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Preface

The purpose of this study was to determine experimentally
the effects of Mach number and Reynolds number on the large
side forces which occur on a slender body of revolution at
High angles of attack due to asymmetric vortex formation and
shedding, In addition to the experimental study, an AFFDL
empiricai prediction program was utilized to compare
predicted normal and side forces to those determined
experimentally.

I wigsh to thank my thesig advisor, Capt. Richard A.
Merz, for his guidance and support throughout the project
and for bringing this thesis topic to my attention.
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craftmanship of Mr. Carl Short and Mr. Russ Murry of the
AFIT Model Fabrication Division for the excellent model
which they produced.
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Laboratory: Mr. Nocel Allen, Mr. Ed Rcbinson, Mr. Joe
Martin, and Capt. Tracy Rhodes for their support throughcut
the test phase; Mr. Valentine H. Dahlem for his guidance
and assistance throughout the project; and Mr. Jack I.
Flaherty and Mr. Donald E. Shereda for their computer
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Abstract

An experimental investigatioh of the effects of Mach
number and Reynolds number on the side forces induced on a
slender body of revolution at high angles of attack was
coﬁducted. The tests were carried out in the Air Force
Flight Dynamics laboratory's Trisonic Gasdynamic Facility.
Tﬁe model tested consisted of a sharp, tangent ogive nose of
fineness ratio IN/D = 3,0 followed by a cylindrical
afterbody of fineness ratic LB/D é 7.5. The model was

6, 1.0 x 106

tested at unit Reynolds numbers of 0.5 x 10 , and

2.0 x 106

per foot, Mach numbers between 0.3 and 0.8, and
angles of attack between 27 and 45 degrees. From the pressure
data, local cide and normal force coefficients were calculated.
These were compared to predicted local side and normal force
coefficients using a current state of the art mefhod. The
results of the tests indicated that Mach and Reynolds

numbers had a significant effect on CN and CY‘ Increasing
Mach number decreased the magnitude of Cy, while increasing
Reynolds number increased the magnitude of Cy. The effect

of Mach and Reynolds numbers on the magnitude of Cn depended
on the particular flow conditinns. No general trends were
established. The predicted values- of CN and CY did not

compare well with the values of CN and CY obtained

experimentally.
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AN EXPERIMENTAL INVESTIGATION
OF STEADY ASYMMETRIC VORTEX SHEDDING
FROM A SLENDER BODY OI" REVOLUTION AT
HIGH ANGLES OF ATTACK

1

I, Introduction

A slender axisymmetric body moving through a real fluid
experiences four distinet flow patterns depending on its
angle of attack relative to tho free strcam (Refs 1-2).
For angles of attack in the range of 0 to 5 degrees, the
flow does not separate and can be described by a potential
flow field and an attached laminar or turbulent boundary
layer. At angles of attack ranging from 5 to 25 degrees,
separation occurs and a steady, symmetric vortex pair is
shed (Fig 1). As a consequende; no side force exists. At
angles of attack between 25 and 50 degrees, the symmetpic
vortex cores become asymmetric and break away ffom the sides
- of the body at different axial locations (Fig 2). This
steady, asymmetrical flow field produces a consliderable
gide force, especlally at subsonic speeds. As the angle
of attack increases to between Sovand 70 degreces, the flow
field becomes unsteady as the vortex cores randomly switch
from slde to slde. Findlly, above an angle of attack of
70 degrees, the flow pattern degenerntos into a completely
turbulent wake.

It has been obgerved (Refs 3-7) that Mach number,
Reynolds number, angle of attack, nosc fineness ratio and

noge bluniness all affect the side force characterigtico.
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It hag also boen shown (Rofs 3-7) that the magnitude of the
slde force is extremely sensitive to modul nose misalignment.
In fact, the-farmation of an asymmetric vortex pattern is
believed to be caused by very small asymmetriecs in the

nose {Refs 3~7).

The objective of this wind tunnel inveétigation wag to
determine the effeéts of Mach and Reynolds numbers on the
magnitudes of the normal and side forces which occur on a
slender body of revolution at angles of attack between 27
and 45 degrees (steady, asymmetric vortex shedding). Mach
numbers and unlt Reynolds numbers were variled between 0.3

é and 2.0 x lo6 per foot,

and 0.8 and between 0.5 x 10
respectively. In addition to the experimental study, an

AFFDL digital computer program was usec¢ to predict the

‘normal and side forces. These predicted values were compared

to the values determined experimentally.



II. ZTest Facilitv and Model Degeription

The egperimental testing was conducted in the Air Force
Flight Dynamics laboratory's (AFFDL) Trisonic Gasdynamic
Facility (TGF) located at Wright-Patterson Air Force Base.
The TGF is a closed circuit, variable density, continuous
Tlow wind tunnel capable of operating within a Mach number
range of 0.23 to 4.76 and within a unit Reynolds number
range of approximately 0.25 x lO6 to 5.85 x lO6 per foot.

Two 28 inch diameter hinged w;ngbﬁs mounted on the wind
tunnel walls provided,acééééxtouﬁﬁe test section and an
unobstructed view of the model. The windows made possible

the use of schlieren optical test equipment and an o0il flow

visualization technique. The model and sting were supported

Aby a rack mounted fifty-inch radius crescent with a pitch

range of -1 to 19 degrees, + .0l degrees. The éentef of

.rotation coincided with the center of the test section

viewing window. A more detailed description of *the tunnel
and its operating conditions can be found in Ref 8.
The one inch diameter model, illustrated in Fig 3,

consigsted of a sharp, tangent ogive nose of fineness ratio

IN/D = 3.0 followed by a cylindrical afterbody of fineness

ratio LB/D = 7.5. The size of the model was principally
determined by the desire to keep body and wake blockage
effects to less than 1%. To obtain pressure readings, the
model was instrumented with 84 pressure orfices located

at six axial stations on the cylinder (Fig 3).



The total number of pressure orfices was limited to the
number of pressure tubes that could physically fit inside
the model without adopting a tube diameter tco small for
accurate pressure measurements. The six axial stations
yere lpcated 3.5 to 7.0 model diameters aft of the nose
tip. These locations were chosen in order to cover the
area in which the ﬁaximum local side force was expected
to occur? This area was determined from data obtained by
AFFDL in tests on the MX advanced ICBM weapon system (Ref 9).
At each axial station, pressure taps were located as
indicated in Fig 3. This particular distribution was
chogen in order to obtain more accurate pressure
distfibutions in the separated flow region. Flow around
the lower 120 degrees of the cyiinder remained attached
and was assumed to be a region characterized by potential
flow. |
After being attached to the model, the tubes were
passed through the support section, routed out of the
tunnel and connected to two 48-port scanivalves. Each
scanivalve contained a Statham pressure transducer which
was used as the primarylpressure sensing instrument.
The data obtained from the transducers were accurate to
* 0.2%. Data.reduction was accomplished by feeding the
signals from the pressure transducers to a Control Data
Corporation (CDC) 6600 digital computer. For each axial
station, the computer listed the pressure coefficients

and plotted these values versus -angular pressure tap

L
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location.

In order to traverse the 27 to 45 degree angle of
attack range studied, a constant diameter support section
was designed and constructed to fit into the tunnel rack
mounted fifty inch radius crescent. The length of the sting
was such that the model body center location coincided with
the center of rota;ion of the crescent.

Photographs of the model, support section, and model
and support section installed in the tunnel have been

presented in Figs 4 through 6.




I11. Experimental Procedures

The experimental testing waswdivided into two phases.
The first phase consisted of collecting detailed surface
pressure measurements at free stream Nach numbers between
0.3 and 0.8 and angles of attack ranging from 27 to 45
degrees. The freé siream unit Reynolds number was varied

6 to 2.0 x 106 per foot. This resulted in

from 0.5 x 10
Reynolds numbers based on moasl diameter of 0.42 x 105 to
1.67 x 105. Pressure coefficient: based on free stream
static pressure and tunnel dynamic pressure were listed
and plotted versus angular pressure tap location for each
axial station. This was accomplished during the test via
the CDC 6600 digital computer. These pressure coefficients
were\then used to calculate the local side and normal force
coefficients. .
The second phase consisted of flow visualization
studies. Two techniques were applied. A Z-‘type schlieren
system was used to view flow field patterns and vortex
lines. An o0il flow, made up of STP and titanium oxide
powder brushed on the model, was used to show the interaction
between streamlines and to indicate regions of flow separation.
The schlieren photos were takén simultaneously with the
pressure measurements, while the o0il flow study was
accomplished after all pressure measurements were completed.
During the first phase, it was observed that the model

produced a steady, symmetric vortex pattern. In order to
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I1T. Experimental Procedures

The experimental testing_wasidivided into two phaces.

The first phase consisted of collecting detailed surface
pressure measurements at free stream Mach numbers between
0.3 and 0.8 and angles of attack ranging from 27 to 45
degrees. The freé stream unit Reynolds number was varied
from 0.5 x 106 to 2.0 x 106 per foot. This resulted in
Reynolds numbers basecd on moael diameter of 0.42 x 105 to
1.67 x 105. Pressure coefficients based on free stream
static pressure and tunnel dynamic pressure were listed

and plotted versus angular pressure tap location for each

axial station. This was accomplished during the test via

- the CDC 6600 digital computer. These pressure coefficients

were then used to calculate the local side and normal force
coefficients. -

The second phase consisted of flow visualization
studies. Two techniques were applied. A Z-type schlieren
system was used to view flow field patterns and vortex
lines. An oil flow, made up of STP and titanium oxide
powder brushed on the model, was used to show the interaction

between streamlines and to indicate regions of flow separation.

"The schlieren photos were taken simultaneously with the

pressure measurements, while the oil flow study was
accomplished after all pressure measurements were complcted.
During the firsct phase, it was observed that the model

produced a steady, symmetric vortex patterm. In order to
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induce a steady, asymmetric vortex pattern, a vortex

generator was placed on one side of the nose. The v ‘tex
generator consisted of a 1/8 inch wide, 1/2 inch long strip
of No. 80 silicone carbide crystals. The generator was
located at the 90 degree point of the nose and 1.25 to

1.75 inches aft of'the nose tip. The generafor insured E
that a maximum side force would occur on the model.

Schlieren photographs were taken with and without the oo
vortex generator. 0il flow pictures of the model were
{taken only with the vortex generator.

It should be noted that for both grit and no-grit

nose configurations, several test runs were repeated at i
; selected Reynolds numbers, Mach numbers, and angles of

£ i attack. The agreement between the initial and the repeated
4 test data was within 4%, indicating that the data was

repeatable.
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IV, Empirical Program

;%fﬁfg$ The original version of Andrew B. Wardlaw's (Ref 7)

digital computer program was used to predict the normal

and side forces acting on the model. Wardlaw's multivortex
model of asymmetric vortex shedding is based on the
impulsive flow anéiogy (Ref 10). In this technique, a
large number of point vortices are superimposed on the
potential solution for flow about a cylinder in order to
simulate the viscous crossflow plane. The asymmetric flow
field is developed by initially perturbing the solution.
Gothert's Rule is then applied to account for compressibility
effects. The total force acting on the model is assumed to
be the sum of a viscous part obtained from the crossflow
analogy and an inviscid part obtained frcm slender body
theory.

The digital program required the input of the following
parameters: angle of attack, Mach number, free stream
Reynolds number based on model diameter, and nose and body
geometries. Modifications to the program are presently

being made by AFFDL, -
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V. Results and Discusgion

Coefficients of pressure baséd on tunnel dynamic
pressure were plotted versus angular pressure tap
location. This was accomplished at each axial station for
both grit and no~grit nose configurations. An example of
a circumferential fressure distribution is presented in
Fig 7. The pressure peaks on the plot indicate the presence
of separated vortex filaments. At a 27 degree angle of
attack, the pressure distribution is symmetrical. For
larger angles of attack, the asymmetric pressure distribution
indicates an asymmetric vortex development.

Plots of circumferential pressure distributions were
compared for both grit and no-grit nose configurations.
Figures 8 and 9 illustrate typical §ressure distributions.
It was observed that the addition of the grit vor%ex
generator on the nose of the model had a significant effect
on the symmetry of the pressure distributions, as was
expected, For the no-grit model, asymmetries in the pressure
distributions were observed only at angles of attack
between 40 and 45 degrees and only at free stream unit
Reynolds numbers of 1.0 x 106 and 2.0 x 106 per foot. The
absence of asymmetry in the ﬁo-grit circumferential
pressure distiibutions was attributed to a model nose that
was very symmetrical in shape and/or to tha roll angle at
which the model was tested.

With the application of the grit vortex generator

AR MR
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on the ndse, the pressure distributions became asymmetric
at nearly all test conditions. Also, the magnitudes of
the local side force coefficients were found to be greater
than ppeviodsly observed (Figs 8 - 9). This was expected
since the grit was added to the nose in order to force a
steady, asymmetric vortex pattern and a maximum side force.
The above observations indicated that the magnitude of the
local side force coefficient was extremely sensitive to

nose asymmetries. This has been confirmed by other

'investigators (Refs 1 - 7).

Local normal and side force coefficients were
calculated from the experimental pressure distributions by
integrating around the model circumference and along the
axial direction from X/D = 3.5 to X/D = 7.0 using the
following formulae (Bef 11:3):

Cy = (1/8) JT Cp cosff r ax aff ef2)
C (1/8) JJ Cp sing r ax daf | (2)

Y
Since this study was interested in maximum local side force

coefficients, experimental values of CY and CN were
calculated for the nose with grit configuration only.
Theoretical values of CN and CY were optained by integrating
the predicted axial station normal and side force
coefficients along the axial direction from X/D = 3.5 to
X/D = 7.0,

Plots of the experimental values of CN and CY versus
angle of attack are presented in Figs 10 through 19. It
should be noted that the absolute magnitudes of the local

10 ' _
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side force coefficients were plotted versus angle of attack.
This eliminated the additional complication of local side
force direction., The plots show thét, in general, increasing
the angle of attack increased the magnitudes of CN and Cy.
The'maximum value of CN occured at an angle of attack of
L5 degrees for all flow conditions while the maximum value
of CY-varied betweéﬁ 35 and 45 degrees angle of attack,
depending on the particular flow condition.

In Figs 10 through 13, data are presented to show
the effect of Mach number on Cy and Cy. In general, as
Mach number increased, Cy decreased. Thir result was found
to be in agreement with the results of other investigators
(Ref 1 - 5). At constant Reynolds numbers, Cy was
significantly affected by the free stream Mach number. At
Rep = 41,667 and M >.0,5, CN increased with increasing
Mach number at all angles of attack. The largest §alues
of CN at this Reynolds number for all angles of attack
occured at M= 0.4, For Rep = 83,333 and Rey = 166,667,
c

N
angles of attack greater than 35 degrees. At angles of

generally decreased with increasing Mach number for

attack less than 35 degr-es, no clear trends were established.
In Figs 14 through 19, data are presentied to show

the effect of Reynolds number Qn CN and Cy. In general,

CY increased with increasing Reymolds number. This result

was in agreement with the results presented by Fleeman and

Nelson (Ref 12) who observed that side force increased up

to ReD = 2.5 x.lO5 and then decreased with increasing

11 _

LT e W AN A




Reynolds number. For angles of attack above 35 degrees
{w} and M > 0.5, CN increased with increasing Reynolds number.
For all other angles of attack and Mach numbers, no general
trends were observed.
Figures 20 through 25 compare the experimental and
predicted local normal force coefficients. At angles of

attack less than of equal to 30 degrees, predicted values

of CN underestimated the experimental values, while at

angles of attack greater than or equal to 35 degrees, . ;

predicted values overestimated experimental ones. The %

theoretical and experimental curves crossed between 30 and ;

35 degrees. 1
Figures 26 through 31 compare the experimental and ‘

predicted local _ide force coefficients. At beth

Rep = 83,333 and Rep = 166,667 for M < 0.5, the theory

overestimated the experimental values of CY for angles of

attack less than or equal to 30 degrees and underestimated

the experimental values of CY for angles of attack greater

than or equal to 37 degrees. The two curves crossed

© e e

between 30 and 37 degrees. For M > 0.6 and the same

Reynolds numbers, the theory overestimated the values of ;
CY for all angles of attack. For Reb = 41,667, the theory o ;
overestimated the values of CY for all Mach numbers and

angles of attack.

The theory also failed to correctly account for the

R P

increase in the magnitude of CY with increasing Reynolds

number and the decrease in the magnitude of Cy with
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increasing Mach number. The theory did correctly simulate

the general effect of Mach and Reynolds number on CN in

comparison with those effects determined experimentally.

Due to the small density gradients that existed across
vortex lines, it was impossible to distinguish the vortex
cores from the background noise in the schlieren photographs.
Although the vortex cores could not be photographed, they
were at times visible when the flow field was viewed through
the optical system. The o0il flow visualization technique,
however, did show the streamline interactions and the regions
of flow separation. Examples are presented in Figs 32
through 36, It was observed that flow separation occurred
between the §5 to 95 degree points on the cylinder over

its entire length fér all test conditions run.
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Vi. Conclusions and Rgcoﬁmgndations
Conclusions .
Results from wind tunnel tests on a slender axisymmetric
bedy composed of a sharp, tangent ogive nose followed by a
cylindrical afterbody have been presented. Surface pressure
distributions weré obtained over a wide range of Mach and
Reynclds numbers and from these the local side and normal
force coefficients were calculated. The original version of
Wardlaw's digital computer program was used to predict the
local normal and side force coefficients. From an analysis
of the data obtained and a comparison of the predicted and
experimental values of CN and Cy. the following can be'
concludeds
‘ 1. Applying a grit vortex generator on the nose of
the model produces a steady, asymmetrical flow field.
2. The magnitude of the lecal side force coefficient
is extremely sensitive to nose asymmetries.
3. The maximum value of CN occurs at an angle of
attack of 45 degrees for all flow conditions. The maximum
value of CY varies between 35 and 45 degrees angle of attack,
depending on the particular flow condition.
k., Increasing Mach number decreases the magnitude of
Cy. Increasing Reynolds number increases the magnitude of
Cy.
5. The effect of Mach and Reynolds numbers on the

magnitude of CN depends on the particular flow condition.

14
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No general tren@s were established.

6. Values of Cy and Cy obtained from the digital
computer progf&m do not accurately predict the values of
CN and'CY obtained experimentally.

7. The theoretical program fails to correctly
account for the increase in the magnitude of CY with
increasing Reynold; number and the decrease in the magnitude
of CY with increasing Mach number.

8. The theoretical program correctly simulates the
general effect of Mach and Reynolds numbers on CN in
comparison with the effects determined experimentally.

9. Flow separation occurs between the 85 and 95’degree
points of the cylinder over its entire length for all flow
conditions in the nose with grit configuration.
Recommendations

Since a missile designer mgst be able to predict the
aerodynamic forces and moments on a missile given a particular
geometry and flight envelope, an adequate prediction technique
must be made available to him. To reach this goal, a better
understanding of the parameters that affect the induced side
forces on a slender body is required. -It is therefore
necessary to understand the actual vortex shedding phenomena
and be able to determine the influence of the shed vorticés
on the local pressure distributions. In order to accomplish
the above, it is recommended that static and pitot pressure
measurements be made in the wake of the model in order to

determine the spacing, locations, and strengths of the shed

15
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vortices. The results should provide a better physical

1

imj model of the flow field and therefore better input constants

to the multi-vortex model prediction program. §
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Fig 2. Steady, Asymmetric Vortices (25° < o« < 50°) (Ref 2)




Fig 3. Model Pressure Orfice Location
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were established. The predicted values of Cy and Cy did not
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