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ABSTRACT

The relationship between the formalism developed previously for
the macroscopic description of laser-type matter (macroscopic quantum
mechanics) and several forms of semiclassical radiation theory are ex-
amined. It is shown that macroscopic quantum mechanics may be regard-
ed as a generalization of conventional semiclassical radiation theory.
The development of macroscopic quantum mechanics is carried further
by extending its applicability to situations in which the atomic coop-
eration is less than maximum, and introducing a physica'ly meaningful
quantitative measure of the atomic cooperation for a given state. The
theory is applied to a four-level laser for which atomic cooperation
exists not only in the '"lasing' process but also in the pumping and
relaxation processes. It is shown that under these conditions the
laser exhibits properties similar to those of a parametric-amplifier

with two idler frequencies.
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I. INTRODUCTION

In several previous publications,l’2 a formalism was developed
for describing macroscopic, laser-type, phenomena produced by the
cooperative behavior of a large number of n-level systems, such as
molecules or atoms whose pertinent interaction with the field involves
only n energy levels. This theory will be referred to in the present
discussion as macroscopic quantum mechanics (MQM).

Since description of the above phenomena has also been the pur-
pose of semiclassical radiation theory (SCT), it is of interest to
examine the latter ~ or rather, the several forms of it - in detail,
in order to bring out the essential difference between the theories.
This examination is carried out in Sec. II, where the validity and
applicability of three forms of SCT as well as that of MQM are ex-
amined from an orthodox quantum mechanical viewpoint.

In its development so far, MQM describes conditions under which
the cooperation between the n-level systems is a maximum. Clearly,
the usefulness of the theory will be enhanced if it can be generalized
to describe conditions under which less than maximum cooperation ex-
ists. Such a generalization is discussed in Sec.III, where in addi-
tion, a physically meaningful method of describing quantitatively
the cooperation between the n-level systems is given.

Cooperative behavior - to greater or lesser extent - may exist
not only in the oscillatory process of a laser, but also in the
pumping and relaxation processes. It is of interest therefore, to
study the effects of cooperation in the last two processes, since
they can be enhanced experimentally, if proven desirable. In Sec.

IV, a four-level laser is analysed by MQM for the case of maximum

R




atomic cooperation.

1I. SEMICLASSICAL RADIATION THEORIES AND MACROSCOPIC
QUANTUM MECHANICS

We examine the validity of three forms of SCT, as well as that of

MM, from a quantum mechanical viewpoint. It will be shown that MQM
may be re_arded as an improved - or more general - version of some of
the foruws of SCT. For simplicity of discussion, the four theories

be !abeled SCT I-1V, where SCT IV is MQM. They will first be
efined briefly, and then examined individually,

SCTI, the oldest theory, is, in the words of Schiff,3 a theory in
which "we treat the electromagnetic field classically and the par-

les with which the field interacts by quantum mechanics",.

SCTII, which has been used widely in the analysis of almost all
coherent phenomena when the mutual interaction of atoms and field is
]JVDIVCd,4 couples Schrodinger's equation and Maxwell's equations;
the field is described classically in both sets of equations, the
atoms are described quantum mechanically by Schrodinger's equation,
while the atomic - or matter - variables in Maxwell's equation (for
most applications, only the polarization, or atomic dipole-moment, is
of interest) are replaced by their expectation values.

SCTIII, which is the latest version of Jaynes' ''meoclassical
(hculy“,s introduces a classical model for the atom based on its
natural frequencies (or energy spectrum) and the associated oscil-
lating dipole moments, with the latter providing the atomic polar-
ization in the classical Maxwell's equations. An essentially sim-
ilar version has been proposed by Eberly.6

SCTIV is the classical-limit form of a fully quantum mechanical




theory in which the atoms are described by a boson-second-quanti-
zation formalism.7

A. Semiclassical Theory I

It has been shown some time ago that the mutual interaction of
two systems, one strictly quantum mechanical and the other strictly
classical, cannot be described by a self consistent dynamical form-
ali‘-m.8 In the present instance, one reason is the fact that quantum
mechanical atoms generate a quantum mechanical field, so that the
field, even if 1t is classical initially, cannot remain classical,.
Another reason is the fact that, to the classical system, the zero-
point motion of the quantum mechanical system looks like motion that
can do work, which obviosuly leads to absurd tesults.8 In order to
place SCTI within a quantum mechanical framework, we consider a field
(in the Heisenberg Picture) which is the sum of two parts, one purely
quantum mechanical and the other classical. The total field is, of
course, fully quantum mechanical. The purely quantum mechanical part
is due to the atoms under consideration and to the loss mechanism
with which the field that is interacting with the atoms is coupled.
The classical part is due to external sources which are unaffected by
the atomic behavior or by the loss mechanism. (It has been shown
that such an external field, no matter what its sources are, may be
described classically as far as the atoms are concerned.g) SCTI is
a valid approximation in the case where the quantum mechanical part
of the field is negligible compared to the classical part, and also
in the case where the questions asked refer only to atomic effects
produced by the classical part. An example of the first case is the

behavior of atoms in a strong laser field - assuming, of course,




that the laser operation is unaffected by the atoms under consider-
ation. An example of the second case is (lowest order) induced
emission or absorption;lo here, only the external field determines the
result - assuming that the loss mechanism does not produce a signif-
icant thermal field - since the quantum mechanical part of the field
contributes, in lowest order, only to spontaneous emission. An im-
portant application - entirely valid - of SCTI is the theory of photo-

electric detection.lo

In the usual approach to photoelectric phenom-
ena, the reaction of the photoelectrons on field being detected is
ignored. The induced absorption by the photosensitive atoms is invest-
igated to lowest order in perturbation theory, in order to obtain
information about the field produced by external sources. This field

is the classical part of the total field, the only part needed to

describe the production of photoelectrons.

B. Semiclassical Theory II

In contrast to SCTI, SCTII provides a prescription for analyzing
the mutual interaction between the atoms and the field.11 It allows
the field to remain classical even though the atoms are treated quantum
mechanically; however, this is accomplished by an arbitrary require-
ment, namely, that the matter variables in Maxwell's equations be re-
placed by their expectation values. The conditions for the validity
of such a procedure from a quantum mechanical viewpoint will be dis-
cussed later. Presently, it is instructive to illustrate a case for
which such a procedure is invalid. Let the matter under consideration
consist of a single, highly excited harmonic oscillator with an e-

lectric dipole moment proportional to its displacement. One can, in

principle, specify its quantum mechanical state to be an energy state




(corresponding to a high quantum number). Since, in this state,

the expectation value of the dipole moment is zero, this highly
excited oscillator will not radiate at all according to SCTII!

The reason for such an incorrect result is not difficult to find.
The description of the oscillator by means of an energy state is a
statistical description. In the 1limit of high quantum numbers (the
classical limit), the energy state becomes equivalent to a classical

description in which the amplitude of oscillation is well defined but

12

the probability distribution of the phase of oscillation is constant.
We see that SCTII ignores the purely statistical aspect of a quantum
mechanical description, even if the description refers to a macro-
scopic system. (A harmonic oscillator in a high energy state is es-
sentially such a system.) SCTII is, therefore, invalid when the
statistical aspects of the description of the matter - in the sense

of being nondeterministic - are significant.
C. Semiclassical Theory III

SCTIII achieves the same results as those of SCTII, for certain
types of problems, without an arbitrary prescription for joining
quantum mechanical and classical thecries. In SCTIII the atom is
described schematically by its natural frequencies and associated
dipole moments, as follows:5 Let the natural frequencies of the
atom be those determined by the set of energy levels hwn, AR - .

The (classical) Hamiltonian describing the free atom is then given by

Hy = znﬁwnu;an 4 (1)

where a and a; are independent (complex) dynamical variables.

TG B v
T,




¥' Corresponding to each atomic frequency |w. - w, | there exists a

i J *

lipole moment, the components of which are linear superposition of

the quantities

5 BEATSNE .

dij =5 (ajai + aiaj) .
(Z) " * *

dij = - 51(&3.&i - didj) . (2)
g g ‘

dij . (ajaj - a dx)

I'he coupling between the atom and the field is assumed to be of
the dipole-moment type described most generally by the interaction

Hamiltonian

) (3)

m=1 i<j

(m)

where kij is a linear superposition of the electromagnetic field
components that contain appropriate coupling constants. The total

Hamiltonian for the atom and field is given by
a '
H Hy + W 1 PUL (4)

He being the classical Hamiltonian for the field only. The

, . . ’ : 5
""canonical' equations for the atomic variables are

e 9H T oH
xhan S —, 1han o (S)
aan n

and the equations of motion for the field variables are those of

N m— g R




the conveuntional Hamiltonian formalism for the classical electro-
magnetic field. It can be shown that the equations of motion for

the an's, together with the definition of dipole moment by means

of the dij)'s, yield the same equations of motion for the dipole

moment in SCTIII as those‘for the expectation value of the dipole
moment in SCTII. The initial values of the an's in SCTIII are chosen
so that the initial dipole moment obtained from Eqs. (2) is equal to
the initial expectation value of the dipole moment in SCTII. Thus,
SCTIiI becomes a formal Hamiltonian theory that gives the same results
as SCTII, as far as the field is concerned, without an ad hoc prescrip-

tion to connect the quantum mechanical atomic equations with the

classical field equations. SCTIII exhibits the same lack of validity

as SCTII1 when applied to states that are not sufficiently deterministic.

D. Semiclassical Theory IV. Macroscopic Quantum Mechanics.

In order to derive a semiclassical theory from quantum mechanics,
we begin with a boson-second-quantization formalism for the descrip-
tion of a number of identical atoms that couple similarly through
their dipole moment to the electromagnetic field. Let the relevant
spectrum of each atom consist of n levels with energies hwi, i =3,

2, ...n. The atomic state vectors that describe the entire collec-

tion lie in a space spanned by the vectors [r Bpswe B2 where

v Ty
the ri's are non negative integers. The fundamental operators, from

which the pertinent dynamical variables may be constructed,are - us-

ing the Heisenberg Picture - al(t), ...an(t) and ag(t), ...a:(t)
such that
5.
ai(O)lrl...ri...rn> = 1|r1"'r1'1"'rn> (6)

s ¥

i
2,

faie




and l
a+(0)|r r r > = (r.*l)zlr r.+l,..x_ > (7)
i pereTye--Tq i preeTitleer) ;

i
The commutation relationships are [ai(t), aI(t)] = 1 , with all
other equal-time commutators vanishing. The Hamiltonian for the col-

lection of atoms is given by the expression

B +
Ho =.£ ﬁwiaiai - (8)
i=1

lhe collective atomic dipole moment is a linear superposition of the

operators

(1)
1, + +
dij . % (ajai + aiaj) 3
(2)
di; = —%i(a;ai : a;raj) . (9)
oo I AR '
dij . (ajaj - aiai) -

i # j, to which we will refer as the dipole moment components. The
coupling to the electromagnetic field is described by the interaction

Hamiltonian

4 3 f(rn) (m)
H' = z L cou Y (10)
Se) ey 7 %2
(m)
where the fij 's are linear superpositions of the components of the

electromagnetic field (considered to be Heisenberg-Picture operators)
that contain appropriate coupling constants. The total Hamiltonian

for atom and field is given by

N — _— — e




3 g . (11)

Hf being the field Hamiltonian, which we do not need in explicit
form.
Using the notation niEaIai , we note that the basis vectors are

eigenvectors of ni(O) with eigenvalue Ty and that Zini(t) is a con-

stant of motion, such that7
[Iini(t)]l Tye..T > = Nlrl...rn> : (12)

where N = Ziri . We take the state of the atomic collection (the

"initial state, in the Schrodinger Picture) to be that for which N is

the number of atoms under consideration. The bosons in this descrip-
tion are, therefore, the atoms themselves, and any state in this des-
cription corresponds to 4 fully symmetrized many-atom state in a first
quantization formalism.

The basis vectors are, clearly, energy states, that is, eigen-
vectors of HO(O) with eigenvalues Iirihwi " It is useful to define

7,13-15

another; set of states, coherent states, described by the com-

plex set of numbers c,...c ~(designated as {c}, for brevity), with

21|C1|2 = 1, as follows:

*3

|
(N) r
% N )7 n
l{c}N> 1 (?—TTTT?_T CIRRERT |r1...rn> . (13)
Lyosved 1 n'
1 n
the superscript (N) indicating that the summation is taken over all
values of rl, ...rn for which tir = N. These states obey the sim-

i
ple relationship




T

- PO
1

-  §
o ak(O)l(c}N> = N ckl{c}N_l>

1
as correlated incoherent states, 6

4
states,l

coherent states.l6 or as fully symmetrical Bloch states.14
shown that, for the free atoms (uncoupled from the field),
(m)
<r, rn,dij Irl...rn> TR ACE N R
(m) 1
<r, .rn|dij |rl r.> . 7—(rJ ~ Xed iy
and
(1)
<{C}N|dij I{c}N > = N]cjcilcos[(wj-wi)toeji]
(2) :
<{c)Nldij |{c}y> = Nlcjcilsxn[(wj-wi)t+eji]
(3)
1 2 2
<(C}N‘dij |{C}N> g EN(chI % |ci| :
. * (1)
where eji is defined by cjci = cjcilexp(ieji) v ThiS, <d1j

>

(14)

In the case of two levels, and translated into a first quantization
formalism, the energy states have been referred to in the literature
or as fully symmetrized Dicke

and the coherent states have been referred to as uncorrelated

It can be

(15)

(16)

, for

instance, vanishes for an energy state but oscillates with frequency

|w.-ui| and well defined phase for a coherent state (provided ¢

j (1)2 *"
CJ # 0). On the other hand, if we look at <dij > , wWe obtain7
(1)2 1
<r1...rn|dU |r1...rn> = I[Zrirjoriﬁrj] . (17)




and

(1)2
Cedyldyy" [teyd = g Nz [e [ Pfeg12efe [ Poley (), 18)

where the bar indicates time average. We see that for By ® N|°k|2 ’
the terms of order N2 are equal.

It may be remarked that the physical significance of treating
atoms as bosons in the present manner lies in their cooperative be-
havior. Complete symmetrization in a first quantization formalism -
as is required by such a treatment - may be regarded, intuitively,
as maximum cooperation among the atoms under consideration. The pres-
ent method may be generalized to the case of less than maximum atomic
cooperation by dividing a number of atoms into two or more collect-
ions, each collection being bosons of a differeant kind.

The collection of atoms is described completely, in the present
formalism, by the coordinates of n harmonic oscillators. In order
to investigate the classical-limit conditions, we merely need to con-
sider the classical-limit conditions pertaining to the harmonic os-
cillators. These are well known to be the limit of high (energy)
quantum numbers. Since a description need not be associated with a
definite energy state, a more general formulation can be expressed

by the inequalities,
<nj> »» 1 b B B SSE- I (19)

When these inequalities are fulfilled, the oscillators may be treat-
ed classically, the commutators [aj, a;] are relatively negligible
(the last statement can be considered an alternate formulation of the

classical-limit condition), and the operators ‘j and a; may be

2 J& s T 4 L
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treated as ¢ -number variables. For clarity, where necessary, we will
use a tilde henceforth to indicate such variables.

One also needs to look at the field under these limiting condi-
tions. If the atoms under consideration are classical, the field
they generate is classical. External fields are also classical, since
they must be prescribed.9 The only part of the field that remains
quantum mechanical is the zero-point field. However, classical sys-
tems must not '"see'" the zero point field, since, formally, it appears
to them as a field which can do work.8 Thus, as far as the field
that interacts with the collection of atoms under consideration is
concerned, 1t may be described classically if the atoms are described

classically,.

Thus, the Hamiltonian of Eq. (11) becomes a classical Hamiltonian.

Equations of motion for the dynamical variables are obtained according
tq cl.tiical dynamics by means of Poisson brackets. Noting that

.j = 2°7(qj + ipj) , where qj and pj are the dimensionless coordinate

and momentum of the j'th oscillator, such that Ho = %ijﬂwj(qf + p?) .

S ~ -t
the canonical equations of motion for aj and aj become

R da. 1 of

—r 8 — e, i W — (20)
~ ~

dt ih anj t ih aaj

while the canonical equations of motion for the field variables be-
come essentially equivalent to the classical Maxwell's equation. In
order to complete this theory, which was obtained as the classical
limit of a fully quantum mechanical theory, we need, in addition to the
equations of motion, a method of prescribing initial conditions that

is consistent with the classical-limit procedure.

In the quantum mechanical theory, initial conditions are

AP rie
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described by means of a quantum state. What is the classical limit

of such a description? As is well known, a quantum-state descrip-

tion yields information in a statistical form, in general. 1In the
classical limit, therefore, a quantum-state description must become

a statistical description, in which :}(0) and t;(O) are considered to
be random variables. One method of providing such a description is
that of specifying moments. Consider the moments <0(niaI”i(0)a:i(0)}>.
where O is an ordering operator that provides for some specjfic order-
ing arrangement of the operators inside the curly bracket. Moments
corresponding to different arrangements may have different values be-

cause of non-vanishing commutators. In the classical limit, these

commutators are relatively negligible, provided
V., + W, << <n.> , 21
j 3 (21)

for all j. We restrict the number and kind of specified moments by
these inequalities (thus making the statistical description some-
what non-unique - or somewhat approximate) and specify the various

-~ ¥
moments of the random variables aj 3 aj by

<n,a;'1(0)ali(0)> = <wlo{niaz"1(o)a‘i’i(o)}Iw> (22)

where |y> is the (initial) state of the collection of atoms, and 0
indicates an arbitrary ordering arrangement that may be chosen for
convenience of evaluation. [Note that all ordering arrangements of
moments subject to inequality (21) yield results that differ by neg-
ligible amounts, in the classical limit.] Probability distributions
consistent with this definition of moments provide an alternate

statistical description.
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Comparison of the equations of motion of SCTIV with those of
SCTIII shows that they are identical; however, the method of de-
termining initial conditions in the two theories is different.

While in SCTIII the initial conditions for the dipole moments are
obtained by equating their values to the corresponding quantum-
mechanical expectation values, in SCTIV the initial conditions con-
sist of a statistical description obtained from the quantum mechanical
state. SCTIII and SCTII are, thus, a special case of SCTIV; they may
be applied only in thqgse situations where not only the classical-
limit conditions for the application of SCTIV are met, but also where
the (initial) state of the collection of atoms describes the atomic
dipole moment in a sufficiently deterministic manner.

A simple argument shows that the above conditions for the appli-
cation of SCTII - IV are both necessary and sufficient. If we begin
with SCTIII as a classical Hamiltonian theory, and convert it, by
usual methods, into a quantum theory, we obtain precisely the boson-
second-quantization formalism, from which we derived SCTIV. Thus,
only this formalism can give, in the classical limit, a theory in
which SCTII11 may be included, and if SCTIII (and SCTII, for which
SCTIII is the Hamiltonian formalism) is to be derived from quantum
mechanics, it must meet the aforementioned conditions. Needless to
say, these conditions do not allow the application of SCTII - IV to
a single atom.

It is instructive to illustrate the application of SCTIV to an
energy-state description and to a coherent-state description. For
simplicity, we ignore the reaction of the field as well as the effect
of external fields. For an energy state that meets the classical-

limit conditions (ri>>1 for all ri). Eq. (22) yields, using an

‘IRM v — e s T = T\ . .
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ordering arrangement in terms of ni's for easy evaluation,

r~

*Vi o a"i . vi
<niai (O)ai (0)> 11.11‘.1 Gwivi (23)

A simple probability distribution consistent with these moments is
given by

1

2 _-ie

;3(0) = rj e , T (24)

where ej has a uniform probability distribution. Note that the ej's

and, therefore, the aj(O)'s, are independent random variables. For
a coherent state which meets the classical limit conditions, Eq. (22)

yields, using a normal ordering arrangement for easy evaluation,

N.V. ~Wi .V‘ w'd
1 1 > = = - i 1
a T Vi0)aYi(0)> = (NN-1)... (N-ve1)]m e Vicli® o

(25)

e NVp Vi M
* N e, “ci*byy »

where V = }:ivi , N = xiwi , and the inequality (21) was utilized in

the approximation. A simple probability distribution consistent with

these moments is

1
e B L L (26)
' J J
. where 6 is a random variable with a uniform probability distribution,

but it has the same value for all aj(O)'s. The aj(O)'s are, therefore,

degendent. random variables. Consider, now, the dipole moment of the

——

collection of atoms. If we take Ry Nlcjlz , the amplitude of

P

N R ———
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(1) (2)

oscillation of dij and dij will have the same value for both the
energy state and the coherent state. However, the phase of oscil-
lation for the energy state will be a random variable with all
values equally probable, while that for the coherent state will be
well defined. It is clear that, in the case of these two states,
SCTII - 111 can be applied only to the coherent state (in the clas-
sical limit) while SCTIV can be applied to both the coherent state
and the energy state. The former is an example of a deterministic
description (of the pertinent matter variables in Maxwell's equation)
while the latter is an example of a statistical - in the sense of
non-deterministic - description.

The conclusion of the present section may be expressed, loosely
speaking, by the statement that SCTII - IV are applicable only to
those situations where the atoms belong to one or more groups in
each of which they behave cooperatively and their nudber is large;
SCTII - III are further restricted to cases where the description of
the dipole moment is deterministic. Since SCTIV is the most general
form of a classical-limit theory for quantum mechanical systems in
cooperative behavior, it is reasonable to refer to it as macroscopic

quantum mechanics,
III. ATOMIC COOPERATION LESS THAN MAXIMUM

The MQM formalism of the preceding Section describes a collec-
tion of n-level systems among which there exists maximum cooperation.
We will consider now the case in which the cooperation is less than
maximum, but one in which macroscopic dipole-moment effects may never-
theless exist. It is instructive to consider a specific example

which illustrates this case. Consider a large number of three level
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systems, with energies, El’ EZ‘ E3 (where El<E2<E3)in equilibrium with
a thermal reservoir. Let the two lower levels be sufficiently close
together so that their population is of the same order of magnitude,
and let the third level be sufficiently high so that its popﬁlation

is essentially negligible. How much cooperative behavior exists in
this atomic collection? Assuming, for simplicity, that the population
difference between the two lower levels may be neglected, then, as far
as these two levels are concerned, there exists no cooperative behavior
whatsoever. This is obvious from the application of any of the sever-
al «criteria for cooperation among two-level systems: 1) Description
in terms of one-atom states contains no well-defined symmetry pro-
perties; 2) the cooperation number14 is zero; 3) There exists no ma-
croscopic dipole moment, and none can be generated by the application
of a resonant pulse that acts equally on all the molecules; 4) The
Bloch vector14 is zero. If, however, we consider the pair of levels

E Be OF Ez, ES' then we have maximum cooperation among an effective

Sl

number of atoms %N, where N is the total number of atoms, according
to any of the criteria above. Thus, there does exist coopération
among the three-level systems, but not the maximum cooperatioh that
is described by the BSQ formalism for one kind of bosons.

Since, by definition, bosons of the same kind cooperate
completely, the method of describing less than complete cooperation
clearly lies in the use of more than one kind of bosons for the
description of the atomic collection. We label the kind of boson
by an index within a square bracket, either as a superscript or sub-

script, depending on notational convenience. The Hamiltonian is

then given by




s

Ho = IIdo

-f
et S 1L eV O (27)

The operators ‘i[k] are to be considered to operate only on the

states of the bosons of the k'th kind, and are c-numbers with respect
(m)

to all other kinds of bosons. The total dipole moment Dij is the

sum of the dipole moments of the individual kinds,

(m) (w) (k]
DU - idij z (28)
We return to the collection of three-level systems described

above. Consider two kinds of bosons, and let their combined state be

given by

lo> = 138, 0, 0> 110, 3N, 0>, . (29)

In this state, both kinds of bosons are equal in number, with all of
the first kind being in the state that corresponds to El’ and all of
the second kind being in the state that corresponds to Ez. It is
clear that the oscillatory moment, interpreted according to MQM,

that is, as a (classical) random variable in accordance with Eq. (24),
is zero, since d::)[k) is zero for the values m = 1, 2 , Con-
sider now a prescribed resonant field acting on the collection of

three -level systems. In accordance with Eq. (10), we take the

interaction Hamiltonian to be

2
' + t
Heg ® ‘kflfo(‘j[kl‘ilk] * 8 k)% [k]IC0% 5t i
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where, for simplicity, we have assumed that fij = fij = 0
have choseh a specific phase for the driving field, and have set

’

hogy = IEi - E.| . If we now let

j

ey TRy s

then, according to MQM, it is easy to show (using the rotating-wave

approximation) that

(1)[1] ' _
dlZ = Yuig N sin Qt cos At sin wt ,
(31)
(mrzy :
d12 L | N sin @t cos Rt sin ot ,

TS £3) :
where Q° = T fo ; we have, thus, D12 = 0 . Similarly, it can be
shown that D§§)= ng) = 0. One obtains, therefore

(m)
012 = 0

It is seen that there exists no oscillating dipole moment, nor can

one be generated by a resonant field, at frequency Wypgp o This is

consistent with the microscopic picture of saturation of the pair

of levels El and Ez.

As far as the level-pairs El’ E3 and Ez. 83 are concerned, the

situation is entirely different. Using the same method as above,

we have, for "ij = Wiy s i 3, 2,

l ‘ R i R TR 9o 2 e 0 0
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! (1) (1)1} . .
Dis = diS it N sin Qt cos Qt sin wist "
& VTR & 4
Dis = di3 = > N sin Qt cos Qt cos w, .t , (32)
(5 ) 4 e 2
DiS = diS -2 N (sin® Qt - cos”™ Qt)

One sees that

(m)2

R P ™ F N) 2 - H W, (33)

-

which means that an oscillating dipole moment corresponding to a

cooperation number - or a Bloch-vector magnitude - of % N can be

generated at either frequency Wyg OF W,y o« (It should be noted that
in MQM the cooperation number and the magnitude of the Bloch vector
are the same quantity.) This is half the cooperation number of that
in the case of maximum cooperation. Had there existed no (empty)
third level, the cooperation number, as far as the two saturated
levels are concerned, would have been zero. By a suitable combin-
ation of resonant pulses, one can generate an oscillating dipole
moment also at frequency w2 in the present case. Using first a

pulse of frequency w and of duration r such that Qr = %w , We can

13
transfer the ground-level population to the third level; then,

an oscillating moment can be generated at frequency P by a
field of frequency Wy The cooperation number associated with the
levels E E, under these conditions is also 3 N.

% 2 4
It is seen that the number % N is associated with the state of

the collection of three-level systmes, rather than with any par-
ticular pair of levels, and may be regarded as a cooperation number

for the state under consideration. If our purpose is the generation
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of an oscillating dipole moment by the application of a resonant
field, or by the application of succession of resonant pulses at
the various resonant frequencies, then the number % N may be re-
garded as a figure of merit of this state. We can use this opera-
tional procedure to define the cooperation number - or figure of
merit - of a given state of a collection of n-ievel systems {(where
the cooperation is less than maximum). This cooperation number is
given by the maximum (diminsionless) dipole moment, or the maximum
of the quantity (Emui?)z}z , that can be obtained by using a series
of resonant pulses. No restriction is to be made on the pulses that
may be used.

The above discussion has illustrated the faét that less than
maximum cooperation among n-level systems may be described by the
consideration of more than one kind of bosons. It has also led to
a quantitative measure of the cooperation for a given state. One
may naturally enquire about the number of kinds of bosons that are
needed to describe a given state. Although no general theory has
yet been developed in this connection, it is reasonable to conjecture

that the number of kinds of bosons needed for an arbitrary state is

rot larger than n.
IV. COOPERATIVE ATOMIC BEHAVIOR IN A FOUR-LEVEL LASER

We consider the operation of a four-}evel laser under the
idealized condition of maximum atomic cooperation. This cooperation
is assumed to exist not onl} in the oscillation - or "lasing" -
process, but also in the pumping and relaxation processes. CoQp-
erative atomic behavior in the last two processes - to greater or

lesser extent - is not impossible to achieve, in principle, for

ahbangdnnd s
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certain types of lasers. In the case of optical pumping, for in-
stance, uniformity of the pumping field will produce such an effect,
while in the case of relaxation by spontaneous emission, the intro-
duction of resonators at the relaxation frequency will do likewise.
First, the equations of motion for the dynamical variasbles in the
BSQ formalism will be given. These equations are fully quantum
mechanical. Then, taking the classical limit, we obtain the MQM
description. Certain properties of the steady-state solution which
indicate the special features introduced by the cooperative behavior
will be discussed.

Consider N "four-level'" atoms (or molecules) with energy levels
i =1, 2, 3, 4, ordered so that wy<uy for i<j , with wgy |ui~uj| G
According to the BSQ forlalisl,l the laser matter is described by
four oscillators of complex amplitude 8, . Let the 23 transition be
coupled to the (lossy) cavity mode of frequency Wag with which we
associate the phetap annihilation and creation operators b and b*

respectively.l7

The 14 transition couples to the pump (as well as
to a relaxation mechanism), while the 12 and 34 transitions are

coupled to relaxation mechanisms, as indicated chematically in Fig.

----- - 4
% relaxation
pump and L ’
relaxation cavity
JL, 2
relaxation

Ry TR ' :

Fig. 1. Schematic depeription of laser under conecidersvion.

1,
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' Introducing the reduced variables A and B such that
aj(t) = Aj(t)exp(-iwjt), b(t) = B(t)exp(-iwzst) 2

the above description is made precise by the specification of the

terms whose sum constitutes the interaction Hamiltonian,

, . Y L it e
Hlj(relaxatxon) = ﬂﬁ(AlAjcl) 1) J a) ., 153,
Hés(cavity) = hy(A B + B A ) - (34)

: t i 2%
H{ 4 (pump) = -if@AA, - BAN)
and by the expressions for &ij and B
(1) 1 +
ai /A e S W e T T (35a)
j ° o
# + -g(t-t')
I 8 / dt'A, (t')Ag(t")e (35b)
o

The symbols occurring in these equations have the following mean-
ing: Qii is the relaxation '"field'" associated with the ij relax-
ation -echanisn.13 °ij is the corresponding relaxation constant,
anda(i” is the unperturbed relaxation field; Bo is the cavity
field in absence of the molecules, and £ is the cavity relaxation
constant;e is the prescribed (reduced) pumping field with arbitrary

coherence properties. If we ignore, for simplicity, thermal

effects, then, classically, the quantities with subscript zero




w b«

vanish, and quantum mechanically, they represent the '"vacuum"

field described byl?:13

B> =@, 1> = 0,

-E)t. -t
S LR T PR S e (36)

(ik) (k)
<@, pB,) " x> = 20, (t,-t)) ,

where |> is the ground state of the pertinent system. The resulting
equations of motion for the laser matter (the collection of atoms or

molecules) are

A = 7%6112A2 . 7% R - A A (37s)
A, --77‘- M@, - ive'a, (37b)
Ay = 7;—0;4A4 - iyA,B (37¢)
Ay = 7% As@s, - El MR, - 28 (574)

To these, we must add the normalization condition
IA,A, = N
We will discuss only a very simple special case of these

equations, that of a classical system in which A, and Ay, as well

as the pumping strength ,8’ » are constant (and non-vanishing).
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In other words, conditions are assumed to be such that only the clas-
sical macroscopic properties play a significant role in the behavior
of this composite system (where, as stated previously, maximum coop-
eration exists), and the cavity field is in a steady state.

Using Eqs. (35), letting the quantities with subscript zero van-
ish, ignoring the commutators of all variables, carrying out the

integration in Eq. (35b), taking t >> £ ° , and using the notation

ni = AIAi, one can show that Eqs. (37) become

S1g% % T Ngtaeg ”

oy = (2v¥/6)n,

(38)

“34“4 - (ZYZ/EJHZ

Ll T e o SR T L e

where
+ +
P - (GA1A4 08'A1A4)

Only three of these equations are obviously independent.

We will not investigate the general solution, but rather show
that these equations may be interpreted as describing a classical
parametric oscillator. The classical steady-state field in the

cavity is, from Eq. (35b), given by
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B(classical) = - i(yzslc)A;AS

This should be regarded as the signal, at frequency w As for the

23°

idler, there exist two idler oscillations, at frequencies w and

12
Wag s with atomic amplitudes proportional to AIAZ and A;A4. respect-
ively. It is clear from Eqs. (38) that D must be a real positive
quantity, which means that the phases of Al and A, must depend on
the phase of‘? . There is nothing in the equations, however, which
determines the phase of the signal oscillation; it is arbitrary, and
independent of the pump phase, as it should be. We see, therefore,

that a '"'classical" laser, in which there exists a maximum of atomic

cooperation in the non-lasing processes, is a parametric oscillator.
'

’
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