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Preface

This study was an analytical investigation of the laminar, steady,

two-dimensional extended boundary layer equations at low Reynolds

number. The extended boundary layer equations are the Navier-Stokes

equations ‘with the assumption that the normal pressure gradient is

zero , such that the normal component of the momentum equation need not

be solved. This differs from the boundary layer equation model in that

the streamwise diffusion term is not neglected. An “extended mom entum

integral equation” was developed from the continuity equation and the

streamwise momentum equation and applied to three flow problems - flat

plate, stagnation point, circular cylinder - using the Karmnan-

Pohihausen method.

I would especially like to thank my thesis advisory committee,

Professor Richard Merz and Professor Harold Wright, for their

j guidance throughout this task. I also would like to thank my faculty

advisor, Professor Stephen Koob, for his guidance and much needed help

in this study. Finally, I would like to thank my wife , Karen, for her

understanding and encouragement during this project.

Robert D. Behr
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t
Abstract

U

An analytical study of the application of the Karman-Pohihausen

• method to the extended boundary layer equations at low Reynolds number

was made. The extended boundary layer equations were the incompressible

Navier—Stokes equations with the assumption of zero normal pressure

gradient. A comparison was made between the solutions for the extended

boundary layer equations and the boundary layer equations at several

Reynolds numbers for flow over a flat plate, flow near a stagnation

point, and flow over a circular cylinder. Favorable results were

achieved for the flat plate case while less than satisfactory results

were achieved for the circular cylinder. The point of separation was

not found. Any further study in this area should consider using

cylindrical coordinates for the cylinder solution and examining the

effect of the pressure gradient normal to the body.

viii
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APPLICATION OF THE KARMAN-POHIHAUSEN METHOD

TO THE EXIENDE D BOUNDARY LAYER EQUATIONS

I. Introduction

Background

In the derivation of the boundary layer equations from the Navier-

Stokes equations it is assumed. that the pressure gradient normal to the

surface is zero such that the pressure at the outer edge of the boundary

layer is impressed across the boundary layer. Furthermore, the velocity

component parallel to the surface, u, becomes equal to the velocity of

the outer flow, Uep at the outer edge of the boundary layer. The

resulting equations are known as Prandtl’s boundary layer equations.

For low Reynolds number flows and in many other situations (particu:a~-1y

large adverse pressure gradients), these equations do not adequately

model the fluid physics and the full Navier-Stokes equations should be

solved. However, due to their coupled non-linear nature, they remain

very difficult to solve . Therefore , the extended boundary layer

equations are introduced in an attempt to retain some of the physical

modeling accuracy of the Navier-Stokes equations along with the

simplicity and ease of solution of the boundary layer equations. The

extended boundary layer equations are the two-dimensional continuity

and streamwtse momentum equations, namely,

(1)

p(u~~ i-v~~~) 
— .f-~tJ. (~~~÷ ufl,) (2)

where the streamwise viscous diffusion tem,R&u~~, is not neglected as

in the boundary layer approximation. This work addresses an “extended

1
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momentum integral equation” for the extended boundary layer equations

analogous to the classical momentum integral equation for the boundary

layer equations and solves the equation for several external pressure

distributions and Reynolds numbers .

The problem of flow over a flat plate has previously been solved

using the extended boundary layer equations by Koob and Abbott (Ref 2:

64-77) . This previous work was used as a starting point once the

momentum integral equation was developed and served as a procedural

check prior to examining the more difficult problems.

Objectives

The objectives of this work were as follows:

1. Develop a momentum integral equation for the extended

boL dary layer equations.

2. Solve the extended momentum integral equation numerically

for several Reynolds numbers and the following external pressure

distributions:

a. Flow over a flat plate.

b. Stagnation point flow.

c. Flow over a circular cylinder.

3. Compare the extended boundary layer and Prandtl boundary

layer results.

Approach

The extended momentum integral equation was developed with the

following assumptions:

1. Flow was two-dimensional, laminar, incompressible , and

steady.

2. Pressure was only a function of distance, x, along the2



. - -. I

surface.

3. Reynolds number was small .

L1.~ Interaction between the extemial flow and boundary layer

was negligible.

The extended momentum integral equation was then non-diinensionalized
U

and polynomials of various degrees were assumed for the velocity profile

to transform the extended momentum integral equation from a differential

• equation in four dependent variables to a second order, ordinary

differential equation in one dependent variable. The dependent

variable used was the non-dimensional displacement thickness , S~. A

fourth order Runge-Kutta computer program was then used to solve the

• differential equation with specified initial conditions . Boundary

layer and extended boundary layer results were contare d . t was

desired to show that the extended boundary layer equations would be a

more accurate model of fluid flows than the boundary layer equations,

• especially in adverse pressure gradients.

3
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II, The Approximate Solution Method

Development of the Extended Momentum Integral Equation

• Since the full Navier-Stokes equations are very difficult to solve

and the boundary layer equations do not apply near and beyond separation,

the extended boundary layer equations , Eq 1 and Eq 2, were proposed as

a new model to meet accuracy and ease of solution requirements.

Basically , the extended. boundary layer equations were the two-dimensional,

incompressible, steady , Navier-Stokes equations with the assumption of a

zero normal pressure gradient. From the two-dimensional continuity

equation, Eq 1, and the streamwise momentum equation , Eq 2, an “extended

momentum integral equation” was developed . At the edge of the boundary

layer, where the boundary layer has merged with the external flow, Eq 2

had the form:

(
~
)

where Ue is the velocity at the edge of the boundary layer. Substituting

the relationship for in Eq 3 into Eq 2 resulted. in the following

equation:

• 
(4)

The same procedure described in Schlichting (Ref 3: 145) for the

development of the boundary layer momentum integral equation was then

followed tc develop the extended momentum integral equation.

With the inclusion of the streamwise diffusion ~~~~~~~~~~ the

final equation differed from that presented in Schlichting. Two

additional terms appeared. from integration of the term ,j.tu~~ . The

form of this term was as follows (after Eq 4 had been divided through

4
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by f and the term VUe introduced to aid. the integration):

il5(LUe~~J~~~ L)e,~) tLy =

• Thus, the extended momentum integral equation was developed to be

j~~~i~~’= 9~ ÷ (6)

where the shear stress , 1 , is defined by

= _ _ _ _ _  - -11L~ 7~Lx (7)

the displacement thickness, 
~~~~ 

is defined by

V~S4 f (Ue~~ ) 4 (8)

and the momentum thickness, 9, is defined by

(9)

Since Eq 6 was in a dimensional form, it was advantageous to

non—dimensionalize the equation with respect to the free stream velocity,

U ,,, , and a characteristic length , 1.. The following non-dimensional

variables were used :

If

= 9/j

Making the proper substitutions and defining Reynolds number as

= 
LILLRe

Eq 6 became

(10)

where h in Eq. 6 has been replaced by the boundary layer thickness, ~~~.
5



• As seen , Eq 10 was still a second order differential equation with

four dependent variables - 
~~,, ~~~, u~ 

~~~~~~ 

The Karman-Pohihausen

method of assuming a polynomial of various degrees for the velocity

profile was used to establish three additional relationships among

these dependent variables .

Assumed Velocity Profiles
• 

• The Karman-Pohihausen method has been demonstrated to be a useful

• approximate method for solving the boundary layer equations. The same

techniques and conditions were applied to the extended momentum integral

equation, Eq 10, assuming polynomials o± the first through fourth degree

for the velocity profile. The first and second degree polynomials were

used primarily to establish those procedures in integration which would

provide the best results for the other velocity profiles.

When choosing the velocity profile, consideration was given to

requiring certain properties or conditions to exist. These were taken

from Schlichting (Ref 3: 193) and were as follows :

1. No-slip condition at the wall.

(11)

2. Continuity at the point where the boundary layer meets

the potential flow.

(12)

3. Zero shear stress at the boundary layer edge .

u7 (x,S) ” O  (13)

Li.  Satisfy the streamwise momentum equation at the body

surface.
• • 1L ,,~

(x ,o)
~~*p~ = (14)

6



5. Satisfy the inviscid (potential) equation at the boundary

layer edge.

— 4,, (ii)

With Eq 11 through Eq 15 serving as the boundary conditions , a

velocity profile was assumed in the form of a polynomial in terms of

the non-dimensional distance from the surface

1w )f/
~

A general expression for this polynomial was as follows:

IL/ I 2 q
/U~~ ~~~4 D ) ~~+C.~~ + G b7 ~~~~~ + . . . (16)

where a ,b ,c ,d ,e ,... were functions of x to be evaluated from the

boundary conditions. The boundary conditions used depended on the

degree of the polynomial selected and the judgement of the author.

Table I gives a summary of the velocity profiles examined in this

study with the boundary conditions used and three of the dependent

• variables defined as functions of the boundary layer thickness , ~~~,

and characteristic length , V.. The dimensionless quantities J and K

app eared as a result of apply ing the bounda ry conditions of Eq 14 and

Eq 15. In equation form ,

J~~ ~~~ j .I (17)

and

K — -ti~ L’s,, (18)

Differential Equation in One Dependent Variable, 5,,

• With the velocity profile assumed , the four dependent variables -

~, ~
,, ç and u ,, 

~~~~~ 

- in Eq 10 were related. Therefore it was

possible to represent three of the dependent variables in terms of

7 
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the fourth thereby reducing the number of dependent variables in the

equation to one. The variable selected for use was the non-dimensional

displacement thickness, 8, . Making the proper substitutions into Eq 10

for ~~ and U
y~~yn0 

for each respective velocity profile resulted in the

second order differential equations listed in Table I as Eq 19 to Eq 22.

The symbol ‘ infers differentiation with respect to f
Numerical Integration

• The solution to the second order differential equation was obtained

by numerical integration using a fourth order Runge-Kutta computer

program as discussed in Ketter and Prawel (Ref 1: 268-277). The step

sizes used in the program were adjusted according to Table II. Any

additional constraints or requirements on the integration will be

• discussed. in the appropriate sections .

Table II

Integration Step Size and Corresponding Range of

Step Size • Range

• 

- c /io o.ooo~~~~- o.oi
0.005 O.010~~~~~s1.0• 0.010 1.0OO~~i.<5.00.050 5.0 

~ 
ç ~ 10.00.100 10.0 ~~~ .~~100.0

• 0.500 100.0 < 1000.0

9
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III . Flat Plate Solution

The flat plate problem which has no external pressure gradient

‘was solved by ICoob and Abbott (Ref 2). In their study, the extended

boundary layer equations were solved numerically by requiring the

• numerical solution to form a bridge between the Stokes solution,

which is valid. near the leading edge , and the Prandtl approximation

solution , which is valid. for large Reynolds numbers . An initial 6, was
• chosen sufficiently close to the leading edge so that the Stokes

equation and extended boundary layer equation were equivalent. Using

• the Stokes approximation solution to determine starting conditions,

the extended boundary layer differential equation was numerically

integrated in an attempt to reach a point where the Blasius solution

• would be realized. However, the integration could not be carried far

enough for the Blasius character to be apparent and an asymptotic

expansion was used for ~ greater than LI.5 to compute S, and eventually

reach the Blasius solution. The results from integrating the extended

boundary layer equations were in agreement with the Stokes solution for

ç less than 0.25 and with the Pr~.ndtl solution for ~ greater than 100.
These results were used to evaluate the procedures applied in this study

and to provide a comparison of the extended boundary layer solutions for

this simple case before undertaking the more difficult problems of the

stagnation point and circular cylinder. Thus, the procedures to be

followed here were analogous to those in Koob and Abbott (Ref 2).

The applicable differential equations came from Eq 19 through

Eq 22 with substitution made for the non-dimensional external pressure

distribution and. its derivatives. For the flat plate problem, U

10 
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equaled one and all its derivatives were zero . Thus , the variables J

• and K , defined by Eq. 17 and Eq 18 , respectively , were also zero . The

• equations were significantly simplified and the techniques employed by

Koob and Abbott (Ref 2: 66-70) were applied for all four velocity

profiles. To demonstrate the techniques , as they apply to the

differential equations , the third degre e velocity profile equation

will be developed here .

Beginning with Eq 21 the following substitutions were made:

V a (

u.,= 1J.=o

The result was

I 
~/l3~~.Q~~ ~£~, iT1 ,

~~~~~, (23)

The corresponding boundary layer equation was derived by neglecting

the last two terms in Eq 10 or by setting 5~
” equal to zero in Eq 23

g1
1
-’ 

~~~~~~~~ (24)

Since the boundary layer equations were usually transformed to be

independent of Reynolds number , a transformation was performed to

remove the Reynolds number from Eq 23 and Eq 24 by assuming

H
ç 2 r

Equation 23 became

Equating the exponents of Reynolds number gave

2V—~ 1~~49 + I  =

11
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from which the values of r and ~ were determined. to be unity

This transformation resulted in Eq 23 and Eq 24 being Reynolds number

independent. The procedure was repeated for the other profiles and

yielded the same results for ~ and ~ . Table III summarizes the

extended boundary layer and boundary layer equations for the various

velocity profiles. The bars on S~ have been dropped. for convenience.

Table III

Equations for Flow Over a Flat Plate

Extended Boundary Boundary
Velocity Profile Layer Equation Layer Equation Stokes Equation

4 .
~~ I ‘ 3 a JFirst degree ~, g, (-i) — = 

~~~~~ 
—

‘S I ,Z ~~ I .5. ..
Second degree $, = ~, (:3~

-)—  
~~~~~ 

= -
~~

-
~~

- = —
Third degree i,” ~:(-k)~ — 7h, 5,’ = 1~h, S1 = —

Fourth degree 5,’~ 5,’(-~
-) — & 

• 

= —

The extended boundary layer equation was singular for the first

of two boundary conditions

at ¶ . o  (25)
8, + BIa.~sus LiMil at (26)

However , two solutions which were valid near ~ equal to zero and

approaching Infinity were determined from the Stokes equation and the

boundary layer equation in Table III • The extended boundary layer

equation was solved numerically to form a bridge between these two

solutions.

Again using the third degree velocity profile as an example , the

12
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Stokes equation from Table III was

U f8, 
~~~~~~~~~~~~~~~~~~~~ (27)

Equation 27 was analytically integrated by introducing the variable

such that , -

(28)

Integration of Eq 28 yielded

~~~ e e r F c J E - T i i,) (29)

where C was a constant of integration which must be evaluated.

Following the procedures of Koob and Abbott (Ref 2: 71), Eq 28 and

Eq 29 were used to determine the initial c~onditions ~‘or the integratic~i

of the extended boundary layer equation , Eq. 23.

1. Pick values for the integration constant, C , and initial 6,.

2. Solve Eq 28 and Eq 29 for 8, and 
~ 

, respectively.

3. Integrate Eq 23 with these initial conditions.

4. Adjust value of C until the extended boundary layer

• solution approaches the boundary layer solution at ç
approaching infinity.

• The initial value of 5, selected was io 12 . During the integration
I

process if 6, became less than zero or 6. became greater than zero, the

integration was stopped since this would be in violation of the asymptotic

behavior of 8, (See Figure 1). A new value of C was then determined and

the procedure repeated. It was during this procedure that the range

and size of the integration step were refined (See Table ii). The value •

of C differed for each velocity profile; however, the limits in the

13
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integration procedure before S. or S~ exceeded the aforementioned
limits were approximately the same as Table IV indicates.

Table IV

Constant Values and Limits of Integration

Velocity Profile Constant, C ~ Integration Limit

First degree -0. 16689083968326 76.5
Second degree —O.273828Li.6491L45 65.8

Third degree —0.24323951331955 67.7
Fourth degree —O.2839925052OLi.50 55.0
Blasius (Ref 2) _0 .24L~88597951216 70.0

Table V depicts the results of the extended boundary layer and

boundary layer approximations for each case and the per cent difference

as compared to each other. This per cent difference was computed by

taking the difference between the values of the two solutions and

dividing by the extended boundary layer solution value. As shown , the

extended boundary layer and boundary layer solutions agreed within five

per cent of one another at ~ 50 , but for smaller the error increased

rapidly. These same results were obtained by Koob and Abbott (Ref 2: 75)
using the Blasius profile.

15
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Table V

Results and Comparison of the Extended Boundary Lairer
and Boundary Layer Solutions for  a Flat  ?la~ e

First Degree Velocity Profile

6 Extended S,
Boundary Layer Boundary Layer % Difference

0.001 0.002588 0.05477 2016 .
0.01 0.02138 0,1732 710.
0.1 0.1606 0.5477 241.
1.0 1.003 1.732 72.7
10.0 4.667 5.477 17,35
50.0 11.620 12.247 5.39

Second Degree Velocity Profile

8, Extended Si
Boundary Layer Boundary Layer % Difference

0.001 0.002950 0.057724. 1857 .
0.01 0.02424 0.1826 653.
0.1 0. 1801 0.5774 220. =
1,0 1.102 1.826 65.7
10.0 5.007 5.774 15.30
50.0 12.330 12.910 4.70

Third Degree Velocity Profile

8, Extended 6
Boundary Layer Boundary Layer % Difference

0.001 0.002724 0.05503 1920.
0.01 0.02243 0.1724.0 675.
0.1 0.1675 0.5503 229.
1.0 1.033 1.740 68.4

• 10.0 4.740 5.503 16.10
50.0 11.723 12.306 4.97

Fourth Degree Velocity Profile

S, Extended 6,
Boundary Layer Boundary Layer % Difference

0.001 0.002803 0.05536 1875 ,,
0.01 0.023014. 0.1751 660.
0.1 0.1715 0.5536 222 .
1.0 1.052 1.751 66.4 

-

10.0 4.792 5.536 15.52
50.0 11.816 12.379 4.76

16
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IV. Stagnation Point Solution

Introduction

The boundary layer flow around a shaped body generally proceeds

from a stagnation point to a point of separation and beyond. Therefore,

the stagnation point problem was considered in order to establish the

proper initial conditions for the circular cylinder problem which is seen

as the principal test of the new method. The discussion was limited to

the assumed third and fourth degree polynomial velocity profiles since

the lower degree profile shapes were independent of pressure gradient.

Exnct Solution

An exact solution to the complete Navier-Stokes equations was

found by K. Hierienz (Ref 3: 87-90) . The potential flow was defined

by

where “a” denotes a constant • As shown in Figure 2, the potential

flow , perpendicular to a flat wall , impacts and leaves the area of

impact in two directions along the x-axis,

‘ ‘ ~~ Y~’22 ‘Z/2
Figure 2. Stagnation in Plane Flow (From Ref 3: 88)
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For the potential flow , the pressure was given by Bernoulli ’s equation

• PS) -P
A similarity solution was assumed.

u. xf~y)
1T f(y)

p0- p =  ~~~~ (~~ *F y) )

which identically satisfied the continuity equation. The differential

equations for f and F from the Navier-Stokes equations were

~‘ 2f ff a. -i-~(f (30)
• +f ’ ±a.2 F ’—~If ” (31)

The boundary conditions at the wall , where u=v=0, and at a large

distance from the wall, where u=U =ax, determined the boundary COfldit~cflS

on f and. F.

0i y 0 (32)

• -f ” o~ (33) .

A solution for f was determined first from Eq 30 by solving it

• numerically since it could not be solved in closed form . Equation 30

was non-dimensionalized by assuming

where

This led to the differential equation

= 0

18
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where ‘ denotes differen~.iation with respect to P1 • The boundary

conditions were converted to

~P.1- 1— o
a_f

Thus, the velocity component, u, became

(311)

As P) increased , Ø(~j) increased linearly at first and. then asymptotically

• approached one. At = 2.4 the value of ~~ j) was approximately 0.99

or within one per cent of the final value . If the boundary layer edge

is defined to be the value of y = ~ where u = 0.99 U , then

S = (35)

where was that value of where u 0.99 U .  A complete table cf

Ø
’and Ø

” is found in Schlichting (Ref 3: 90).

Approximate Solution from the Extended Momentum Integral Equation

The flow in the vicinity of the stagnation point was characterized

by the external velocity distribution

1J= z X/J~
or in dimensionless coordinates

(36)

With Eq 36 applied to the appropriate differential equations in Table I,

the stagnation point equations were developed and recorded in Table VI.

Removal of Reynolds number was not possible since Reynolds number is

contained in the definition of J. To numerically integrate , it was

necessary to determine initial values for ~,, S, , ç , and. the quantities

• - -=~~~~~~~~~~~~~~~~~ ~~~ .• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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J and K. For the exact solution , Eq 35, 8 did not vary with x or

therefore , 5~ was also constant and one of the initial conditions

prescribed. was that

0 a.t ç =o.ooo i

where the value of was chosen arbitrarily small . The value of K

was zero since 1J~ from Eq 36 is zero . From Eq 17, the J equation for

stagnation point flow became

2 ( €/ J)
2

Re (41)

Using the expressions in Table I for the displacement thickness, S1
a relationship between .1 and 

~~ , 
was derived for each profile . These

relationships were

J = _~~~~~~~~~~~ -~~~~~~~ 42

for the third degree velocity profile and

(43)

for the fourth degree velocity profile. Thus, for a given Reynolds

number, the values of J and 6~ must satisfy Eq 42 or Eq 43. The

possibility existed that .1 would have three values (roots) for a given

8, and Reynolds number.

Determination of Initial Values for J and 8,

With 6, constant for the stagnation point flow , the following

condition was implied :

6,” = ~t ~~-~~0 • 
(44)

From Eq 41 or the complementary equations , Eq. 42 or Eq 43, the value of

J was also constant for a given Reynolds number. Thus ,

~:i- ”= 0 (45)
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Using the conditions of Eq 44 and Eq 45, the extended boundary layer

equations in Table VI were reduced to functions of 8,,  J and Reynolds
• number. These new equations were then used with Eq 42 or Eq 43 to

solve for J and then 8, . For the fourth degree velocity profile Eq 244

and Eq 45 were imposed on Eq 39 with the following result:

r ç zo(~j a 5~~~~g(~~~~ 72) 21 — ~~~~~~~~IL)
O, L2 RL1. (s ..y/ ,j) +IJJ /04,

or , after rearranging,
a.

a ________2O~ , Re 
~~~~~~~~~~~~~~~~~~~~~~~ (46)

Substituting Eq 146 into Eq 43 gave

3 ~X3 - ~~~~~~~ - (47)

which is a third degree equation for J. The roots of J for both the

• 
- fourth degree and third degree velocity pro2i~es are given in Table VII .

Table VII
— Values of J and ~ Re Satisfying Equation 44

and Equation 42 or Equation 43

Third Degree Velocity Profile (42) Fourth Degree Velocity Profile (43)
.1 S~Re J S~Re

5.8653997 + 85.814115 + 7.0523231 0.20519518
2.1656705 i 0.0126237 i

5.8653997 — 85.814115 — 17.803257 0.2046889
- • 2.1656705 i 0.0126237 i

—32.230799 -17.648133 —72.255580 -29.402177

From Eq 41, J must be real and positive; therefore, a solution for the

third degree velocity profile that meets the required conditions for

the stagnation point was not possible. The reason for this is not

understood at this time. For the fourth degree velocity profile two
4’.

22 
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roots for J seemed plausible :

J• -~ 7- 05232 3!
J~ = 17.~~O3Z57

From the exact solution discussed previously and in Schlichting

(Ref 3: 89) a relationship was developed. between .1 and ~~~~. Equation

41 was rewritten as follows :

• = = =

where “a” was transformed from

a =  U~/x

to

& = Z U .y~j .

Applying Eq 35 gave

~~~~~~~ (48)

• Corresponding values of were computed for and from Eq 48. The

values in Table 5.1 of Schlichting (Ref 3: 90) were redefined to

correspond to = y/~ used in the assumed velocity profiles by

dividing the in the table b~- the computed ~ 
for the respective J

value. With the exact solution now defined in the same terms as the

approximate solution, a comparison was made between the two solutions

based on the J value . These comparisons are presented in Figures 3

and 4.

Both and J 2 were tried as the J value for the stagnation point.

For a given Reynolds number , S~ was derived from Eq 43 (See Table VII).

Thus , the required initial conditions were

23
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• 5,’=~O
J t  7 0523231 J~’ 17. 803257

• ~ ‘~IO.2OS~ ’?518/Re 8, =~~~ioq~ 98’1/g~

and the integration of Eq 39 was begun.

Results

Throughout the range of integration , S remained constant or

• nearly so for both the extended boundary layer and boundary layer

solutions . This demonstrated that the equations satisfied the conditions

at or near the stagnation point. With the starting conditions defined ,

the stagnation point results were used as initial conditions for the

circular cylinder flow.

24
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Figure 3. Comparison of Velocity Distributions for Exact Solution
and Fourth Degree Profile Solution with J — 7.0523231
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V • Circular Cylinder Solution

Introduction

The flow around a circular cylinder is a classical case for

testing viscous equation solution methods as it permits the study

of a boundary layer from a stagnation point through a separation point.

The flow is characterized by the external velocity distribution

U 2 s 1 n (X/ g)

or in dimensionless coordinates ,

lJ~~~~~sin ç

where f is the angle in radians measured from the stagnation point

and R is the cylinder radius now used as the characteristic length.

The discussion is limited to the solution for the assumed fourth

degree velocity profile since the conditions at the stagnation

• point for the third degree velocity profile were undetermined . The

equations for the circular cylinder are listed in Table VIII .

With the given pressure distribution the values of J and K were

as follows :

2008. Re. ces ç (49)

_ _ _ _ _ _ _ _  — 
5 —

2 Re co.s cj (50)

The initial conditions imposed for this case were taken from the

stagnation point results

0 . i ç~~~O.OOOI

1— 70523231 or 3~ / 7803257  
-

where the initi al value of was arbitrari ly selected . The initial

27
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values of K and S, were then computed based on the selected J value

and. Reynolds number.

Results

With the initial values computed, the integration was begun and

proceeded until 8, became greater than 10~ or until f equaled 3.14 ,

indicating the aft portion of the cylinder had been reached. The

extended boundary layer and boundary layer solutions were integrated at

Reynolds numbers of 1, 10, 100 , and 1000. For a given Reynolds number,

the extended boundary layer and boundary layer solutions began from

nearly the same value of 5, . However, was not zero or nearly zero

for the extended boundary layer solution near the stagnation point as

was the case for the stagnation point flow. This was the result of

the tern , U”/u , in Eq 22 no longer being zero. This term caused S.’

to have a large negative value and the extended boundary layer solution - -

(6,) decayed rather quickly for the fourth degree velocity profile as

depicted in Figure 5. Meanwhile, the boundary layer solution had 6,

increasin, gradually until a certain angle from the stagnation point,

0 , was approached , at which time the 6, increased rapidly and exceeded

The higher the Reynolds number , the hIgher was the value of 4
where 6, increased rapidly. The point of rapid 6, increase was assumed
to be where separation occurs. As shown in Figure 5, the angle i~~ was

in the range of 130 degrees to 150 degrees for the Reynolds numbers

tested rather than approximately 82 degrees as prcvious studies

have shown (Ref 3: 202). Thus , the present results are not understood.

A possible reason for this conflict could be the coordinate system

used . A rectangular coordinate system does not account for the curvature

of the cylinder. This could impact the solution for the extended

29
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boundary layer and boundary layer approaches dramatically. Perhaps

it would have been more appropriate to have used a cylindrical
- coordinate system thereby accounting for the curvature .

I

I
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VI. Conclusions and Recouunendations

Conclusions

The conclusions drawn from this study of the extended boundary

layer equations are presented. as follows :

1. A momentum integral equation can be developed which

includes the streamwise diffusion term. It is hypothesized that this

is a more accurate approach than the boundary layer equations and a

necessary approach for boundary layer flows near separation .

2. The results obtained for the flow over a flat plate were

• 

- 
in agreement with those presented in other studies.

3. The results obtained for the flow at the stagnation

point and over a circular cylInder were less than satisfactory. The

extended boundary layer and boundary layer solutIons did not agree

for the flow over a cylinder at any Reynolds number.

4. The method applied did riot give a clear indication as

to where separation occurred on the cylinder as compared th previously

demonstrated methods.

Recommendations

The following recoinmenëations are made for future studies in

this area :

1. The coordinate system used. in the extended boundary layer

equations should be changed to a cylindrical coordinate s~stem ,

appropriate equations developed , and the same tests run to determine

whether correct results could be obtained.

2. The y-momentum equation should be solved. for the normal

pressure gradient term to determine whether it is negli gibly small as

assumed.
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