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ABSTRACT

Heat transfer through a very thin horizontal liquid
layer bounded on top by a cooled glass plate and on bottom
by a heated copper plate was measured. Results were
correlated in terms of Nusselt number as a function of
Rayleigh number. Three different liguids were used under
conditions to give a range of Rayleigh number from 350 to
4100 and Prandtl number from 34 to 477.

Up to a critical condition heat is transferred by
conduction alone. Convection appears when Ra = 1600 * 100.
A correlation for critical Rayleigh number as a function of

Prandtl number was obtained.
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Description

Area covered by the heater

Test area bounded by the
plexiglass shim

Surface area of the plexiglass
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Surface area of the test
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Specific heat of the
cooling water
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Btu/lbm - °F
v
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Btu/hr=fe=°"F
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Btu/nr=Lt=-"F
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ft




Ra=GrPr

Ra.p

Description

Thickness of the insulation
on sides of the apparatus

Nusselt number
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Resistance of the calibrated
resistance

Rayleigh number

Critical value of the Rayleigh
Number

Heat loss through the insulation
layers below the heater

Heat transferred into the
cooling water chamber

Total heat loss through
the insulation

Heat leakage through the
plexiglass shim

Heat supplied by the heater

Heat loss through the insulation
on sides

Heat transferred into the
test chamber

Copper plate temperature
Cooling water temperature

Film temperature of the
test chamber

Glass plate temperature

Temperature readings of the
thermocouples in the insulation

Room temperature

Units

ft

Ohms

Btu/hr
Btu/hr
Btu/hr
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Btu/hr
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Description

Thermal diffusivity
Volume coefficient of expansion

Temperature difference between
the average temperatures of
the two plates of the test
chamber

Temporature difference between
the inlet and exit temperatures
of the cooling water

Temperature difference between
the average temperature
readings of the two groups of
thermocouples in the insulation

Temperature difference between
the film temperature of the
test chamber and the room
temperature

Kinematic viscosity of test
liquid

Density of test liquid
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I. INTRODUCTION

A. BACKGROUND

The field of natural convection in enclosures encom-
passes many variations of geometry and input situations.

One of these situations is heat flow in the narrow space
between two horizontal parallel plates where the lower
plate has a higher temperature than the upper plate. When
the lower plate is heated, the fluid remains immobile and

an unstable stratification is formed, inasmuch as the warmer
fluid of lower density is located below the cooler fluid
whose density is higher.

In his classical work on convection currents in a
horizontal layer of fluid Rayleigh [Ref. 1] examined the
case of temperature gradients in a layer of fluid. He
formulated the flow equations for a discrete disturbance
in the fluid and determined the conditions under which the
disturbance would amplify causing the layer to become
unstable. Rayleigh recognized that the unstable stratifi-
cation must break down at a certain value of the temperature
difference above which a convective motion must be generated.

Below the critical value of Rayleigh number, defined as:

pure conduction is observed. Above the critical value of

the Rayleigh number convection begins.

12
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Benard [Ref. 2] performed the first laboratory controlled
experiments on thermally unstable liquid layers. He worked
with liquid layers on the order of several millimeters,
lying on a metallic plate which was heated and maintained
at a uniform temperature. The upper surface of the liquid
layer was free and at a lower temperature than at the plate
surface, since it was in contact with the ambient air.

Benard described the change from conduction to convection

in two phases. The fluid remains at rest until the vertical
temperature difference becomes sufficiently large. A pre-
liminary motion of the fluid then results. Shortly thereafter,
this first phase of relatively short duration appears, in
which the fluid forms cells of nearly regular polygons with
four to seven sides. This phase lasts from a few seconds

to several minutes for more viscous fluids. During the

second phase, the cells become equal and regular and align
themselves. The limit of the second phase is thus a permanent
regime of cells with vertical boundaries and hexagonal

cross sections as shown in Figure 1. Liquid rises in the

core of the cell, moves outward at the top, descends at

the vertical boundary between adjacent cells and moves

inward at the bottom.

In 1926 Jeffreys [Ref. 3] presented a solution to
Rayleigh's problem for two boundaries with no tangential
forces between boundary and fluid. His study included

solutions for the case of two rigid conducting boundaries

13




Plan View

FIGURE 1.

Vertical Section

Schematic Sketch of Benard Cell Structure
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and a rigid conducting boundary at the base with a free
surface at the top. For two rigid conducting boundaries
he found the critical Rayleigh number to be about 1200.
By a revised solution method in 1928 [Ref. 4] Jeffreys
obtained 1709.5 for the critical Rayleigh number for two
rigid conducting boundaries.

Later Low [Ref. 5], Sutton [Ref. 6], Malkus [Ref. 7]
and Catton [Ref. 8] in their theoretical works agreed on
the critical Rayleigh number of 1705 #* 5.

Schmidt and Milverton [Ref. 9] with their admittedly
rough experiments with distilled water determined the
critical value of the Rayleigh number to be 1770. In 1938
Chandra [Ref. 10] observed a columnar motion well under the
critical Rayleigh number. His test fluid was air with fluid
layer thicknesses varying between 4 and 16 millimeters.

He concluded that for all fluid layer thicknesses below

10 mm. a type of motion other than cellular motion which
he called columnar motion occurs below the critical Rayleigh
number. Later in 1952 DeGraaf and Van Der Held [Ref. 11]
worked with horizontal and inclined air layers between
parallel plates. They found that in horizontal air layers
the air remains at rest until the Rayleigh number reaches
about 2000. When this value is exceeded, the cellular
motion sets in, first in the form of hexagonal prisms, but
with a tendency to change into rows of tetragonal prisms
when the Rayleigh number increases. In contrast with the

Benard cells in liquids, the air descends in the middle.

15
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This was explained by the increase of the kinematic
viscosity with increase in temperature for gases. At
smaller fluid layer thicknesses of 5.5 and 6.9 mm. a
columnar motion, first described by Chandra, was observed
when the Rayleigh number exceeded 1400. For these thick-
nesses, cellular motion was observed for Rayleigh numbers
above 1600. This low critical Rayleigh number for thinner
air layers was explained by the authors as being due to the
very great temperature gradients.

Sutton [Ref. 6] explained previous works in his 1950
paper. He showed that the criterion for the "columnar"
mode involves only the ratio of the absolute tempe;atures
of the upper and lower surfaces. He also derived an
expression and verified the critical temperature difference
at which the transition takes place from the "columnar"
to "cellular" mode. He also showed that the "cellular"
mode will occur if the depth of the test fluid exceeds a
certain value, but that for the more shallow layers, the
"columnar" mode will be generated initially, ultimately
passing to the "cellular" mode for increased temperature
difference.

Malkus [Ref. 7] performed a series of experiments with
distilled water and acetone. The distance between the two
parallel plates ranged from 0.05 inches to 8.0 inches during

these experiments. His experimental critical Rayleigh

number was found to be 1700 * 80.

16
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Ernst Schmidt and Silveston [Ref. 12] examined heat
transfer through a horizontal liquid layer bounded on the
top by a cold surface and on bottom by a heated surface.
Five different liquids were used at different temperatures
for a range in Prandtl numbers of from 3 to 4000. Test
liquids were distilled water, ethylene glycol, heptane and
two silicone oils. Layer depths ranged from 1.45 mm. to 13
mm. Optical observations were made on the patterns formed
in the layer by convection. They concluded that up to a
critical condition heat is transferred by conduction alone

and convection appears at

They observed three distinct convection regimes. The first
occurred as convection sets in and appeared to be a honey-
comb pattern in the layer. As the Rayleigh number increases,
the pattern was found to change to a series of stripes

where the heat transfer had laminar character. The third
regime was observed at higher wvalues of Rayleigh number

with a tangled and disordered pattern which was the turbulent
region. Results, including the data of Mull and Reiher

(Ref. 13] were correlated by Nu as a function of Ra. The
authors concluded that the data indicated four distinct
modes of heat transfer. Above Ra = 10,000 they found that
Rayleigh number is not the only correlating parameter, and

the Prandtl number must be taken into account.
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The correlations derived from the data were:

Creeping region: Nu = 0.0012 (Ra)o'90
’ 4 ¥ 0.25
Laminar region: Nu = 0.24 (Ra)
Transition region: Nu = 0.30(Gr)0']'6(1>r:)0'21
= 0.30(Ra) %16 (pr)0-05
Turbulent region: Nu = 0.10(Gr)°'31(Pr)0'36
= 0.]_0(1230)0.31(,‘:,],__)0.05

The authors commented that the creeping convection
begins about Ra = 1700 and the laminar region about
Ra = 3000. Starting point of the transition region was to
be determined by Ra = 8000(Pr)°'2 whereas the starting point
of the turbulent region was given by Ra = 18,000(Pr)°‘2

Heat transfer measurements in horizontal fluid layers
seem to be generally lacking in the literature except for
some extensive data on air obtained by Mull and Reiher
[Ref. 13] and on liquids by Ernst Schmidt and Silveston
[Ref. 12]. One of the objectives of this study was to

obtain data for liquids near the critical Rayleigh number,

which is the area least covered by the previous works.

B. THESIS OBJECTIVES
The objectives of this study were to investigate natural

convection in thin horizontal liquid layers heated from

below, in particular to investigate the change from the
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conduction heat transfer regime to the convection heat
transfer regime. It was intended to determine the critical
Rayleigh number associated with the transition.

Another objective of the study was to determine corre-
lations of the Nusselt number as a function of the Grashof
and the Prandtl numbers.

To accomplish these objectives a series of experiments
with several different fluids were conducted. An experimental
apparatus was designed where the hypothetical system of a
system fluid contained between two infinite, horizontal
surfaces was closely approximated by containing the fluid
between two parallel plates and using layer depths which

were very small compared with the dimensions of the plates.

19
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II. APPARATUS

A. DESIGN CONSIDERATIONS

The hypothetical system of a fluid contained between
two infinite, horizontal, conducting surfaces was closely
approximated by containing the test ligquid between parallel
square plates and using layer depths which were very small
compared with the dimensions of the plates. Larger layer
depths were avoided to keep the edge effects to a minimum.

Several preliminary experiments were performed with
distilled water to obtain an appreciation for the general
performance of the apparatus. These preliminary experiments
gave a general idea of the required properties of the test
liquid and the required distance between the two plates in
order to obtain Rayleigh numbers about the critical value
of the Rayleigh number. The data obtained from these pre-
liminary experiments are not included in this study because
the obtained Rayleigh numbers were outside the range of
interest.

A petroleum based oil, commercially known as Mobil 603
was chosen as the second test liquid after these preliminary
experiments. Two sets of data were obtained with Mobil
603. A plain glass plate was used as the top surface of the
test chamber during the first set of experiments. During
these experiments a problem with short circuiting of the

heater with the copper plate was encountered at high

20




"ﬁ'." R R L T R A SRR B g s

I

temperatures. After these experiments a very thin, heat
resistant gasket was put between the copper plate and the
electric heater to increase the electrical insulation.
During the second set of experiments a glass plate coated
with a transparent, electrically conductive coating was
used. The data obtained from these two sets of experiments
are contained in the study. The data of the second set of
experiments was consistent with the data obtained later and
this data is used for correlations.

With the help of the preliminary water data a charac-
teristic plate spacing L, was selected to obtain a Rayleigh
number close to the critical Rayleigh number. Rayleigh
numbers above and below the critical value were obtained
by changing other parameters such as the temperature
difference between the two plates of the test chamber and

the f1luid properties.

B. DESCRIPTION OF THE APPARATUS

The test apparatus as shown schematically in Figure 2,
consisted of three principal components. These were a test
chamber where the test liquid was contained between two
parallel plates, a cooling chamber above it where cooling
water circulated and a guard heater/insulation assembly.

A copper plate with an attached heater at the bottom
and a glass plate at the top with a plexiglass shim between
constituted the test chamber. The cooling chamber consisted

of a plexiglass plate on top, the glass plate of the test

—
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Plate

Cross Section of the Test Apparatus
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chamber on bottom and a thick plexiglass spacer with inlet
and outlet tubes on the sides. Layers of insulation with
six thermocouples in two groups and a guard heater between
the insulation layers constituted the insulation piece.
The guard heater and the thermocouples were placed in the
insulation to minimize the heat loss.

A one-quarter inch thick and seven inch square copper
plate, as shown in Figure 3, was used as the lower heated
surface of the test chamber. Both sides were given a
machine finish and later the upper surface was polished to
a mirror finish. Flattened beads of five thermocouples
(30 gage copper-constantan) were attached on this surface.
The thermocouples were painted with a nonconducting paint
to avoid shortcircuiting through the copper plate. The
thermocouple leads were taken out through 0.05 inch diameter
holes bored into the copper plate. These two holes were
sealed with silicon rubber.

A third channel was bored into the copper plate and a
small diameter stainless steel tube was soldered to the
outer end of it. A plastic tube connected this metal tube
to a container filled with test liquid which acted as an
expansion tank for the test chamber. It also kept the test
chamber near atmospheric pressure.

The heater element was made of twelve feet of nichrome
wire having a total resistance of twelve ohms. The twelve
foot long wire was shaped into parallel strips, one-quarter

inch apart covering an area six inches square as shown in
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FIGURE 3. Location of the Thermocouples on the
Copper Plate




. Figure 4.

of the copper plate insured a uniform heat flux. The heater

element was attached to the bottom of the copper plate with
epoxy. To avoid shortcircuiting through the copper plate,
the heater element and the bottom of the copper plate were
painted with a high temperature nonconducting paint. To
insure electric insulation, a 0.010 inch heat resistant
gasket was placed between the heater and the copper plate.

A one-quarter inch thick and seven inch square glass
plate was used to cool the test liquid from the top. Five
thermocouples with flattened beads were attached on the
lower surface of the glass plate as shown in Figure 5.

A one half inch wide plexiglass shim with a thickness
of 0.125 inch was used as the spacer between the glass and
the copper plate. The thermocouple leads from the glass
plate were taken out through holes drilled into the plexi-
glass shim as shown in Figure 6.

The cooling chamber for the upper plate consisted of

a half inch wide, one inch thick spacer with water inlet

and outlet tubes on two sides as shown in Figure 7. Cooling

water flowed through this space, bounded on bottom by the
glass cooling plate and on top by a one-quarter inch thick
and seven inch square plexiglass plate. To insure a
watertight seal, two 0.0625 inch Neoprene rubber "O" rings
were installed at each spacer-plate interface.

To insure that the heat generated by the heater would

go into the copper plate, a guard heater and two inches of

The shape of the heater element and the thickness
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insulation was placed below the copper plate. The guard
heater was constructed from nichrome wire in the same manner
as the main heater element. Six thermocouples were installed
in the insulation in two groups as shown in Figures 1 and 8.
Power to the guard heater was adjusted so that the average
temperature readings of the two groups were the same. Then
the net heat loss through the insulation below the heating
plate would be zero. This guard heater/insulation assembly
was supported from the bottom with a one-quarter inch thick
and seven inch square aluminum plate.

The plates and the insulation were clamped together
using four sections of aluminum "U" channel and four con-
necting rods as shown in Figure 9. A leveling screw was
attached to the bottom of each rod. By using the "U" channels
to clamp the system together the load was distributed uni-
formly. A one-quarter inch thick, half inch wide aluminum
shim was placed on top of the plexiglass plate to distribute
the loading to a larger area. A torque wrench was used to
insure the same and desired amount of load was applied on

each rod.

C. INSTRUMENTATION

l. Temperature Measurement

The temperature distribution on the copper and glass
plates was determined by five ungrounded junction, copper- -
constantan thermocouples on each plate. These ten thermo-

couples were wired into a thermocouple switching box, and
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recorded separately by using a digital readout Numatron
which displays the temperature reading in °F directly.

A thermocouple was attached to the inlet of the

cooling water intake manifold and a second one to the outlet

of the discharge manifold. To check these two temperature

readings, an uncalibrated thermocouple was attached to every

water inlet and outlet tube of the cooling chamber. These
ten thermocouples were wired in parallel in two groups and
each group was then wired into the switching box. These
groups of five thermocouples in parallel gave average inlet
and exit temperature readings of the cooling water.

To control the heat loss through the insulation
below the heater element, two groups of thermocouples were
placed in the insulation. Each group contained three
thermocouples and these six thermcouples were wired into
the switching box separately. As mentioned before these
thermocouples were used together with the guard heater to
insure that the heat generated by the heater element was
transferred into the test chamber through the copper plate.

Thermocouple calibration procedure is given in
Appendix A.

2. Power to Heater Elements

A Lambda regulated DC power supply was used to
provide input voltage to the heater. A calibrated resistor

was placed in series with the power supply and the heater.

With this arrangement, voltage readings across the calibrated

resistor and across the heater were taken. Knowing the
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g voltage of the calibrated resistance, the current through
] \ i the circuit could be determined. The product of this current
and the voltage across the heater gave the input power. By
this arrangement the value of the input power could be
accurately reset for different experiments. The voltage
across the heater and across the calibrated resistance were
determined using a Keithley 168 Autoranging DMM digital
voltmeter. A sample calculation is provided in Appendix B.

A variac was used to provide input voltage to the
guard heater. The voltage across the guard heater was
determined using the same digital voltmeter.

To ensure constant voltage supply, the input power
for all electric equipment was taken from the output of an
AC voltage regulator.

3. Water Flow Rate into the Cooling Chamber

A submersible electric pump was used to pump the
cooling water from a 25 gallon reservoir. The flow rate
was adjusted by controlling the voltage to the pump with a

variac. A Fischer and Porter Co. flowmeter with a maximum

rate of 0.6 GPM was used to determine the flow rate. The
percentage of the maximum flow rate was marked on the
flowmeter.

A general arrangement of apparatus with the

instrumentation is shown in the photograph in Figure 10.
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III. PROCEDURE

A. APPARATUS ASSEMBLY

The calibrated thermocouples were attached to the
plates as shown in Figures 2 and 4. The plexiglass shim
was placed on the glass plate and a watertight interface
was accomplished by means of silicon rubber. A thick
continuous silicon rubber film was laid on the upper sur-
face of the plexiglass shim. The apparatus was then filled
with the test liquid up to the edge of the silicon rubber
layer. The next step was to attach the overflow tube which
connected the test chamber to the expansion tank and to
fill the whole tube with the test liquid. The copper plate
was then placed over the glass plate and lightly pressed
down. Once the excess liquid and silicon rubber flowed
out, the test chamber was filled with the test liquid and
all air bubbles were eliminated. Generally this result was
accomplished by the third try.

Assembly of the whole apparatus had to be accomplished
quickly in order to avoid hardening of the silicon rubber
film between the plates. Once the silicon rubber had
hardened, a uniform thickness between plates could never
be attained.

Starting from the bottom, first the aluminum support
plate was placed on the two bottom "U" bars. The insulation

with the guard heater and thermocouples was placed on the

36




|

WA AN e 0

s o T e R NP

support plate. The test chamber and the cooling water
chamber were then placed on the insulation. The whole
apparatus is shown in Figure 1. A torque wrench was used
to compress the sections between the "U" bars. Starting
with low torque values and increasing the load a foot-
pound at a time an even load distribution and even silicon
rubber thickness between the plates was insured. After
measuring the distance between the copper plate and the
glass plate at each corner with an inside micrometer, the
test section was insulated on the sides. Later the apparatus
was levelled using the leveling screws and a small bubble

level on top of the apparatus.

B. PROCEDURE

l. Measurements

Data of a usual run consisted of readings of the
twenty thermocouples, voltages across the calibrated resistor
and the heater elements and the cooling water flow rate.

A complete experimental run usually lasted about three hours.
A set of data was recorded every half hour. Steady state
was considered established and final readings were made when
the temperatures in the whole system varied less than 0.2 °F
over half an hour.

The recorded temperature data consisted of the
inlet and exit temperatures of the cooling water, the temper-
atures of the glass and the copper plates in the test chamber

and the temperatures in the insulation below the test chamber.
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Power to the heater element was monitored by the
voltage across the heater. The voltage across the heater
element was increased by two volts at a time starting at
10 volts, to a maximum of 25 volts. In the vicinity of the
critical Rayleigh number the voltage was increased by smaller
steps to obtain data at desired points.

2. Determination of Dimensionless Numbers

The data recorded at steady state included ten
temperature readings for the copper and the glass plates
of the test chamber. The average of the five temperature
readings for each plate, gave the average temperature of
the corresponding plate. The difference between the average
temperatures of the two plates was defined as AT. A sample
calculation is contained in Appendix B.

All liquid properties were evaluated at the film

temperature defined as

The Rayleigh number was calculated using the distance
between the two plates of the test section as the charac-
teristic length. The Rayleigh number also can be written

as the product of the Grashof number:

3
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and the Prandtl number:

Pr =

Ql<

Voltages across the heater and the calibrated
resistor were recorded for each run. Knowing the voltage
across the calibrated resistance, the current through the

heater circuit could be determined. The product of this

current and the voltage across the heater gave the input
power as shown in Appendix B.

Heat leakage through the plexiglass shim between the
two plates and heat leakage through the insulation below
and on the sides of the test chamber were determined. The
: difference between the input power and the heat leakages
gave the actual heat transferred to the test liquid which
was defined as Qp and a sample calculation is contained in
Appendix B.

The Nusselt number was then calculated. By

definition the Nusselt number is:

Thermocouples located at the inlet and the exit
manifolds of the cooling chamber gave the temperature rise
of the cooling water in the cooling chamber. Together with

the flow rate, this temperature difference, defined as
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ATCW' gave a check on the calculated heat transfer into the
test chamber. A sample calculation is contained in Appendix

B‘

C. TEST LIQUIDS

A general idea of the required properties of the test
liquid for the present design was obtained from the pre-
liminary experiments conducted with distilled water.

Finding the desired properties of the test liquids was
one of the major difficulties encountered during this study.
All desired properties of a selected liquid were not con-
tained in one reference. 1In some cases the properties were
given for a temperature range which did not include the
temperatures encountered in the experiments.

Three liquids were used. Prandtl numbers varied from
34 to 476 for the temperature range of the experiments.
Properties of these liquids permitted temperature differ-
ences in the range of 4 °F to 33 °F with very small layer
depths.

The first test liquid was a petroleum based oil commer-
cailly known as Mobiltherm light 603. Properties were
obtained from a technical bulletin [Ref. 14] published by
the Mobil Research and Development Corporation.

The second test liquid was ethylene glycol. Properties
were obtained from the Handbook of Heat Transfer Media

[Ref. 15] and Thermophysical Properties of Matter [Ref. 16].
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The third test liquid was a glycerol-water solution.
Composition of the solution was 56% glycerol and 44%
distilled water by weight. Properties of the liquid were

obtained from Glycerol [Ref. 17].

AT DA A YA A
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IV. DISCUSSION AND CONCLUSIONS

The hypothetical system of a fluid contained between
two infinite, horizontal, conducting surfaces was closely
approximated by containing the very thin liquid layer
between two parallel square plates. Heat transfer through
this very thin liquid layer bounded on top by a cooled
glass plate and on bottom by a.heated copper plate was
measured. Experiments were conducted for a range of Ray-
leigh numbers from 350 to 4100 with three different liquids.
The Prandtl numbers varied from 34 to 477 under these
conditions. A summary of the data obtained from these
experiments is presented in Tables I to IV.

Table I contains the results of the experiments with
Mobil 603. A plain glass plate was used as the cooled top
surface. At high temperatures a short circuit between the
heater and the copper plate was observed during these
experiments. Later a very thin heat resistant gasket was
placed between the heater and the copper plate. Data of
these experiments is not used in obtaining the correlations.

Table II contains results of experiments with Mobil
603. During this second set of experiments a glass plate
with its surface facing the copper plate coated with an
electrically conducting transparent coating was used as

the cooled top surface.
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Tables III and IV present results of experiments with
ethylene glycol and 56 wt % glycerol-water solution respec-
tively. A plain glass plate was used during both of these
experiments as the cooled upper surface.

The data under the LnRa and LnNu columns are plotted
in Figure 13 as LnNu vs LnRa. The Nusselt number is about
1 from a Rayleigh number of 350 to a range of Rayleigh
numbers from 1500 to 1700, depending on the test liquid.

Ra = 1600 * 100 was defined as the critical Rayleigh number.
In their earlier experimental works Schmidt and Reiher

[Ref. 9] and Ernst Schmidt and Silveston [Ref. 12] deter-
mined critical Rayleigh numbers from 1600 to 1800 for
various fluids. Up to this critical condition heat is
transferred by conduction only. The deviation of Nusselt
number in the conduction regime increases for lower tem-
perature differences where the uncertainty is higher.

At the Rayleigh numbers between 1500 and 1700 convection
appears and the Nusselt number increases with the increasing
Rayleigh number. The Nusselt number is nearly proportional
to the Rayleigh numbers up to Rayleigh number of about 3000.
A similar relationship was observed by Schmidt and Silveston
[Ref. 12] for the same region which they called as the
"creeping convection" region. The authors obtained a
correlation for the data in this region as:

Nu = 0.0012 (Ra)o'90
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Correlations cobtained for the data of this study are
presented in Table V.

A change in the slope above Ra = 3000 can be observed
in Figure 13. The starting point of this change in the
slope differed from one fluid to another. 1In the case
of Glycerol-water solution it started well below Ra = 3000.
Schmidt and Silveston [Ref. 12] concluded that this is the
starting point of another mode of the convection heat
transfer regime.

The critical Rayleigh number which is the starting point
of the convection heat transfer regime ranged from 1480 to
1702. The critical Rayleigh number was determined by the
intersection of the paired lines drawn through the data of
conduction and convection regimes for each fluid in Figure
13. These critical Rayleigh numbers and the corresponding
Prandtl numbers are presented in Table VI and are plotted

as LnRa vs LnPr in Figure 1l4. The critical Rayleigh

CR
number is apparently a function of the Prandtl number.

The correlation obtained from this data is

0.0760

Ra., = 1103 (Pr)

CR
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V. RECOMMENDATIONS

The uncertainty in the temperature difference was one
of the biggest among the uncertainties. As the temperature
difference increases the size of this uncertainty decreases.
One could improve the precision of the temperature measure-
ments by employing higher temperature differences.

Another difficulty was attachment of the thermocouples
to the plates of the test section. Even very small thickness
of the flattened bead causes high uncertainty in the measure-
ment of the distance between the two plates of the test
chamber due to the very thin liquid layer thickness.
Intrinsic thermocouples could be an answer to this problem.

The corners of the plexiglass shim were chamfered
to create a gap between the two plates of the test chamber.
The distance between the two plates was determined by an
inside micrometer from these gaps at four corners. In-
creasing number of measurements could decrease the uncertainty
of the Rayleigh number calculations.

A flow visualization technique could be uced to demon-
strate visually the establishment of convection in a future
study in this area. Ernst Schmidt and Silveston [Ref. 12]

used a shadowgraph technique and obtained good results.
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APPENDIX A

THERMOCOUPLE CALIBRATION PROCEDURE

The accurate determination of the fluid and test section
temperatures was an absolute necessity for this experiment.
For this reason, precise calibration of the thermocouples
was required.

A Rosemount Calibration System, with a constant tem-
perature oil bath, was used for the calibration. The
eighteen thermocouples were suspended several inches into
the oil bath. A Platinum Resistance Thermometer in conjunc-
tion with a commutation bridge was used as a standard. The
calibration was conducted over a range from 70 °F to 150 °F.
The maximum uncertainty for the standard thermometer for
this temperature range was * 0.005 °7.

The thermocouple readings during the experiments ranged
from 74 °F to 130 °F. The maximum difference between the
temperature reading of the standard thermometer and the
thermocouples was 0.9 °F for this temperature range. For
the same temperature range the maximum difference in tem-
perature readings of the thermocouples was 0.1 °F.

The calibration process was performed with the same
switch-box and Numatron used during the experiments. 1In
other words, there was no recording instrument changes

once the system was calibrated.

54

AORIAL & NSt O Al s T ke 15 24




A number was attached to every thermocouple after cali-
bration. Positions of the thermocouples, except the ones
used in the cooling water system, are shown in Figure 10.
Thermocouples number 8 and 2 were located in the inlet and
the exit cooling water manifolds respectively. Thermo-
couples attached to the inlet and the exit tubes of the

cooling water spacer were numbered 19 and 20 respectively.
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APPENDIX B
SAMPLE CALCULATIONS

To represent a sample calculation, the data recorded
on 23 July 1977 is used. The test liquid was glycerol-
water solution. Composition of the solution was 56%
glycerol and 44% distilled water by weight.

Steady state was reached in two hours twenty minutes.
Maximum temperature change in fifty minutes was less than
0.2 °F for the copper and the glass plates of the test
chamber. The temperature change for the cooling water
was less than 0.1 °F for the same period of time.

A sketch of the control volume for the energy balance
on the test chamber indicating the major heat transfer
components involved is shown in Figure 12.

Sample calculations of the supplied power (QP), the
heat leakage through the plexiglass shim (QL), the heat

loss through the insulation (Q ), the heat transferred to

INS
the cooling chamber (ch), the Rayleigh number (Ra), the
Nusselt number (Nu) and the Prandtl number (Pr) are given
below.

The heat loss through the insulation consisted of the
heat loss through the insulation below the test chamber
(QB) and the heat loss through the insulation on the sides
of the test chamber (Qg). The sum of the heat losses from
the sides for each plate of the test chamber was equal to the

heat loss for an equivalent cross sectional area at the film

temperature.
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2 SAMPLE CALCULATIONS
‘ A. DATA
% Tige L . 938 o
B @ =130 R
7. 3 = 87.9 °F 1
L T, 4 = 88.1 °F
‘ 7,5 = 88.1 °F
T 6 = 88.3 °F
i %7 = 87.9 °F
Toy @ . = 12.8 °F
T 9 = 80.6 °F
T, 10 = B1.1 °F

T, 1Lk = 80.9 °F

(7]

- o
TG 12 81,3 °F
TG 13 = 8L.3 °F

°
TINS 14 = 94.1 °F

: °
3 ! TINS E5 & 94,3 9F

3

4 : v; 7
E i INS 16 93.8 °F

17 = 94.4 °F

INS

- °
INS 18 93.7 °F

5 °
W 19 72.8 °F

20 = 73.1 °F

3 83 3 g

B R NI S B 5 ST

E = 13.98 Vv
2.31 v

1 ™
(] [}

4.10 Vv
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R = 2.031

FCW = 120.2 lbm/Hr

38 = 75 °F

kp = 0.120 Btu/Hr/ft/°F
i 2

AP = 0.0903 £t

L = 0.01167 ft

kINS = 0.096 Btu/Hr/ft/°F
5 2

AB = 0.25 ft

LB = 0.08333 ft

Ls = 0.02983 ft

ch = 0.998 Btu/Lbm/°F

8 = 2.683 x 107% 1/°p

v = 5.6625 x 10-'5 ftz/sec

kLIQ = 0.232 Btu/Hr/ft/°F
= 3

PLIQ 71.02 Lbm/ft

CLIQ = 0.7636 Btu/Lbm/°F
i 2

ALIQ = 025t

TEMPERATURE CALCULATIONS

1. Average Copper Plate Temperature (Tc)

Tc 3 + TC 4 TC

5+ To O % Ty 7
T, =
c 5

C

- 87.9 + 83.1 + 88.1 + 88.3 + 87.9
5
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2. Average Glass Plate Temperature (TG)

TG 9 + TG 10 + TG 11 + TG 12 + TG 13
o™ 5

- 80.6 + 81.1 + 80.9 + 81.3 + 81.3
5

= 81.0 £ 0.4 °F

3. Temperature Difference Between the Two Plates (AT)

AT = 88.1 - 81.0

"
&)
|
)

o
c G Aol LR T6 O B

4., Film Temperature (TF)

s U
T, e S, 6.88.14810, g5 0r

5. Temperature Rise in the Cooling Water (ATCW)

= - = - = °
AT Tcw 2 TCW 8 73.1 72.8 0.3 °F

6. Temperature Difference in the Insulation (ATINS)

18 T 14 + T 1§ + T

T 1 +7T 17 + TI INS I§§ INS

INS INS NS
ATyng = 3

_93.9 + 94.4 + 93.7 _ 94.1 + 94.3 + 93.8
3 3

= 94,0 - 94.1 = 0.1 ¢ 0.3 °F




7. The Difference Between the Room Temperature and
The Film Temperature (AT.)

%
‘
3
:
)
$

AT, = Tp = T, = 84.5 - 75.0 = 9.5 °F

C. POWER CALCULATIONS

é 1. Supplied Power (QP)
1 Er By _ (2.31) (13.98) |
el 2.031 |

= 15.90 W = 54.3 Btu/hr

2. Heat Leakage Through the Plexiglass Shim (QL)

kp Ap AT 120) (0.0903) (7.1)

Qp &m0y a 0.01167

= 6.6 Btu/hr

3. Heat Loss Through the Insulation (QINS)

Qns = B * Q5

_ Kins 2p ATins | Kins 2s 4T

s Lg

(0.096) (0.25) (0.1) . (0.096) (0.1244) (9.5)
. 0.02083

0.03 +# 5.5 = 5,53 Btu/hr.
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4. Heat Transferred to the Test Chamber (QT)

G ™ G~ (Qope + O

= 54.3 - (5.53 + 6.6) = 42.2 Btu/hr

5. Heat Transferred to the Cooling Chamber (QCW)

%w = Fow v Tew

= (120.2) (0.998) (0.2) = 42.0 Btu/hr

D. DIMENSIONLESS NUMBERS 5

1. Rayleigh Number (Ra)

o il

a v

(32.174) (2.683 x 10—4) (7.02) (1.167 x ].0-'2)3

0.232 =
(71037 (0.7636)(3600) = (5-6625x10 7)

1430.2

2. Nusselt Number (Nu)

QTL
Nu =
kr1o 5T Apig ‘

-g
(42.2494) (1.167x10 ") _ 1 2106




- ———————r. .

AT N

R N W R T N N R Y R T T B

3. Prandtl Number (Pr)

v
= e
Pr =

(5.6625 x 10-5) (3600)

0.232
(71.02) (0.7636)

= 47.6507
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. APPENDIX C

UNCERTAINTY ANALYSIS

The uncertainties for the variables and the dimension-

; less numbers in this experimental study were calculated

by the method proposed by Kline and McClintock [Ref. 18].
The second-power equation of Kline and McClintock was

used for the calculation of uncertainties in the values

obtained experimentally.

The basis for uncertainties in the temperature readings

was the calibration of the thermocouples. For all measured
quantities the accuracy of the measuring instrument was the
basis for uncertainties. Uncertainties for the properties
of the test liquids were given in the references where these
properties were obtained.

As an example, the calculation of the uncertainty in
the Rayleigh number for the same case taken for sample
calculations is given below. The Rayleigh number was

defined as:

and the uncertainty was calculated by the seoncd-power

equation of Kline and McClintock as:
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S b f e

RO oy S

dRa dBg, 2 dAT, 2 dL, 2 dv, 2 da, 2
= (T) + (-—A-T') + 3(—L) + (—v) + (—a)

= (0.0121)2 + (0.085)2 + 3(0.060)2 + (0.001)2 + (0.0102)2
= 13.5%

Using the same formula uncertainty in the Nusselt number
and the Prandtl number was found to be 16.4% and 1.143%
respectively.

The values of the uncertainties for other variables
are listed below. Because of the low temperature difference,

» the uncertainties are higher than average for this case.

Quantity Uncertainty

dpLIQ/pLIQ 0.0010

deIQ/vLIQ 0.0100

dCLIQ/CLIQ 0.010 i
dkLIQ/‘LIQ 0.0010

dkp/kP 0.030

dk 1ns/*1ns SRR 1
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Quantity
4aL/L
dLrns/T1ns
dE, /E,
dEq/Eq
dR/R
dAT/AT
ds/B
30,/0,

da /0,
dQ1xns/Q1ns

da/a

Uncertainty

0.060

0.050

0.0010

0.0050

0.0005

0.0850

0.0121

0.0051

0.1101

0.0587

0.1255

0.0102




e —————

A S A I S T Y

P Y Y BT (3 5 e o 4

e

Quantity

by 1o/ 110
dAp/Ag
dAg/Ag
da,/A,

dLB/LB
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Uncertainty

0.020

0.020

0.020

0.020

0.050




10.
11.

12.

13.

14,

15.

16.

17.

18.

LIST OF REFERENCES

Lord Rayleigh, Phil. Mag., Series 6, Vol. 32, 529-546
(1916).

Benard, Rev. Gen. Sci., 11, 1261-1271, 1309-1328
(1900).

Jeffreys, H., Phil. Mag., Vol 2, 883-844 (1926).
Jeffreys, H., Proc. Roy. Soc. (London). A 118, 195 (1928).

Low, A. R., Proc. Roy. Soc. (London), A 125, (1929).

Sutton, 0. G., Proc. Roy. Soc. (London), A 225,
185 (1954).

Malkus, W. V. R., Proc. Roy. Soc. (London), A 225,
185 (1954).

Cotton, I., Physics of Fluids, Vol. 9, No. 12,
2521-2522 (1966).

Schmidt, R. J., and S. W. Milverton, Proc. Roy. Soc.
(London), A 152, 586 (1935).

Chandra, K., Proc. Roy. Soc. (London), A 164, 231 (1938).

DeFraaf, J. G. A., and E. F. M. Van Der Held, Appl.
Sci. Res., A3, 393 (1952).

Schmidt, E. and P. L. Silveston, Chem. Eng. Progr.
Symposium Ser., No. 29, 55, 163 (1959).

Mull, W., and H. Reiher, Beih. 2. Gesundheitstech.
Ing., Series 1, 28 (1930).

Mobil Technical Service Division, Mobil Technical
Bulletin: Heating with Mobiltherm, II-I% (I1971).

Geiringer, P. L., Handbook of Heat Transfer Media,
142-149, Reinhold Publishing Corporation (1962).

Tovloukian, Y. S., and others, Thermophysical Properties
of Matter, V. 3 and V. 6, IFI/Plenum (1970).

Miner, C. S., and Dalton, N. N., Glycerol, Reinhold
Publishing Corporation (1953).

Kline, S. J., and McClintock, Mechanical Engineering,
v. 75, 3-8 (1953).

69

ettt s sl it i




INITIAL DISTRIBUTION LIST

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Library, Code 0142
Naval Postgraduate School
Monterey, California 93940

Associate Professor M. Kelleher, Code 69Kk
Department of Mechanical Engineering

Naval Postgraduate School

Monterey, California 93940

Dz. Yzb. Mahmut Yurteri
Kiziltoprak Sari Lale Sokak 2/3
Kadikoy - Istanbul

TURKEY

Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93940

70

No. Copies
2

o e



