (2)
-1
Ec = =R APEC (N) (3)
=
N-1 N-1
Z . Z 2
Ep = Apzn(:.) = DogaN(AZ) (‘1‘N - 'rml) (4)
i=k i=i

Parameters used in equations (2)-(4) are defined as follows: W = aver-
age wind over the time interval, H = scale depth of 50 meters used by
Camp (1977) and R = .15 after Gill and Turner (1976). R represents

the fraction of turbulent kinetic energy generated by free convection
that is not dissipated and thus is available for entrainment processes.

Therefore, whenever E_ > APEm for N levels there is energy available

T
for turbulent mixing to the N+l level. In cases where there is insuf-
ficient energy to mix a full layer (!E:,r < APEm) then a partial mix is

applied by the method established by Thompson (1976).

Diffusion below the well-mixed layer depth is accounted for by

2
%% = Av é—% , Where Av = .5 cmzsec 1 after Haney and Davis (1976). For
VA

each time interval diffusion is calculated before mixing and applied to
the temperature profile after mixing.

The heat content of the model temperature profile is determined at
each time step by :S:x pocp('rN - TNMAX) and is compared with the heat
content of observations. The differences in heat content at t=0 repre-
sent the heat lost by removing positive gradients from the profile used
for initialization. Further differences in heat content are indicative
of advective/local processes not parameterized by the model, or of in-
accurate surface heat fluxes.

14
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III. DATA

The data for this study were extracted from the FNWC historical
data files at six locations for the periods 8 August to 28 August 1974
and 21 NMovember to 31 December 1974. The six locations listed in
Table I correspond to OWS positions, and were chosen to provide tem=-
poral ocean data records at a fixed point. Two types of data were
extracted; the first was the atmospheric forcing functions and the
second was the Bathy observations.

The forcing functions extracted were; Solar Radiation (SOLARAD-
FNWC catalog number All), Total Heat Flux (THF-FNWC catalog number
Al8) and Marine Winds (VVWW-FNWC catalog number A27). The SOLARAD and
THF fields were computed as part of the heating package of the FNWC
Primitive Equation (PE) Model (Kaitala, 1974) while the Marine Winds
were calculated by the Marine Layer Wind Model. Detailed descriptions
of these models are found in the U. S. Naval Weather Service Numerical
Environment Products Manual (1975).

Values of the forcing functions at the latitude and longitude of

the OWS were extracted from the FNWC 63x63 grid field values by a

Bessel interpolation routine that used the nearest 16 grid points.
Four instantaneous values were available during each 24-h period, cor-
responding to synoptic times of 00, 06, 12 and 18 GMT. The 00 and 12
GMT data points are from the FNWC 00 and 12 GMT analysis while the 06
and 18 GMT data are 6~h forecasts from 00 and 12 GMT respectively.

The 6~hourly synoptic data then had to be interpolated to the l-h

time step of the model. For the Marine Winds a curve generated by a

1S

s ok s
BR3P 0 R S PPt

4 i
- i i . - a0




i

AT L0

cubic spline routine was passed through the synoptic values and inter-

i mediate hourly values were determined. This is probably realistic con-
sidering the horizontal scale of the systems represented on the 63x63
grid, which can only evolve rather slowly. However, the 6-hourly sclar
radiation values were inadequate to define the diurnal cycle. It was
decided to define values at the hour of sunrise/sunset (SOLARAD=0) and
the expected peak value before curve fitting. The maximum solar radia-

. tion was assumed to occur at local noon and was determined by applying

Lamber's Law:

In c, Sy Sina. ~ Simo
: | ;e v 2
H H
where sina = sin¢sind + cosdcosScosh . In these equations, ¢ = lati-
tude, § = declination, I = intensity, h = local hour, N = noon, H =
‘ : hour and g = moisture mass absorber (assumed constant at .7). The under-
lying assumption is that the SOLARAD value calculated in the PE model

incorporated moisture and cloud cover effects and would change slowly

in time. Thus the ratio should remain nearly constant. A value for

local noon was set by multiplying the closest synoptic value by the
ratio determined by Lambert's Law. Figure 1 compares the solar radia-
tion values before and after this technique has been applied for OWS
PAPA during December. Note that non-zero insolation values occur at
only one synoptic time (00 GMT). A cubic spline curve through the data
points at sunrise, the synoptic time, local noon and sunset was used to
determine hourly values. A value for sensible, latent and back radia-
tion (SLB) was calculated at the synoptic times by subtracting the

unadjusted SOLARAD from the THF fields. The SLB is a sum of all heat

l6
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exchange processes other than solar radiation across the atmosphere/

ocean interface. A cubic spline curve through the SLB radiation values
was used to estimate hourly values. Final hourly values for total heat
flux were then calculated by adding the adjusted solar radiation to
; . SLB.

Bathy observations were obtained from the FNWC historical files.
The 4D Format File consists of bathys received at FNWC by message and
represents the Bathys used in their operational analysis. Bathy obser-
vations selected for study were normally required to be within a 100 NM
(185 km) radius of the OWS position during the period studied. However,
the radius of selection for OWS H was limited to 60 NM (11l km) due to
the high spatial variability caused by its proximity to the Gulf
Stream. Temperature profiles used to initialize the model were
generated by linearly interpolating the observations to 2.5 m intervals
and then converting to an average temperature for each 2.5 m slab.
* Positive temperature gradients encountered were set to isothermal for

initialization purposes.

R e T
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IV. DISCUSSION OF RESULTS

Before interpreting the model results it is first necessary to

evaluate the Bathy data used for initialization. (See Table I for the
number of Bathys available in each period.) The quality of the Bathys
available for analyses/study is dependent on several factors; the probe
and recording equipment accuracy; the operator's precision in reading
the depth versus temperature profile and encoding it into a standard
message format; the number of errors introduced in transmission circuits;

and errors introduced by data processing in preparing the observations

for analysis or storage for postanalysis recall. In addition to these

errors it is necessary to determine the variability of the Bathy obser-

vations within the 100 nm radius of the OWS. The variability of an area

is a function of the spatial homogeneity and temporal continuity of the
surrounding water mass. Temporal variability above the seasonal thermo-

cline is attributable to atmosphere/ocean interchanges of heat and

momentum fluxes plus horizontal advection while below the seasonal

thermocline variations are primarily due to advection processes. The
variability of each area was found by overplotting all the observations
occurring in the period studied. Figure 2 depicts a Bathy overplot

for OWS PAPA from 21 November to 31 December 1974. 1In this case the
temperature variance below the seasonal thermocline is the same magni-
tude as for the surface temperature, which suggests that significant
advective affects are present below the seasonal thermocline. Also
noted are several observations that contain unrealistic gradients.

Spatial inhomogeneities are not significant since all observations were

18
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within 10 nm of the OWS location cited in Table I. The variability below
the thermocline decreased for the period 8 August to 28 August at OWS
PAPA suggesting a decrease in advective activity. This suggests that a
means of parameterizing the magnitude of advection in an area could be
determined by calculating the temporal change in heat content below the
seasonal thermocline. As expected the largest variability of Bathy
observations occurred at OWS HOTEL, ranging from 5°C at the surface to
10°C below the seasonal thermocline. The majority of this variability
arises from the spatial inhomogeneity associated with the Gulf Stream
and its meandering flow. Unrepresentative profiles would be generated
by the model in areas where temporal variability below the seasonal
thermocline exists since the model simulates changes above the seasonal
thermocline. Spatial inhomogeneities can be controlled by varying the
area from which Bathys are considered for initialization and verifica-
tion. Thus in ocean frontal regions such as the Gulf Stream the radius
of the Bathy search should be reduced.

The model results are separated into three cases for discussion; for
each of the cases one example was chosen from the six OWS locations
studied. The first case has a net heating of the water column, the
second shows a balance between daily sclar heating and cooling by SLB

radiation and the third has net cooling under winter conditions.

A. HEATING CYCLE

An example at OWS PAPA was chosen to illustrate model performance
in cases with net heating, since three-hourly Bathys were available for
most of the period between 03 GMT 9 August and 03 GMT 28 August 1974.

Total surface heat flux for the period is shown in Figure 3. Positive

19
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values represent heat lost by the water column. 1In this case daily
solar radiation dominates over the SLB radiation, which remains fairly
constant over the period. As a result, net heating of the well mixed
layer should result. The wind stress (Figure 4) during the period was
very small except for 72 hours of slightly larger values centered at

day 6 and an 84-hour period centered at day 16. Note that these atmos-
pheric forcing functions resolve and show variations at both the diurnal
and synoptic time scales.

The response of the model well-mixed layer temperature (MLT) to the
atmospheric forcing is depicted in Figure 5 and shows clearly diurnal
fluctuations as well as a net increase in temperature over the 19 day
period. Diurnal changes in the model MLT (equivalent to sea surface tem-
perature - SST) averages about 0.5°C with a maximum of .75°C at day 9,
while the observations show more erratic diurnal changes for example on
day 1. The fluctuations of .5°C and .8°C at 06 GMT and 18 GMT appear
to be unrealistic. One likely source of error in this data is the lack
of precision in encoding the Bathy observation from the sounding trace
by different observers. A further comparison can be made by looking at
the FNWC SST analysis values. The FNWC SST shows less amplitude than the
data or model values on a diurnal time scale. Plotted values correspond
to the data as would be expected since the analysis contains these ob-
servations. However, during days 12 and 14 the FNWC SST analysis
differs from the observations by more than 0.5°C. Figure 6 shows the
slab depth (depth of isothermal layer to nearest 2.5 m increment), model
mixedlayer depth (MLD), and observed MLD. MLD for this study was defined
as the depth at which the temperature is .2°C less than the isothermal

temperature. The distance between the two values is an inverse measure

20




of the thermal gradient below the well mixed layer. Diurnal changes in
the model MLD are as great as 22 meters (day 1), while the largest MLD
changes in the observations are approximately 20 meters during days 8,
15 and 17. Also noted is a high frequency data oscillation that is non
periiodic and of varying amplitude throughout the 19 day period. Ex-
amples are found in day 1 and 7. Two factors contribute to the rapid
fluctuations in the data MLD. Errors in reading and encoding the Bathy
] sounding trace are certainly reflected in this data since small errors
in reading the temperature can lead to large errors in the MLD due to its
definition of the depth .2°C cooler than the isothermal or sea surface
temperature. A second error is a result of the FNWC 4D Format used as
3 a source of historical data. Unfortunately, this format records depth
information to only the nearest tens of feet. When the Bathy data MLD
for each 24-h period are averaged the synoptic time scale trends are
more readily apparent.

Between days 6 and 15 the model-predicted MLD is too shallow. It
is significant that the model results show better agreement whenever the
wind induced turbulence mixes to a greater depth and redistributes the
heat accumulated in the upper layers. The increase in stress at day 15
provides an example of this point. This is indicative of the need for
tuning the model for light wind conditions. Another important point is
that the selection of the initialization profile can make substantial
differences in the model performance. The model was run at OWS PAPA for
72 hours commencing at 00 GMT 15 August 1974 (corresponding to day 6 in
Figure 6) and produced the slab depth and MLD shown in Figure 7. Model
and data show little correlation. However, when the model is initialized
three hours later at 03 GMT the correlation of the data with the model

results improves as shown in Figure 8.
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When the model was run at the other five OWS locations similar model
results occurred, with the MLD and MLT fluctuating on a diurnal scale
as well as a synoptic scale. Verification of the results proved incon-

clusive due to the sparcity of data.

B. DIURNAL CASE

This second case is presented to demonstrate the affects of the
diurnal MLD migration when the net heat flux is nearly zero. A case at
OWS INDIA for the period 08 GMT 9 August to 08 GMT 28 August 1974 was
chosen. The total heat content over the period is nearly constant with
the daytime solar heating being balanced by the back radiation, sensible
and latent heat (Figure 9). The wind stress (Figure 10) contains
repeated cycles of light stress followed by moderate stress of 48 to 72
hr duration. This period is probably associated with the passage of
atmospheric storms. The amplitudes of the diurnal variations of the
slab depth and MLD (Figure 11) were nearly constant during the first
4.5 days. Then the slab depth and MLD increase in response to the in-
crease in wind stress. As the wind decreases in day 6 the slab depth
again decreases. When moderate stress commences at day 9 and lasts until
day 12 the slab depth and MLD are again forced deeper. With a period

of weak stress from day 12 to 15 the MLD and slab depth again decrease.

During the last three days an atmospheric storm is responsible for the
moderate stress appearing in this period. As a result of the stomm,
turbulent mixing forces the MLD and slab depth deeper causing a cooling
which is also shown in the profile of Figure 12.

Once again the forcing functions have shown sufficient resolution
to produce diurnal and synoptic time scale events. The ability to re-

solve and simulate these events has a significant impact on the capability
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to predict acoustic sensor performance. In a qualitative sense the
"afternoon affect" has long been known to operators of acoustic sensors.
The model, coupled with the atmospheric forcing functions, has demon-
strated the ability to simulate fluctuations on a diurnal time scale
and thus the capability exists for providing realistic predictions of

acoustic sensor performance as a function of the time of day.

C. COOLING CYCLE

An example of model response at OWS PAPA during a period of net
cooling was also studied. Beginning at 03 GMT 23 November net upward
heat flux over a 36-day period is illustrated by Figure 13. This
figure shows fluctuations in SLB up to 40 gcal/cmz/hour in 24 hours,
and a decrease in magnitude of the daily insolation values from the
August period. Net cooling occurs during the period as the upward heat
flux is larger than downward heat flux. Maximum upward heat flux
occurs on day 28. During the same period the surface wind stress shows
large variations (Figure 14). Of particular note are the forecast
winds at 06 GMT and 18 GMT, which are consistently smaller in magnitude
than the 00 GMT and 12 GMT observations, thus giving a sawtooth appear-
ance to the stress field. Small errors in wind velocity are amplified
as the mechanical generation of turbulence is a function of the
velocity to the third power.

The overall affect of this atmmspheric forcing is to deepen the MLD
(Figure 15) and decrease the temperature of the well-mixed layer
(Figure 17). The model MLD is initialized at 84 meters and deepens at
a nearly constant rate to 108 meters after 36 days. The observed MLD
values are consistently 12 meters shallower than the model for the first

12 days. Observed MLD values are consistent as they reflect the sharp
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negative thermal gradients below the well-mixed layer and a positive
gradient associated with the seasonal halocline of the North Pacific.
Figure 21 clearly shows that these gradients are persistent throughout
the period. When the model is initialized six hours later at 09 GMT
on 23 November 1974, the agreement between the data and model improves,
as shown in Figure 16. As in the heating case, this emphasizes the
sensitivity of the model to the initialization profiles. Also demon-
strated again is the tendency for the model results to improve when
wind induced turbulence (occurring at day 15 of Figures 15 and 16)
mechanically mixes to the level of the observed data and decreases the
temperature of the overlying water column.

During the 36-day period the model MLT showed a net decrease of
1.5°C. Figure 16 illustrates this decrease occurred at a nearly con-
stant rate. The agreement between the data and model MLT is fairly
good as the data shows the same l.5°c decrease in temperature. Of
particular interest is the fluctuations in FNWC SST analysis values
(Figure 17). Beginning at day 1 the FNWC SST values begin sinusoidal
fluctuations which agree with observations when data is present (one
exception occurs at day 9 when observations and FNWC SST disgree by
.8°C) but deviate from the model up to + .8% at days 5 and 8 when
observations are absent. 1In this case the model provides a more con-
sistent SST evolution than the FNWC SST analysis when no observations
are present. Figure 18 demonstrates the ability to simulate the
response of the upper ocean thermal structure to a net change in heat
content of the well-mixed layer. Below the permanent halocline the

initialization procedure used has wiped out the lower thermal structure.
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These results are similar to the findings at the five other OWS.
During periods of net upward heat flux the MLD increases and the MLT
decreases. Diurnal fluctuations do not appear due to the decrease in
solar radiation, increase in SLB during the winter season and the
larger input of mechanical mixing due to increased stress. During
periods of light stress the slab depth decreases as expected. Again
due to the sparcity of data for verification, evaluation of the model
simulations at the other stations was inconclusive. Another point of
encouragement is that similar model results were obtained by Camp and
Elsberry (1977) from observed atmospheric forcing data. This further
demonstrates that the synoptic-scale forcing functions used in this

study contain sufficient resolution for driving this model.




V. SUMMARY AND CONCLUSIONS

The purpose of this study was to determine the feasibility of using
synoptic scale atmospheric data to produce ocean thermal structure re-
sponses. In the cases studied the atmospheric forcing functions derived
from synoptic scale fields contained diurnal and synoptic scale fluctua-
tions. The model demonstrated qualitatively the ability to determine
the response of the ocean thermal structure to fluctuating atmospheric
forcing on these time scales. Before any quantitative measure of the
model performance is made, the Bathy profiles used to initialize the
model and verify its results need to be of higher quality. One possi-
bility is to use the original recording trace of each Bathy observation
for digitization for model use. Another possibility is high resolution
data collected on scientific cruises such as the Mixed-Layer Experiment
(MILE) at OWS PAPA. The model was run for a maximum of 864 hours.

This limit was determined solely by the length of continuous historical
data available for study. When the model is driven by these forcing
functions the ocean thermal structure response contains diurnal and
synoptic time scales. This response matched the fluctuations in observed
data. Thus in areas of low Bathy coverage a reasonable dynamic ocean
thermal structure could be produced for long periods of time. One
implication is that an ocean thermal structure forecast could be produced
up to 72 hours from the time of a Bathy observation from 72-hr atmos-

pheric forecasts.
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TABLE I.

OWS POSITIONS, Pl is number of Bathys in
area from 8 August to 28 August 1974 and
P2 is number of Bathys in the area from
21 November to 30 December 1974.

OwWs LAT. LONG. Pl P2
H 38°N 71°W 53 70
I 37°N 20°W 33 5
M 66°N 2°E 33 14
P 50°N 145°w 195 104
T 29°N 135°E 4 2
N 30°N 140°w 18 14
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