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A UN IFIED FRAMEWO RK FOR THE REALIZATION PROBLEM
IN LINEAR DIGITAL FILTERING -

David S. K. Chan

Massachusetts Institute of Technology
Research Laboratory of Electronics

Cambridge, Mass. 02139

- • Abstract

A new approach to characterizing the problem The actual amount of storage required depends on
of implementing linear digital filtering operations the order in which data is processed , which is
on finite—state machines is presented. In this not specified by this representation. The problem
formulation , the implementation of shift—invariant with trying to characterize implementations of
or shift—varying, one—dimensional or multj—dimen— multi—dimensional filters by a generalization of
sional filters as single—input or multiple—input , this type is that , though the input and output
time—invariant or time—varying systems are all data structure of say, a 2-0 filter , is different
treated in the same framework . This framework is from that of a 1—0 filter , there is actually no

• based on the representation of an input/output difference between the inherent structure of a
specification for a linear filter by a unique , machine which implements 1—D filters and one
possibly infinite transmission matrix. To treat which implements 2—D filters. Thus , rather than
two— or higher dimensional filters , the concept having two different descriptions for 1—0 and 2—D
of transmission matrix is extended to include filter implementations , one common framewo rk
arrays of higher than two dimensions. The frame— should suffice for all filters , regardless of
work also uses matrices whose entries are dimension .
arrays of arbitrary dimensions. A set of notations
and operation rules for these arrays and matrices In this paper , a framework is presented which
is presented. Within this framework , all possible not only characterizes all possible realizations
implementations of a filter are characterized as (single or multiple input , time - invariant or
factorizations of its transmission array. vary ing) of any linear filter , but also treats

shift—invariant and shift—varying filters of
any dimension in the same way. Within this frame-

I. INTRODUCTION work , a definitive answer is given to the question ;
what constitutes a realization of a multi-dimen—

The problem of finding implementations for sional digital filter? Much of this framework
linear digital f i l ters  has been approached in many for the case of single—input-single—output imple-
ways. For a given realizable filter , there ex ist men tations has been presented in [5) in a less
various alternative implementations. However , general form.
there has been no common framework in which all
possible realizations for any filter can be de- II. DEFINITIONS AND NOTATIONS
scribed. For example, though it is possible to
describe all time—invariant, single—input—single— A digital filter may be defined to be a rule
output realization structures for 1—0 shift—invar- for transforming digital signals within a given
iant filters by a signal flow graph [1), such a class. A digital signal may be any countable set
graph does not extend naturally to include many of numbers. However , usua l ly  it is representab le
alternative implementations which use multiple or as an indexed sequence of numbers , where the
block inputs (2 ,3). Moreover, the signal flow number of indices is called the dimension of the
graph is only capable of describing time—invariant signal. The dimension of the siqnals a filter

• realizations of shift—invariant filters , and does transforms is in turn called the dimension of the
not extend naturally to shift—varying filters , filter.

The signal flow graph has been extended to I the numbers in a digital siqnal were re—
characterize 2—0 filter structures by including qarded to have continuous and unbounded magnitudes,

—l then digital siqnals of the same type may be re—
two types of z branches [4). However , as a S -

S S S garded as elements of a linear function space with
characterization of implementations , this type of • • - -

S a countable basis. A digital filter transforming
flowgraph is even less attractive than the 1—0 -

S S S such signals may then be described as an operatorversion , since it fails to characterize how data S - -• S S on the space. In particular , a linear fil ter,actual ly flows through an implementation , and its -

1 corresponding to a linear operator , would be
z branches do not correspond to storage cells, uniquely describable in input/output behavior by a

________________________ 
po5sibly infinite array of numbers , which speci f y

This work was supported by the Joint Services Elec— the transformation of basis elements. This array
tronics Program under contract no. DAABO7—76—C—1400 will be called the  transmission array of a linear
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filter. it should be clear that sum and tensor pro-
duct of arrays are commutative and associative

A digital signal can also be described as an operations. The latter is also distributive over
array of numbers . The number of indices associa— the former. We shall define a non-commutative
ted with each entry of the array corresponds to product as follows. If the number of superscripts
the dimension of the signal , and is called the in one array is equal to the number of subscripts
dimension of the array. An array will be denoted in another array, and these indices take on corr-
by a symbol having superscripts and/or subscripts, esponding ranges of values , then the chain product
which correspond to the indices associated with of the first array with the second , in that order ,
each array entry. These scripts may be any is defined to be the contracted tensor product of
letters, with or without numer ical subscripts , the arrays , formed by setting the superscripts of
provided they are distinct and occur , from lef t to the first array equal to the subscripts of the
right, in alphabetical order and order of aScen- second , and keeping the other indices distinct.
ding numerical subscripts among similar letters.
The size of an array is given by the numbers of In terms of the notations and definitions
numerical values taken on by the indices. As a developed thus far, a 1-0 linear digital filter is
convention , subscript indices , from lef t to r ight , described in input/output behavior by
are mentioned before superscript indices , also

i• - from left to right. For example , the size of the y Q x . (2)
m m i• ~ st

, where O<st2 , O(t<3, O~j<5 , is 5x2x3.array a~ — where is the transmission array of the filter ,in
A slice of an array is defined to be a new and x , y are the input and output signal arrays

array formed by retaining only those entries where i m
a subset of the indices take on certain specified respectively. Similarly , a 2—D filter is described

values. To denote a slice of an array , the indic~~ by

given specified values are either replaced by 
=these values if they are numbers, or by them inn 

~enclosed in angular brackets if they are symbols.
Thus , with the convention that signals be repre-

For example , a is a 1—0 slice of the 3—D array sented by arrays with subscripts only, and trans—<mn> S
i

a consisting of those entries of a
i where s,t mission arrays by arrays with equal numbers of

St st subscripts and superscr ipts, the output of a
take on the values m ,n i~ spectively. Also , b 3 4  filter is given by the chain product of its trans—

denotes the entry of b~ ~ith values 3,4,i for its i n iS Sl O f l  array with i t s  input array.
S inn

indices m,n,s respectively. Before ending this section , one more mathemat-
ical en tity wil l  be defined , viz, a generalized ma-

If two or more arrays have the same super— trix. It is defined to be a matrix whose entries
scripts and subscripts, then their ~~~ 

is defined are arbitrary dimensional arrays , such that those
to be an array with these same superscripts and in the same row (column ) have the same subscripts

corresponding entries. If two or more arrays do are special cases of generalized matrices. The

subscripts, and with entries equal to the sum of (superscripts). Ordinary and block matrices

not share common superscripts or common subscripts, sum of two generalized matrices is defined in the
their tensor product is defined. This product is obvious manner if corresponding entries in the
said to be uncontracted if no symbol appears both matrices have the same superscripts and subscripts.
as superscript in one factor and subscript in The product of two generalized matrices is defined

• another , and contraeted otherwise. If a symbol is when the first matrix has the same number of S

thu s repeated , summation over all possible values columns as the number of rows in the second matrix,
of that index is implied. For example , and the number of superscripts and their ranges of

th
a’~ b

n 
= ~ < 5>)  <t> 

(1) values in each entry in the i column of the first
sin ip 

~ 

a
~<~ > 

b<~>~ matrix are respectively equal to the number of

This is the well—known summation convention due to subscripts and their ranges in the 1th row of the S

Einstein. Each summation over a repeated index is second matr ix , for all i. When defined , this pro-

called a contraction. duct is computed just like an ordinary matrix
product, only that the products of individual

The tensor product takes on, respectively as entries are computed as chain products of the

superscripts and subscripts, the combined super- arrays.

scripts and subscripts of its factors , less any
repeated symbols , each set being arranged in It is convenient to have an abbreviated asmnon •

alphabetical and numerical order. Thus an uncon— notation for arrays and generalized matrices.

• tracted product contains , as entries, all possible Thus , we shall reserve under l ined , possibly sub—

products made up of one entry from each factor scripted capital letters to represent them. When

array, and has a dimension equal to the sum of two such symbols are placed side by side, either

the dimensions of its factors. A contracted pro— the chain product or generalized matrix product is

duct is similar to an uncontracted product, except implied. Furthermore , the symbol “0” w i l l  be
that its dimension is two lower for each repeated reserved to denote a zero array or zero general-

ized matrix , i.e., an entity with all entries equalindex , because of contraction.
to zero, and “I” reserved to denote a uni t ar ray
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or unit generalized matrix, defined as follows. A realizable filter must be bounded-input—bounded-
output (BIBO) stable , since the output array ele-

unit  array is an array of the form 1
S
l
:::S

N 
, ~~ere ments must be bounded to be representable by ar r1 N f in ite number of digits , and if the filter were

the range of s • coincides with the range of r for not stable , every error tolerance would be ex—
<5

1
. .  .5  > ceeded by some output point. The following

all i , and I 1 N equals one if <s . .s > = theorem characterizes the realizability of a
1~ N<r

1
. .r

N
> 

filter in terms of its transmission array, and is
<r
1
. . .r

N 
and zero otherwise. A unit generalized stated without proof because of space.

matrix is characterized by unit arrays along its
Theorem 1: A linear digital filter is real-

diagonal and zero arrays elsewhere .
izable if and only if it is BIBO utable and its

III. THE NEW FRAMEWORK
transmission array, ~ 

1 N 
, can be fa ctorized

into the form ~1
••

~~The realization problem for linear digital
filters may be stated as follows: Given the input! ± .i
output description of a f i lter , f ind an algorithm 12 1

” N = j~ 
qi (5)

which realizes this filter on a finite—state ‘)~4 
— 

k=l
machine to some given degree of accuracy. The ob-
jective of this section is to characterize solu— where
tions to this problem. We shall focus attention = 

~2 ~lon realization by quasi-linear machines , defined k=l
as follows.

Definition 1: A quasi-linear machine is a 0 ... 0 0 ... 
—

machine whose operation can be described by the o 3: 0 ... 0
equations —

0 .

k+l~~~~k0~~k ®~~~k
0

~~k
= 0 ® k = 1,2,... (4) = . . ~1 ~~ . 

(7)

.0 ~~~0 ... ~ (k+l)
th

row
where 

~~~ ~~~ ~~~ ~~~ ~~~ 
~~~ and ~~~~ , k=l ,2 . . .

are arrays of arbitrary though compatible and
bounded dimensions and sizes, whose elements are L . .Jnumbers representable by a finite number , say L ,
of digits each (usually binary digits, or bits).
The symbols Q and ~~ denote L—digit-precision
products and sums using rounding. The number L is
called the wordlength of the machine.

~~~~
, 

~~~~
, 

~~~~~ 
are arrays of arbitrary though

In (4 ) ,  the subscript Ic may be thought of as a compatible and hounded dimensions and sizes,
time marker for the machine , which operates as with entries bounded in magnitude,a follows. At k=l the first operation begins. Then,
at each subsequent integer value of k, an operation F ~ 1completes while a new one is begun. represents

a set of numbers fed into the machine at time k, p = (0 
~l ~-2 ~~ 

= (8)

4 represents a Set of numbers retrieved from the — 

I
machine at time k+l , and represents a Set of L J
numbers stored in the machine at time k. Realiza-
bility of a linear digital filter may now be de— and ~~~~ , ~~ are arrays satisfying the following:

fined as follows. 1) The entries of ~~ (~~~) for all k corresponding

Definition 2: A linear digital filter is to each set of numerical subscripts (superscripts)

realizable if there exists a quasi—linear machine are all zero except for one entry in one ~~
and an order of enumerating the elem ents of the which equals one ; 2) For each k, all but at most
f i l ter ’s input array, such that given any C>O and one entry of ~~ (~~~) corresponding to each set of5>0 , there is a wordlength L with which the machine
can compute any element of the filter ’s output numerical superscripts (subscripts) are zero.

array, in finite time and to within an accuracy
tolerance of C , if the elements of the input array The interpretation of the generalized

are bounded in magnitude by iS, and are fed into matrices and arrays ; theorem 1 is as follows.

the machine in the order mentioned above. The matrix ~ represents a mapping of the possibly
infinite filter input array , say X , into a

The parameters r and iS in the above definition sequence of finite arrays. If this sequence of

together determine the dynamic range required of a arrays is denoted 
~~~~

‘ 
~2 

and if we let ~ X =

realization. Implicit in the definition is that a
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where 
~l 

= o~ then the action of 91, where is the reduced transmission factor

each may be regarded as converting to corresponding to ~~~~ , k=l ,2,... Unless otherwise

and to ~~~~ , where 
~~+l and satisfy stated, all realizations in the following will be

in this form.

S = A S + B X A realization as defined represents a scheme
—k+l -Ic-k tic k = 1, 2,... for implementing a filter by segmenting the input

data into finite portions and operating on one
= 9 portion at a time. Given such a scheme , there

= 
~k~k 

+ 

~k~k remains infinitely many ways in which the pro-
cessing of each finite portion of data can be

The rest of the inputs to are left unchanged by accomplished. In particular , any factorization

it , thus ~~~~~ V
1~~

x =  
~~+1’~~ 

of represents a way of performing, by a

sequence of operations, the processing by the k
t}

k>1. Now if in (9), ~~~~~~~~~~~~~~~~~ and are all 
transmission factor , namely

bounded, and the filter is BIBO stable, it can be
S 

shown that the computation of (9) can be performed, Es~~~ ] r!~ ~i r~i r~ifor all k and to any desired accuracy, by a

• 
quasi—linear machine with a sufficiently long L~] 

= L~ ~i ki 
= 

~~ L~i 
(h1~

wordlength. Thus, using this machine , any
desired element of the filter output array can
be found in the array P(~~~. . .hIh

i
)
~~ X for sufficient- Thus, a more detailed description of a realization

is the following:
ly large k. The matrix P represents a mapping of

• the outputs of the quasi=linear machine into the 
Definition 5: A realization structure for a

possibly infinite filter output array. 
. . .1

1 Nfilter with transmission array 12 is a set

linear digital filter can be characterized by the
Because of theorem 1, every realization of a ~~~~

of generalized matrices , (P,~ A
1 ~~following : —

where A is of bounded size and ~‘ = A .. .A 1.Definition 3: A realization for a linear —ji —i —I.
1 j

digital f i lter with transmission array ~~
1 N is well defined , such tha t ~~~~~~~~~~ .QJ is a

realization for the filter .

is a set of generalized matrices , 
~~~~~~~~~~~~~~~ A useful classification of realizations and

satisfying the conditions in theorem 1, such that structures follows.

i .. .i I Definition 6: A regular realization
cl i N = p I I l  ~‘ I~~~. (10)

— 

~k=l j ~2
’”

~~
’
~~ 

is time—invariant if is independent

of k , in which case it may be written as
A time-invariant realization structure is speci—S P and are called the I/O matrices and the 
fied in the form [P ,A

1 ~~ ,91.
transmission factors , of the realization. p

Clear ly ,  given a realizable filter , there
Definition 4: A realization is said to be exists many possible choices for the I/O matrices

regular if the dimensions and sizes of the arrays P and ~~. Not al l  of these lead to practical
k’l, are indepeni’ent of k. realizations . Given two I/O matrices which sup—in 

port a regular realization , all possible regular
Theorem 2: To every realizable linear digital realizations which use these I/O matrices are

filter there corresponds a regular realization, related simply as follows.

Regular realizations are interesting because Theorem 3: [P,4i
1
,4i
2 91 and [P ,~ 1,~~2 real machines generally have fixed-size input/out-

• put channels and storage capacities. Since the 2) are regular realizations for the same filter
if and only if there exist invertible arraysimportant information in each transmission factor !lc’

is contained in the finite arrays ~~~~~~~~~~~~~~~~~~~~~~ k—i 2 ... such that

it is convenient to specify realizations in terms r~1 j
of these arrays only, rather than the entire trans
mission factors. Thus we shall define the matrix

~~ to be the reduced transmission factor 

= L~ J ~~ L ~ k—i ,2,... (12)

[—Ic -.kj The special case of time—invariant realization S

structures is worth mentioning as a corollary tocorresponding to 
~~~~~ 

and specify the realization 
~ theorem 3.

definition 3 alternatively as a set ~ ‘~1’t2 

546



____ 5 5 -  -~~ ~~~• S - • -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

Corollary 1: Two time—invariant realization h
0structures , (P,r

1 ~N~~
2I and 

~~2 h
1 

h
0

realize the same filter if and only if an inver-
tible array ! exists such that (2 = h

2 
h
1

r T O1 FT!-1~1 h
2

.
r . . .r  ~I A ...A I — I (13)

—l lo ii  ‘N 2 
—l 2. !I - —

• L TJ L 1 0
2
0
2
0
2
0
2

Time—invariant single—input—single—output 14 04 04structures for shif t—invariant  f i l ters are the
type of realization structures that have been most 0

4 
I
4 

0
4often studied . A f i l ter  with transmission array

12 1 N is said to be shi f t—invar iant  if.)~ — 

. 

—

(2< ,
l ‘‘ 1N depends on and 

~k 
only through 

- 
1 1il ’’ 3N

ik ik~
k l  N.  That is , 

h h h  
- - 

1

<i ...i > <m . . . m >  2 1 ( 0

• 
12<

1 N
> 

= (3
<

1 
> whenever i

k
_j
k
=m.

~
_n
k~ h

2 
h
1 

h
0

l<k (N ( 14) h 2 h 1 h0

The slice (
S
)~~ ~..0 of such a f i lter ’s transmission 

— 
h 2 h1 

h0 -

array is called its impulse response. 
•
A sh i f t— Furthermore, a realization structure can be con—

invariant filter is classified as FIR if its im— structed by noting that ~ can be factorized as
pulse response has a finite number of nonzero

• entries, and h R  otherwise. The following theorsimsi I 0 0 I
consider the realizability of shift—invariant l—D ~ 2 2_
and 2—D filters. 2

0
Theorem 4: A l—D FIR filter is always 2 

I H I
realizable. A l—D IIR filter with tran~mission 4 6

array 121 is realizable if and only if ~ 12~~ >z~ — 

0
2

j=0 I 
— —

is a rational function of z. 
S S,,here H defines a cyclic convolution and can be

- -
~ Definition 7: Let the impulse response further factorized.

samples of a 2-D shift-invariant filter be ar- 
REFERENCES4 ranged equally spaced on a planar grid. If all

the nonzero samples lie on a straight line, then (11 R. E. Crochiere and A. V. Oppenheim , “Ana-the filter is said to be degenerate. lysis of Linear Digital Networks,” Proc . IEEE ,
S vol. 63, no. 4, pp. 581—595 , April 1975.Theorem 5: A nondegenerate 2—0 FIR filter is

realizable if and only if one of the subscripts of 121 B. ~~ld and C. N. Rader , Di gi tal Proces~~~~its transmission array has finite range. A non— of Signals , New York: McGraw-Hill , 1969.— degenerate 2—D IIR filter is not realizable unless
one of the subscripts of its transmission array [3) C. S. Burrus, “Block Realization of Digitalhas finite range. Filters ,” IEEE Trans. Audio Electroacoust.,

S vol. AU—20, no. 4, pp. 230—235 , Oct. 1972.
• - IV. AN EXAMPLE

(4 )  S. K. Mitra, A. D. Sagar and N. A . Pander-
4 Several examples of single-input—single-output grass , “Realizations of Two-Dimensional Recursive

realization structures described in this framework Digi ta l  Filters , ” IEE E Trans. Circuits Systems ,
have been given in [5). An example of a time—in— vol. CAS—22 , no. 3, pp. 177—184 , March 1975.
variant realization which processes 4 input data
samples at a time is given here. Let denote a (5) D.S.X. Chan , “A Novel Frainework for the De-
k~k identity matrix and 0 a k~k zero matrix. Then scription of Realization Structures for 1—D and

• ‘F 5 2-0 Digital Filters ,” Record of the IEEE Electron-[ C)  • Q) is such a realization for the 1—ti FIR fil— 
S

S S les and Aerospace Systems Convention, Washington ,ter with transmission array 12 if 
DC, pp. 157A—157H , Sept. 1976.
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