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CHAPTER I
INTRODUCTION

There has been considerable concern in the past few years
about the formulation of efficient and accurate numerical schemes
suitable for integrating numerical weather prediction models on the
globe. This interest has grown not only from the need to have weather

predictions for the entire globe but also from the realization that for

_foreca.stfs of more than a few days the introduction of artificial bound-

aries anywhere will deteriorate the forecast product,

The introduction of standard numerical techniques into the
global prediction problem has proven to be far from straightfcrwaz':d,
The difficulty is related to the singularity of the spherical coordinate
system at the poles, The precise singularities at the poles can be
avoided e,g. Merilees(1973) but a basic difficulty remains , namely ,
the convergence of the meridians requires excessively small time
Steps to ensure the numerical stability of the model, This requirement
is costly in terms of computer time,

A second , more general , concern has been with the accu-
racy of numerical estimation of derivatives, Numerous studies have
shown that the standard second order approximations to derivatives

on standard gridlengths are simply not sufficiently accurate to make
numerical error a secondary contributor to forecast error, For exa-
mple Chouinard and Robert(1972) have shown that with 400km grid a=d

a second order finite difference scheme , these errors may accoun

for 20% of the rms geopotential error in a 36-hour forecast,
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For both these reasons there has been considerable interest
in the development of global spectral models in terms of spherical
harmonics, Such a numerical basis has the double advantage of a lack
of singularity in the numerical basis and no linear truncation error
in the computation of derivatives, Further , by use of numerical rather
than analytical transforms it is possible to implement such models
with reasonable efficiency , certainly on 3rd generation computer
systems presently available. However such a numerical basis does
require a considerably amount of computation per degree of freedom
and therefore it is wise to continue to investigate the viability of
alternative schemes which are less costly than the complete spectral
method yet have at least some of their advantages,

These consideration led Orszag(l972) to discuss the use of
thé linear property of the spectral method without going to a complete
spectral model to get a method with considerable operational advant-
ages over the spectral approximation, This method , known as the
pseudospectral method , retains the traditional grid points for the
representation of the meteorological fields , but expresses these fields
as finite Fourier series for the purpose of estimation of derivatives,
As such , the method can take advantage of the fast Fourier transform
(FFT) to estimate derivatives, Orszag in the above mentioned paper
shows that the error of the pseudospectral approximation compared
to the spectral (Galerkin) approximation in some simple models are
similar , despite the inclusion of aliasing terms in the pseudospectral

approximation,

) —
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As mentioned , the pseudospectral algorithm is susceptible
to apparent aliasing instability, This problem , which was first noted
and discussed by Phillips(1959) , can lead to erroneous energy accum-
ulation , specially in the short waves , and the ' blow-up '""of the
calculation, We have to remember that this problem does not depend
on the relation between the time increment and gridlength, and conse-
quently is not removed by simply decreasing either of these quantities.

Merilees(1973 and 1974) developed an algorithm for the
application of the pseudospectral method to the numerical integration
of the shallow water equations and showed the ability of this scheme
to solve time dependent problems and its superiority over the 4th-order
finite difference schemes to reproduce accurate analytical solution
given the same resolution, Jacques(l976) used the same methods to
integrate a two-level model. In these studies the problem of aliasing
instability was controlled by means of filtering where all wavelengths
less or equal to 3-gridlengths are eliminated from time to time,
Although using the 3-gridlength filter extends the calculation for 20
days without any indication of instability , it is a crude closure appro-
ximation because it is not a part of the governing equations, On the
other hand , if the Fourier filter is performed every time step the model
would be like a spectral model using Fourier series as basis functions
instead of spherical harmonics,

Jacques(1976) noticed that the use of the periodic filter
produced substantial errors , especially in low resolution runs., To

remove this error and to control aliasing instability he suggested the
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use of a filter which does not totally eliminate wavelengths less than

three gi‘idlengths or alternatively the addition of friction terms,

< In this thesis we investigate the suggestion of Jacques by
incorporating a viscous term in the momentum equations and also
by studying in more detail the effect of periodic filtering, A further
extension of the methodology results because the viscous term requires
second derivative with respect to space which previous applications
have not. |

Even though Jacques(1976) was concerned with the simulation
of baroclinic waves , the present work is entirely concerned with
barotropic motion as represented by a shallow layer of homogeneous
incompressible fluid, It will be seen that there are many interesting
q :  results which accrue from these experiments which are quite difficult

to understand in spite the barotropic nature of the model,
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CHAPTER II

DESCRIPTION OF THE MODEL

I.1 Basic equations

The equations of the model are those describing the flow of
a shallow layer of water on a rotating sphere with the addition of a
viscous force, One might think of this viscous force as an eddy diffu-
sion term , but our purpose is simply to remove kinetic energy from
the system, especially from small scale waves , in order to control
aliasing instability, In terms of spherical polar coordinates ( A long-

itude and \¢ latitude ) the momentum equations are

)
3 NI = (b Btae) Ve 2y 2B =0 )
i‘t' + V. (B L tme)u s 2 4 2F =0 \2)

And the continuity equation is

Vh Ly
\—';.—\-V.U\N) =0o. (3)

The advection and divergence terms are given in spherical coordinates
o \A < A
A —_
v.9 —e A T3¢

and

v.avY) = ELN) 2 (AJcCare)

o C.s‘f bw s
where ¥ is the velocity vector with component u and < (east-west
and north-south respectively), F“\ and RP are the components of

the viscous force with the formula given in section II.6.1. The symbol

g takes the values one or zero to identify that the friction is included
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or not; a is the radius of the earth, The other symbols have their

usual m'eteorological meaning, With i, =0 equations (1) to (3)
conserve all powers of potential vorticity ( ._S.'-:—E , where S is the
relative vorticity, Also it is possible to show that
T
g lz.{_t.[h(u_‘.-"‘)_‘_sw']otﬂ =0, (&)
A

where the integration is carried all over the zarth's surface. dA
represent an area element ( $A= BX.AY=a" cosy A) 8¢ )., Equation

(4) implies that
SVS [R(evt) 4+ 30 Jcust de di zcmded. )
p)

The first term of equation (5) represents the kinetic erergy while the

second term represents the potential energy.

II.2 Grid point equations

Equations (1) to (3) are solved numerically on a latitude-

longitude grid defined as follows

¥ =Y. —Taw, 1< T <A,
and A.‘:(I-i)AA, 1&1'5'\\1:
where @, =T/ +89/2 , 4A¢= T/N; and o)X= 2T/ng s

OY and A\ are latitudinal and longitudinal increments,
This definition avoids grid points at the poles which are considered
as singular points, as { )\ goes to zero, The momentum and contin-
uity equations are thus satisfied every where on the grid, If St ; X'?

and 5:\ denote the finite difference operators which are to approx-

imate ::—t " -}-*- and -%x respectively, then (1) to (3) can be
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written in the form

: S‘*-—.,C.N Xw-‘%i,'*-\-(ﬁ-\»-‘g-"u\e)ﬂ -;9;‘5‘\‘\-&& > L&)
S B LS U St e -2 bR W

d
7 sg)\z—;!‘_—.—;" [‘nfgﬁ-\-lhi'\\\-kf\'(k-d cnsw):\. L3)

A centered finite difference scheme is used for the left hand side of

the above three equations, as follow

s R = Ariar— Re-ac 3

246t

where A stands for u,+ or h. For the first time step, a forward
scheme is used. For space derivatives S‘\ and S* , a pseudospe-~

ctral scheme is used as described in the following section,

I1.3 The pseudospectral definition of derivatives

The definition of the pseudospectral derivatives as used is

described by Merilees (1974), but for the sake of completness we shall

review the definition, In spherical polar coordinates let us consider

the variable A,, defined at grid point (n,m), R, =R Lo T ¥
where Ap= (n-1) B) ; 1 £ n = 2N,

and o= 9. -may 1 = m = M. i
The approximation for 3/» presents no spacial problem since the

variables are periodic of A and do not involve the pole. The lamda-
derivative of A, ,m is defined as
- iknal
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where 2d ik
“m(k):_‘.z s R and Lz(=l .
N mz=\ A

For the approximation of l/‘?, we have to be more careful since we
cross the poles., In this case we have to know whether the variable
is vector component or scalar, A scalar quant:iy is continuous at the
pole while, in general, a vecter component is not, The phi-derivative

of Ay m is defined as

for l = m = M and l < n = N,
-y imaw
ks’f“)nn - ) e"“ d
£ L=-(n-t)
where
E5) almag

For grid point (LM, LN) such that

LM=N+n for l1& n = N,
and LN=2M-m+l for M+l & m<& 2M,
the phi-derivative of Am,w is degined as

(59, =s B e
LM,LN L= -(N-Y)
where ¢ o 7
oY) =I5 MZ,‘ Fonnn & .

In the previous definition of the phi-derivative s=-1 for a scalar

quantity and s=+41 for a vector quantity,

1.4 One dimensional semi-implicit algorithm

The numerical integration of the dynamic equations on a

latitude-longitude grids requires excessively small time steps due to
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the convergence of meridians., Merilees et al (1976) show that the use
of space filtering in the polar regions ( generally used before to avoid
this restriction ) cause errors which lead to artificial transnorts of
mass and momentum, In the same paper a semi-implicit technique
with one-dimension is used instead of the polar filter, The use of a
semi-implicit scheme in order to increase the time step makes sense
from a physical point of view, because it modifies only the high freq-
uency motions whereas the polar filter does not distinguish between
low and high frequency waves leading to errors in the meteorological
modes, The solution of the one-dimensional semi-implicit scheme
makes use of the fast Fourier transform, so the replacement of the
polar filter adds little additional computing time. In equations (1) to
(3) the terms which give rise to gravity wave propagation along a lati-
tude circle are treated semi-implicitly, This means that (2) will be

treated explicitly, If we define a variable A such that

Qt #A(AIJ\PJ )t't)

1,3

where . =Tat , at being the time step, the numerical appro-
ximation to the primitive equations (6) to (8) at grid point (I,J) and

time f:-,_- can be written as

Test | T-at < <
=% o *SAJ_:’_S F oL tm)C
2at S gl ] .
e .
e SASeRN _rFE ()
a ety 2= 4
et  v-at T T X T \J T AY
- v - gt w L 2Tk
-\’zgr' _;_‘_._“_Nf)-l_“&'-d (+"“) -

and
-8t Teat T8t .
K"".t. g s _\z;' D—f (fav-: HY) o JrA A 7"“‘4‘:..9)], ()
24% a

e il e

- E:'? Qo)
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Notice that F, and Fe in (9) and (10) are calculated at time T-at |

Equations (9) to (ll) can be written as

T+ot Mt T,T-at
Sat at e \
W+ e S = U Q2)
at T,T-aF
s - \] W)
wrot <+at <, T-at
H At ¥
h + 25 T =h LW

The right hand side of (12), (13) and (14) can be calculated, they are
function of u,-) and h at times T and T-aAat . This means that

.r‘fﬁt ot

\ g
can be calculated from (13). For a and h , let us cons-

ider (12) and (14) for a particular zonal mode k, using the Fourier

representation a variable A can be written as

A=TZ_AWe "

T hen (12) and (14) can be written as

T+ot T+t r T-at
w (k) + "‘“; h ¢ie) =V th,
- T+at kT ab et T, T-at
h' G - KREE Kk = h'v9 .
Or T+at T+ot
W (LK) e —htw i i
ikqat ntet| et | T {kqat ?
~Cuv —U ‘ e ! o« Caa'Q
-at
{ - ' .‘!L-ﬂ.f‘* Gr-at kA et \
« Cs'¢ b m

which leads to
<Tsat ., 'l"l at T, T-at
1Kkg at kaH (“) ]
u(k)“ "'-'-w]‘ -]/[1+uc‘f ;
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R R S S DR R S

g .u(‘,:) e [‘h \k'd at UT,'C'“ ] /[1+ g‘sﬁ?t"\ 3

G‘Qa‘{ -
2T
H =-ﬁ§ h d) .

where

: . : . Teat T+at
Finally by inverse Fourier transformation we get u and h .

.5 Three gridlength and time filters

As stated in the introduction, it is usually necessary to have
some sort of smoothing to ensure stability of the calculation for more
than a few days, The instability is believed to be the so-called non-
linear type. Orszag (1971) shows that aliasing can be eliminated if the
variables are filtered with respect to three gridlength waves and sm-
aller, This filtering, used each time step or periodically, for initial
conditions corresponding to Haurwitz waves, keeps the integration
stable for at least 20 days, the maximum period of our runs, In what
follows we call this smoothing the 3-gridlength filter,

In the 3-gridlength filter, Fourier representation is used
for the variables wu,«) and h then all waveiengths less than or equal
to 3-gridlengths are filtered, This filter is done in both east-west
and north-south directions, For example with N points around a lati-
tude circle, if A, represents a variable before filtering and A?,\ the

variable after east-west filtering then

» (§ %)) OkﬂA)
= a(k
AI\ E—-‘-K"') ) Jd
where
N -tkna)
alh) = T Bne
N  nz)
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k,,\ is the largest integer contained in N/3 + 0,5,

The model also makes use of a weak time filter developed

by Robert (1966) by the following algorithm

t (—-at C
F‘us & F'l + }7‘:') 2at,

Fow " e [F'mf.th-e- F*‘Mt] :

F stands for any of u,« and h, The () indicates a time filtered

variable. In the experiments reported here e¢ is setat 0,02,

1.6 Friction term

Because of the limited resolution of the models which pre-
dict geophysical fluid motion, it is generally impossible to describe
the small scale motions, Through turbulence theory, it may be pos-
sible to describe their average behaviour and their effect on the large
scale motion, One of the simplest of these ideas is that of energy
cascading from large to small scales to be finally dissipated by mol-
ecular viscosity at very small scales,

As is clear from our previous discussion a friction term
will be studied as an alternative to the 3-gridlength filter, The primary
purpose of this term is to prevent non-linear instability and, hopefully,
to represent in a more sophisticated way what happens in the atmosph-
ere, In the following three sections a discussion of the viscous force

as included in this work will be presented,
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II.,6.1  Mathematical formula

In a general coordinate system the definition of friction or

viscous force is given by McConnell (1931) as
st st 3
F; =0 S 8% = 85 » (1)

st
where 3“ is the fundamental or metric tensor, and § is its contr-

s
avarient form, Sr is the Kronecker delta and 6, is the viscosity

rs
stress tensor, The indices (r, s, t) in the tensor notation take values
corresponding to the dimension of the space. Repeated indices are
to be summed over the dimensions of the space and a comma indicates
covarient differentiation,
For equation (15) to be useful we have to express the stress
as function of the other variables of the flow., We know that the stress

is function of strain and as usual we shall use Hooke's postulate that

the stress is a linear function of strain, or

mwn
e-nn »

<«

rs = Opg

€wmn is actually the velocity strain tensor defined as

Cmn = \T( \Im,v\ +* \In,n ) P

where

k is the velocity vector,

The quantities Y:: which form a mixed tensor of the forth order,
are called the coefficients of viscosity, We shall assume that the fluid
is homogeneous and isotropic, For a homogeneous fluid the same
strain at different point of the medium produces the same stress, This

means that

§_ =0 ig e

rs,t kil

rs,t =

=TT
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A necessary and sufficient condition for the above to hold is that

mn

Y = Q.

r3,t

For an isotropic fluid the most general isotropic fourth order

tensor with symmetry in (r, s) and (m, n) is

The first term is known as the first viscosity and the second term as

the second viscosity; )A and ): are elastic constants, It follows
that the stress can be written as
G A +55) b + AT,
= A (Res + 25y )+ J'a.'xars (\!:n + \I:m) ’
=2 er + X9,D ,
=M (Vv,s +Vs,r) +/\'3“ D,

where D is the divergence It follows that (15) becomes

29 (Vs + Ve e #4332 -

z \jrst+kvr‘f‘ \[‘*‘Aﬁr, I

where k is the curvature of the earth,
It is clear that the last term does not add anything new to the equation
and because we use the viscous force to get its smoothing effect we

Y
shall put )\ =0, Thus the friction we have used takes the form

i st k\} -j
=ﬂ 3 \)r_,sr 3 r 5 ) b x\‘
While the shallow water equations on a sphere have a time-honoured

usefulness for studying numerical schemes and can be derived with




G 2 g

appropriate limiting assumptions, the form for a spherical friction
force Has not been so carefully treated especially as to its limiting
form for quasi-horizontal flow, We have arbitrarily chosen to consi-
der the flow to be strictly two dimensional, However it will be our
contention that a simple friction term, with coefficient of viscosity
independent of the flow, is not very useful for controlling aliasing ins-
tability for the simple reason that the Reynolds number required at
the scale of the grid is simply too small not to affect the scales of int-
erest, In other words the magnitude of friction required to control
numerical instability excessively smocths the scales of interest,
For surface spherical polar coordinate in two dimension
A and Y ; ¢ is the latitude and ) is the longitude. The distance

ds is defined as
(ds) = = de) o (o) (@A),
= 9,n) + 9, @ -

T
So 3|| = and 31.1."“}('“ X\

or

\t "
9= 1/«.‘ and 9 = 1/4."&3‘X‘ 3
where a is the radius of the earth,

As shown in appendix (I) we find that 3% and F‘ are given by

3 § 3 L3
R ';i o Tag ) “c.'i‘:%: iy —“*?‘r‘;
P, 5 Y
—(1*"'\"' e )U' . 2“\* -':t 71 ) ()

and
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where u and -} are the horizontal components of the wind vector and

Y is the kinematic viscosity coefficient,

M.6,2 Analytical effect of friction

One of the useful features of the friction term used is that

if the flow is ( horizontally ) non-divergent, then it can be shown that

K.9~F =1 [V,‘} .\.%]’

IK is the unit vertical vector, ¥ is the horizontal friction vector

SF S IS —

C and I is the relative vorticity, Since the condition of non-divergence

implies that the shallow water equations reduce to the vorticity equation,
then using the previous formula and considering that the change in

vorticity is due to friction we can write
Mo yfvted
T e
Now if we write the vorticity as a pure spherical harmonic
tm)\
PG RA) ¢ ¥

where A(t) is the amplitude of the vorticity which is function of time,

1'3': (¢) is the associated polynomial of the first kind, m is the east-west

wavenumber and n is the two dimensional wavenumber, then

1 i

Fune™ 29 - gLt 2 gy Blo e
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Integrating we get A = A, é.‘t,
where o = % in(n-\-!)— 23 2

So we can see that the effect of friction, is to reduce the amplitude of

the vorticity exponentially with time. The effect will be larger for

small wavelengths or large wavenumbers, as it is clear from the for-

mula for a¢ .

I.6.3 The effect of the friction term on divergence

The initial conditions used in our experiments are such
that the divergence and its first time derivative is initially zero, How-

ever, due to non-linear interaction, even with the above initial condi-

tion significant divergence develops, The problem of aliasing is
associated with the appearance of wiggles and increase of divergence.
In this section it is desirable to show that the amplitude of the diverg- i
ence field will decrease due to the existence of the friction term, or
in other words the divergence field is as well controlled by the friction |
force,
Using equations (16) and (17) with the definition of divergence R

in spherical polar coordinate, it is possible to show that

C ) EOE L N (Fpeaw)
V.F=—l 3+ ]'
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So from (18) and (19) one can conclude that

S
N.¥F = 2 (V -\--&:) D
If we take the divergence of the momentum equation and considering

that the local change of the wind is governed only by the friction we

get the formula
3D - T
-B-t— -— ZQ ( Y ) D

From the above equation, it is clear that the friction reduces the

amplitude of the divergence except probably for the very large scales.

.7 The criteria for numerical stability

The guidelines for the choice of time step for the integration
of equations (1) to (3) have been determined by an analysis of the CFL
criteria in Cartesian geometry as given in appendix II, These criteria
are summarized below,

1, Neglecting the friction terms and using a fully explicit scheme,
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the condition is

"
ot < 1 /ea ke, 29)

where c=(gl-1)¥'

is the speed of gravity waves; L and K are respect-
ively the maximum wavenumbers permitted in the north-south and
east-west directions, As shown in appendix II the inclusion of friction
terms in fully explicit scheme does not affect the CFL criterion
significantly in our case,

2. Neglecting the friction terms and using the one dimensional

semi-implicit scheme as described in II.4 the condition reads

At < i/L—C (X))

Due to the convergence of meridians near the poles KL and thus

the one dimensional semi-implicit algorithm permit much longer time

step than those given by the fully explicit scheme., However, if two

dimensional semi-implicit scheme is used all the modes will be neutral,
3. With friction and the one dimensional semi-implicit algorithm

we have two conditions to be satisfied, they are

ok = 4 /Y (22)
= 1 = YL V0 (K+L), @3)
where @ =g'I-I'.

In fact, we can summarize the result of this case as
a, If ) is relatively small the condition for stability is (21).
b. As ) becomes larger the condition for stability goes to (22),

To show the difference between the time steps as given by the conditions
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(20), (21), (22) and (23) tables 1 and 2 give the approximate time step,
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in seconds, from the above mentioned criterions,

TABLE 1,

Experiment notation

4t from condition (20)

ot from condition (21)

( sec) ( sec)
N3216 143 1785
N6432 35 892

TABLE 2.

Experiment notation| At from condition (22)| At from condition (23)

( sec) (sec)
F3216(4) 8x 10" 1785
F3216(5) 8«10 1785
F3216(6) 8x10 800
F6432(4) 5x10 892
F6432(5) 5x10 500
F6432(6) 50 50

Experiments with 3-gridlength filter applied each time step permit

a longer time step due to the removal of short waves,

II.8 Computing time per step

A CDC 7600 computer in single precision arithmetic ( 60

bit word length ) was used for all the experiments discussed in this
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thesis, The time, in seconds, required per step of integration for

the one level model used are approximately as follows:
a. Including Fourier filter, applied to u, v and h, for two
successive steps each three hours
T = 0.22x16° D.
b. Including Fourier filter, applied to u, + and h, each time
step
T = 0.27x10° D.
c. Including the viscous force
T =0.32x10° D.
d. Including neither the viscous force nor the Fourier filter
T = 0.21x10 D.

D is the number of degrees of freedom of the model,

This means that the use of the periodic filter ( two success-

ive steps per three hours ) increases the time of calculation by less

than 5% ; filtering each time step by less than 29% ; while the viscous

force increases the time by about 52%,
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CHAPTER III

INITIAL CONDITIONS

II1.1 Initial condition for the test experiment

The field is initially non divergent or u and ¥ are

calculated from a stream function defined as
\ 2 k o2 kS s 3
W= K, (Cos'f) S Ces (v-\,\-ut) — & A Sing, Gx)

The height field is given by

2 L
h= Z.JLTGJS_; (Gos \Q)“LS%-\IQ\x Cas(m) =ut) +JL3A& (Cu‘@)t-g- ‘I. iy Gs)

where

m 1is the wavenumber,

t time,

k, k;, N, w and hjare constant,
=k -C.‘t ’ (3-6) i3

¢ is function of the wavenumber ( see I1.6,2 ),

<. is the angular velocity of the earth,
1, +/ and h given by (24) and (25) do not generally satisiy (1) to (3). To
make u, v and h satisfy (1) to (3) for all times, an extra term is added
to each of the equations (1) to (3)., The modified equations can be

written as ; . A

LY S S U q) Wt 9 3k = i
T trem T w2 N -h-Geme A |
{
MNos 43 9 dh iy >
b3 Ry AA + B"?+£ TW" F‘Q Gu=e, @3) !
o g Che) | N Uk cort)
Ay Ty u.(»s? [ w Y] i .

* i,e, the wave component is proportional to Pmﬂ“ﬂ .




where £=f+u tanyg /a.

The expressions for Gu, Gv and Gh are obtained by substituting u, «

and h from (24) and (25) in (27) and (29). This gives

Gu zam LC“‘Q)"" (s..‘q)‘ i Sin(m)-ut) c[a,.n. (K= Ke) + K[ .|.A(;.n)]}
—acky Casmp-ut) |- wmKieose) " [14Cem)side ] m__t_(.siz“_’-l

ta k‘(cem)“'f(m\-u) Sin¢mA-wt) 4 o Cas (-.,\-ut)]
)

D a2} Ky 18] atma-ut) [(mary e -m ) s
Gu = Sinyg @.;q)“..[:egm W K, Cas(mA-wtb) 4 st ¢ m K, Sin¢mA-ut)
—am A K, Cs(mA-ut) ¢ 2L K o m GslmA-ut)
2 AR m Cos(mp-ut)—2 D Kim Q;(M-ut)]
4 Sinv (Cosey™ E"‘"“ Kim Cos¢mA-ut) _ 200 K, Cas¢ma-ut)
—2an K, Cosmp-ut) 4 LKy CasCmAout) 2 L aKym Castmi .ut)J
A5ing Cosw) - ot ki Cas'tmacut) ot Kylm-1) SR (A= wt)
oK ot CmA—w *)_] +sine(Cas vza)".‘ E».n‘ K Cas(m)-wt)
ot Ky Cad mhaut) 4 o mUKY SR (A -t ) 4 (met) amt K, Sk (mA-ut)
— 2ok Cosi(ma-ut) 2 Km c.?(-q.ut)]
e () [ K €A -08) 2 ke mA-nt)
kGl tma-ot) J o Sy G

e 2:_'5. mE (1) Sing Lcesv)“" sin(wp-st) ,
and

2
Gh= 3—";——2- Sin(mA-ut) D(;u +Am (K-ky)=mK, K,(casq)n C‘N‘“*ﬂ
X (simf)" (c.:q)“,

With no friction ( ¥ =0) the solution of the system (27) to (29), with the




with angular phase speed W without change in shape or amplitude,
However, with friction, the wave will move with the same phase
speed W without change in shape but the amplitude for u and «+ will
decrease according to the relation A=A, E* , where A is the
amplitude at time t and A, is the initial amplitude. In fact, this is
why we put the relation (26), because we know from sectionII,6.2
the effect of friction, The values used in the test experiment are

m =4 , ( wavenumber 4),

Eaky @ et 840515 wed,

L= 2W/86400 sed',

h,= 3 km,

a=6.4¢10 km,

9=10 m/sec

11,2 Haurwitz wave initial condition

The initial field is non divergent, so that u and v can be
derived from a stream function, In fact, we use the same stream
function of the test experiment, or

Y=o K (Qas9) Sng CasmA —o>A Sing .

The height field which balances this initial flow, or the height field

which makes the time derivative of divergence initially zero is given

by
Fh=9he+d AM) + & B(¥) Cos R\ 4 o DY) Cos LRA

where

initial condition given by (24) and (25), represents a wave which moves
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| LoalBat) i - F, —(met)c
1 B) = Fimeyy © Loteam+a)=t 1
E | T wm
¢ | D(y) =K c C(m+l)c‘—-(n+t)3 N
£ & %
' and C = cosly) .

i

| The values used in the experiments are

m =4 and 6, ( wavenumbers 4 and 6),
'3

| k=N=7.848x10 sed',
| Q- 2T /86400 sed,

hy= 8 km ,
& = 6.4510 tm

9:-10 m/sed.

ﬂ

£ e

Although the divergence and its time derivative is initially zero,
significant divergence develops and thus the waves do not propagate

with the Rossby-Haurwitz phase speed, nor do they mantain their

RT3 U e R P P R S

S s

shape precisely.
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CHAPTER 1V

EXPERIMENTS AND RESULTS

A basic mean flow, independent of longitude, superposed
F; , on it a distufbance will be integrated with time using equations (1) to
" (3). Two different types of disturbance are used, wavenumber four
whose form changes a little during more than fifteen days of integr-
ation (stable wave), and wavenumber six which breaks down completely
within few days forming cut-off lows and a region of zonal easterlies
at about 50" N (unstable wave), Experiments with the following'diff-
erence will be described
a. Runs with Fourier filtering,
b. Runs including the viscous terms in the momentum equations,

c. Runs which do not include either of the damping forces (a)

or (b),
Iv.l Experiment notation

Hereafter we shall use the experiment notation AIIJJ(L-M),
where

A stand for; |

F if friction is used,

P if Fourier filter is used,

N if neither friction nor Fourier {filter is used,
1 II is the number of grid points per latitude circle, |

p JJ is the number of grid points between the poles,
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1 L will be used in case of friction and Fourier filter, In case of
friction- it indicates the value of kinematic viscosity used (9 ), e.g.

. experiment including friction with V= 10" m"/sec, L=4, Experiments
with Fourierfilter have L to indicate the value of the number of succ-
essive time steps used per M hours, If L and M are not included
in an experiment notation for Fourier filter, this means that the

3-gridlength filter is used each time step.

i
¥
b |
-
E ]
|
|
1
&

For example in an experiment with II=32 and JJ=l6,

the experiment notation is F3216(5) if friction is used with \):10‘ m/sec,

the experiment notation is P3216 if the Fourier filter is used each step,
the experiment notation is P3216(2-3) if the Fourier filter is used
for two successive steps each three hours,

the experiment notation is N3216 if neither friction nor Fourier

filter is included,
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Fig., 1. The logarithm of the square of the amplitude of
z Fourier wavenumber 4 of the V-component of
i‘ wind (summed for all grid latitudes) as function
! of time for the test experiment, F3216(7),
1
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IV.2  Test experiment

It is essential before starting our experiments to be sure

that the effect of including the viscous force, in the momentum equations,

gives the expected results, In other words, it is important to test the
program with and without this force for a simple initial condition to be
sure that there are no programming errors or hidden instabilities,
The initial condition used in this test is Haurwitz initial
condition for wavenumber four with the forcing function included as

discussed in section III,1, This means that the model represent a

non-diversent barotropic fluid for all times of integration, This means;

a, If the model runs without the viscous force, the result must
be just a moving wave with known phase speed and without change of
amplitude,

b. If the model includes the viscous force, then the u and «
fields will move with the same phase speed but their amplitudes will
decrease exponentially with time according to the equation, (see II,6.2)

A = A,-t.nt , where o =V m(m+3)/d,
The previous equation can be written as
log (A) = log (A,) - 2= k. (30)
This means that the logarithmic change of the amplitude squared with
time is linear with a slope of -2e¢, In this test experiment v was

taken to be 10 m /sec giving an e-folding time of roughly three days.

The result for the experiment F3216(7) is shown in Fig.l, As expected

from formula (30) a straight line resulted on a graph with the coordinate

log (A)l and t, From the graph the slope of the line 2&¢ =0,137x 16*




=&
and from the values used 2 =0,1376x10 . In this experiment the
time step used is 2 minutes, There was no evidence of any numer-

ical difficulties,

Iv.3 Experiments with wavenumber four

Hoskins (1973) has shown that a Haurwitz wavenumber four
superimposed on a constant angular velocity zonal flow is stable in
the sense that the wave propagates in an east-west direction with little
change in shape. In other words, there is little cascade of energy or
enstrophy during a time integration., As such, one expects that there
will not be a serious difficulty in the simulation of this wave from the
point of view of the control of aliasing instability, Indeed we have
found that an integration with low resolution (II=32 and JJ=16) can pro-
ceed for 16 days without any controls at all, On the other hand, t‘he
inclusion of filtering or a friction term while permitting a longer
integration time has, surprisingly, rather significant effects on the
nature of the solution, In this section we describe the result of expe-
riments with low resolution and high resolution (II=64 and JJ=32)., We
found that the main wave moves eastward with faster speed.for high
resolution experiments, Its displacement varied between 10, 7.per
day and ll.4°per day compared to the 12.2°per day predicted by the

*
nondivergent theory, The phase speeds obtained here do notcontradict

% As shown by Haurwitz (1940), in a nondivergent barotropic atmos-
phere the flow pattern moves from west to east without change of shape
with the angular velocity v, where

v=[R(R+3)w -28]/(1+R)(2+R), the symbols as in III,2.
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Fig. 2. Initial conditions (Haurwitz wave 4); u(m/sec)
v(m/sec) and geopctential height h(meters)

with interval 240 meters,
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those obtained by Bourke(1972) and Merilees (1974), as some of the

constants are different with the result that in these experiments we get
faster waves, The phase speeds obtained here are very similar to the
values obtained by Hoskins (1973), while the values obtained by Phillips
(1959) are smaller, perhaps due to the use of second order finite

differences. The initial conditions of u, v and h are shown in Fig. 2,

Iv.3.1 Low resolution experiments

We compare the results of experiments F3216(5), P3216(1-3)
and N3216, With this resolution the basic disturbance is described by
8 grid points along a latitude circle, The maximum zonal wavenumber
which is completely resolved is 15, The filter used in the experiment
P3216(1-3) will periodically remove all wavenumbers greater than 10,
The time step used in these experiments is 10 minutes,

In each of the above mentioned experiments, the behaviour
was substantially the same for the first 3 or 4 days. The disturbance
quickly developed a north-west to south-east tilt in the northern
latitudes of the northern hemisphere and a north-east to south-west
tilt in the polar latitudes, This has the effect of transporting westerly
angular momentum from the northern latitudes towards both the equator
and the pole (see appendix III), At this point, the behaviour of the
disturbance as indicated by experiment P3216(1-3) begins to differ
from the other two experiments, In the experiment P3216(l-3) the
wave tilt developed initially is maintained whereas in the other exper-

iments the wave tilt reverses, These results are shown in Fig, 3(A)
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' 3 where we have plotted the phase of the main disturbance (wavenumber 4)

‘ for the . v-field as a function of latitude., The figure indicates that the

. behaviour of the flow as described by experiments N3216 and F3216(5)
is that of a stable nature, that is, tending to return to the initial

i condition, On the other hand in experiment P3216(1-3), the zonally

g
et
P e e s

averaged u-component continues to accelerate in low latitudes and
decelerate in middle latitudes, As a result the distribution of the

zonally averaged u-component of the wind is completely differentafter

9 days of integration as indicated in Fig,3B. As we shall show

presently, the behaviour of the experiment P3216(1-3) appears to be

by

anomolous and due to the filtering applied.

T T T N T T TP 0 ETPPAr A e e T

: g C ‘ Iv.3.2 High resolution experiments

r’ g Since we expect that the higher resolution experiments

d should provide a'more accurate approximation to the true solution, we
g are able to use such experiments to tell which of the low resolution

experiments are going wrong, In this section, we compare experiments

3
N6432, F6432(5), P6432(2-3) and P6432 for the same initial conditions

i P

CES E T S S  S  CS

e
RO S5 bl

as in the low resolution experiments, In this grid system the maximum
zonal wavenumber which can be completely represented by the grid is

31, The filter when applied, will remove wavenumbers greater than

20, The time step used in these experiments is four minutes,

* Experiment P6432(2-3) is discussed and not P6432(1-3) because,
! as we shall see in section IV,3,3 experiment P6432(1-3) exites the

é‘ two time step computation mode,
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Fig.4 shows the distribution of the phase angle, for the
V-field, against latitude for the experiments F6432(5), N6432 and
P6432(2-3) after 3, 6 and 9 days, Fig.5(A,B,C,D and E) shows the

%%k
u-field on day 9 for the experiments F3216(5), N32l6, P3216(2-3),

YL T e

F6432(5) and P6432(2-3). It is possible to conclude from the results

of high resolution experiments compared to low resolution experiments

that;

1, The high and low resolution models are in good agreement up

P LT T T W T e o e 3

to 3 days. In fact, the fields of u, v and h are about the same up to
3 or 4 days for all the experiments and thus they are not shown,

2, The high resolution models generally give the same results

R S Yo

up to 9 days, There are some differences, the most noticible of which

is shown in Fig.5(D and E) where the low centre in the equatorial area
for the u-field has minimum value of westerly wind of the order of

10 m/sec for F6432(5), while the same centre has a value of about
30 m/sec for P6432(2-3), The difference for the u-field for low

resolution experiments after 9 days is more pronounced as is clear

from Fig.5(A,B and C).

3. In low latitudes the wave moves faster in the high resolution
experiments, further there is less difference in phase speed between
low and high latitudes in the case of high resolution indicating that the

wave is more stable,

4, The change of phase tilt with time in high resolution experiments

*%* For the same reason as the footnote of page(34), experiment

P3216(2-3) is discussed and not P32l6(1-3),
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is indicative of a stable flow, Fig.4 shows that the momentum trans-

port on the third day is southward, on day 6 is northward from
low latitudes while there is a weak southward transport of momentum
on day 9, On the other hand in the low resolution experiments with
the periodic filter, momentum is continuously transported from middle
latitudes to the north and south,

Fig.6(A and B) shows the distribution of the mean flow for

the u-field against latitude, on day 9, for the experiments F6432(5),

P6432(2-3) and P6432, F6432(5) and P6432 give the same distribu-
tion but P6432(2-3) gives a weaker mean flow for the middle latitudes
and higher values for the north and south, It is possible to conclude

from what we discussed that the behaviour of the flow for P3216(2-3)

a C . is incorrect due to the application of the periodic filter., On the other

hand, the high resolution experiment with periodic filtering is able to
capture the oscillation in momentum transport which leads to a stable
wave, We conclude that some of the waves that are filtered in the low
resolution experiments are essential components of a stable oscillation,
When no smoothing is applied to the high resolution exper-

iments the calculation '" blows-up " after about 8 days, Note the noise

on the distribution of the mean flow as shown in Fig,6(A). We can also

see irregularities in low latitude in the u-field as shown in Fig, 5(D).

The problem of instability will be discussed further in section IV, 3,4,
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The amplitude of wavemumber 12 of the ¥-component of
wind as a function of time at two latitudes. Solid

lines are for 5.6'N and dotted lines for 39.3 N. The
upper figure (A) corresponds to the experiment N3216,

the middle (B) to P3216(1-3) while the lower (C) to
P3216(2-3). The circles on (B) represent the experi-
ment without Robert time filter,




Iv,.3.3 Further experiments with low resolution

Because of the anomalous behaviour of the low resolution
experiments with the filter it was decided to investigate in greater
detail the effect of the filter, The first step in this process was to
study the variation in time of one of the wavenumbers before and after
a filtering time. We choose to look at the behaviour during the first

few hours of the integration both because it is more convenient and it

should indicate the tendency for the wavenumber four flow to cascade

energy and enstrophy. Fig.7(A) illustrates the behaviour of the amp-
litude of wavenumber 12 in the V-field when no filtering is applied
while Fig.7(B) indicates what happens when filtering is applied at 3
hours from initial time, We have plotted these curves for two latitudes,
one near the equator and the other in middle latitudes, we can see

that the behaviour is quite similar, We note that the application of
the filter at one time step has the effect of exciting a two time step
computational mode, Subsequently this mode is damped out, but much
faster than would expected from the effect of the Robert time filter,
Fig.7(B). It is quite simple to understand why this occurs especially
if the time derivative of the amplitude of this wave is essentially inde-

pendent of its own amplitude. In fact, the subsequent behaviour of the

wave amplitude is consistent with the idea that there is some quasi-
steady amplitude which should be acheived in this wavenumber, If that
were the case, we should expect to see the amplitude to increase when

it is excessively low and remain about the same level where it is before

filtering, These ideas are further supported by the curves in Fig.7(C)
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which show the result of applying the filter on two successive time
steps. 'Note how the two time step oscillation is considerably reduced.
Further, the amplitude of the wave tends to grow back to its level
before filtering, This indicates that energy will tend to flow to this
"wave when it has little. Since it is, in general, good practice to mini-
mize the exitation of two time step oscillation it was decided that it
would be better to apply the filtering on two successive time steps*.

One of the rather arbitrary features of the application of
the filter is how frequently it is applied, Some very rough experiments
by Merilees (1974) suggested that every three hours was alright, but
no serious effort was made to investigate it more thoroughly, Here
we carried out 2 number of experiments to see how the solution changes
as we change the frequency of the application of the filter.

We first compared the effects of filtering at two successive
time steps every three hours and every hour with filtering once every
three hours, Fig.8(A) shows the distribution of the phase angle of
zonal wavenumber four of the v-field, We note that the tilting of the
phase is less pronounced when we filter every hour, Filtering at two
successive time steps every three hours tends to produce slightly less
tilt but the distribution of phase is quite similar to that obtained by
filtering once every three hours, In Fig,8(B) we show the zonal com-

ponent of the u-field after 9 days and we can see the effects of the

* This practice is apparently well known by those who have experience
in grid point models, However, people who work with spectral models

have generally not concerned themselves with it,
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tilting of the phase lines, While there are some differences caused

by the double application of the filter at three hour intervals, the

TR

= interval of time between the application of the filter appears to be more

important, Based on this consideration a number of experiments

AT T

i ica:

were performed in which the time interval between application of
filter was varied between zero and.48 hours, In each of these experi-
ments the filter was applied at two successive time steps, Interest-
ingly, we find that the tilting of the phase of the wavenumber four of

the v-field is not monotonically dependant on the time interval between

e R TR T T ey

application of the filter, In fact, the application of the filter at 12

hours intervals appears to produce the maximum effect as shown in
Fig.9(A). Naturally, a similar effect is produced on the profiles of
the zonally averaged component of the u-field as shown in Fig,9(B).
Using the filter each time step, surprisingly, showed the more stable
solution, Fig,l0(A and B), with the least change of energies, Fig.ll
shows the kinetic and potential energies as well as their sum during
a period of 13 days for the low resolution experiments, The figure
shows a change of less than 2% in the kinetic energy for the experiment
P3216 during the 13 days of integration,

As a convenient summary of the sort of results obtained

we present Fig,12, The ordinate is the difference between the zonally

averaged u-field after 9 days of integration and the initial value of
this same field at about 51'N. Since the true solution oscillates about
the initial conditions, this provides a measure of error, Along the

f‘ abscissa we plot the different experiments in order of decreasing time
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about 50.6 N, on day 9, apd 30 m/sec for differ-
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interval between application of the filter, While the diagram indicates

similar difference in the zonally averaged u-field for intervals of time

corresponding to points A and B, the details of the simulation are,

in general, different. A more important conclusion from Fig.12 that,

it shows that differences produced by the periodic filter are very
sensitive to the frequency of applying that filter,

From the above results we form the following picture. At
the outset of the flow evolution, the troughs and ridges tilt to transport
momentum from middle latitudes towards the north and south, At the
same time, through non-linearities, energy is fed to smaller scale
waves, The energy flow to the small waves reaches 2 maximum then
starts to flow back to the larger waves as the trough-ridge tilt reverses
direction to give an opposite transport of momentum indicative of the
stable nature of the flow, The application of the filter interferes with
this process, When the filtering is applied very often, very little
energy leaks out of the system and so the flow is forced to (almost)
conserve the energy in the larger scales and thus to oscillate, If the
filtering is applied rarely, the smaller scales can become saturated
and initiate the reverse flow of energy which leads to the oscillation,
However, when the filter is applied at an intermediate frequency, a
significant amount of energy is removed from the system at the small
scales, and the large scales will tend to feed still more energy to these
scales much as though the integration were beeing restarted after each
filtering,

Since the process of an oscillating tilt must be related to

i 0?"?",.‘!”" ek e e
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a redistribution of energy among north-south waves we carried out

two further experiments where filtering was applied either in the north-
south direction or the east-west direction exclusively, Fig,13(A and
B) gives the results of these experiments, Note that the application
of the filter in the east-west direction only permits the appropriate
oscillation in the tilt of the phase of wavenumber four whereas the
application of north-south filter causes the persistent tilt that has been
seen in previous experiments, There are some other effects going on
in these experiments, but the primary effect is clear,
We are led to conclude that the scales of motion filtered

out, in low resolution experiments with periodic filter, play an impor-

tant active role in the total evolution of the flow. Further, the process
requires a flow of energy from the smaller scales to the large scales
a possibility which cannot be envisaged by a filter which serves as an
energy sink, We will take up this point later when we discuss the result
of an integration of an unstable initial condition, namely, Haurwitz

wavenumber six,

1v.3.4 Overall control of instability

We have looked into the effect of filtering and the inclusion
of the friction term on the detailed behaviour of the flow, Here we
present an overall view of how well the different schemes control the
development of instability which is the main reason for including frict-
ion or filtering, Table 3 indicates to the nearest day how long a part-

icular integration proceeded before numerical instability developed,
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We note, from Table 3, that the use of the 3-gridlength filter extends
the calculation as far as our longest run without indication of any
instability, In the experiments with a friction term, three values of
kinematic coefficient of viscosity were tried; \)1:10“' : \>2=qu and

*
\)3:10‘ m’ISec. In the low resolution experiments, the low value of

TABLE 3,
Experiment notation | No, of days | Experiment notation | No, of days
before before
"blow-up" "blow-up"
N3216 16 N6432 8
F3216(4) 17 F6432(4) 9
F3216(5) 18 F6432(5) 12
P3216(2-3), P6432
Eagianl 220 | p6432(2-3) and >20
P32l6

friction managed to delay the numerical instability for less than one

day,

The medium value of friction was sufficient to add another day

of simulation, The high value of friction controlled the instability to

the 20 day limit of integration, but produced far too much smoothing,

* In middle latitudes for high resolution experiments and with rmean
flow of 30 m/sec VY1, Y2 and V3 give values for the local Reynold's

number of the order 10’, 10" and 10 respectively,
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In fact, after 10 days with high friction coefficient the amplitude of
wavenumber four for the «-field at about 28,N ( the maximum
value ) decreases to about 47% of its initial value and to 63% after
15 days, while without friction the same point decreases by less than
2% after 15 days for P3216 and less than 0,002% for P6432,

Fig. 14(A,B,C and D) shows the u-field on the days 3

and 6 for the experiments N6432 and F6432(5), The two models

- are very similar up to 3 days without indication of instability, On

day 6 irregularities are apparent in low latitudes in experiment
N6432, In fact, some indication of irregularities could be seen as
early as day 4, These irregularities grow rapidly with time and
cause a 'blow-up'' on day 8, The experiment N6432 was repeated
with half the time step ( At=2 minutes), but the same instability
appeared at the same time ending the calculation on the same day,
F6432(5), on the other hand, has no indication of instability on day 6,
It is clear, apart from the areas of irregularities, that F6432(5)
and N6432 are in good agreement cn day 6, Fig., 5(D) shows the
u-field on day 9 for the experiment F6432(5), The appearance of a
similar irregularities is shown in the u-field of that day, The gro-
wth of these irregularities causes the ''blow-up' of caiculation on
day 12,

The instability of the low resolution experiments appears
to be different, The first indication of trouble can be noticed as early
as day 10 at which time significant amplitude is contained in zonal

wavenumber two at all latitudes, This behaviour is strange since
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neither the interaction of the primary wave (zonal wavenumber four)
nor ali#sing should develop zonal wavenumber two, Fig, 15 shows
the distribution of the amplitude for zonal wavenumber two as funct-
ion of time for the experiments N3216 and F3216(5). The irregula-
“ “ rities grow with time and finally end the calculation on days 16 and
18 for N3216 and F3216(5) respectively, Note that the other expe-
riments, including N6432 and F6432(5), shows practically zero

magnitude for wavenumber two at all latitudes as far as the integra-

i tion goes,
: ‘ Iv.4 Experiments with wavenumber 6
' é In section IV,3 a stable wave was studied and we saw

§ ( that because of the reversable cascade of energy and enstro.phy betw-
4 é een large and small scale waves, the periodic filter with low resolu-
% tion produced rather large differences in the evolution of the flow,

i

In this section, we perform similar studies with initial conditions

B' : drawn from a Haurwitz wavenumber 6, As shown by many authors
this wave breaks down in a few days forming cut off lows in middle
latitudes (see for example Merilees (1974) and Kasahara (1977)). With
this initial condition it is unwise to run the experiments with 3-grid-

length filter for low resolution (II=32 and JJ=16), the initial disturbance

has considerable energy in wavenumber 12, Merilees (1974) showed

that due to the unstable nature of the flow and the resulting cascade
of enstrophy to the shorter wavelengths, experiments with resolution

( up to 15 waves are not enough to predict the evaluation of this wave
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after 3 days, In this section the experiments N6432, F6432(3},
P6432(2-3) and P6432 will be discussed, In addition a control run
with filtering each time step and II=128 and JJ=64 was performec, The
control run will be considered as the true solution, The time step
used in these experiments is four minutes except for the control run
where the time step is 5 minutes,

In each of the above five experiments the disturbance soon
developed a north-west/south-east tilt which transported angular
momentum out of the middle latitudes. The five models are in essen-
tial agreement up to 3 days with eastward phase progression of about
23,7 per day near the equator and 21,6 per day in high latitudes
compared to 24,6° per day predicted by the non-divergent barotropic
theory, Fig. 16(A and B) shows, on day 3, wavenumber 6 for the
«-field and the mean zonal flow for the experiments N6432, F6432(5),
P6432(2-3) and P6432, After 3 days the differences between the above
mentioned models become more noticeable, All the models indicate
more rapid motion of the waves in low latitudes after 4 days, The
main difference is in middle latitudes where experiments with Fourier
filter show a stationary or weak westward motion of the waves at these
latitudes after four days, The other experiments indicate weak east-
ward motion, This is shown on Fig,l7(A .and B) where we plot the
distribution of the phase angle, of the primary wave for the v-field,
as function of time at the latitudes 30.¢’N, 53,4'N and 70, N, As
a result of the difference in phase speed with latitude between exper-

iments with Fourier filter and the other experiments, the tilt of the
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the wave (which leads to the export of westerly momentum in middle
latitudes-) is steeper in P6432(2-3) and P6432 than F6432(5), This
result in weaker easterlies for F6432(5) which can be seen on
Fig,18(A). The latitudinal distribution of the mean zonal flow and the
main wave for the v-field, on day 6 [Fig.lS(A and B) and Fig,19(A

and B)] , indicate that the experiments with Fourier filter, on that
day, are closer to the control run than the other experiments, N6432
shows clear irregularities on the mean zonal flow and the main
disturbance of the +/-field, Fig.l18(A and B), N6432 shows an increase

of kinetic energy of about 28% on day 6 and subsequently '"blows-up",

Fig,20, F6432(5) shows irregularities in low and high latitudes on
day 8, Fig.21(A), and the calculation is ended after 9 days due to the

- accumulation of energy in high wavenumbers, At this time the kinetic
energy has increased by about 53%, as shown in Fig,20, Fig.,2l

shows the h-fields, on day 8, for the experiments F6432(5), P6432(2-3),

P6432 and the control run, Apart from the area of irregularitiies
shown on the field of F6432(5), the comparison between the fields
shows better result for the runs with the Fourier filter, For example,
in middle latitudes F'6432(5) shows open waves while, as expected
from the results of others and also from our control run (Fig, 21(D)),
P6432(2-3) and P6432 give closed systems in middle latitudes, F

It is clear from this section that the periodic filter does

control the aliasing instability and at the same time gives reasonable
evolution of the flow with time with little additional computing time,

On the other hand for wavenumber 6 the friction term with coefficient
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of losm"/Sec is not enough to prevent the accumulation of energy in
high wavenumbers and higher values of the friction coefficient will
cause excessive smoothing,

From these experiments we cannot conclude that a non-
linear viscous term would not do a better job, but certainly the
results of Miyakoda et al (1971) indicate that such an approach is not

too promising,
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CHAPTER V

SUMMARY AND CONCLUSIONS

One of the problems of long range forecast models is their
need for some sort of smoothing to prevent the non-linear (aliasing)
instability and to achieve reasonably smooth fields, Two methods are
tried for a one level primitive global model, The use of a Fourier
filter which eliminates the 3-gridlength waves and smaller from time
to time, and the addition of a linear friction term, in the momentum
equation, to dissipate the kinetic energy especially from small scale
waves, The models are tested with two types of simple initial
conditions, a stable wave where the fields tend to return back to their
initial values and unstable wave where the fields break down within
few days, Up to three or four days the models show no significant
differences between the two approachs, In fact, even runs without
any smoothing are in good agreement with them,

The 3-gridlength filter completely controls any instability
up to the 20 day limit of our runs, It also requires little additional
computer time, The time evolution of the flow is quite reasonable
except if the filter interferes with an essential exchange of energy
between the shorter and longer waves, In this case the filter can
cause serious deviations from the true solution, In this case the

solution to the error is to increase the resolution of the model,

On the other hand, a coefficient of viscosity equal 10 ni/sec.

¢
fails to prevent the non-linear instability while 2 value of 10 m /sec

D oy

e ———




smoothed the fields too much, Further, the use of the friction term

requires considerably more computer time as indicated in section II, 8,
Perhaps a nonltinear viscosity formulation would be more
useful, but based on the work of Miyakoda et al (1971) this does

not appear promising,

Somewhat surprisingly, the application of the 3-gridlength
filter each time step gave the best overall results for both the stable
and unstable wave, Such a procedure is however wasteful of resolution
when the pseudospectral algorithm is used for the estimation of
derivatives, Further, such a procedu:» would effectively convert
the pseudospectral model into a spectral model with about 2/3 of the
. number of degrees of freedom, In that case it may well be more
efficient to use a spectral model from the start,

While the results generally indicate that numerical
filtering is better than a friction term, it is not obvious that the
particular filter used is best, In fact, some less drastic form of
numerical smoothing may be able to provide equally good long term
numerical stability without strongly interfering with energy exchanges
in a stable type flow,

Finally, it should be noted that these results have been
obtained with very simple initial conditions, As such, they can only
be indicative of sort of conclusion that would be obtained with initial

conditions from real data,
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Appendix (I): Friction formula

Starting with the viscous force in the form

st
E =9 o (31)

where the stress tensor

Gps = ) (\lr,s 5 2 Vs,r) (3%)
For surface spherical polar coordinates the distance ds in two
dimension is defined as

(ds} =2 (de )’+ & sin® (dA )‘.
where )\ longitude and @ colatitude,

Or, (dsf =2 (dx‘;' + 2 sid X, (de .

where
2 i

3\\ =a d’“d 3“ =& Sin X, »
and

" l 21 \

- — a“d B e Y

3 & V7 F o %

Now

— Ve im = We ¢V "
V\',s = I \lrs Vim = T{S'irskv‘ -irsk Yis (33)
where { :s} is Christoffel symbol of the second kind defined as
2 re
trs}gﬁ [mn)P].

Lmn, e ] is Christoffel symbol of the first kind defined as

3MMne )9 29
- L — e“- ™ &
Emn,?] B - X" + " Bx"“

It is easy to prove that
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D) = D,a) = Dl = (an1) = (2] = o

and

‘_12, 23 =& sinx, cos x,,
[21,2] =& sinx, cos x,,

[22,1] = -a sin x, cos x, .

So
iz\li = - sin x, cos x, i:“} =cot X, ={:-.,_7] .
From (33)
kT }S\_‘;E.‘ :
Vaa = ‘%\_T’i ~cot x, W .
V‘,.‘ = \;‘2 -cotxy V, ,
and b P %«. +sin x|, cos x, V, ,
and from (32)
S =V ( “\:ﬁ.
Gz V (Vy, +v“ ) =29 ( \_;_%‘_é—sin x, cos x, V),
and SvaE N =9(§§_f‘.+ %; -2cot %y V, ).

Now in terms of physical components

V= Vb =8 V/by =V /a,
v, = Vih,= §°% /hy = /(2 sine ).
Or
v, =a Vo and V,=asing V ,
further
6‘-0=h';6,“=6'.;/a = ("'\IO) ) \%"
or ST hG = L-‘d ‘"‘W“)-t-fme crg V)
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W,
S-A-l"a.Su\O[ 2 +c.sev ]
and
e el gl v
fim G PEn e T g Seme
As F - %‘t &, and \‘;‘
¥ rs,t \'s,t I i_ Srm™ rtk‘:‘"
P
3 & \
S Fr = 3 vi,l Ly 3 rz,t T AW atsimte Ty = 4
where
[
R \x' {ull s-m_i } e
v \
= X\ -ir!.] Su i .} € -
So
\G" hqd
GT)"_‘.?“ and ‘;‘:‘\ - -—--\o -— COte .
Also

G:t,z = }x‘_ i,_,,} rm"i 1( wmy *

- \“;‘\ 4 Sin X Cos Xy Sy, -ir;k i:;\& S

“o 6q,y = T—- 4+5ing Cos @ €, — ct @ 6

and

(;;,1 = }%+zsine Cos@ Gy

So from (34)

' * T Sime 'Lt

_b‘gg
— = A Ce
- — ‘ 5 + X & GEQ—Cote 1y

Ve, )L dSex t - .
I_’i'a' T b ato g,

or
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Similarly we can prove that

‘ LS 2% .\ 36, 42 cto o
.‘ E =l el oA

To get the equations in terms of P (latitude) and A (longitude)

and to replace Vo and Yy by <+ and u as meteorologist generally
do, we use the following relations
w=T0/2 -9 y Vg =-v and Vi = u.

Then it is possible to prove that

3 N R :
F. = ] 3'2_ - T N S T N A T AN
€= Ja R ¥ ST a4 T e D

_z*mq% _"s_“‘:‘!..q"} ,

and ey
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Appendix (II): CFL criterion

In order to obtain guidelines for the choise of time step
we treat the numerical stability problem in Cartesian rather than
spherical coordinates, This approach was taken by Jacques(1976)

with useful results, Here we include a friction term, Consider in

Cartesian coordinates the following equations

‘ Bk §2+° 3_‘»:_\_3_\#_’

T A
L N
| W _ 2 o u
=TT T '\‘bk\xt* \at-)’
and b IR AR
e T o % T 3y /4
where é =g§ is a constant,

Using Fourier series, let us express all the dependent variables in

the form
W(kxe+ly)

A:%?A,e 5

A 1is function of time, k is the east-west wavenumber and L is the
north-south wavenumber, Using a leapfrog time scheme and reme-
mbering that the space derivatives are exact, the finite differences
analogues to the above equation, for a particular mode k and !,

can be written as

teat - ¢- tat .
W = UEF waatDikel 40 (8],

tat t-at t-at

Voo, cozat [ 49N, (k"-t-r)]:

el e[k 24t ],
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where we have used the standard technique of calculating the friction

term at time t- Ot,

Assuming solutions of the form

Ve ¥
wt
-\)o o= "\,* e 2 &35-)
& %

where \?, 'JT and q:* are constants, we find that

J.‘(A_j‘) 429 At X (K L)Wt zi st R 20

;
VEO-E) 4 20 at X (KEE) T L aint L4t =0 s :
‘:' cP*LA.I‘)_l_z; Q{ 5’(\;-* +7_‘ B&éL'\’* =0

: - 3 £

’ where A =€ .

wat f
14
The condition for a non-trival solution is that the determinant of the t

algebraic system vanish, i.e.

A2 )+ 29 at X' (K 1Y) o 2iatk
; o (A-i‘)*.;gﬁtj'(k\fl‘) viatd i
" 2i st P K iatdd BHY) t

a If we denote A=(A-3“)+2‘) at X\ (K‘+’:). |

' ‘ then expansion of the determinant yields the condition
; -\
Ai (A=) )A+4 (At)‘é (k‘+’:)} =0,

€. In order for the calculation to be stable we must have all possible
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values of A to be such that | A1,
Caxa 1,
The first case we consider is when the first factor in the above

condition is zero, i,e.

¢x-Fised arpde X3 =0,
or

A=1-2) at(¥+L),
Then to insure stability wé require that

AL -2y aed ey = 1L
The r.h,s, is always satisfied, The l.h,s, gives a condition for
stability

At = 1/ Y (@+8),

Without friction these modes are neutral, with friction we expect

the modes to be exponentially damped, Note however that if

1/Q(k‘+9-‘) = b6t = l/ZQ(k‘+5~").

—

then x < 0 and the solution is not physically realistic since
there will be a sign change each second time step, Thus a reason-
able condition to impose is
at < 1/ 23 &+,
Case 2,
When the second factor is zero we have

(A=A 429 at(@+83 (2 -8 s 48] G (#+L)=0,

or  (N-F+2Y at(R+2) (AN +a(at)fP (K +1NH)N =0,
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Putting
a=9at(¥+L) and b=2(at) P (K1), .

the above equation can be written as

(b +smif sl 1yema0,

or
X +2(a+b)X+26=0,
where X:)\L-l.
So x=-(a+b)_+_\}Ta+b)‘-?§,
or

T e R +[(a+b) -Zb]‘/,:

Suppose that

e e e

(a+b§'-2b<0,

then the stability condition . ‘)\1\5\ implies that

[(1-a-b)‘-{_(a+b)‘-2b}]‘/"é i

or \
(1l-2a* & 1,

)

e -

By definition a 2 0 and since we have choosen a £ 1/2, from

the study of the first factor, we find that this condition is always
satisfied, But if
(a+b) -2b=0,
or \,\‘\ = | implies that
o i.ill 1-(a+b)i{(a+b)"-2bj){él. |

s always satisfied since
1\
s o l‘-Zb]"] < | a+b\.

s root is the lower sign on the radical, since it
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will contribute to decreasing the middle expression, It is therefore

necessary and sufficient that : 5‘
E | 2 2
i , l-(a+b)-\(a+db) -2b|{ =2 -1,
{ ( L 1= |
i | d 2 % :
| (a+b)+[(a+b) -] 2.
; g It follows that
1 Y
§ T G
| [(a+b)-2b]$ 2-(a+b).
E 1 Now if (a +b) > 2, then the inequality can never be satisfied,
| therefore
2-(a+b) mustbe = 0, ‘i
é Then it is possible to square the previous inequality, which gives 1
2 =2 22 + b, %
2 : s ;
3 C 129 (at) (K +Y)+(at) P (¢ +0). i
Without friction this condition reads

at = 1/ (¥ + ¥ ¥, (36)

\

where C =(g H )*  is the speed of gravity waves,

In our experiments H = 8 km and the largest value used for v,

é
the kinematic viscosity, is 10 m/sec., Also the smallest value

used for At, in our experiments, is one minute, This means that
in our experiments At § is greater or of the same order as y) ,
So with fully explicit scheme we can say, in our experiments, that

the friction do not have significant effect on the CFL criterion which

" Q can be considered (36).

Let us now integrate the same system of equations using

the one dimensional semi-implicit scheme discussed in II,4, Using
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a leapfrog time scheme, then for a particular mode k and I we get

(' t-ot 2
u*:“ ¥ u:‘“= -2 M[ikﬁg}ﬁz +9( k’u?i! ue;'“ )],
S A T At[iQ & s (e ],

vk bat ubie, bt E
P- =2 Pk et L Q)

Assuming solution in the form (35), the equations become, with

iwab

/\:6 >

SA-F i atkd (A +A )29 ard (L) =0,
S -it 2 acla¥ 2y acd (2400,
LA-Ar+ i atE k(A T +2i atE LV =0,

& ! V* and qf have non-trivial solution if

(A-Xrs2) Atk (#+8) 0 P atk (444
0 (A=A ez acd' (248) 21 add
i g atk() +,\") 2i atdl (A -A.')
With Aeid e 1oz ar i Bel ) wege

afa A aryac e s (atdeE (a3 Y] = o.

Which gives
A =0,

with the condition of stability, as discussed before, namely

At 1 J2Y 2+8 .

The other solution gives
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- By

(x-X T +2Y (ad (A -Tr R s (a2 4

s(nt) 3 A+ V=0,

or

(X1t +2d (o) (R +L) (K- +cat] @ (L +1) +
sata: 1Bl =0,
Putting
ae Soeir sl b=(nt) ¥F and c=2(5t?§f,
the previous equation reads '

X (l+4b)+2X (a+2b+c)+2(2b+c)=0,

where
e N,
\
P X = {— (a+2b+c)+ [( a+2b+c ;' - 2(1+b)(2b+cjt}/(1+b)
or T

-
"

1 \ i 2b 2b+c) -2(1+b)(2b \/"{
+ Tr-_l_—F)— - (a+ +C)i (a+2 +c) -2(1+b)( +Cﬂ

~ Following the same procedure as before, we get as a condition for

stability
1S Van) (¥ +L)+an) L .

The condition without friction is

stz 1/ %c.




Appendix (III): The relation between the momentum transport

and the tilt of the <-field

In the northern hemisphere a north (south) transport of
westerly momentum is associated with north-west/south-east (north-
east/south-west) tilt of the «-field, This relationship between the
tilt of the v-component of wind and the direction of momentum tran-
sport is strictly valid only in the case of gecstrophic winds, Here
we perform a sample calculation of the actual momentum transport
to indicate that this relationship is valid for the numerical experim-
ents described,

The momentum transport across a given latitude circle

is proportional t
propo n o -

SRS
2T

L]
(}
where u and v are the deviations of the velocity components from
the zonal average. In the sample calculation, by far the dominant

component is wavenumber four, Therefore we can write
W = A cos (4) - W),

~'= B cos (4)\ -9, ),

where A and B are the amplitudes for u and ~', Y, and ¥,

are the phase angles,

It follows that the momentum transport can be written as
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Fig. 22, The latitudinal distribution of the difference between
the phase angles, for wavenumber 4, of the u and v
fields for the experiment F3216(5), After 3 days
(solid line), 6 days (dash line) and 9 days (cot line),
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L BA .
;F ‘lT
:T( o' dA = %W—S AB cos(4) -\9,) cos(4) -%) di
= A5 cos(Ru-%4) .

The previous equation shows that the direction of the momentum
transport across a latitude circle is determined by the phase differ-
ence between u' and V' with the following rules:
Northward transport of westerly momentum for

T /2L VY-8 <T/2,
with maximum at Y. -y =0 .
Southward transport of westerly momentum for

/2 £ \Q“-‘Q.q< 3w/ 2,

with maximum at Wo- P,y =T,
The momentum transport is zero for, Y, -Yy =T/2 or 3 W2,

Fig.22 shows the distribution of \,-Yy with latitude
ondays 3, 6 and 9 for the experiment F3216(5). Comparing
Fig.22 with Fig.3(A)Y page 33), it is clear that we get the proper sign

of the momentum transport by inspecting the tilt of the v-field.
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