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ABSTRACT b ]

(U) The SEATIDE Analysis Process is a semi-automated

procedure for the generation of time-phased, high value cruise missile

weapon systems concepts, together with the supporting technology and i
intelligence indicators which would reflect that these technological goals | |

are being achieved. The SEATIDE process can also be used to evaluate

the effectiveness of fixed force levels, existing forces in SAL environ- .
ments, or Naval defenses. |

(U) The Defense Intelligence Agency, through its Directorate

i sl A

of Estimates, and The Advanced Research Projects Agency (ARPA) have
sponsored the development of this computer based analysis at the weapon
system and Naval force structure level. A previous process, RIPTIDE,
was developed for DIA for use in analysis of strategic missile systems.
(U) Generic to the SEATIDE Analysis Process are three
major computer models: The Naval Engagement Model (NEM), Cruise
f Missile Concept Generation and Screening Model (CM-CGSM) and Relative
| Worth Model (RWM). The NEM evaluates force effectiveness, tactics, and
task force configurations; the CM-CGSM enables definition and selection

of candidate, advanced cruise missile system concepts; and the RWM per-

mits assessment of worth in accordance with a variety of objective and

subjective criteria. Each of these models has been checked out by DIA.
(U) In addition to exercising the computer models, there are

several other anélytical and engineering tasks to be performed, e.g., the

identification of areas of current interest and the associated criteria and

SR SR < S

potential concepts, the creation of a foreign technology data bank in a

format needed by the computer models, the engineering of concepts to

the required detail, and the use of a verification analysis loop.
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¥ INTRODUCTION

Cruise missile boosters are required for two primary
purposes. The first use of a boost phase is to accelerate a ramjet to
its take-over velocity or to accelerate a turbojet system from a surface
iaunch to an efficient take-over point. The second use of a booster is
to reduce overall lengths of liquid and solid rocket systems. When used
in this manner the booster sizing module BA@ST assumes that one or two
strap-on solid rocket motors are used, and those motors burn to fuel
depletion during an engagement.

Ramjet systems may be boosted by an integral booster
as well as by external boosters. The integral configuration contains a
single tandem booster. After completion of the boost phase the rocket
motor combustor is also used for the ramjet combustor. As ramjet
throat area requirements are much larger than rocket throat area
requirements, dual use of the combustion chamber requires different
nozzles. Consequently the rocket nozzle is sized to fit within the
confines of the ramjet nozzle. Retention of the rocket nozzle is by
Marmon clamp which is assumed to be separated by explosive bolts during
transition from rocket to ramjet operation. The size and structural
requirements of the ramjet combustor are usually exceeded by the
booster chamber requirements. Therefore the integral ramjet com-
bustor configuration is a by-product of the booster design.

For ramjet designs requiring non-integral boosters
(external), the velocity requirements are assumed to be met by
strap on rocket motors which are mounted alongside the ramjet com-
bustor and jettisoned during transition. For this configuration the

ramjet combustor must be designed separately.




g i i L OB 7 N ; N " ; ok

Booster motors for liquid/solid rockets and turbojets
are assumed to be identical to the non-integral ramjet; that is,
rocket motors mounted along side the turbojet engine and jettisoned
after booster burnout.

Ramjet boosters are sized by the BOOST module,
while liquid/solid rocket and turbojet boosters are sized by the EXBOO
module. EXBOO methodology is a subset of the BOOST methodology,
therefore, only BOOST is discussed here.

Specific input formats are discussed in Volume IIIA

AP s )

Users Manual.
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2.0 BOOSTER SIZING
2 2.1 GENERAL BOOSTER SIZING

The performance calculations in subroutine BOOST are

based on a straightforward application of standard solid rocket design

PSRRI

equations. Hardware weights, however, derive from both theoretical
and empirical relationships and hardware constants are made input

variables for computing component weights. These constants have

RN Ve T A

built in values which may be overridden by the user if desired (see
Volume IIIA). BOOST has the capability of providing a detailed break-
down of component weights to aid the user in evaluating the booster
design.

BOOST requires initial values of the propellant weight,
thrust, and burn time in order to initiate the convergence logic. These

values, calculated internally, affect the convergence efficiency but not

SPRRIR SR S

the final design. The initial value for propellant weight is computed

” 3 from:
9
1 MP = (WRAT * ML - ML)/(1.2-0.2 * WRAT)
f where

1 WRAT = exp | L.\V/3Z. 174/1SP(1)]

ISP(1) = cstar * 1,5/32.174

1 cstar = input value of characteristic velocity

AV = input ideal velocity, ft/sec

‘ ML = input payload weight, 1b

The initial estimate of burn time is

TB = MP * ISP/F(1)
Either thrust oz the thrust to weight ratio may be input, If the thrust

to weight ratio (F'1) is input a starting value for thrust is obtained from

F (l)=(1.2 * MP + ML) * F1
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P ol Pressure Vessel Siz'mg

The pressure vessel material is selected by the user by
inputting a material'.code. The material properties are obtained by
calling subroutine MATLS with the desired material code and the case
design temperature. MATLS returns the ultimate tensile strength, the
yield tensile strength and the density. Subroutine MATLS is described
in Appendix F of this volume.

P = f (material code)

Fult' Fyield = f (material code, design temperature)

BOOST calculates the pressure vessel thicknesses based on a nominal
chamber pressure, ultimate tensile strength and a compound factor of safety
(F.S. & ). The computed factor of safety, input to the routine as a single
value, is based on a shape factor (nominal maximum pressure divided

by nominal average pressure), a ballistic factor (43 sigma variation in
propellant burn rate and '"C'-Star), a temperature factor (variation with
temperature) and a structural safety factor. Similar calculations are
repeated for thickness based on yield. Final thicknesses are then

based on the maximum of the '"yield' thickness, the '"ultimate' thick-

ness, and an input minimum allowable thickness based on handling and

buckling considerations. Cylinder thicknesses are as follows:

ne = F.S. *PC*D/(F *2),
Y y Vi
TC = F.S. *PC*D/(F *2),
u u u
and TFEL = minimum (€ , TC , TC. . )
y u min

(U) Forward closure thicknesses are as follows:

TFH = F.S, *PC*D*E_/(F *4),
y y 13 y

TEFH

F.S. *PCHxD*E /(F :::4)‘
u u F u

it

and TFH

minimum (TFH , TFH , TH . )
y u min
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(U) Aft closure thicknesses are as follows:

TAH = F.S. *PC*D*E, /(F *4),
y y A y
TAH = F.S. *PC*D*E,/F *4),
u u AL =
and TAH = minimum (TAH , TAH , TH . ).
y u min
212 Chamber Sizing

Chamber weights include skirt weights, forward head

weights, cylinder weights, and aft head weights. Forward and aft skirt

weights (see Figure 1) are respectively computed from the following

equations: '
FORSKT = N34 + N35% TC * P* D * T |
1/2 '
GMAX * ML LCYL + D/N2
+ - = %, 0215 [ ( = ) + 1] |
ff
2 ?
% N36 % D+ DLFS * 7 % TC P '
AFTSKT = N38 + N39* TC* W % D * p j
' 12 |
2. ML+MP/2 | LCYL + D/N23 :
+ N40* D" * o £0.215[ ( = )+ 1] |
e
where [
N34 = Miscellaneous forward skirt weight, lbs.

N35 = Forward skirt weight multiplier

N36 = Forward skirt weight multiplier

N37 = Modulus of elasticity, psi

N38 = Miscellaneous aft skirt weight, lbs.

N39 = Aft skirt weight multiplier

N40 = Aft skirt weight multiplier |

ML = Payload weight, lbs.
GMAX = Maximum load factor

MP = Propellant weight, lbs.

DLFS = Skirt extension, in. ‘

D-6
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The above two equations are general in that skirt weights

W

may be compuied in three ways:
(1) If N35 = N36 = N39 = N40 = DLFS = 0, the
weights may be input as constants by supplying

i appropriate values for N34 and N38§.
(2) If N36

n

N40 = 0, the weights may be computed

from skirt lengths where N35 and N37 are interpreted

AL ot L IR PRV A3 0

as:
N35 = F * LF
N36 = F * LA
;f LF = forward skirt length, in.
’ LA = Aft skirt length, in.
‘\ é F = fraction of sidewall thickness
' ' (3) If N35 = N39 = 0, the skirt weights are based on
3 ; correlations. In the latter two cases, N35 and N38

may be utilized as additive constants.

Forward head weights are calculated from the

following equations:

Boss weight = P % 4 % TFH % N9 * At

Igniter weight = NI10 % (LCYL + D/N2)
* (N120 * AFAT At)l/2 + N11
If the forward ellipse ratio = 1, then
Structural weight = 4 3 NI % p * TFH

: z
; ‘)ﬂ 5% ( —__” * D

Ty T

- N3 * At)

Insulation weight = N4 * N114 zL % (D-2 % TFH)

1 J If the forward ellipse ratio 2 1, then




Say =\/1-1/N.22

Structural weight = 4% N1* p * TFH D2 * {O. 7854

‘ * log(
NZ2 * Say o

0.3925 G S
ay

Insulation weight = N4* N114* (D-2%* TFH)2 * { 0. 7854

SRR kit

0.3925 1+ Sa
2 ’”°g(1-s§)
N2 *Say

- N3: At

Forward head weight = structural weight + insulation

weight + boss weight + igniter weight

where:
s p = structural density, lb/'m3
i N1 = forward head weight multiplier
N2 = forward ellipse ratio
: ‘ N3 = igniter port area/throat area
':; Y N4 = insulation density, lb/'m3
g N114 = insulation thickness, in. ;‘
: N9 = igniter boss weight multiplier i
‘Z N10 = igniter weight multiplier {
N120 = 0, end burner ‘
= 1, center burner '
i N1l = safe and arm weight, 1b. ;
‘ N13 = Miscellaneous forward head weight, lb. '
E AFAT = port to throat ratio :
‘ Aft head weights are calculated from the following
“J equations: ‘
) Boss weight = 4 % N30 % TAH % P * D !
Maximum insulation thickness = TAHIM = 2 * TAHIA - N117 ‘
[
DN = §4- * EPSC * At f
£»

D-9
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If the aft ellipse ratio = 1, then

51585

Structural weight = 4 % N22 * TAH * P * (% - EPSC * At)
D-2%TAH)> DN’
Insulation weight = N4 % TAHIA # = [ 2= 2 - ]

If the aft ellipse ratioZ 1, then

Say =J 1-1/NZ3°2

2
Structural weight = 4% N22* TAH* P *[ D * { 0. 7854

0.3925 1+Say

o * log(
N23% * say Seaay

) } - EPSC * At ]

2
Insulation weight = N4 * TAHIA * [ (D-2* TAH) = { 0. 7854

2 G 4

0.3925 1iSay f 7 % DN2 ]
N23 3 Say

Aft head weight = structural weight + insulation weight

+ boss weight + N33

where
N23 = aft ellipse ratio
EPSC = entrance area ratio (from subroutine RAMNOZ)
N33 = miscellaneous aft weight
N22 = aft weight multiplier
N115 = TAHIA = average aft insulation thickness, in.
N117 = Cylindrical insulation thickness, in.
p = structural density, lb./'m3
N4 = insulation density, lb/in3
N30 = Aft boss multiplier
é.1.3 Propellant Weights and Volumes

The routine calculates a port to throat ratio based on the
input cross-sectional loading and selects the greater of the calculated value
and the input port to throat value. The cross sectional loading port to

throat value is calculated as follows:




2
Cross section = @ * (D/2 - TC - N117)

(Cross section) * (1 - ETAX)
At

Port to throat =

diameter, in.
chamber thickness, in.
sidewall insulation thickness, in.
At throat area, in
ETAX = maximum cross sectional loading
Propellant weights are calculated as follows:

Forward head propellant weight = propellant density

x [ semi-elipse volume - Port volume |

2
MPFH = pp*[Z.9*(D/2/TFH-N1]4) *(.5%D/N2 -TFH-N114)

- AFAT * At .53 D/N2]
Aft head propellant weight = propellant densityX [semi-elipse

volume - Port volume ] X [ Aft head loading fraction]

2
MPAH = pp*[ 2.09%(D/2-TAH-N115) % (.5% D/N23 - TAH

-N115)- AFAT * At* (. 5% D/N23 - TAH-N115) ]* FMPAH

port to throat ratio

forward head elipse ratio

Aft head elipse ratio

propellant loading in aft head
Propellant density lb/in3
Diameter, in.

thickness of the for

thickness of the forward insulator
thickness of the aft head
thickness of the aft insulator

throat area, in

D-11
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The cylindrical propellant weight is the difference be-
tween the total propellant weight and the sum of the forward and aft

propellant weights according to the formula

MPCYL = MP - MPFH - MPAH
A negative value for the cylindrical propellant weight is not allowed.
Cylindrical length is based on the volume required to
contain the cylincrical propellant calculated above. The equations for
the cylindrical length are

7 %(D/2 - TC - N117)°

A =
LCYL = MPCYL/ pp * (A - AFAT * At)
where
D = diameter, in,
TE = sidewall thickness, in.
N117 = sidewall insulation thickness, in.
MPCYL = cylindrical propellant weight, lbs.
P = propellant density, lb/'m3
AFAT = port to thrust ratio
At = throat area, in
2.1.4 Booster Inertia and CG Modeling

Moments of inertia and centers of gravity of the
booster subsystems are computed and compiled for output. Modeling

assumptions for each subsystem are shown in Table I.




e

TABLE I

BOOSTER MOI AND CG MODELING

Item Segment Segment Model

1 Igniter Boss Hollow Cylinder

2 Forward Closure Semi- Elliptical or Spherical Shell

3 Forward Propellant Semi- Ellipsoidal Solid with
Perforation

4 Igniter Point Mass

5 Forward Insulation Semi- Elliptical or Spherical Shell

6 Mts. Forward Weights Point Mass

7 Cylindrical Case Cylindrical Shell

8 Cylindrical Insulation Cylindrical Shell

9 Mts. Cyl. Weights Point Mass

10 Cylindrical Propellant Hollow Cylinder

11 Aft Closure Semi- Elliptical or Spherical Shell

12 Aft Insulation Semi- Elliptical or Spherical Shell

13 Aft Propellant Semi- Ellipsoidal Solid with
Perforation

14 Aft Boss Hollow Cylinder

15 Mts. Aft Weights Point Mass

16 Forward Skirt Cylindrical Shell

17 Aft Skirt Cylindrical Shell

18 Nozzle Calculated Elsewhere

19 Nozzle Fairing Cylindrical Shell

N g A A 4
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3.0 NOZZLE SIZING FOR INTEGRAL RAMJETS

3.1 General
Subroutine RAMNOZ calculates both the ramjet and booster
nozzle configurations for integral rocket ramjets and the booster nozzle
performance. The booster nozzle is assumed to be contained within the
ramjet nozzle and retained by a clamp installed at the extreme aft end.
Performance equations are based on standard rocket technology. Hardware
equations are in part empirical. The configuration is shown in Figure 2.
The following assumptions are obtained:
(1) The radius forming the ramjet nozzle (RC) is equal to K
one-third of the ramjet throat radius (R5).
(2) The thickness of the ramjet nozzle structure is equal

to the thickness of the aft dome.

(3) The dimensions of the retaining clamp are generally
fixed including its thickness of 0. 3 inches which is part
of the nozzle length.

(4) The ramjet nozzle contains a . 2 inch flat for facilitating
a seal between the ramjet nozzle and the booster nozzle.

(5) The booster nozzle is made of two main components

joined at the ramjet nozzle plane. The aft component, .
an ablator with density 0.0637 lbs/in3, is 0.2045 = ‘
m thick. The forv&;ard component, graphite with a »

density of 0. 0625 1bs/in~, is 50 percent thicker than the
ablator. The two components are joined with a thrust
band of 0. 15 square inch cross section and a density
of . 296 1b/in3.

(6) The entrance section is formed by an arc of radius RC
(see assumption (1) above). The arc will extend through |3
45o unless a different value is input by the user or unless

the forward edge radius exceeds eight tenths of the com-

bustor radius measured from the centerline. In the latter

D-14
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case, the routine will set the intersection between the

aft dome and entrance section at eight tenths of combustor

radius.

Nozzle Sizing Methodology

The following computational steps are used:

(1)

(2)

(3)

Ramjet nozzle exit cone length is computed as
XA =RC *SIN ¢
XB = [R6 - RC*(1-COS @) - RS]/TAN ¢

where:

(1) = nozzle half angle (input)
R5 = ramjet throat radius
RC = R5/3

R6 = ramjet exit radius

The two values, XA and XB, when added together and
multiplied by the bell fraction, give the ramjet exit
cone length as

X1l = (XA + XB)#Pbell

Booster exit area is

Ablator thickness (TIEC) = .2045‘, TBURN

TBURN = booster burn time

Booster exit radius (RE) = Ré - TIEC/COS ¢
Booster exit area (EXITA) = REZ* et
Thrust coefficient is
Thrust area (AT) = F/DC/CF
F = thrust

PC

chamber pressure

CF thrust coefficient
Booster expansion ratio (EPS) = EXITA/AT
Exit Mach number is determined by an iterative solution

of the following equation:




B e =

77-0
vl
EXITA = ;,,L (,,,)( % ”)] Y= specific heat ratio

(input)

Exit pressure (PE) PC/(! + -- 'n ) B-c i

Thrust coefficient (CF)

E L
§ l’“ [ Pe 5 ‘
e[ 25 (W (2T o]
' PA = ambient pressure (input)
CFn = thrust efficiency (input)

As CF was used to calculate AT above, the solution
for CF is iterative.
i (4) Specific impulse is
j : Vacuum thrust coefficient (CFVA) = CF + ESP*PA x CFn/PC
Vacuum ISp (AISV) = CFVA*CSTAR/32.174
CSTAR = input constant characteristic velocity
Delivered Isp (AISP) = CF*CSTAR/32.174
(5) Booster nozzle is

Throat radius (RT) =d AT/ n

Graphite half thickness (RCI) = . 75*TIEC

Booster nozzle gross length (XI) =

RE - RCI*(1-CcOS @) -
TAN @

RCI + RCI*SIN @ +

Booster throat to exit length (XN) = XI - RCI

(6) Location of the booster throat relative to the ramjet

throat is

X2 =XI - RCI - X2
If X2 is negative the booster pressure is insufficient to
produce an acceptable design (the booster nozzle area is
too large relative to the ramjet nozzle). Under these con-

ditions the minimum acceptable pressure is calculated

D-17
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PC = F/AT/CF

and the pressure is used for further calculations if the

B T —

; higher pressure is acceptable (if not the run is terminated).
L (7) Graphite weight is
Minimum graphite length (excluding length forward of
booster throat)
X2MIN = .4 * D3/ER
D3 is combustor diameter (input)
ER is aft elipse ratio (input)
%f If X2MIN is larger than X2, X2 is set equal to X2MIN and
) the weight of graphite displaced by the throat band is

calculated.
WGADD = ?f * pG (RT + RCI) (X2 - X2MIN) * RCI
If X2MIN is less than X2, WGADD is zero.

Radius of graphite (RBG) = RT + RCI + . 6%X2* TAN @

X2
CcOS ¢

Weight of graphite (WG) = ZﬂpG *RBG*ABG + WGADD

Area of graphite (AGB) 2 * RCI + RCI)

(8) Throat band weight is
Radius of throat band (RBTB) = R5 - .1

Weight of throat band WTB = 0. 3% 7 = DTB * RBTB
(9)  Ablator weight is
; TIEC X1
- + — . — ¢
Ablator radius (RBA) = RE 2+COS @ > TAN @
Ry R e
Ablator area (ABA) = Cos ¢
Ablator weight (WA) = 2% 7 = DA * RBA * ABA
(10) Clamp weight is
4 Radius segment 1 (RBC1l) = R6 + 0.206 - %Q
Radius segment 2 (RBC2) = R6 + 0. 6495
Radius segment 3 (RBC3) = R6 + 0. 256
0.21 *
Area segment 1 (ABCIl) = 0.1236 + ZCIOS ’;IEC
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Weight of clamp (WC) = 27 p we (RBCL # ABCl
+0.4313 * RBC2 + 0.11 * RBC3)
Graphite length (XG) = X2 + RCI
(12) Insert weight (WTI) = WG + WA + WC + WTB

(13) Ramjet nozzle length
Entrance height from throat (YZ) = (1 - COS6 ) * RC

where:
@ is input (defaults to 45° if input as zero)
Maximum allowable height (YD) = (R3 - R5) * .8
If YZ is greater than YD YZ is revalued to YD and 6
E is revalued to give YD.
J& Ramjet nozzle entrance length (X3) = RC #*SIN @ + .2
» Entrance height from centerline (YI) = R5 + YZ
R32 - le
ERZ

Ramjet nozzle length (XRN) = Z1 + X3 + X1 + .3

Aft closure length (Z1) =J

(14) Ramjet nozzle weight is
DELN  XB*TAN @
2 COS ¢ 2

DELN is thickness (input) e

Exit cone segment radius (RBRN1) = R6 +

Throat segment radius (RBRN2) = R5 + DELN

4 Entrance segment radius (RBRN3) = RS + RC *
: (1 - cos (.5236 + L)
P 2 i
Clamp retainer segment radius (RBRIV4) = R6 + .2 5
Exit cone segment area (ABRN 1) = R6-Rés(ntl-;205 9 -R5) , DELN
: Throat segment area (ABRN2) = 4. * RC * DELN * SIN @ 3
3 § Entrance segment area (ABRN3) = RC * % - @ *DELN .'

Ramjet nozzle weight (WRN) =
2m P (RBRN1*ABRN2 + RBRN2 * ABRN2 +
* AERN3 + .118 ** RBRN4)

RBRN3

D-19




3POW "D "D puU® JOW 212zON [eaBaju] ¢ @andr g

!
:
3
:
'
{
}
!
i
h
i
:
i
i

.
-
<
~—
0
¥
O
<
o
~
¥

[ 5 EasS b R R ¢ G . SESIE M e B e e
H rer O

AT T S _. T S G et




(15) Total nozzle weight (WNTOT) = WRN + WTI
(16) Entrance area ratio (EPSC) = (Yl/R'I‘)2
3.3 Nozzle Inertia and CG Modeling

Moments of inertia and centers of gravity of the ramjet nozzle
and the booster nozzle insert subsystems are computed and compiled for out-
put. Modeling assumptions are illustrated in Figure 3.

4.0 NOZZLE SIZING FOR EXTERNAL BOOSTERS

4.1 Nozzle Sizing Methodology

Booster nozzles for externally boosted ramjets are not con-

strained by ramjet geometry, but are sized to the model shown in Figure 4.

i L'R(i-/y RE
i |
s e TN O R

E el e
i Figure 4. Nozzle Model for External Boosters
As the chamber pressure and pressure ratio are known, the

expansion ratio can be determmed from the following equation.

g (*_*.'> (&) \/ st )(‘ ')/x]

Divergence factor,
_1+Ccos @
FA = >

Thrust coefficient (vacuum) =
+ |
1 -\
=F”‘/2" * ")}S”"x ) =[P ']
Crv # Y1 ( ¥+ Pe
Thrust coefficient actual

PA
= - —— ) oy
Cg (Cry e R B

=

]




Specific impulse
Isp = CSTAR * CF/32.174

Throat area
At = F/P’c/CF

Exit area and radius

= b
Aexit: € At
L exit
RE = ot

Throat area

A
RS = =t
The nozzle arc is arbitrarily set equal to 40 percent of the
throat
RC =0.4 *R5
Nozzle exit length

Rt =R5 [1 -.4%(1/SIN@ -1)]

L R.. - Rt)/TAN (1)

exit " E
If the nozzle is canted at some angle 8 ﬂru the geometry
\

%
changes to that of Figure 5. X% N
//

,Y Ress
s¢
RS 0

Figure 5. Nozzle Modeling for Canted Systems

The effective radius and area then become
= *
0E L it tan 8
= *
R ¢ (RE +®E) * COSB

2
= r*x
Aeff R eff
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ARSI AR @2er 1500tk e

This area is compared to the maximum area available for the exit cone
to see if the exit diameter must be reduced, as

Dy =Dy, = 2 * Tk

= 2 sk
Arna.x i (DN/Z) e

If A _ is less than or equal to A , the nozzle is properly
e max

ff

sized and the routine proceeds with the weight calculations. If Aeff is

greater than Amax' the exit diameter must be reduced to

. =L . *COS (BETA) + (RE + TK) SIN (BETA)
exit exit

Reduction of the nozzle area to fit within the allowable area

follows the geometry of Figure 6.

=
,’/.'/
(e or
} 4
R X, ik
DB
FIGURE 6
NOZZLE REDUCTION MODEL
R = DN/Z
max
Y; = Rt/COSB
X = Rmax -~ Y1
tan (0 + 8)
YY = Xtan g
XX = X+r * tanf
= max
61- = -}% *YY
r =a - 61‘ - tk
e
= + + %* ’
L g = XX+ (R_+tk) *SINB
D-23




8PS e

Aft dome length i
p. = AL *N24 iD_2R,, D_=.8*R
N H | S By - 3
R32 ~ DN2
Z1 =J——2——
N23
Entrance length

,A'ZTZ=
YE = DN -¥ (7

= =
X AT YE

Nozzle length
XRN = Z1 + X1 + Lexit * PBELL
Nozzle weights are based on empirical equations originally
developed by Aerojet (Reference 1).
Boss = N77 * Pdesign * D * N23 * A

g%

Exit Cone = N79 * Pdesign *A_, '~ * ( €-2.5)/SIN @

T

Exit cone insulation = N82 * AR * (€-2.5)/SIN @
8
“¥5_ N83  _ N83 . N84

(c . Tb

Throat insert = N78 * Pdesign * A
9

T P

1.5
T
Throat insulation = N81 AT.

1.5

Throat sleeve = N78 * Pdesign * AT

4.2 Nozzle Inertia and CG Modeling

Moments of inertia and centers of gravity of the external booster
nozzle subsystems are computed and compiled for output. Modeling assump-

tions are shown in Table II.

TABLE II

EXTERNAL NOZZLE MOI AND C.G. MODELING

Component Segment Model

Entrance Section Truncated Cone Shell

Throat Section Cylindrical Shell Includes misc.
nozzle weights

Exit Section T runcated Cone Shell
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APPENDIX E

INLET SIZING AND PERFORMANCE

1.0 SUMMARY

Two inlet subroutines were developed for the SEATIDE
program. Subroutine INLETP determines the weight, pitch plane
moment of inertia, and center of gravity for a given inlet size.
Either a dual aft inlet system with the inlets located on the missile
horizontal centerline, or a single inlet on the bottom centerline
may be analyzed. Either inlet system uses a two-dimensional
downward compressing inlet. The tpn:om/c’:e/nterline location is
not considered a ''chin'' inlet because the inlet cannot extend
forward of the tangency point between the missile forebody and
the constant diameter cylindrical section. The inlet aspect ratio
(ratio of width to height) can be specified. The program also
calculates inlet wetted areas, projected areas, and boundary layer
diverter heights required in other subroutines to calculate the
inlet drag. This subroutine is used with propulsion systems that
use a ramjet, turbojet, or combined cycle. The second subroutine
is titled INLET. This subroutine is used only with the turbojet
propulsion system. The subroutine calculates an inlet capture
area at the specified design point. The program then determines
the inlet mass flow ratio at desired off-design points. If the match
point results in subcritical inlet operation, the inlet spillage drag
is calculated, and, if supercritical operation is necessary, the
resulting operating total pressure is calculated and the additive
drag is equated to the critical additive drag. An indication of the
need for supercritical operation is provided as optional output.

In addition to the two subroutines summarized above,
inlet performance characteristics are provided for eleven (11)
inlets., These performance characteristics were generated by an
in-house computer program used extensively for inlet analyses.
The pertinent inlet performance characteristics calculated are
critical total pressure recovery, critical mass flow ratio, and
critical additive drag.

2.0 DETAILED DISCUSSION

&1 Inlet Performance Characteristics

The performance characteristics of the inlets were calcu-=
lated assuming a two-dimensional, downward compressing,
external compression inlet located in the local flow field created
by the missile forebody. An inlet design Mach number and the
desired compression surface angle(s) are specified, and the inlet
geometry is determined. (Three compression ramp angles must
be specified because of program input requirements).

E-3




Once the inlet design has been generated, the performance at specified
off design points is determined, as follows. At the specified flight
Mach number and vehicle angle of attack, the local Mach number,
local angle of attack, and local total pressure recovery are determined
from input tables. Oblique shock and normal shock relations are then
combined with a control volume analysis to determine the inviscid
throat total pressure recovery, and the critical mass flow ratio. The
inviscid throat total pressure recovery is corrected for various losses
such as shock, boundary layer, diffusion, and dump losses to arrive
at a delivered critical total pressure recovery (PT2/PT(g). Appropriate
checks and logic are included to accommodate detached shocks and
subsonic local flow fields. The specifics of this program, as applied
to the SEATIDE airbreathing propulsion systems, are described below.

The local flow fields for the two inlet locations are tabulated
in Figures 1 and 2 for the dual aft inlet and the bottom centerline inlet,
respectively. The data shown are for six angles of attack (-5, 0, 5,
10, 15, and 20 degrees) and 14 flight Mach numbers (ML) at each
angle of attack. Fourlocal flow field properties are shown: BO, which
is irrelevant to two-dimensional inlets; AO, the local angle of attack;
PTO, the ratio of local total pressure to freestream total pressure;
and MO, the local Mach number.

The design point geometric characteristics for the eleven (11)
inlets are summarized in Table I. (See Figure 3 for a definition of
the variables). Note that all distances are normalized by the inlet
capture height, YC. As shown in Table I, eight (8) inlet designs are
shown for the ramjet propulsion system. These designs are for inlet
design Mach numbers of 1.75, 2.00, 2.25, and 2.50, with two possible
inlet locations for each design Mach numbers. A single design for the
combined cycle propulsion system is indicated, for the bottom center-
line location. For the turbojet propulsion system, two inlet designs
are indicated, both for the bottom centerline location. The first
design is a normal shock inlet for cruise Mach numbers of 1.5 or less.
The second inlet has a design Mach number of 2.0 and a single
compression surface.

The rationale for selection of the number and magnitude of the
compression surfaces is as follows. For the ramjet propulsion system,
past experience has shown that the inlet for an accelerating ramjet must
be sized at the takeover condition. The minimum inlet size is obtained
by having the maximum critical mass flow ratio, zero additive drag, and
maximum total pressure recovery at the sizing point. The first two (2)
items are satisfied by equating the inlet design Mach number to the
ramjet takeover Mach number. The third item is dependent upon the
number of compression surfaces and the relative deflection of each.
Theoretically, the total pressure recovery increases as the number of
compression surfaces increases. However, the gain from additional
compression surfaces diminishes rapidly with decreasing design Mach
number. Thus, the Mach number 1. 75 design inlet has a single com-
pression surface; the Mach number 2.0 design inlet has two compression
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surfaces; and the Mach number 2.25 and 2.50 design inlets have three
compression surfaces. The magnitudes of the compression surface
angles correspond to those which will give maximum theoretical total
pressure recovery at the design Mach number.

For the combined cycle, the design selected is a compromise
between the low speed requirements wherein the bipropellant rocket
gas generators provide most of the thrust and little air is required,
and the higher speeds wherein the ramjet system is used. The design
shown was selected after evaluating inlets with design Mach numbers
of 2.25, 2.50 and 2, 75.

For the turbojet propulsion system, the two designs represent
the effect of cruise Mach number. For cruise Mach number of 1.5 or
less, a normal shock inlet is the generally accepted choice. Although
Table I indicates an inlet with three compression surfaces, this is only
to satisfy the program input requirements. Note that the total amount
of compression is only 0.22 degrees. For the Mach 2.0 cruise missile,
a fixed geometry single compression surface inlet was selected. A
higher performing double compression surface inlet was considered,
but it was rejected because it would probably require variable geometry

to satisfy engine airflow demands. Compression surface angles of

8.0, 12.0, and 16.5 degrees were evaluated to determine the best

match with the engine. The selected inlet was the best compromise.
The resultant inlet performance characteristics for the eleven

inlets are tabulated in Figures 4 through 14. Figures 4 through 7
present data for the dual aft ramjet inlet systems; Figures 8 through 11
present data for the bottom centerline ramjet inlet systems; Figure 12
presents the data for the combined cycle inlet (bottom centerline); and
Figures 13 and 14 present the data for the turbojet inlet systems

(bottom centerline). Figures 15, 16, and 17 present in curve form a
typical set of installed performance data. The data are for a dual aft
inlet with a design Mach number of 2.5. The inlet has three compression
surfaces with angles of 10.0, 11.1, and 12.1 degrees. (A scaled
drawing of this inlet has been presented earlier as Figure 3).

Figure !5 presents the inlet critical total pressure recovery
as a function of flight Mach number and vehicle angle of attack. At
large angles of attack, the inlet recovery is relatively insensitive to
Mach number. This is due to the forebody effect; the local Mach number
is substantially less than freestream, and shock detachment may occur.
As the flight Mach number is increased at a constant angle of attack,
: the local Mach number becomes high enough to permit shock attachment
; and the characteristic decrease in recovery with increasing Mach number
is noted. For example, at seven degrees angle of attack, the characteris-
tic reduction starts at a flight Mach number of about 2.75; at 16 degrees,
i the reduction starts at about Mach number 3. 25,
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FIGURE 11
INLET PFRFORMANCE CHARACTERISTICS - RAMJET-BOTTOM CENTERLINE-M=2.50
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FIGURE 11-CONTINUED
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FIGURE 12
INLET PERFORMANCE CHARACTERISTICS - COMBINED CYCLE-BOTTOM CENTERLINE-M=2450
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FIGURE 12-CONTINUED
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INLET PERFORMANCE CHARACTERISTICS
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FIGURE 13
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FICURE 13-CONTINUED
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FIGURE 14

INLET PERFORMANCE CHARACZTERISTICS - TURBOJET-BOTTCOM CENTERLINE-12e DEG RAMP

INLET DESIGN MACH NOe=2¢0C )1240 DEG RAMP%, TURBOJFTs BOTTOM CENTERLINE
AV 3 8 MACH PT3 AOAC CCA EXTeCOMPR, 12¢009s 0e0ls Ce01l DEGeRAMPSs 24CC
Ay -5¢0N0NE =24,01C00 le00000 4400000 Te¢00CON 1000000
13.00000 16,C000C
o ey R ey
AM -5 Ne50000 Ce75000 1.000C0 1.25000 150000 175000
200000
PT3 095000 0,950C0O 0654928 093734 0692189 QDe08398
081096
AQAC 0699519 QeTH913 0674220 0el6713 QDeB83463 O0e09514
Ce94814
chA -0406226 =0,03972 0 «CB460 0e11261 0.03383 0e01099
-C«0N00C0O
AM -2 0e50C0N0 0« 75000 1.C0000 125000 150000 1475000
220C000
PT3 0495000 0695200 0694959 0e4940C2 092274 0«89108
0e82252
AQAC 0699519 Q78913 Oe74245 Ole 16932 Qeb&l31 0691061
0697046
CcDA -0e04242 =0,03604 008708 Oied 277 13 O0e04824 0e01574
=00C000
AM j Ce50000 Qe 75000 1420000 1625000 1¢50300C0 le75000
20000CC
pPT2 0e94980 0694967 0694916 06940594 0e91547 089546
DeB3327
AQAC 0e99499 Ue.78885 GeT6211 0.770C8 0eB84158 Ce92524
0e99525
CHA -0,03112 =0,0C114 Ce09464 Qeltb62 0607476 0402257
-0e0C02
AM bo 0450000 0675200 10000 1425000 1¢52G00 1¢75000
2400C00
PT3 06949521 CeG4BS7 Ce54738 0+93895 0e¢90930 Ded8G331
CeB84181
AQAC Ce59436 0678802 Qe74C72 Oe 76045 De03620 Qev30706
1601919
CDA -0e04660 =0,02225 Je11305 Qs lic5383 011987 0602436

CeCC220




: FIGURE 14-CONTINUED
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Figure 16 presents the inlet critical mass flow ratio. The
curves exhibit the typical characteristics, with the break in the curves
indicating that all inlet shocks have fallen inside the cowl lip. At
Mach numbers above the break point (at a constant vehicle angle of
attack), the change in critical mass flow ratio is due to the forebody
compression effect, i.e., (Ag/A.) =(A1,/Ac)(Ag/AL), the product of
forebody compression effects (A, /A1,) and the inlet local capture ratio
(AL/AC). At Mach numbers less than the break point, the increase
is due to both forebody compression and the inlet compression shocks
attaching to the inlet lip.

Figure 17 presents the inlet critical additive drag. At low
flight Mach numbers and large angles of attack, the inlet spills large
amounts of air and hence develops large additive drags. As the Mach
number increases, the inlet shocks become attached and the additive
drag is reduced. Eventually, all inlet shocks fall inside the cowl
lip and the additive drag is reduced to zero.

2.2 Turbojet Inlet Sizing and Airflow Matching

The inclusion of the turbojet as a possible propulsion system
requires a calculation of the inlet/engine airflow matching point and
any reduction in engine thrust due to either additive drag (subcritical
or critical) or supercritical operation. The subroutine INLET was
developed to do this.

On the first pass through INLET, the inlet capture area is
determined based upon the required engine corrected airflow, inlet
design (normal shock or single compression surface), and critical
total pressure recovery. With the capture area established, any 1
desired number of off-design points can be examined. The required
inlet mass flow ratio is determined, based upon inlet capture area,
critical total pressure recovery, required engine airflow, and flight
Mach number. If the required inlet mass flow ratio is less than
the inlet critical mass flow ratio, then the subcritical additive drag
for the condition being examined is calculated, and the total pressure
recovery remains at the critical value. If the required inlet mass
flow ratio exceeds the inlet critical mass flow ratio, then the result-
ing operating total pressure recovery to satisfy the engine demand is
determined. The additive drag is equated to the critical additive
drag, and an indication of supercritical operation is made. These
three items are returned to the turbojet engine performance section
where a decision is made as to whether or not the inlet should be

resized.




2.3 Inlet Weight and Inertial Properties

This subroutine (INLETP) calculates the weight, center of
gravity (c.g.), and pitch plane moment of inertia for the selected
inlet. It also calculates wetted areas, projected areas, and boundary
layer diverter heights required for the calculation of inlet drag.

The initial part of the program determines the geometry of
the inlet cowl lip. At the design point, the internal cowl lip angle
is determined by the criteria that there be an attached shock. A
one-degree factor of safety is added. A seven degree included lip
angle is used to determine the initial cowl external angle. Next,
for the ramjet and combined cycle propulsion systems, the ratio
of dump area to inlet throat area is determined at the inlet design
point. A dump Mach number of 0.3 is assumed. For a turbojet
propulsion system, the length of the subsonic diffuser is calculated,
assuming an equivalent conical angle of 3.5 deg (28=70).

Next, those calculations dependent upon actual inlet size
are performed. The inlet aspect ratio is defined, as are the missile
reference area and the required capture area as well as different
missile component lengths. With these dimensions the inlet width
and height are determined. The internal cowl angle is then reduced
to zero degrees at the rate of ten degrees per throat height, to
determine a '"cowl turnback' distance. This axial distance is then
used together with an angle that is one-half of the initial cowl lip
internal angle to determine the cowl projected height. The increase
in centerbody height from (X4, Y4) (the point where a line that is
normal to the final compression ramp and passes through the cowl
lip tip intersects the ramp) is then set equal to the increase in
cowl projected height. This turnback region is followed by a region
that is two throat heights long and has one degree divergence.
Finally, the centerbody height at the end of the throat region is
reduced to zero by a subsonic diffuser with a seven degree angle for
the ramjet and combined cycle propulsion systems. For the turbojet
propulsion system, the previously calculated subsonic diffuser length
is used.

The dump port into the combustion chamber starts at the
juncture of the rocket dome and its cylindrical section for the ramjet
propulsion system. The equivalent station is used for the combined
cycle propulsion system. Using this station, a check is made to
determine the location of the inlet leading edge relative to the missile
tangency point. If the inlet leading edge is forward of the tangency
point, the calculations cease. For an acceptable inlet location with
the ramjet or combined cycle propulsion system, the required length
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of the dump port is then determined. For the turbojet propulsion
system, the equivalent station is the engine face plus a constant area
section that has a length of one engine face outer diameter. The
distance from the forward edge of the dump port to the nozzle exit
plane is then allotted for aft fairing length. Next, the boundary layer
thickness at the inlet leading edge is calculated. A fully turbulent
flat plate boundary layer is assumed, at the inlet design Mach number
and zero altitude. An alternate altitude may be specified. The
boundary layer diverter height is specified as 75% of the boundary
layer thickness. Next, the boundary layer diverter projected and
wetted areas are calculated. The next item considered is the for-
ward fairing. A fineness ratio of 3.0 is used for the forward fairing
unless the forward tip of such a fairing would extend forward of the
tangency point. In that case, the forward tip of the fairing is located
at the tangency point, and the resulting fineness ratio is used.

With the geometry of the inlet now fully specified, it is con-
sidered made up of 43 individual pieces. Pieces 1 through 5 and 7
through 11 comprise the inlet sideplate. Pieces 6, 12, 15, and 17
comprise the aft fairing. The cowl side of the inlet consists of
pieces 13 and 14, and the upper surface is piece 16. Pieces 18
through 26 comprise the center web of the inlet, and pieces 27 through
32 comprise the inlet floor. Piece 33 is the piece of ducting ending
at the end of the dump port. Pieces 34, 35, 39, and 40 make up the
boundary layer diverter, and pieces 36, 37, 38, 41, 42, and 43
comprise the forward fairing. The wetted area and weight of each
piece are determined. The inlet center of gravity is calculated, as
are the inlet weight and wetted area. The pitch moment of inertia of
the inlet is then calculated. If a turbojet propulsion system is used,
the effect of the one diameter long constant as a section is included
in the weight, c.g., and moment of inertia calculation. The wetted
area and projected areas including the boundary layer diverter are
used to calculate the inlet drag in subroutine CDINLT.

The above mentioned 43 pieces of the inlet are computed in
the Model based on scaling factors such as in Table I and Figure 3.
See Vol. IIIA Users Manual for input formats,
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APPENDIX F
RAMJET SIZING MODEL

1.0 INTRODUCTION

This appendix discusses the ramjet sizing model.

) discussion is divided among the following three sections.

Section 2, discusses fundamental
ramjet components and examines severa

Section 3 dis

general terms.
11 flow of the computer model.
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in the computer subroutines.
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l ramjet design problems in
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2.0 FUNDAMENTALS OF RAMJET OPERATION

The purpose of this section is to introduce the reader to
ramjet design fundamentals while avoiding as far as possible the
mathematics of a rigorous presentation. A complete derivation
of equations contained in the Seatide ramjet propulsion model will
be presented in Section 5.0 of this appendix.

2o Basic Ramjet Operation

The ramjet engine is the simplest of all airbreathing
engines. As shown schematically in Figure 1, it consists of an
inlet, a diffuser, a combustion chamber and a nozzle. Air enters
the inlet where it is compressed before it is mixed with the fuel and
burned in the combustion chamber. The hot gases are then expelled
through the nozzle by virtue of the pressure rise in the diffuser.
Consequently, although ramjets can operate at subsonic flight speeds,
the increasing pressure rise accompanying higher flight speeds
renders the ramjet most suitable for speeds above Mach 2. 0.

Figure 1 is typical of supersonic ramjets which employ
partially supersonic diffusion through a system of shocks. Since
the combustion chamber requires an inlet Mach number of about 0.3
to 0.4, the pressure rise at supersonic flight speeds can be substan-
tial. For example, for isentropic deceleration from M = 3 to
M = 0.3, the static pressure ratio between ambient and combustion
chamber pressures would be about 34, Only a fraction of the
isentropic pressure ratio is actually achieved since, especially at
high Mach numbers, the stagnation pressure losses associated
with shocks are substantial. After compression the air flows past
the fuel injectors, which spray a stream of fine fuel droplets so that
the air and fuel mix as rapidly as possible. The mixture then flows
through the combustion chamber which may contain a "flameholder"
to stabilize the flame, much as is indicated in Fig. 1. Combustion
raises the temperature of the mixture to perhaps 4000°R before the
products of combustion expand to high velocity in the nozzle. The
reaction to the creation of the propellant momentum is a thrust on
the engine. This thrust is actually applied by pressure and shear
forces distributed over the surfaces of the engine.

Figure 1 shows a centerbody inlet such as was used on
Talos and Bomarc. Current designs are more likely to employ aft
side mounted inlets, a belly inlet or a chin inlet. These config-
urations leave the centerbody free for the payload, guidance system,
and fuel tanks. The diffusers duct the air down the side of the
engine and dump it into the combustion chamber through a 45° to
90° turn. The turn and dump degrade the pressure recovery some-
what but when properly designed set up flow conditions which eliminate
the need for flameholders.
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2.2 Inlet Operation

For ramjet operation it is necessary to slow the entering
air stream to a subsonic value of Mach 0.3 - 0.4. The simplest
and most practical external deceleration mechanism is an oblique
shock or, in some cases, a series of oblique shocks. While such
shocks are not isentropic, the stagnation-pressure loss in reaching
subsonic velocity through a series of oblique shocks followed by a
normal shock is less than that accompanying a single normal shock
at the flight velocity. The losses decrease as the number of
oblique shocks increases, especially at high flight Mach numbers.

M=3 (1) (2)

EIG. 2 Two-dimensional diffuser

] The performance gain to be expected through the use of
multiple oblique-shock deceleration can be appreciated by looking
it at a simple two-dimensional example. Consider the diffuser in
Figure 2 in which the flow is deflected through two 15-degree
angles before entering a normal shock. The Mach numbers in
regions (2), (3), and (4) are 2.26, 1.36, and 0.36, respectively.
The stagnation-pressure ratios will be as follows:

v
o

Po2 - o0.900, P03 - 0.950, P04 - 0.960.
Pol P02 P 03

,

Saace

Thus, the overall stagnation-pressure ratio is approximately
Po4/Po) = 0.820. If the deceleration had been achieved by a single
normal shock, the overall stagnation-pressure ratio would have
been only 0.33. It should be remembered that these estimates do
not include losses due to boundary layer effects, which may be
especially important in the subsonic diffuser.

—p

o

This example does not necessarily employ the best
arrangement of these shocks since a variation of their relative
strengths might provide a higher overall stagnation pressure ratio.
i Figure 3 shows ideal performance from an inlet of n ramps followed
by a normal shock.
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(After Oswatitsch)

In the external compression process, shocks and boundary layers
may interact strongly, so that it is highly desirable to locate the
oblique shocks at points where boundary layers are absent. This
can be arranged easily if a center body (primarily for axisymmetric
flow) is used, as in Figure 1. For an aft inlet configuration a
boundary layer diverter is normally placed between the inlet and

the missile body in order to raise the inlet above the boundary
layer. Inlet performance is further improved if the boundary layer
developed on the inlet ramps is ''bled'' off prior to the normal shock.
The bleed fraction is typically 3-5% of the total air flow.

Figure 2 shows an inlet where oblique shocks generated
by the inlet ramps extend outward beyond the inlet cowl. When this
happens compression work is done on air which is not captured by
the inlet and hence the effective drag of the inlet is increased.

This phenomenon, termed ''additive drag'', will be present whenever
the oblique shocks generated by the inlet ramps are not completely
swallowed. Consequently inlet design calls for both oblique shocks
to intersect at the cowl lip at a pre-selected Mach number termed
the 'inlet design Mach number'. As the shock angles become

more acute with increasing Mach number, additive drag will be
present at velocities below the inlet design Mach number and will

be absent above the inlet design Mach number. This is shown
schematically at the top of Figure 4.
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Additive drag can be avoided by designing the inlet at the
lowest Mach number at which the ramjet will be expecte? to operate.
As shown by Figure 4, this would result in poorer pressure
recovery over most of the vehicle performance envelope. Selection
of the inlet design Mach number is a trade between additive drag
on one hand and pressure recovery on the other. It is suggested
that the inlet design Mach number be initially selected at or near
the iowest Mach number at which the ramjet must operate. This
will degrade inlet performance at higher Mach numbers but it often
happens that the combustor cannot use all of the available pressure
recovery at high Mach numbers (as discussed below). In these
cases conditions at the low Mach number will dictate the ramjet
design and the selected inlet design Mach number will be optimum.
For cases where the ramjet design is dictated by Mach numbers
above the lowest Mach number, vehicle performance can be improved
by increasing the inlet design Mach number.

Design of an inlet for optimum pressure recovery involves
selection of ramp angles. Figure 2 shows an inlet with two ramps
of 15° each. In general free stream flow will be parallel to the
centerline of the inlet only at one vehicle angle of attack (zero
degrees if the inlet is aligned with the centerline of the vehicle).

At all other angles of attack the first ramp will effectively be
greater or less than the design angle. Consequently, pressure
recovery and additive drag will be functions of angle of attack as
well as Mach number. Angle of attack also changes the effective
capture area and hence the mass flow characteristics of the inlet.
Figure 5 shows pressure recovery and mass flow data for a dual aft
inlet system. Data for four aft inlet and chin inlet systems would
have substantially different characteristics. Inlet decks provided
for SEATIDE provide pressure recovery, mass flow and additive
drag data as a function of Mach number and angle of attack.

P Combustor Operation

The working fluid in the engine is '"heated'' by an internal
combustion process. Before this chemical reaction can occur, the
liquid fuel must be injected into the airstream, atomized, vaporized,
and the vapor must be mixed with the air. All this takes time and
space. Space is of course at a premium in aircraft applications,
so that great effort is made to reduce the size of the combustion
chamber by hastening completion of the above processes. Very
high combustion intensity is achieved in aircraft combustion
chambers as compared with conventional combustion devices. This
intensity must be achieved without sacrificing other equally
important performance characteristics. Some of the desirable
features of combustion chambers are as follows: (1) completeness
of combustion, (2) proper temperature distribution at exit, (3) low
stagnation-pressure loss, (4) absence of "hot spots'', (5) stability,
(6) freedom from flameout and (7) small cross section and length.
Many of these requirements are incompatible. For example, high
efficiency and low pressure loss are in direct opposition to small size.
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The temperature rise obtained in the combustion chamber
depends on the fuel being used, the entering temperature of the air,
the pressure at which combustion occurs and the combustion
efficiency. Typical ideal temperature rise curves for entering
total temperatures of 1200°R and 2000°R are shown in Figure 6.
The maximum allowable fuel to air ratio is often limited to some
value just below stoichiometric as fuel addition near stoichiometric
produces only little temperature increase. For example JP5 may
be limited to a fuel to air ratio of 0.06. A slightly higher tempera-
ture (100-200 degrees) could be obtained but only at an uneconomical
fuel consumption rate.

The ratio of specific heats (gamma) and the gas constant
(R) are also functions of temperature, fuel to air ratio, and, weakly,
pressure.

The correlating parameter generally used by the ramjet
industry in estimating combustion efficiency is the burner severity
parameter (BSP).

BSP = M TTZ ) 2 (1) w air flow rate lbm/sec
A5 1000 A5 combustor throat area ft
TTZ = free stream total
temperature °R

2

Figure 7 shows a typical plot of combustion efficiency ( TIC) as a
function of BSP. The combustion temperature (TT4) is
calculated as follows

Try = (8T jgeat) e *+ TT, (2)

Also shown in Figure 7 is the 'lean blow out'' line. If the fuel to air
ratio (F/A) is continually reduced a point will be reached at which
combustion can no longer be maintained. When this happens ''lean
blow out'' is said to have occurred. Lean blow out also correlated
with the burner severity parameter. ''Rich blow out'' can also
occur but as this occurs at fuel to air ratios in excess of
stoichiometric it is of little practical significance.

Fuel decks supplied with the Seatide routine for use in
ramjet design contain four tables, as follows:

L. Ideal temperature rise as a function of fuel to air ratio,
entering total temperature, and pressure.

The ratio of specific heats (Gamma) as a function of fuel to air
ratio, total temperature and pressure.

Gas constant as a function of fuel to air ratio, total
temperature and pressure.
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4. Temperature rise efficiency and lean blow out as a function
of burner severity parameter.

Tables 2 and 3 may be supplied with the data independent .
of pressure. When this happens the routine will automatically eliminate
the pressure variability.

Ducted rockets and integral rocket ramjets use the same
combustion chamber for the booster and sustainer portions of the
flight. For most designs the booster requirements will provide a
ramjet combustor of adequate length to ensure combustion efficiencies
comparable to the data shown in Figure 7. Only for designs with mini-
mal boost requirements ( V~ 800 ft/sec) is the combustion chamber
likely to be sized too small. The criteria used in evaluating the
combustion dwell time is the L* value

L - ZTotal Combustor Volume (3)
Throat Area

For L* values in excess of 60 the combustion efficiency may be
considered as effectively independent of the combustor length, while
L* ~ 40 are marginally acceptable. When L* < 40 combustion
efficiency will be severely penalized and the combustion efficiency
tables supplied with the Seatide routine will result in highly optimistic
designs.

Externally boosted ramjet and unboosted ramjet designs are
sized to an input L* value as the ramjet combustion chamber has no
interface with booster requirements, A nominal L%* value of 60 is
recommended for these designs.

2.4 Nozzle Design

From the standpoint of fluid dynamics the ramjet exhaust
nozzle is relatively easy to design, since the pressure gradient can
be favorable along the wall. Modeling is also simple as only fixed
nozzles are considered in the Seatide routine. Two nozzle efficiencies
are input to the routine to account for non-ideal performance:

Component Variable Name Engine nozzle thrust efficiency,
n ANN (PgAg + Py AgVE) actual
g

(péAé + By A6V62) isentropic
£
which reduces the delivered thrust, and

Thm CNM Nozzle mass flow coefficient

which reduces the effective throat size.
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The exit area ratio (relative to the combustor diameter)
may be restricted to lie within minimum and maximum values.
To the extent that it can do so without violating these constraints, the
3 routine will design the nozzle to provide expansion of the chamber
gases to equal the ambient pressure at the design point. In selecting
the maximum allowable exit area the user should realize that a
booster nozzle recaining system may be required to fit within the
combustor diameter. Consequently, a value no larger than 0.9 is
recommended for integral rocket ramjets and ducted rockets.

245 Component Matching

Figure 5 is an example of critical pressure recovery data
(PT3/PTs ) for a particular inlet. Critical pressure recovery is
the pressure recovery obtained when the normal shock (the shock
between region 3 and 4 in Figure 2) is just inside the cowl lip.

In practice the operational pressure recovery is generally somewhat
less than critical for two reasons:

1. Because of manufacturing tolerances the inlet may produce
less pressure recovery than the nominal critical value.
E ; To allow for this a manufacturing margin (typically 6-10%)
is subtracted by the routine from the critical data. The
differences between the critical value and the margin value
are considered to be unobtainable under normal operating
conditions.

2. The ramjet engine will generally be required to operate
over a range of Mach numbers and altitudes. The ramjet
will be designed to a margined critical pressure recovery
at the design point but will operate at less than theoretical
pressure recovery over much if not all of the off design
regime. Less than theoretical pressure recovery operation
is termed ''supercritical operation'. The mechanism for
super-critical operation is explained below. The
fundamental equation for flow through the combustor

T

E nozzle is:
; Py
;T 4 EE Lo o) Bl (4)
As Tr, R K+ 1 K-l

mass flow
combustor throat

85
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where TT4 = combustor total temperature

Pr = combustor total pressure

g = gravitational constant
R = gas constant
K = ratio of specific heats

The parameters K and R are second order dependent
variables set by the fluid composition, pressure and temperature.
w is determined by capture area. Both capture area and throat area
(Ag) were set to give marginal critical performance at the design
point. Rewriting equation (4) as

. =il )
P :["T } w_ B it

we see that pressure in the combustor will vary (approximately)
directly with the square root of the temperature. The inlet is able
to adjust the pressure recovery because of two physical laws:

L. Supersonic flow will accelerate in a diverging passage.

Zs The higher the Mach number at which a shock occurs, the
greater the resulting loss in total pressure.

The pressure recovery required to satisfy equation (4) is obtained by
the combustor by adjusting the location of the normal shock (see 1
Figure 2) in the diffuser. Flow upstream of the normal shock will
be supersonic. Consequently, the further down the duct the normal
shock is located, the higher the upstream Mach number will be in ]
front of the shock, the more severe the shock and the greater the
resulting pressure loss. The combustor can therefore position the
normal shock in the inlet diffuser duct as required to produce the
pressure recovery dictated by the value of TT4 in equation (4).

As TT, is increased the normal shock will be forced up the inlet

duct until finally it stands at the cowl lip. The inlet is then

producing critical {(maximum obtainable) pressure recovery.

Further increase in TT, requires pressure recoveries which cannot
be achieved. When this happens equation (4) will be satisfied by
reducing w. The normal shock is pushed out of the inlet duct and

sits outside the cowl lip (the inlet '"'unstarts'). Some of the air
previously ingested is spilled and the inlet is said to act subcritically.
Subcritical operation is often unstable and is not permitted by the
SEATIDE ramjet model. Figure 8 shows supercritical, critical

and subcritical operation schematically.
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2.6 Booster Sizing

In general the booster motor should be designed at the
lowest altitude at which the vehicle must onerate. As both the launch
vehicle's maximum obtainable velocity and the booster motor's
delivered velocity gain increase with altitude, the booster will over-
boost the ramjet at altitudes greater than the minimum.

The end of boost Mach number must exceed the ramjet
take-over Mach number. This is true for a number of reasons:

(a) -30 performance of the booster, ramjet and launch
vehicle must be taken into consideration.

(b) The ramjet will slow down during transition from boost
to ramjet operation.

(c) During hot days operation the ramjet performance will
be degraded.

As a rule of thumb the ramjet should be able to take over at
0.2 Mach number below the end of boost Mach number. That is if
the nominal ramjet can take over at Mach 1.8 the nominal booster
must boost to Mach 2. 0.

250 Ramijet Design Problems

2 sl Point Design

Figure 9 shows a ramjet map for an engine to be designed
at Mach 4.0 and 80, 000 ft and required to produce a thrust coefficient
of .3. The lower limit of the allowable operational envelope is given
by the 4000°R line. For the engine under consideration the margined
critical (maximum) pressure recovery is 0.2075. This line forms
the left boundary. The upper boundary results from the inability of
the engine to develop the required CFN at lower temperatures and
high mass flow rates. The right hand boundary occurs because the
velocity in the combustor approaches Mach 1 as the throat area ratio
approaches one. Any capture area and throat area combination which
lie within the allowable operational envelope will result in a workable,
if possibly inefficient, ramjet engine design. Data shown in this
section were generated using LTV computer routines and inlet and fuel
decks. While the lower and left boundaries are discrete, well defined
lines, the upper and right boundaries are not. These boundaries can
be accurately defined by an iterative use of the computer routine but
are generally not of enough practical significance to warrant the
effort. Hence, upper and right hand boundaries shown are approxima-
tions.
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Lines of constant fuel flow (in pounds per hour) are shown as
dashed lines. Their non-linear nature is due in part to the non-linear
shape of the temperature rise curve and in part to pressure losses
resulting from heat addition. On the map shown, increasing the
temperature along a constant pressure line results in an increase in
fuel flow., On other maps the reverse may be true. It is not possible
to make a general statement as to the effect of changing temperature
on fuel consumption; however, we can be certain that minimum fuel
consumption required to produce a given CFN will occur somewhere
on the critical pressure recovery line (.2075 in the example shown).

2. 02 Designing for Multiple Altitudes and Mach Numbers

It is often required to design a ramjet which will operate at
several Mach numbers and altitudes. It is then necessary to select
a design point which will result in a design capable of functioning over
the entire operational envelope. Unfortunately, selection of the
design point performance is highly inlet dependent. Changing the
inlet configuration will often result in changing the design point. An
example can be developed using Figure 10, and assuming the design
requirement is to size a ramjet engine which can produce a CFN of
0.3 at both Mach 2.5 and 500 feet and Mach 3.0 and 40000 feet. The
solid line shows the operational envelope at Mach 2.5, 500 feet while
the dashed line shows the Mach 3.0, 40000 feet envelope. The design
point is there determined by the inlet performance. If the inlet
could produce a usable pressure recovery of 0.4 at Mach 3 any design
point selected along the critical Mach 2.5 (P, [P . 6) line would
result in acceptable supercritical operation at Mach 3 If, however,
the inlet could produce a pressure recovery of only .35 at Mach 3,
any critical Mach 2.5, 500 ft design would result in subcritical
performance at the high altitude point. As discussed previously,
subcritical performance for ramjets is not permitted. Hence, in the
latter case the design point should be Mach 3, 40000 feet. Of course,
we could have avoided the entire issue by designing at some point to
the right of the critical line (say Ac/A3= 0.4, As5/A3= 0.5) but this
would result in excessive fuel consumption at both points.

P Design of Accelerating Ramijets

Ramjets operate at three to five times the ISP of booster
motors. For this reason it is often possible to increase range by
taking over with the ramjet engine at as low a Mach number as possible.
Considerable emphasis has been placed on the trajectory wherein the
ramjet takes over at around Mach 1.8-2.0, accelerates and climbs
to 80, 000 feet at Mach 4,0-4.5, cruises at that altitude, and dives to
500 feet at Mach 2.0-2.5 for a low level run in. This trajectory was
selected for a special consideration during the SEATIDE study because
of its significance and complexity.
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For ramjets attempting to take over the lowest feasible Mach
number, the design point will generally be at the low Mach number,
Operational envelopes for Mach 1.8, 500 feet CEFN and Mach 4. 5,
80,000 feet are shown in Figure 11. Note that the low altitude opera-
tional envelope is partially to the right of the high altitude envelope.
The most promising design point is the upper left hand corner, that is,
at the lowest temperature at wix the ramjet can be designed. This
corner is the most likely to intersect the high altitude envelope. The
reason for this is shown in Figure 12. Decreasing the design tempera-
ture increases the capture area. This results in a somewhat higher
vehicle drag but is beneficial at high altitudes where a large inlet is
required. Continued reduction of the design temperature will eventually
result in a ""no design'', that is, the engine cannot produce the required
thrust regardless of the capture area permitted. The SEATIDE ramjet
routine has the capability of calculating a trial design at an input
temperature, and if the design is unfeasible, incrementing the tempera-
ture until a feasible design is found. This permits a semiautomated
method of determining the lowest feasible design temperature.

The effect of the lower temperature design is shown in Figure
15. Figure IBOshows performances of two ramJet engines, one de-
signed at 2100 R and another designed at 2500°R. The 2100° R design
has a higher drag coefficient due to the larger capture area but can
operate at 80,000 ft. The 2500° R design cannot fly at 80,000 ft. as the
drag is in excess of the thrust. Had the 2500° design been capable of
meeting the 80,000 ft. requirements a choice between the two engines
would have been more difficult. The higher thrust capability of the
lower temperature design would permit it to climb more rapidly to
high altitudes where ramjets operate more efficiently. This advantage
will generally compensate for the higher drag. However, because of
the interaction of inlet drag, mission requirements and engine per-
formance, a final selection must be by trial and error.

The term 12100°R design'' indicates that the ramjet is de-
signed to operate at 2100 R at the design Mach number and altitude.
During operation at other Mach numbers and altitudes the temperature
may be much higher. In fact most of the climb and acceleration will
be at the maximum permitted temperature in order to maximize thrust.
As a "2500°R design' would probably be permitted to operate at the

same temperature limit, neither engine would be operating cooler. The
"2100 R design'' would produce more thrust, however, due to the
larger capture area.
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3.0 DESCRIPTION OF THE SEATIDE RAMJET PROPULSION MODEL

This section discusses the ramjet propulsion system design
options available, presents an overview of the SEATIDE ramjet model,
and describes the program flow in general terms. Flow charts of the two
principle ramjet executive routines are also presented.

3.1 Design Options Available
3.L1.1 Vehicle Sizing Constraints

A vehicle design may be either weight limited or volume
limited. As the diameter is always fixed at the propulsion design level,
volume limited system means that the length is specified and the weight
is a free variable, while a weight limited system means that the weight

is fixed and the length is modified as required to meet the weight specifi-
cation.

3.1.2 Propulsion Cycle Options

The following ramjet propulsion system options are provided:

(a) Integral Ramjet - The integral ramjet system provides
the most volumetrically efficient ramjet configuration.
The solid rocket motor chamber is utilized as the
ramjet combustion chamber after booster motor burn-
out. Volumetric efficiency is achieved at the expense i
of complexity. The chamber must transition from
boost to sustain which requires jettisoning of the
booster nozzle and opening of inlet ports. Some
slowing of the vehicle will occur during transition.
Integral ramjets, with their volumetric efficiency,
are favored for air launched missiles.

(b) Externally Boosted Ramjet - In design of this system,
the booster motor and the ramjet combustor are
separate components, since, in the SEATIDE methodo-
logy, the booster motors are assumed to consist of
two jettisonable solid rocket motors mounted along
side the ramjet combustor. Operationally, this
system is simpler than the integral ramjet, since the
ramjet burn may be initiated during booster motor
tail off. External boosters can be designed with
higher acceleration levels and can deliver larger AV
impulses than can the integral booster. External
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boosters find applications primarily in surface
launched cruise missiles, where large AV is
required and volume is not an overriding constraint.

(c) Unboosted Ramjet - This is a pure ramjet system design.
A supersonic airplane with a Mach 2. 0 capability and
provisions for submerged stores is required to accele-
rate this unboosted missile to its take-over Mach
number.

3.1.2 Inlet Options

Inlet hardware design capability for both dual aft and belly mounted
inlets have been included in the SEATIDE methodology. Performance for
inlets designed at Mach 1. 75, 2.0, 2.25 and 2.5 has been provided as
separate input decks for both types of inlets (see Appendix C, Vol IIIC).
Selection between the two types of inlets is based primarily on packaging
considerations.

3.1.3 Fuel Options

Three fuels which are in general use for ramjets and which
may be input to the model (see Users Manual, Vol. IIIA) are:

(a) JP5 - A standard hydrocarbon fuel; readily available
and inexpensive.

(b) HDHC - A high density hydrocarbon fuel with a con-
siderable advantage over JP5 in volume limited
situations.

(c) Boron Slurry - An advanced fuel which will significantly

out perform JP5 and HDHC; experimental with signifi-
cant combustion efficiency problems; any combustion
efficiency data on Boron Slurry will be controversial;
very expensive fuel.

3.1.4 Material Options

Material options may be selected for each of the components
by input of a material code in the proper location (see Users Manual,
Vol. IIIA). Material properties available in the model include:
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Material Code

AISI 150 psi Steel

AISI 200 psi Steel

300 Gr Maraging Steel
17-4PH Stainless Steel
2014-T6 Aluminum

AZ31B-0 Magnesium
GAL-4V Titanium

RENE 41

WC 129Y Columbium

Gl.ss Fabric Epoxy Laminate
Filament Wound Glass Epoxy
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3.2 Ramjet Propulsion Methodology

3.2.1 Ramjet Design Processes Functional Flow

Design of any ramjet motor is necessarily an iterative pro-
cess because of the interaction between the various components. For
example, if additional thrust is required from a ramjet at a given combus-
tion temperature, the inlet capture area must be increased. This in-
creases vehicle drag and weight which in turn requires a larger booster.
The larger booster will likely decrease the volume or weight available for
the sustainer tank which will again result in a vehicle weight and/or length
change. Consequently, the SEATIDE ramjet propulsion model utilizes
a scheme of successive iterations in arriving at a final configuration. The
main executive routine of the model is PROPXX (Figure 14 ) which
manages design of integral ramjets, externally boosted ramjets, and un-
boosted ramjets.

3258 Integral Ramjet Modeling

)

The first propulsion cycle to be considered will be the integral
ramjet. When the design is initiated, only the payload weight and length
are known. Initial starting values must be assumed for the thrust coef-
ficient (CFN) required, sustainer (fuel tank and supporting hardware), size,
angle of attack, and booster ideal velocity required. PROPXX makes an
initial estimate of the sustainer size (weight or length depending on the
vehicle constraint).

PROPXX next calls PROPRJ (Figure 15 ) which is the lower
level executive routine. PROPRJ makes an initial estimate of the CFN
required and determines the inlet performance of the design Mach number
and estimated angle of attack. PROPRJ calculates a ramjet perfor-
mance map which includes thrust coefficient (CFN), throat area ratio

F-28
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(A5A3), exit area ratio (A6A3), and combustor pressure (PT4), all
calculated for a series of capture area ratios (ACA3). Actual perfor-
mance calculations are done by subroutine RIDES. The map is used
then to determine the ramjet design at the required CFN. With the cap-
ture area thus determined, the inlet design and aerodynamics are estab-
lished by calling INLETP, CDINLT, and INLIFT. Estimates of the

weight and length of all components except the booster have now been
established.

The booster is next designed by subroutine BOOST to produce
the required ideal velocity change. At this point the sum of all weights
(for a weight constrained vehicle) or the sum of all lengths (for a length
constrained vehicle) will generally not equal the required value. An
adjustment is then made to the sustainer size and the sustainer is re-
designed. The booster must then be redesigned to produce its required
velocity change for the new ''payload'' weight. This iteration is repeated
as required until both the vehicle length/weight constraint and the booster
velocity change requirements are met. If the vehicle is constrained and
configured so that, after sizing all other components, insufficient length

or weight is available for the sustainer, the configuration design effort
is terminated.

After convergence on the correct booster/sustainer split,
PROPRJ proceeds to check the ramjet design extracted from the ramjet
map by once again calling RJDES and determining the actual geometry
necessary to produce the CFN required. PROPRJ then returns control
to PROPXX. The routine has now calculated a ramjet design based on
an assumed CFN required and angle of attack. Subroutine XALPHA com-
putes actual drag, lift, angle of attack, and CFN required. PROPXX
now iterates between XALPHA and PROPRJ until the correct CFN is ob-
tained from a correctly sized vehicle. In this iteration the process de- .
scribed in PROPRJ above is repeated as required except that: i

|
i
(a) The initializations are not repeated. ;

(b) The ramjet map is not recalculated if the angle 1
of attack does not vary (within one degree) !

(c) The booster is sized by use of partial differentials if i1

the ramjet nozzle throat area ratio does not vary i
(within 0. 1). '

It is possible that the ramjet will be unable to develop the
required CFN at the input combustion temperature. If this happens, the
routine will check to see if it is permitted to increase the combustion |
temperature. If no temperature change is permitted, or if the maximum !
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value has already been reached, the configuration design effort is termi-
nated. Otherwise, the combustion temperature is incremented and the
design continues.

Subroutine BOOST has sized to an ideal velocity requirement.
Because the vehicle drag was not exactly known, the actual velocity deli-
vered can be expected to be incorrect. Therefore, a final iteration must
be made in order to produce the velocity change required.

After completing the design, PROPXX will make a final pass
through the various hardware routines in order to calculate the moment of
inertia and center of gravity of each of the components. These properties
are not calculated previously in order to reduce computation time. The
final pass through the design process also permits detail output of each
component configuration if desired.

3.2:3 Externally Boosted Ramjet Modeling

The externally boosted ramjet design flow is similar to that of
the integral ramjet, except overall vehicle length includes a ramjet com-
bustor rather than a booster. Boost to ramjet take-over velocity is accom-
plished by one or two strap-on solid motors. These motors affect vehicle
weight but not length.

3.2.4 Unboosted Ramjet Modeling

The unboosted ramjet design flow is similar to the externally
boosted ramjet except for the absence of a booster.
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4.0 TECHNICAL DESCRIPTION AND MATH MODELS

This section discusses key individual subroutines which size
and design the propulsion system components in the vehicle. Equations
are presented in sufficient detail to permit the user to understand the
math model used.

4.1 Ramjet Vehicle Synthesis

4.1.1 Starting Values

Section 3.2.1 discusses the need for initial starting values to
permit the iteration schemes to function. These values are of a transient
nature only. They affect the initial configuration and the efficiency of the
iteration, but not the final configuration.
(a) Weight Constrained Vehicle
SUSWT = (WTTOT - PLMASS)/3
Booster length = PLLT

(b) Length Constrained Vehicle
SUSLT = (XLTOT - PLLT)/2
WTTOT = PLMASS*3

Booster length = SUSLT

where SUSWT = sustainer length

WTTOT = total vehicle weight
PLMASS = payload weight

PLLT = payload length

SUSLT = sustainer length |

XLTOT = total vehicle length
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4.1.2 Propulsion System Payload

From a propulsion system viewpoint, the payload includes all
components which are not directly a part of the propulsion system.

WTSP = WTTOT * SPPWF

PLEX = PLMASS + WTSP + ARSURF
where:

WTSP = weight of secondary power package

SPPWF = weight fraction of secondary power package
PLEX = weight of propulsion system payload
ARSURF = weight of aerodynamic surfaces

WTTOT = total vehicle weight

PLMASS = payload weight

4.1.3 Final Vehicle Synthesis

As discussed in Section 3. 1.2, final sizing of the vehicle con-
sists of assigning the remainder of the length or the weight left over after
everything else has been sized to the sustainer tank. Because of this,
the propulsion executive routines must keep track of all component weights.
Vehicle synthesis takes place in the propulsion executive routines as
follows:

(a) Weight Constrained Vehicle
Vehicle weight is

SUSWT = WTTOT - BOSTWT - WTINLT - WRJ - PLEX

Vehicle length is

XLTOT = PLLT + SUSLT + BOSTLT Integral Ramjet
XLTOT = PLLT + SUSLT + XRJ Non-Integral
Ramjet

(b) Length Constrained Vehicle
Vehicle length is

SUSLT = XLTOT - PLLT - CLT

where:




; CLT = BOSTLT Integral Ramjet
3 CLT = XRJ Non-Integral Ramjet

Vehicle weight is

WTTOT = PLEX + SUSWT + BOSTWT
+ WRJ + WTINLT

t WRJ=0 Integral Ramjet
1 BOSTWT=0 Unboosted Ramjet
where:
: = sustainer weight

k| SUSWT

! WTTOT = Vehicle total length
| BOSTWT = Booster weight
WTINLT = Inlet weight

WRJ = Ramjet combustor weight

PLEX = Propulsion payload weight

PLLT = DPayload length

SUSLT = Sustainer length

BOSTLT = Booster length

XRJ = Ramjet combustor length
4.1.4 Weight After Transiticn

After transition from boost to ramjet operation, the vehicle
. d will have the following weights:
i

(a) Integral Ramjet
BASEWT = WTTOT - BOSPR - CONS l

(b) Non-Integral Ramjet

BASEWT = WTTOT - BOSTWT }h

where

BASEWT Vehicle weight after transition

BOSPR = Booster propellant weight

CONS = Booster inerts consumed weight
? BOSTWT = Booster weight

WTTOT = Total vehicle weight
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4.2 Ramjet Sizing and Performance Modules

Calculation of the ramjet area ratios (capture area, nozzle
area and exit area relative to combustor area) and performance at the
design point are calculated by subroutines PROPRJ and RIDES. RJDES
determines the area ratios necessary to give a required thrust level.
Performance (once the configuration is known) for trajectory simulations
is handled by subroutine PROP1l. Ramjet lengths and weights are not cal-
culated in these routines as they are assumed to have no direct impact on
ramjet performance. Calculation of these parameters is discussed in
Section 4. 3 of this appendix.

A derivation of the basic equations used for ramjet design and
off-design performance is presented in this section. The equations are
based on the one-dimensional compressible flow laws of gas dynamics and
thermodynamics. Where possible, coefficients and efficiencies have been
introduced into the analyses in order that deviations from ideal flow pro-
cesses may be accounted for. The nomenclature used in the equations is
attached, and a schematic diagram of the ramjet with station designations
is presented in Figure 16.

The equations which govern the propulsion performance of a
ramjet engine are obtained in their most general form when one seeks the
off-design performance of a given engine. Therefore, the equations which
apply to the determination of the off-design propulsion performance of a
ramjet (subroutine PROPI1) will be derived first.

4.2.1 Basic Thrust Equations

The most general form of the net thrust equation for a ramjet
is obtained for a ramjet which is pylon mounted to a missile (Figure 16 ).
The net thrust of such a ramjet is defined as the thrust produced within
the engine minus the drag forces acting on the external engine surfaces

FN*Fmnt - PexT

Symbol definitions are in Table V on page F-96.

Thrust produced within the ramjet engine is called gross thrust.
It is defined as the difference between the values of the stream thrusts for
the flow passing through the engine less the product of the ambient pressure
Po times the difference between the cross-sectional areas A6 and Ao'
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Hence 2 2
A, V., ") A V )
. 6 6 6 Ao
F]:NT (P6 A6 + . - (P A +
o o
-P (A6 - Ao) (4.2-1)
or
,0 A,V 2
FINT=(P6-P°)A6+ 6 g6 6
2 o (4.2-2)
" :'oo AO VO
go

The quantity FINT is internal thrust., The name gross thrust is
used here for the first two terms of Eq. (4.2-2). The last term of Eq.
(4.2-2) is called ram drag. External drag is given by the following equation.

Ac A6
DEXT = f (P - Po)x dA + f (P - Po)x dA
Ao Ac (4.2-3)
A
6
+ / T dA
A
c

The first integral in D T is the static pressure force which acts on the
stream tube between sFa)t(ions o and c. This force is called additive drag
(D,). When Ay = A _ this force is zero. The second and third integrals

of q. (2.4-2) reprrsent the static pressure and skin friction forces which
act on the engine cowl. The sum of these forces is called cowl drag (DC).

The equation for net thrust can now be written in the following
form. !
2
Py BV P AV
=(me)A+666_ooo
6 o "6 g
o o

I;‘N
(4.2-4)

-DA-DC

A more convenient form for F__ can be obtained by introducing the following
equations and defintions into Elg (4.2.4)
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= + -
ST6 g, P6 A6 (4.2-10)
The resultant thrust equation then becomes
F..=ST, -P A, - YP A M & (—CD—A)— A Ly P oM .
N 6 o6 6 o o o, 6 2 c %6 5 o
(4.2-11)

4.2.2

formance:

Data Required for Off-Design Analysis

The following data are required to compute off-design per -

(a) Mach number (Mo), the flight altitude (ALT), the type
of day and the angle of attack of the missile inlet with
respect to the free stream (a).

(b) The flow areas of the engine (A , A_, A_, A,, A_and A) ;
- c 2 3 4 5 6 ‘
and the engine cowl shape. I

(c) The engine inlet performance maps. E'i
(d) The combustion chamber burner drag coefficient (CDB).
(e) The chemical composition of the fuel.

(f) The bleed fraction.

(g) The nozzle mass flow coefficient CNM and the nozzle
stream thrust efficiency ﬂN.

(h) The temperature rise combustion efficiency expected.
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4.2.3 Internal Gas Flow Analysis

The internal gas flow analysis is divided into three sections
corresponding to the inlet, the combustor, and the nozzle of the engine.

4.2.3.1 Inlet Performance

For supercritical performance, the mass flow entering the
engine is a maximum for the given freestream Mach number. That is

Wmax * 'oo Vo Ao max (4.2-12)
For subcritical performance the airflow into the inlet is reduced by air
spillage which occurs when the normal shock is positioned ahead of the
inlet cowl lip. The intersection of the subcritical and supercritical por-
tions of the P /PTo curve represents the critical operation point of the
inlet. It is noted that when the inlet operates critically or supercritically,
the additive drag coefficient is a minimum. When the engine operates
critically or supercritically at or beyond the inlet design Mach number,
the conical shock is completely swallowed. For this case the additive drag
coefficient is equal to zero.

Some additional relations and assumptions which will be useful
for matching the engine inlet to the combustor are the following:

(a) The mass flow into the engine inlet is equal to the
mass flow at the diffuser exit.

W= f’o A e /°z Ay, ¥, (4.2-13)

(b) The relationship of the static to the stagnation fluid
properties of the freestream is assumed to be the

following:
70/(70-1) Yo/(')'o—l.)
s T " - ! M 2
= |7 = |1+ 2 o (4.2-14)
Po o i

where ‘Yo is taken to be 1.4




(c) The stagnation temperature at the diffuser exit is
assumed to be equal to the stagnation temperature of
the free stream.

T, = Tp, (4.2-15)

(d) The equation of state and the equation for the speed of
sound of the air leaving the diffuser exit are given by
the following equations.

P, = ,02 R, T, (4.2-16)

c, =J a BT (4.2-17)

where 7Y_ and R2 are determined from input fuel
properties.

(e) The relationships of the static to the stagnation fluid
' properties of the air leaving the diffuser exit are assumed
to be the following:

= £ 7é/(72 = 1L.)
Tz [T ta

Yo (Y= 1) (4.2-18)

All of the relations along Eqs. (4.2-5), (4.2-6), and (4.2-7)
can be combined into a single equation by substituting Eqs. (4.2-5), (4.2-6),
(4.2-7) and Equs. (4.2-14) through (4.2-18) into Eq. (4.2-13). The end

S e

result is
y, -1 ) (7 D/ (y -1.))
[f_o]_ Y5 8 M, (PT,/Pr) [1' R Mo] ,
Al ) - g . - ,
A o A Rz M, (Ac [1_ + 7 1 s (72+1 )/ (2 (72 1) ;
(A3) B s
(4.2-19)

For T, less than 4000°R the gas constants R_ and R are assumed to be
equal. %—[ence, it is possible to eliminate them from I-?q. (4.2-19) for the
practical range of TTZ expected for a ramjet.

)
]
W
NG
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4.2.3.2 Engine Combustor Performance

The equations which govern the thermal flow processes are the

following.
i Conversion of Mass
; WA (1 -[)+Wp =W4 (4.2-20)
i
‘l p2A3 V2 (1 -[)+(f/a.),02A3 V2 (1-,()=/04A4 V4
Equations of State
P B
4
7 ity TG f . S (4.2-21)
2 R2 T2 4 R4 T4
Stagnation to static fluid property relations
s 3 yz/( ¥,-1) 3 yzl( Y,-1.)
w2 . _f “®a Sl e 2
B |7 = o R M2
; 2 2 2
V42 (4.2-22)
e ety ST
Conservation of Momentum
2 2
\ PA,V LAY
1 - R O N e A e T W (4.2-23)
: o o
1 3 Burner drag coefficient definition
Cpy = ——Bu (4.2-24)
- A"
1 il S
,E Zgo
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The combustion efficiency is an input tabular function of the
burner severity parameter

WA TTo :
(e f(BSP) where BSP = A5 { 1000 (4. 2-25)
Temperature rise is determined from:
ATactual = (ATideal) e - 220

The final step in the solution of the combustor flow equations
requires some reduction of equations (4.2-20) through (4.2-24) to a fewer
number of equations. This process is facilitated if one assumes that the
ratio of specific heats of the combustion products does not change as they

are expanded isentropically from their stagnation state. This assumption
allows one to write the following equations.

C, =\[y4goR4T4 (4.2-27)
s i y4/( y4-1.) ’ ’ y4/( y4-1)

TTq [&J - [ e o 2 .
P4 T4 2. 4

One can now reduce the number of equations to be solved by
substituting Eqs. (4.2-21), (4.2-7), (4.2-17), (4.2-27), (4.2-22), (4.2-28)
into Equation (4.2-22) to obtain

R y,-1 (%, +1)/(2(%,-1))
VT, 2 [1‘+ 2 Mzz] 2 2

£ (4.2-29)
PT4 }'4 go M4
\(TT‘}J R, ¥ (Y4+1)/(2(Y4-1))
[1 it M 2
' 2 4

and Eqs. (4.2-24), (4.2-21), (4.2-7), (4.2-2T7), (4.2-22), (4.2-28) into
Equation (4.2-23) to obtain
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2
Pr, 1+ 7, M) Y2 2

- CD
v = 3l G-I B
[l +.2—..]
2

2 = (4.2-30)
()'2/( yz -1.))
(o222 a2
okl M,
Pr, (1. + ¥, M2
Ty & 44

[ ol 2]”4/”'4'1'”
Lo+ —— M,

: Equations (4.2-29) and (4. 2-30) define the performance of the
| engine combustor.

4,2.3.3 Nozzle Performance

The nozzle performance equations are based on the assumption
that the isentropic component and the gas constant R are constant as the
engine combustion gases are expanded in the engine nozzle. For an isen-
tropic expansion, one may write the following equations.

Sonic velocity relationships

CSis =Vy4 go R4 T5is C:6is A }:1 go R4 T6is (FEsSL)

Equations of State

1:)5is P6is
Pr.. = P. = —m— (4.2-32)
5is R4 T5is bis R4 Téis

Stream thrust definition

2
/o6is A6 V6 is B
= : & -
ST6is g, P6isA6 p6is (I+ y M,7) (4.2-33)

..1
v




Stagnation to static fluid property ratios

Y, /(y,~1) y/(y, -1)
P Tt i 4 Y. +'L, 4 4
% =[ 4] {‘—4_] (4. 2-34)
P5is TSis 2
AARARY Y1)
PT4 [TT4 ] }’4 - 1. 2
vl [ M7 wess
bis 6is

Conservation of mass

W =W = W6 (4.2-36)

= A\
4is 5is is /oSis AS 5is
Actual performance of the engine nozzle can be determined by
applying the following correction terms to the equations for isentropic flow.

W4 = & A4 V4 = CNM W5is (Nozz%e'mass flow (4.2-37)
coefficient)

ST, =N _(sT

6 N (Nozzle thrust efficiency) (4. 2-38)

6is)
When this has been done, one can obtain the following nozzle performance
equations.

(Y. +1.)/(2. (¥, -1)
wATT, %8, [ 2 ] % *
y

= (4.2-39)
A Pr,.Cny N R, A
My = CNy (AS/A4)[ g+ 1 My (4. 2-40)
24y, - 1) ; (¥, D/ (@2(Y,-1)
M6=(A5/A6) [)’—4_-:—-1-_ M6 (4.2-41)
e 2
8E; = N Péi,3 Ay (1. + Yy M6 ) (4.2-42)

One of the basic assumptions inherent in Eqs. (4.2-39) through
(4.2-42) and in the operation of subroutine PROPI is that the Mach number
at the nozzle throat is sonic and the Mach number at the nozzle exit is super-
sonic. Although exceptions to the basic assumptions produce inaccurate
results, such exceptions occur only at unusual operating conditions such as
very large angles of attack.
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4.2.4 Steady State Performance of Ramjet Engine Components

For steady state operation of the ramjet, the mass flows
through each section of the engine must be compatible and the fluid pro-
perties leaving one engine component must equal those entering the next
downstream component. The actual determination of the steady state opera-
ting condition of the engine is accomplished by iterative calculations within
subroutine PROP1, which are based on the equations presented in the fore-
going sections.

4.2.5 Summary of Subroutine PROP1

The assumptions which were presented in the foregoing equa-
tion derivations are listed below for the reader's future reference.
Additional comments are included to give the reader insight as to how the
program use may be extended beyond that described in the foregoing.

The equations in the program are based upon the one dimensional,
compressible flow laws of gas dynamics and thermodynamics. Where pos-
sible, coefficients and efficiencies have been introduced into the equations
so that deviations from ideal flow processes may be accounted for.

The program is capable of computing engine performance for
any engine inlet geometry operated at any angle of attack as long as the
inlet performance is input in the proper format.

The routine is capable of calculating performance for any fuel
whose thermodynamic properties of combustion with air are input in the
proper tabular format.

The routine is limited to performance calculations for an engine
which uses a convergent-divergent nozzle which has sonic or supersonic
flow at its exit. The flow at the nozzle throat is assumed to be choked.

The stagnation temperature at the diffuser exit is assumed equal
to the stagnation tenrp erature of the free stream.

The relationships of the working fluid stagnation properties to
the fluid static properties at various stations in the engine are assumed to
be given by Eqs. (4.2-14), (4.2-20), (4.2-28), (4.2-34), and (4.2-35). The
values of y and R used at various sections in the engine are tabulated
below.
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T Ny

Station Value

0 yo =1.4
R_ =53.35 ft/°R

2 Yy = f (TTZ)
R2 =f (TTZ)

4 (frozen flow) Y4 = f (TT4, f/a)

(frozen flow) R4 =f (TT4, f/a)

Y = ¥ =

3 5 4 R5 R4
Y - -

. gy S

The burner drag coefficient Cp_ is assumed to be independent
of changes in the flow conditions entering tf?e combustor.

Combustor temperature rise tables must be input into the
routine for three user selected combustion chamber pressure levels. For
combustion chamber pressures which are intermediate to the tabular pres-
sures, the temperature rise data are found by linear interpolation between
the table values. For combustion chamber pressures which are less than
the minimum input value, temperature rise is taken to be the same as at
that for minimum pressure. Similarly, for pressures which exceed the
largest pressure level of the tables, the temperature rise is assumed to be
the same as that for the largest pressure level of the tables.

Air extraction for accessory power is assumed to occur between
the diffuser exit and the fuel injectors of the engine. After this air has been
used for accessory power, it is assumed that it is dumped from the missile
with momentum recovery which is an input to the routine.

4.2.6 Ramjet Point Design

The basic equations which were derived for the off-design
performance subroutine PROP1, are also applicable to the point design sub-

routine, RIDES. It is only the objectives of the two subroutines which differ.

RJDES is used to determine an engine design that will yield a given net
thrust coefficient for specified engine operating conditions: PROPI deter-
mines the net thrust coefficient of a given engine design for the specified
operating conditions. A summary of the equations used in RJDES is
presented in Table I.
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The ground rules upon which the point design modeling is based
are as follows:

(a) The inlet is operated critically or supercritically.

(b) The flow areas at stations 2, 3, and 4 of the engine are
equal (see Figure 16).

(c) Air extraction for auxiliary power is made between
stations 2 and 3 (see Figure 16).

(d) The engine nozzle is a convergent-divergent nozzle
and the flow at the nozzle throat is choked.

(e) If A, is not input the nozzle exit plane pressure, P,, ,

F | < : 3 6is
| is equal to the ambient atmospheric pressure, Po'

provided the exit area of the nozzle does not have to
violate input limits to obtain the equality of these two i
pressures. If A, must violate one of the input limits ]
to obtain P e ?’ » then A is set equal to the con- ;
! straining limit.

A e S

i
i
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TABLE I

1 EQUATION SUMMARY FOR SUBROUTINE RJDES
| yo/( X =4

yo-l 2
PTo=Po [1. +—2—-— Mo]

Y =1
o

2l .
TO [1. & 2 MO ] = TTZ

PTZ = PTO % (PTZIPTO)

WA Po (AC)
| A n R T A Mo {)8 go Ro To
i 2 o o 3
{
w w
f
= A—A (1 -f) = (f/a)
3 2
(Y +1)/(2 (y.-1))
. R2 WA \/TTO yz-l 27 2 2
My A P - M,
YZ go 2 TZ
V. +1 ('yz/(yz'l”

- 2 2]
Py = Mip, [1 P M

The following two equations are solved simultaneously for M

2
Pr, (1. + Yy M)

4 and PT4'

2 Y2 2
=P_(l.4 < wade
Folit 5 My ) -=5= P, M, Cpy

(}’4/( V-1

M

[1 + 4.l .
: . 4

Conservation of momentum

4

R B 4

. ¥ Pk D/@(y, - 1)
Biiaa

Conservation of mass

e e L P

F-57




T

TABLE 1 (Continued) EQUATION SUMMARY FOR
SUBROUTINE RJDES
(E+LME24ry, =170
4 4
A_5 E M4 [ )"1 +1 J
A CN 2
3 M L2 +(y4- l)M4
g (( y4-1.)/y4)
e ]
6 ():1 -1.) Po
(Y, &1 0ME (¥, 1.5
2 4 4
Sean i [“”4'1'”% ]
A5 M6 );1+ 1.
A =[ﬁ»] [ﬁ]
By Shg Ag

If (A6/A3) is set equal to 1 then (A6/A5) = (A3/A5)

and

SFC

Note: Nomenclature for this section is presented in Table III (p. F-96). -’

Bt ——

P '
sl b bis | 2 i
() T [ mye it g ahen) ;
3 2 (o] \

Ac

-2 [5=]
A 3
3 z

7200. =

" (}’4+1-)/(2.()’4-1.))

1 *[2.+(}’4-1.)M6 ]

+ L.

y, -1
4 M 2
2 6

RS

(= V4/( v, - 1))

B (Ac/A3) * £la) * (1, - )

sle e o H——
CFN’Moavyogo o o
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4.3 Ramjet Combustor Mass Properties

4.3.1 Internal Rocket Ramjet

The internal rocket ramjet uses the same combustor as the
booster. Mass properties are calculated in subroutine BOOST and are
described in Appendix B.

4.3.2 Non-Integral Rocket Ramjet

4.3.2.1 Combustor Design

Subroutine EXRAM is used to size the combustion chamber
whenever the ramjet vehicle being designed is not an integral rocket/ramjet
configuration.

In order to determine the thicknesses of the closures and cham-
ber sidewalls, the routine must first obtain the maximum combustor pres-
sure. The expected maximum pressure seen in the combustor will be based
on design conditions (Mach number, altitude, and angle of attack) input by
the user. The most severe conditions will generally be the highest Mach
number at the lowest altitude to be flown by the ramjet. At these conditions
the angle of attack will usually be small (a value of 1.0 is recommended
for most designs). Static pressure is obtained from a one-dimensional
table look-up as a function of altitude.

Po = f (altitude)
Total pressure is calculated by subroutine ISEN as

Py =£(T_, M, )

To

Pressure recovery is obtained from a double table look-up
from the input inlet deck for a given Mach number and angle of attack.

Prg =M, , )

The combustor chamber pressure is obtained from pressure
recovery and total pressure, as

pcc = PTO * PTR/144.

Chamber material properties (density, yield and ultimate
tensile strenths) are obtained from Subroutine MATLS.
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The combustor diameter will be the vehicle diameter less the
external insulation, if any.

DS = D3 » 2, * Tex

Closure and sidewall thickness will be based on the maximum of

the thickness based on yield, the thickness based on ultimate, and input
minimum values

Fs*pcc Ds
E =
c 2" FT
Fs Pcc R Ds
T =
D 4 FT
The forward closure surface area and weight are calculated as
follows:
E ¢ 1
S =1- LZ
E
2 2
«D nD
s " : = ; log i+s
8E°s L1y
E=1
2
SD = Pl * Ds /2

Forward closure weight, where Cy is miscellaneous forward dome weight

- skt e +
et Tatet e

Forward insulation weight

Wi, =T, *p + 8

FI I D
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Dump stiffeners surrounding the inlet dump ports are assumed to be equal

in area to the dump port area plus 1/6 of the combustor cross-sectional area.
The thickness of the dump stiffeners is assumed to be equal to the case
thickness. The additional weight to be added to the case (as the dump port
area will not be subtracted from the cylindrical weight) is, then, where Cl

is a weight multiplier (usually 1)

sk T sk 1
DB 6. 4 c o

Volume available in the forward and aft domes is

s i sk *3%k3
T (DS 7 (TI + Td ))
6 E

VD=

Sizing of the combustor will be based on the LSTAR parameter,
that is

LSTAR = V, /Atproat

where LSTAR is an input. Values below 40 inches will adversely affect the ]
combustion efficiency while a value of 60 inches is recommended for con-
servative design.

5 = LSTAR * A5
req

Cylindrical volume

chl g Vreq i vdome

Cylindrical length

e e 2 ‘
g [Ds -2 (TC + Tins)] )

chl . vcy1/ (

—_
4
Weight of the cylindrical case

w = | % D * T sk P +C
cyl s c 5

where C5 is miscellaneous cylinder weight.

Weight of the cylindrical insulation

w. =S R (D -2 % T‘ ) * T
inc S
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4.3.2,2 Nozzle Design

Nozzle design equations are as follows (see Figure 17),

Exit radius
R, =4 Ay/A; * Ry
Throat radius

Ry =y Ag/A; * Ry

Throat area

If the height of the entrance section is greater than 80 percent of the avail-
able height (R3 - R5), it is set equal to 0.8 * (R3 - RS)' Then

) =Rc*(1-cos€))

or

Y =0.8*% (R, ~-R_)
Exit cone length

XB = [R, - K. * (1 - cos 9] - RS/tan @

6

Exit side of throat segment

Entrance section length

X3 =R _*sin @ Note theta would have been adjusted from
the input value if YZ was set equal to 0.8 * (R3 - RS)

Entrance radius

Yl =YZ +R

5

e e e ]

T Ty e %




&

arzzoN 32fwey .1 aandrg

B SN e ux

T RSN

t e e s . e o s o

.éx

e ST T T SR SRR T

S T A SR A <
RV A A > >




i A A e,

)

D A T 1 S AR SR

A

Length of the aft dome

The nozzle length as defined in EXRAM includes the length of
the aft dome,

XRN=2Z,6 +X +XA+X

1 3 B

Weight of the exit cone section is derived as follows:

Thickness
= +
Sn Td Texit
Effective density

sk + b3
7~ Td ’oexit Texit

exit Sn

P

Half thickness

il
exit 2 * cos @
Exit radius
= +
Yms R6 Yexit:
Entrance radius
= + 3 == +
sz R5 Rc (1 - cos @) Yexit
Average radius
= +
RBI (le sz)/z
Effective exit area
% & Xa ) SN
Bl cos @
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Weight of the exit section

= K £ 3 3
" it R T

Weight of the throat section
Length of the throat section

XT=2%‘XB

Effective density

£T +1.5 %
SR R R

T Td+l.5'-‘TTHT

Thickness

=T + Sl
80" Tat Trur 2

Effective throat area

Apa - Ept S

Effective radius
= +
RBZ RS Sm/2
Weight of the throat section

Wopr S 2 *H *Ag, *Rp, * Pt Gy

where C6 is the miscellaneous throat weight.
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Entrance section weight

Section length parallel to centerline

X_ =X, -X

E 3 B
Thickness
=T +
Te Td Tent

Section height

Ym3 = YZ = TC/Z

Section length

o 7 2
X4 —J XE i (an3 i YmZ)
Section radius

Y +
R i m3 Ym2

B3 2

Section effective density

ik + sk
£ Td Pent =

= ent
Pe T
e
Section area
AB3 = x4 sk Te
Entrance section weight
= 2 ®om S £ sl
Went P AB3 RB 3
Nozzle weight
= + +
RN T Vextt * Veour * Ve
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4.3.2.3
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Combustor Weights

Aft dome weights are derived as follows:

Area of the port

Aft dome weight

Wopa s 25 Ta 8.

Aft insulation weight

Whin = Ponas® Sga T8

Aft skirt/fairing weight

- w sk sle sk XRN sk
WtAS Ds Tminc e

where C2 is a multiplier.

Forward skirt weight

Skirt length

DB
= + 1
XSK 2 *E AR

Forward skirt weight

Wt_, = @ %D

SK . sl Tminc b3 XSK sk p b3 C

2
Attachment weights

t = ” sk 3 s N F3
wat e Ds Tminc i

where C3 is a multiplier




4.3.2.4

4.4

External insulation weight

Wt = *D

* X * %
EIN RJ Tex £

3 ex

The ramjet combustor weight is, then,

= - + + +
WED = Whpr® Whiop ¥ Vo & Woayr, 2 W00

+ +
S B TR @ T

S at

+ WtElN + WtDB

Modeling of Combustor MOI and CG

Moments of inertia and centers of gravity for the ramjet
combustor components are computed according to the assumptions shown
on Table II.

Ramjet Booster Sizing

Integral and non-integral ramjet booster sizing is discussed

in Appendix D.
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4.5 Sustainer Mass Properties (Subroutine SUSMAS)

The sustainer section consists of two subsections; the sustainer
fuel tank and the fuel management bay. The fuel management bay houses
the fuel management system and the secondary power package. An alter-
nate approach of placing the secondary power package around the combustor
nozzle, favored by Martin in the CAMS routine, has not been incorporated
for the following reasons:

(a) The nozzle must be extended by use of a nozzle blast
tube. As the blast tube has a relatively large cross
section, the area made available per linear inch of
blast tube is considerably less than if a clear section
forward of the booster is utilized.

(b) Because of the high temperatures, high Mach number,
and long cruise times involves, design of a ramjet
nozzle is a very difficult problem. Adding a blast tube
will compound this problem.

(c) Heat transfer across the blast tube wall will be sub-
stantial. Thermal protection of all components located

around the nozzle will be difficult.

(d) It may be desirable to physically combine the fuel
management hardware and the secondary power hardware.

Four fuel management/expulsion systems are available to the

user:
(a) Pressurized expulsion
(1) N
(2) Liquid gas generator
(3) Solid gas generator
(b) Pump expulsion
(1) Ram air turbine
4.5.1 Calculation of Design Fuel Flow Rate

In order to size the fuel controller and pump or pressurization
system, the subroutine must be supplied with the design conditions (the
Mach number, altitude, angle of attack, and fuel-to-air ratio) at which the
maximum fuel flow rate will occur. This will generally be the highest
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Mach number at the lowest altitude the vehicle will be required to fly. An
angle of attack of 1.0 degrees and a fuel-to-air ratio of 0.04 are recom-
mended values if exact values are not known. Selection of the fuel-to-air
ratio and angle of attack are not critical; relatively large differences be-
tween the correct value and the value supplied will have negligible impact
on the ramjet design.

Using the input dezign altitude the routine obtains the static
temperature and pressure from a one-dimentional table look-up.

T , P = f (altitude)
o o

Next, the total temperature and pressure are obtained using
subroutine ISEN and the design Mach number

Tp., Py =E(M_ T, B

o

(o]
TTZ = TTo

Critical pressure recovery and mass flow ratios are obtained
from two-dimensional table look-up as a function of Mach number and angle
of attack

PTR' Ao/Ac = M )
Combustor chamber pressure is calculated next

P =TT

Pr_ /144,
e Tgr

o
With the above information plus the design fuel-to-air ratio,
the fuel flow constant is calculated

po S M;)
C = .918744 * T PA ¥ AL #ts

This constant when combined with the ramjet capture area
ratio gives the design fuel flow rate

w =A [A_*C
fmax e 3
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4.5.2 Tank Design

The tank diameter is the vehicle diameter less the thickness
of the external insulation (if any)

Pressure in the tank for pressurized systems is assumed to
be increased by an input pressure drop fraction
1+ P) x P
Ptank ( AP)

cc

As the tank design pressure will generally not exceed 250 psia,
the input minimum case thickness based on handling, buckling and bending
considerations will usually be controlling.

The weight and/or length of the sustainer tank is derived from
what is left over after the payload, booster, aerodynamic surfaces and
fuel management bay have been sized. To facilitate calculations the routine
first sizes a minimum tank configuration consisting of skirts, attachment
rings, and the eliptical domes with bladder and fuel. The increase in over -
all weight and fuel weight per inch of tank length are also calculated. On
each subsequent call to the routine the tank can be sized to meet the avail -
able length or weight without repeating the minimum tank calculations.

If a Ram Air Turbine is used, the thickness of the tank cylinder
and dome ends will be based on the input minimum value. If any of the other
systems are selected, the tank thicknesses will be the maximum of the
thickness based on yield, the thickness based on ultimate and the input mini-
mum thickness. Yield and ultimate tensile strengths are supplied by sub-
routine MATLS at the sustainer tank design temperature. Density is also
supplied by MATLS but is assumed to be independent of temperature.
Material properties are listed in Section 4. 8.

F.S, *P “ D

+
f

cylinder thickness

& TANK T c
- ¥y 2 *F
T F.S. = factor of safety, e.g.,
T  * .0
e E 2
D 2 FT = ultimate or yield

tensile strength

NSRS Tengta TD = dome thickness

Lmin a DT/E E = Elipse ratio
F-72
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Note that, if the length available for the sustainer is less than
the minimum length, the case being calculated is terminated.

External insulation weight per unit length

= D b3 T e
5 EX 3 ex, pexI

External insulation weight on minimum length

Wigpx: = Spp’ b

Sustainer tank ends are assumed to be eliptical rather than
spherical. If an elipse ratio of 1 is input an error will occur.

t t s Sl
D 2 2 g T-%8

Dome weight

Wi, = Tp #8,, %p

Bladder weight in dome area

= b1 3¢ p
WtB TB SD B

Fittings and fill port weights

Fittings = Wt_ * 0.25

4.5.2.1 Stand Pipe Weights

The design assumes that the fuel will be contained in a bladder
and that a stand pipe will run the length of the cylindrical section to prevent
entrapment of large amounts of fuel. Calculation of the weight of the stand
pipe per inch of length is as follows, if V - 50 ft/sec and p = 49 1b/ft".




. DIZ * mo*k 50
= 3
Wy ® 8% ~T T
D.2 = .0748 W
,1 e £
: D, = .2736 {vf (assume tube wall = .02 in.)

D =.2736 W, + .04
o f

wt, = B _%® % .02 % p (assume p = . 283 1b/in3)

.0178 D
o

WtL

4.5.2.2 Flange Weights

: In order to achieve a rational method for estimating the weight
2 of splice rings and joints, a standard model is established. Figure 18
shows a sketch of the joint that connects one section to the next. The basic
thickness at the joint is assumed to be twice that of the basic skin, and a
partial bulkhead is provided for mounting internal equipment.

The stress concentration in the basic shell wall is minimized by
thickening the wall over a length such that the characteristic shell para-
meter is given as

L TR R AAEORENES L sk e

B, =3
where
B =
; Taking V = 0.3 as a typical value, the joint semi-length becomes
|
1= 2.34 Rh
?g The shaded area shown in Figure 18 represents the weight

to be added to the skin weight to account for the splice ring connection at
the intersection of each end of a body section. This weight is obtained from

the following equation:

Wp =44.1 (Rh)l' 50 +2.75 R%hp

R T
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FIGURE 18
SPLICE RING MODEL

Flanges of the type shown are assumed to be attached to both
ends of the sustainer section.

Skirt weights
SKitte = px D % T =], | %@
t € min

Dome volume

(D, =2 # {2 + T )

Dv i 6 * E

Adjusted fuel density accounts for both ullage and allowance for
density change due to temperature

D =(p (T - 75)) * (1 - ULLG)

FAJ fuel = SPrp

8

Usable fuel in domes

fuel ~




}
| @
| i
] Trapped fuel !
A = * D % 1Y - ;
k Frep ™ Prag * Pe * 10 7 By f-
i Minimum tank weight p
! i
]

g = + - + Ski + g
thin WtDOMES WtB Flange Wts + Skirts WtEXI :
+ Fittings + F__ + f.
3 Fittings FUD FTD 5
g ;
| Volume /Inch of Cyl '

E 1 2
¢ L S - b3 + 1
k AV = 1 (Dt 2 (TB T C)) i
Fuel/Inch of Cyl
AF =V_#*D

Bladder/Inch of Cyl ;

AB - o Dt e TB :,:PB

Case/Inch of Cyl

AC =T*D =T =P+ Wt
t R

ARG & R Ao b M S DT AT o > -

i ; Wt/Inch of Cyl ¢
Wt=AF +AB+ DC+ DEx

4.5.3 Fuel Controller Weight

Sizing of the fuel control system is based on an empirical t
equations modelled on vendor experience.

= E b Y b
Wpe " 10*3 * Wimax

AN AR e

o, 1 TP N ANS . £

4.5.4 Expulsion System Sizing !:.‘

4.5.4.1 Nitrogen System

The nitrogen system sizing is based on the volume of gas re-
quired to pressurize the sustainer tank to a pressure slightly in excess of
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the maximum combustor pressure. As the volume and weight of the tank
will depend on the volume and weight of the expulsion system (and vice
versa) calculation of the nitrogen system is necessarily iterative.

= + P
Pfinal ptank reg drop

=D # AV *X
Vreq v cyl

(L+(YN2-1)) *Zp

W b Yr Pfinal & Zo
NB PNZ Zp
iy Y . ved
Z S Sk e |
N2 B RF TN 2

Built-in routine values include

TN = 530
Z. = 1.0
P
Z = 1.03
o
= 1.
YN2 401

The nitrogen system volume is calculated in subroutine

FMBPAK.

4.5.4.2 Liquid Gas Generator System

The liquid monopropellant gas generator fuel weight and
loaded weight is calculated from the curve fit of Figures 19

and 20.

The gas generator flow rate and fuel volume are based on the
maximum fuel flow rate and the sustainer burn time

meax

P fuel




uorjd el J SSBIN JI0jRIdULN) sen) pmbr 41 2andrg

Wa1 3Iybram Tena
0°02 0°01 o'y 0°2 0°1 S*

T
|
{
N

o sm—— -

TUBTem [ong UOTIORIL sSeW

™
3ybraM Te3IOL




g et A O S TN A

AW YOG J0jRIBUIN) sen) pinbrg

02 @andt g

o -
|
| |
; |
¢ i
_ |
—
/ i J
! |
!
| ! :
: !
! } _ : ! i
1 i \ i 1 |
i el L : = ;
i f | !
g i | :
| _ :
| 1 | )
'
|
~
| FE=
o o o o o
o o o (@] o m
~ o @ %) <* N
Ll -~

NI D~ sum[OA

g e

le 20

12
Fuel Weight~ HN Pounds

F-79




PN T

Gas generator fuel weight

1.1*V_*T _*P_
GGFW = = *i Tsus final
F T

4.5.4.3 Solid Gas Generator System

The solid propellant gas generator weight is calculated from
the propellant weight and an input mass fraction. The propellant weight is
calculated based upon the maximum ramjet fuel flow volume rate and the

maximum burn time.

f
VB e ’max
Ptuel
1.1%V P
GGFW = = *}; sus final
F a8

Solid gas generator system weight

I GGFW
CEWE = Mass fraction

Solid gas generator system volume

GGFW , GGW - GGEW
L 283
¥oke = 85

4.5.4.4 Ram Air Turbine

Power required is set by

£
HP =-—biE. &p . % 000152
final

F
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The pump weight is calculated below, except that it has a mini-
mum value of 2 pounds.

Pump Wt = (HP -7) %.38+2
pump

The turbine weight is calculated below, except that it has a
minimum value of 3.7 pounds.

Turbine Wt = (HP = T) # 57 & 3.7
pump
The turbine volume is calculated below, except that
it has a minimum value of 36.5 in”. ;

Turbine Volume = 36.5 + 14.5 * (HP - .65) {
pump

The system weight is given by

t = 1.2 % (Turbine Wt + Pump Wt) .

sys ¢
For packaging purposes the ram air turbine is assumed to

have a diameter of 3. 625 inches.

As indicated above, calculation of the dome ends and of the
change in weights and volumes with length is performed on the lst pass i
through the routine. These calculations need not be repeated during sub- !
sequent passes.

Length and weight of the fuel management bay are calculated in ,
subroutine FMBPAK. Sustainer minimum values are then calculated. .

. s - + X
Sustainer min length Lmin FMB

Sustai min ight = Wt . + Wt
ustainer weig e FMB

The design problem being solved may be either weight- or 3
length-constrained. In either case the weight and length of all other vehicle i
components will be known at the time SUSMAS is called. The allowable
sustainer cylinder length (weight) will be what is left over after the other
vehicle component lengths (weights) and the sustainer minimum length
(weight) are subtracted from the total vehicle length (weight)

J
e Xtot —i=zl XCi 5 Xmin




AL SN TR R . ot S T

N AR

o TSNS, A

PESENE R

{

T e AR AT SRR o

If Xcyl is negative the design case is terminated. If the
vehicle design constraint is vehicle length, the cylindrical length is
obtained directly. If the design constraint is vehicle weight cylindrical
length is obtained from:

Leyy, = Xeyl/ awt

4.5.5 Sustainer MOI and CG Modeling

Calculation of the sustainer C.G. and MOI is straightforward.

Components and the solid models used are listed in Table III.

S S —
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SUSTAINER MOI AND CG MODELING

Component
Fittings
Fwd dome
Fwd bladder
Fwd flange
Fwd skirt
External Insulation
Case sidewall
Sidewall bladder
Aft skirt
Aft flange
Aft dome
Aft bladder
Fwd propellant
Cylindrical propellant
Aft propellant
Trapped propellant

TABLE III

Solid Model

Point Mass

Semi elipsoidal shell

Semi elipsoidal shell

Cylindrical shell
Cylindrical shell
Cylindrical shell
Cylindrical shell
Cylindrical shell
Cylindrical shell
Cylindrical shell
Semi elipsoidal shell
Semi elipsoidal shell
Semi elipsoidal solid
Cylindrical solie
Semi elipsoidal solid

Cylindrical shell

Remarks

Includes standpipe wt.
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4.6 Fuel Management Bay Configuration and Mass Properties

Components packaged in the fuel management bay are
discussed in this section and are grouped as follows:

(a) The power source for the aerodynamic control surfaces
actuarion system (secondary power package)

(b) The fuel controller

2 (c) The power source for the fuel expulsion system
4.6.1 Secondary Power Package
The weight of the secondary power system (Wt__) is calculated

in subroutine PROPXX as a fraction of total vehicle weighfs.P

Wt <« SP

sp - "TroT * SPus WTToT
SP i secondary power pack-
b age weight fraction

= missile weight

The secondary power package weight fraction is a user input.
The following is suggested as a guide for the value to be input.

'; System
Secondary Power System Ram Air Turbine Battery
] SP_, . 025 .03 + .01 per
q = 100 sec flight time
i#
! Bleed Fraction 6% to 8% 3% to 5%
The volume which should be allocated to the secondary power package will j
vary between 10 and 16 in3 per pound, depending upon the degree of ’
b i sophistication assumed. |
{4 E
: ii 4.6.2 Fuel Control System t;'
1 I
1t The weight of the fuel controller is calculated by SUSMAS .
% according to the empirical formula. j
{"g WFC =10 + % (Max Fuel Flow Rate) where Max Fuel Flow Rate :
is in lbs/sec !
The volume occupied by the fuel control system is estimated at
10 inches per pound.




B R e i

RPN Sp—

R TS RMMEE RTRT e TR SRV GO T Pl g

oae - wes B e e

4.6.3 Power Source for Fuel Expulsion System

As discussed in Section 4.5 of this appendix, the fuel expulsion
system may be any of the following:

(a) Nitrogen bottle

(b) Liquid gas generator
(c) Solid gas generator
(d) Ram air turbine

Weights and volumes of the latter of these systems are cal-
culated in SUSMAS and discussed in Section 4.5. The weight and volume
of the N, required is also calculated in SUSMAS and discussed in Section
4.5, but the packaging is calculated in FMBPAK.

The material code for the N bottles is an input. Density and

tensile strength are supplied by subroutine MATLS based on the input code
and temperature requirements.

The radius of each N2 bottle (RN) is calculated as follows

360 X = number of N_ bottles
f = — n 2
2 Xn
R _ = radius available for N
_ sin 4 B 2
RN fsin 0 1) (RB - X2 - Xl) bottles
X2 = half the clearance
between N2 bottles
X . = clearance between N
1 S
bottles and missile
skin
Bottle wall thickness (TC)
F = factor of safety, ultimate
. 5 Fult pNZ RN ult
c Jult pNZ = nitrogen pressure

a i = ultimate tensile strength
u

TC is not permitted to be less than 0.04 in.

If the number of N bottles is input as a negative number the
bottles will have a spherical dome, otherwise it will be elliptical.
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Spherical
S =4n an S = surface area
Elliptical
' 1 . :
Sef = 1 - — E = ellipse ratio
E
2 2

3 ﬂRN ,ﬂRN 2 14 Sef

9.5 e i
4 E S ef
ef
P R E
Td s < MG H Td = dome thickness
g .2
ult

Td is not permitted to be less than 0. 04 in.

t = = i
w D S PN Xn TD pn den31t¥ of N_ bottle

material
4R, -T) %

v = N D n

D 3E

Weight of cylinders per lineal inch (WTI) and volume (VI) per lineal inch

WtI = Zan TC 'on

e 2
VI = (Rn - TC) TTXn
If the entire volume required is equal to the volume available in
the N, bottle domes, the bottle weight (W ) is assumed to be equal to the

dome weight and the required length (XF)sequal to the depth of N_ bottle

domes plus the input clearance value 2
Ws = WtD
2 x RN
XF = E + CLR CLR = input clearance area

If the volume required is less than the volume available in the Nz bottle
domes, the required length (XF) is calculated thus
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4.6.4

packaged in the void area between the N2 bottles. The length required for
the secondary power package is

In no case is the fuel management bay length permitited to be
less than 4 inches

T T

B e

v -v
Length of cyl = —RE-\?—-P—
I
2 %Ry
XF = Length of cyl + Ik + CLR

and the weight WS = WtD + (length of cyl) Wt

I

If the volume required is less than the volume available in the domes, the

radius is reduced until the volume required is packaged in spheres or
ellipsoids.

The weight of the expulsion system is

= + = : . .
WtE WS WNZ WNZ weight of N2 required

Final Fuel Management Bay Calculations

For N2 bottles it is assumed that the fuel controlled can be

L = WtSp VPP PKD VPP

3 = volume per pound (SPP)
5 PKD

packing density reciprocal

Then the fuel management bay length (XFMB) is given by

XFMB =L _ + XF
ss

For systems other than N‘2 bottles, the length (XFMB) is

VOL = VOLX + 10WFC + Wt:Sp VPP (VOLX = expulsion sys -

tem volume

XFMB = VO;* PKD + CLR JA,. = area of fuel f
R_“w-A =

B line Hieh

Skin weight (SK) |

SK = Shell (XFMB) Shell = skin weight per inch

Total bay weight = expulsion system weight + Sk + Fuel controller
+ Wt
sp

F-87




4.7 Inlet Sizing and Mass Properties

Determination of the inlet capture area is an integral part of
ramjet sizing and performance and is discussed in Section 4. 2 of this
appendix. Inlet mass properties are discussed in Appendix C.

Inlet performance (pressure recovery, mass flow ratio, and
additive drag as a function of Mach number and angle of attack) are supplied

in tabular form and read into the SEATIDE CGSM.

4.8 Material and Mass Properties

4.8.1 Materials Subroutine MATLS

The MATLS module contains the yield and ultimate tensile
strengths and densities for 11 different structural materials. Tensile
strength data are stored as functions of temperature and have a maximum
value over which the data are valid. Data for a given material are obtained
by calling MATLS with a material code and desired temperature. MATLS
calculates ultimate and yield tensile strengths at the temperature supplied
and also determines the density. If the temperature supplied exceeds the
maximum temperature, material properties are calculated at the maximum
temperature and a warning note is flagged. Material properties contained
in MATLS were extracted from the CAMS routine.

Table IV below lists the material code, the material, and
the maximum temperature.

TABLE IV

MATERIAL PROPERTIES

Code Max. Temp.
Number Material (OF )
1 AISI 150 PSI Steel 1000
2 SISI 200 PSI Steel 1000
3 300 GR Maraging Steel 1000
4 17-4PH Stainless 900
5 2014-T6 Aluminum 600
6 AZ31B-0 Magnesium 600
7 6AL -4V Titanium 1000
8 RENE 41 1600
9 WC129Y Columbium 2700
10 Glass Fabric Epoxy Laminate 400
11 Filament Wound Glass Epoxy 500
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4.8.2 Mass Properties Subroutines

Moment of inertias and center of gravities for individual
components are calculated by breaking the component into standardized
geometrical shapes and using the appropriate subroutine for each shape.
The shape subroutine calculates the moment of inertia and center of gravity
and returns these values to the calling routine which, in turn, sums all of
the data and determines the overall component properties. Lists of the
geometrical shapes assumed for mass property calculations are presented
at the end of applicable component subroutine. The standardized geometri-
cal shape subroutines are listed in Table V and are described in the
following pages.

TABLE V

STANDARDIZED GEOMETRY MODULES

Subroutine Configuration

ZSPRLL Hemispherical Shell within a hole centered about the
centerline

ZSPRSS Hemispherical Solid with a hole centered about the
centerline

ZELPSS Semi-Ellipsoidal Solid with a hole centered about the
centerline

ZELPLL Semi-Ellipsoidal Shell with a hole centered about

the centerline

Z CONHH Truncated conical shell

ZCYLHH Hollow cylinder

ZCYLLL Cylindrical shell

ZELSPR Properties of circular or elliptical segment (used by

other geometrical shape subroutines)




4.8.2.1 Subroutine ZSPLL

This module computes the moment of inertia and center of
gravity of a hemispherical shell with a hole centered about the axis of
rotation, using the following methodology:

=92 £ t
Wts =2fr P
XII. = .41667 * Wt R
x S
Z =R/2

/2 = density

It is assumed that the moment of inertia of the material which would have
been in the hole is equal to a flat disk with radius r and thickness t and a
weight equal to

W thole =pt surf

where surf is the surface area calculated by ZELSPR. The centroid is
assumed to be located midway between the forward face and the aft edge
of the curved surface
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4.8.2.2

as follows:

4.8.2.3

as follows:

Subroutine ZSPRSS

Moment of inertia and center of gravity of a solid hemisphere
with a hole centered about the axis of rotation are computed by this module

.
Zs—8R

2 3
Wts————3 R,o

XII =0.26 Wt R
s s

o= density

It is assumed that the moment of inertia of the center perfora-
tion will be equal to the moment of inertia of a solid cylinder of radius r
with the length adjusted to provide a weight equal to the weight of the center
perforation.
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Subroutine ZELPSS

v

i

= segment volume

$€8  determined by ZELSPR

= segment height deter -
mined by ZELSPR

W =n rZP (H-Y)

cyl

2
hole (L/2 - 2)

Moment of inertia and center of gravity of a semi-ellipsoidal solid
with a hole centered about the axis of rotation are computed by this module
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p = density

It is assumed that the moment of inertia of the center perfor -
ation will be equal to the moment of inertia of a solid cylinder of radius r with
the length adjusted to provide a weight equal to the weight of the center
perforation.

Ws = p Vse Vse = segment volume
€8 g €  determined by ZELSPR
2
=T =
R AL 5 Y = segment height deter -
mined by ZELSPR
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4.8.2.4 Subroutine ZELPLL

Moment of inertia and center of gravity of a semi-ellipsoidal shell
with a hole centered about the axis of rotation are computed assuming that
the moment of inertia of a semi-ellipsoidal shell will be equal to that of a
solid semi-ellipsoid of dimensions H and R less the moment of inertia of a
solid semi-ellipsoid of dimensions H - t and R - t where t is the thickness
of the shell




P = density

It is further assumed that the moment of inertia of the material which would
have been in the hole is equal to a disk with a radius of r, a thickness t,
and a weight equal to

Wthole =pt surf

where surf is the surface area calculated by ZELSPR. The centroid is
assumed to be located midway between the forward face and the aft edge of
the curved surface

Y+t
Zhole i 2

w
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Semi-elliptical shell surface = [R + 2 LOGe (—1 = F)]
7 2
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Transfer of moment of inertia to CG

2
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4.8.2.5 Subroutine Z CONHH

Moment of inertia and center of gravity of a truncated conical
shell are computed as

7z =Hg2Rr)
3 Rr :
2 ;
LW 2 2, . WH 2 rR |
XII = = (R™+r7) + =7 (1 + =R2 ﬂ

4.8.2.6  Subroutine ZCYLHH ;f

Moment of inertia and center of gravity of a hollow cylinder
are
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4.8.2.7 Subroutine ZCYLLL

Moment of inertia and center of gravity of a cylindrical shell
are

Z =H/2

W is weight

4.8.2.8 Subroutine ZELSPR

T —

Properties of a circular or elliptical segment are computed '
assuming that an elliptical segment is equivalent to a circular segment with |
the same segment radius (X) and height (Y). This assumption becomes
increasingly inaccurate as X-—>R. .

Oblate spheriod

H = ellipse minor axis

*

& |

e

2

4

Y=H-H/1- }iz—
R

R = ellipse major axis
If sphere G =R = H "
If ellipsoid
2 2
G = LS G is equivalent circular
2Y 4
radius ,
2 E
( Volume = 'ﬂ\TY' (3G - Y) |
Centroid Z = 2 M
4 (3G -Y) |
|
Area = 2 GY ’
4
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TABLE V

RAMJET PROPULSION NOTATION

A flow area (ftz)
ALT altitude (ft)
B burner drag force (lb)
BSP burner severity parameter
c local sonic velocity (ft/sec)
CDA inlet additive drag coefficient 1
CDB burner drag coefficient :
Cpe cowl drag coefficient a
1 CNM nozzle mass flow coefficient :
CFINT internal thrust coefficient |
‘l CFN net thrust coefficient ‘
1 D, inlet additive drag (Ib) [
a DC engine cowl drag (lb) ‘
DEXT ?I;ag act=irlx)g ox+1 gle)external surfaces of the engine '
EXT A C
1 f/a combustor fuel to air weight ratio I
, FINT engine internal thrust (1b)
B FN engine net thrust (1b)
b g, gravitational acceleration (32.2 ft/secz) !
1 L fraction of inlet air which is extracted for accessory usage
M Mach number
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TABLE V (Continued)
static pressure (lb/ftz)
stagnation or total pressure (lb/ftz)
gas constant (ft/deg R)
universal gas constant 1.98726 Btu/(mole®-R)

specific fuel consumption (1b fuel/lb thrust - hr))

stream thrust (1b)

static temperature (deg R)

stagnation or total temperature (deg R)

ideal combustor exit stagnation temperature (deg R)
velocity (ft/sec)

weight flow rate (lb/sec)

air flow rate entering engine inlet (1b/sec) d
boundary layer bleed flow rate (1b/sec)
engine fuel flow rate (lIb/sec or lb/hr)

maximum airflow rate into the engine inlet for a given f
flight condition (1b/sec) ‘

angle of attack of the engine inlet with respect to the free
stream flow direction (degrees) 3

ratio of constant pressure and constant volume specific heats

angle between the centerline of the engine and the direction i
of inlet boundary layer ejection from the engine

combustion temperature rise efficiency

nozzle thrust efficiency
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TABLE V (Continued)
: £ weight density (1b/ft3)
’ P summation sign
| r shear stress (lb/ftz)
1 € maximum possible area of the free stream tube of air

which enters the engine

] is state corresponding to an isentropic expansion
x axial component of force
o free stream conditions :
2 diffuser exit conditions
3 flow conditions aft of engine flame holders
4 nozzle entrance or combustor exit flow conditions
5 nozzle throat flow condition
6 nozzle exit plane flow condition
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APPENDIX G

TURBOJET SIZING MODEL

3. INTRODUCTION

(U) The purpose of this appendix is to present the methods used to
calculate the performance, size, and mass properties of turbojet powered
cruise missiles. The requirements include a single-spool, non-afterburning
turbojet engine capable of operating over a Mach number range of 0 to 2.5 at
altitudes from sea level to 50,000 feet. The air induction system for the
turbojet powered cruise missiles is a two-dimensional belly mounted inlet.
Either normal shock inlets or external compression inlets may be used within
the model. Engine installation, fuel tank arrangements, and structural weight
computations are described in the following sections.

2. REFERENCES
(U) References used in preparing the submodel are listed below:

No. Title
1 Koenig, Robert W. and Fishbach, Lawrence H., "Geneng -

A Program for Calculating Design and Off-Design
Performance for Turbojet and Turbofan Engines,"
NASA TN D-6552, Lewis Research Center, February 1972.

2 Gerend, Robert P., and Roundhill, John P., "Correlation
of Gas Turbine Engine Weights and Dimensions," AIAA
Paper No. 70-669, AIAA Joint Specialists Conference,

San Diego, California, June 15-19, 1970.




3. SYSTEM DESCRIPTION

(U) The turbojet powered cruise missile consists of two major sec-
tions, the payload section which includes the guidance and control equipment
and warhead, and the propulsion section which includes the turbojet engine
and accessories, portions of the air induction system, and the fuel tanks.
Figure 1 illustrates the general internal arrangement of the turbojet powered
cruise missiles. The turbojet powered cruise missiles may be sized to a
specified weight only. The option of sizing to a given length is not available
in the turbojet sizing submodel. Fuel tank length is defined by the weight
allowance for fuel and tankage after subtracting the other vehicle component
weights from the total system weight. The length of the cylindrical portion }
of the fuel tank is computed from the following equation for the wedge tank
option.

XCYL = (WTTJ - WSUM - WSH - WWT - RHOF X VOLHD - VOLWT X RHOF)

(.7854 X DTANK® + PI X DTANK X TC X RHOMTL)

where 4
WSUM = WPL + WASURF + WMISTJ + WENG + WING + WSTRPS + WFS E

Tank length is defined by the length of the wedge portion, the tank cylindri-
cal length, and the length of the forward head. Propulsion system length is
defined by the engine length, tank length, miscellaneous length, and the length
of the constant area section of the diffuser duct at the engine forward face.

XLPS = XENG + DFTIP + XLTW + XCYL + XLFH + XLMISC 1

Total length of the turbojet powered configuration is the sum of the lengths
of the payload section and the propulsion section

XTOTAL = XLPAY + XLPS
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(U) The turbojet engine may be mounted along the centerline of the
missile or a semi-submerged installation may be used where the forward face
of the engine is offset below the missile centerline. The maximum offset
will not exceed the maximum dimension set by the depth of the inlet housing.
Two fuel tank options are available; a cylindrical tank with ellipsoidal heads,
or a cylindrical tank with a forward ellipsoidal head and a wedge shaped tank
fitted above the inlet diffuser duct. Diffuser duct length may be defined by
the size of the engine and inlet capture area or it may bg supplied as an in-
put item. Fuel tank lengths are a function of the inlet diffuser length and
the type of engine installation.

(U) The air induction system for the turbojet powered cruise missiles
consists of a two-dimensional belly mounted inlet, a vertical wedge boundary
layer diverter, and a diffuser duct with an equivalent 7 degree expansion.

A constant area section equal in length to one engine face diameter is allowed
at the compressor inlet. As an alternative, diffuser duct length may be input.
The forward section of the inlet is mounted on a boundary layer diverter wedge
attached to the missile at the lower centerline. A gentle "S" bend is
required in the diffuser duct to obtain low distortion levels at the engine
face.

(U) Two inlet designs are available for the turbojet powered cruise
missiles; normal shock inlets for cruise Mach number of 1.5 or less and a
single external compression surface inlet for cruise Mach number greater than
1.5. The ramp angle for the external compression inlets may be varied be-
tween 8 and 16.5 degrees by input inlet performance data tables. A more
detailed description of inlet sizing is presented in Appendix E.

3.1 Payload Section

(U) The payload section consists of the missile nose and cylindrical
section forward of the fuel tanks. Payload length is a Basic Variable input
while payload weight is the sum of warhead weight, guidance and equipment
weight, any miscellaneous weigﬁt in the payload section, and the weight of the
structural skin in the payload section. Warhead and guidance weight are Basic

G-5




Variable inputs, the miscellaneous weight is an input item, and the payload
structural weight may be input or computed from the total skin area and either
an input unit weight, or an input skin thickness and material density.

Figure 2 shows the payload general arrangement for all of the cruise missile
configurations.

3.2 Engine Description

(U) The turbojet engine is a single-spool type with a converging
nozzle and no afterburning. Compressor bleed air is provided for turbine
cooling and power may be extracted from the turbine for driving accessories.
The engine operates on JP-type fuel although other types of fuels could be
used without a major modification to the program. Figure 3 is a schematic
drawing of the engine showing station locations. The engine performance and
weight are calculated using two separate computer routines described in the
following paragraphs.

4. PERFORMANCE CALCULATION

(U) The engine performance is calculated using the General Engine
(GENENG) Computer Routine developed by NASA/LRC (Reference 1l). This routine
provides the capability of calculating the design and off-design performance
of single and double-spool turbojet engines as well as turbofan engines.

(U) The turbojet engine airflow requirements are defined by the
thrust requirement and the design point flight conditions (Mach number, alti-
tude). Inlet capture area is sized to satisfy the engine airflow requirements
at the design point.

(U) Pertinent features of the GENENG routine are discussed below.

4.1 Design Point
(U) Engine performance characteristics at the design point are cal-

culated using the following input parameters:

2FDS Position on a speed line
PRFDS Compressor pressure ratio
WAFCDS Corrected airflow

G-6
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ETAFDS Compressor Efficiency
PCNFDS Percent of Maximum RPM
PCBLC Percent airflow used for turbine cooling
DPCODS Combustor pressure drop
ETABDS Combustor efficiency
ETLPDS Turbine efficiency
TFLDDS Turbine flow function
CNLPDS Turbine Corrected Speed
AS55 Turbine Outlet Mach Number
ALTP Altitude
AM Vehicle Flight Mach Number
T4DS Turbine Inlet Temperature
4.2 Off-Design Point

(U) For off-design performance, the GENENG routine uses performance
maps for the compressor, combustor, turbine and nozzle. These maps are input
as block data. To calculate performance at an off-design point, the following
conditions must be specified:

ALTP Altitude
AM Flight Mach Number
T4 Turbine Inlet Temperature

With this information and previously calculated design parameters, the com-

ponent maps are used to achieve an engine balance at the off-design point.

4.3 Component Maps
(U) The original GENENG Routine contains performance maps which are

typical maps which were generated by the authors of the routine for illus-

trating its use. Although these maps were not prepared from any existing engine

data, it has been found that the maps are not dissimilar to maps on existing

US engines. Because of this, and due to the fact that the GENENG maps have

been well checked out, it was decided to continue to use those component maps.
(U) The GENENG compressor map is shown in Figure 4. The low range of

pressure ratios results from the fact that the map is used for the fan for

turbofan engine calculations and is used for the compressor for turbojet

G-9
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calculations. For use in any case, the input design point values for pressure
ratio, corrected airflow and efficiencies are used to create scaling factors
which the routine uses to create new maps for the correct range of variables.
For instance, the equation which exigts in GENENG for converting existing map

values of pressure ratios to values for the new map is:

PRDS-1
PRMDS-1

PRFCF =
where PRFCF = map conversion factor
PRDS = design point pressure ratio for case being run

PRMDS = design point pressure ratio in GENENG map

(U) As an example, suppose it is desired to investigate an engine having
a compressor pressure ratio of 8.0. Since the existing GENENG map has a design
pressure ratio of 1.4, the correction factor becomes

PRFCF = i TR 17.5

Hence, all values for pressure ratio in the block data table are multiplied

by 17.5 to set up a new block data table having the proper pressure ratio range.
Similar correction factors are calculated for converting the other parameters
in the block data table. A similar procedure is used to create new turbine,
combustor and nozzle maps. The GENENG turbine map is shown in Figure 5.

4.4 Output Data

(U) In addition to the major parameters, net thrust, fuel flow and
specific fuel comsumption, the routine has the capability of printing out a
number of other parameters including the following:

PCNF Percent compressor speed
ZF Position on a speed line
PRF Compressor pressure ratio
WAFC Corrected airflow

G-11
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WAF Airflow

TFFLP Turbine flow function

CNLP Turbine temperature corrected speed

DHTCLP Turbine temperature corrected enthalpy drop
T,P,H,S Temperatures, pressures, enthalpies and

entropies at all stations

(U) The engine weight is calculated using LTV's WATE computer routine.
This routine was developed from Reference 2. The weight galculation uses an
initial base engine weight which is determined by the engine airflow rate.
This base weight is then modified by correction factors related to engine I0C
date and design factors such as pressure ratio, turbine inlet temperature and
flight Mach number. The input factors to the routine and their ranges in

values are listed below:

LIFE Engine life - short, medium or long
NMAX Maximum Mach number - 0 to 3

OPR Compressor pressure ratio - 4 to 35
TIT Turbine inlet temperature

WO Total airflow rate

YEAR Year of IOC - 1945 to 1985

(U) 1In addition to engine weight, length and diameter, the WATE
routine provides the following listed information:

DIT Turbine tip diameter
DRF Rear flange diameter
DFF Front flange diameter
DFTIP Compressor tip diameter

Also, scaling factors are printed out which allow engine scaling over a modest

range.

=13
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5. TANKAGE

(U) The general configuration of the fuel tank is shown in Figure 1 for
partially submerged and fully submerged engine configurations. The only differ-
ence in the tanks for the two engine configurations is that for the partially
submerged engine, the tank can extend farther aft than the fully submerged
engine.

(U) An option exists for selecting aluminum, stainless steel or titanium
for the tank material. The tank wall thickness is calculated on the basis of
expected bending loads and the particular material modulus of elasticity as was
done for the liquid engine tankage. A minimum wall thickness of 0.03 inches is
allowed. Tank heads are ellipsoidal shells having an ellipse ratio of 2:1 and
the same thickness as the tank side wall. Material density, wall thickness and
surface area are used to calculate tank weight. An option is also available for
inputting a weight per unit tank surface area as shown in Figure 1. The tank
consists of a wedge shape portion and, where length or weight permits, an addi-
tional cylindrical portion. The wedge-shape portion of the tank is formed by
a plane surface cutting a cylinder diagonally as shown in Figure 1. The length
(and ultimately the volume) of the wedge-shape portion of the tank is determined
solely by the length of the inlet. For the partially submerged engine inlet, the
wedge-shape portion of the tank is two-thirds of the inlet length. For the
fully submerged engine, the wedge portion is one-half the inlet length. Where
missile length or weight is sufficient, the tankage extends forward of the wedge-
shape portion in the form of a cylindrical-shape tank. It should be noted that
in all cases, for both the length and the weight options, tankage must consist
of at least the wedge-shape portion having a length equal to a fraction (2/3 or
1/2) of the inlet length. As a result, there could be a situation in a weight-

option problem, where after the weight of the tank is accounted for, there is
insufficient weight remaining to fill the tank with fuel. 1In such a case, the
configuration is flown with a partially filled tank.




6. STRUCTURE
(U) Structural weight in the turbojet propulsion system consists of

the weight of the structural skin around the engine and diffuser duct, part
of the skin around the wedge tank, and the skin around the miscellaneous
section. Structural material may be aluminum, titanium, or steel. Skin
thickness is estimated by the relation

2.725 X DTANK

E0.4

where E is Young's Modulus of elasticity. The minimum skin thickness allowed
is 0.03 inches. The skin area used in structural weight estimates is computed

from the following relation

XLTW
2

ASKINP = PI X DCASE X (XENG + DFTIP + + XLMISC)

Structural skin weight is then computed from the skin area, skin thickness,

and material density.

WSTRPS = ASKINP X TC X RHOMTL X KSTR

where KSTR is an adjustment factor to account for other miscellaneous struc-

tural items. Material properties used in the structural weight computation
are presented in the following table.

Material Density - 1h/1n3 Young's Modulus - lb/in2
Aluminum 0.1 10.47 x 10°
Titanium 0.167 15.89 x 10°

6

Steel . 0.29 28.86 X 10

o




(U) An alternate method of structural weight computation is based on
the following

WSTRPS = ASKINP X WOVAST X KSTR

Where WOVAST is a structural unit weight. A third method of accounting for
structural weight in the propulsion section consists of a user supplied input.

7. LIST OF SYMBOLS

Item Description

DCASE Missile diameter - in.

DFTIP Engine diameter at compressor face - in.

DTANK Fuel tank diameter - in.

E Young's Modulus - psi

PI 3.14159

RHOF Fuel density - 1lb/ft>

RHOMTL Tank material density - lb/in3

TC Tank wall thickness - in i

VOLHD Volume of an ellipsoidal head - in3

VOLWT Volume of a wedge shaped tank - in3

WASURF Weight of all aerodynamic surfaces - 1lbs.

WENG Turbojet engine weight - lbs.

WFS Forward skirt weight - lbs.

WINL Air induction system weight - lbs.

WOVAST Structural unit weight - lb/in2

WMISTJ Miscellaneous weight in propulsion section - 1lbs.

WPL Payload weight - 1lbs.

WSH Structural weight of ellipsoidal head - 1lbs.
: WSTRPS Structural weight in propulsion system - lbs.
: WTTJ Launch weight of turbojet missile- lbs.

WWT Weight of wedge-shaped tank - lbs.
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Item
XCYL

XLMISC
XLPAY
XLPS
XLTW
XTOTAL

Description
Tank cylindrical section length - in.

Engine length - in.

Length of forward head - in.
Miscellaneous section length - in.
Payload length - in.

Propulsion system length, in.
Length of wedge tank - in.
Missile overall length - in.
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