
~4a TECISIICW e ISRAC. INST OP TECH HAIfl 
- 

,, . *0/10

UNCLASSIPILO 

MACROSCOPIC DESCRIPTION OF LASLR-TYPE MATTER. (U )

_N. 

__
__  ~!IU_

~~

Ijti

/



- ----s

i c ~ 
ilt

L

L L

1 . 1 ~~~L~~~~2 O

___________________ 8

I 25 
~~~ V~&



I

/

MACROSCOPIC DESCRIPTION OP LASER-TYPE MATTER

• 
Final Report ~

A4’~~~~
(Third Y.sr )~~~y r’

• 
•

I.E. S::Ltzky

Sept..b.r 1977

EUROPEAN RESEARCH OFFICE

___________  

U~it.d St ates Aray

~~~~~~~ Lo*don, Bn~ laad

8 GRANT NWI*U OA-B*O-75.-G-012

/ ~~~~~ 
T•chnto,~~Israil institu t, at

Apptoved for PnblIc R.leas. Distri b T~~ioa un limit ed

1~ 
- 

~~~~
- -

~~~



£a~i~~ j ,  
()

~~ 7~.- ~~SE C U R I T Y  C L A S S I I I C A T 1  *4 0* TII I~ r’A ~.I (IV?~Ofl II&. *~fl t.. ... —
~~~

REPORT DOCUMENTATION PAGE
* I PPI P0*4 1 NIIM14 I~R 2. GOVT ACCESSIO N NO. 3 F 4 E C I P I I . N T 5  C A T A L O G  T4UM~3 ER

FINAL
6. 1~~T L E (m.d SubIlU.) 5 Ty PI  OP I4( PonT a P~~c* io o c ) J E R E O

~~~ ~~•- Th(IIN1CAL RI~l~ORT
MA( RoSwPIc ILS(RII”t I ON ol: i s i ~~~- m’t~ ~~~~~~~~~ / Augus t 1976 — Augus t 1977

— 6. PERFORMING ORG. RIPORT NUMBER

? . A ~ jN0R(.) 6. C O N T R A C T O R  G R A N T  NUM BIR(.)

-

i~~ l l./ IXITZ K , .J ~ ~~~~~ER~?75-G~~ 12~J
9 ~~~~ 6O~~UlNG O R G A N I Z A T I O N  NAM E 6*40  A DDRESS 40. P~~G~~J 4AM LLEM€N • PROJ~~C 1 L A~~~

.n ( ) C~!~~ - ISRAE L INSTITtJTh OF Th~~~NOIfl ~~i

II CONTRO LLING OFFICE NAME AND ADDRESS 12. REPORT D A T E

iN AI~!’1~ Rf1S GI~OUP (Eifl~) SEPTEMBER 1977
BOX 65 , FPO ~;i ic YORK 09510 U. N U M B E R  OF P A G E S

______________________________________________________________ 30
4 MON ITORING AGENCY NAM E 6 AOORE 5S(LL4LtL6L~~~(j,o.~~Canfvoll ln~ OWc.) IS. SECURITY CLASS.  (of Ph’ . t.porl)

:~; ________________________
IS.. O E C L A S S I F IC A I I O N / OOW N G R ’.OP NG

r \_) . SCHEDULE

16. D IST RIB UT ION S T A T EMENT (of (hi. h.~~ FT~~ 
-

AAI ’ROVLI) FOR PUBLIC RE LEASE : DISTRII3ITFICtPI ~~LIMIThD C 
~~~~~~~~

- 

~~~T-~~ \
~~~~~

.
~~I?. DIST RI BUTION S T A T E M E N T  (of U,. .b.Ir.ci .nt.s.J In Block 20, II dill .,ont from R.port) . P

IS. SUPPLEMENTARY NOTES

IS. K EY WO RDS (Contl.,u. on r.~.r. . .id• If i.c.. .~~y ,d Idonllty by block numb.r)

lASER ‘Ll SEORY , QUAN1U~I ELI3CTf~~ I(~~, MACI~~ (DPIC QUANTtJ’f MEGIA~1(S

~Q. A BSTRA CT ( .fl4~~. _ ~~~~~~~ •I~~ II o., ~~d Sd.ni l?p by block uomb.v)

~~1~~

rDD 1 JA5 1) 1473 EDITION OF I NOV SI IS OR%OLETL (t~ICLASSIFIflI)
SECURITY CLASSI FICATION or TNIS PAGt (WP*.n D.fO AnP. , .d)



1 r ( 1  \.ss lI~I~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

SECU RITY  CL A S S I P I C A T I O N  OF T HIS PAG E( .Yh on O~ Pa Enh.r.d)

The re1atioiishi1~ ~etwcen the formal i~;m developed previ ous iy for the

macros copic desi r i p t i o n  of laser- type mat te r  (macroscop ic qu :t n t tm ~ mechanics)

and severa l fon~Ls of semiclassical radiation theo ry are examined. I t  is

sh~~rn that m~icrosc~~ ic quantuli mechanics may be regarded as a gene ra l i za t ion

of conventional semiclassical  radiation theory . The deve lopment of Irucros-

cop ic q antiil i mechan ics is carried further by extend ing its app l i cab i l i ty

to s i tuations in wh ich the atomic cooperation is less than max imum , and

introducing a physically mean ingful q uantitative measure of the atomic

eoopcration for a given state.  The theory is applied to a four-leve l laser

for which atomic cooperation exists not only in the “lasing” process hut

-Iso in the p~.ii~p ing and relaxation processes. It is shown that under these

conditions the laser exhibi ts properties similar to those of a parametric-

ampli f ier  w i t h  two idler frequencies.

tJN CL\SSIFIPD
J SECU RITY C L A S S I F I C A T I O N  O~ 

THI S PAGE(Wh .n Vol . Fnt.rod ~
,—•——- —

~~~ ..—.- —~~~~~~~~ 
4—



L A D  I

MACROSCOPI C DESCRIPTION OF LASER-TYPE MATTER

Fina l  Repor t

( T h i r d  Y e a r )

by

I.R . S e n i t z k y

September 1977

EUR O PE AN RE SEAR CH O F F I C E

United States Army

Lon don , Englan d

-7
GRANT NUMBER DA-ERO- 75-G-012

Technion-Israol Institute of TechnologyI, ‘ ,

L
~~~~~JApproved for Pu b l ic Release; Distribution unlimited.

I
— ~~~~~~~~~~~~~~~ :: ~~~~

-
~ ~~~~~~ 

- —

~~~~~~~~~~~~~~ 

.



— 1 —

A B S TRACT

The relationshi p between the formalism developed previous ly for

the macroscopic descri pt ion of laser-type matter (macroscopic quantum

mechani cs) and several forms of semiclassical radiation theory are ex-

am ir ; c~d . it is shown that macroscopic quantum mechanics may be regard-

ed ~is a generalization of conventional semiclassical radiation theory.

The development of macroscop ic quantum mechanics is carried further

by extending its app licability to situations in which the atomic coop-

eration is less than maximum , and introducing a physica ’ly meaningfu l

quantitative measure of the atomic cooperation for a given state. The

theory is applied to a four-level laser for which atomic cooperation

exists not only in the “lasing ” process but also in the pumping and

relaxation processes. It is shown that under these conditions the

laser exhibits properties similar to those of a parametric-amplifier

w ith two idler frequencies.

I
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I
I .  I N T R O D U C T I O N

I n  s e v e r a l  p r e v i o u s  p u b l i c a t i o n s , 1’2 a f o r m a l i s m  was  d e v e l o p e d

f o r  d e s c r i b i n g  macroscopic , laser-type , phenomena produced by the

c o o p e r a t i v e  b e h a v i o r  of a l a rge  number  of n - l e v e l  s y s t e m s , s u ch as

m o i e c u i e s  or a t o ms w h o s e  p e r t i n e n t  i n t e r a c t i o n  w i t h  t h e  f i e l d  i n v o l v e s

only n e n e r g y  l e v e l s .  T h i s  t h e o r y  w i l l  be r e f e r r e d  t o  in t h e  p r e s e n t

di~~ ussion as macroscopic quantum mechanics (MQM).

S i n c e  de sc r i p t i o n  of t h e  above p he nomena  has  a l s o  been  the  pur-

p o s e  of s e m i c l a s s i c a l  r a d i a t i o n t h e o r y  ( S d ) ,  i t  is of i n t e r e s t  to

examine the latter - or rather , the several forms of it - in  d e t a i l ,

in order to bring out the essential difference between the theories.

T h i s  examination is carried out in Sec. II , where the validity and

applicability of three forms of Sd as well as that of MQM are ex-

amined from an orthodox quantum mechanical viewpoint.

In its development so far , MQM discribes conditions under which

t h e  co o p e r a t i o n  b e t w e e n  t h e  n - l e v e l  sy s t e m s  is a m a x i m u m .  Clearl y,

th C usefulness of the theory will be enhanced if it can be generalized

to describe conditions under which less than maximum cooperation ex-

i s t s .  Such a g e n e r a l i z a t i o n  is d i s c u s s e d  in  Sec .III , where in addi-

t i c 4 n , a p h y s i c a l l y  meaningful method of describing quantitatively

the cooptrat ion between the n-level systems is given.

Cooperative behavior - to greater or lesser extent - may exi st

n~ t only in the oscillatory process of a laser , but also in the

pumping and relaxation processes. It is of interest therefore , to

‘.~tudy the effects of cooperation in the last two processes , since

they can be enhanced experimentally, if proven desirable. In Sec.

IV , a four-level laser is analysed by MQM for the case of maximum
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-
~~~ om i ~ coop eration.

11  . S E M i c L A S S I c A L  R A D I A T I O N  T H E O R i E S  AND M A C R O S C O P I C
Q U A N T U M  M E C H A N I C S

he e x a m i n e  t h e  validit y of t h r e e  f o r m s  of SCT , as w e l l  a s t h a t  of

~~~~~~~~~~ : r m  j  
~1ua~.tum m c c h a n i c a l  v i e w p o i n t .  I t  w i l l  be shown that MQM

he r I~~, a r d e d  as an  i m p r o v e d  - or more  g e n e r a l  - version of some of

t h e  tor~~~ of SCT.  } o r  s im p l i c i t y  of discussion , th e four theories

‘i i ]  h e  ab e l e d  SCT I - I V , w h e r e  SCT IV is MQM . They will first be

~e~~1hei ~ r~~e f 1y ,  a nd t h e n  e x a m i n e d  i n d i v i d u a l l y .

-~c TI , t F i e  o l d e s t  t h e o r y , is , in  the  wo rds  of S c h i f f , 3 a t h e o r y  in

~~~ we treat t h e  e l e c t r o m a g n e t i c  f i e l d  c l a s s i c a l l y  and t h e  par-

t i c l es ~ i t h  w h i c h  t h e  f i e l d  i n t e r a c t s  by q u a n t u m  m e c h a n i c s ” .

S C T I I , w h i c h  has  been  used w i d e l y  in t h e  a n a l y s i s  of a l m o s t  a l l

~‘ o h e r e n t  p heno m e n a  w h e n  t h e  m u t u a l  i n t e r a c t i o n  of atoms and field is

i . i v~~~ve d , 4 co u p l e s  S c h r o d i n g e r ’ s eq u a t i o n  and M a x w e l l ’ s e q u a t i o n s ;

t h e  f i e l d  is d e s c r i b e d  c l a s s i c a l l y  in  b o t h  se t s of e q u a t i o n s , t h e

~~ are d e s c r i b e d  qua n tum m echanically by Schrodinger ’s equation ,

~ h x i e  t h e  atomic - or iiiatter - v a r i a b l e s  in M a x w e l l ’ s e q u a t i o n  ( f o r

m~ st  a~~~l~~c~i t i o n s , o n !>  t h e  p o l a r i z a t i o n , or atomic dipole -moment , is

of i n t e r e s t )  a r e  r ep h . c e d  by t h e i r  e x p e c t a t i o n  v a l u e s .

, ( . l j J l , w L i ~~h i s  t h e  i , i t e s t  version 0 Jaynes ’ “neoclassical

t h ’ o r y ’ ,~ ~n t r c ~ I u c e s  a ~ 1 as s i . ..al m o d e l  f o r  t h e  a tom based  on i t s

n , L t u r i l l ~z e q u e r . c i e s  ( o r  t n e r ~ y sp e c t r u m )  and t h e  a s s o c i a t e d  oscil-

1 ~t i n g  d i p o l e  m o m e n t s , w ith the latter provi ding the atomic polar-

izat~~ r~ in the cla s s i c a l Maxwell’ s equations . An essentially sim-

i lar vers ion has been proposed by Eberly. 6

~t 1 I V  i s  t h e  c l a s s i c a l - l i m i t  form of a fully quantum mechanical

lI,Jl__&_ 
-.

~~~~ 

.- ——- 

~

-.-—.- —-----—
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t h e o r y  i n w h i c h  t h e  a t o m s  a re  d e s c r i b e d  b y a b o s o n - s e c o n d - q u a n t i -

.atlon formalism.

A. Semiclassical Theory I

It has been shown some time ago that the mutual interaction of

t~ o systems , one strictly quantum mechanical and the other strictly

~ ia ’ sic al , cannot be described by a self consistent dynamical form-

aii m. 8 In the present instance , one reason is the fact that quantum

mec hanical atoms generate a quantum mechanical field , so that the

field , e~ on if it is classical initially, cannot remain classical.

Another reason is the fact that , to the classical system , the zero-

point motion of the quantum mechanical system looks like motion that

can do work , which obviosuly leads to absurd results. 8 In order to

place SCTI within a quantum mechanical framework , we consider a field

(in the Heisenberg Picture) which is the sum of two parts , one purely

quantum mechanical and the other classical. The total field is , of

course , fully quantum mechanical. The purely quantum mechanical part

is due to the atoms under consideration and to the loss mechanism

with which the field that is interacting with the atoms is coupled .

Ihe classical part is due to external sources which are unaffected by

the atomic behavior or by the loss me chanism. (It has been shown

that such an external field , no matter what its sources are , may be

described classically as far as the atoms are concerned .9) SCTI is

a valid approximation in the case where the quantum mechanical part

of the field is negligible compared to the classical part , and also

i n  the case where the questions asked refer only to atomic effects

produced by the classical part. An examp l. of the first case is the

behavior of atoms in a strong laser field - assuming , of course ,

t 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _  

_ _ _

I :  

-- - - — -- - .-
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that the laser operation is unaffected by the atoms under consider-

ation. An example of the second case is (lowest order) induced

emission or absorption; 10 here , only the external field determines the

result - assuming that the loss mechanism does not produce a si gnif-

icant thermal field - since the quantum mechanical part of the field

contributes , in lowest order , only to spontaneous emission. An im-

portant application - entirely valid - of SCTI is the theory of photo-

electric detection .1° In the usual approach to photoelectric phenom-

ena , the reaction of the photoelectrons on field being detected is

ignored. The induced absorption by the photosensitive atoms is invest-

igated to lowest order in perturbation theory, in order to obtain

information about the field produced by external sources . This field

is the classical part of the total field , the only part needed to

describe the production of photoelectrons.

B. Semiclassical Theory II

In contrast to SCTI . SCTII provides a prescription for analyzing

the mutual interaction between the atoms and the field. 11 It allows

the field to remain classical even though the atoms are treated quantum

me chanically; however , this is accomplished by an arbitrary require-

ment , n ame l y ,  that the matter variables in Maxwel l’ s equations be re-

iii iL ed by their expectation values. The conditions for the validity

of such a procedure from a quantum mec hanical viewpoint will be dis-

cussed later. Presently, it is instructive to illustrate a case for

which such a procedure is invalid. Let the matter under consideration

consist of a single , highly excited harmonic oscillator with an e-

lectric dipole moment proportional to its displacement. One can , in

principle , speci fy its quantum mechanical state to be an energy state

— iii - — -

~~~~

-

~~ 

~r— -
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(corresponding to a hi gh quantum number) . Since , in this state ,

the expectation value of the dipole moment is zero , this hi ghly

excited oscillator will not radiate at all according to SCTII!

The reason f or such an incorr ect resul t is no t di ff icul t to f ind.

The description of the oscillator by means of an energy state is a

statistical description. In the limit of hi gh quantum numbers (the

classical limit), the energy state becomes eqiivalent to a classical

description in which the amplitude of oscillation is well defined but

the probability distribution of the phase of oscillation is constant. ’2

We see that SCTII ignores the purely statistical aspect of a quantum

mechanical description , even if the description refers to a macro-

s opic system. (A harmonic oscillator in a high energy state is es-

sentially such a system.) SCTII is , therefore , invalid when the

statistical aspects of the description of the matter - i n t h e  se n se

of being nondete rministic - are significant.

C. Semiclassical Theory III

SCTIII achieves the same results as those of SCTII , for certain

types of problems , without an arbitrary prescription for joining

quantum mechanical and classical theories. In SCTIII the atom is

described schematically by its natural frequencies and associated

dipole moments , as follows: 5 Let the natural frequencies of the

atom be those determined by the set of energy levels hw~~1 n = 1 ,2,...

The (classical) Hamiltonian describing the free atom is then given by

H0 • ~~~~~~~~~ , (1)

where a~ and a~ are independent (comp lex) dynam ic al var iables .

-
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( ; a k r c s p o n d i n g  t o  e a c h  a t o m i c  i~r e q u e n c y  ~~~ - , t h e r e  e x i s t s  a

i . i p o !e  m o m e n t , t h e  c o m p o n e n t s  of w h i c h  a r e  1~~n e a r  s u p e r p o s i t i o n  of

t h e  ~u a n t i t i e s

(1) i * *d .  = ~~
. ( a . a .  + a . a . )

1) ~ 3 1 1 .1

( 2 )  i * *d .  - — i ( a . a .  - a . a . )  ( 2 )2 j  i i. j

(3) 
~ * *d .  = — ( a . a .  - a a . )

13 2 3 3 1 1

The coupling between the atom and the field i s  a s s u m e d  to  be  of

t h e  dipole -moment type described most generall y by the interaction

Ham i ltonian

3 (in ) ( m )
H ’  = ~ i Z i d~~. F . .  , (3)

m = l  1 <3

Cm)
w h e r e  F . . i s  a l i n e a r  s u p e r p o s i t i o n  of t h e  e l e c t r o m a g n e t i c  f i e l d

c o m p o n e n t s  t h a t  c o n t a i n  a p p r o p r i a t e  c o u p l i n g  c o n s t a n t s .  The t o t a l

H a m i l t o n i a n  f o r  t h e  a t o m  and f i e l d  i s  g i v e n  by

H = H 0 + H ’  + H f I ( 4 )

~~ 
b e i n g  t h e  c l a s s i c a l  H a m i l t o n i a n  f o r  t h e  f i e l d  o n l y .  The

“ L~~:I o n i c a 1 ”  e q u a t i o n s  f o r  t h e  a t o m i c  v a r i a b l e s  a re 5

ih ~~~ = !!1 ;. , i h~~~ - .}!L_ 
, (5)

and  t h e  e q u a t i o n s  of n o t i o n  f o r  t h e  field variables are those of

_ _ _ _ _ _ _ _ _ _ _ _ _  —
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the conve 4tional Ham ilconian formalism for the classical electro-

m agnetic field. It can be shown that the equations of motion for

t he a~~’s~ together with the definition of dipole moment by means
(a)

of the d
~ 2 

‘s , yield the same equations of motion for the dipole

moment in SCTIII as those for the expectation value of the dipole

moment in SCTII. The initial values of the an ’s in SCu ll are chosen

so that the initial di pole moment obtained from Eqs. (2) is equal to

the initial expectation value of the dipole moment in SCTII. Thus ,

SCu ll becomes a formal Hami ltonian theory that gives the same results

as SCTII , as far as the field is concerned , without an ad hoc prescrip-

tion to connect the quantum mechanical atomic equations with the

classical field equations. SCTIII exhibits the same lack of validity

as SCTIJ when applied to states that are not sufficiently deterministic.

Li . Semiclassical Theory IV . Macroscopic Quantum Mechanics.

In order to derive a semiclassical theory from quantum mechanics ,

we begin with a boson -second-qua nti zation formalism for the descrip-

tion of a number of identical atoms that couple similarly throug h

their dipole moment to the electromagnetic field. Let the relevant

spectrum of each atom consist of n levels with energ ies hw~~1 i = 1 ,

2, . . .n. The atomic state vectors that describe the entire collec-

tion lie in a space spanned by the vectors ‘ r 1 . . . r 1. . . r~~’ w h e r e

the r 1
1 s are non negative integers. The fundamental operators , from

which the pertinent dynamical variables may be constructed~ are - us-

ing the Heisenber g Picture - a1 (t), - . .a~~(t) and a~ (t), ...a~ (t)

such that

ai (O)1r 1. ..r... .r n > • ~~~~~~~~~~~~~~~~~~ (6)

- , -

- ~~~~~~~~~~ ~~~~~~~~~~~~ ~~T ~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~
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m d
t 2. r >  = (r 1+ l )  ~r 1 ..  .r . l .  . .r ~~> . (7 )

Zhe commutation relationships are [a 1 (t), a~~(t)] = 1 , with all

other equal-time commutators vanishing. The Hamiltonian for the col-

lection of atoms is given by the expression

H = L  4
~
w a

~
a
~ 

. (8)
~al

~hc collective atomic dipole moment is a linear superposition of the

o p e r a t o r s

(1) 1 t td1~ • ~ (a
’
a. + a.a.)

d 1 . -~.i(a .a. - a . a . )  , (9)

(3)  
~d .  . a — (a.a. - a . a . )2 ~~~ 1 1

I 
~ 

j ,  to which we will refer as the dipole moment components. The

coupling to the electrom ignetic field is described by the interaction

H a m i  itonian

• 3 (m)  ( m )
H’  — £ £ ~~ d 1~ (10)

m’l 1 < )

(m)
where the ~~ ‘s are linear superposit ions of the components of the

electromagnetic field (considered to be Helsenberg-Picture operators)

t h a t  c o n t a im  appropriate coupling constants. The total Hamiltonian

for atom and field is given by 

— — - - - -  — — —~
——-- —-—— - — —-.
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H H + H’  + H f ( 11)

H f b e i n g  the field Hamiltonian , which we do not need in explicit

f o r m .

using the notation n
~
Ea
~
a
~ , 

we note that the basis vectors are

eigervectors of n1 (O) with eigenvalue 
~~~ 

and th at E
~
n
~~
(t) is a con-

stant of motion , such that 7

[Z 1n .(t)J r 1 . . .rn> = N~ r 1 . . . r c> , (12)

where N = E.r. . We take the state of the atomic collection (the
1 1

initial state , in the Schrodinger Picture) to be that for which N is

the  number of atoms under  c o n s i d e r a t i o n .  The bosons in this descrip-

tion are , therefore , the atoms themselves , and amy state in this des-

cription corresponds to a fully symmetri zed many-atom State in a first

quanti zation formalism.

The basis vectors are , clearly, energy states , that is , ei gen-

vectors of H3(0) with ei genvalues E
~
r1hw 1 . It is useful to define

another ; set of states , coherent states ,7’13~~
5describ .d by the com-

p l ex se t  of n u m b e r s  c 1. .  .c n ( d e s i g n a t e d  as {‘ },  for brevity ), wit h

2
= 1 , as f o l l o w s :

( N )  
_ _ _ _ _  

~~~~r r

(rt~~.r ,) ~~~~~~~~~~~~~~~~~~ , (13)
r1.. .r~ 1

the superscri pt (N) indicating that the summation is taken over all

va lues of r 1, .. .r~ for which £1r1 N. These states obey the sia-

pie relationship

_ _ _  _ _ __ _  _ _  

-_ 1*4NJUw
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a k ( O ) I ( c ) N > = N 2 c k~~
{c }

N l > . (14)

in the case of two levels , and translated into a first quantization

formal i sm , the energy states have been referred to in the literature

as correlated incoherent states ,’6 or as fully syametrized Dicke

states ,~
4 and the coherent states have been referred to as uncorrelated

coherent ~t ates ,16 or as fully symmetrical Bloch states .14 It can be

shown that , for the free atoms (uncoupled from the field) ,

(m )
< r . . .r  i d . .  j r  . . . r > = 0  , a —  1,2,1 fl 13 1 n

(15)
(a)

< r ...r I d .  Ir ...r > a .±.(r. - r . )1 fl 13 1 n 2 3 1

and

(1)
< {c } N I d j )  

I ( c } N > a N I c ~ c 1 I c o s E ( n i ~
_ w 1) t + O j~ J

(2)
<{c}N Id jJ I { c J N > = N I c . c . I s i n [ ( w

3
— w ~~) t i - 6 .~~] (16)

(3) 2< {c}N Id jJ I{c}N> — 5 N ( { c . 1 2 
- Ic ~~I 

)

* 
(1)

where is defined by a Ic
3
c
~~l

exP (i9j~~
) . Thus , <d~~ > , for

i n s t a n c e , v a n i s h e s  f o r  an energy state but oscillates with frequency

I w .- w I  a~ d wel l  def ined phase for a coherent State (provided c.,
(1)2 7c . � 0). On the other hand , if we look at cd~~ > , we obtain

(1)2
r
1
. - ~~~~~~ 1 1... r >  • 

~
.L2r 1rj+r i+r j] , (17)

_ _ _ _ _ _ _ _ _  

—
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and

(1)2
c{c}N Id jJ I(c N}> I N ( 2 ( N - l ) I c ~ l 2 I c~ I 2 + I c ~ I 2 + J c ~ I

2 ] (18)

where the bar indicates time average. We see that for rk — N I c k f
2

the terms of order N2 are equal.

It may be remarked that the physical significance of treating

atoms as bosons in the present manner lies in their cooperative be-

hav i or. Complete symmetrization in a first quantization formalism -

as is required by such a treatment - may be regarded , intuitively,

as maximum cooperation among the atoms under consideration . The pres-

ent method may be generalized to the case of less than maximum atomic

cooperation by dividing a number of atoms into two or more collect-

ions , each collection being bosons of a different kind .

The collection of atoms is described completely, in the present

f o r m a l i sm , by the coordinates of n harmonic oscillators. In order

to investigate the classical -limit conditions , we merely need to con-

sider the classical-limit conditions pertaining to the harmonic os-

cillators. These are well known to be the limit of high (energy)

quantum numbers. Since a description need not be associated with a

definite energy state , a more general formulation can be expressed

by the inequalities ,

> > 1 , j — 1 , 2 , . . .n  . (19)

When these inequalities are fulfilled , the oscillators may be treat-

ed classically , the commutators [a
3
, a ]  are relatively negligible

(the last statement can be considered an alternate formulation of the

classical-limit condition), and the opera tors a~ and a may be

- ~~~~~~~ ~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
~‘ T  ~~~~~~~~~~~~~~~~
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t r e a t e d  as c -number variables. For clarity, where necessary, we w i l l

use A tilde henceforth to indicate such variables.

One also needs to look at the field under these limiting condi-

ti o ns. If the atoms under consideration are classical , the field

t h e y  genera te is classical. External fields are also classical , since

t h e y  m u s t  be p r e s c r i b e d . 9 The  o n l y  p a r t  of t h e  f i e l d  t h a t  r e m a i n s

~ u a n t u m  m e c h a n i c a l  is t h e  z e r o - p o i n t  f i e l d .  H o w e v e r , c l a s s i c a l  sys-

tems must not “see ” the zero point field , since , formally, i t  a p p e a r s

to then as a field which can do work. 8 Th us , as f a r  a s the f i e ld

t h a t  i n t e r a c t s  w i t h  t h e  c o l l e c t i o n  of a t o m s  u n d e r  c o n s i d e r a t i o n  is

conce rned , it may be described classically if the atoms are described

c l a s s i c a l l y .

I h u s , t h e  I j a m i l t o n i a n  of E q .  ( 1 1)  b e c o m e s  a c l a s s i c a l  H a m i l t o n i a n .

liq uations of motion for the dynamical variables are obtained according

t q  cla~.sjcal dynam ics by means of Poisson brackets. Noting that

a
3 

= 2 7(q. + i p . )  , where q
3 

and  are the dimensionless coordinate

and momentum of the j’th oscillator , such that H0 ~~~~~ ca~~(q~ + p~~)

t h e  c a n o n i c a l  equations of motion for and  bec ome

*d~~. 1 ~H da. 1 ~H
— ~~~~~~~~~ , __.J. = - — — , (20)

dt ih dt  ih  a~ .
3 3

w h i l e  t h e  c a n o n i c a l  e q u a t i o n s  of m o t i o n  f o r  t h e  f i e l d  v a r i a b l e s  be-

come e s s e n t i a l l y  e q u i v a l e n t  to  t h e  c l a s s i c a l  M a x w e l l ’ s e q u a t i o n .  I n

order to comp lete this theory, which was obtained as the classical

limit of a fully quantum mechanical theory, we need , in  a d d i t i o n  to  t h e

equations of motion , a method of prescribing initial condi ’ions that

is consistent with the classical -limit procedure.

In the quantum mechanical theory , in itial conditions are

4 
_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _

_ _ _ _ _ _ _  ~~—~~~~~~1~~ ---~~~~~~~ ’~ 
—
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described by means of a quantum state. What is the classical limit

of such a description? As is well known , a quantum-state descri p-

tion yields information in a statistical form , in general. In the

classical limit , ther efore , a quantum-state description must become

a statistical description , in wh ich ‘~
‘
~(0) and 

‘
~
‘
;

(0) a re cons idere d to

be raniom variables. One method of providing such a descri ption is

that of specifying moments. Consider the moments <O (flia~~~
.(0)a~

i (0)}.> ,

where 0 is an ordering operator that provides for some specj .fic order-

ing arrangement of the operators inside the curly bracket. Moments

corresponding to different arrangements may have different values be-

cause of non-vanishing commutators. In the classical limit , these

commutators are relatively negli gible , provided

v . + w . << <n. > , ( 2 1 ).1 .1 3

for all j. We restrict the number and kind of specified moments by

these inequalities (thus making the statistical description some-

what non-unique - or somewhat approximate) and specify the various

moments of the random variables , by

a ~~~O {IIia~
’
~
’i(0)awi(0))k,> (22)

where 
~~*‘ is the (init ial) state of the collection of atoms , and 0

indicates an arbitrary ordering arrangement that may be chosen for

convenience of evaluation. (Note that all ordering arrangements of

moments subject to inequality (21) yield results that differ by neg-

lig ib lo amounts , in the classical lim it .J Probability distributions

consistent with this d •finition of moments provide an alternate

statistical description.

~~~~~~~~~~~~ ‘~~~~~~ - -
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Comparison of the equations of motion of SCTIV with those of

SC ULl shows that they are identical; however , the method of de-

termining initial conditions in the two theories is different .

~h i le in SCu ll the initial conditions for the di pole moments are

obtained by equating their values to the corresponding quantum-

mechanical expectation values , in SCTLV the initial conditions con-

sist of a statistical description obtained from the quantum mechanical

state. S L i l l I  and SCTII are , thus , a special case of SCTIV ; they may

be applied only in thqse situations where not only the classical -

li m i t  conditions for the app lication of SCT IV are met , bu t a l s o  w h e r e

the (initial) state of the collection of atoms describes the atomic

dipole moment in a sufficiently deterministic manner.

A simple argument shows that the above conditions for the appli-

cation of SCI1I - IV are both necessary and sufficient. If we beg in

with SCTIII as a classical Hamilton ian theory, and convert it , by

usual methods , into a quantum theory, we obtain precisely the boson-

second -quantization formalism , from which we derived SCT [V. Thus ,

onl y this formalism can give , in the classical limit , a theory in

which SCu ll may be included , and if SCTIII (and SCTII , for which

SCu ll is the Ham iltonian formalism) is to be derived from quantum

mechanics , it must meet the aforementioned conditions. Needless to

say, these conditions do not allow the application of SCTII - IV to

a s i n g l e  a tom .

it is instructive to illustrate the application of SCTIV to an

energy-state descri ption and to a coherent-state description. For

simplicity, we ignore the reaction of the field as well as the effect

of external fields. For an energy state that meets the classical-

limit conditions (r~ >> l for all r1). Eq. (22) yields , us ing an
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ordering arrangement in terms of ni ’s for easy evaluation ,

— fl ir~
16 w .v j 

(23)

A simple probability distribution consistent with these moments is

g i v e n  by

1
-

~ ~~~ - i O .a.(0) — r . e j  , ( 2 4 )

where 0
3 

has a uniform probability distribution. Note that the

and , therefore , the a.(0)’s , are independent random variables. For

a coherent state which meets the classical limit conditions , Eq. (22)

yields , using a norma l ordering arrangement for easy evaluation ,

<fl v i (O)aw i (O), = LN (N_ l )...(N_V +l )]n ic.
\’ic~

i 6vw
(25)

V *vi W jN 11
1
c
1 

C~

where V = Z~~v 1 , W = E 1 w~ , and the inequality (21) was utilized in

the approximation. A simple probability distribution consistent with

these moments is

I
~ iea

3
(O) N 

3
e , (26)

where 0 is a random variable with a uniform probability distribution ,

but it has the same value for all a
3
(O)’ s .  The a j(O)’s are , theref ore ,

dependent , random variables. Consider , now , the dipole moment of the

collection of atoms . if we take rj - N~c3 )
2 , the ampl it u d e of

‘a-  — — 
— 

-
~~~~~

A
~~~~~~~~~~~

_ 

~~ --~~~~~~~~ --~~~----- --- ~~~~ —-  ~~~~~~~~~~~~~~ ~~~—
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( 1)  (2)

os c illation of d 1 . and d.. will have the same value for both the

ei rgy state and the coherent state. However , the p hase  of oscil-

lation for the energy state will be a random variable with all

values equally probable , while that for the coherent state will be

well defined. It is clear that , in the case of these two states ,

SC IJ I  - III can be applied only to the coherent state (in the clas-

sical limit) while SCTIV can be applied to both the coherent state

and the e.iergy state. The former is an example of a deterministic

description (of the pertinent matter variables in Maxwell’ s equation)

while the latter is an examp le of a statistical - in the sense of

non-deterministic - description .

The conclusion of the present section may be expresse d , loosely

speaking, by the statement that SCTII - IV are applicable only to

those situations where the atoms belong to one or more groups in

each of which they b ehave cooperatively and their nulber is large;

SCTII - III are further restricted to cases where the descr ip t ion of

the dipole moment is deterministic. Since SCTIV is the most general

form of a classical-limit theory for quantum mechanical sys t ems in

cooperative behavior , it is reasonable to refer to it as macroscopic

quantum mechanics.

I I I .  AT OMIC COOPERATI ON LE SS THAN MAXIM UM

The MQM formalism of the preceding Section describes a collec-

tion of n-level systems among which there exists maximum cooperation.

We will consider now the case in which the cooperation is less than

maximum , but one in which macroscopic dipole-moment effects may never-

theless exist. It is instructive to consider a specific example

which illustratss this case. Consider a large number of three level

I 
________________________________

__________________ 

_________________________________________________________________________________________________ 
________

— - —-~~ — 

—I- — —_-- —  — —.,—---—

~~~~~~~~ -~~
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systems , with energ ies , E1, E 2, E3 (where E 1<E 2<E 3)in equilibrium with

a thermal reservoir. Let the two lower levels be sufficiently close

together so that their population is of the same order of magnitude ,

and let the third level be sufficiently high so that its population

is essentially negligible. How much cooperative behavior exists in

this atomic collection ? Assuming, for simplicity, that the popu~.ation

dif~ erence between the two lower levels may be neglected , then , as far

as those two level s are concerned , there exists no cooperative behavior

whatsoever. This is obvious from the application of any of the sever-

al criteria for cooperati on among two-level systems: 1) Description

in terms of one-atom states contains no well -defined symmetry pro-

per ties; 2) the cooperation number ’4 is zero; 3) There exists no ma-

croscop ic di pole momen t , and none can be generated by the application

of a resonant pulse that acts equally on all the molecules ; 4) The

Bloch vector 14 is zero. 11 , however , we consider the pair of levels

E 1, E3 or E2, E3, then we have maximum cooperation among an effective

number of atoms ~.N , where N is the total number of atoms , according

to any of the criteria above. Thus , there does exist cooperation

among the three-level systems , but not the maximum cooperation that

is described by the BSQ formalism for one kind of bosons.

Since , by definition , bosons of the same kind cooperate

completely, the method of describing less than complete cooperation

clearly lies in the use of more than one kind of bosons for the

descri ption of the atomic collection . We label the kind of boson

by an index within a square bracket , either as a superscript or sub-

script , depending on notational convenience. The Ham iltonian is

then given by

_ _ _ _ _ _ _ _ _ _ _ _ _ _  - - 

~~~~~~~~~~~~~~~~~~~~~~~ 

—
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H0 • Z~~ w ia~ [k]a j [ k J  
. (27)

The operators aj(kJ 
are to be considered to operate only on the

states of the bosons of the k’th kind , and are c-numbers with re spect
(a)

t o all other kinds of bosons. The total dipole moment is the

sum of the dipole momen t s of the individual kinds ,

(a) (m)(k]
0 • Ed~ 1 , (28)

k ~

We re turn to the collecti on of three-level systems described

above . Consider two kinds of bosons , and let their combined state be

given by

1*> I~.N. 0, ~~~~~~~~ ~.N , 0> (2] . (29)

In this state , bo th kinds of boson s are equa l in number , w ith all of

the first kind being in the state that corresponds to E1, and all of

the second kind being in the state that corresponds to E2. It is

clear that the oscillatory moment , interpre ted accord ing to MQM ,

tha t is , as a (classical )  random variable in accordance with Eq. (24),

is zero , sinc. d~~ is zero for the values a - 1 , 2 . Con-

sider now a prescribed risonant fi.ld acting on the collection of

three -l.vil systems . In accordance with Eq. (10), we take the

interaction Haailtonian to be

k.l o
~~ jL k J i(kI • aiL k ]

a,[kI )coa~ ij t (30)

A 
_ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _

— .  - 
—rr — 

V 
- 
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( 2 )  (3)

where , for simplicity, we have assumed that f1~ = ~~~ - 0

have cho s e f~ a specific phase for the driving field , and have set

hu . - ~E - . If we now letx i i 3

~ij 
‘
~12

the n , accord ing to MQM , it is easy to show (using the rotating-wave

approxima tion) that

( l ) [ l]  1d12 = -
~~~~ N s i n  Qt cos ~lt s i n  wt

(31)
(l)[2J 1d 12 — .

~~
. N sin ~lt cos Qt sin wt

2 1 2 (1)
where Q - 

~ 
f ; w e have , thus , D12 - 0 . Similarly, it can be

shown that D~~~ = ~~~ 0. One obtains , therefore

(a)
D12 - 0

It is seen that there exists no oscillating dipole moment , nor can

one be generated by a resonant fie ’
~ld , at frequency w 12 . This is

consistent with the microscopic picture of saturation of the pair

of leve ls  E1 and B2.
As far as the level -pairs E 1, E 3 and E 2, E3 are concerned , the

situation is entirely different. Using the same method as above ,

we have for ~)j3 
, i - 1 , 2, 

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV
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(I) (l)(1] 10 . 3 - d .3 = -.

~~
. N sin ~t cos Ot sin w .3 t

(2) (2) (i] 1
- d~ 3 - ~~

. N sin flt cos at cos w~ 3t (32)

(3)  ( 3 ) [ i ]  1 2 2
0 j 3  — d 13 

a 
~~
. N ( s i n  Ot - cos ~t)

One sees that

(a) 2 1 2
~ 

0i3 — 

~T N) , i — 1 , 2, (33)

wh i ch means that an oscillating dipole moment corresponding to a

cooperation number - or a Bloc h -ve ctor magnitude - of .
~~~ N can be

generated at either frequency w 13 or . (It should be noted that

in MQM the cooperation number and the magnitude of the Bloch vector

are the same quantity.) This is half the cooperation number of that

in the case of maximum cooperation . Had there existed no (empty)

third level , the cooperation number , as far as the two saturated

levels are concerned , would have been zero. By a suitable combin-

ation of resonant pulses , one can generate an oscillating dipole

moment also at frequency w 12 in the present case. Using first a

pulse of frequency w 13 and of duration r such that at = ~.w , w e can

transfer the ground-level population to the third level; then ,

an oscillating Moment can be generated at frequency w 12 by a

field of frequency w12 . The cooperation number associated with the

levels E 1, B2 under these conditions is also 4 N.
It is seen that the number ~~

. N is associated with the state of

the collection of three-level systmes , rather than with any par-

ticu lar pair of 1•vsls , and may be regarde d as a cooper at ion num b er

fo r  the state under consideration. If our purpose is the generation
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of an oscillating dipol. moment by the application of a resonant

field , or by the app lication of succession of resonant pulses at

the var ious resonant frequencies , then the number 4 N may be re-

garded as a figure of merit of this state. We can use this opera-

t ional procedure to define the cooperation number - or figure of

merit - of a given state of a collection of n-level systems (where

the cooperation is less than maximum). This cooperation number is

given by the maximum (dirn~nsionless ) dipole moment , or the maximum
(rn)2 tof the quantity {E m O iJ I , t h a t  can be obtained by using a series

of resonant pulses. No restriction is to be made on the pulses that

may be used.

The above discussion has illustrated the fact that less than

maximum cooperation among n-level systems may be described by the

consideration of more than one kind of bosons. It has also led to

a quantitative measure of the cooperation for a given state. One

may naturally enquire about the number of kinds of bosons that are

needed to describe a given state. Althoug h no general theory has

yet been developed in this connection , it is reasonable to conjecture

that the number of kinds of bosons needed for an arbitrary state is

n o t  l a r g e r  t h a n  n .

IV. COOPERATIVE ATOMIC BEHAVIOR IN A FOUR-LEVEL LASER

We consider the operation of a four-jevel laser under the

idealized condition o’ maximum atomic cooperation. This cooperation

is assumed to exist not onl y in the oscillation - or “lasing ” -

pr oc ess , but also in the pumping and relaxation processes. Coop-

erative a tomic behavior in the las t two p rocesses  - to greater or

lesser extent - is not impossible to .achieve , in principle , for

_ _ _ _ _ _ _ _  -~~~~~~ - ~~r.
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certain types of lasers. In the case of optical pumping , for in-

stance , uniformity of the pumping field will produc . such an effect ,

while in the case of relaxation by spontaneous emission , th. in t ro-

duction of resonst ors at the relaxation frequency will do likewise.

F irst , the equations of motion for the dynamical variables in the

BSQ formalism will be given. These equations are fully quantum

mechanical. Then , taking th. classical limi t , we obtain the MQN

description. Certain properties of the steady-state solution which

indicate the special features introduced by the cooperative behavior

will be discussed .

Consider N “four -level” atoms (or molecules) with energy levels

i - 1 , 2 , 3, 4, ordered so that for i< J ~ with • I t~i~-w~ I
According to the BSQ formalism ,~ the laser matter is described by

four oscillators of complex amplitude aj . Let the’ 23 transition be

coupled to the (lossy) cavity mode of frequency w 23 
, with which we

associate the p~ etsp annihilation and creation operators b and bt

respectively .17 The 14 transition couples to the pump (as well as

to a relaxation mechanism), while the 12 and 34 transitions are

coupled to relaxation mechanisms , as indicated chematical ly in Fig. 1.

relaxation

pump and
relaxation cavity

I 
- 2

I relaxation

1

Pi4. 1. Sska •tIe dsp.r*p*t.w If 1.r eadsu uuUi u~~~~..,.

_____________________________ - — -.‘--— —-—-- -
--. -
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Introducing the reduced variables A and B such that

a
3
(t) — A

1
(t)ex~~(-i~~ t). b(t) B (t)exp(-iw 23t)

the above description is made precise by the specification of the

terms whose sum constitutes the interaction Hamiltonian ,

H’ .(relaxation) = _ L_  
~
(A.Ai’

~ i . _Q4JA J
A~) , i < i

H~ 3 (cavity) = l~y (A 2A~ B + BtA 3A~) (34)

H~ 4(purnp) = - i4’~6A 1A~ 
- e

tA A t
)

and by the expressions for and B

+ ..-! c * i . A~ A. , i < j , (35a)

B = B 0 
- iy  f dt~ A~~(t~ )A3 (t1)e~~~

t t )  
. (35b)

The symbols occurring in these equations have the following mean-

ing : is the relaxation “field” associated with the i j  relax-

ation mechanism ,’3 o~~ is the corresponding relaxation constant ,
(ij)

anda0 is the unperturbed relaxation field; B0 is the cavity

field in absence of the molecules , and ~ is the cavity relaxation

constant; E3 is the prescribed (reduced) pumping field with arbitrary

coherence propert ies. If we ignore , for simplicity, thermal

effec ts , then , classically, the quantities with subscript zero

‘a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

———-—V.. 

- 

— — —V
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vanish , and quantum mechanicall y, they represent the “vacuum ”

field described by ’2’’3

B0l~ •a01> •0 ,

-~~J t  -t
< 1 8 0 (t 1) B (t 2 ) I >  — e 1 2 , (36)

( j k )  (j k ) t

~~ 
(t 1)~~~ (t2)I> — 2

~ jk 
(t1 -t 2) ~

where I> is the ground state of the pertinent system . The resulting

equations of motion for the laser matter (the collection of atoms or

molecules ) are

A 1 — —~-~~~ 2 A 2 • ..!&~ 4 A 4 +~3~ A~ (37a)

A 2 .__ ! A 1~~ 12 
- iyB tA 3 (37b)

A 3 - —~a~ 4 A 4 - iyA 2B

A
4 

- -_.! A

3
~~~~~~34 - ~ A 1~~ 14 

- A 16 (37d)

To these , we mus t add the normal i za tion condi tion

— N

I
We will discuss only a very simple special case of these

equa t ions , that of a classical syst em in whic h A 2 and A3, as well
as the pumping strength I81 , are cons tant (and non-vanishing).

-
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‘4

In other words , conditions are assumed to be such that only the clas-

s ical macroscop ic proper ti es play a s ignificant role in the behavior

of this composite system (where , as stated prev ious ly , m ax imum coop-

eration exists), and the cavity field is in a steady state.

Using Eqs. (35), letting the quantities with subscript zero van-

ish , ignoring the commutators of all variables , carry ing Out the

int~’gration in Eq. (35b), taking t > >  , and using the notation

n1 = A~A 1, one can show that Eqs. (37) become

a12n 1n 2 
+ a 14 f l 1

f l 4 = D

~l2~
’l (2y 2/~ )n3

(38)

~34 n4 - (2y 2
/~~) n

2

~34 fl
3

fl4 
+ = D

wher e

D - 
~~~
1
P~
4 

+€ *A ~~~A
4
)

Only  three of these equations are obviously independent.

We will not investigate the general solution , but rather show

that these equations may be interpreted as describing a classical

parametric oscillator. The classical steady-state field in the

cavity is , from Eq. (35b), given by

_ _ _ _ _ _ _ _ _  

-V
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B (classical) — - i(y 23/~ ) A A 3

This should be regarded as the signal , at frequency w23 . As for the

idler , there exist two idler oscillations , at frequencies w~2 and

with atomic amplitudes proportional to P4A2 and A~A 4 ,  respect-

ively. It is clear from Eqs. (38) that D must be a real positive

quantity, wh ich mean s that the phases of A 1 and A 4 must depend on

the phase of . There is nothing in the equations , however , whi ch

determines the phase of the signal oscillation; it is arbitrary , and

independent of the puap phase , as it should be. We see , th e re fo re ,

that a “classical” laser , in wh ich th ere exis t s a maximum of at omic

cooperation in the non-lasing processes , is a parametric oscillator.

-
- 

---V. - -_ _~~-~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..
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