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This report presents the results of my investigation

into three methods for obtaining the optimal control re-

quirements of satellites with flexible appendages. A new

method using integral coordinate techniques was iritruduced

in this thesis and was found to provide quite acceptable

optimal control results.

This project required that I become fairly involved

with the concepts of modern control theory, stability anal-

ysis, and dynamics of flexible vehicles. In this regard ,

I am indebted to Dr. Leonard Meirovitch for his many pub-

lications which provided background information in these

‘ 
areas. I am especially grateful to Dr. Robert A. Calico ,

my thesis advisor , for suggesting the original idea for

this thesis and for the guidance he provided throughout

this project.

Finally , I would like to thank my wife , Maria, and

our daughters , Maria Angela, Kristina, and Diana for their

patience and understanding during the past eighteen months.
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Abstract

~~ This thesis investigated three methods for obtaining

optimal control requirements for satellites having flexible

appendages. A discrete method , modal method , and a new

integral coordinate method for obtaining control require-

ments were examined. Mathematical formulation was performed

on a satellite configuration consisting of a symmetrical

rigid body with two flexible antennas extending in opposite

directions along the spin axis. System equations of motion

were derived using Hamilton’s equations. Modern optimal

control theory , involving the minimization of a quadratic

cost functional and the numerical solution to the steady

state matrix Riccati equation, was applied to the system .

An example problem was presented and numerically solved)

The resulting controlled states and control requirements

for each method were compared and a discussion of the

advantages and disadvantages of the different techniques.

was presented. L~The results of this thesis indicate that

the integral coordinate technique provides a valid and use-

ful means of obtaining realistic estimates of control re-

quirements for the class of satellites under consideration.

The report goes on to recommend further investigation of

the integral coordinate method for other spacecraft and

satellite configurations.
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OPTIMA L ATTITUDE CONTROL OF

AN ORBITING SATELLITE

CONTAINING FLEXIBLE APPENDAGES

I. Introduction

Background

In order to meet functional requirements , space vehicles

are frequently required to maintain a fixed orientation with

respect to either an orbiting frame of reference or some

inertial reference frame. In the early years of space ex-

ploration spacecraft tended to ‘be small, mechanically simple ,

and essentially rigid. Today , however , satellite configura-

tions are highly complex with many flexible devices, such as

antennas , booms , and solar panels, which greatly affect the

attitude dynamics of the body. The stability and control

requirements for such modern space systems are of particular

importance to the designer.

In recent years, numerous papers have been presented to

determine the effect that flexible appendages have on the

stability of space systems. Of particular interest are the

papers of Meirovitch and Calico (Ref 1; Ref 2), who extend

the Liapunov direct method of stability analysis to predict

the stability of various spacecraft configurations. Their

basic strategy was to define integral coordinates to evaluate

the system Hamiltonian and test for stability by using the

Hamiltonian as a Liapunov functional . Their research pro-

vided a simplified , alternative means of predicting stability

1



of satellites with flexible appendages. In the area of

satellite attitude control , methods of analysis are complex

requiring a thorough investigation of a particular vehicle

configuration in order to obtain a prediction of optimal

control requirements. By using techniques similar to those

developed by Meirovitch and Calico for predicting stability ,

this thesis will examine the control requirements for satel-

lites with flexible appendages, and attempt to provide a new

method for obtaining the optimal control for these space

systems.

Problem Definition

It is well known that a rigid satellite is stable when

spun about its axis of maximum moment of inertia. However ,

the addition of flexible appendages to spin stabilized space

systems can result in an undesirable wobbling, or coning

motion, of the vehicle. To keep the attitude of flexible

satellites in proper orientation a means of controlling the

system is required. Prequently , active attitude controllers

employing momentum exchange or mass explusion devices are

utilized ‘to resist attitude perturbations. The active con-

troller can take various forms, such as a momentum wheel ,

or as a reaction jet controller of the spin axis orienta-

tion (Ref 3:87). Regardless of what control device is phys-

ically implemented , the designer of flexible satellites must

have a good a priori knowledge of the amount of control

which will be required to regulate a particular satellite.

The overall direction of this thesis will be to provide

2 
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a new , relatively simple , method for estimating the required

optimal control to maintain a particular spacecraft attitude.

The new method will be based on the technique of integral

coordinates previously employed by Meirovitch and Calico

(Ref 1) to predict satellite stability. By using this sim-

plified technique , the time and effort required to obtain

an estimate for the optimal control will be significantly

reduced over current complex methods employing modal analy-

sis. Having a simple means of obtaining the control for

flexible satellites would be of great benefit to the space-

craft designer, since it provides a tool that is relatively

easy to employ upon which a control decision could be made

during preliminary design.

General Problem Formula !ion

An objective of this thesis is to develop a new method

for obtaining the optimal control of a satellite having

flexible appendages. The particular satellite to be inves-

tigated consists of a symmetrical rigid body with two flex-

ible antennas extending in the positive and negative direc-

tions of the z axis as depicted in Figure 1. Mathematical

analysis is performed on a discrete model (Figure 2a) and a

continuous model (Figure 2b) of this satellite configuration.

The discrete mode l will be examine d using spring-mass-damper

oscillators to discretize the system and the continuous

model will be investigated using both a modal analysis ap-

proach and a simplified method of integral coordinates.

The kinetic and potential energies will be derived for the

3



Flexible Antenna ~~~~~~~~~~~~~~~ z (Spin Axis)

I

x

/

y

Figure 1. Satellite configuration

Iz
z

EI , p  4
-

~~~~

f r ~k~c~ A---~~~----4Y ,1-----
A~ ‘ I  !~ J I
\ ,, I V~~I , I

—~-)~~~~3~OHi- 
-t

x

(a) (b)

Figure 2. Models : a) i iscrete ; b) Continuous

4 

- ‘ - -
- -.‘ . . ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _



-

discrete and continuous models of this system. After deriv-

ing these energy expressions , the system Hamiltonian and

Lagrangian will be formed and utilized in obtaining the

satellite equations of motion. Once having the equations

of motion , control will be introduced into the problem along

with the constraint that the satellite spin axis will main-

tain a fixed orientation with respect to inertial space.

To ascertain the amount of control required to keep a nulled

satellite position, an optimal control problem will be for-

mulated using discrete , modal , and integral coordinate

methods . The results obtained for the three methods will

be compared and an analysis will be made regarding the

effectiveness of using integral coordinate techniques for

determing optimal control of satellites containing flexible

appendages.

Assumptions

This thesis will examine high spin stabilized satellites

in earth orbit. Since the system is spinning at a relatively

high rate , it can be shown that the torque due to gravity is

quite small. For this reason , it will be assumed that the

flexible satellite under consideration is moment-free for

short time periods . This assumption is valid since the ac-

tual gravity torque on the system would have an insignificant

effect on the attitude dynamics of the satellite as compared

to the effects associated with such things as the system

mass distribution, system elastic properties and dynamic

coupling thereto , relative motion of internal mechanisms ,

5
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rate of conversion of mechanical energy into heat by dissi-

pative mechanisms , and external forces of various forms

(Ref 4:1597). For this investigation, it will be assumed

that the satellite is spin stabilized about the z axis, and

that the mass distribution, elastic properties of the system ,

and conversion of mechanical energy into heat by dissipative

mechanisms contribute the dominant perturbations in the

attitude dynamics of the body. It will also be assumed that

the angular momentum of the relative motion of the satellite

to the earth is constant and neglegible compared to the

angular momentum of the rigid body motion. This assumption

is reasonable since this study examines high spin stabilized

satellites. For simplicity, the center of mass of the sat-

ellite will be assumed to move in a circular orbit. Since

the gravity potential is approximately a constant in a

circular orbit it will not affect the attitude dynamics of

the body over short time periods. Therefore, the potential

energy will consist entirely of elastic strain energy of the

flexing antennas. For ease of calculation, identical uniform

antennas are assumed. Antisymmetric motion of the satellite

antennas will be assumed to simplify the expression for the

kinetic energy. It can be shown that the antisymmetric - 
-

motion assumption would represent the worst possible case

in regards to the stability of the flexible satellite system

in question (Ref 5:202). Additionally , the antisymmetric

motion assumption implies that the center of mass remains

fixed relative to the main rigid body (Ref 6:1535). To

6
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further simplify the kinetic energy expression , it will be

assumed that the satellite will undergo small perturbations

from the null position. This is a valid assumption since

it can be shown that for an inherently stable configuration

wobbling of the satellite due to perturbations will be con—

tam ed in a small region near the equilibrium position. For

an inherently unstable configuration with no controller ,

any perturbation will cause the cone angle of the wobble to

increase until the body begins to tumble in space (Ref 4:1598).

Since small angular and vibrational displacement perturba-

tions are assumed , angular and displacement terms in the

kinetic energy expression higher than second order will be

ignored. The control required to maintain the satellite

system in a desired orientation will depend upon several

state measurements. It will be assumed that any state dis-

placement required to implement the control feedback gains

can be measured or somehow obtained during actual operations

of the satellite. The modal investigation will be assumed

to perfectly model the actual satellite system , and will

provide the reference for evaluating the effectiveness of

the new integral coordinate technique .

Sequence of Presentation

The remainder of this report is organized as follows.

Chapter II presents the mathematical formulation of the

satellite system. The equations of motion are derived for

the discrete , modal , and integral coordinate techniques of

the uncontrolled satellite systems. The equations of motion

7
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are checked by performing an eigenvalue stability analysis

and comparing the results with previous investigations on

satellites of the same configuration. In Chapter III, -

control is introduced into the system and the optimal con-

trol problem is formulated. Closing this chapter is a brief -

discussion of how control feedback gains may be obtained.

In Chapter IV a presentation of the control results is given.

The effectiveness of the integral coordinate technique for

obtaining an estimation of satellite optimal control require- -

ments is analyzed. The conclusions to be drawn from this -

investigation are presented in Chapter V. A brief summary

of the investigation is presented in Chapter VI. Also in-

cluded in this final chapter are recommendations for uti-

lizing integral coordinate techniques for satellites with 
-

-

flexible appendages. -

_ _ _ _ _ _  J
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II. Mathematical Formulation

Satellite in Earth Orbit

As previously indicated the specific satellite config-

uration under investigation consists of a symmetrical rigid

body with two flexible appendages extending out the negative

and positive z axes (Figure 1). When the satellite is in

the urideformed state, the x, y, and z body fixed axes rep-

resent the principle moment-of-inertia axes. The mass mo-

merits of inertia for ‘the symmetrical rigid body section are

A , B=A , and C about the x, y, and z axes respectively. The

satellite orientation in earth orbit is depicted in Figure 3.

~1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

)

Circular Orbit

Figure 3. Satellite in Earth Orbit
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The center of the earth is considered an inertial reference

point with axes X1, Y1, and Z1. The radius vector RC, which

is constant in magnitude for a circular orbit , is measured
from the center of ‘the earth to the center of mass of the

satellite.

Discrete Method - Equations of Motion

The discrete model of the satellite is illustrated in

Figure 2a. The model consists of a symmetrical rigid body

with spring-mass-damper oscillators simulating the flexible

antennas. The oscillators each have a mass m and are sym -

metrically placed a distance a along the z axis. The motion

of the two oscillators is denoted by ul, vj, u2, and v2, and

the angular velocity components of the X,Y,Z system by ii~,

and f1~. The complete motion of the system is described

by ten generalized coordinates: three coordinates for the

motion of the center of mass of the satellite , three coor-

dinates for the angular orientation of the body , and four

coordinates for the position of the two oscillators with

respect to the x,y,z system. Under the assumption that the

center of mass of the satellite moves around the earth in

a circular orbit and at a constant angular velocity , the

degrees of freedom of the system can be reduced by three .

[‘he assumption that the antennas move in antisymrnetric motion

implies that u~ = -u2 = u and V1 = -V2 = V. fhis assumption

allows a further reduction in the number of generalized

coordinates by two. Before the equations of motion for

these generalized coordinates can be derived , expressions

10 
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for the kinetic and potential energies must be established.

The general expression of the kinetic energy for the

satellite system can be written as

T = 

~~J 
(V.V)dm (1)

where V is the inertial velocity of an element of mass dm.

For this discrete model , V can be written in component terms

for the rigid body and mass oscillators and the integral

evaluated over their respective domains. The general ex-

pression for the kinetic energy becomes

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ u2~~ + (u 2 + v2 c~ - 2ai~l~ + 2a~~1~ - 2(tiv -

ui~)cI~ 
- 2uv12~~~ 

- 2av~~,~2~ 
- 2auCl~cPz] 

+ Const. (2)

where A ’  = A + 2ma2, B’ = B + 2ma2, and C are the mass mo-

ments of inertia of the undeforined body about the x, y, arid

z axes respectively. The derivation of equation (2) is

given in Appendix A.

Since the effect of gravity forces is assumed negli-

gible , the potential energy consists entirely of elastic

strain energy. For the discrete system model the potential

energy expression is -

V K(u2 + v 2) (3)

where K is the spring stiffness of the oscillators in both

the x and y directions. Here , the spring stiffn~ss coef-

ficient K was chosen to be equal in both directions since

uniform antennas were assumed.

11



Energy dissipation in the system is due totally to

damping in the antenna rods. In the discrete model, dis-

sipation is modelled by placing damping pods on the oscil-

lators. The equation expressing the effects of damping is

given by Rayleigh ’s dissipation function

P = d(t~
2 + .Q 2 ) (4)

where d is the damping coefficient in the x and y directions.

Before proceeding to formulate the equations of motion,

it is desired to express the orbitally referenced angular

velocities 
~~~~~~

, 

~
4, and ~~ in terms of Euler angles and rates.

Figure 4 illustrates the 3-2-1 rotation used in the trans-

formation to Euler angles.

Z,z($3) Z Z

X 

y

x 

y ~~

X x x(81)

1st Rotation 2nd Rotation 3
rd Rotation

X ,  Y, and Z define x, y, and z define
orbital axes vehicle body axes

Figure 4. Satellite Rotational Motion

12 
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In Appendix B it is shown that the orbitally referenced

angular velocities are related to Euler angles by

1 0 - Sin 92 0~
= 

~y 
= 0 COS 8~ sin 01 cos 82

o - ~in 0~ cos 8~ cos 82 83 (5)

Since small angular c~isplacements in 0~ and 02 about a zero

angle equilibrium noint was assumed , equation (5) can be

linearized by using the Taylor series expansion of the sine

and cosine . For small angles Taylor series expansion yields

S]. fl 01,2 ~ ~1,2

and

cos 01,2 ~ 1 - ~1,2 (6)
2

Substituting relations (6) into equation (5) yields

1. 0 
~~~

2 2
= = 0 1 ~~~ 8~ ( 1 -~~~ )

2 2
0 — 0~ (1 — ~1 ) (1 — 

82 ) 03 (7)
2 2

where ej and e2 are angular velocities associated with small

perturbation angles , and e3 is equal to the initial spin

rate ~ about the z axis plus any small perturbation in spin

about this axis. If equation (7) is substituted into the

kinetic energy equation (2) and the assumption of small

13
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state perturbations is app lied , terms of hi gher than second

order in the resulting kinetic energy expression can be

ignored , yielding

P = ~ A’01
2 + ~ B ’0 22 + ~ CO 3

2 + m (u 2 + v2) - 2mavO t

+ 2mauO2- A ’~ 02e1 + B’~I0102 + c(~ o3 — ~)e1e~)

+ 2ma~ 02v + 2ma~ 8~ u - 2m~
’I(uv - uv) - 2ma~1vO2

— 2rna~1u01 + ~ A ’~
282

2 + ~ B ’~L~ 012 + 
~~ 

C(~~ —

- 92~~
2) + ~

2(u 2 + v2) - 2ma~2v81 + 2ma~2uG2 (8)

Since the expressions for the kinetic energy and the

potential energy depend on generalized coordinates and

velocities alone, and not explicitly on time , the system

is considered to be non-natural (Ref 7:77). For such a

non-natural system it can be shown that the Hainiltonian

assumes the form

H = T 2 - T O + V  (9)

where T2 represents those kinetic energy terms which are

quadratic in the generalized velocities , T0 represents kin-

etic energy terms which are independent of the generalized

velocities , and V is the potential energy of the satellite

system (Ref 7:84,91). Therefore , the Hamiltonian becomes

H = ~ 
A ’91

2 
+ 

~ 
B ’~ 2

2 
+ ~r C03 2 

+ .(~ 2 
+ 

‘2 ) - 2may01.

+ 2mau 82 - ~~ A ’ ii’1
202

2 
- 

~~ B’ 0j 2 
- 

~~ 
C(~~

2 
- 

~
2
e1
2

- 
.~29 2) - m~

2 (u 2 
+ v2) + 2ma~l

2v01 - 2maC~
2uO2

+ K (u 2 + v2) (10)
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Also required for the formulation of the equations of

motion is the Lagrangiart which is defined by

L = T  - V  ( 11)

For this particular system the Lagrangian is given by

L = 
~ A ’8~

2 + 
~ B ’e2 2 + ~ Ce3 2 

+ m(~~
2 
+ ~2 ) - 2may0 1

+ 2mau92 — A ’~Ae2 e 1 + B’~~e1e2 + c(~ é3 — ~A e 1e2 )

+ 2ma~~02v + 2ma~I0ju - 2rn~2(uv - uv )  - 2ma~lv82

- 2ma~ u9 1 + ~ A ’~l
20~

2 + 
~ B’~12 01~ + ~ C(~~

2 - e~ 2~ 2

- e2 2
~l2 ) + m~ (u2 + v2 ) - 2ma~1

2v0j . + 2ma~12u82

- K(u 2 + v 2 ) (12)

The system equations of motion can now be formulated

by either applying Lagrange ’s equations , whi ch yield five

second order different ial  equations , or Hamilton’s equa-

tions , which yield ten first order differential equations.

Hamilton’s equations are used in this thesis to provide

five first order differential equations of the generalized

coordinates (8i, 02, 83, u, and v) and five first order

differential equations of the generalized momentum (Pe 1,

Fe2, ~83~ 
Pu~ and P~

). The generalized momentum is defined

Pi ~L i = 1,-—— ,5 (13)
aqj

For a holonomic sjstem subject to forces not derivable from

a potential function, Hamilton’s equations of motion take

on a special form . In particular , when the nonconservative

forces in the system are derivable from Rayleigh’s dissipa-

tion functions Hamilton ’s equations become

15
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= !li. . = -
~~.ii_. -

~~_~
_. i = 1 , --- ,5 (1k)

aP j  a qj  a qj

where Rayleigh’s dissipation function D is expressed in

equation (4) (Ref 7:95). A detailed derivation of the ten
first order differential equations is presented in Appendix C.

These equations of motion are summarized below~

= Pej + aPv + £~02A

02 = P~ 2 - aPu + (C - 1)~le1B B

03 = ? f l- Q
C

= - aPe 2 + B ’Pu + ~~ - CSflO j
B 2mB B

= aPo~~~~ A ’p~~ _ ç ~
A 2mA

= (1 - Q.) C 2 20 i + (1 - .)~ P~ 2 +
B B B

= - C i 2
~ 2 -

= 0

Pu = ~Pv 2Ku 2Dii

= - 

~~~ - 2Kv - 2D~ (15)
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Note that equation (1.5) can be expressed in state notation as

~( t) = A~ (t) ( 16)

where x(t) is a 10 x 1 state vector

A is a constant coefficient 10 x 10 matrix

A stability analysis of the discrete system can now be

accomplished by evaluating the eigenvalues and eigenvectors

of the A matrix. This task was performed in this thesis to

check the validity of the equations of motion shown in equa-

tion (15). Validity was confirmed by comparing stability

results numerically calculated in this thesis to the sta-

bility results obtained by Meirovitch in Ref. 4 for the same

satellite system. Although Ref. 4 used Lagrange’s equations

to formulate the equations of motion , the stability results

for various system parameters were identical to the stabil-

ity results obtained by using Hamilton ’s equations. Fig-

ures (5) and (6) depict ratio of spin rates obtained from

Ref. 4 and from this thesis for particular satellite para-

meter sets. Additionally, eigenvalue stability analysis was

in close agreement with that obtained in Ref ~4. Figure 7

illustrates the stability regions obtained in Ref. 4 and

in this thesis. Note that for these stability plots , stable

regions are under the curve while unstable regions are above

the curve . ,~1hile not meant to be an exact proof , the simi-

larity of stability results obtained in this analysis tends

to support the validity of the equations of motion given

by equation (15).

17

-

~

- -

~

--— -

~

- - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _



p.-.., - — -~~ 
- -- - —--- - — - -.--

~
--—--

~
--.-- -------— ----——--- 

- 
—. _ . - ~~~~~~~~~~~~~~~~~~~~~ ----- - —. - - - - . - - - —.~~ —- .— ~~ - - -~~~~~~~~~

I Parameter Values

= 50 Rad/sec
= 60 Rad/sec

I c/A = 1.5
Ze ta = .5
RA = .1

~~~~~~~~~~~~~~~~~~~
— 0.75,

~ 

02~~~~~~~~~~~~~~~~

)

~~~~~~~~~~~~~~~
\

\ ~~~ 

( a )

-0.25 
!~,,/t~~(0) 

0.75 1.0 125

L~0.25~

(b)

— .10 — .00 .‘~D .90 1.20
~ ME6R X/~~ME6R X~ D~

Figure 5. Stable System Response: a) (Ref 4); b) rhesis
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From this point in the investigation , some type of

control could be introduced into the discrete system to

keep a perturbed satellite in a proper or desired orienta-

tion. However , before proceeding with the control inves-

tigation , the equations of motion of both the modal analysis

and integral coordinate techniques will be derived. After

obtaining these attitude motion equations , control will be

introduced and the results of each method will be presented

and compared.

Continuous Modal Method - Equations of Motion

The continuous model of the satellite system is illus-

trated in Figure 2b. This model consists of two flexible

uniform rods of length 1 connected to a symmetric rigid

main body. [‘he rods are attached at a distance h from the

center of mass of the system. Each antenna rod has a mass

per unit length of p and a total mass of m = p x 1. Pro-

ceeding as in the discrete system analysis , the kinetic and

potential energy expressions will now be formulated.

The general expression for the kinetic energy is given

by equation (1). Using the same assumptions as in the dis-

crete system analysis , the kinetic energy for the continuous

system can be written as

h +  1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [1i2 +~~~
2

+ v~~~
2 
+ u~~y

2 + (u2 + v 2 )~~~
2 

- 2z~~1x 
+ 2zLi~y

— 2(uv — U V )~ 4~ 2uv~1x~1y - 2zv~~ 4~ 
- 2zu~1x~1~]Pdz

+ Const. (17)

21
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In equation (17) A’ and B’ are the mass moments of inertia

about the x and y axes and includes the mass of the rods in

the undeformed position. If the transformation presented on

page 13 is again performed , the kinetic energy can be writ-

ten in terms of Euler angles and rates. If the assumption

of small state perturbations is applied , terms of higher

than second order can be ignored , resulting in the following

expression for the kinetic energy

T = ~ A’(81
2 - 2$28l~l + 82

2
~l
2) + -

~~ B’(82
2 
+

+ e 12ci2 ) + ~~ C ( e 3
2 

- 2e l92~1 + 29~~l -

e~Q
2 
+ 12) + 

+ l[.2 + ~2 
+ (u 2 

+ v2)~)
2 

-

2zv (9 j — 82~l) + 2zu(82 + 0 1i1) — 2(iiv — u’~)~l -

2zv(42~2 + el~l
2) — 2zu(9~i2 — e2~i

2
)]pdz + Const. (18)

Breaking the kinetic energy into T2 terms (quadratic in

generalized velocities), T1 terms (linear in generalized

velocities), and T0 terms (containing generalized coordin-

ates alone) yields

h +  1
= ~ A ’e j~ + ~ B’O 2~ + ~ ~~3

2 
‘h 

[~j2 +

- 2z~ e 1 + 2zii~2]pdz

Pi = — A ’~ 9281 + B ’~ e~e2 + c(~1e3 — ~l8 18 2)

h + 1
[2z~82v + 2z~L8lu 

- 2~2(uv - u’~)

— 2~~1v8 2 - 2z~2uOj.]pd...

22
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= ~ A ’~l
2
O~~
2 
+ ~ B’~l

2e1
2 
+ ~~ c~~(1 - 81

2 - 8 2 )

[(u + v )~1 - 2z~ v81 + 2z~2 ue2]pdz (19)

For the continuous system the potential energy expres-

sion, which is considered to be caused only by the elasti-

city of the rods, is

h + l  1 2 21
V = f EIIf’~

2u\ + (~2v\ Idz (20)
h [\. a z2) ~~~z2 ) j

where it is assumed that the bending stiffness of the rods

are identical in both the x and y directions (Ref 8:229).

The damping in the system is again given by Rayleigh’s

dissipation function. For the continuous system the dis-

sipation function has the form

h +  1
D = f d(u2 + v2)dz ( 21)

h

where d is the damping coefficient in the x and y directions.

The general form of the Hamiltonian and the Lagrangian

remain as given by equations (9) and (11). For the contin-

uous system the Hamiltonian can be written as

H = ~ A ’8 1 + ~ B’8~ + ~ CO 32 +f [~
2 +

- 2z~~9 i + 2z~ O2]pdz - ~~ A ’~.Il
282

2 
- 

~~ B’~
291

2

+ ~ CU (
~ t + - 1) 

‘h 
+ 

[(u2 + v2)~
2

- 2z~l v81 + 2z~ ue2Jpdz ‘h

dz (22)
\~~z2/J
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The corresponding Lagrangian can be written as

h + 1
L =  1A ’9 l

2 +~~~B’e2
2 +~~~C83

2
+f [~2~~~~2

h

— 2z’~rO 1 + 2z~i92]pd... — A ’~1O291 + B’U8192 +

h + l
CU(e3 - 

~1~2) +f [2zU82v + 2zU$iu —
h

2~1(iiv 
- u~’ )  - 2zUv92 - 2zUuê1]pdz + ~ A’U

2e~~

+ 
~ B’~1~8~

2 
+ 

~~ CQ
2(1 - ei

2 
- 

~2
’) 

~‘: 
+ 

[(u
2

+ v2)U2 - 2zU2vO i + 2z1~
2u82]pdz -

h + 1  1 2 21f EII(~3~.
’
~ + (a~ v\  Idz - 

(23)
h 

~~~ 
\a z2JJ

It can be noted that in equations (22) and (23) elastic

displacements appear in integrals defined over the elastic

domain. The spatial and time dependency of u and v presents

some difficulty in analyzing the continuous system in that

the Hainiltonian and Lagrangian contain both continuous and

discrete coordinates as well as spatial derivatives of the

continuous coordinates. Such systems are termed hybrid ,

that is, they give rise to both ordinary and partial differ-

ential equations in describing the motion. In order to cir-

cumvent this, the system will be discretized by approximat-

ing elastic displacements by means of modal analysis.

In this thesis the first four natural modes of antenna

motion are investigated. Using the antisyminetric motion as- —

sumption, the modal amplitudes in the x and y directions can

be described by U 1,  U2 ,  U3 ,  u4, vj, v2, v3, and v~. Using

2~1

--.- -

~

. -- --~~~~~~~~~~~~~~~~
- -

~~~~~~~---~~~~~~~- - - -  - —~~~-
— ,-- —. —~~-- - - -~~~~~~~~~,-~~~~~~~~~~~~~ ~~~~~ —~~~~ - -, .---

—- 

~~~~~~~~~~~~

-

- .-



-~~~~~~~~~~ -~~~~~~~~~~~~~~ 
-- -. - 

the assumption that attitude motion need only be considered ,

the complete attitude orientation of 4he satellite can be

described by eight natural mode displacements and three

angular rotations of the body . The modal analysis treats

the elastic antennas as flexible beams subject to the bound—

ary condition that the beams are rigidly attached to the

satellite at one end and free at the other. The elastic

motion of the individual antenna can be considered to con—

sist of a superposition of the normal modes of a beam having

the same mass and stiffness distribution as the flexible

antenna (Ref 4:1601). In terms of an equation, the overall

motion in the u and v directions is described by

n
U(z,t) = ~~~ cz1(z)uj(t)

i =  1

n
V(z,t) = 

. ~ ‘~‘~~( Z ) Vj ( t )  (24)
1 = 1

where z represents any point along the beam. Here , the

normal modes or eigenfunctjons c
~j 

associated with a uniform

cantilever beam satisfy the differential equation

El d~~i - P(i)j2~j = 0 i = 1,--- ,n (25)
dz4

where the effects of shear deformations and rotary inertia

are neglected (Ref 9:198). For a uniform beam the quLnti-

ties El and p are constants . In equation (25) Wj is the

natural frequency of the ith mode . Additionally, the

25

~

- .  .



boundary conditions on equation (25) for a clamped-free beam

translate to

= 0 , ~~~i = 0 z = h
- dz

El d
2
~1 = 0 , d(EI d2~~1) / dz = 0 z h + 1 (26)
dz2 dz2

Previous solutions to the problem associated with equations

(25) and (26) yield eigenfunctions -

= [sin ~jl - sinh ~j1] [sin ~i(z — h) - sinh ~j(Z - h)J~
Y p1 sin 

~~~ 
sinh ~il

[cos ~~l + cosh ~~
i] [cos ~~(z - h) — cosh ~~(z - h)J (27)

Y p1 sin ~jl sinh ~jl

in which

(~~il)
4 

= c~i
2pl 

, 
(28)

where is determined by

cos ~jl cosh ~j~l = -1. (29 )

Values of 
~jl for various beams are readily obtainable from

reference text books in structures. For the clamped-free

beam these values are

= 1.875

821 = 4.694

8
3
1 = 7.855

8il ~ 2i — 1
* 

(3 0)
2

26 
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In addition , the eigenfunctiOns of equation (27) are ortho-

gonal and can be normalized with respect to the mass per

unit length function p such that

h +  1
= oij (31)

where 
~~ 

represents the Kronecker delta (Ref 1:35).

Using the above modal analysis techniques, integral

terms in the Hamiltonian and Lagrangian can be discretized.

For example,

h + l  nJ u2pdz =
h i = 1

h + l  nJ ~
2pci~ =

h i = 1

h + l  nJ ~ivpdz =
h 1 = 1

h + lf upzdz = (m12)
h i = 1

+ 

2z~~~pdz = 2~2(ml
2)~ E S~~üj (32)

where

= 2~~[(h/l)811(sin 8~~l - 
sinh 8~ i) — (cos B

~
l + cosh B~ 1)J

(~ j1)2sin 8j1 sinh 8jl

(Ref 1~54) (33)

Additionally , it can be shown (Ref 8:220) that

h + 1  1 n nf EII(j~a\ 2 + (3.!! \
2 (dz = 

. wi2ui2 + 
. ~1

2vj2 (34)
h L\ az21 \az 2JJ 1 = 1 2. = 1
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Since higher order modes will contribute minimally to

the overall antenna motion , this investigation will restrict

analysis to the first four natural modes of motion. With

this in mind , the expression for the Hamiltonian becomes

H = ~ A ’ó 1
2 + B’~~~ +~~~ C~j~ + 

~ 

+ 

~~~ 
~~~

- 291(m12) E Szivi + 292(m12) E S~~uj.

- 
~ A’~l~8~~ - ~ B’~2~e 1~ + ~ C~22 (9j .~ + 92

2 
— 1)

4 4
- 

~1 
E U j

2 - ~1
2 E vj2 + 29j.U2(ml2) 

. ~~ 
S~~vj~ -

- 2O 2~l2 (rn 12 )~ 
~ 

+ E Wj2(ui2 + Vj
2

) (35 )

Similarly the Lagrangian becomes

4 .
L = ~ A ’01

2 
+ ~ B’ 9 2

2 
+ ~ Ce3

2 
+ E (ta~~

2 
+ vi2)

1 = 1
.1. Li. . . . .

+ 2(ml2)~ ~ Sz~ (ii~ê2 — vj8i) — A ’~T192 91 + B’~ 91e2
i = 1

i. 4 .
+ C~1(83 - 

~1~2) 
+ 2~ (ml 2)2 E SzI(v192 + Uj 9 j~ -

i =  1
4

v~e2 — u j e l) + 2~2 E (uivi — uivj) + -
~~ A ~l2e2

2 
+

~ B’ L~
2 O i2 

+ ~c~
2c i _ e 12 - 82

2) + ~2 E (uj2 + Vj
2 )

+ ~~
2
~~1

2) ~; Sz~
(uj92 — vie i) — ci)i

2
~ 

E (ui 2 
+ V~~

2
)

i = i .  i 1

(36)
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One is now in a position to obtain the equations of

motion for the continuous system by the modal method. The

generalized momentum is again given by

= ..IL k = 1,--- ,11 (37)
aqk

~ith Rayleigh’s dissipation function D given by equation

(21), Hamilton’s equations become

qk = _~~li~~~ ~1c = - 9I1 -~~~~D k 1 ,-~~~,11 (38)
aq~ ~qk

The resulting 22 first order differential equations of’

motion are derived in Appendix D and summarized below

~1 
=

Da

= (~~~~~ 
— 1.) ~i ~ - (

~~ii. ~~
) E Sz~ Pu~

Db Db i = 1

4

= .~)uj + (m1 2 ) S~~ P~ 1 + ~! ~~~ z

- (
~~ b

)25zjP82 - _~~~~
G

~~~~~:j 8l + Puj

+ m12 s . z S .P . j =
— z , .1Db ‘ i l

4
= (1. - ~ )C~

2
e1 + (1 — ....Q)UPe2 + (ml 2)2C~l I Sz~Puj

Db Db Db i = 1

P92 = - C 1292 -
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= - 2c~~
2v~ + ~~ 

- ~J (nu 2)~s p 9 àlPuj

- 4[Pvj + 2!n12 S1~ ~ 
SziPvi] j = 1,--- ,4

= - 2~~
2u~ - 

~~~~ ~v~j + 2d (ml2)~ Szj(C~1O i 
+ P92) +

- 
~~~~~~~~~~~~~~ 

+ 2m12 s~~. ~ sz1~u~] 
j =

P 1Db 3 i = 1

93 =
C

P83 
= 0 (39 )

The relations appearing in equation (39 ) were verified

in much the same manner as the discrete system equations.

Noting that 93 and P~3 uncouple from the system, an eigen-

value stability analysis was performed on the remaining

20 x 20 constant coefficient matrix. Again , the results

obtained in this analysis correspond to the modal method

results obtained in Ref. 4 for the continuous system. This

correspondence of results is illustrated in Figure 8 where

similar stability plots are depicted for various system

parameters. In Figure 8, stable regions are below the curve

and unstable regions are above the curve.

For this investigation, the equations of motion ob-

tained by the above modal technique will serve as a true

model of the satellite system. Later in this thesis , con-

trol will be added to the system and results obtained using

30
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integral coordinate equations of motion, which are derived

in the next section, are compared to results obtained by

this so-called true model.

Integral Coordinate Method - Equations of Motion

As can be noted , the modal analysis method of the pre-

vious section leads to a rather large and complex system

of differential equations. Additionally , modal analysis

does leave some question as to the accuracy of results

since series truncation is utilized. In this section, a

method of integral coordinates will be introduced which will

significantly reduce the number of differential equations

to be solved. Although the integral coordinate technique

has fewer differential equations, the system is still based

on a continuous representation with results maintaining a

high degree of correctness.

-The model for the satellite system remains that given

by Figure 2b. Since the model is continuous , the general

expressions for the system Hamiltonian and Lagrangian are

once again given by equations (22) and (23). In order to

circumvent the problems associated with evaluating the spa-

tially dependent integrals in equations (22) and (23), new

coordinates will be selected. To this end , the following

integral coordinates are defined

— 
h + l  h + l

u = f puzdz , u = J pi~zdzh h
— h + l  h + l
v = f pvzdz , v = J pvzdz (40)

h h
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For the integral coordinate formulation , it can be surmised

that the general coordinates will be 
~~ ~2, 

83, U, and ~~~.

[‘he immediate advantage of this approach is in its simplic-

ity. The continuous system may now be investigated using

the same number of generalized coordinates as in the dis-

crete system , while maintaining the completeness of the more

complex modal analysis investigation.

In conjunction with the definitions given in equation

(40), integral terms in equations (22) and (23) which are

quadratic in u or v may be handled by using Schwarz’s in-

equality. This inequality relationship is

h + l  2 h + l  2 h + l(I PVZdZ) < f  pz dz f  pv2dz (Ref 1:59) (41)
h h h

or

h + l  h + l  ‘2f pv2dz 3
h h (42)

h +  1
pz2dz

h

Approximating by using the equality sign above , and recall-

ing the definition of V yields 
-

h + 1  2 _ 2  
-f pv dz ~ v (43 )

h h + lf
h

Similarly,

h + l  _ 2f pu2ciz U (44 )
h h + lf

h
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If the same procedure is followed for integrals with qua-

dratic terms in i~. and ~~~, substitution into equation (22)

for the Hamiltonian yields

H = ~ A ’91~ + ~ 
B’9~

2 
+ ~ C 83

2 + + - 2é j~ + 202ffRI RI

- 
~~~ A’92~~

2 
- 

~~~ B’O1~~1
2 

- 
~~ C~

2(1 - 81
2 

- 82
2)

+ (~~ 2 - i2 1u-2 + + 291i1
2V - 2O 2Q

2ii (45 )
LRI RIJ

where -

h + 1  2RI = 
‘h 

pz dz

A ’  = A + 2 m ( h + 1 )2 + 2m12
2 12

B’ = A’ ( Le6)

Similarly, substitution into equation (23) for the

Lagrangian yields the following

L = ~ A’ej.
2 
+ I B’9~~2 + I CO 3

2 + + - 29j7 + 2e2ü

- A’8291~1 + B’$192~l 
- C9192~1 

+ Ce3~l + 282W + 2$1~~

- 29~~1~ - 2e1i1~ + I A’92~~1
2 
+ I B’91~~1

2 
+ I ~~~~

2(1 -

81
2 

— 82
2) + (U 2 

— ~i2 [~~ + + 2e~U
2ü - 2eiL 12~ j

(147)

For simplicity, the term (~av - u~’) in the Lagrangian has

been intentionally neglected due to its small overall effect

- 
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on the system . The differential equations of motion for

the above integral coordinate technique can now be formu-

lated by again applying Hamilton ’s equations given in equa-

tions (13) and (14). With Rayleigh’s dissipation function

defined by equation (21), it is shown in Appendix E that

the integral coordinate equations of motion become

= P~ 1 + RI P~ + £282 + 
________

A’ - 2R1 A’ - 2R1

= Pe2 _ R I P~~~~( C -1)Ue1+  2~B’ - 2R1 B ’ - 2R1 B’ - ZRI

= B’RI p~ - RI P~2 - CURl Oj - 2URI v
2(B’ - 2R1) B ’ - 2R1 B’ - 2R1 B’ - 2R1

= A’RI P~ + 
RI P9

~ + 2flR I i
2(A’ - 2R1) A’ - 2R1 A’ - 2R1

(1 - C )cU
2e1 + (1 - C

B’ - 2R1 B’ - 2R1

+ CUR l P~ - 2CU2~B’ - 2R1 B’ - 2R1

= - UP91 
- c~i

2e2

- 2UPe1 - 2c21~I r ~ ~~~~ + 2(U2~~~~~~)j
A’ - 2R1 A’ - 2R1 A’ - 2R1 RI

+ d (2CUO~ + 2P92 
- B’P~ 

-# 4U~)p (B’ - 2R1J

= - 
2L~P92 + 2URI P~ - 2CU29 1 - ~~2_ +

B’ - 2R1 B’ - 2RI B’ - 2R1 B’ - 2R1

2(d2 - ~~~ ~ - d (A’ P ~ - 2P~ -

RI p(B’ - 2R1) 1
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93 =
C

P8
3 

= 0 (48 )

The equations of motion are now derived for the three

methods under investigation. In the next chapter , control

will be introduced into the problem. After the introduction

of control, the control requirements for the three methods

will be determined and the effectiveness of the integral

coordinate technique for obtaining control feedback gains

will be analyzed.

36
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III. Control

Up to now the only control on the satellite has been

the passive attitude control inherent in spin stabilized

systems . Active attitude control of the satellite is re-

quired for two reasons. For one , even though a stable

spinning satellite will tend to resist attitude perturba-

tions , in time , its spin axis will move away from a desired

direction due to the influence of a gravity gradient, aero-

dynamic force , or other such perturbative force . Secondly,

active attitude control is required to reorient the spin

axis of the satellite if a change in pointing direction is

required during flight. In this thesis , the satellite will

be initially displaced slightly from a null position to

simulate the effect of either a perturbative force or a

desired change in spin axis orientation. To effect the

attitude change , control will be applied to the angular

velocities 
~1 

and 82 of the satellite system. A momentum

exchange or a mass explusion device could be utilized to

impart this change in angular velocities , although , the ac-

tual physical mechanism is immaterial to this investigation.

Optimal Control -

Modern control theory techniques will be applied to

obtain an estimation of the optimal control required to

produce desired attitude changes in the satellite system .

In this thesis , control is considered optimal in the sense

that minimum angular velocity control is used to minimize

37
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state deviations. For all three methods under investiga-

tion , the uncontrolled satellite is described by equation

(16). Since the system is linear and time-invariant , the

differential equation for the controlled satellite system

is given by the matrix equation

~(t) = A~~( t )  + B~(t) (Ref 10:148) (49)

where

A is a (n x n) plant matrix

8 is a (n x r) input matrix

~ ( t )  is a (n x 1) state vector

~ (t )  is a (r x 1) control vector

Optimal control is now sought such that a quadratic cost

functional involving the weighted components of the states

plus the control is minimized when the final time is unspec-

ified. In terms of an equation, the quadratic cost function

is given by

J = 1f~~
_T

( t ) Q
_

( t )  + ~
T
(t)R~ (t))dt (50)

0

where ~ and R are positive definite symmetric weighting

matrices on the states and control vectors respectively

(Ref 10:149). If ~~, is large it would imply that the corre-

sponding state components will be rapidly regulated. If

there are large entries in R, this would imply that energy

in the corresponding control element will be kept small.

In this thesis , both (.1 and R are set equal to the identity

matrix , (i) , implying equal weighting for the states and

38
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the control. For the cost function and state relationship

presented above , it can be shown that a statement of the

optimal control is given by

~i~(t) = - R~~B
T
P~(t) (51)

where the determination of the optimal control involves the

solution of P by the matrix Riccati equation (Ref 10:151). -]
The matrix Riccati equation is given by the following dif-

ferential equation

+ ~~~ + ~~~~~~ - ~~~~~~~~ = 0 (52)

where the steady state solution can be determined by setting

P equal to zero. Defining the feedback gain matrix as

= - a ’~.T~ ( 5 3)

the closed-loop system matrix differential equations can

be written

= (~~. 
+ ~~)~~( t )  (54 )

For the closed-loop system , stability can be determined by

numerically calculating the eigenvalues. and eigenvectors

associated with the time-invariant matrix coefficient on

~(t) in equation (54). A block diagram of the closed-loop

system is illustrated in Figure 9.
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Figure 9. Closed-Loop Sys tem of Control Feedback

Con trol Fee dback Gains

In order to obtain control feedback gains for the

three methods investigated , values of R and B were selected

and steady state solutions to the matrix Riccati equation

were numerically determined. The ~FIT Subprogram OPTCON

(Ref 11) and the Aerospace Medical Research Laboratory

Subroutine MRI C (Ref 12) were used in obtaining the numer-

ical solutions to the steady state Riccati equation. With

the ability to obtain feedback gain matricies for particular

initial conditions and satellite parameters , it is now

possible to obtain and compare control requirements for the

three techniques being investigated.
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IV . Results and Analysis

In chapter II the dynamics of the satellite were formu-

lated for the three techniques being investigated. A means

of controlling the system was introduced in chapter III.

In this chapter , specific examples are examined and the

results for the various techniques are presented.

For each me thod being investigate d , optimal control was

determined by numerically obtaining control feedback gains,

F , based on equations (52) and (53). As previously men-

tioned , Subroutine MRIC and Subprogram OPTCON were utilized

to obtain feedback gains for the system . These feedback

gains were substituted into the general closed-loop system

dif ferent ia l  equation (54) , which describes the satellite’s

controlled motion. The closed-loop differential equation

was then integrated forward in time by using the cc66oo

Subroutine ODE (Ref 13). For the example which follows , the

satellite’s angular displacements and antenna motion are

plotted versus time for both uncontrolled and controlled

situations .

Exam ple 1

In this example a stable satellite- configuration was

examined. The following initial conditions , sa tellite pa-

rame ters , and weighting matrices apply to all three methods .

Initial Conditions :

= 0
0

= 3
0 

= .0523598776 Radians

41
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u = O f t  = u = u 1 = u2 = u3 — u4

v O f t  = v =  v1 = v2 = v3 = v~4.

t = 0 sec

Satellite Parameter s :

= 50 Rad/sec

= = 60 Rad/sec

= .833

C = 60 slugs-ft2

C/A = 1.5

B = A

RA = .1

a = 2 f t

h = 2 ft

1 = 1 f t

Zeta = d/2m~i)~ .5

d/p = 10

Weighting Matrices :

a =  C’]

Discrete System Results

For the discrete system model , Figures 10 and 11

illustrate the satellite’s motion for the uncontrolled

system. It can be noted that for an inherently stable sys-

tem , the antenna displacements of u and v tend to dampen

out over a period of time . The damped motion of the an-

tenna was characteristic for any value of zeta greater than

zero. Recalling that O~ and 
~2 

are angular measurements of

42
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Fi gure 10. Uncontrolled Antenna Motion - Discrete System
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Fi gure 11. Uncontrolled Angular Motion - Discrete System
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the body fixed axis with respect to an inertial axis , it

can be seen from Figure 11 that the spin axis assumes a

new pointing direction. A controller is required to drive

these angular displacements back to zero so that the spin

axis is once again oriented to the null position. Table I

provides the feedback gains required to control the system .

Table I.

Discrete Feedback Matrix

Col 1. 001 2 Col :3 Col 4

Row 1 -3.7003E+02 -14- .5512E+00 -2.7374.5-05 -1.0320S+0t

Row 2 -2.7374E-05 7.29905-06 -5.4318E+02 7.09585-06

Col 5 Col 6 Col 7 Col 8

Row 1 9.9053.5-01 2.26245—02 -1.2334.5-01 4.75345—01

Row 2 -1.81065-01 -7.03795-08 9.83475—01 -4.45725-07

The optimal control at any instant of time is just the matrix

multiplication of the feedback gain, F, times the current

state vector.

u(t) = ~~~( t )  (55)

Recalling that 93 and P93 uncouple for all three methods

investigated , the states of the discrete system can be des-

cribed by an (8 x 1) vector written in the following order .

=

— x2 = v
x(t) =

=

x4 = U
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x5 = P91

X6 =

= P92

X8 = (56 )

Figure 12 illustrates the angular displacements and antenna

motion of the controlled discrete system. As can be ob-

served , the satellite is returned to the desired null on-

entatiori in just over one second . For this particular set

of satellite parameters, the stability of the closed-loop

system is shown by the all negative eigenvalues illustrated

in Table II.

Table II.

Discrete Closed-Loop Eigenvalues

Real Imaginary

— .33957E+01 -..52787E+01

-.33957E+Oi. .52787E+O1

-.54171E+02 -.10598E+03

-.511.171E+02 . 10598E+03
- . 19348E+03 - . 19573E+03
- . 19348E+03 . 19573E+03

-.27159E+03 -.27615E+03

-.27159E+03 .27615E+03
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Modal Analysis Results

The modal analysis investigation of the continuous

system model was the second method applied to this example

problem. In order to obtain an insight into the unforced

satellite motion, the equations of motion were numerically

integrated and the uncontrolled states were plotted against

time. Figure 13 illustrates the uncontrolled angular dis-

placements of e 1 and ~~ 
A breakdown of the uncontrolled

motion for the first four modes of antenna vibration is

presented in Figures 14 through 17. As expected , the first

mode significantly dominates the antenna motion. The magni-

tude of the overall uncontrolled modal displacements in the

u and v directions is illustrated in Fi gure 18. For the

controlled system , the set of feedback gains appearing in

Table III were obtained using AMRL Subroutine MRIC. The

order of the states corresponding to the feedback gains of

Table III and the modal analysis method is as follows:

x1 = 81 x 11 = P91
= 

~ 2 X12 =

x3 v1 xi3 = P ~ 1
x 4 v 2 X 14 Pv2

~(t) = x5 = v 3 x 15 = Pv3
X6 V4 X16 Pv4
x7 = u 1  x17 = P u1

X 8 U 2 x18 = P u2

X9 U3  X19 P~3
x1~~ U4 x20 = Pu4 (57)
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Figure 13. Uncontrolled Angular Motion - Modal Analysis
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Figure 18. Uncontrolled Magnitude of Antenna Modal Motion
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~ith the feedback gains applied to the system differ-

entjal equations of motion, the control required on the

an~rilar velocities 0~ and 02 was obtained. rhe resulting

controlled motion of 0j and 02 is depicted in Figure 19.

rhe controlled motion of the first four modes is as illus-

trated in Figures 20 through 23. Figure 24 shows the over-

all magnitude of the antenna motion as a function of time .

Comparing the uncontrolled to the controlled motion , that

is , Figure 13 to Figure 19 and Figure 18 to Figure 24, it

can be seen that the desired null orientation of the system

is rapidly achieved. The control in angular velocity rates

required to obtain this orientation is plotted in Figures

25 and 26. Figure 25 shows that the controller is active

for only a short period. Figure 26 more clearly illustrates

the magnitude of control required during the more active

stage . This figure also illustrates that the controlled

angular velocity rates are nearly zero after a time of

one-tenth of a second . If the actual mechanism imparting

control was known , these control angular velocity rates

could be transformed into some thrust requirement or mo-

mentum exchange requirement .

~eca1l that earlier in this thesis the assumption was

made that the results obtained by the continuous modal meth-

od would be considered an exact representation of the sat-

ellite system. Later in this thesis , the results obtained

by applying integral coordinate feedbac k gains to the con-

~~~ tinuous modal system will be compared to the results just

presented.
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Integral  Coordinate  Resul ts

For the continuous system , using integral coordinate

techniques , the uncon trolled system motion is as depicted

in Figures 27 and 28. Note that the antenna motion is

again naturally damped out. Additionally, Figure 28 shows

that the satellite’s spin axis is again repositioning it-

self away from the nominal spin axis direction. To estab-

lish the control required to reorient the satellite’s

spin axis , feedback gains were obtained from Subprogram

OPTCON. These feedback gains were verified by using the

Subroutine MRIC to determine required gains. The resulting

feedback gains obtained by both methods were identical and

appear in Table IV.

Table IV.

Integral Coordinate Feedback Matrix

Col 1 Col 2 Col 3 Co 1 4~~~~

~ov: 1 -3. 731L~~+02 -3. 511 ; 2 :+ O 1 -2.  3539~;- O5 -3. 25~ 1~ +O0

~ o’; 2 -2.~~~39 i — O 5  3 .0379 .:—05 --5 .4 i~1. 2~ -i-o2 2 .~~72LL-06

Col 5 Col 6 Col 7 Col 8

~ ow 1 9.867 1~~-O 1 -1.66212-01 -1.26052-01 5.16392-01 1

~ ovi 2 -1.81o6~ -o1 1.3~ 2O -O7 9. 8~~~72 -01 -5.~~372 -o 7 I
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As in the previous techniques , the requi red  control  was

found by pe r fo rming  the matr ix  mul t ip l i ca t ion  of equation

( 5 5 ) .  For the integral coordinate  method , the states were

def ined in ~~e fo l lowing  order:

x1 =

X2 =

x3 = 02

— x4 = u
x(t) =

x5 = P01

X6 
=

x7 = P92

X8 = p~ (58)

Figure 29 depicts the controlled states 01, 9~~~~~, u, and v

versus time for the integral coordinate technique as ob-

tam ed by the AFIT Subprogram OPrC ON . Figures 30 and 31

i l lus t ra te  these same states as obtained by integrat ing the

integral coordinate equations of mot ion forward wi th  control

included in the system. As these f igures  indicate , the

s~ ~el li te  returns to the desired a t t i tude  in approximately

one second . Figure 32 depicts the amount of control re-

quired using integral coordinate techniques .  A more de-

scriptive i l lustration of this control is given in Figure

33. By c omparing Fi gure 33 to Fi gure 26 , it can be noted

that  control requireme nts for  the integral coordinate and

modal techniques  are nearly ident ical . rhe all negative

ei~c- envalues appearing in Table V indicate  the s tabi l i ty  of

the integral coordinate method for  this sa te l l i te  configura-

t ion.
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Table V.

Integral Coordinate Closed-Loop Elgenvalues

Real Imaginary

-.47474E+01 - . 337L4~7E+02

- . 14-71474E+0 1 . 33747E+02

-.56459E÷01 -.21147E+02

-.56459E+01 . 21147E+02

- . 18968E+03 - . 19868E+03

- . 18968E÷03 . 19868E+03

-.27159E+03 -.27615E+03

-.27159E+03 .27615E+03

Analysis

The results to this point have shown that regardless

of which of the three techniques is choosen to investigate

-the system , some fee dback gains can be determined which

return the modelled satellite ’s a t t i tude  back to a desired

orientation. Although the integral coordinate method is

apparently a viable technique for controlling a satellite

system, further investigation must be made to determine its

effect iveness in provi ding fee dback gains which could con-

trol an actual satellite system.

Recall  the assumption that the continu ously modelled

mo dal analysis investigation represents the physical sat-

ellite system . Hence , the effectiveness of the integral 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~
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coordinate technique can be determined by applying integral

coordinate feedback gains to the continuous modal invest-

igation and seeing if the satelli te does , in f ac t ,  return

to a desired orientation. To this end , modal displacements

were related to integral coordinate displacements by the

following:

— h + l
u = J pzu dz - integral coordinate

h

Li.
U = � ~~~~ 

- modal analysis
i =  1

or
— ,h + l  4 Li. 

2*u = J E ~1ui pzdz = Z (ml ) S~ .uj
h i = 1  . i = 1  1

Similarly,

2~~v = ~ (ml )2S~1v~i =  1

2 u +  2~2+ 2$j~RI

= 2 - 2e~ + 20 2Q (59)
RI

Basically, the control was determine d by f i rs t  equating modal

states to integral coordinate s tates.  A f t e r  this , the re-

sulting integral coordinate displacements were multiplied

by the previously obtained integral coordinate feedback gains,

which yielded the required control. Numerical integration

of the now modi f ied modal system provi ded the following

reuults . Figure 34 illustrates that the satellite does

return to a desired pointing attitude , as evidenced by O j~

and 02 returning to zero radians. Comparing Figure 34 to
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Fi gure 19, it can be seen that the integral coordinate

feedback gains do control the system almost as well as the

optimal fe edback gains obtaine d for the purely modal anal-

ysis investigation. Figures 35 through 38 depict mode

displacements , and again, the control is such that the

antennas return to a nominal position. Figure 39 presents

the magnitude of antenna displacements for the continuou3

modal system using integral coordinate feedback gains. If

Fi gure 39 is compared to Figure 24, it can be noted that

t he ma gnitu de of antenna motion for the continu ous mo dal

system, using integral coordinate feedback gains , is nearly

as controlled as the pure continuous modal analysis . The

control required to return the satellite to the desired

orientation is depicted in Fi gures 4-0 and Li-i . These control

results are comparable to the results ob tained in Figures

25 and 26 for the pure modal investigation. The above

analysis has shown that integral coor dinate fee dback gains

do control the satellite system almost as well as feedback

gains obtained by modal techniques. This supports the sup-

position tha t the integral coor dinate metho d is a viable

technique for est imating optimal control fee dback gains for

an actual satellite system .

Other example problems were investigated with the

results being basically the same as thom presented above .

As long as the satellite system was inherently stable ,

integral coordinate feedback gains could be found and ver-

ified by applying them to the continuous modal system.
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For satellite systems which were inherently unstable , either

the integral coordinate technique or the modal method could

control the satellite. However , when integral coordinate

feedback gains were substituted into the modal system ,

the system would not control as desired. This was appar-

ently due to the fact that the control on the antenna , which

was pervasive in nature , was unable to keep up with the

inherent instabilities of the system.
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V. Conclusions

By analyzing the results to example 1, several conclu-

sions may be made regarding the utility of the three methods

investigated. A discussion of these conclusions is presented

below.

The discrete system analysis was the simplest to per-

form . However , the results obtained by this method are

least useful to the satellite designer. The method was sim-

ple in that only eight first order differential equations

of motion needed to be solved to describe the attitude of

the satellite. This required minimal programming effort

and minimal computer time in obtaining a solution to the

control problem . The method lacked utility in that the

continuous anter.nas were crudely discretized and could not

be easily related to an actual physical satellite. Since

the model did not have the completeness of the continuous

system model , a designer would lack confidence in his abil-

ity to obtain optimal control feedback gains which approx-

imated those required for the true system.

The purely continuous modal technique offers  a reversed

situation from that of the discrete method . The modal anal-

ysis technique offers a means of obtaining realistic feed-

back gains, however , the method is rather complex to easily

employ. Even for this rather simple satellite , having only

two flexible antennas , the method required the solution of

the fixed-free beam eigenvalue problem and the solution of

twenty first order differential equations. The computer
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programming effort was considerably greater than that

required for the discrete analysis, and computer execution

times were approximately five times greater. Although time

consuming , this method adequately models the satellite

system and is often used by the designer to obtain feedback

gains and the associated optimal control requirements .

ro determine control requirements for a satellite in

the early stages of design , a spacecraft designer would

like to have at his disposal a technique which combines

the attributes of the discrete and modal investigations.

The results obtained for the integral coordinate method

indicate that this technique could provide the designer

with such a design tool . The method was generally simple ,

requiring the solution of the same number of differential

equations as the discrete system. Problem formulation was

further simplified since the beam eigenvalue problem did

not have to be solved. Programming effort  and computer

execution times were approximately the same as the discrete

system analysis. As shown , the satellite’s controlled

motion with integral coordinate feedback gains applied to

the continuous modal system was almost identical to that

of the pure modal method. This tends to verify the fact

that a designer can obtain realistic estimates of control

requirements by using the simplified integral coordinate

techniques developed in this thesis.
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VI. Summary and Recommendations

Summary

This th°sis investigated three methods for obtaining

control feedback gains of satelli tes containing flexible

appendages. These methods included a discrete system

analysis , continuous modal analysis , and a new integral

coordinate analysis. For each of the techniques considered,

equations of motion describing the satellite ’s attitude

were developed. Active control was applied to the satellite

by an arbitrary mechanism capable of providing angular

velocity inputs. Control was required in the system to

keep the attitude of the satellite at a desired null orien-

tation. A sample problem was investigated and an analysis

of the results for the three techniques was performed. The

discrete method was found to be simple , but lacking in

utility for obtaining realistic control estimates. The

modal analysis obtained valid control results , however , the

method involved rather complex mathematical formulations.

The results obtained for the integral coordinate method

indicate that it is a simple , time saving, and valid means

for obtaining estimated control requirements for satellites

with flexible appendages.

Recommendations

Having completed this investigation, it is recommended

that the integral coordinate me thod be used for obtaining

control requirements for the specific type of satellite
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discussed in this thesis. This recommendation is based on

three reasons. For one, it is easy to employ during early

stages of design. Secondly, it avoids involved numerical

procedures. And finally, the effect of changing various

system parameters can be easily assessed. Although the

utility of the integral coordinate technique was generally

established in this investigation, it is also recommended

that this method be further examined. In particular, other

satellite configurations or other spacecraft in general

should be investigated to determine the utility of the

integral coordinate technique for estimating optimal control

requirements. If shown effective for a wider classification

of space vehicles , the spacecraft designer would realize an

enormous savings in time and effort in obtaining estimated

optimal control requirements.
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Appendix A

Kinetic Energy Derivation

The following is a derivation of the kinetic energy

expression given by equation (2 ) .

mass oscillator

center of mass ~ A

The velocity of the rigid body less the mass oscilators is
given by

= vc + x (A-i )

The velocity of the mass oscillators is given by

Vm = V c rm h 1 + ~~~~, (A-2)

Therefore , the kinetic energy expression given by equation

(1) can be written as

T = 
B_m B m B m  + *Im m I v;n ) dln (A-3)

or 

= ~f ( ~ + x ~~~~~~~~ 
~ 

x~~ )drn + *j (Vc + ~

+ Ui. + v~ ) . ( V 0 + w x r m + ui + vj)dm

— — _T — — — ..T — .2 • 2
= ~MV0~V0 + ~~~ ‘B-mw + mV~~’V~ + ~~~ ‘m~ 

+ m(u + v )

+ 2m( u X rm) ( iii + 
~
r
~~

) + terms which go to zero

( A -4)
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where

I A O O 1
‘B-rn I O B  0 1  (A 5 )

1 0 ° C -I
and

a2 + v 2 - u v  - a u

= - uv a2 + u2 - av (A-6)

- a u  - a v  u 2 + v 2

Substituting equations (A-5 ) and (A-6)  into equation (A-k )

yields

I’ = IMV 0 *V c + ~ (~~~~2 + B~~
2 + C~l~

2) +

+ m [ a 2 + V 2 )~1x
2 + (a 2 + u 2 )~~y

2 + u 2 + v2 )~iz
2

- 2uv~~~I~ - ~~~~~~ - 2av~1y~lz] + 2m [u~~~z - ~~ lz

- a’~~x + ai~~ly] + m(~i 2 + j2
) (A- 7)

Combining constant terms and letting A’ = A + 2rn a2 and

B’ = B + 2ma 2 yields

P ~ A ’~T2~~ + ~ B’~~
2 + ~ C~~

2 + m[~i2 + ~2 + v~~1x
2

+ U 2
~ly

2 + (u 2 + - 2a~~)~ + 2a~~~~ - 2(~zv

- u’~)~1~ - 2UV~x~ly - 2avcly~~ - 2au~ x~2~] + Cone t

(A- 8)

Equation (A-8) is in agreement with the kinetic energy

expression obtained in Ref .  4 for the same satellite system.
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Ap pendix B

rransformation

The following is a transformation from orbitally

referenced angular velocities to body referenced angles

and angular rates.

Z,e~~.

cos 9 3 sin 9 3 0
e~ 1 

~~~ sin 9 3 co: 9 3

e
~~1

e~ 1e
~os 

~2 
0 - sin 92 1

C 211 = 0 1 0
ey1t ey2 S~ f l 

~ 2 0 cos 0

(B-2)

x2

e z2

e
z3~~

1
”\

\

~~~~~~~~~~
3 1 0 0

/ C,/2 = 0 cos °i Sin °i

/ 
0 - 5j fl 

~i 
cos

ex2 , ex3 (B-3)
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The angular velocity of the satellite can be described by

the vector

w = e3e~ 1 + 92ey2 + O iex3 ( B — k)

From equations (B-i), (B-2), and (B-3) it can be shown that

e
~2 

1 0 0 ex3
e~ 2 

= 0 cos 81 — sin Oj e~3 
(B—5)

e
~ 2 

0 sin Oi cos Oj e
~ 3

and

e
~ 1 

cos 
~2 

sin 81 sin 
~2 

cos °i sin 82 ex31
e~ 1 

= 0 cos 81 - sin 8~ ey3~

e
~1 

— sin 02 sin °i cos cos 81 cos ~2 
ez3j

(B-6)

Substituting the appropriate expressions from equations

(B-5 ) and (B-6) into equation (B-k) yields

— sin 02 ~3)ex3 + (sin 0~ cos 
~2 e3 + cos 8~ 92)e y3

+ (cos Oi cos 02 03 — sin 8~ ~2)ez3 (B—7 )

Henc e ,

1 0 - sin 02

= 
~y 

= 0 cos 
~i 

sin 
~ 

cos 02 ~2 
(B-8)

~
lz 0 — sin 81 cos 01 cos ~2 0 3
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&ppendix C

Derivation of Discrete System Equations of Motion

The following is a brief description of the derivation

of the equations of motion for the discrete system by ap-

plying equations ( 13) and (14) to the system Hamiltonian

and Lagrangian. From equation (13)

P81 = 3L = A ’01 - 2mav - A ’ 8~il - 2mau~ (C- i)
a e1

P 02 = 3L = B’92 + 2mau + B’81~I - C01~l - 2mav~l (C—2)

P03 = 3L = CO 3 + C~ (C 3)
303

= 3L = 2mu + 2ma02 + 2maei~ 
- 2m’4~ (c-k)

= 3L = 2mv - 2ma01 + 2ma9~ i1 + 2mu~1 (C-5)

Equations (c-i)  through (C-5) where solved simultaneously
for 0 1, ~~~~ 

03, ia, and ~“. From equation (14)

* = (B’ — C)~ 8~ + (B’ - C)~l
2ej + 2ma~ (u - v~1) ( C—6 )

= - A ’~l0i + 2ma~I(~ + uCl) + (A’ - Ch~
202 (C-?)

= 0 (C-8)

= (2m~’ - 2maeih~ + ( 2mu + 2ma62)~
2 - 2Ku - 2Du ( C - 9 )

= - (2mi.~ + 2mae2)~ + (2mv - 2ma8jj~l
2 - 2Kv - 2Dv(C-iO)

Sut~stituting in the relations obtained from equations (C-i)

through (C-5) into equations (c-6 ) through (C-b ), and after

much simplification, the expressions of equation ( 15) may be
obtained.
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Appendix D

Derivation of Modal Analysis Equations of Motion

The following is a brief description of the derivation

of the equations of motion for the modal analysis method

by applying equations (37) and (38). From equation (37)

4 . I
P81 A’91 — 2 E Sz~Vj(rnl

2) — A ’ 0~~I1 = 1

I
- ZTI E Sz1uj(m1

2) (D-i)
1 = 1

I
= B’82 + 2 ~ Sz~uj(ml

2) + B’ 0i~1 = 1

~1. 1
- COifl - 2~ E Sz1vj(ml2)~ (D-2)

i = 1

P83 = c~ 3 + c~ (D-3)

= ~~~ + 2Ô2Szj (ml2)~ + 2eiclSzj (m12)I

— 2~v~ j  = 1 ,—— — ,4 (D—k )

= 2vj - 2$lSzj (ml2)~ + 202clSz~ (ml2)I

+ 2 ~Uj j = i ,
__
~~ Ll. (D-5)

Equations (D-i) through (D-5) where solved simultaneously

for Oj, 02, 03. u1,2,3,4~ and v1,2,3,4. From equation (38)

4
= (B’ - C)~1~2 + (B’ - C )C1201 + E Sz.i~i(ml 2)

- 2~
2 E Szivi(ml2)I (D-6)
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2 21
P02 —A ’~l0~ + (A ’ — C)~ ~2 + 2~s E Szi~nj(flhl 

)

2 21• + 2i1 Z Szjui(ml ) (D-7)
i=  1.

P83 
= 0 (D-8)

2fl’~’j - 2(ml
2)k~~zj (0i - 

~l02) + 2~T1
2u~ - 2(a)j2uj

- ~~~~~~~~~ - 
Szj(ml 2)~ 

~~°2 
+ CO iCI) +

p L2  Db

2~~~~+ 5z~ml E s1~P~~j J = i,--- ,4 (D-9)
Db j~~~~~~

= 2C1u~ - 2(ml2)~~Szj(62 + ~L01) + 2~l
2v~ - 2w32v3

rp c. 21 2
- + ~zj(ml ) p81 + “zjml E SzjPvj

p L 2  Da Da j = i

— j = 1,——— ,4 (D—].o)

where

2~~~ 2
Da = A ’ 2m1 I S~~1 = 1

2~~~ 2
Db = B’ - 2ml I S~ j (D-11)

1 = 1

Substituting the relations obtained from equations (D-t)

through (D-5) into equation (D-6 ) through ( D - t O ) ,  and

after much simplification, the expressions of equation (39)

may be obtained.
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~p~endix E

Derivation of Integral Coordinate Equations of Motion

The following is a brief description of the derivation

of the equa tions of motion for the integral coordinate

method by applying equations (13) and (14) to the system

Hamiltonian and Lagrangian. From equation ( 13)

P~1 = A ’Oi - 2~ - A ’8~~ - 2fI~ii (E-i )

~e2 
= B ’02 + 2~ + B’0i~) - c01fl - 2L)~ ( E-2)

P0 3 = c0 3 + ca (E-3)

= 2~ + 292 + 20j~ CE-k)
RI

P~ = 2 - 20j + 202~ (E-5)
RI

where

h +  1
RI = f pz2dz (E-6)

h

Equations (E-1) through (E-5) where solved simultaneously

for 0i. ~~ 03, ii . and ~~~. From equation ( 14)

= (B ’ - C)~)ê2 + 2Q1+ (B’ - C)~
2e1 - ~~~~ (E-7)

P02 = - A ’~1O i + 2~~ + (A ’ - c)~
202 +

P83 = 0

= - 2C101 + 2(i~l
2 

- ~t
2
~~~ + 2c~

2o - (E-lo)
RI pRI

= — 2C182 + 2(~
2 

- w12 ) ..j - - V (E-ii)
RI pRI
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Substituting the relations in equations (E-t) through (E-5)

into equations (E-7) through (E-li), and after simplifica-

tion , the expressions of equation (48) may be obtained.
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