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FOREWORD

This report was prepared by Raytheon Company, Research Division,
Waltham, Mass., under Contract No. N00014-76-C-0635, entitled, "High
Durability Missile Domes.'" This work is administered under the direction
of The Office of Naval Research, Material Sciences Division, Arlington,
Virginia. Dr. Arthur M. Diness is the project scientist.

The work was carried out at Raytheon Research Division, Advanced
Materials Department. Dr. J. Pappis is the department manager. Dr. Richard
Gentilman is the principal investigator. Experimental work was performed
by Mr. Edward Maguire.

This is the Interim Technical Report for Contract N00014-76-C-0635.
It covers the period 1 April 1976 to 30 September 1977. The report was given
the Raytheon internal number S-2284.
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1.0 INTRODUCTION AND SUMMARY

The next generation of high speed infrared-guided air-to-air
missiles will require a new IR dome material with increased mechanical
ruggedness without sacrificing optical quality in the 3 to 5 um band. Mag-
nesium fluoride, the current Sidewinder dome material, does not possess
the resistance to thermal stresses (caused by aerodynamic heating during
powered flight) or the resistance tc; rain erosion (during long-term captive
flight) which will be required for future missiles.

This requirement has led to the investigation of several high
durability polycrystalline oxides and of fabrication processes which could
produce hemispherical dome shapes. Specifically, magnesium oxide and
magnesium aluminum oxide (spinel) have emerged as the most promising
candidate materials. Chemical vapor deposition (CVD) and fusion casting
techniques have been developed to produce transparent polycrystalline
samples of these oxides.

Materials and fabrication processes developed must be cost
effective. Techniques which produce dome-shaped blanks are mandatory
in order to minimize the high costs for cutting and grinding these durable
materials. Even given a dome shaped blank, however, it is anticipated
that finishing and polishing will represent the major portion of the cost of
dome production.

A successful CVD process for magnesium oxide was developed
previously on internal research funding. Both optical quality flat plates
and dome shapes were deposited. However, one drawback of MgO optical
components has been the gradual degradation of polished surfaces exposed
to moisture in the atmosphere. A fusion casting process for fabricating
transparent spinel was also explored initially on internal funding. Spinel,
which is somewhat more durable than magnesium oxide and is not affected
by moisture, has become the leading candidate material for future air-to-
air missile domes.




Reported herein are the results of work funded by the Office of
Naval Research (Contract N00014-76-C-0635) in three specific areas
related to the fabrication of high durability oxide domes.

(1) It has been successfully demonstrated that magnesium oxide
can be protected from moisture by any of several sputtered coatings which
are also durable.

(2) Transparent and crack-free flat plate spinel samples, as
large and 91 mm dia by 6. 6 mm thick, have been fabricated by the fusion
casting technique.

(3) Alumina-rich spinel beams, both single crystal and poly-
crystalline, have been deformed by three-point loading at temperatures of
1650° -1820° C. This suggests that hot forging techniques can be used to
fabricate spinel dome shapes.

e e R — .




2.0 BACKGROUND

2.1 The Requirement

Heat seeking missiles designed for air-to-air engagements face
severe operational hazards that either reduce their effectiveness or raise
the overall system's cost. They are carried unprotected in exposed posi-
tions on aircraft. The infrared transparent dome can be broken during
routine handling, pitted by sand and debris during takeoff and landing, or
eroded by water droplet impact in flight through rain squalls. These
problems are becoming increasingly severe as airspeeds are increased
and as the introduction of terrain avoidance radar allows supersonic flight
at very low altitudes.

Impact damage that leaves the dome intact but roughens the
originally polished outer surface will degrade seeker performance in two
ways. First, the minimum resolvable target size will be increased. In
the current operational air-to-air missile this factor is not critical, but
in the designe under consideration for the next generation missiles, seeker
resolution will be severely affected by dome erosion. Second, roughening
of the dome increases the amount of sunlight scattered into the seeker
optice, raising the noise level in the infrared detection system and thus
limiting the ability to detect targets. While these effects have not been
well characterized, it is of considerable concern in current development
of seekers designed for head-on approach.

Finally, immediately after missile launch, high tensile stresses
are generated in the dome due to transient nonuniform aerodynamic heating
of the dome. The severity of these stresses depends on the nature of the
dome material (its thermal conductivity, heat capacity, and thermal expan-
sion coefficient) and on the specific aerodynamic flight regime. Figure 1
shows the stresses generated in a dome during missile flight. These
results are calculated based on a next generation missile launch at Mach 1.5
with a powered flight lasting 2. 0 sec. It is seen that significant tensile
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stresses develop at the inside dome surface during the missile s acceleration,
reaching a maximum of approximately 12, 000 psi just atcer the end of the
powered flighte However, the fracture strength of magnesium fluoride is

only 10, 000 psi at 450° C, the approximate average temperature of the dome
during flight at the time of the maximum thermally induced stress.

Early forms of infrared missiles operated at short infrared wave-
lengths where fused silica domes could be used. This material has a very
high resistance to thermal shock but suffers from rain erosion. Magnesium
fluoride domes have provided higher strength, greater resistance to rain
erosion, transparency in the 3 to 5 um atmospheric window, and the ability
to withstand the thermal shock of current missiles in subsonic launch.
However, magnesium fluoride domes are predicted to fail in either super-
sonic launch of current missiles or subsonic launch of the next generation

designs.

2.2 Candidate Materials

Table 1 lists several properties of infrared transmitting materials
which are pertinent to missile dome applications. The materials are
rar ked according to their thermal shock resistance figure -of -merit
(=0 fK/a E) at 450° C, the approximate average temperature of the dome
at the time of maximum thermally induced stress. It is seen that magnesium
fluoride has reasonable thermal shock resistance at room temperature, but
it is relatively poor at the higher temperatures to which it will be subjected
during high-speed flight.

The need for a new, more durable missile dome is clear. New
missile designs are being compromised by the lack of a dome material with
the required strength, hardness, and thermal conductivity that can be pro-
duced at an acceptable cost. However, there are gseveral highly durable
crystalline oxide materials (Table 1) that are transparent at ultraviolet,
visible, and infrared wavelengths out to 5 um that will serve the optical
needs of future seeker designs. Specifically, aluminum oxide, magnesium
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oxide, and spinel are attractive candidate materials. However, it has been
difficult to fabricate dense forms of these materials by conventional hot
pressing or sinterings The current state-of-the-art of sintered forms of
alumina and spinel still have residual porosity that affects both target defi-
nition and sun scatter to an unacceptable degree.

Over the past several years, two alternate techniques have been
developed for the production of high transparency infrared materials,
namely chemical vapor deposition (CVD) and fusion casting. Each has been
very successful for specific materials. The CVD technique has been used
to produce polycrystalline forms of zinc selenide, zinc sulfide and magnesium
oxide that represent a new state-of-the-art for these materials. Similarly,
fusion casting has provided a low-cost form of calcium and strontium
fluorides whose optical properties are equal to, or better than, the corre-

sponding single crystal forms.

Both the fabrication techniques themselves and the materials
under consideration are chosen to provide low cost optical components.
For the present Mng domes, optical fabrication is not a major contribu-
tion to cost. For high durability oxide domes, however, grinding and
polishing takes a much greater time and will be an important cost determi-
nant. Replacement of present domes by a more durable material, however,
could provide a very significant reduction in breakage rate and in the need
for highly expensive seeker repair or replacement. It is believed, therefore,
that a virtually indestructable dome would be cost effective at even several
times the cost of a present dome.

2.3 Previous Fabrication Studies

Both aluminum oxide and magnesium oxide were fabricated pre-
viously by chemical vapor deposition. Aluminum oxide was deposited by
reacting gaseous aluminum chloride with water vapor at 1100° -1300° C
and pressures less than 5 torr according to the reaction:

2A1Cl3 + 3H20 - A1203 (solid) + 6HC1 .
7




The A1C13 vapors are produced in-line by passing chlorine gas over lumps
of solid aluminum held at a temperature of 200° -500° C.,

The aluminum chloride is volatile and is transported to the deposi-
tion zone by forced convection where it mixes and reacts with the H20 to
deposit A1203. Friable alumina was used as the deposition mandrel. Both
flat plates and dome shapes were deposited (Figure 2).

The aluminum oxide produced in this previous work is essentially
completely dense but contains some intergranular porosity which scatters
light and degrades its optical resolution. However, even if the: last traces
of porosity were eliminated, aluminum oxide is not optically isotropic and
therefore, in polycrystalline form, will not be suitable for high resolution
optical components. Thus, aluminum oxide domes will have to be fabricated

of single crystal sapphire which is commercially available, but costly.

Magnesium oxide of excellent optical quality was fabricated in
both flat plates and dome shapes (Figure 3). The material is deposited by
reacting gaseous magnesium chloride with carbon dioxide and hydrogen
at high temperature and reduced pressure according to the reaction:

MgCl, + CO, + H, = MgO + CO + 2HCl . (1)

The magnesium oxide produced by this reaction is fully dense and, when
polished, is water clear with uncoated transmittance that rises to ~ 89
percent at 5 um (Figure 4).

The CVD process used (Figure 5) involves two chemical steps.
First, magnesium chloride is produced by flowing chlorine and carbon
monoxide through a bed of MgO chips at 1300° -1400° C and 5-50 mm Hg
pressure:

Cl, + CO + MgO = MgCl, + CO, (2)
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Figure 2.

3-Inch Diameter CVD Alumina Dome.
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Figure 5. Schematic of Magnesia CVD Process.

12

|
é




Under these conditions the magnesium chloride formed is volatile and its
generation rate is directly related to the input Cl2 and CO flow rates.

In the deposition zone, the MgCl2 and CO2 mix with hydrogen and
additional C02. The H2 causes the gases to become supersatured and the
MgO is deposited. The thermodynamic driving force for reaction (1) is
approximately -20 Kcal/ mole. This is sufficient to promote heterogeneous
deposition of dense material on the mandrel surfaces, but not so great as to
cause homogeneous nucleation of powder in the gas phase.

The magnesium oxide CVD process was demonstrated to the extent
that hemispherical shapes could be produced, offering a significantly more
durable IR dome than the current magnesium fluoride. However, further
development of the CVD MgO technology was suspended for two reasons.
First, the problem of the degradation of polished magnesia surfaces by
moisture needed to be addressed. Secondly, the emphasis on fabrication
studies was shifted to spinel, a more durable material and one not affected
by moisture.,

The vapor deposition of spinel was also investigated previously.
However, the process for this three-component material was found to be
significantly more complex than either the alumina or magnesia process.
Some powdery spinel deposits were produced, but no free-standing dense
deposits were obtained. Often, aluminum oxide and/ or magnesium oxide
were also obtained while attempting to deposit spinel.

Difficulties with the CVD of spinel led to the initial investigation
of the fusion casting technique. This approach sacrifices the relative
ease of fabricating arbitrary shapes such as domes available via CVD.,
Hot forging of fusion cast flat plates into dome shapes may be necessary.
On the other hand, problems with composition are essentially eliminated
with the casting process.

13




3.0 MOISTURE PROTECTIVE COATINGS OF MAGNESIUM OXIDE

3.1 Application of Coatings

To protect magnesium oxide from degradation in the atmosphere,
coatings were deposited using a Mathis* Mark III r. f. sputtering system.
It consisted of a one KW, 13,56 MHz generator coupled to the work
chamber through a matching network unit. The work chamber was a 12-inch
diameter by 12 inch glass walled unit atop a Welch** 3102 -D turbomolecular
pumping unit. Water-cooled cathode targets were affixed to the top of the
chamber. Substrates to be coated were positioned parallel to and directly
beneath the target on an adjustable height work surface. The sputtering
system is diagrammed in Figure 6.

Prior to sputtering, substrates were cleaned in an ultrasonic bath
using trichloroethylene followed by a methanol rinse. In the vacuum
chamber, they rested upon a copper plate whose height was adjusted to
give the desired spacing between the target face and the substrate surface,
generally one to six cm. The chamber was then evacuated to a pressure
of less than 5 X 10'5 torr before introducing the high purity working gases
such as oxygen, nitrogen or argon. The gas flow was regulated through a
metering valve to provide chamber pressures of 5 to 50 millitorr. Pressure
in the chamber was determined by a high sensitivity Pirani gauge.# A glow
discharge was established and the voltage adjusted to give the desired power
density at the target. The duration of runs was ordinarily 24 hrs or less.
At the conclusion of a run, the discharge was turned off and the system
backfilled to atmospheric pressure to enable the coated pieces to be
removed from the chamber,

*The R.D. Mathis Co., Long Beach, CA.

** I'he Welch Scientific Co., Skokie, IL.
#

Consolidated Vacuum Corp., Rochester, NY.




nit

PBN-77-485

Matching —— ToR.F.

Cathode - Generator
! L oas
| Target |
Substrate — <—Pyrex Cylinder
ﬁ:
G : Pirani
= - 3 Vacuum
Supply 1 Gauge
Turbomolecular
Pumping Unit

Figure 6. Schematic of r.f. Sputtering System
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The targets employed were flat plates of dense polycrystalline

materials bonded to an aluminum backing plate by a thermally conductive

electrically insulating epoxy.

materials.

Material

Mullite
(3A1203‘ 2Si02)

Forsterite
(2MgOr SiOZ)

Steatite
(MgO* Si02)

Beryllia (BeO)

Spinel
(MgO- A1203)

Silicon (Si)

TABLE 2

TARGET MATERIALS

X-Ray

Density

(g/ cc)
3.26

3.22

3.20

3.01

3.58

3.18
(SigN,)

Size

3" dia x3/8"
2-5/8" dia x 1/ 4"

3" dia x 1/ 4"

2-3/8" diax1/8"

2” xzn X 1/8"
6" dia x 1/ 4"

2-5/8" dia x3/8"

6'" dia x 3/16"

Table 2 includes data on these source

Source

Haselden Co.
McDanel Refr. Porc. Co.

Haselden Co.

3M Co., Code 645

Brush-Wellman

Consolidated Ceramics
& Metallizing Corp.

Raytheon (fusion cast)

Materials Res. Corp.

Data on the sputtering runs are given in Table 3. Coating thickness

was determined by attributing any weight increase during deposition to the

deposit and calculating the appropriate thickness for a fully dense coating
X-ray densities given in Table 2 were used

over the exposed surface area.

16
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in these calculations. Infrared reflectance spectra of the coatings were
measured on a Perkin-Elmer, Model 457 spectrophotometer fitted with a
specular reflectance accessory using an aluminum mirror as the 100 percent

standard.

In general, optically smooth and transparent coatings were achieved
using r.f. sputtering. Spinel and beryllia coatings were crystalline as
determined by X-ray diffraction, while the coatings of the silicates and
silicon nitride were amorphous. Adherence was a problem with spinel and
less frequently for other coating types, with the exception of forsterite and
steatite which showed excellent adhesion in all cases. In general, it was
found that the best adhesion was achieved at the lowest pressure which would
sustain the plasma discharge. The optimum gap between target and sub-
strate was determined to be the minimum possible provided the substrate
was not within the plasma dark space which occurs directly below the target.

3.2 Coating Tests

A number of polished magnesia samples, both coated and uncoated,
were tested in a controlled humidity chamber for 72-78 hrs at 65° C and
100% relative humidity. These conditions caused the unprotected surfaces
to become clouded and translucent. All coated surfaces remained clear.
Figure 7 shows two MgO samples, one coated on both sides with sputtered
silicon nitride (right) and the other uncoated, which were tested side by
side in the humidity chamber.

Based on visual inspection and by comparison of infrared reflectance
spectra of the coatings taken before and after the test, there was no indica-
tion of deterioration of any of the coatings.

As a further test of the coating strength and adherence, ten 0.5 by
1.5 by 3/ 16 in. samples of Avco MgO, weighing approximately 8.1 g, were
sent to Wright-Patterson AFB for rain erosion testing. Two of these
samples were uncoated controls, three were coated with steatite, and five

18
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Figure 7. Polished MgO Windows SubJected to the Same
Humidity Chamber Test.
Left: Uncoated, Right: Silicon Nltrlde Coated
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were coated with BeO, All were run through a 1.0 in. per hr rainfield for
20 minutes at 256 m/ sec (575 mph) with a 90 degree impingement angle.

The surfaces of the uncoated samples showed some degradation,
although not severe. All of the coated surfaces were intact with no changes
in transparency. Infrared reflectance spectra were identical before and
after this test. Data, including weight changes, are shown in Table 4. Two
samples were chipped slightly during shipment or when clamped into the
test fixture.

Discounting the two samples which were slightly chipped, the maxi-
mum weight loss for the six coated samples was 1. 58 mg. The two uncoated
samples showed some moderate surface degradation and had weight losses
of 12,8 and 14.9 mg. It is not known whether surface degradation of un-
coated MgO was due to the effects of liquid impact or the moisture inherent
to the testing, or both. While it has not been proven conclusively that the
thin sputtered coatings give improved rain erosion resistance for MgO, it
is clear that the coatings remain intact under the rainfield conditions to

which they were exposed.

As an additional test of coating integrity, a representative selec-
tion of the samples were subjected to the humidity chamber after rain
erosion testing. The coated front surfaces were again unaffected while

the uncoated bottom and side surfaces were significantly degraded.
In summary, it has been demonstrated that magnesium oxide optical

surfaces can be protected from moisture by sputtered optical quality coatings
which have also been shown to be durable.
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Samgle Code

24630-37-6
-7
-8
-9
-10

24630-39-1
-2
-3

24630-59-9
-10

TABLE 4

RAIN EROSION TEST DATA

Coating

BeO

BeO

BeO

BeO

BeO
Steatite
Steatite
Steatite
Uncoated
Uncoated

Coating
Thickness
(um)

1. 69
1.38
1. 27
1.32
1. 63
2.95
2. 86
3.18

Weight
Change

. mg)
-0. 88
-110.0
+0.08
-0. 64
-0. 22
-12.38
-0.12
-1.58
-12.80
-14.92

Comments

Edge chipped

Edge chipped slightly




4.0 FUSION CASTING OF SPINEL

4.1 Process Description

The starting charge is a mixture of Linde C aluminum oxide (Union
Carbide) and reagent grade MgO (Fisher) of a predetermined molar ratio.
The powders are weighed, blended, and then isostatically pressed. For
the early runs, the charge was prefired in air to form the spinel phase;

however, this step has since been found to be unnecessary.

The pressed powder charge is placed in a thin-wall mold made
from 0. 13 mm thick molybdenum foile Molds measuring 9 to 15 cm dia.
by approximately 3 cm high have been used. The material is heated to
above its melting point of approximately 2100° C in a vertical graphite
resistance furnace with a cylindrical element. After holding the melt at
temperature for 2 to 4 hours, it is solidified in place. Due tc the large
volume contraction upon solidification (approximately 14 percent), it is
necessary to solidify unidirectionally from the bottom to the top of the mold.
If this is not done, the solidification will be initiated at random growth

sites and result in macroscopic voids between individual grains.

To effect unidirectional solidification, a vertical temperature
gradient is maintained within the melt while the furnace temperature is
slowly decreased. The gradient is established by a heat sink situated below
the mold. The fusion casting process is shown schematically in Figure 8.

The high temperatures required for casting of spinel do not permit
the use of thermocouples to monitor or control the process temperature.
Instead, temperature is measured with an optical pyrometer, and the slow
cooldown is achieved by controlling the furnace power with an automatic
clock drive.

Figure 9 shows the phase diagram for the MgO-A1203 system.
Although the positions of the solidus and liquidus lines have not been
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Figure 9. Phase Diagram for the System MgO-Alzos.
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determined unambiguously, it is seen that the spinel structure can exist

over a wide range of compositions at elevated temperatures.

The initial casting studies were made with stoichiometric starting
charges, i.e., 50 mole percent A1203 and 50 mole percent MgO, or 1:1
spinel. This composition was originally chosen to avoid potential problems
of second phase precipitation and compositional gradients which might be
expected with a non-stoichiometric melt. However, even though stoichio-
metric starting charges were used, a few percent MgO invariably vaporizes
at temperature making the castings slightly alumina-rich. Subsequently,
alumina-rich compositions were investigated. A starting A1203:Mg0 molar

ratio of 2:1 has been used for most of the recent castings.

At the high temperatures necessary for melting spinel, certain
undesirable reactions occur between molybdenum and the melt and the
graphite furnace parts. Molybdenum is oxidized by the few percent of
magnesium oxide which invariably vaporizes from the spinel melt. Molyb-
denum oxides are formed which dissolve in the melt and leave the resulting
casting somewhat darkened. This discoloration can be reduced by post-
annealing in air at 1600° C; however, the annealed material is usually not
completely water clear. The MgO vaporization rate has been reduced but
not eliminated by casting in helium at atmospheric pressure. Also, pre-
cleaning of the molybdenum molds with a household bleach has been found
to minimize the discoloration.

The reaction between molybdenum and graphite has been minimized
by using tantalum foil as a spacer. However, a eutectic exists in the molyb-
denum-carbon system at 2200° C. This has been found to be the upper tem-
perature limit for using molybdenum molds in graphite furnaces.

4,2 Results to Date

The best castings of 1:1 spinel contained regions of excellent optical
quality material bounded by solidification voids. The largest water-clear
sample measured ~2 X 2 X 0.3 cm.
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Two major problems which plagued the casting of nominally stoichio-
metric spinel were cracking during cooldown and the existence of bubble regions
at the bottom of the castings. This latter problem is due to incomplete
melting of the spinel charge at the bottom of the mold because of its proximity
to the heat sink. Reducing the amount of heat extracted by the heat sirk
allows complete melting, but solidification then occurs randomly instead of

unidirectionally. The furnace temperature cannot be increased above ~ 2200° C
due to the molybdenum-graphite eutectic as discussed previously.

The use of 2:1 alumina-rich starting charges has greatly reduced
the cracking and residual bubble problems. The slightly lower melting point
of alumina-rich spinel (see Figure 9) appears to allow complete melting
within the temperature limitations of the present setup. Cracking during
cooldown has also been reduced because alumina-rich spinel compositions
are ductile at high temperatures. Thus, the stresses created during cool-

! down can be relieved by deformation rather than by fracture.

Several defect-free plates of alumina-rich material have been produced.
These are totally transparent and water-clear with excellent optical imaging
quality. Figure 10 shows one such sample with overall dimensions of §7 X
54 X 3.7 mm. Another sample, measuring 55 mm dia X 3.0 mm thick, is
| shown in Figure 11. The largest crack-free casting produced to date is
91 mm dia X 6.6 mm thick.

Due to directional solidification, the castings have a columnar grain
structure with individual grains running from the bottom to the top of the !
ingot. Typically, grains are 2-5 mm across. The grain structure of the
polished disc in Figure 11 is shown using crossed-polarizers in Figure 12.

The optical transmittance of alumina-rich spinel is shown in
Figure 13. Also shown is the spectrum of Czochralski single crystal stoichio-
metric spinel (Union Carbide). The spectra are plotted uncorrected for
fresnel reflection losses. Both materials show near intrinsic behavior with
| the electronic absorption edge near 0.3 um in the ultraviolet and the
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Figure 12.  Fusion Cast Spinel Disc Photographed Between
Crossed Polarizers to Reveal the Grain Structure
(Same sample as shown in Figure 11.)
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Figure 13. Optical Transmission Spectra of Fusion Cast and Single
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multiphonon absorption near 5 um in the infrared. The only significant
absorption band occurs at approximately 3 um and is likely due to "OH"
impurities. This absorption is much less pronounced in the fusion cast
spinel than in the single crystal material.

The fact that the transmittance does not drop off at visible wave-
lengths is a good indication of the absence of residual porosity which would
cause optical scattering. Submicron size porosity would have little effect
on transmittance at the longer infrared wavelengths, but as the wavelength
becomes smaller and of the same size as the pores, even a minute
amount of porosity will cause considerable optical scatter and consequent
loss of transmittance.

A limited number of flexural strength and hardness measurements
have been made on the fusion cast material. Strengths averaging about
175 MN/ m2 (26, 000 psi) have been measured in three-point loading. Knoop
hardness ranges between 1700-1800 kg/ mm2 using a 200 gram load.

4,3 Current Status and Plans

Problems with reproducibility of totally defect-free castings are
currently being addressed. The critical parameter appears to be the shape
and movement of the solid-liquid interface. Ideally a planar interface moves
slowly and uniformly upperward through the mold as the furnace temperature
is slowly decreased. To date, however, it has been difficult to achieve this
ideal behavior reproducibly.

More typically, the interface appears to be planar at the start of
solidification but then tends to become spiked or dendritic. This results in
the bottom portion of the casting being totally clear while in the upper
regions there are voids at grain boundaries.

To maintain a planar interface, increased temperature gradients
and slower cooling rates are being investigated within the limitations of the
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present system. Specifically, the necessity of melting the entire charge
limits the magnitude of the gradient as a practical matter. Furthermore,

it is difficult to impose a gradient upon a basically transparent material at
high temperature where radiation is the dominant mechanism of heat trans-
fer. There is also a minimum practical cooling rate in the present system
due to the indirect regulation of the temperature by means of controlling
furnace power.

After the flat plate casting process has been perfected, a stock of
flat discs of alumina-rich spinel will be fabrication for subsequent hot forging
into dome shapes.
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5.0 HOT FORGING OF SPINEL

The basic feasibility of fabricating alumina-rich spinel shapes by
hot forging was demonstrated. A number of rectangular beams were de-
formed in three-point loading at about 1750° C.

Beams of polycrystalline spinel with 2:1 molar ratio of A1203 to
MgO and 3. 4:1 single crystal spinel were used. Dimensions of the samples
were lengths of 25. 4 to 38.1 mm, widths of 4.7 to 8.5 mm, and thicknesses
of 2.4t0 3.2 mm. They were set in graphite fixtures so that spans of 20. 6
or 25.4 mm could be loaded at the center point by weights suspended below
the furnace (Figure 14). A graphite heating element provided temperatures
to 1600° C to 1820° C in an atmosphere of helium. The applied loads pro-
duced maximum stresses in the sample beams of 19.2 to 70.3 MN/ m
(2780 to 10, 190 psi).

Deflection of the beams was monitored during each run. Data are
presented in Table 5 and Figures 15 and 16. In Figure 17, some of the de-
formed beams are shown with a mm rule for scale. It is seen that some

beams were bent to a 90 degree angle.

Deflection rates appear to be more sensitive to temperature than
to stress level. There appears to be little difference in deformation be-
havior between the 3. 4:1 single crystal and 2:1 polycrystalline materials.
This is in keeping with findings presented by Mitchell et al. l'm their work
on compressive deformation of spinel. They found a significant difference
between stoichiometric (1:1) and A1203 -rich spinel but small variation
between 2:1 and 3. 5:1 spinels.

Surface degradation of the spinel material during these deforma-
tion experiments has been observed. The samples lost weight and a trans-
lucent "skin' resulted. However, the interior of the test beams was not
affected.

15, Mater. Science 11 (1976) 264.
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Figure 14, Appara.us for Three-Point Loading of Spinel
Beams.
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Attempts were made to isolate the beams from the graphite fixtures
with separators of molybdenum and/ or tantalum foil. These were not par-
ticularly successful. In fact, 0.4 mm thick Grafoil (Fiber Materials Inc.)
used in the same manner seemed to protect the beam better. Data on weight
loss during the various deflection runs is included in Table 5.

Future work on forging of spinel is planned in which fusion cast
flat plates will be deformed between male and female hemispherical mandrels

to form dome shapes.
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