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Preface

This study was an analytical investigation of the laminar, steady,
two-dimensional extended boundary layer equations at low Reynolds
number. The extended boundary layer equations are the Navier-Stokes
equations with the assumption that the normal pressure gradient is
zero, such that the normal component of the momentum equation need not
be solved. This differs from the boundary layer equation model in that
the streamwise diffusion term is not neglected. An "extended momentum
integral equation" was developed from the continuity equation and the
streamwise momentum equation and applied to three flow problems - flat
plate, stagnation point, circular cylinder - using the Karman-
Pohlhausen method.

I would especially like to thank my thesis advisory committee,
Professor Richard Merz and Professor Harold Wright, for their
guidance throughout this task. I also would like to thank my faculty
advisor, Professor Stephen Koob, for his guidance and much needed help
in this study. Finally, I would like to thank my wife, Karen, for her

understanding and encouragement during this project.

Robert D. Behr
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Abstract

An analytical study of the application of the Karman-Pohlhausen
method to the extended boundary layer equations at low Reynolds number
was made. The extended boundary layer equations were the incompressible
Navier-Stokes equations with the assumption of zero normal pressure
gradient. A comparison was made between the solutions for the extended
boundary layer equations and the boundary layer equations at several
Reynolds numbers for flow over a flat plate, flow near a stagnation
point, and flow over a circular cylinder. Favorable results were
achieved for the flat plate case while less than satisfactory results
were achieved for the circular cylinder. The point of separation was
not found. Any further study in this area should consider using
cylindrical coordirnates for the cylinder solution and examining thre

effect of the pressure gradient normal to the body.
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APPLICATION OF THE KARMAN-POHIHAUSEN METHOD

TO THE EXTENDED BOUNDARY LAYER EQUATIONS

I. Introduction

Background

In the derivation of the boundary layer equations from the Navier-
Stokes equations it is assumed that the pressure gradient normal to the
surface is zero such that the pressure at the outer edge of the boundary
layer is impressed across the boundary layer. Furthermore, the velocity
component parallel to the surface, u, becomes equal to the velocity of
the outer flow, Ue’ at the outer edge of the boundary layer. The
resulting equations are known as Prandtl's boundary layer equations.
For low Reynolds number flows and in many other situations {particularly
large adverse pressure gradients), these equations do not adequately
model the fluid physics and the full Navier-Stokes equations should be
solved. However, due to their coupled non-linear nature, they remain
very difficult to solve. Therefore, the extended boundary layer
equations are introduced in an attempt to retain some of the physical
modeling accuracy of the Navier-Stokes equations along with the
simplicity and ease of solution of the boundary layer equations. The
extended boundary layer equations are the two-dimensional continuity

and streamwise momentum equations, namely,
U+, = 0 (1)
Pluuy +vuy) == p, + ak (U + Uyy) (2)

where the streamwise viscous diffusion term,ALuxx, is not neglected as

in the boundary layer approximation. This work addresses an "extended




momentum integral equation" for the extended boundary layer equations
analogous to the classical momentum integral equation for the boundary
layer equations and solves the equation for several external pressure
distributions and Reynolds numbers.

The problem of flow over a flat plate has previously been solved
using the extended boundary layer equations by Koob and Abbott (Ref 2:
64-77). This previous work was used as a starting point once the
momentum integral equation was developed and served as a procedural
check prior to examining the more difficult problems.

Objectives

The objectives of this work were as follows:

1. Develop a momentum integral equation for the extended
boundary layer equations.

2. Solve the extended momentum integral equation numerically
for several Reynolds numbers and the following external pressure
distributions:

a. Flow over a flat plate.
b. Stagnation point flow.
c. Flow over a circular cylinder.

3. Compare the extended boundary layer and Prandtl boundary
layer results.
Approach

The extended momentum integral equation was developed with the
following assumptions:

1. Flow was two-dimensional, laminar, incompressible, and
steady.

2. Pressure was only a function of distance, x, along the

2




surface.

3. Reynolds number was small,

4, Interaction between the external flow and boundary layer
was negligible,

The extended momentum integral equation was then non-dimensionalized
and polynomials of various degrees were assumed for the velocity profile
to transform the extended momentum integral equation from a differential
equation in four dependent variables to a second order, ordinary
differential equation in one dependent variable. The dependent
variable used was the non-dimensional displacement thickness, §,. A
fourth order Runge-Kutta computer program was then used to solve the
differential equation with specified initial conditions. Boundary
layer and extended boundary layer results were compared. It was
desired to show that the extended boundary layer equations would be a
more accurate model of fluid flows than the boundary layer equations,

especially in adverse pressure gradients.
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II, The Approximate Solution Method

Development of the Extended Momentum Integral Equation

Since the full Navier-Stokes equations are very difficult to solve
and the boundary layer equations do not apply near and beyond separation,
the extended boundary layer equations, Eq 1 and Eq 2, were proposed as
a new model to meet accuracy and ease of solution requirements.,

Basically, the extended boundary layer equations were the two-dimensional,
incompressible, steady, Navier-Stokes equations with the assumption of a
zero normal pressure gradient. From the two-dimensional continuity
equation, Eq 1, and the streamwise momentum equation, Eq 2, an "extended
momentum integral equation” was developed. At the edge of the boundary
layer, where the boundary layer has merged with the external flow, Eq 2

had the form:

flele, =-p, (3)

where Ue is the velocity at the edge of the boundary laysr. Substituting

the relationship for - in Eq 3 into Eq 2 resulted in the following

equation:
fuuwy + fruy, = fUeUe, + u(uyt uy,) (%)

The same procedure described in Schlichting (Ref 3: 145) for the
development of the boundary layer momentum integral equation was then
followed tc develop the extended momentum integral equation.

With the inclusion of the streamwise diffusion term, pu the
final equation differed from that presented in Schlichting., Two

additional terms appeared from integration of the term,}(uxx. The

form of this term was as follows (after Eq 4 had been divided through

e T e e e




by f and the term V Ue introduced to aid the integration):
XX

V(Ui = Ve ) dy = =V(UeS™), + YLk, h (5)

Thus, the extended momentum integral equation was developed to be

= b, +(2045%) Y+ b - (50, (6)

where the shear stress, T, is defined by

: b :
; "““;' "V[u,,aLy (7)

the displacement thickness, S‘, is defined by

h
Ve §* = [ (Ve-u)dy ©)

and the momentum thickness, 6, is defined by
h
2
U © -l u(Ue~w)dy (9)

Since Eq 6 was in a dimensional form, it was advantageous to
non-dimensionalize the equation with respect to the free stream velocity,
U, » and a characteristic length, L . The following non-dimensional

variables were used:

U= Ue/Us
5= sVL
=9
6= %L
Making the proper substitutions and defining Reynolds number as

Re:.f_b.&!.

AL

Eq 6 became

;VUQ, i (Sz)g oz (282 +S|) —g‘- + ‘ES'I ‘%" i EG'-U‘ (US')ﬁ (10)

where h in Eq 6 has been replaced by the boundary layer thickness, §.

———————




As seen, Eq 10 was still a second order differential equation with

four dependent variables - §, §,, §,, uy | y=0°

method of assuming a polynomial of various degrees for the velocity

The Karman-Pohlhausen

profile was used to establish three additional relationships among
these dependent variables.

Assumed Velocity Profiles

The Karman-Pohlhausen method has been demonstrated to be a useful
approximate method for solving the boundary layer equations, The sanme
techniques and conditions were applied to the extended momentum integral
equation, Eq 10, assuming polynomials of the first through fourth degree
for the velocity profile. The first and second degree polynomials were
used primarily to establish those procedures in integration which would
provide the best results for the other velocity profiles,

When choosing the velocity profile, consideration was given to
requiring certain properties or conditions to exist. These were taken
from Schlichting (Ref 3: 193) and were as follows:

1. No-slip condition at the wall.

u(x,o0)= 0 (11)

2. Continuity at the point where the boundary layer meets

the potential flow.,

w(x,s)= Ue (12)
3. Zero shear stress at the boundary layer edge.

u,(x,8)=0 (13)
L4, Satisfy the streamwise momentum equation at the body

surface.

Yuy, (x,0) = 7'- Pr = = Ue Ve, (14)




5. Satisfy the inviscid (potential) equation at the boundary
layer edge.
U.”(X,S) ﬂ-U‘,” (15)

With Eq 11 through Eq 15 serving as the boundary conditions, a
velocity profile was assumed in the form of a polynomial in terms of

the non-dimensional distance from the surface
1: Y/‘

A general expression for this polynomial was as follows:

%,,“ a+bq+cq‘+dq’+e»1q+... (16)
where a,b,c,d,e,... were functions of x to be evaluated from the
boundary conditions. The boundary conditions used depended on the
degree of the polynomial selected and the Jjudgement of the author.

Table I gives a summary of the velocity profiles examined in this
study with the boundary conditions used and three of the dependent
variables defined as functions of the boundary layer thickness, §,
and characteristic length, $. The dimensionless quantities J and K
appeared as a result of applying the boundary conditions of Eq 14 and

Eq 15. In equation form,

T HU, = (4R (17)
and
K = b5 Uy = (02)" Ut (18)

Differential Equation in One Dependent Variable, §,

With the velocity profile assumed, the four dependent variables -
8§, 8, ﬂv and uy y=0 ° in Eq 10 were related. Therefore it was

possible to represent three of the dependent variables in terms of
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the fourth thereby reducing the number of dependent variables in the
equation to one. The variable selected for use was the non~dimensional
displacement thickness, 8,. Making the proper substitutions into Eq 10
for 5‘ and uy|y=0 for each respective velocity profile resulted in the
second order differential equations listed in Table I as Eq 19 to Eq 22,
The symbol ' infers differentiation with respect to ﬁ .

Numerical Integration

The solution to the second order differential equation was obtained
by numerical integration using a fourth order Runge-Kutta computer
program as discussed in Ketter and Prawel (Ref 1: 268-277). The step
sizes used in the program were adjusted according to Table II. Any
additional constraints or requirements on the integration will be

discussed in the appropriate sections.

Table II

Integration Step Size and Corresponding Range of §

Step Size Range
§ /10 0.000 < € < 0.01
0.005 0.010=§<1.0
0.010 1,000 = § < 5.0
0.050 5.0 =g¢ < 10.0
0.100 10.0 =§ < 100.0
0.500 100.0 _<_7 < 1000.0




III. Flat Plate Solution

The flat plate problem which has no external pressure gradient
was solved by Koob and Abbott (Ref 2). In their study, the extended
boundary layer equations were solved numerically by requiring the
numerical solution to form a bridge between the Stokes solution,
which is valid near the leading edge, and the Prandtl approximation
solution, which is valid for large Reynolds numbers. An initial 8, was
chosen sufficiently close to the leading edge so that the Stokes
equation and extended boundary layer equation were equivalent. Using
the Stokes approximation solution to determine starting conditions,
the extended boundary layer differential equation was numerically
integrated in an attempt to reach a point where the Blasius solution
would be realized. However, the integration could not be carried far
enough for the Blasius character to be apparent and an asymptotic
expansion was used for § greater than 45 to compute $, and eventually
reach the Blasius solution. The results from integrating the extended
boundary layer equations were in agreement with the Stokes solution for
q less than 0.25 and with the Prandtl solution for § greater than 100,
These results were used to evaluate the procedures applied in this study
and to provide a comparison of the extended boundary layer solutions for
this simple case before undertaking the more difficult problems of the
stagnation point and circular cylinder. Thus, the procedures to be

followed here were analogous to those in Koob and Abbott (Ref 2).

The applicable differential equations came from Eq 19 through

Eq 22 with substitution made for the non-dimensional external pressure

distribution and its derivatives. For the flat plate problem, U




equaled one and all its derivatives were zero. Thus, the variables J
and K, defined by Eq 17 and Eq 18, respectively, were also zero. The
equations were significantly simplified and the techniques employed by
Koob and Abbott (Ref 2: 66-70) were applied for all four velocity
profiles. To demonstrate the techniques, as they apply to the

differential equations, the third degree velocity profile equation

et e A e

will be developed here.,

E | Beginning with Eq 21 the following substitutions were made:

Vs |
v=u'=0
J=J'=0
The result was
i . rr13RY_ _9
! § = & (G55 }- 763, (23)

The corresponding boundary layer equation was derived by neglecting
E | the last two terms in Eq 10 or by setting Sf equal to zero in Eq 23

] 3
§ = Zosms, (24)

Since the boundary layer equations were usually transformed to be
: i independent of Reynolds number, a transformation was performed to
remove the Reynolds number from Eq 23 and Eq 24 by assuming

{ T = 5 R’

; = GEEV

Equation 23 became

- 20-p -1

5% T2 5 R LR’

) (PR T Y Ay R v A o e o S

Equating the exponents of Reynolds number gave

28-p=r-B+1=p
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from which the values of ¥ and P were determined to be unity
¥=pg=1

This transformation resulted in Eq 23 and Eq 24 being Reynolds number

independent. The procedure was repeated for the other profiles and

ylelded the same results for ¥ and B . Table III summarizes the

extended boundary layer and Boundary layer equations for the various

velocity profiles, The bars on §, have been dropped for convenience.

Table ITI

Equations for Flow Over a Flat Plate

Extended Boundary Boundary
Velocity Profile Layer Equation Layer Equation Stokes Equation
First degree 5 =80(0- 3¢ §'= %% 5 = ~5¢
Second degree §' =65~ 5/ =35 s'=-2
Third degree 5 =5 (4%)- 72: s = 25 §'=- 7%8_.
Fourth degree s= 5"(776“- - 3:-:;: s = Sel s/ =- ?33'

The extended boundary layer equation was singular for the first
of two boundary conditions
5, =0 at ¢ =0 (25)

& —> Blasius Limit L A (26)
However, two solutions which were valid near ; equal to zero and 17
approaching infinity were determined from the Stokes equation and the
boundary layer equation in Table III., The extended boundary layer
equation was solved numerically to form a bridge between these two

solutions.

Again using the third degree velocity profile as an example, the

12

!
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Stokes equation from Table III was
q
81 = e (27)

Equation 27 was analytically integrated by introducing the variable

P B

i such that,

p= Ac-%1Ins, (28)

Integration of Eq 28 yielded
(&
g =15 e Cerfc(fic-Ins, ) (29)

l where C was a constant of integration which must be evaluated.

% Following the procedures of Koob and Abbott (Ref 2: 71), Eq 28 and

E Eq 29 were used to determine the initial conditions for the integraticn

{ of the extended boundary layer equation, Eq 23.

1. Pick values for the integration constant, C, and initials,.

i 2. Solve Eq 28 and Eq 29 for &’and § , respectively.

% 3. Integrate Eq 23 with these initial conditions.,

s L4, Adjust value of C until the extended boundary layer
solution approaches the boundary layer solution at $
approaching infinity.

The initial value of §, selected was 10-12. During the integration

process if 5: became less than zero or S:became greater than zero, the

integration was stopped since this would Be in violation of the asymptotic
behavior of §, (See Figure 1). A new value of C was then determined and
the procedure repeated. It was during this procedure that the range

and size of the integration step were refined (See Table II). The value

of C differed for each velocity profile; however, the limits in the

13
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integration procedure before 8 or 5. exceeded the aforementioned

limits were approximately the same as Table IV indicates.

Table IV

Constant Values and Limits of Integration

Velocity Profile Constant, C € Integration Limit
First degree -0.16689083968326 76.5
Second degree -0.27382846491445 65.8
Third degree -0.24323951331955 67.7
Fourth degree -0.28399250520450 55.0
Blasius (Ref 2) -0.24488597951216 70.0

Table V depicts the results of the extended boundary layer and
boundary layer approximations for each case and the per cent differencs
as compared to each other. This per cent difference was computed by
taking the difference between the values of the two solutions and
dividing by the extended boundary layer solution value. As shown, the
extended boundary layer and boundary layer solutions agreed within five
per cent 0f one another at 6 =50, but for smaller q the error increased

rapidly. These same results were obtained by Koob and Abbott (Ref 2: 75)

using the Blasius profile.




Table V

Results and Comparison of the Extended Boundary Laver
and Boundary layer Solutions for a Flat Plate

First Degree Velocity Profile

8, Extended
Boundary Layer

&

Boundary Layer % Difference

0.002588
0.02138
0.1606
1,003
4,667
11.620

0.05477
0.1732
0.5477
1.732
5.477
12.247

2016,
710.
21"'1 .

72.7
17.35
5.39

Second Degree Velocity Profile

8, Extended
Boundary Layer

&

Boundary Layer % Difference

0.002950
0.02424
0.1801
1102
5.007
12.330

0.05774
0.1826
0.5774
1.826
5. 774
12,910

1857,
653.
220.

65.7
15.30
4.70

Third Degree Velocity Profile

8, Extended
Boundary Layer

8

Boundary Layer % Difference

0.00272L
0.02243
0.1675
1.033

L, 740
11.723

0.05503
0.1740
0.5503
1.740
5.503

12.306

1920.
675.
229.

68.4
16.10
k.97

Fourth Degree Velocity Profile

8, Extended
Boundary lLayer

Y

Boundary Layer % Difference

0.002803
0.02304
0.1715
1.052
4,792
11.816

0.05536
0.1751
0.5536
1.751
5.536
12.379

660.
BRte .
66.4
15,52
4,76




IV. Stagnation Point Solution

Introduction

The boundary layer flow around a shaped body generally proceeds
from a stagnation point to a point of separation and beyond. Therefore,
the stagnation point problem was considered in order to establish the
proper initial conditions fof the circular cylinder problem which is seen
as the principal test of the new method. The discussion was limited to
the assumed third and fourth degree polynomial velocity profiles since
the lower degree profile shapes were independent of pressure gradient.

Exact Solution

An exact solution to the complete Navier-Stokes equations was
found by K. Hiemenz (Ref 3: 87-90). The potential flow was defined
by

Vo= ax

Ve = —ay
where "a" denotes a constant. As shown in Figure 2, the potential
flow, perpendicular to a flat wall, impacts and leaves the area of

impact in two directions along the x-axis.

LT LS A LSS DL AP
Figure 2, Stagnation in Plane Flow (From Ref 3: 88)
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For the potential flow, the pressure was given by Bernoulli's equation

\ 2 2 2 2
Po-P =z f(Ue+Ve) =2/ (x*+y’)
A similarity solution was assumed
4
w= Xf(y)
v= ~£iy)
D= 2 ( *+F
S o Z-fa' x + (7)
which identically satisfied the continuity equation. The differential

equations for f and F from the Navier-Stokes equations were

2 ” ~y
£ =" +Vf (30)
Ff =o' F -Yf" (31)
The boundary conditions at the wall, where u=v=0, and at a large
distance from the wall, where u=Ue=ax, determined the boundary conditions
on f and F.

+=.F,=F=0 alT y-o (32)
fi=a

A solution for f was determined first from Eq 30 by solving it
numerically since it could not be solved in closed form. Equation 30
was non-dimensionalized by assuming

ey

$y)=Agly)

A =Va

This led to the differential equation

where

¢m+ ¢~ "+l =0

at y= oo (33)




where ' denotes differentiation with respect to A . The boundary

conditions were converted to

p=¢ =0 at n=0
¢'=’ a"f‘y’=w

Thus, the velocity component, u, became

T T SRR

G=afi =0 ()
As n increased, ¢6p increased linearly at first and then asymptotically
approached one. At ¥V = 2.4 the value of ¢Zq)was approximately 0.99

or within one per cent of the final value. If the boundary layer edge

is defined to be the value of y = § where u = 0.99 U, then

6= s J%I.' (35)

where qs'was that value of 1 where u = 0.99 Ue. A complete table of
N+ @, @ and g"is found in Schlichting (Ref 3: 90).

Approximate Solution from the Extended Momentum Integral Equation

The flow in the vicinity of the stagnation point was characterized

by the external velocity distribution

Usg odl
or in dimensionless coordinates

e (36)
With Eq 36 applied to the appropriate differential equations in Table I,
the stagnation point equations were developed and recorded in Table VI,
Removal of Reynolds number was not possible since Reynolds number is

contained in the definition of J. To numerically integrate, it was

necessary to determine initial values for §,, §,, § , and the quantities
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; J and K. For the exact solution, Eq 35, § did not vary with x or q ;
therefore, S,vms also constant and one of the initial conditions

1
3
prescribed was that |
i
X ’ |
: S, =0 at § =o0.000I |
where the value of € was chosen arbitrarily small. The value of K

was zero since I&,from Eq 36 is zero. From Eq 17, the J equation for

stagnation point flow became
T= 2 (54) Re (41)

Using the expressions in Table I for the displacement thickness, 5,,
a relationship between J and S.was derived for each profile. These

relationships were

128 Sifv__
J= T-T+3%s (42)

for the third degree velocity profile and !
00§ R !
J= 1—~T/;+J§;w (43) |
for the fourth degree velocity profile. Thus, for a given Reynolds
number, the values of J and §, must satisfy Eq 42 or Eq 43. The
possibility existed that J would have three values (roots) for a given

$, and Reynolds number.

‘ Determination of Initial Values for J and §,

With §, constant for the stagnation point flow, the following

condition was implied:
§, =§=0 at £=0 o ()

From Eq 41 or the complementary equations, Eq 42 or Eq 43, the value of

J was also constant for a given Reynolds number. Thus,

21
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Using the conditions of Eq 44 and Eq 45, the extended boundary layer

equations in Table VI were reduced to functions of §,, J and Reynolds
number. These new equations were then used with Eq 42 or Eq 43 to
solve for J and then §, . For the fourth degree velocity profile Eq 44 ;

and Eq 45 were imposed on Eq 39 with the following result:

D 8.[2 Ra{_“’(”ﬁ'i_;ﬁ s 3% i '}) _ (2+%X3-%)

(3-3/2) /08,

or, after rearranging,

4 £2+3'/QXS"J.-/IZ)‘-
208, Re = 330- 17, -53ns (46)

Substituting Eq 46 into Eq 43 gave

10(2+7%
J= 79 - "% = 53 0es (47)

which is a third degree equation for J. The roots of J for both the
fourth degree and third degree velocity profiles are given in Table VII.
Table VII

Values of J and SRe Satisfying Equation 4l
and Equation 42 or Equation 43

Third Degree Velocity Profile (42) | Fourth Degree Velocity Profile (43)
J 5 Re J $:Re
5.8653997 + 85,814115 + 7.0523231 0.20519518
2.1656705 1 0.0126237 i
5.8653997 - 85.814115 - 17.803257 0.2046889
2.1656705 1 0.0126237 i
-32.230799 -17,648133 -72.255580 -29.402177

From Eq 41, J must be real and positive; therefore, a solution for the

third degree velocity profile that meets the required conditions for

the stagnation point was not possible. The reason for this is not

understood at this time.

22

For the fourth degree velocity profile two




roots for J seemed plausible:

J,= 7.052323]
J. = 17.8603257

From the exact solution discussed previously and in Schlichting
(Ref 3: 89) a relationship was developed between J and . Equation
s

41 was rewritten as follows:
T=2(54)Re = 2(s0) %t = 5°(%)

where "a" was transformed from

a= Ue/x
to
a=2U/
Applying Eq 35 gave
Teng (48)

Corresponding values of g Wwere computed for J1 and J2 from Eq 48. The

Ty iy e

n values in Table 5.1 of Schlichting (Ref 3: 90) were redefined to
correspond to 7 = y/§ used in the assumed velocity profiles by
dividing the 1 in the table by the computed s for the respective J
value. With the exact solution now defined in the same terms as the

approximate solution, a comparison was made between the two solutions

based on the J value. These comparisons are presented in Figures 3

and 4.

Both J, and J, were tried as the J value for the stagnation point.

1 2
' For a given Reynolds number, §, was derived from Eq 43 (See Table VII).

e e ey e ey oo et e

Thus, the required initial conditions were
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=0 5. =0

J = 7052323| J,- 17.803257 I
5, =40.20519518/Re 5, =J0.2044889/Re ,

and the integration of Eq 39 was begun,
Results

Throughout the range of integration, §, remained constant or
nearly so for both the extended boundary layer and boundary layer
solutions. This demonstrated that the equations satisfied the conditions
f 5 at or near the stagnation point. With the starting conditions defined,
the stagnation point results were used as initial conditions for the

circular cylinder flow.
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Figure 3. Comparison of Velocity Distributions for Exact Solution
and Fourth Degree Profile Solution with J = 7.0523231
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Figure 4, Comparison of Velocity Distributions for Exact Solution
and Fourth Degree Profile Solution with J = 17.803257
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V. Circular Cylinder Solution

Introduction

The flow around a circular cylinder is a classical case for
testing viscous equation solution methods as it permits the study
of a boundary layer from a stagnation point through a separation point.

The flow is characterized by the external velocity distribution

U =2 sin(X¥R)
or in dimensionless coordinates,

U=2sin §
where g is the angle in radians measured from the stagnation point
and R is the cylinder radius now used as the characteristic length.
The discussion is limited to the solution for the assumed fourth
degree velocity profile since the conditions at the stagnation
point for the third degree velocity profile were undetermined. The
equations for the circular cylinder are listed in Table VIII.

With the given pressure distribution the values of J and K were

as follows:

2
_ 2008, Re cos §
J= “5-Siz r a1 (49)

-/00 82 - -J
K= G-oharki)* = ZRe cosg (50)

The initial conditions imposed for this case were taken from the

stagnation point results

’

§ =0 at § =0.000|
J=7052323] or J=17803257

where the initial value of g was arbitrarily selected. The initial
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values of K and §, were then computed based on the selected J value
and Reynolds number.
Results
With the initial values computed, the integration was begun and
proceeded until §, became greater than 104 or until § equaled 3.14,
indicating the aft portion of the cylinder had been reached. The
extended boundary layer and boundary layer solutions were integrated at
Reynolds numbers of 1, 10, 100, and 1000. For a given Reynolds number,
the extended boundary layer and boundary layer solutions began from
nearly the same value of § . However, 8: was not zero or nearly zero
for the extended boundary layer solution near the stagnation point as
was the case for the stagnation point flow. This was the result of
the term, U"/U, in Eq 22 no longer being zero. This term caused &,
to have a large negative value and the extended boundary layer solution
(8,) decayed rather quickly for the fourth degree velocity profile as
depicted in Figure 5. Meanwhile, the boundary layer solution had §,
increasing gradually until a certain angle from the stagnation point,
@ , was approached, at which time the §, increased rapidly and exceeded
104. The higher the Reynolds number, the higher was the value of ¢
where 5, increased rapidly. The point of rapid 5, increase was assumed
to be where separation occurs. As shown in Figure 5, the angle ¢ was
in the range of 130 degrees to 150 degrees for the Reynclds numbers
tested rather than approximately 82 degrees as prcvious studies
have shown (Ref 3: 202). Thus, the present results are not understood.
A possible reason for this conflict could be the coordinate system
used. A rectangular coordinate system does not account for the curvature

of the cylinder. This could impact the solution for the extended

29




N Fi — < o R Al e AN o N gl

boundary layer and boundary layer approaches dramatically. Perhaps

it would have been more appropriate to have used a cylindrical

e e e

coordinate system thereby accounting for the curvature.
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Figure 5. Comparison of Extended Boundary Layer and Boundary Layer
Solutions for Reynolds Numbers of 1, 10, and 100
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VI. Conclusions and Recommendations

Conclusions
The conclusions drawn from this study of the extended boundary
layer equations are presented as follows:

1. A momentum integral equation can be developed which
includes the streamwise diffusion term. It is hypothesized that this
is a more accurate approach than the boundary layer equations and a
necessary approach for boundary layer flows near separation.

2. The results obtained for the flow over a flat plate were
in agreement with those presented in other studies.

3. The results obtained for the flow at the stagnation
point and over a circular cylinder were less than satisfactory. The
extended boundary layer and boundary layer solutions did not agree
for the flow over a cylinder at any Reynolds number.

L, The method applied did not give a clear indication as
to where separation occurred on the cylinder as compared to previously
demonstrated methods.

Recommendations

The following recommencdations are made for future studies in
this area:

1, The coordinate system used in the extended boundary layer
equations should be changed to a cylindrical coordinate sy stem,
appropriate equations developed, and the same tests run to determine
whether correct results could be obtained.

2, The y-momentum equation should be solved for the normal
pressure gradient term to determine whether it is negligibly small as

assumed,

32




-

Bibliograph

Ketter, Robert L. and Sherwood P. Prawel, Jr. Modern Methods of
Engineering Computation. New York: McGraw-Hill Book Company,

1969.

Koob, Stephen J. and Douglas E. Abbott. An Integral-Differential-
Difference Method Analysis of Viscous Flow Over an Impulsively
Accelerated Semi-Infinite Plate. Purdue University Mechanical
Engineering Report, Technical Report FMTR-68-2, December, 1968,

Schlichting, Hermann. Boundary Layer Theory (sixth Edition).
New York: McGraw-Hill Book Company, 19683.




PR —

T s WP

Robert D. Behr was born on 30 March 1946 in Cincinnati, Ohio.

He graduated from Colerain High School, Cincinnati, Ohio in 1964,

He attended the United States Air Force Academy from which he received
a Bachelor of Science degree 'in Aeronautical Engineering and a
commission in the United States Air Force in 1968. He received an
aeronautical rating of navigator at Mather Air Force Base, California
in 1969. He has served as a navigator with the 62nd Military Airlift
Wing, McChord AFB, Washington, and the 362nd Tactical Electronic
Warfare Squadron, Danang AF, Republic of Vietnam. He then served as
an instructor navigator and T45 Simulator test director in the 323rd
Flying Training Wing, Mather AFB, California until entering the School

of Engineering, Air Force Institute of Technology, in June 1976.

Permanent address: 3212 Floridale Lane
Cincinnati, Ohio 45239




UNCLASSIFIED |

SECURIT¥-EL ASSIFICATION OF THIS PAGE (When Data Entered) |
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE o READ INSTRUCTIONs
NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
AFﬁ/GAE/AA/??D 1' >
A 6 LE_(md sg’qg_u.) ‘ 5. TYPE OF REPORT & PERIOD COVERED
CATION OF THE KARMAN-POHLHAUSEN METHOD TO MS_THESIS
THE EXTENDED BOUNDARY LAYER EQUATIONS. — =D o oo
..... e - ER
/u

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

: fiobert D:]ﬁéhr
b Captain  USAF

10. PROGRAM ELEMENT, PROJECT, TASK

9. PERFORMING ORGANIZATION NAME AND ADDRESS
AREA & WORK UNIT NUMBERS

Air Force Institute of Technology (AFIT/EN)
Wright-Patterson, AFB, OH 45433

11. CONTROLLING OFFICE NAME AND ADDRESS <

Air Force Institute of Technology (AFIT/EN) { DeccHRENERY77 /___N
Wright-Patterson AFB, OH 45433 a—rw—r?—y 7
/8 ) ¢ o -

4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASW; report) ,lj
| &
UNCLASSIFIED ,
15a, DECLASSIFICATION/DOWNGRADING ;
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

T e e gy e

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

5 TR BT T
%

RV

18. SUPPLEMENTARY NOTES ,\{Prove YO p&?&c release; IAW AFR 190-17

: JERRAL F. GUES Capta.in, USAF
! Director of Information
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Boundary Layer equations
Navier-Stokes equations
Two-dimensional boundary layer

Boundary layer flow M_
(LR olad S N

I‘ ; 20. ABSWCT (Continue on reverae side if necessary and identify by blHnumber)

An analytical study of the application of the Karman-Pohlhausen method to
the extended boundary layer equations at low Reynolds number was made. The
extended boundary layer equations were the incompressible Navier-Stokes
equations with the assumption of zero normal pressure gradient. A comparison
was made between the solutions for the extended boundary layer equations and
the boundary layer equations at several Reynolds numbers for flow over a flat
plate, flow near a stagnation point, and flow over a circular cylinder.

DD , S, 1473  EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED \

JAN 73

SECURITY CLASSIFICATION OF THIS PAGE (When Data E—n'lm




S

o EABG Lk SEATRA

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Favorable results were achieved for the flat plate case while less than
satisfactory results were achieved for the circular cylinder, The point
of separation was not found. Any further study in this area should
consider using cylindrical coordinates for the cylinder solution and
examining the effect of the pressure gradient normal to the body.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PA.OIMOU! D..ll Entered)




