AD-AO	48 497 SSIFIED	RAYTH HIGH DEC 7	EON CO DURABIL 7 R GE S-2284	WALTH	AM MASS SSILE D N, E MA	RESEA OMES.(U GUIRE,	RCH DIV	s	N0001	L4-76-C-	F/G 17. -0635 NL	/5	
	of AD A048497	- @ 		5 4				i Fi					
fadraadd garaata geriaana geriaana geriaana geriaana geriaana geriaana geriaana			0	N.					Ţ.			Antonio anti- tra anti- tra anti- an	- 100-00
												2010000035 	
:50 ⁸			I IIIII	, i) ; ; ; ;					· · · · · · · · · · · · · · · · · · ·			B1	END Date Filmed 2-78
												÷	
			đ										
/												_	

12

AD A 0 4 8 4 9 7

HIGH DURABILITY MISSILE DOMES

Raytheon Company Research Division Waltham, MA 02154

December 1977

Interim Technical Report for Period 1 April 1976 - 30 September 1977

OFFICE OF NAVAL RESEARCH Department of the Navy Arlington, VA 22217 DDC DCOCCUPICO JAN 5 1978 DISGISTICO D

DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited

REPURT DUCUMENTAT		READ INSTRUCTIONS
BEDART MUMBER	IUN PAGE	BEFORE COMPLETING FORM
. REPORT NUMBER	2. GOVT ACCESS	ION NO. 3. RECIPIENT'S CATALOG NOMBER
TITLE (and Subuula)		7 TYPE OF PEROPTA PERIOD COVERE
A submitter		Interim Technical Report
6) HICH DUBABLI ITY MISSI	LE DOMES	1 Apr 2 1276-39 Sep 2 107
THIGH DURABILITY MISSI	LE DOMES.	C PERFORMING ORG. REPORT NUMBER
ANTHOR(S)		B. CONTRACT OR GRANT NUMBER(S)
0 R. Gentilman,	1	15 Nagala 20 a goother
E. Maguire	(N90014-76-C-9635
J. Pappis	RESS	10. PROGRAM ELEMENT PROJECT, TASK
Raytheon Company		AREA & WORK UNIT NUMBERS
Research Division \bigvee Waltham MA 02154		
Office of Naval Research	(December 1977
Department of the Navy	(T3. NUMBER OF PAGES
Arlington, VA 22217	illerent from Controlling	Office) 15. SECURITY CLASS, (of this report)
		Unclassified
(12) 16p.		
		154. DECLASSIFICATION DOWNGRADING SCHEDULE
8. SUPPLEMENTARY NOTES		
9. KEY WORDS (Continue on reverse side if neces: Spinel	ary and identify by block	number) sture Protective Coatings
9. KEY WORDS (Continue on reverse side if necess Spinel Magnesium Aluminum Oxi	de Hot	sture Protective Coatings Forging
Spinel Magnesium Aluminum Oxi Magnesium Oxide Fusion Casting	de Hot IR 1	sture Protective Coatings Forging Domes
9. KEY WORDS (Continue on reverse side if necess Spinel Magnesium Aluminum Oxi Magnesium Oxide Fusion Casting	de Hot IR 1	sture Protective Coatings Forging Domes
 KEY WORDS (Continue on reverse side if necess) Spinel Magnesium Aluminum Oxi Magnesium Oxide Fusion Casting ADELRACT (Continue on reverse side if necess) 	de Hot IR 1	number) sture Protective Coatings Forging Domes
 KEY WORDS (Continue on reverse side if necess) Spinel Magnesium Aluminum Oxi Magnesium Oxide Fusion Casting ABLIRACT (Continue on reverse side if necess) Magnesium oxide optic due to moisture by any of 	de Hot IR I any and identify by block cal surfaces we several sputter	number) sture Protective Coatings Forging Domes number) ere protected from degradation red coatings. The coatings are
 KEY WORDS (Continue on reverse side if necess) Spinel Magnesium Aluminum Oxi Magnesium Oxide Fusion Casting ABELRACT (Continue on reverse side if necess) Magnesium oxide optic due to moisture by any of of optical quality and were 	de Hot IR 1 ary and identify by block ary and identify by block cal surfaces we several sputter e unaffected by	number) sture Protective Coatings Forging Domes number) ere protected from degradation red coatings. The coatings are rainfield tests at 256 m/ sec.
Spinel Magnesium Aluminum Oxi Magnesium Oxide Fusion Casting Magnesium oxide optic due to moisture by any of of optical quality and were Highly transparent flat	de Hot IR l any and identify by block any and identify by block cal surfaces we several sputter e unaffected by t plate samples	number) sture Protective Coatings Forging Domes number) ere protected from degradation red coatings. The coatings are rainfield tests at 256 m/ sec.
 KEY WORDS (Continue on reverse side if necess) Magnesium Aluminum Oxi Magnesium Oxide Fusion Casting ABELRACT (Continue on reverse side if necess) Magnesium oxide optic due to moisture by any of of optical quality and were Highly transparent flat aluminum oxide (spinel) w The best semples have a semple. 	de Hot IR 1 ary and identify by block ary and identify by block cal surfaces we several sputter e unaffected by t plate samples ere fabricated com	number) sture Protective Coatings Forging Domes number) ere protected from degradation red coatings. The coatings are rainfield tests at 256 m/ sec. s of polycrystalline magnesium by the fusion casting technique.
Spinel Magnesium Aluminum Oxi Magnesium Oxide Fusion Casting Magnesium oxide optic due to moisture by any of of optical quality and were Highly transparent flat aluminum oxide (spinel) w The best samples have a 2 50 mm across and 3 mm t	de Hot IR 1 any and identify by block any and identify by block cal surfaces we several sputter e unaffected by t plate samples ere fabricated 2:1 Al2O3 comp hick.	number) sture Protective Coatings Forging Domes number) ere protected from degradation red coatings. The coatings are rainfield tests at 256 m/ sec. s of polycrystalline magnesium by the fusion casting technique.
 KEY WORDS (Continue on reverse side if necess) Spinel Magnesium Aluminum Oxi Magnesium Oxide Fusion Casting ASTRACT (Continue on reverse side if necess) Magnesium oxide optic due to moisture by any of of optical quality and were Highly transparent flat aluminum oxide (spinel) w The best samples have a 2 50 mm across and 3 mm t 	de Hot IR 1 de Hot IR 1 eny end identify by block cal surfaces we several sputter e unaffected by t plate samples ere fabricated 2:1 Al2O3 comp hick.	number) sture Protective Coatings Forging Domes number) ere protected from degradation red coatings. The coatings are rainfield tests at 256 m/ sec. a of polycrystalline magnesium by the fusion casting technique. position and measure more than

P

3 APPROXIMATELY EQUAL TO SQ M n UNCLASSIFIED SECURICY CLASSIFICATION OF THIS PAGE (When Date Entered) Beams of polycrystalline and single crystal alumina-rich spinel were deformed in three-point loading at \odot 1750°C. Applied stresses between 20 and 70 MN/m² produced up to right angle bends, suggesting the feasibility of forging flat plates of spinel into hemispherical dome shapes. ACCESSION for White Section SITS Bull Section 880 UNANNOUNCEB . MSTIFICATION DDC BY ... PORMUR BISTRIBUTION / AVAILABILITY CODES Bist. AVAIL and/or SPECIAL JAN 5 1978 SUSLU D UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

FOREWORD

This report was prepared by Raytheon Company, Research Division, Waltham, Mass., under Contract No. N00014-76-C-0635, entitled, "High Durability Missile Domes." This work is administered under the direction of The Office of Naval Research, Material Sciences Division, Arlington, Virginia. Dr. Arthur M. Diness is the project scientist.

The work was carried out at Raytheon Research Division, Advanced Materials Department. Dr. J. Pappis is the department manager. Dr. Richard Gentilman is the principal investigator. Experimental work was performed by Mr. Edward Maguire.

This is the Interim Technical Report for Contract N00014-76-C-0635. It covers the period 1 April 1976 to 30 September 1977. The report was given the Raytheon internal number S-2284.

TABLE OF CONTENTS

Section		Page
1.0	INTRODUCTION AND SUMMARY	• 1
2.0	BACKGROUND	• 3
	2.1 The Requirement	• 3
	2.2 Candidate Materials	• 5
	2.3 Previous Fabrication Studies	• 7
3.0	MOISTURE PROTECTIVE COATINGS OF MAGNESIUM OXIDE	. 14
	3.1 Application of Coatings	. 14
	3.2 Coating Tests	. 18
4.0	FUSION CASTING OF SPINEL	. 22
	4.1 Process Description	. 22
	4.2 Results to Date	. 25
	4.3 Current Status and Plans	. 31
5.0	HOT FORGING OF SPINEL	. 33

LIST OF ILLUSTRATIONS

No.		Page
1	Thermally Induced Stresses at Inner and Outer Surfaces as a Function of Flight Time for Dome Stations 0° and 30°	4
2	3-Inch Diameter CVD Alumina Dome	9
3	Vapor Deposited Magnesium Oxide	10
4	Optical Transmittance of CVD MgO (Uncorrected for reflection losses.)	11
5	Schematic of Magnesia CVD Process	12
6	Schematic of r.f. Sputtering System	15
7	Polished MgO Windows Subjected to the same humidity chamber test. Left: Uncoated, Right: Silicon Nitride Coated.	19
8	Fusion Casting Process	23
9	Phase Diagram for the System MgO-Al ₂ O ₃ .	24
10	Fusion Cast Spinel Plate, 57 x 54 x 3.7 mm Thick.	27
11	Fusion Cast Spinel Disc, 55 mm dia x 3.0 mm Thick.	28
12	Fusion Cast Spinel Disc Photographed Between Crossed Polarizers to Reveal the Grain Structure (Same sample as shown in Figure 11.)	29
13	Optical Transmission Spectra of Fusion Cast and Single Crystal Spinel Samples (Uncorrected for reflection losses).	30
14	Apparatus for Three-Point Loading of Spinel Beams	34
15	Deflection Vs Time for Polycrystalline 2:1 Spinel Beams	36
16	Deflection Vs Time for 3. 4:1 Single Crystal Spinel Beams	37
17	Deformed Beams of Alumina-Rich Spinel. Left and Center: Single Crystal. Right: Polycrystalline.	38

v

RECEDING PAGE BLANK-NOT FILL

LIST OF TABLES

Table		Page
1	Infrared Transmitting Materials Rank According to Thermal Shock Resistance at 450° C	6
2	Target Materials	16
3	R. F. Sputtering Runs With MgO Substrates	17
4	Rain Erosion Test Data	21
5	Beam Deflection Runs	35

1.0 INTRODUCTION AND SUMMARY

The next generation of high speed infrared-guided air-to-air missiles will require a new IR dome material with increased mechanical ruggedness without sacrificing optical quality in the 3 to 5 μ m band. Magnesium fluoride, the current Sidewinder dome material, does not possess the resistance to thermal stresses (caused by aerodynamic heating during powered flight) or the resistance to rain erosion (during long-term captive flight) which will be required for future missiles.

This requirement has led to the investigation of several high durability polycrystalline oxides and of fabrication processes which could produce hemispherical dome shapes. Specifically, magnesium oxide and magnesium aluminum oxide (spinel) have emerged as the most promising candidate materials. Chemical vapor deposition (CVD) and fusion casting techniques have been developed to produce transparent polycrystalline samples of these oxides.

Materials and fabrication processes developed must be cost effective. Techniques which produce dome-shaped blanks are mandatory in order to minimize the high costs for cutting and grinding these durable materials. Even given a dome shaped blank, however, it is anticipated that finishing and polishing will represent the major portion of the cost of dome production.

A successful CVD process for magnesium oxide was developed previously on internal research funding. Both optical quality flat plates and dome shapes were deposited. However, one drawback of MgO optical components has been the gradual degradation of polished surfaces exposed to moisture in the atmosphere. A fusion casting process for fabricating transparent spinel was also explored initially on internal funding. Spinel, which is somewhat more durable than magnesium oxide and is not affected by moisture, has become the leading candidate material for future air-toair missile domes.

1

Reported herein are the results of work funded by the Office of Naval Research (Contract N00014-76-C-0635) in three specific areas related to the fabrication of high durability oxide domes.

(1) It has been successfully demonstrated that magnesium oxide can be protected from moisture by any of several sputtered coatings which are also durable.

(2) Transparent and crack-free flat plate spinel samples, as large and 91 mm dia by 6.6 mm thick, have been fabricated by the fusion casting technique.

(3) Alumina-rich spinel beams, both single crystal and polycrystalline, have been deformed by three-point loading at temperatures of 1650° -1820° C. This suggests that hot forging techniques can be used to fabricate spinel dome shapes.

2.0 BACKGROUND

2.1 The Requirement

Heat seeking missiles designed for air-to-air engagements face severe operational hazards that either reduce their effectiveness or raise the overall system's cost. They are carried unprotected in exposed positions on aircraft. The infrared transparent dome can be broken during routine handling, pitted by sand and debris during takeoff and landing, or eroded by water droplet impact in flight through rain squalls. These problems are becoming increasingly severe as airspeeds are increased and as the introduction of terrain avoidance radar allows supersonic flight at very low altitudes.

Impact damage that leaves the dome intact but roughens the originally polished outer surface will degrade seeker performance in two ways. First, the minimum resolvable target size will be increased. In the current operational air-to-air missile this factor is not critical, but in the designs under consideration for the next generation missiles, seeker resolution will be severely affected by dome erosion. Second, roughening of the dome increases the amount of sunlight scattered into the seeker optics, raising the noise level in the infrared detection system and thus limiting the ability to detect targets. While these effects have not been well characterized, it is of considerable concern in current development of seekers designed for head-on approach.

Finally, immediately after missile launch, high tensile stresses are generated in the dome due to transient nonuniform aerodynamic heating of the dome. The severity of these stresses depends on the nature of the dome material (its thermal conductivity, heat capacity, and thermal expansion coefficient) and on the specific aerodynamic flight regime. Figure 1 shows the stresses generated in a dome during missile flight. These results are calculated based on a next generation missile launch at Mach 1.5 with a powered flight lasting 2.0 sec. It is seen that significant tensile

Figure 1. Thermally Induced Stresses at Inner and Outer Surfaces as a Function of Flight Time for Dome Stations 0° and 30°

stresses develop at the inside dome surface during the missile's acceleration, reaching a maximum of approximately 12,000 psi just after the end of the powered flight. However, the fracture strength of magnesium fluoride is only 10,000 psi at 450° C, the approximate average temperature of the dome during flight at the time of the maximum thermally induced stress.

Early forms of infrared missiles operated at short infrared wavelengths where fused silica domes could be used. This material has a very high resistance to thermal shock but suffers from rain erosion. Magnesium fluoride domes have provided higher strength, greater resistance to rain erosion, transparency in the 3 to 5 μ m atmospheric window, and the ability to withstand the thermal shock of current missiles in subsonic launch. However, magnesium fluoride domes are predicted to fail in either supersonic launch of current missiles or subsonic launch of the next generation designs.

2.2 Candidate Materials

Table 1 lists several properties of infrared transmitting materials which are pertinent to missile dome applications. The materials are rarked according to their thermal shock resistance figure-of-merit $(=\sigma_f K/\alpha E)$ at 450° C, the approximate average temperature of the dome at the time of maximum thermally induced stress. It is seen that magnesium fluoride has reasonable thermal shock resistance at room temperature, but it is relatively poor at the higher temperatures to which it will be subjected during high-speed flight.

The need for a new, more durable missile dome is clear. New missile designs are being compromised by the lack of a dome material with the required strength, hardness, and thermal conductivity that can be produced at an acceptable cost. However, there are several highly durable crystalline oxide materials (Table 1) that are transparent at ultraviolet, visible, and infrared wavelengths out to $5 \,\mu$ m that will serve the optical needs of future seeker designs. Specifically, aluminum oxide, magnesium TABLE 1

INFRARED TRANSMITTING MATERIALS RANK ACCORDING TO THERMAL SHOCK RESISTANCE AT 450° C

Crystal Structure	Cubic	Cubic	Hexagonal	Cubic	Cubic	Cubic	Cubic	Hexagonal	Cubic	Tetragonal
Knoop Hardness	1150	069	2200	1700	006	800	356	130	150	576
R. T. Fracture Strength (psi)	9,000	13, 500	50,000	28, 000	23, 000	28, 000	15,000	8, 000	7, 500	22, 000
ce to Stress (E) 450 ⁰ C	09	33	21	п	8	7	9	9	5.5	3.2
Resistan Thermal (J K/0 RT	296	88	47	22	29	25	26	19	23	19.4
Absorpti on Between 4-5 μ in 2 mm T = 450 ⁰ C	40%	%09	8%	3%	<1%	<1%	Transparent	Transparent	Transparent	<1%
Material	Si	Ge	AI ₂ 0 ₃	MgAI 204	MgO	Y2 ⁰ 3	ZnS	cdS	ZnSe	MgF ₂

6

oxide, and spinel are attractive candidate materials. However, it has been difficult to fabricate dense forms of these materials by conventional hot pressing or sintering. The current state-of-the-art of sintered forms of alumina and spinel still have residual porosity that affects both target definition and sun scatter to an unacceptable degree.

Over the past several years, two alternate techniques have been developed for the production of high transparency infrared materials, namely chemical vapor deposition (CVD) and fusion casting. Each has been very successful for specific materials. The CVD technique has been used to produce polycrystalline forms of zinc selenide, zinc sulfide and magnesium oxide that represent a new state-of-the-art for these materials. Similarly, fusion casting has provided a low-cost form of calcium and strontium fluorides whose optical properties are equal to, or better than, the corresponding single crystal forms.

Both the fabrication techniques themselves and the materials under consideration are chosen to provide low cost optical components. For the present MgF_2 domes, optical fabrication is not a major contribution to cost. For high durability oxide domes, however, grinding and polishing takes a much greater time and will be an important cost determinant. Replacement of present domes by a more durable material, however, could provide a very significant reduction in breakage rate and in the need for highly expensive seeker repair or replacement. It is believed, therefore, that a virtually indestructable dome would be cost effective at even several times the cost of a present dome.

2.3 Previous Fabrication Studies

Both aluminum oxide and magnesium oxide were fabricated previously by chemical vapor deposition. Aluminum oxide was deposited by reacting gaseous aluminum chloride with water vapor at 1100° -1300° C and pressures less than 5 torr according to the reaction:

 $2A1Cl_3 + 3H_2O = Al_2O_3 \text{ (solid)} + 6HCl$

The AlCl₃ vapors are produced in-line by passing chlorine gas over lumps of solid aluminum held at a temperature of 200° -500° C.

The aluminum chloride is volatile and is transported to the deposition zone by forced convection where it mixes and reacts with the H_2O to deposit Al_2O_3 . Friable alumina was used as the deposition mandrel. Both flat plates and dome shapes were deposited (Figure 2).

The aluminum oxide produced in this previous work is essentially completely dense but contains some intergranular porosity which scatters light and degrades its optical resolution. However, even if the last traces of porosity were eliminated, aluminum oxide is not optically isotropic and therefore, in polycrystalline form, will not be suitable for high resolution optical components. Thus, aluminum oxide domes will have to be fabricated of single crystal sapphire which is commercially available, but costly.

Magnesium oxide of excellent optical quality was fabricated in both flat plates and dome shapes (Figure 3). The material is deposited by reacting gaseous magnesium chloride with carbon dioxide and hydrogen at high temperature and reduced pressure according to the reaction:

$$MgCl_2 + CO_2 + H_2 = MgO + CO + 2HCl$$
 (1)

The magnesium oxide produced by this reaction is fully dense and, when polished, is water clear with uncoated transmittance that rises to ~ 89 percent at 5 μ m (Figure 4).

The CVD process used (Figure 5) involves two chemical steps. First, magnesium chloride is produced by flowing chlorine and carbon monoxide through a bed of MgO chips at 1300° -1400° C and 5-50 mm Hg pressure:

$$Cl_{2} + CO + MgO = MgCl_{2} + CO_{2}$$
(2)

PBN-76-743

Figure 2. 3-Inch Diameter CVD Alumina Dome.

PBN-77-723

PBN-75-474

Wavelength (microns)

Figure 4. Optical Transmittance of CVD MgO (Uncorrected for reflection losses).

11

dealer selection in the

Under these conditions the magnesium chloride formed is volatile and its generation rate is directly related to the input Cl_2 and CO flow rates.

In the deposition zone, the $MgCl_2$ and CO_2 mix with hydrogen and additional CO_2 . The H₂ causes the gases to become supersatured and the MgO is deposited. The thermodynamic driving force for reaction (1) is approximately -20 Kcal/ mole. This is sufficient to promote heterogeneous deposition of dense material on the mandrel surfaces, but not so great as to cause homogeneous nucleation of powder in the gas phase.

The magnesium oxide CVD process was demonstrated to the extent that hemispherical shapes could be produced, offering a significantly more durable IR dome than the current magnesium fluoride. However, further development of the CVD MgO technology was suspended for two reasons. First, the problem of the degradation of polished magnesia surfaces by moisture needed to be addressed. Secondly, the emphasis on fabrication studies was shifted to spinel, a more durable material and one not affected by moisture.

The vapor deposition of spinel was also investigated previously. However, the process for this three-component material was found to be significantly more complex than either the alumina or magnesia process. Some powdery spinel deposits were produced, but no free-standing dense deposits were obtained. Often, aluminum oxide and/or magnesium oxide were also obtained while attempting to deposit spinel.

Difficulties with the CVD of spinel led to the initial investigation of the fusion casting technique. This approach sacrifices the relative ease of fabricating arbitrary shapes such as domes available via CVD. Hot forging of fusion cast flat plates into dome shapes may be necessary. On the other hand, problems with composition are essentially eliminated with the casting process.

3.0 MOISTURE PROTECTIVE COATINGS OF MAGNESIUM OXIDE

3.1 Application of Coatings

To protect magnesium oxide from degradation in the atmosphere, coatings were deposited using a Mathis^{*} Mark III r. f. sputtering system. It consisted of a one KW, 13.56 MHz generator coupled to the work chamber through a matching network unit. The work chamber was a 12-inch diameter by 12 inch glass walled unit atop a Welch^{**} 3102-D turbomolecular pumping unit. Water-cooled cathode targets were affixed to the top of the chamber. Substrates to be coated were positioned parallel to and directly beneath the target on an adjustable height work surface. The sputtering system is diagrammed in Figure 6.

Prior to sputtering, substrates were cleaned in an ultrasonic bath using trichloroethylene followed by a methanol rinse. In the vacuum chamber, they rested upon a copper plate whose height was adjusted to give the desired spacing between the target face and the substrate surface, generally one to six cm. The chamber was then evacuated to a pressure of less than 5×10^{-5} torr before introducing the high purity working gases such as oxygen, nitrogen or argon. The gas flow was regulated through a metering valve to provide chamber pressures of 5 to 50 millitorr. Pressure in the chamber was determined by a high sensitivity Pirani gauge.[#] A glow discharge was established and the voltage adjusted to give the desired power density at the target. The duration of runs was ordinarily 24 hrs or less. At the conclusion of a run, the discharge was turned off and the system backfilled to atmospheric pressure to enable the coated pieces to be removed from the chamber.

^{*} The R. D. Mathis Co., Long Beach, CA.

^{**} The Welch Scientific Co., Skokie, IL.

[#]Consolidated Vacuum Corp., Rochester, NY.

Figure 6. Schematic of r. f. Sputtering System

The targets employed were flat plates of dense polycrystalline materials bonded to an aluminum backing plate by a thermally conductive electrically insulating epoxy. Table 2 includes data on these source materials.

TABLE 2

TARGET MATERIALS

Material	X-Ray Density (g/ cc)	Size	Source
Mullite	3.26	3" dia x 3/8"	Haselden Co.
$(3A1_2O_3 \cdot 2SiO_2)$		2-5/8" dia x 1/4"	McDanel Refr. Porc. Co.
Forsterite (2MgO•SiO ₂)	3.22	3" dia x 1/4"	Haselden Co.
Steatite (MgO•SiO ₂)	3.20	2-3/8" di a x 1/8"	3M Co., Code 645
Beryllia (BeO)	3.01	2" x 2" x 1/8"	Brush-Wellman
		6" dia x 1/4"	Consolidated Ceramics & Metallizing Corp.
Spinel	3.58	2-5/8" dia x 3/8"	Raytheon (fusion cast)
(MgO• A1 ₂ O ₃)			
Silicon (Si)	3.18	6" dia x 3/16"	Materials Res. Corp.
	(Si ₃ N ₄)		

Data on the sputtering runs are given in Table 3. Coating thickness was determined by attributing any weight increase during deposition to the deposit and calculating the appropriate thickness for a fully dense coating over the exposed surface area. X-ray densities given in Table 2 were used TABLE 3

R. F. SPUTTERING RUNS WITH MgO SUBSTRATES

	Comments		Film flaked off					Film flaked off		Film flaked off	Film flaked off	Film flaked off	Film flaked off		Poor adherence		Film flaked off				Excellent films	Typical conditions
Film	(mm)	1.20		1.10	8.33	2.9-3.2	0.9-1.0	!		1	0.7-1.5	1	!		2.09	1.58	2.20	1	2.6-2.7	7.9-8.8	1.3-3.8	1.6-5.0
ue.	(cm)	1	:	1	1	3.3	3.3	:	1	1	1	!	!	1	ł	1	6.0	1	1	:	3.5	:
Domon	(KW)	0.24	0.20	0.24	0.25	0.18	0.16	0.17	0.22	0.22	0.22	0.22	0.22	0.22	0.18	0.18	0.10	0.16	0.17	0.17	1	0.19
Time	(hr)	8.0	7.0	8.0	39.5	25.0	8.0	23.0	6.5	6.5	6.5	6.25	8.0	7.0	8.0	8.0	6.0	6.5	7.0	17.0	1	2-6
d	(mtorr)	15	30	15	15	15	15	50	10	10	10	10	10	10	40	40	30	25	25	25	10	10
	Atm.	02	02	02	0,	02	02	02	03	0,	0,	02	02	02	02	02	02	02	02	02	02	Na
	Coating	Mullite	Mullite	Forsterite	Steatite	Steatite	Steatite	Spinel	Spinel	Spinel	Spinel	Spinel	Spinel	Spinel	Spinel	Spinel	Spinel	BeO	BeO	BeO	BeO	Si,N,
Size of	Samples (in.)	1 x 1	1 × 1	1 × 1	1 × 1	0.5 x 1.5	0.5 x 1.5	1 × 1	1 × 1	1 × 1	0.5 x 1.5	1 × 1	0.5 x 1.5	1 × 1	1 x 1	1 × 1	1 × 1	1 × 1	0.5 x 1.5	0.5 x 1.5	0.5 x 1.5	1 x 1
	No. of Samples	1	1	1	1	3	3	2	2	2	ŝ	2	8	2	1	1	1	1	2	3	7	•
	Sample Code	23420-98	24630-20	23420-98	23420-100	24630-39	24630-39	24630-10	24630-10	24630-10	24630-12	24630-13	24630-14	24630-17	24630-23	24630-23	24630-29	24630-18	24630-21	24630-21	24630-37	
	Run	s	28	9	7	62	63	16	17	18	19	20	21	22	33.	34	43	23	30	31	59	:

17

in these calculations. Infrared reflectance spectra of the coatings were measured on a Perkin-Elmer, Model 457 spectrophotometer fitted with a specular reflectance accessory using an aluminum mirror as the 100 percent standard.

In general, optically smooth and transparent coatings were achieved using r.f. sputtering. Spinel and beryllia coatings were crystalline as determined by X-ray diffraction, while the coatings of the silicates and silicon nitride were amorphous. Adherence was a problem with spinel and less frequently for other coating types, with the exception of forsterite and steatite which showed excellent adhesion in all cases. In general, it was found that the best adhesion was achieved at the lowest pressure which would sustain the plasma discharge. The optimum gap between target and substrate was determined to be the minimum possible provided the substrate was not within the plasma dark space which occurs directly below the target.

3.2 Coating Tests

A number of polished magnesia samples, both coated and uncoated, were tested in a controlled humidity chamber for 72-78 hrs at 65° C and 100% relative humidity. These conditions caused the unprotected surfaces to become clouded and translucent. All coated surfaces remained clear. Figure 7 shows two MgO samples, one coated on both sides with sputtered silicon nitride (right) and the other uncoated, which were tested side by side in the humidity chamber.

Based on visual inspection and by comparison of infrared reflectance spectra of the coatings taken before and after the test, there was no indication of deterioration of any of the coatings.

As a further test of the coating strength and adherence, ten 0.5 by 1.5 by 3/16 in. samples of Avco MgO, weighing approximately 8.1 g, were sent to Wright-Patterson AFB for rain erosion testing. Two of these samples were uncoated controls, three were coated with steatite, and five

PBN-77-718

Figure 7. Polished MgO Windows Subjected to the Same Humidity Chamber Test. Left: Uncoated, Right: Silicon Nitride Coated

were coated with BeO. All were run through a 1.0 in. per hr rainfield for 20 minutes at 256 m/sec (575 mph) with a 90 degree impingement angle.

The surfaces of the uncoated samples showed some degradation, although not severe. All of the coated surfaces were intact with no changes in transparency. Infrared reflectance spectra were identical before and after this test. Data, including weight changes, are shown in Table 4. Two samples were chipped slightly during shipment or when clamped into the test fixture.

Discounting the two samples which were slightly chipped, the maximum weight loss for the six coated samples was 1.58 mg. The two uncoated samples showed some moderate surface degradation and had weight losses of 12.8 and 14.9 mg. It is not known whether surface degradation of uncoated MgO was due to the effects of liquid impact or the moisture inherent to the testing, or both. While it has not been proven conclusively that the thin sputtered coatings give improved rain erosion resistance for MgO, it is clear that the coatings remain intact under the rainfield conditions to which they were exposed.

As an additional test of coating integrity, a representative selection of the samples were subjected to the humidity chamber after rain erosion testing. The coated front surfaces were again unaffected while the uncoated bottom and side surfaces were significantly degraded.

In summary, it has been demonstrated that magnesium oxide optical surfaces can be protected from moisture by sputtered optical quality coatings which have also been shown to be durable.

TABLE 4

RAIN EROSION TEST DATA

Sample Code	Coating	Coating Thickness (µm)	Weight Change (mg)	Comments
24630-37-6	BeO	1.69	-0.88	
-7	BeO	1.38	- 110. 0	Edge chipped
-8	BeO	1.27	+ 0. 08	
-9	BeO	1.32	-0.64	
-10	BeO	1.63	-0.22	
24630-39-1	Steatite	2.95	-12.38	Edge chipped slightly
-2	Steatite	2.86	-0.12	
-3	Steatite	3.18	-1.58	
24630-59-9	Uncoated		-12.80	
-10	Uncoated		-14.92	

4.0 FUSION CASTING OF SPINEL

4.1 Process Description

The starting charge is a mixture of Linde C aluminum oxide (Union Carbide) and reagent grade MgO (Fisher) of a predetermined molar ratio. The powders are weighed, blended, and then isostatically pressed. For the early runs, the charge was prefired in air to form the spinel phase; however, this step has since been found to be unnecessary.

The pressed powder charge is placed in a thin-wall mold made from 0.13 mm thick molybdenum foil. Molds measuring 9 to 15 cm dia. by approximately 3 cm high have been used. The material is heated to above its melting point of approximately 2100° C in a vertical graphite resistance furnace with a cylindrical element. After holding the melt at temperature for 2 to 4 hours, it is solidified in place. Due to the large volume contraction upon solidification (approximately 14 percent), it is necessary to solidify unidirectionally from the bottom to the top of the mold. If this is not done, the solidification will be initiated at random growth sites and result in macroscopic voids between individual grains.

To effect unidirectional solidification, a vertical temperature gradient is maintained within the melt while the furnace temperature is slowly decreased. The gradient is established by a heat sink situated below the mold. The fusion casting process is shown schematically in Figure 8.

The high temperatures required for casting of spinel do not permit the use of thermocouples to monitor or control the process temperature. Instead, temperature is measured with an optical pyrometer, and the slow cooldown is achieved by controlling the furnace power with an automatic clock drive.

Figure 9 shows the phase diagram for the $MgO-Al_2O_3$ system. Although the positions of the solidus and liquidus lines have not been PBN-75-470

FUSION CASTING PROCESS

Figure 8. Fusion Casting Process.

PBN-77-180

24

determined unambiguously, it is seen that the spinel structure can exist over a wide range of compositions at elevated temperatures.

The initial casting studies were made with stoichiometric starting charges, i.e., 50 mole percent Al_2O_3 and 50 mole percent MgO, or 1:1 spinel. This composition was originally chosen to avoid potential problems of second phase precipitation and compositional gradients which might be expected with a non-stoichiometric melt. However, even though stoichiometric starting charges were used, a few percent MgO invariably vaporizes at temperature making the castings slightly alumina-rich. Subsequently, alumina-rich compositions were investigated. A starting Al_2O_3 :MgO molar ratio of 2:1 has been used for most of the recent castings.

At the high temperatures necessary for melting spinel, certain undesirable reactions occur between molybdenum and the melt and the graphite furnace parts. Molybdenum is oxidized by the few percent of magnesium oxide which invariably vaporizes from the spinel melt. Molybdenum oxides are formed which dissolve in the melt and leave the resulting casting somewhat darkened. This discoloration can be reduced by postannealing in air at 1600° C; however, the annealed material is usually not completely water clear. The MgO vaporization rate has been reduced but not eliminated by casting in helium at atmospheric pressure. Also, precleaning of the molybdenum molds with a household bleach has been found to minimize the discoloration.

The reaction between molybdenum and graphite has been minimized by using tantalum foil as a spacer. However, a eutectic exists in the molybdenum-carbon system at 2200° C. This has been found to be the upper temperature limit for using molybdenum molds in graphite furnaces.

4.2 Results to Date

The best castings of 1:1 spinel contained regions of excellent optical quality material bounded by solidification voids. The largest water-clear sample measured $\sim 2 \times 2 \times 0.3$ cm.

Two major problems which plagued the casting of nominally stoichiometric spinel were cracking during cooldown and the existence of bubble regions at the bottom of the castings. This latter problem is due to incomplete melting of the spinel charge at the bottom of the mold because of its proximity to the heat sink. Reducing the amount of heat extracted by the heat sink allows complete melting, but solidification then occurs randomly instead of unidirectionally. The furnace temperature cannot be increased above ~ 2200° C due to the molybdenum-graphite eutectic as discussed previously.

The use of 2:1 alumina-rich starting charges has greatly reduced the cracking and residual bubble problems. The slightly lower melting point of alumina-rich spinel (see Figure 9) appears to allow complete melting within the temperature limitations of the present setup. Cracking during cooldown has also been reduced because alumina-rich spinel compositions are ductile at high temperatures. Thus, the stresses created during cooldown can be relieved by deformation rather than by fracture.

Several defect-free plates of alumina-rich material have been produced. These are totally transparent and water-clear with excellent optical imaging quality. Figure 10 shows one such sample with overall dimensions of $57 \times$ 54×3.7 mm. Another sample, measuring 55 mm dia $\times 3.0$ mm thick, is shown in Figure 11. The largest crack-free casting produced to date is 91 mm dia $\times 6.6$ mm thick.

Due to directional solidification, the castings have a columnar grain structure with individual grains running from the bottom to the top of the ingot. Typically, grains are 2-5 mm across. The grain structure of the polished disc in Figure 11 is shown using crossed-polarizers in Figure 12.

The optical transmittance of alumina-rich spinel is shown in Figure 13. Also shown is the spectrum of Czochralski single crystal stoichiometric spinel (Union Carbide). The spectra are plotted uncorrected for fresnel reflection losses. Both materials show near intrinsic behavior with the electronic absorption edge near 0.3 μ m in the ultraviolet and the

PBN-77-721

•

the survey of the other states of the

Figure 12. Fusion Cast Spinel Disc Photographed Between Crossed Polarizers to Reveal the Grain Structure (Same sample as shown in Figure 11.)

Figure 13.

Optical Transmission Spectra of Fusion Cast and Single Crystal Spinel Samples (uncorrected for reflection losses).

multiphonon absorption near 5 μ m in the infrared. The only significant absorption band occurs at approximately 3 μ m and is likely due to "OH" impurities. This absorption is much less pronounced in the fusion cast spinel than in the single crystal material.

The fact that the transmittance does not drop off at visible wavelengths is a good indication of the absence of residual porosity which would cause optical scattering. Submicron size porosity would have little effect on transmittance at the longer infrared wavelengths, but as the wavelength becomes smaller and of the same size as the pores, even a minute amount of porosity will cause considerable optical scatter and consequent loss of transmittance.

A limited number of flexural strength and hardness measurements have been made on the fusion cast material. Strengths averaging about 175 MN/m^2 (26,000 psi) have been measured in three-point loading. Knoop hardness ranges between $1700-1800 \text{ kg/mm}^2$ using a 200 gram load.

4.3 Current Status and Plans

Problems with reproducibility of totally defect-free castings are currently being addressed. The critical parameter appears to be the shape and movement of the solid-liquid interface. Ideally a planar interface moves slowly and uniformly upperward through the mold as the furnace temperature is slowly decreased. To date, however, it has been difficult to achieve this ideal behavior reproducibly.

More typically, the interface appears to be planar at the start of solidification but then tends to become spiked or dendritic. This results in the bottom portion of the casting being totally clear while in the upper regions there are voids at grain boundaries.

To maintain a planar interface, increased temperature gradients and slower cooling rates are being investigated within the limitations of the present system. Specifically, the necessity of melting the entire charge limits the magnitude of the gradient as a practical matter. Furthermore, it is difficult to impose a gradient upon a basically transparent material at high temperature where radiation is the dominant mechanism of heat transfer. There is also a minimum practical cooling rate in the present system due to the indirect regulation of the temperature by means of controlling furnace power.

After the flat plate casting process has been perfected, a stock of flat discs of alumina-rich spinel will be fabrication for subsequent hot forging into dome shapes.

5.0 HOT FORGING OF SPINEL

The basic feasibility of fabricating alumina-rich spinel shapes by hot forging was demonstrated. A number of rectangular beams were deformed in three-point loading at about 1750° C.

Beams of polycrystalline spinel with 2:1 molar ratio of Al_2O_3 to MgO and 3. 4:1 single crystal spinel were used. Dimensions of the samples were lengths of 25. 4 to 38.1 mm, widths of 4.7 to 8.5 mm, and thicknesses of 2.4 to 3.2 mm. They were set in graphite fixtures so that spans of 20.6 or 25.4 mm could be loaded at the center point by weights suspended below the furnace (Figure 14). A graphite heating element provided temperatures to 1600° C to 1820° C in an atmosphere of helium. The applied loads produced maximum stresses in the sample beams of 19.2 to 70.3 MN/ m² (2780 to 10, 190 psi).

Deflection of the beams was monitored during each run. Data are presented in Table 5 and Figures 15 and 16. In Figure 17, some of the deformed beams are shown with a mm rule for scale. It is seen that some beams were bent to a 90 degree angle.

Deflection rates appear to be more sensitive to temperature than to stress level. There appears to be little difference in deformation behavior between the 3.4:1 single crystal and 2:1 polycrystalline materials. This is in keeping with findings presented by Mitchell et al.¹ in their work on compressive deformation of spinel. They found a significant difference between stoichiometric (1:1) and Al_2O_3 -rich spinel but small variation between 2:1 and 3.5:1 spinels.

Surface degradation of the spinel material during these deformation experiments has been observed. The samples lost weight and a translucent "skin" resulted. However, the interior of the test beams was not affected.

¹J. Mater. Science 11 (1976) 264.

Figure 14. Apparatus for Three-Point Loading of Spinel Beams.

TABLE 5

BEAM DEFLECTION RUNS

Material	Sample Code	Section (mm)	Span (mm)	Temp (° C)	(MN/m ²) (psi)	Deflection (mm)	Rate (mm/hr)	veignt Loss (%)
2:1 poly	24630-74	2.5 x 8.5	25.4	1820	50.2	10.2	1.2-20.5	21.3
					7270			
2:1 poly	24630-75	3.2 x 6.4	25.4	1755	40.2	7.1	0.7-6.0	16.4
					5820			
3. 4:1 s. c.	24630-100	2.5 x 4.7	20.6	1750	38.4	2.0		14.0
					5570			•
3. 4:1 s. c.	24682-2	2.5 x 4.7	20.6	1750	51.2	1.3	0.1-0.6	41.8
					7420			
3. 4:1 s. c.	24682-4	2.5 x 4.7	20.6	1780	55.2	6.6	1.5-3.4	13.3
					8000			
3. 4:1 s. c.	24682-6	2.5 x 4.7	20.6	1760	27.2-53.6	8.5	0.2-4.2	21.6
					3945-7765			
3. 4:1 s. c.	24682-7-2	2.5 x 5.0	20.6	1750	47.8-65.6	2.6	0.5-1.0	1.3
					6935-9510			
3. 4:1 s. c.	24682-10	2.4 x 5.1	20.6	1745	51.6	6.6	1.9-8.8	6.9
					7480			

35

P BN-77-719

Attempts were made to isolate the beams from the graphite fixtures with separators of molybdenum and/or tantalum foil. These were not particularly successful. In fact, 0.4 mm thick Grafoil (Fiber Materials Inc.) used in the same manner seemed to protect the beam better. Data on weight loss during the various deflection runs is included in Table 5.

Future work on forging of spinel is planned in which fusion cast flat plates will be deformed between male and female hemispherical mandrels to form dome shapes.

	No. of		No. of
Organization	Copies	Organization	Copies
Defense Documentation Center		Naval Construction Batallion	
Cameron Station		Civil Engineering Laboratory	
Alexandria, Virginia 22314	(12)	Port Hueneme, California 93043	
		Attn: Materials Division	(1)
Office of Naval Research			
Department of the Navy		Neval Electronics Laboratory Center	
separation of the havy		Sen Diego Celifornia 02152	
Attr. Code 471	(1)	Attn: Electron Meteriele	
Code 102		Sciences Division	(1)
Code 102		Sciences Division	(1)
code 410	(1)	Name 1 Minut 12 Contain	
		Naval Missile Center	
Commanding Officer		Materials Consultant	
Office of Naval Research		Code 3312-1	
Branch Office		Point Mugu, California 93041	(1)
495 Summer Street			
Boston, Massachusetts 02210	(1)	Commanding Officer	
		Naval Surface Weapons Center	
Commanding Officer		White Oak Laboratory	
Office of Naval Research		Silver Spring, Marvland 20910	
Branch Office		Attn: Library	(1)
536 South Clark Street			
Chicago Illinois 60605	(1)	Devid W. Tevlor Nevel Shin R&D Cente	r
onreago, minors cooo,	(1)	Materials Department	•
Office of Nevel Personah		Annenolia Marriand 21/02	(1)
San Francisco Area Office		Amapoirs, Maryrand 21402	(1)
760 Market Church Darm 1/17		Namel Heddenson Contan	
100 Market Street, Room 441		Naval Undersea Center	
San Francisco, California 94102	1-1	San Diego, California 92132	1-1
Attn: Dr. P. A. Miller	(1)	Attn: Library	(1)
Naval Research Laboratory		Naval Underwater System Center	
Washington D.C. 20300		Newport, Rhode Island 02840	
		Attn. Libnary	(1)
Atta: Code 6000	(1)	Room. Bibliary	(1)
Code 6100	(1)	Noval Waanong Conter	
		China Laka California 02555	
		China Lake, California 93999	(1)
Code 0400		Attn: Library	(1)
Code 2627	(1)		
		Naval Postgraduate School	
Naval Air Development Center		Monterey, California 93940	
Code 302		Attn: Mechanical Engineering Dept.	(1)
Warminster, Pennsylvania 18974			
Attn: Mr. F. S. Williams	(1)	Naval Air Systems Command	
		Washington, D.C. 20360	
Naval Air Propulsion Test Center			
Trenton, New Jersey 08628		Attn: Code 52031	(1)
Attn: Library	(1)	Code 52032	(1)
		Code 320	(1)

•

Organization	No. of	Organization	No. of
organization	copies	Organization	COPIES
Naval Sea System Command		NASA Headquarters	
Washington, D.C. 20362		Washington, D.C. 20540	1-1
Attn: Code 035	(1)	Attn: Code RRM	- (1)
Naval Facilities		NASA	
Engineering Command		Lewis Research Center	
Alexandria, Virginia 22331		21000 Brookpark Road	
Attn: Code 03	(1)	Cleveland, Ohio 44135	(1)
Coientific Adminent		Attn: Library	(1)
Commandant of the Manine Counc		National Bureau of Standards	
Weshington D.C. 20380		Weshington D.C. 20234	
Attn: Code AY	(1)	Washington, D.C. 20234	
AUDI. CODE AN	(+)	Attn. Metallurgy Division	(1)
Nevel Shin Engineering Center		Inorgenic Materials Division	(1)
Department of the New		Inorganic Associate Statiston	(-)
CTR BG #2		Defense Metals and Ceramics	
3700 East-West Highway		Information Center	
Prince Georges Plaza		Battelle Memorial Institute	
Hyattsville, Maryland 20782		505 King Avenue	
Attn: Engineering Materials and		Columbus, Ohio 43201	(1)
Services Office. Code 6101	(1)		
		Director	
Army Research Office		Ordnance Research Laboratory	
Box CM, Duke Station		P.O. Box 30	
Durham, North Carolina 27706		State College, Pennsylvania 16801	(1)
Attn: Metallurgy & Ceramics Div.	(1)		
		Director Applied Physics Laboratory	
Army Materials and Mechanics		University of Washington	
Research Center		1013 Northeast Fortieth Street	
Watertown, Massachusetts 02172		Seattle, Washington 98105	(1)
Attn: Res. Programs Office			
(AMXMR-P)	(1)	Metals and Ceramics Division	
		Oak Ridge National Laboratory	
Air Force		P.O. Box X	1.1
Office of Scientific Research		Oak Ridge, Tennessee 37300	(1)
Bldg. 410			
Bolling Air Force Base		LOS ALAMOS SCIENTIFIC LADORATORY	
Washington, D.C. 20332	- /->	P.U. BOX 1003	
Attn: Unemical Science Directorat	e (1)	Atta Banos, New Mexico 0(744	(1)
Electronics and Solid State	(1)	Attn: Report Librarian	(1)
Sciences Directorate	(1)	Argonne Netionel Laboratow	
Air Force Meterials Ish (IA)		Metellurgy Division	
Wright_Patterson AFR		P.O. Box 229	
Davton. Ohio 45433	(1)	Lemont, Illinois 60439	(1)
	(1)	and a second of the	(-)

÷

*

*

*

.

Organization	No. or Copies	Organization	Copies
Brookhaven National Laboratory Technical Information Division Upton, Long Island New York 11973 Attn: Research Library	(1)		
Library Building 50 Room 134 Lawrence Radiation Laboratory Berkeley, California	(1)		

of

	No. of		No. of
Organization	Copies	Organization	Copies
Dr. W.F. Adler		Professor A.H. Heuer	
Effects Technology Inc.		Case Western Reserve University	
5383 Hollister Avenue		University Circle	
P.O. Box 30400		Cleveland, OH 44106	(1)
Santa Barbara, CA 92105	(1)		
		Dr. R. Hoagland	
Dr. G. Bansal		Battelle	
Battelle		505 King Avenue	
505 King Avenue		Columbus, OH 43201	(1)
Columbus, OH 43201	(1)		
	(-)	Dr. R. Jaffee	
Dr. R. Bratton		Electric Power Research Institute	
Westinghouse Research Lab		Palo Alto CA	(1)
Dittehurgh DA 15235	(1)	rato arco, un	(/
Tittsburgh, IA 19299	(1)	Dr P. Jorgensen	
Dr. A.C. Evene		Stanford Research Institute	
Pockall International		Poulter Laboratory	
P.O. Box 1085		Monto Park CA 94025	(1)
1049 Camina Das Pias		Menio Tark, on 94025	(-/
Thousand Oaks CA 91360	(1)	Dr. P.N. Katz	
Indusand Oaks, CA 91500	(1)	Army Materials and Mechanics	
No E Fisher		Rimy Materials and Mechanics	
MI. L. Fisher		Hatartain MA 02171	(1)
Pord Motor Co.	(1)	watercown, na oziri	(1)
Dearborn, MI	(1)	Dr. U. Kirchnor	
De D Cialiana		Company Finishing Company	
Dr. P. Gielisse		D. D. Por 409	
University of Knode Island	(1)	P.U. BOX 496	(1)
Kingston, RI 02881	(1)	State College, PA 10001	(1)
Dr. M.E. Gulden		Dr. B. Koepke	
International Harvester Company		Honeywell, Inc.	
Solar Division		Corporate Research Center	
2200 Pacific Highway		500 Washington Avenue, South	
San Diego, CA 92138	(1)	Hopkins, MN 55343	(1)
ban biego, an biebo	()	,,	
Dr. D.P.H. Hasselman		Mr. Frank Koubek	
Montana Energy and MHD Research		Naval Surface Weapons Center	
and Development Institute		White Oak Laboratory	
P.O. Box 3809		Silver Spring, MD 20910	(1)
Butte, Montana 59701	(1)		
		E. Krafft	
Mr. G. Haves		Carborundum Co.	
Naval Weapons Center		Niagara Falls, NY	(1)
China Lake, CA 93555	(1)		()
child build, an vosso			

Organization	No. of	Organization	No. of Conies
<u>Organización</u>	COPICS	<u>orBanipacton</u>	
Dr. F.F. Lange		Dr. J. Ritter	
Rockwell International		University of Massachusetts	
P.O. Box 1085		Department of Mechanical Engineering	
1049 Camino Dos Rios		Amherst, MA 01002	(1)
Thousand Oaks, CA 91360	(1)		
		Professor R. Roy	
Dr. J. Lankford		Pennsylvania State University	
Southwest Research Institute		Materials Research Laboratory	
8500 Culebra Road		University Park, PA 16802	(1)
San Antonio, TX 78284	(1)		
		Dr. R. Ruh	
Library		AFML	
Norton Company		Wright-Patterson AFB	
Industrial Ceramics Division		Dayton, OH 45433	(1)
Worcester, MA 01606	(1)		
		Mr. J. Schuldies	
State University of New York		AiResearch	
College of Ceramics at Alfred University		Phoenix, AZ	(1)
Attn: Library		Professor G. Sines	
Alfred, NY 14802	(1)	University of California, Los Angeles	1
		Los Angeles, CA 90024	(1)
Dr. L. Hench			
University of Florida		Dr. N. Tallan	
Ceramics Division		AFML	
Gainesville, FL 32601	(1)	Wright-Patterson AFB	
		Dayton, OH 45433	(1)
Dr. N. MacMillan			
Materials Research Laboratory		Dr. T. Vasilos	
Pennsylvania State University		AVCO Corporation	
College Park, PA 16802	(1)	Research and Advanced Development	
		Division	
Mr. F. Markarian		201 Lowell Street	
Naval Weapons Center		Wilmington, MA 01887	(1)
China Lake, CA 93555	(1)		
		Mr. J.D. Walton	
Dr. Perry A. Miles		Engineering Experiment Station	
Raytheon Company		Georgia Institute of Technology	
Research Division		Atlanta, GA 30332	(1)
28 Sevon Street			,
Waltham, MA 02154	(1)	Dr. S.M. Widerhorn	
		Inorganic Materials Division	
Mr. R. Rice		National Bureau of Standarda	
Naval Research Laboratory		Washington, DC 20234	(1)
Code 6360		"	(1)
Washington, D.C. 20375	(1)		
	(-/		

Organization	No. of Copies	Organization	No. of Copies
Dr. S.A. Bortz		Major W. Simmons	
IITRI		Air Force Office of Scientific	
10 W. 35th Street		Research	
Chicago, IL 60616	(1)	Building 410	
		Bolling Air Force Base	
Mr. G. Schmitt		Washington, DC 20332	(1)
Air Force Materials Laboratory			
Wright-Patterson AFB		Dr. P. Becher	
Dayton OH 45433	(1)	Naval Research Laboratory	
baycon, on 45455	(-/	Code 6362	
Dr. D.A. Shockey		Washington DC 20375	(1)
Stanford Basaarch Institute		washington, bu 20075	()
Poultor Leberatory		Wr I B Wockessor	
Nonle Dark CA 0/025	(1)	MI. L.B. Weckessel	
Menio Park, CA 94025	(1)	Applied Physics Laboratory	
		Johns Hopkins Koad	
Dr. W.G.D. Frederick		Laurel, MD 20810	(1)
Air Force Materials Laboratory			
Wright-Patterson AFB		Mr. D. Richarson	
Dayton, OH 45433	(1)	AiResearch Manufacturing Company	
		4023 36th Street	
Dr. P. Land		P.O. Box 5217	
Air Force Materials Laboratory		Phoenix, AZ 85010	(1)
Wright-Patterson AFB			
Dayton, OH 45433	(1)	Dr. H.E. Bennett	
		Naval Weapons Center	
Mr. K. Letson		Code 3818	
Redstone Arsenal		China Lake, CA 93555	(1)
Huntsville, AL 35809	(1)		
	(-/	Mr. G. Denman	
Dr. S. Freiman		Air Force Materials Laboratory	
Naval Research Laboratory		Code LP.I	
Code 6363		Wright-Petterson AFR	
Washington DC 20375	(1)	Devton OH 45433	(1)
washington, bc 20375	(1)	Dayton, on 49495	(1)
Director		Dr. D. Godfrey	
Materials Sciences		Admiralty Materials Laboratory	
Defense Advanced Research Project	8	Polle, Dorset BH16 6JU	
Agency		UNITED KINGDOM	(1)
1400 Wilson Boulevard			
Arlington, VA 22209	(1)	Dr. N. Corney	
		Ministry of Defense	
Dr. James Pappis		The Adelphi	
Raytheon Company		John Adam Street	
Research Division		London WC2N 6BB	
28 Sevon Street		UNITED KINGDOM	(1)
Waltham MA 02154	(1)		(
wateriam, ra 02134	(1)		

the second provide the second second second

2

٩.

.

Organization

+

.

÷

.

.

No. of Copies

Organization

No. of Copies

Dr. L.M. Gillin Aeronautical Research Laboratory P.O. Box 4331 Fisherman's Bend Melbourne, VIC 3001 AUSTRALIA

(1)