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Preface

This report presents the results of my investigation
into three methods for obtaining the optimal control re-
quirements of satellites with flexible appendages. A new
method using integral coordinate techniques was introuduced
in this thesis and was found to provide quite acceptable
optimal control results.

This project required that I become fairly involved
with the concepts of modern control theory, stability anal-
ysis, and dynamics of flexible vehicles. In this regard,

I am indebted to Dr. Leonard Meirovitch for his many pub-

lications which provided background information in these

areas. 1 am especially grateful to Dr. Robert A. Calico,
my thesis advisor, for suggesting the original idea for
this thesis and for the guidance he provided throughout
this project.

Finally, I would like to thank my wife, Maria, and

our daughters, Maria Angela, Kristina, and Diana for their

patience and understanding during the past eighteen months.
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Abstract

N

£ B
":yThis thesis investigated three methods for obtaining
optimal control requirements for satellites having flexible
appendages. A discrete method, modal method, and a new
integral coordinate method for obtaining control require-
ments were examined. Mathematical formulation was performed
on a satellite configuration consisting of a symmetrical
rigid body with two flexible antennas extending in opposite
directions along the spin axis. System equations of motion
were derived using Hamilton's equations. Modern optimal

control theory, involving the minimization of a quadratic

cost functional and the numerical solution to the steady

state matrix Riccati equation, was applied to the system.

An example problem was presented and numerically solved;/)

The resulting controlled states and control rquiremeﬁ%s

E for each method were compared and a discussion of the
advantages and disadvantages of the different techniques

was presented. »The results of this thesis indicate that

the integral coordinate technique provides a valid and use-
ful means of obtaining realistic estimates of control re-
quirements for the class of satellites under consideration.
The report goes on to recommend further investigation of 7F*‘ ?

the integral coordinate method for other spacecraft and

satellite configurations.
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OPI'IMAL ATTITUDE CONTROL OF

AN ORBITING SATELLITE
CONTAINING FLEXIBLE APPENDAGES

I. Introduction

Background

In order to meet functional requirements, space vehicles
are frequently required to maintain a fixed orientation with
respect to either an orbiting frame of reference or some
inertial reference frame. In the early years of space ex-
ploration spacecraft tended to be small, mechanically simple,
and essentially rigid. Today, however, satellite configura-
tions are highly complex with many flexible devices, such as
antennas, booms, and solar panels, which greatly affect the
attitude dynamics of the body. The stability and control
requirements for such modern space systems are of particular
importance to the designer.

In recent years, numerous papers have been presented to
determine the effect that flexible appendages have on the
stability of space systems. Of particular interest are the
papers of Meirovitch and Calico (Ref 1; Ref 2), who extend
the Liapunov direct method of stability analysis to predict
the stability of various spacecraft configurations. Their
basic strategy was to define integral coordinates to evaluate
the system Hamiltonian and test for stability by using the
Hamiltonian as a Liapunov functional. Their research pro-

vided a simplified, alternative means of predicting stability




of satellites with flexible appendages. In the area of
satellite attitude control, methods of analysis are complex
requiring a thorough investigation of a particular vehicle
configuration in order to obtain a prediction of optimal
control requirements. By using techniques similar to those
developed by Meirovitch and Calico for predicting stability,
this thesis will examine the control requirements for satel-
lites with flexible appendages, and attempt to provide a new
method for obtaining the optimal control for these space

systems.

Problem Definition

It is well known that a rigid satellite is stable when

Seidncd i

spun about its axis of maximum moment of inertia. However,
the addition of flexible appendages to spin stabilized space
systems can result in an undesirable wobbling, or coning
motion, of the vehicle. To keep the attitude of flexible
satellites in proper orientation a means of controlling the

system is required. PFrequently, active attitude controllers

employing momentum exchange or mass explusion devices are
utilized to resist attitude perturbations. The active con-
troller can take various forms, such as a momentum wheel,

or as a reaction jet controller of the spin axis orienta-
tion (Ref 3:87). Regardless of what control device is phys-
ically implemented, the designer of flexible satellites must
have a good a priori knowledge of the amount of control
which will be required to regulate a particular satellite.

The overall direction of this thesis will be to provide




a new, relatively simple, method for estimating the required

optimal control to maintain a particular spacecraft attitude.
The new method will be based on the technique of integral
coordinates previously employed by Meirovitch and Calico
(Ref 1) to predict satellite stability. By using this sim-
plified technique, the time and effort required to obtain
an estimate for the optimal control will be significantly
reduced over current complex methods employing modal analy-
sis. Having a simple means of obtaining the control for
flexible satellites would be of great benefit to the space-
craft designer, since it provides a tool that is relatively
easy to employ upon which a control decision could be made

during preliminary design.

General Problem Formulation

An objective of this thesis is to develop a new method
for obtaining the optimal control of a satellite having
flexible appendages. The particular satellite to be inves-
tigated consists of a symmetrical rigid body with two flex-
ible antennas extending in the positive and negative direc-
tions of the z axis as depicted in Figure 1. Mathematical
analysis is performed on a discrete model (Figure 2a) and a
continuous model (Figure 2b) of this satellite configuration.
The discrete model will be examined using spring-mass-damper
oscillators to discretize the system and the continuous
model will be investigated using both a modal analysis ap-
proach and a simplified method of integral coordinates.

The kinetic and potential energies will be derived for the

—




z (Spin Axis)

Figure 2. Models: a) Discrete; b) Continuous




discrete and continuous models of this system. After deriv- |

ing these energy expressions, the system Hamiltonian and
Lagrangian will be formed and utilized in obtaining the
satellite equations of motion. Once having the equations

of motion, control will be introduced into the problem along
with the constraint that the satellite spin axis will main-
tain a fixed orientation with respect to inertial space.

lo ascertain the amount of control required to keep a nulled
satellite position, an optimal control problem will be for-
mulated using discrete, modal, and integral coordinate
methods. The results obtained for the three methods will

be compared and an analysis will be made regarding the
effectiveness of using integral coordinate techniques for
determing optimal control of satellites containing flexible

appendages.

Assumptions

This thesis will examine high spin stabilized satellites
in earth orbit. Since the system is spinning at a relatively
high rate, it can be shown that the torque due to gravity is
quite small. For this reason, it will be assumed that the
flexible satellite under consideration is moment-free for
short time periods. This assumption is valid since the ac-
tual gravity torque on the system would have an insignificant
effect on the attitude dynamics of the satellite as compared
to the effects associated with such things as the system

mass distribution, system elastic properties and dynamic

coupling thereto, relative motion of internal mechanisms,




rate of conversion of mechanical energy into heat by dissi-
pative mechanisms, and external forces of various forms

(Ref 4:1597). For this investigation, it will be assumed
that the satellite is spin stabilized about the z axis, and
that the mass distribution, elastic properties of the system,
and conversion of mechanical energy into heat by dissipative
mechanisms contribute the dominant perturbations in the
attitude dynamics of the body. It will also be assumed that
the angular momentum of the relative motion of the satellite
to the earth is constant and neglegible compared to the
angular momentum of the rigid body motion. This assumption
is reasonable since this study exam}nes high spin stabilized
satellites. For simplicity, the center of mass of the sat-
ellite will be assumed to move in a circular orbit. Since
the gravity potential is approximately a constant in a
circular orbit it will not affect the attitude dynamics of
the body over short time periods. Therefore, the potential
energy will consist entirely of elastic strain energy of the
flexing antennas. For ease of calculation, identical uniform
antennas are assumed. Antisymmetric motion of the satellite
antennas will be assumed to simplify the expression for the
kinetic energy. It can be shown that the antisymmetric
motion assumption would represent the worst possible case

in regards to the stability of the flexible satellite system
in question (Ref 51202). Additionally, the antisymmetric
motion assumption implies that the center of mass remains

fixed relative to the main rigid body (Ref 6:1535). To
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further simplify the kinetic energy expression, it will be

assumed that the satellite will undergo small perturbations

from the null position. This is a valid assumption since
it can be shown that for an inherently stable configuration
wobbling of the satellite due to perturbations will be con- i
tained in a small region near the equilibrium position. For

an inherently unstable configuration with no controller,

any perturbation will cause the cone angle of the wobble to
increase until the body begins to tumble in space (Ref 4:1598).
Since small angular and vibrational displacement perturba-
tions are assumed, angular and displacement terms in the 1
kinetic energy expression higher than second order will be

ignored. The control required to maintain the satellite

system in a desired orientation will depend upon several
state measurements. It will be assumed that any state dis-
placement required to implement the control feedback gains
can be measured or somehow obtained during actual operations
of the satellite. The modal investigation will be assumed
to perfectly model the actual satellite system, and will
provide the reference for evaluating the effectiveness of

the new integral coordinate technique.

Sequence of Presentation

T'he remainder of this report is organized as follows.
Chapter II presents the mathematical formulation of the
csatellite system. The equations of motion are derived for
the discrete, modal, and integral coordinate techniques of

the uncontrolled satellite systems. The equaticns of motion

Ili........|....'...iiiiiiii-.............-....‘-.......i.m.m,n .




are checked by performing an eigenvalue stability analysis

and comparing the results with previous investigations on é
satellites of the same configuration. In Chapter III,

control is introduced into the system and the optimal con-

trol problem is formulated. Closing this chapter is a brief

discussion of how control feedback gains may be obtained.

In Chapter IV a presentation of the control results is given.
The effectiveness of the integral coordinate technique for
obtaining an estimation of satellite optimal control require-
ments is analyzed. The conclusions to be drawn from this
investigation are presented in Chapter V. A brief summary
of the investigation is presented in Chapter VI. Also in-
cluded in this final chapter are recommendations for uti-

lizing integral coordinate techniques for satellites with

flexible appendages.




II. Mathematical Formulation

Satellite in Earth Orbit

As previously indicated the specific satellite config-
ﬁration under investigation consists of a symmetrical rigid
body with two flexible appendages extending out the negative
and positive z axes (Figure 1). When the satellite is in
the undeformed state, the x, y, and z body fixed axes rep-
resent the principle moment-of-inertia axes. The mass mo-
ments of inertia for the symmetrical rigid body section are
A, B=A, and C about the x, y, and z axes respectively. The

satellite orientation in earth orbit is depicted in Figure 3.

k Circular Orbit

Figure 3. Satellite in Earth Orbit




The center of the earth is considered an inertial reference
point with axes Xy, Yi, and Zy. The radius vector RC, which
is constant in magnitude for a circular orbit, is measured
from the center of the earth to the center of mass of the

satellite.

Discrete Method - Equations of Motion

The discrete model of the satellite is illustrated in
Figure 2a. The model consists of a symmetrical rigid body
with spring-mass-damper oscillators simulating the flexible
antennas. The oscillators each have a mass m and are sym-
metrically placed a distance a along the z axis. The motion
of the two oscillators is denoted by uj, vi, uz, and vz, and
the angular velccity components of the X,Y,Z system by {(lIx,
ily, and {J;. The complete motion of the system is described
ty ten generalized coordinates: three coordinates for the
motion of the center of mass of the satellite, three coor-
dinates for the angular orientation of the body, and four
coordinates for the position of the two oscillators with
respect to the x,y,z system. Under the assumption that the
center of mass of the satellite moves around the earth in
a circular orbit and at a constant angular velocity, the
degrees of freedom of the system can be reduced by three.
lhe assumption that the antennas move in antisymmetric motion
implies that uj = -up = u and vq = -v2 = v. [his assumption
allows a further reduction in the number of generalized
coordinates by two. Before the equations of motion for

these generalized coordinates can be derived, expressions

10




for the kinetic and potential energies must be established.

The general expression of the kinetic energy for the
satellite system can be written as
T =3[ (7-V)an (1)
where V is the inertial velocity of an element of mass dm.
For this discrete model, V can be written in component terms
for the rigid body and mass oscillators and the integral

evaluated over their respective domains. The general ex-

pression for the kinetic energy becomes

T =4 A'ﬂ% + 3 B'Q§ + 4 CQ% + m(ﬁ2 + ve) + m[yzﬂi
+u%2 + (u? + v2)0Z - 2aiy + 2aiQy - 2(4v -

uv)Q, - 2uvidly - 2avii (1, - Zam’lxﬂz] + Const. (2)

where A' = A + 2ma2. B' =B + 2ma2. and C are the mass mo-
ments of inertia of the undeformed body about the x, y, and
2z axes respectively. The derivation of equation (2) is
given in Appendix A.

Since the effect of gravity forces is assumed negli-
gible, the potential energy consists entirely of elastic
strain energy. For the discrete system model the potential
energy expression is

Vo= K(u? + v2) (3)
where K is the spring stiffness of the oscillators in both
the x and y directions. Here, the spring stiffness coef-
ficient K was chosen to be equal in both directions since

uniform antennas were assumed.

11




Energy dissipation in the system is due totally to
damping in the antenna rods. In the discrete model, dis-
sipation is modelled by placing damping pods on the oscil-
lators. The equation expressing the effects of damping is
given by Rayleigh's dissipation function

D = d(a? + ¥2) (4)
where d is the damping coefficient in the x and y directions.

Before proceeding to formulate the equations of motion,
it is desired to express the orbitally referenced angular
velocities (ly, {ly, and il; in terms of Euler angles and rates.
Figure 4 illustrates the 3-2-1 rotation used in the trans-

formation to Euler angles.

y
X “oq ¢ X
X
lst Rotation an Rotation 3rd Rotation
X, Y, and Z define X, ¥, and z define
orbital axes vehicle body axes

Figure 4. Satellite Rotational Motion
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In Appendix B it is shown that the orbitally referenced

angular velocities are related to Euler angles by

sy 1 0 - sin 82 61
w = syl = 0 cos 64 sin 61 cos 83 éz
sy, 0 - sin 01 cos 01 cos 82 63 (5)

Since small angular cisplacements in @1 and 62 about a zero

angle equilibrium voint was assumed, equation (5) can be

linearized by using the Taylor series expansion of the sine

and cosine. For small angles Taylor series expansion yields
sin 61,2 = 01,2

and

2
1 -9 (6)
2

R

cos 91,2

Substituting relations (6) into equation (5) yields

[a,) B 0 “ iy 1[4,
. 2. e .
o=(0yf=f0 1-2 o1(1 - 22 ) 0,
Q 0 0 (1 - 9% (- 225 6]
L K : 2 2 J L 3.

where él and 52 are angular velocities associated with small
perturbation angles, and 53 is equal to the initial spin
rate (] about the z axis plus any small perturbation in spin
about this axis. If equation (7) is substituted into the

kinetic energy equation (2) and the assumption of small

13
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state perturbations is applied, terms of higher than second

order in the resulting kinetic energy expression can be
ignored, yielding
T = 34'61% + 3 B'62% + % €652 + m(u? + v?) - 2mave,
+ 2maubp- A'20201 + B'(1016, + C(263 - 120107)
+ 2ma{262\.r + 2ma£181\:1 - 2mﬂ(\:\v - u\.r) - 2maﬂv52

2mamby + 3 A%0%0% + 3 B'%0.% + 3 c(? - 61202

0,21%) + m12(u? + v3) - 2manPve; + 2manue, (8)

Since the expressions for the kinetic energy and the
potential energy depend on generalized coordinates and
velocities alone, and not explicitly on time, the system
is considered to be non-natural (Ref 7:77). For such a
non-natural system it can be shown that the Hamiltonian
assumes the form

H=T2-To+V (9)

where T, represents those kinetic energy terms which are
quadratic in the generalized velocities, Ty represents kin-
etic energy terms which are independent of the generalized
velocities, and V is the potential energy of the satellite
system (Ref 7:84,91). Therefore, the Hamiltonian becomes

2, 3 B'égz + 4 Cé32 + ‘m(fn2 + 62) - 2ma061
LN ) 2 2
2maufp - % A'ﬂ2622 -3 B'02912 - 3 C(al2 - {101

02622) - mﬂz(u2 + vz) + 2maﬂ2ve1 - Zmaﬂzuez

H = %A'él

+

2y (10)

+ K(u2 + v

14




Also required for the formulation of the equations of

motion is the Lagrangian which is defined by
L=T-YV (11}

For this particular system the Lagrangian is given by

L = 3A'91°+ 2B'62° + 3 Cé32 + m(u? + v2) - 2mavéy
+ 2mauby - A".10201 + B'.10162 + C(.183 - .10102)

+ 2ma)82v + 2mad91ﬁ - 2mi(uv - uv) - Zmadvég

2 2

2mauéy + % A'0%02% + 3 82612 + 3 c(P - 014l

62202) + nnl(uz + v2) - Zmaﬂzvel + 2maﬂ2u02

- K(ul + v3) (12)

The system equations of motion can now be formulated
by either applying Lagrange's equations, which yield five
second order differential equations, or Hamilton's equz-
tions, which yield ten first order differential equations.
Hamilton's equations are used in this thesis to provide
five first order differential equations of the generalized
coordinates (61, 62, 63, u, and v) and five first order
differential equations of the generalized momentum (Pel.

Pops Pg3» Py, and Py). The generalized momentum is defined

Pi i=1,---,5 (13)

oL
e

0qi

For a holonomic system subject to forces not derivable from
a potential function, Hamilton's equations of motion take

on a special form. In particular, when the nonconservative
forces in the system are derivable from Rayleigh's dissipa-

tion function, Hamilton's equations become

15




dg = M, Py = -3H -3D  i=1,---,5 (14)
a9 i aq1 qu

where Rayleigh's dissipation function D is expressed in
equation (4) (Ref 7:95). A detailed derivation of the ten
first order differential equations is presented in Appendix C.

These equations of motion are summarized below:

81 = FPeo1 + aPv 4 Qg3
A
6, = Peop - aPu 4+ (¢ - 1)leg
B B
6 = Pe3 - g
€
4 = - 2aPep 4 B'Py + v - Calley
B ZmB B
$: = POt +« A'Py - (Wi
A 2mA
Po, = (1 -c)ca%ey + (1 - ChlPey + CalPy
B B B
. 2
Pos = = Cil 0y - (IPeq
éOB = 0
Py = [Py - 2Ku = 2Du
Py = - {lPy - 2Kv - 2Dv (15)
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Note that equation (15) can be expressed in state notation as

X(t) = AX(t) (16)
where x(t) is a 10 x 1 state vector
A is a constant coefficient 10 x 10 matrix

A stability analysis of the discrete system can now be
accomplished by evaluating the eigenvalues and eigenvectors
of the A matrix. This task was performed in this thesis to
check the validity of the equations of motion shown in equa-
tion (15). Validity was confirmed by comparing stability
results numerically calculated in this thesis to the sta-
bility results obtained by Meirovitch in Ref. 4 for the same
satellite system. Although Ref. 4 used Lagrange's equations
to formulate the equations of motion, the stability results
for various system parameters were identical tc the stabil-
ity results obtained by using Hamilton's equations. Fig-
ures (5) and (6) depict ratio of spin rates obtained from
Ref. 4 and from this thesis for particular satellite para-
meter sets. Additionally, eigenvalue stability analysis was
in close agreement with that obtained in Ref 4. Figure 7
illustrates the stability regions obtained in Ref. 4 and
in this thesis. Note that for these stability plots, stable
regions are under the curve while unstable regions are above
the curve. while not meant to be an exact proof, the simi-
larity of stability results obtained in this analysis tends
to support the validity of the equations of motion given

by equation (15).

17
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From this point in the investigation, some type of
control could be introduced into the discrete system to
keep a perturbed satellite in a proper or desired orienta-
tion. However, before proceeding with the control inves-
tigation, the equations of motion of both the modal analysis
and integral coordinate techniques will be derived. After
obtaining these attitude motion equations, control will be
introduced and the results of each method will be presented

and compared.

Continuous Modal Method - Equations of Motion

The continuous model of the satellite system is illus-
trated in Figure 2b. This model consists of two flexible
uniform rods of length 1 connected to a symmetric rigid
main body. The rods are attached at a distance h from the
center of mass of the system. Each antenna rod has a mass
per unit length of p and a total mass of m = p x 1. Pro-
ceeding as in the discrete system analysis, the kinetic and
potential energy expressions will now be formulated.

The general expression for the kinetic energy is given
by equation (1). Using the same assumptions as in the dis-
crete system analysis, the kinetic energy for the continuous

system can be written as

o 8 O
T = 3 A'dxz + & B'dyz + % Cdzz ¥ j [u2 + vZ2
h

2

* v2$1x2 < uztlyz AP (u + VZ)‘IZZ o ZZ‘}Azx + zszzy

- 2(\.1‘7 = U\.’)Jz - ZUVAlxdy = ZZVALyuz, - ZZmlxalz] pdz
+ Const. (17)
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In equation (17) A' and B' are the mass moments of inertia
about the x and y axes and includes the mass of the rods in
the undeformed position. If the transformation presented on
page 13 is again performed, the kinetic energy can be writ-
ten in terms of Euler angles and rates. If the assumption
of small state perturbations is applied, terms of higher
than second order can be ignored, resulting in the following

expression for the kinetic energy
T o= % A'(é12 - 2000 + 02232) + % B'(éz2 + 2028700

+ 01%0%) + 3 C(85% - 20460 + 2651 - 0,40 -

-

‘h + 1, .
9202 + uz) +‘I [u2 + v2 + (u2 + vzm2 =
h

22v(81 - 0x1) + 2zu(6p + 0402) - 2(dv - wv )i -
s - 2 s 2
2zv(6) + 011°) - 2zu(810 - 0,1°) pdz + Const.  (18)

Breaking the kinetic energy into T, terms (quadratic in
generalized velocities), Iy terms (linear in generalized
velocities), and Ty terms (containing generalized coordin-
ates alone) yields
. : . h+ 1.,
T, = 2A'61°+ 3 B'6,%+ 3 C65%+ [62+ v
h
- 22véy + 2218 ,]pdz
f = - A'.02061 + B'deléz + C(uéj - ueléz)
h + l L . . .
+f [22;292v + 2z,09q1u - 2Al(uv - uv)
h

- 2.4.1\/52 - 2z;2&1é1]pd.,
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To = #Aa'0%,% + & B'0N%,% + 3 c?(1 - 0,2 - 0,%)
+‘[: i l[(u2 + vA)0® - 220%ve; + 220%uep]pdz (19)
For the continuous system the potential energy expres-
sion, which is considered to be caused only by the elasti-
city of the rods, is
vV = [h : lEI[(ﬁf 3 (a_2v_)2]dz (20)
h 022 9z2
where it is assumed that the bending stiffness of the rods
are identical in both the x and y directions (Ref 8:229).
The damping in the system is again given by Rayleigh's
dissipation function. For the continuous system the dis-
sipation function has the form
D = ]'h & 1d(ﬁ2 + v@)dz (21)
h
where d is the damping coefficient in the x and y directions.
The general form of the Hamiltonian and the Lagrangian
remain as given by equations (9) and (11). For the contin-
uous system the Hamiltonian can be written as

R+l

s

H = A"912+ 53'5224- 1 c532+f [&2+\}2

h
2276y + 22065|pdz - 3 A'0%6,2 - % B*(j%0,2

h+1
+ 3 0122(912 + 02 - 1) -f [(u2 + v2)Q®
h
h+ 1 2
- 2202v91 + ZZﬂzueg]pdz 41[ EI (82u>
h 22
+ (3% |az (22)
02z
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The corresponding Lagrangian can be written as

h + l[~2 2

L=%A'é12+§B'622+%0632+I uc o+ v
h
- 22v81 + 22067 ]pd. - A"10261 + B'(10102 +
. . . h + l (] .
Cil(e3 - 8182) +[ [Zzuezv + 2z0qu -
h
= . . . ) . * 2 2
20(iv - uv) - 2zvé - 2zméy]pdz + 3 A6

h + 1[(u2

+ 3 8'0%12% + & cOP(1 - 01° - 62%) +f
h

+ vz)ﬂ2 - 2zn2vel + Zzﬂzuez]pdz =
h + 1 5 12 2 \2 .
] EI(:@__E) +<§_v> dz (23)
h 322 3z2

It can be noted that in equqtions (22) and (23) elastic
displacements appear in integrals defined over the elastic
domain. The spatial and time dependency of u and v presents
some difficulty in analyzing the continuous system in that
the Hamiltonian and Lagrangian contain both continuous and
discrete coordinates as well as spatial derivatives of the
continuous coordinates. Such systems are termed hybrid,
that is, they give rise to both ordinary and partial differ-
ential equations in describing the motion. 1In order to cir-
cumvent this, the system will be discretized by approximat-
ing elastic displacements by means of modal analysis.

In this thesis the first four natural modes of antenna
motion are investigated. Using the antisymmetric motion as-
sumption, the modal amplitudes in the x and y directions can

be described by uj, up, uj, uy, vy, vz, v3, and v4. Using
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the assumption that attitude motion need only be considered,
the complete attitude orientation of the satellite can be
described by eight natural mode displacements and three
angular rotations of the body. The modal aralysis treats
the elastic antennas as flexible beams subject to the bound-
ary condition that the beams are rigidly attached to the
satellite at one end and free at the other. The elastic
motion of the individual antenna can be considered to con-
sist of a superposition of the normal modes of a beam having
the same mass and stiffness distribution as the flexible
antenna (Ref 4:1601). In terms of an equation, the overall

motion in the u and v directions is described by

U(z,t)

i
nMs

o;(z)ui(t)
1

V(z,t)

]
nhMs

1@i(Z)Vi(t) (24)

where z represents any point along the beam. Here, the
normal modes or eigenfunctions ¢; associated with a uniform

cantilever beam satisfy the differential equation

ET 8%5 - pyi%ey = 0 i=1,---yn (25)
dzu

where the effects of shear deformations and rotary inertia

are neglected (Ref 9:198). For a uniform beam the quanti-

ties EI and p are constants. In equation (25) wj is the

natural frequency of the ith mode. Additionally, the
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boundary conditions on equation (25) for a clamped-free beam

translate to

@i = 0O d__@i = 0 z =h
dz
a%e; a%p;
EI i = 0, BRI S®L) fdz = 0 z=h=+1 (26)
dz2 dzl

Previous solutions to the problem associated with equations

(25) and (26) yield eigenfunctions

®i = [sin gjl - sinh g31][sin gji(z - h) - sinh gj(z - h)]
Vv pl sin Bjl sinh B3l

[cos 8351 + cosh Bj1] [cos Bj(z - h) - cosh Bj(z - h)](27)
Vpl sin B8il sinh g3l

in which
4
(831) = wipl , (28)
EI
where Bil is determined by
cos Bil cosh Bjl = -1 (29)

Values of B3l for various beams are readily obtainable from
reference text books in structures. For the clamped-free

beam these values are

B1l = 1.875
Bol = 4,694
B3l = 7.855
g1l # Zi+1'-n (30)




In addition, the eigenfunctions of equation (27) are ortho-

gonal and can be normalized with respect to the mass per
unit length function p such that

h+ 1
fh pei(z)ej(z)dz

8ij (31)

where §jj represents the Kronecker delta (Ref 1:35).
Using the above modal analysis techniques, integral
terms in the Hamiltonian and Lagrangian can be discretized.

For example,

h+1 n
] uzpdz = 3 uiz
h i=1
h+1 n
f u%pdz = > i
h i=1
h+ 1 n
I uvpdz = T ujvi
h i=1
h+1 > 2 N
f upzdz = (ml®)" = Sgzjuj
h i=1
el . >3 R )
j 22820pdz = 265(ml%)* = 1sz-lui (32)
h i=

where

S 2%[(h/1)811(sin B;1 - sinh B51) - (cos 31 + cosh 831)]
(811l)<sin 8il sinh Bjl

(Ref 1:54)  (33)

Additionally, it can be shown (Ref 8:220) that
h+1

f E1|(32u)? + [32v\?|az =
h 3z2 3z2 i

27

wiuy® +

nMs
nMs

1w12v12 (34)




Since higher order modes will contribute minimally to
the overall antenna motion, this investigation will restrict
analysis to the first four natural modes of motion. With

this in mind, the expression for the Hamiltonian becomes

=+
i
-

3 A%812 + 3 B'622 + B CO3Z 4+

. 3 4 . ’ 4
261(m12) I Sgzjvi + 262(m12) T
i=1 i =

|
nj=
=3
P.
-
N
D
N
[\V]
|
nj-
(o)
-—
[
N
D
..-h
N
+
nj=
(@]
= )
>~
N
L
D
-
V]
+
D
[\V]
N
|
[
N

4

z u12 -ﬂz
= i i
% z

1

o8
X

vi2 + 291u2(m1
1 i

+ vi%) (35)

=

no~E

205.1%(m12)

!

nomE

Szilli +
i

Similarly the Lagrangian becomes

B

R .2+%09.32+

i

§ﬁiz + Giz)

Szi(diéz - Giél) A'ﬂegél * B'ﬂeléz

1

: g 2 8 g N
+ C(63 - 0162) + 2Um1®)Z% T S,5(vien + uzey -

i=1
. . u . . 2 2
vif2 - ujf1) + 21 I (ujvi - ujvi) + 3 A'0°6° +
i=1
4
3 B'0%01% + 3 0221 - 012 - 02%) + 02 & 1(u12 + vi?)
i =

4 4

+ &12(m12)% L Szi(ujbp - viey) - miz z (ui2 + viz)
i=1 i=1
(36)
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One 1is now in a position to obtain the equations of

motion for the continuous system by the modal method. The

generalized momentum is again given by

Pk = 0 k=1,---,11 (37)

q

)

-l

Y
~

With Rayleigh's dissipation function D given by equation

(21), Hamilton's equations become

qQx = 3H , P & - _8H - 3D k=1,---,11 (38)
9Pk 94k 9qy

The resulting 22 first order differential equations of

motion are derived in Appendix D and summarized below

8y = 02 + Pei
Da
. 4
02 = (C - 1) 63 # Pez - (mlz)% DX Szipui
Dp Dyp Db i=1
i

. 2 % 2
v:i = - s + (ml©°)°S,.Pa, + M1 S,:. I Sgz:Pys
J J “Da Ll “Ta Z,]i =i zi* Vi

+ f%i jo= 1,---,b

Pu

i .% .
43 = vi - (m12)2s,.Pe, - (m12)3CS, 401 + _%J
j J 5% 23502 5% 231 e
2 o L
+ml“s, . ¢ S,.P,. j= 1y-=m,
By Ve e
. 2 . 2,3 N
P91 = (1 - C)C;) 01 + (1 - C)klpez o (ml ) CAI. z SZiPui
Dp Dp Dp i=1
Pg, = - CQ%0, - (P
2 2 1
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?vj = - Zu)jZVj + 2d L)Uj - d (mlz)%SZjPel- .\-).Puj

P Da
2 L
. g[pv. +2m2s,. 1 S,P ] j=1,---b
L B ol B
gl 2 2.4 _
Py:; = - 203%uj - 2d vy + 2d (ml€) Dzj(cﬂel + P92) + 1Py .
4 P P Db .
2 4
= Q[Pua + 2ml SZJ ) z Szlpul] j = 1.""'4
P Dp i=1
. P
83 = 62 -0
c
Pgy = O (39)

The relations appearing in equation (39) were verified
in much the same manner as the discrete system equations.
Noting that 63 and Pe3 uncouple from the system, an eigen-
value stability analysis was performed on the remaining
20 x 20 constant coefficient matrix. Again, the results
obtained in this analysis correspond to the modal method
results obtained in Ref. 4 for the continuous system. This
correspondence of results is illustrated in Figure 8 where
similar stability plots are depicted for various system
parameters. In Figure 8, stable regions are below the curve
and unstable regions are above the curve.

For this investigation, the equations of motion ob-
tained by the above modal technique will serve as a true
model of the satellite system. Later in this thesis, con-

trol will be added to the system and results obtained using
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integral coordinate equations of motion, which are derived
in the next section, are compared to results obtained by

this so-called true model.

Integral Coordinate Method - Equations of Motion

As can be noted, the modal analysis method of the pre-
vious section leads to a rather large and complex system
of differential equations. Additionally, modal analysis
does leave some question as to the accuracy of results
since series truncation is utilized. In this section, a
method of integral coordinates will be introduced which will
significantly reduce the number of differential equations
to be solved. Although the integral coordinate technique
has fewer differential equations, the system is still based
on a continuous representation with results maintaining a
high degree of correctness.

The model for the satellite system remains that given
by Figure 2b. Since the model is continuous, the general
expressions for the system Hamiltoniarn and Lagrangian are
once again given by equations (22) and (23). In order to
circumvent the problems associated with evaluating the spa-
tially dependent integrals in equations (22) and (23), new
coordinates will be sélected. lo this end, the following

integral coordinates are defined

s h+ 1 5 h+ 1
u = f puzdz , n = [ puzdz
h =h
) h+ 1 . h+1
v = pvzdz , v = pvzdz (&40)

h h




For the integral coordinate formulation, it can be surmised

that the general coordinates will be 0;, 62, 03, u, and V.
Phe immediate advantage of this approach is in its simplic-
ity. The continuous system may now be investigated using
the same number of generalized coordinates as in the dis-
crete system, while maintaining the completeness of the more
complex modal analysis investigation.

In conjunction with the definitions given in equation
(40), integral terms in equations (22) and (23) which are
quadratic in u or v may be handled by using Schwarz's in-

equality. This inequality relationship is

h+1 h+1 h+1
(f pvzdz)2 < f pz2dz f pvidz (Ref 1:59) (41)
h - h h
or
h+1 h+1
] pvzdz > (f pvzdz)2
h h (42)
h+1
f pzzdz
h

Approximating by using the equality sign above, and recall-

ing the definition of v yields

h+1 2 - 2 _
f pv-dz = v (43)
h h+1 2
I pz~dz
h
Similarly,
h+1 2 -
[ pufaz = u (bb)
h h+1
f pzzdz
h
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If the same procedure is followed for integrals with qua-
dratic terms in u and v, substitution into equation (22)

for the Hamiltonian yields

H = 3 A'élz + 4 B'éz2 + 3 053 + ﬁf + - 261V + 20U
RI

- & A'82%0° - & B'o170° - 3 cOP(1 - 012 - 957)

+ (w2 - 02)fc? + ﬁ] + 2000%% - 20,0%T (45)
RI RI
where
h+1
2
RI = z“dz
I, @
A' = A+ 2m(h + 1)% + 2m2
2 12
T (46)

Similarly, substitution into equation (23) for the

Lagrangian yields the following

L = 3A'01% + 3 B'02% + 3 Co3% + T2 + ¥° - 2617 + 2050

2
2l

- A'0201 + B'O1020 - CO1020 + CO32 + 200V + 20

- 2020 - 20100 + & A'05%0% + 3 B'e1%0° + 3 cQP(1 -

01° - 82%) « u® - mlz)[i_z_ + 72] + 2020%F - 20005

RI I
(47)
For simplicity, the term (uv - uv) in the Lagrangian has

been intentionally neglected due to its small overall effect
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on the system. The differential equations of motion for

the above integral coordinate technique can now be formu-
lated by again applying Hamilton's equations given in equa-
tions (13) and (14). With Rayleigh's dissipation function
defined by equation (21), it is shown in Appendix E that

the integral coordinate equations of motion become

o7 = Fe1 + RI Py 4 19, 4 20u
A' - 2RI A' - 2RI
by = Poo -RI Py . ( ¢ - 1)ley + __2Qv
B' - 2RI B' - 2RI B' - 2R1
i i B'RI Pg -~ RIPap . GRI B - 2RI ¥

2(B' - 2RI) B' - 2RI B' - 2RI B' - 2RI

v = _ARIPY 4 RIPey 4 oR1g
2(A' - 2R1I) A' - 2RI A' - 2RI
p 2
Pgy = (1 - C )eQ®ey + (1 - __C _ )QPep
B' - 2RI B' - 2RI
+ CORI P - 2005
B' - 2RI B' - 2RI
% e 2
62 = - ﬂPel b CQ 02
i’; = . 2oy . ARI Py . u3%u 20" - (012) u
K" - 2RI A' - 2RI A' - 2RI RI
+ d (2clley + 2Pg, - B'Py + Uv)
p(B' - 2RI)
b= = . APe , 2RI Py - 200%; . 4P
B* - 281 B' - 2RI BY - 2RI BT - 2RI
2(0° - m®) ¥ - d (A'Py u

RI p(B* - 2RI)

35




3 = f93-Q
C
1393= 0 (48)

The equations of motion are now derived for the three
methods under investigation. In the next chapter, control
will be introduced into the problem. After the introduction
of control, the control requirements for the three methods
will be determined and the effectiveness of the integral ]

coordinate technique for obtaining control feedback gains

will be analyzed.
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III. Control

Up to now the only control on the satellite has been
the passive attitude control inherent in spin stabilized
systems. Active attitude control of the satellite is re-
quired for two reasons. For one, even though a stable
spinning satellite will tend‘to resist attitude perturba-
tions, in time, its spin axis will move away from a desired
direction due to the influence of a gravity gradient, aero-
dynamic force, or other such perturbative force. Secondly,
active attitude control is required to reorient the spin
axis of the satellite if a change in pointing direction is
required during flight. 1In this thesis, the satellite will
be initially displaced slightly from a null position to
simulate the effect of either a perturbative force or a
desired change in spin axis orientation. To effect the
attitude change, control will be applied to the angular
velocities él and éz of the satellite system. A momentum
exchange or a mass explusion device could be utilized to
impart this change in angular velocities, although, the ac-

tual physical mechanism is immaterial to this investigation.

Optimal Control

Mecdern control theory techniques will be applied to
obtain an estimation of the optimal control required to
produce desired attitude changes in the satellite system.
In this thesis, control is considered optimal in the sense

that minimum angular velocity control is used to minimize
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state deviations. For all three methods under investiga-
tion, the uncontrolled satellite is described by equation
(16). Since the system is linear and time-invariant, the
differential equation for the controlled satellite system

is given by the matrix equation
x(t) = Ax(t) + Bu(t) (Ref 10:148) (49)

where

A is a (n x n) plant matrix

B is a (n x r) input matrix

x(t) is a (n x 1) state vector

u(t) is a (r x 1) control vector
Optimal control is now sought such that a quadratic cost
functional involving the weighted components of the states
plus the control is minimized when the final time is unspec-

ified. In terms of an equation, the quadratic cost function

is given by
3 = 3 G(0ER(t) + T (DEA())at (50)
0]

where Q@ and R are positive definite symmetric weighting
matrices on the states and control vectors respectively
(Ref 10:149), If @ is large it would imply that the corre-
sponding state components will be rapidly regulated. If
there are large entries in R, this would imply that energy
in the corresponding control element will be kept small.
In this thesis, both Q and R are set equal to the identity

matrix, (1), implying equal weighting for the states and
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the control. For the cost function and state relationship

presented above, it can be shown that a statement of the

optimal control is given by

1

T(t) = - RTBTRR(T) (51)

where the determination of the optimal control involves the
solution of P by the matrix Riccati equation (Ref 10:151).
The matrix Riccati equation is given by the following dif-

ferential equation

+ PA + ATg - pBr g’

o

P =0 (52)

where the steady state solution can be determined by setting

P equal to zero. Defining the feedback gain matrix as

-1_T

E = <R'EE (53)

o

the closed-loop system matrix differential equations can

be written
:}E(t) = (A + BF)x(t) (54)

For the closed-loop system, stability can be determined by
numerically calculating the eigenvalues and eigenvectors
associated with the time-invariant matrix coefficient on
X(t) in equation (54). A block diagram of the closed-loop

system is illustrated in Figure 9.
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Control Feedback Gains

In order to obtain control feedback gains for the
three methods investigated, values of R and B were selected
and steady state solutions to the matrix Riccati equation
were numerically determined. The AFIT Subprogram OPTCON
(Ref 11) and the Aerospace Medical Research Laboratory
Subroutine MRIC (Ref 12) were used in obtaining the numer-
ical solutions to the steady state Riccati equation. With
the ability to obtain feedback gain matricies for particular
initial conditions and satellite parameters, it is now

possible to obtain and compare control requirements for the

three techniques being investigated.




IV, Results and Analysis

In chapter II the dynamics of the satellite were formu-
lated for the three techniques being investigated. A means
of controlling the system was introduced in chapter III.

In this chapter, specific examples are examined and the
results for the various techniques are presented.

For each method being investigated, optimal control was
determined by numerically obtaining control feedback gains,
F, based on equations (52) and (53). As previously men-
tioned, Subroutine MRIC and Subprogram OPTCON were utilized
to obtain feedback gains for the system. These feedback
gains were substituted into the general closed-loop system
differential equation (54), which describes the satellite's
controlled motion. The closed-loop differential equation
was then integrated forward in time by using the CC6600
Subroutine ODE (Ref 13). For the example which follows, the
satellite's angular displacements and antenna motion are
plotted versus time for both uncontrolled and controlled

situations.

Example 1

In this example a stable satellite configuration was
examined. The following initial conditions, satellite pa-
rameters, and weighting matrices apply to all three methods.

Initial Conditions:

91 = 0
3° = ,0523598776 Radians

02

L1




u=0ft=u=uj=up= u3 = uy
ve0ft=vs= V4 = V2 = V3 = vy
t = 0 sec

Satellite Parameters:
lg = 50 Rad/sec

w, = w; = 60 Rad/sec

n
Ng/w, = 833
C = 60 slugs-ft2
C/A = 1.5
B=A
RA = .1
a=2ft
h=2ft
l1=1fFt

Zeta = d/2mw, = .5

d/p = 10

Weighting Matrices:
Q= [1]
R = [l

Discrete System Results

For the discrete system model, Figures 10 and 11
illustrate the satellite's motion for the uncontrolled
system. It can be noted that for an inherently stable sys-
tem, the antenna displacements of u and v tend to dampen
out over a period of time. The damped motion of the an-
tenna was characteristic for any value of zeta greater than

zero. Recalling that 01 and 6, are angular measurements of

i U2
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the body fixed axis with respect to an inertial axis, it
can be seen from Figure 11 that the spin axis assumes a
new pointing direction. A controller is required to drive
these angular displacements'back to-zero so that the spin
axis is once again oriented to the null position. Table I

provides the feedback gains required to control the system.

Table I.

Discrete Feedback Matrix

Col 1l : Col 2 | Col 3 | Col 4 |

Row 1 |-3.70032+02 -4.55122400 -2.73742-05 -1.0320E+01

Row 2 |[-2.7374E-05 7.29902-06 -5.43182+02 7.09582-06

| Col § | Gol 6 | gol 7 | Col 8

Row 1 $.50532-01 2.26242-02 -1.2334=z-01 4.75342-01

Row 2 -1.81062-01 -7.02792-08 9.83472-01 -4.45722-07

The optimal control at any instant of time is just the matrix
multiplication of the feedback gain, F, times the current
state vector.

u(t) = Fx(t) (55)
Recalling that 65 and P93 uncouple for all three methods
investigated, the states of the discrete system can be des-

cribed by an (8 x 1) vector written in the following order.

Xy = 64
o &3 =V
x(t) =

X3 = 92

Xy = u




X5 = Pel

X6 = Py
Xo = P02
xg = Py (56)

Figure 12 illustrates the angular displacements and antenna
motion of the controlled discrete system. As can be ob-
served, the satellite is returned to the desired null ori-
entation in just over one second. For this particular set
of satellite parameters, the stability of the closed-loop
system is shown by the all negative eigenvalues illustrated

in Table II.

Table II.

Discrete Closed-Loop Eigenvalues

Real Imaginary
-.33957E+01 -.52787E+01
-+.33957E+01 . 52787E+01
-.54171E+02 -.10598E+03
-.54171E+02 .10598E+03
-.19348E+03 -.19573E+03
-.19348E+03 .19573E+03
-.27159E+03 -.27615E+03
-.27159E+03 .27615E+03
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Modal Analysis Results

The modal analysis investigation of the continuous
system model was the second method applied to this example
problem. In order to obtain an insight into the unforced
satellite motion, the equations of motion were numerically
integrated and the uncontrolled states were plotted against
time. Figure 13 illustrates the uncontrolled angular dis-
placements of 64 and 02. A breakdown ¢f the uncontrolled
motion for the first four modes of antenna vibration is
presented in Figures 14 through 17. As expected, the first
mode significantly dominates the antenna motion. The magni-
tude of the overall uncontrolled modal displacements in the
u and v directions is illustrated in Figure 18. For the
controlled system, the set of feedback gains appearing in
Table III were obtained using AMRL Subroutine MRIC. The
order of the states corresponding to the feedback gains of

Table III and the modal analysis method is as follows:

Xy = 94 X117 = Poy
%2 = @2 x12 = Pop
Hg i x13 = Pyy
Xy = Vp X4 = PVZ
x{t) = e = ¥y X15 = Py,
X5 = Vb X186~ Ty
X7 = uy X17 = Py
Xg = up x18 = Pup
Xg = uj x19 = Puj
X107 uy X20 = Puy (57)
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With the feedback gains applied to the system differ-
ential equations of motion, the control required on the
angular velocities él and éz was obtained. The resulting
controlled motion of @1 and 6, is depicted in Figure 19.
The controlled motion of the first four modes is as illus-
trated in Figures 20 through 23. Figure 24 shows the over-
all magnitude of the antenna motion as a function of time.
Comparing the uncontrolled to the controlled motion, that
is, Figure 13 to Figure 19 and Figure 18 to Figure 24, it
can be seen that the desired null orientation of the system
is rapidly achieved. The control in angular velocity rates
required to obtain this orientation is plotted in Figures
25 and 26. Figure 25 shows that the controller is active
for only a short period. Figure 26 more clearly illustrates
the magnitude of control required during the more active
stage. This figure also illustrates that the controlled
angular velocity rates are nearly zero after a time of
one-tenth of a second. If the actual mechanism imparting
control was known, these control angular velocity rates
could be transformed into some thrust requirement or mo-
mentum exchange requirement.

Recall that earlier in this thesis the assumption was
made that the results obtained by the continuous modal meth-
od would be considered an exact representation of the sat-
ellite system. Later in this thesis, the results obtained
by applying integral coordinate feedback gains to the con-
tinuous modal system will be compared to the results just

presented.
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Integral Coordinate Results

For the continuous system, using integral coordinate
techniques, the uncontrolled system motion is as depicted
in Figures 27 and 28. Note that the antenna motion is
again naturally damped out. Additionally, Figure 28 shows
that the satellite's spin axis is again repositioning it-
self away from the nominal spin axis direction. To estab-
lish the control required to reorient the satellite's
spin axis, feedback gains were obtained from Subprogram
OPTCON. These feedback gains were verified by using the
Subroutine MRIC to determine required gains. The resulting
feedback gains obtained by both methods were identical and

appear in Table IV.

Table IV.

Integral Coordinate Feedback Matrix

Coll 1 | Col 2 \ Col 3 l Col 4 |

Row 1 -3.78142+02 -3.51422+401 -2,35392-05 -3.25413+00

Row 2 -2.3539E-05 3.03792-05 -5.43182402 2.9721E-06
L Col 5 | Col 6 1 Col 7 | Col 8

Row 1 9.86713-01 -1.6621Z-01 -1,26052-01 5.16392-01

Row 2 -1.81062-01 1.38208-07 9.83472-01 -5.44375-07
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54

As in the previous techniques, the required control was
found by performing the matrix multiplication of equation
(55). For the integral coordinate method, the states were

defined in the following order:

Xy = 01
% Xp = ¥
X3 = 02
263 . Xy = U
Xg = Pgy
X = Py
Xg = P92
Xxg = By (58)

Figure 29 depicts the controlled states 61, 62, u, and v
versus time for the integral coordinate technique as ob-
tained by the AFIT Subprogram OPICON. Figures 30 and 31
illustrate these same states as obtained by integrating the
integral coordinate equations of motion forward with control
included in the system. As these figures indicate, the
sevellite returns to the desired attitude in approximately
one second. Figure 32 depicts the amount of control re-
quired using integral coordinate techniques. A more de-
scriptive illustration of this control is given in Figure
33. By comparing Figure 33 to Figurevzé, it can be noted
that control requirements for the integral coordinate and
modal techniques are nearly identical. The all negative
eigenvalues appearing in Table V indicate the stability of

the integral coordinate method for this satellite configura-

tion.
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Table V.

Integral Coordinate Closed-Loop Eigenvalues

Real Imaginary
- . 47474E+01 -.33747E+02
- . 474 74E+01 . 33747E+02
-.56459E+01 -.21147E+02
-.56459E+01 .21147E+02
-.18968E+03 -.19868E+03
-.18968E+03 .19868E+03
-.27159E+03 -.27615E+03
-.27159E+03 .27615E+03

Analysis

The results to this point have shown that regardless
of which of the three techniques is choosen to investigate
the system, some feedback gains can be determined which
return the modelled satellite's attitude back to a desired
orientation. Although the integral coordinate method is
apparently a viable technique for controlling a satellite
system, further investigation must be made to determine its
effectiveness in providing feedback gains which could con-
trol an actual satellite system.

Recall the assumption that the continuously modelled
modal analysis investigation represents the physical sat-

ellite system. Hence, the effectiveness of the integral

74




T T T e T

coordinate technique can be determined by applying integral
coordinate feedback gains to the continuous modal invest-
igation and seeing if the satellite does, in fact, return
to a desired orientation. To this end, modal displacements

were related to integral coordinate displacements by the

following:
" h+ 1
u = f pzudz - 1integral ccordinate
h
4
U = T o&juy - modal analysis
i=1
or
h+1 4 i 1
— 22
u = = &i;uzpzdz = r (ml~)'s,.u;
[h i=1* dE 1 2i7d
Similarly,
- = 2,3
v = z (ml7)"Szivi
i=1
Py = 2u + 202 + 209
RI
Pz = 2v - 201 + 20,0 (59)
RI

Basically, the control was determined by first equating modal
states to integral coordinate states. After this, the re-
sulting integral coordinate displacements were multiplied

by the previously obtained integral coordinate feedback gains,
which yielded the required control. Numerical integration

of the now modified modal system provided the following
results. Figure 34 illustrates that the satellite does
return to a desired pointing attitude, as evidenced by 9,

and 95 returning to zero radians. Comparing Figure 34 to
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Figure 19, it can be seen that the integral coordinate

feedback gains do control the system almost as well as the
optimal feedback gains obtained for the purely modal anal-
ysis investigation. Figures 35 through 38 depict mode
displacements, and again, the control is such that the
antennas return to a nominal position. Figure 39 presents
the magnitude of antenna displacements for the continuous
modal system using integral coordinate feedback gains. If
Figure 39 is compared to Figure 24, it can be noted that
the magnitude of antenna motion for the continuous modal
system, using integral coordinate feedhack gains, is nearly
as controlled as the pure continuous modal analysis. The
control reguired to return the satellite to the desired
orientation is depicted in Figures 40 and 41. These control
results are comparable to the results obtained in Figures
25 and 26 for the pure modal investigation. The above
analysis has shown that integral coordinate feedback gains
do control the satellite system almost as well as feedback
gains obtained by modal techniques. This supports the sup-
position that the integral coordinate method is a viable
technique for estimating optimal control feedback gains for
an actual satellite system.

Other example problems were investigated with the
results being basically the same as thoc2 presented above.
As long as the satellite system was inherently stable,
integral coordinate feedback gains could be found and ver-

ified by applying them to the continuous modal system.
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For satellite systems which were inherently unstable, either
the integral coordinate technique or the modal method could
control the satellite. However, when integral coordinate
feedback gains were substituted into the modal system,

the system would not control as desired. This was appar-
ently due to the fact that the control on the antenna, which
was pervasive in nature, was unable to keep up with the

inherent instabilities of the system.
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V. Conclus;dhs

By analyzing the results to example 1, several conclu-
sions may be made regarding the utility of the three methods
investigated. A discussion of these conclusions is presented
below.

The discrete system analysis was the simplest to per-
form. However, the results obtained by this method are
least useful to the‘satellite designer. The method was sim-
ple in that only eight first crder differential equations
of motion needed to be solved to describe the attitude of
the satellite. This required minimal programming effort
and minimal computer time in obtaining a solution to the
control problem. The method lacked utility in that the
continuous antennas were crudely discretized and cculd not
be easily related to an actual physical satellite. Since
the model did not have the completeness of the continuous
system model, a designer would lack confidence in his abil-
ity to obtain optimal contrcl feedback gains which approx-
imated those required for the true system.

The purely continuous modal technique offers a reversed
situation from that of the discrete method. The modal anal-
ysis technique offers a means of obtaining realistic feed-
back gains, however, the method is rather complex to easily
employ. Even for this rather simple satellite, having only
two flexible antennas, the method required the solution of
the fixed-free beam eigenvalue problem and the solution of

twenty first order differential equations. The computer
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programming effort was considerably greater than that

required for the discrete analysis, and computer execution
times were approximately five times greater. Although time
consuming, this method adequately models the satellite
system and is often used by the designer to obtain feedback
gains and the associated optimal control requirements.

l'o determine control requirements for a satellite in
the early stages of design, a spacecraft designer would
like to have at his disposal a technique which combines
the attributes of the discrete and modal investigations.
The results obtained for the integral coordinate method
indicate that this technique could provide the designer
with such a design tool. The method was generally simple,
requiring the solution of the same number of differential
equations as the discrete system. Problem formulation was
further simplified since the beam eigenvalue problem did
not have to be solved. Programming effort and computer
execution times were approximately the same as the discrete
system analysis. As shown, the satellite's controlled
motion with integral coordinate feedback gains applied to
the continuous modal system was almost identical to that
of the pure modal method. This tends to verify the fact
that a designer can obtain realistic estimates of control
requirements by using the simplified integral coordinate

techniques developed in this thesis.
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VI. Summary and Recommendations

Summary

This thesis investigated three methods for obtaining
control feedback gains of satellites containing flexible
appendages. These methods included a discrete system
analysis, continuous modal analysis, and a new integral
coordinate analysis. For each of the techniques considered,
equations of motion describing the satellite's attitude
were developed. Active control was applied to the satellite
by an arbitrary mechanism capable of providing angular
velocity inputs. Control was required in the system to
keep the attitude of the satellite at a desired null orien-
tation. A sample problem was investigated and an analysis
of the results for the three techniques was performed. The
discrete method was found to be simple, but lacking in
utility for obtaining realistic control estimates. The
modal analysis obtained valid control results, however, the
method involved rather complex mathematical formulations.
The results obtained for the integral coordinate method
indicate that it is a simple, time saving, and valid means
for obtaining estimated control requirements for satellites

with flexible appendages.

Recommendations

Having completed this investigation, it is recommended
that the integral coordinate method be used for obtaining

control requirements for the specific type of satellite
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discussed in this thesis. This recommendation is based on

three reasons. For one, it is easy to employ during early
stages of design. Secondly, it avoids involved numerical
procedures. And finally, the effect of changing various
system parameters can be easily assessed. Although the
utility of the integral coordinate technique was generally
established in this investigation, it is also recommended !
that this method be further examined. In particular, other
satellite configurations or other spacecraft in general
should be investigated to determine the utility of the
integral coordinate technique for estimating optimal control
requirements. If shown effective for a wider classification
of space vehicles, the spacecraft designer would realize an
enormous savings in time and effort in obtaining estimated

optimal control requirements,
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Appendix A

Kinetic Energy Derivation

The following is a derivation of the kinetic energy

expression given by equation (2).

mass oscillator

The velocity of the rigid body less the mass oscilators is

given by
The velocity of the mass oscillators is given by
- _— —— — LY L
Vo = Y W r, +ul +v] (A-2)

Therefore, the kinetic energy expression given by equation

(1) can be written as

T o= 3 (VppTgpldn + 3 (V¥ )dn (A-3)
B-m m

or

L]
I

%f (Ve + wx1) (Vg + w x r)dm + %j-(Vc + X rp
B-m m
+ul + vH(Vy + w x Ty + ul + vi)am

e ul o o 2 2
%Mvc.vc + 30 Igpgo + mVy 'V, + ) Igw + m(u + v )

+ 2m(w x ) (U1 + v3) + terms which go to zero

(A-4)
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where

A 0O
Ig.m = | 0B O (A-5)
00C
and
a2 + v2 - uv - au
Im = - uv al + u? - av (A-6)
- au - av ul + v2

Substituting equations (A-5) and (A-6) into equation (A-4)

yields

)iy == %MVc°Vc + %(Axlxz + B.\)yz + Cﬂzz) + ch~Vc
+ m(a? + v2)y? + (2% + u2)0y? + (u? + v2)0,2

- 2uVﬂxx)y = Zamlx{lz = zaVXIyl)z] + Zm[u\'rﬂz = GV\F]Z

- a‘.’l]x + a‘-.h)y] + m(ﬁz + ‘;2) (A’7)
Combining constant terms and letting A' = A + 2ma2 and
B' = B + 2ma® yields
T o= 3 A%+ 3 BOy% + 3 al? 4 m[u? 4 2+ vE,2

+ w2 + (u? + V3,2 - 2alnly + 2alily - 2(av
- uv)iy - 2uvilply - 2avilply - Zamlxxlz] + Const
(A-8)
‘Equation (A-8) is in agreement with the kinetic energy

expression obtained in Ref. 4 for the same satellite system.
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Appendix B

I'ransformation

The following is a transformation from orbitally
referenced angular velocities to body referenced angles

and angular rates.

Z.e21
cos 93 sin 63 0
®y1 z : 8 0
Cl/X = |- sin 63 cos 03
0 0 1
X 79
< Y (B-1)
ex,
i
9, ot
eZ~ 4 cos 02 0 - sin 62 I
yi'yz sin 0 0 cos © 13
(B-2)
ex{
X2
ez,
Q
e, 1
3
e
¥3 :
ey 1 0 0
2
03/2 = 0 cos 91 sin 91
0 - sin 84 cos 04
ex,16x3 (B-3)
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The angular velocity of the satellite can be described by
the vector

From equations (B-1), (B-2), and (B-3) it can be shown that

ex2 1 0] 0] ex3
ey | = 0 cos 8; - sin 8 ey, (B-5)
eZ2 0 sin 04 cos 9y eZ3
and
exq cos 82 sin 81 sin 63 cos 01 sin 63 €x
eyl = 0 cos 91 - sin 03 ey3
€21 - sin @, sin @9 cos 8 cos 031 cos 03 ||e,
(B-6)
Substituting the appropriate expressions from equations
(B-5) and (B-6) into equation (B-4) yields
w = '(él - sin 6, éa)ex3 + (sin 84 cos 6, é3 + cos 0 éz)ey3

+ (cos 84 cos 0, 63 - sin 84 éz)ez3 (B=7)

Hence,
Qx 1 0 - sin 63 61
w = {yl = 0 cos 91 sin @1 cos 0p 05| (B-8)
sz 0 =-sin 81 cos 91 cos 93 63




Appendix C

Derivation of Discrete System Equations of Motion

The following is a brief description of the derivation
of the equations of motion for the discrete system by ap-
Plying equations (13) and (14) to the system Hamiltonizn

and Lagrangian. From equation (13)

Pgy = 3L = A'0; - 2mav - A'0al - 2maul (c-1)
981

Pg, = 3L = B'6 + 2mau + B'Oy) - COpl - 2mavil (c-2)
982

Pgj = 3L = Cé3 + Ci) (c-3)
003

Py = _3L = 2mu + 2madp + 2madq() - 2mvi) (C-4)
du

Py = _3L = 2mv - 2mafy + 2ma®xl + 2muil (c-5)
v

Equations (C-1) through (C-5) where solved simultaneously

for élr 62, 63. ﬁ. and v. From equation (14)

éel = (B' - C)lbz + (B' - C)2%01 + 2mad(u - wil) (c-6)
Bo, = - AW + 2mal(v + uld) + (A* - C)le; (c-7)
Pgy = 0 (c-8)
Py = (2mv - 2maé1)il + (2mu + 2ma62)% - 2Ku - 2Du  (C-9)
év = - (2mﬁ + 2maé2)ﬂ + (2mv - 2ma01)d2 - 2Kv - 2Dv(C-10)

Suvstituting in the relations obtained from equations (C-1)
through (C-5) intec equations (C-6) through (C-10), and after
much simplification, the expressions of equation (15) may be

obtained.
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Appendix D

Derivation of Modal Analysis Equations of Motion

The following is a brief description of the derivation

of the equations of motion for the modal analysis method

by applying equations (37) and (38). From equation (37)

. 4 . 2 %
Pg, = A'03 -2 I 1s,_ivi(ml )" - A'en
l =
b 3
- 20 I Szui(m?) (D-1)
i= 1
. u . 2 %
Pgp = B'62 + 2 I 1SZiui(ml )" + B'oul
1 ==
4 3
-co10 - 21 I 1SZivi(m12) (D-2)
i=
Pgj = CO4 + CQ (D-3)
Puj = 21.1‘] + ZéZSZj(mlz)% + 291{1523(1!112)&
- vy i=1,---,4 (D-4)
. : 3
ij = 2vj - 2elszj(m12) + 2eznszj(m12)%

+ 2uj j=1,---,4 (D-5)

Equations (D-1) through (D-5) where solved simultaneously

for 61. éz. é3. 61'2’3'4, and 61'2’3.4. From equation (38)

m
z 3

Poy = (B' - C)2ép + (B* - C)d%ey + 20, 1SZiﬁi(m12)
1

3

2
i

- 2

([ Se B ~

1SZivi(mlz) (D-6)




L
. . 2 .
Pgo ='-A'Jel + (A' - Chl o2 + ZHi E 1SZivi(m12)
b 3
+ 2J2 I Sziui(mlz) (D-7)
i=1
593 = 0 (D-a)
lsuj = ZQ\.IJ - Z(mlz)%iszj(él = Qe2) * ZQZuj = ijzuj
Pys  Sz:(m12)?
- 2d|uj - >z4 (p92 + C81QQ) + Qv
pL 2 Dy
s
+ Z'lml ¥ z Szipui] j = 10'--'4 (D-9)
Db i=1
. . % .
Py = - 2m; - 2m?) s, 5(62 + Q91) + 20vj - 2057V
P S % :
= g-(i[ VJ + Zj(ml ) Pe + Zlml Z Szipvi
P D o
a
- QUJ] J = 1-"'0)4‘ (D-lO)
where
L
2
D, = A' - 2ml " :):_ 15212
4
D, = B' - m1? s SZiZ (D-11)
i=1

Substituting the relations obtained from equations (D-1)
through (D-5) into equation (D-6) through (D-10), and

after much simplification, the expressions of equation (39)

may be obtained.




Appendix E

Derivation of Integral Coordinate Equations of Motion

The following is a brief description of the derivation

of the equations of motion for the integral coordinate

method by applying equations (13) and (14) to the system

Hamiltonian and Lagrangian. From equation (13)

P91
Po,
P93
Py
Py
where

RI

= A'él 2V - A'eQd - 2u (E-1)
= B'62 + 2u + B'e1 - Co10 - 20v (E-2)
= €63 + CQ (E-3)
= 2u + 262 + 2010 (E-4)
RI
= 2V - 267 + 205 (E-5)
RI
h+1
= f pzzdz (E-6)
h

Equations (E-1) through (E-5) where solved simultaneously

- for 61. 62. 53. u, and v. From equation (14)

= (B' - C)Bp + 20u + (B* - c)n2e, - 205 (E-7)

AU, + AV + (A - c)2%ep + 0%

= 0

a : 2 2, - 2 =

= - 2001 + 2(Q° - w1") _u+ 205 - _2d u (E-10)
RI PRI

= . 2 2, = 2 2

= =200 + 2(117 -w") v - 2A1%1 - _2d ¥ (E-11)

RI

%
[
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Substituting the relations in equations (E-1) through (E-5)

into equations (E-7) through (E-11), and after simplifica-

tion, the expressions of equation (48) may be obtained.
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