AD-A0	48 346 SSIFIED	ARMY EARTH NOV 7	ENGINEE QUAKE R 7 A G WES-MP	R WATER ESISTAN FRANKLI -S-71-J	RWAYS ENCE OF I	XPERIME EARTH A CHANG	NT STAT	ION VI -FILL D	CKSBURG	B MISS	F/G 8/	11 TC(U)	
		AD A048346		-			83.35						
<u>B</u>						TAM.							
	M					R	N						Ň
		A CONTRACTOR											
							Tith			genome Minister Minister	END DATE FILMED 2-78		
											2		
-												***	
										-			

AD A 0 4834

DDC FILE

MISCELLANEOUS PAPER S-71-17

EARTHQUAKE RESISTANCE OF EARTH AND ROCK-FILL DAMS

Report 5

PERMANENT DISPLACEMENTS OF EARTH EMBANKMENTS BY NEWMARK SLIDING BLOCK ANALYSIS

by

Arley G. Franklin, Frank K. Chang

Soils and Pavements Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180

> November 1977 Report 5 of a Series

Approved for Public Release; Distribution Unlimited

Prepared for Office, Chief of Engineers, U. S. Army Washington, D. C. 20314

Under CWIS No. 31144

D C JAN 13 1978

Destroy this report when no longer needed. Do not return it to the originator.

60.000

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter	•d)
REPORT DOCUMENTATION PAG	E READ INSTRUCTIONS
1. REPORT NUMBER	OVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
Miscellaneous Paper, S-71-17	
TITLE (and Submitte)	5. TYPE OF REPORT & PERIOD COVER
EARTHQUAKE RESISTANCE OF EARTH AND ROC	K-FILL DAMS
Report 5. PERMANENT DISPLACEMENTS OF E	ARTH EMBANK- Report 5 of a series
MENTS BY NEWMARK SLIDING BLOCK ANALYSI	S
- AUTROR(a)	8. CONTRACT OR GRANT NUMBER(+)
Arley G./Franklin	
Frank K./Chang	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASI AREA & WORK UNIT NUMBERS
U. S. Army Engineer waterways Experime Soils and Pavements Laboratory	nt Station
P. O. Box 631, Vicksburg, Miss. 39180	CWIS No. 31144
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Office, Chief of Engineers, U. S. Army	November 1977
washington, D. C. 20314	59
A. MONITORING AGENCY NAME & ADDRESS(II different from	Controlling Office) 15. SECURITY CLASS. (of this report)
4,100 MD 6 71-17	-5) Unalagaified
1WES-MIP-S=12-21	15. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)	(12)630
7. DISTRIBUTION STATEMENT (of the ebetrect entered in Blo	ion unlimited.
7. DISTRIBUTION STATEMENT (of the abetract entered in Blo	ion unlimited.
17. DISTRIBUTION STATEMENT (of the abetract entered in Bio	ion unlimited.
 17. DISTRIBUTION STATEMENT (of the obstract entered in Biolistics) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aids if necessary and idem Dam stability Displacement Earth dams Earthquake engineering Earthquake resistant structures 	ion unlimited.
 17. DISTRIBUTION STATEMENT (of the abstract entered in Biology 11. Supplementary notes 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aids if necessary and identify Displacement Earth dams Earthquake engineering Earthquake resistant structures 28. ABSTRACT (Continue on reverse aids if necessary and identify dams in 1965, Newmark described method of embankments subjected to earthquake mating the upper bounds of permanent d block model and four earthquake record strong motion records have been obtain was ied to extend the data base for rec For this purpose, a computer 20. Jack EDITION OF 1 NOV 65 IS OBSOLETE 	ion unlimited. The 20, 11 different from Report) (11/y by block number) (11/y by block number) (11

B

Unclassified SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued).

digitized accelerograms and compute the permanent displacements from the velocity-time history and the resistance coefficients. All records were scaled to 0.5g peak acceleration and 30-in./sec peak velocity, and the resulting scaled permanent displacements are called standardized maximum displacements. A total of 169 horizontal and 10 vertical corrected accelerograms were processed in addition to several synthetic records.

The greatest standardized maximum displacements, computed from records of the magnitude-6.5 San Fernando earthquake of 9 February 1971 on soil sites, were about 1.5 times above Newmark's upper bound, while those for all other earthquakes analyzed were near or below Newmark's upper bound. The maximum values computed from the Jennings et al. synthetic record for a magnitude 8+ earthquake were about 1.7 times higher than Newmark's upper bound. Those for the Seed-Idriss synthetic record fell slightly below those for the Jennings et al. synthetic records. Ten records from rock sites compared with 47 records from soil sites indicate that permanent displacements on rock sites are about 75 percent of those on soil sites from earthquakes of the same magnitude, peak acceleration, and peak velocity. It was found that standardized maximum displacements were roughly proportional to the duration of shaking, and consequently were positively correlated with earthquake magnitude.

Appendixes A and B list the earthquakes and the ground motion data used, respectively. Appendix C presents data on the synthetic records.

TIS	White Section	
803	Buti Sectio	a 🖂
WANNOUNCED		C
JUSTIFICATION	*******	game
BY	AVAILAGILITY	LOUES
Dist. AV	AIL, and/or S	PECIAL
n		
h1	all a	
1		

Unclassified SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL EN-DORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.

PREFACE

This report is part of ongoing work at the U. S. Army Engineer Waterways Experiment Station (WES) in the Civil Works Program, "Earthquake Resistance of Earth and Rock-fill Dams," CWIS No. 31144, sponsored by the Office, Chief of Engineers, U. S. Army. This report was prepared by Dr. Arley G. Franklin and Mr. Frank K. Chang of the Earthquake Engineering and Vibrations Division, Soils and Pavements Laboratory (S&PL), under the general direction of Mr. James P. Sale, Chief, S&PL, and Dr. Francis G. McLean, Chief, Earthquake Engineering and Vibrations Division.

Directors of WES during the period of this study were COL G. H. Hilt, CE, and COL John L. Cannon, CE. Technical Director was Mr. F. R. Brown.

CONTENTS

Pag	e
PREFACE	2
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT	4
PART I: INTRODUCTION	5
PART II: METHOD OF ANALYSIS	7
Concepts of Newmark's Method	735
PART III: RESULTS 22	1
Upper Bounds of Permanent Displacements2'Correlation with Magnitude and Duration2'Correlation with Epicentral Distance3'Synthetic Earthquakes3'	7 7 0
PART IV: SUMMARY AND CONCLUSIONS	6
REFERENCES	8
APPENDIX A: LIST OF EARTHQUAKE EVENTS A	1
APPENDIX B: STRONG-MOTION DATA, EARTHQUAKES OF WESTERN UNITED STATES, UNIFORMLY PROCESSED AT CALIFORNIA	
INSTITUTE OF TECHNOLOGY BI	1
APPENDIX C: SYNTHETIC EARTHQUAKE RECORDS	1
APPENDIX D: NOTATION	1

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	By	To Obtain
inches	2.54	centimetres
inches per second	2.54	centimetres per second

EARTHQUAKE RESISTANCE OF EARTH AND ROCK-FILL DAMS

PERMANENT DISPLACEMENTS OF EARTH EMBANKMENTS BY NEWMARK SLIDING BLOCK ANALYSIS

PART I: INTRODUCTION

1. In his 1965 Rankine Lecture, "Effects of Earthquakes on Dams and Embankments," Newmark¹ described simple concepts for computing the displacement of a sliding mass in an embankment subjected to earthquake accelerations. He also presented charts, based on a sliding block model, for estimating the upper bounds of potential permanent displacements due to an earthquake with a given peak acceleration and peak particle velocity. The calculations from which these charts were derived were based on ground motions from four earthquake accelerograms. Since Newmark's 1965 lecture, the Parkfield earthquake, with 0.5g recorded on the San Andreas Fault, and the San Fernando earthquake, with 1.25g recorded in the epicentral region, have occurred, and a large number of strong-motion accelerograms have been collected from these and other events. It was decided to use these records to extend the data base for Newmark's charts.

2. Newmark presented charts for the cases of symmetrical and nonsymmetrical resistance to sliding. The case of symmetrical resistance can be of only infrequent occurrence, and leads to limited permanent deformations. It was judged to be of minor interest, and only the second case, that of a sliding block moving downslope, was dealt with in this study.

3. A total of 169 horizontal and 10 vertical strong-motion records from 27 earthquakes and 10 synthetic accelerograms were used with the sliding block analysis, and the results are presented in Part III. Listings of the earthquakes and the ground motion data used are given in Appendixes A and B, respectively, and Appendix C presents data on the synthetic records.

PART II: METHOD OF ANALYSIS

Concepts of Newmark's Method

4. A case of potential sliding of a portion of an embankment under earthquake loading is illustrated in Figure 1. The effective force resulting from the critical earthquake acceleration is the force NW in Figure 1. This force is the product of the weight W* of the sliding mass and the fraction N of gravitational acceleration g that is required to reduce the factor of safety to unity. The direction of the force, defined by its angle of inclination to the horizontal, θ , is the most critical direction, or that which results in a minimum value for N. The angle θ is normally no more than a few degrees. According to Sarma,² both the factor of safety and the permanent displacements are insensitive to θ , and it can be taken as zero with little error. The value of N, the critical acceleration or resistance coefficient, can be found by means of conventional methods of stabiliity analysis, such as Bishop's Method, the Morgenstern-Price method, etc., using appropriate undrained strength values. Various trial values of N may be used so as to find the value that makes the factor of safety equal to unity. Plane, circular, or other forms of slip surface may be considered. The method of stability analysis described by Sarma² uses a slip surface of arbitrary shape and determines the value of N directly.

5. The force polygon for the sliding mass is shown in Figure 2b.

^{*} For convenience, symbols and unusual abbreviations used in this report are listed and defined in the Notation (Appendix D).

c. Force-displacement relation

Figure 2. Mechanical model for displacement analysis

The same force polygon can also represent the forces on a rigid block that is about to slide down an inclined plane, as shown in Figure 2a. In the condition illustrated, the base is undergoing an acceleration Ng to the left and upward, the shearing resistance S has reached its limiting value, and slippage of the block relative to the plane is imminent, or, in other words, the factor of safety is unity. The force P is the resultant of the normal forces, and S the resultant of the distributed shear resistance, on the slip surface of Figure 1. The angle β , the inclination of the plane surface, is found as the inclination of the force S. The resistance to sliding is assumed to be rigid-plastic, as shown in the force-displacement diagram in Figure 2c. The resistance to sliding is unsymmetrical, because the block can slide downslope more easily than upslope. For the computations of permanent displacement presented in this report, it is assumed that the resistance to sliding upslope is sufficiently large that upslope sliding never occurs. This assumption results in the greatest permanent displacement, and thus represents the worst case.

6. For an embankment that suffers a slope failure due to seismic ground motions, the total permanent displacement of a sliding mass relative to the base is the sum of the increments of displacement occurring during a number of individual pulses of ground motion. Consider a single rectangular acceleration pulse, with ground acceleration Ag lasting from time zero until time t_0 (Figure 3a). The instantaneous velocity of the ground, which is given by

$$v_{g} = \int Ag dt , (0 \le t \le t_{o})$$

$$v_{g} = Agt_{o} , (t \ge t_{o})$$
(1)

follows the path OBC in Figure 3b. The acceleration of the sliding block is limited to the value Ng by the limit of the shearing resistance that can be mobilized at the contact. If the acceleration Ag is less than or equal to Ng, the block and the base will move together; but if Ag is greater than Ng, the absolute velocity of the sliding block follows the path OC in Figure 3b, which represents the relation

$$v_{b} = \int Ng dt$$
 (2)

Relative motion between the base and the block continues until both attain the same absolute velocity, which occurs at time t_m . From that time on, the base and block move together, without slippage. Since the absolute displacements of the base and block are given by the areas under their respective velocity versus time curves, the relative displacement, u_m , is given by the area between the two curves, the triangle OBC, which is shown hachured in Figure 3b. From the geometry of the diagram, the value of the relative displacement is given by

$$u_{\rm m} = \frac{v^2}{2gN} \left(1 - \frac{N}{A} \right) \tag{3}$$

where V is the maximum ground or base velocity, which is equal to Agt_o. If nothing happens to produce further relative motion, or reverse it, the relative displacement will be permanent, and will thus be called permanent displacement.

Computation of Permanent Displacements

7. The computation of the permanent displacement, u_m , from an earthquake record can be visualized from the plot shown in Figure 4. A plot of this type can also be used to perform the computation graphically. The curve $v_g(t)$ represents the ground or base velocity (the velocity of the ground beneath the sliding mass), while the critical acceleration for the sliding mass is represented by a slope, dv/dt = Ng, on the velocity versus time plot. Wherever the ground acceleration (slope of the ground velocity curve) exceeds the critical acceleration, the velocity curve of the sliding mass departs from that of the ground and follows a linear path, $v_b = Ngt$, until the two velocities again become equal, at which time relative movement ceases. The total permanent displacement, u_m , is then given by the sum of the areas between the two velocity curves.

8. In Newmark's 1965 Rankine Lecture, results were presented for scaled permanent displacements computed from four strong-motion records which were available at that time. The four earthquake records were first scaled to a maximum acceleration of 0.5g and a maximum ground velocity of 30 in./sec* by adjusting the acceleration and time scales. The resulting scaled values of relative displacement, called standardized maximum displacements, were plotted against the ratio N/A on a logarithmic plot, and upper bound curves were proposed for various ranges in the value of N/A.

^{*} A table of factors for converting U. S. customary units to metric (SI) units of measurement is found on page 4.

9. Since 1965, many additional strong-motion records have become available. The study reported herein was made to determine whether these additional records materially affect the upper bounds for permanent displacement proposed by Newmark. For this study, the ground velocities, ground displacements, and permanent displacements were computed numerically, using the trapezoidal rule, by means of a simple computer program written in Fortran IV for the G. E./Honeywell 635 digital computer. The ground motion records used were 179 digitized, baseline-corrected accelerograms of the California Institute of Technology (CIT) Volume II series.³ The four earthquake records used by Newmark were included. Agreement in computed permanent displacements for these records was close, but not exact, probably because of some differences in the form of the earthquake records used.

Scaling

10. All of the strong-motion records used were scaled to obtain a maximum ground acceleration of 0.5g and a maximum ground velocity of 30 in./sec, in order to obtain results of the same form as Newmark's.

11. The purpose of the scaling of the earthquake records is to permit direct comparison of permanent displacements computed from records with a wide range of peak accelerations and velocities. The process can be illustrated graphically with a hypothetical example including numerical values, as shown in Figure 5. Suppose that a portion of an earthquake record is represented by a velocity versus time plot (which is normally obtained by integration of the acceleration record) as shown in Figure 5a, and that the peak acceleration has been identified by a

tangent BC to the velocity curve at the point of maximum slope. It can be seen that the peak velocity V is represented as 5, and the peak acceleration A as 8. (The values have been chosen for numerical convenience and simplicity, rather than realism, and units of measurement have been dispensed with). Suppose also that the geometric construction has been made on the record for the computation of the permanent displacement of a sliding mass whose critical acceleration N is 2; the ratio A/N is thus 4. The relation between these acceleration values is also illustrated by the diagram ODEF at the right-hand side of the figure. In the diagram, if the base OF of the triangle represents unit time, then the altitude DF, measured along the velocity axis, represents the peak acceleration A, and the altitude EF represents the critical acceleration N. Just as previously described for Figure 4, the shaded areas between the curves represent increments of permanent displacement of the sliding mass relative to the ground or base, and the sum of these increments is the total permanent displacement, u_.

12. Scaling this record to arbitrarily chosen standard values of peak velocity and acceleration is done by adjusting the accelerations and the time scale; however, it is equivalent to performing the following two operations:

> <u>a</u>. Transforming the ordinate (velocity axis) by scaling it so that the highest peak on the velocity curve corresponds to the desired peak velocity. The value chosen for the example is 15 (see Figure 5b).

b. Transforming the abscissa (time axis) by scaling it so that the slope of the line representing the peak acceleration has the desired value. In the example, a peak acceleration of 12 was chosen. In other words, the acceleration diagram is scaled so that the distance DF equals 12 units on the new velocity axis; the distance OF then represents one time unit.

Another way of looking at this scaling is to note that it is dimensionally correct to write a velocity as the product of an acceleration and a time, or

$$\mathbf{v} = \mathbf{at}$$
 (4)

Therefore,

$$\frac{V_{s}}{V} = \frac{A_{s}}{A} \cdot \frac{t_{s}}{t}$$
(5)

which gives

$$\frac{t_s}{t} = \frac{V_s}{V} \cdot \frac{A}{A_s}$$
(6)

in which the subscript s denotes scaled values. For the example, the required time scaling is

$$\frac{t_{3}}{t} = \frac{15}{5} \cdot \frac{8}{12} = 2$$
(7)

13. The resulting transformed velocity record, as shown in Figure 5b, is identical with the original except for the scaling of the coordinate axes, and examination of the figure will show that the desired relationships among accelerations, velocities, and displacements are all present. Note particularly that in the transformation of the peak acceleration A to a scaled peak acceleration A_s , the critical acceleration of the sliding mass, N, is scaled in the same proportion, so that the ratio N_s/A_s is the same as N/A.

14. The relationship between the permanent displacement u_m and its representation on the scaled plot, which is shown as u_s , is apparent from a comparison of Figures 5a and 5b. The scale relationship between the areas is equal to the product of the horizontal and vertical linear scales; thus,

$$\frac{u}{u_s} = \frac{V}{V_s} \cdot \frac{t}{t_s}$$
(8)

Substituting for the time scaling the expression derived earlier,

$$\frac{t_s}{t} = \frac{v_s}{v} \cdot \frac{A}{A_s}$$
(9)

gives

$$\frac{u_m}{u_s} = \frac{V^2 A_s}{V_s^2 A}$$
(10)

For the relation between the standardized maximum displacement u_s and the unscaled permanent displacement u_m , $V_s = 30$ in./sec and $A_s = 0.5g$ are used, which gives

$$u_{\rm m} = u_{\rm s} \cdot \frac{v^2(0.5g)}{(30)^2 {\rm Ag}}$$

= $u_{\rm s} \cdot \frac{v^2}{1800{\rm A}}$ (11)

where V is the maximum ground velocity, in inches per second; A is the maximum ground acceleration, as a fraction of g, in the unscaled record; and u_{m} and u_{m} are in inches.

PART III: RESULTS

15. Representative results from the analysis of a total of 169 horizontal and 10 vertical accelerograms from 27 strong earthquake events of the western United States are plotted in Figures 6 through 10, and discussed in the following sections. In addition, computations were made for the Jennings et al.⁴ (CIT) and Seed-Idriss⁵ synthetic accelerograms, and for a synthetic record developed to fit the Nuclear Regulatory Commission Regulatory Guide 1.60 spectra.⁶ Total displacement was also correlated with Richter magnitude, duration, and distance.

16. Figures 6 through 10 show the standardized maximum displacement, u_s , versus the value of $\frac{N}{A}$ (where A and N are as previously defined) for about half of the earthquake records analyzed, and include those that yielded the highest values of displacement. Figure 6 shows results from 9 accelerograms of the Kern County, California, earthquake of 21 July 1952, at distances of 43 to 126 km and at soil sites. Figure 7 contains the results from 47 accelerograms of the San Fernando earthquake of 9 February 1971 at distances of 22.4 to 185 km, at soil sites. Figure 8 presents the results of 15 records of western United States earthquakes of magnitudes M 5.2 to 6.0, at soil sites. Figure 9 represents 10 vertical components of the 1971 San Fernando earthquake. Figure 10 represents 10 records of various western United States earthquakes at rock sites. To permit comparisons with the records not shown in these plots, Appendix B lists the values of standardized maximum displacement for three values of N/A for all records analyzed.

Figure 8. Permanent displacements due to western United States earthquakes of magnitudes 5.2 to 6.0

records

Figure 10. Permanent displacements computed from rock site accelerograms

Upper Bounds of Permanent Displacements

17. Figures 6 through 10 show, in addition to the values of u_s versus N/A, three curves chosen by Newmark to represent upper bounds for u_s as computed from the four earthquake records used in his 1965 paper. In Figures 6 through 9, there are several points, the highest belonging to the 1971 San Fernando earthquake, lying above Newmark's upper bound curves. It can be seen from these figures that in order to envelope the permanent displacements computed from the present data, the bounding curves must be raised.

18. Figure 10, while based on only 10 records from three earthquakes, suggests that permanent displacements at rock sites will be appreciably lower than at soil sites, for earthquakes of equal magnitude and peak motion values, and for all of the values shown are conservatively bounded by Newmark's upper two curves.

Correlation with Magnitude and Duration

19. The computed values of standardized maximum displacement, when plotted against duration of shaking, as shown in Figure 11 for the soil site records of the San Fernando earthquake, can be seen to be approximately proportional to the duration. The duration for this purpose was considered to be the period lasting until the last acceleration peak with at least 0.25 times the peak acceleration. Plots of values from other earthquake records (not shown here) are similar. Because duration of shaking correlates positively with earthquake magnitude, the standardized maximum displacement values can also be expected to increase with magnitude. This tendency is illustrated in Figure 12, in which mean value curves

Figure 11. Permanent displacement versus duration, San Fernando earthquake, 9 February 1971 (soil sites)

for the earthquakes of Figures 6, 7, and 8 have been plotted. The systematic variation with magnitude, as reflected by the mean values, is small compared to the scatter band for a single earthquake, however; and for N/A values approaching unity, the relation is obscure.

Correlation with Epicentral Distance

20. The records of the San Fernando earthquake of 9 February 1971 were examined for a relation between the standardized maximum displacement and epicentral distance. A weakly defined positive correlation was found, probably reflecting the dominance of long-period motion in the far field.

Synthetic Earthquakes

21. Jennings et al.⁴ generated four different types of synthetic accelerograms to represent ground motions for a variety of earthquakes. Type A represents the accelerations in a magnitude 8 earthquake and Type B motion is expected with magnitude 7. Type C is for the epicentral area of a magnitude 5 or 6 earthquake and Type D represents the motion close to the fault for a shallow earthquake of magnitude 4 or 5. Computed values of standardized maximum displacement for these artificial accelerograms are plotted in Figure 13. Newmark's upper bound curve is exceeded here by a factor of about 1.7 for the Type A (magnitude 8) earthquake. The synthetic earthquake of magnitude 8-1/4 modeled by Seed and Idriss⁵ (Figure 14) also exceeds Newmark's bounding curves, but by a lesser amount for most values of N/A.

22. The standardized maximum displacements obtained from a synthetic accelerogram developed to fit the response spectra given in the Nuclear

Figure 14. Permanent displacements due to synthetic earthquake of magnitude 8-1/4 (Seed-Idriss⁵)

Regulatory Commission Regulatory Guide 1.60⁶ are shown in Figure 15. The curve is close to the average curve of the San Fernando earthquake of magnitude 6.5 on rock sites, as shown in Figure 10, but falls far below Newmark's limiting curves and the higher values computed in this study.

23. Upper bound curves for all natural and synthetic earthquake records analyzed in the present study are shown in Figure 16.

PART IV: SUMMARY AND CONCLUSIONS

24. In 1965, Newmark¹ presented the results of calculations of scaled permanent displacements (standardized maximum displacements) of earth embankments under earthquake loading, on the basis of a sliding block model and four earthquake records. Upper bound curves were given for the purpose of earth and rock-fill dam design. Since that time, many more strong-motion earthquake records have been obtained, and it was decided to extend the data base for Newmark's plots using the available new strong-motion data.

25. A total of 169 horizontal and 10 vertical strong-motion earthquake records of the western United States were scaled to 0.5g peak acceleration and 30-in./sec peak velocity and processed with a computer program written for this study. Additionally, the synthetic earthquake records of Jennings et al.⁴ and Seed-Idriss,⁵ and a synthetic record developed to fit the response spectra of the Nuclear Regulatory Commission Regulatory Guide 1.60⁶ were processed. Only the case of nonsymmetrical resistance to sliding was considered.

26. The findings of this study are summarized as follows:

- <u>a</u>. New upper bounds of standardized maximum displacement for actual earthquakes were established by records of the San Fernando earthquake of 1971 (magnitude 6.5), which produced values about 1.5 times higher than those obtained from the four earthquake records used in 1965 by Newmark.
- b. The greatest standardized maximum displacements found in this study were produced by the Jennings et al. and Seed-Idriss synthetic earthquakes of magnitude 8+, and were

about 1.7 times higher than Newmark's upper bounds.

- <u>c</u>. On the basis of comparison of 10 records from rock sites with 47 from soil sites, computed permanent displacements at rock sites are about 75 percent of those at soil sites for earthquakes of equal magnitude, peak acceleration, and peak velocity.
- <u>d</u>. Standardized maximum displacement was found to be proportional to the duration of shaking, and consequently to be positively correlated with magnitude, but the trend is weak and considerable scatter exists.

REFERENCES

- 1. Newmark, N. M., "Effects of Earthquakes on Dams and Embankments," Geotechnique, Vol 15, No. 2, Jan 1965.
- 2. Sarma, S. K., "Seismic Stability of Earth Dams and Embankments," <u>Geotechnique</u>, Vol 25, No. 4, 1975, pp 743-761.
- 3. California Institute of Technology, Earthquake Engineering Research Laboratory, "Strong-Motion Earthquake Accelerograms; Corrected Accelerograms and Integrated Ground Velocities and Displacements," Vol II, Parts A-N, 1971-1975, Pasadena, Calif.
- 4. Jennings, P. C., Housner, G. W., and Tsai, N. C., "Simulated Earthquake Motions," Earthquake Engineering Research Laboratory Report, 1968, California Institute of Technology.
- 5. Seed, H. B. and Idriss, I. M., "Rock Motion Accelerograms for High Magnitude Earthquakes," EERC 69-7, 1969, Earthquake Engineering Research Center, University of California, Berkeley, Calif.
- 6. U. S. Nuclear Regulatory Commission (formerly Atomic Energy Commission), Regulatory Guide 1.60, Revision 1, 1973.

APPENDIX A: LIST OF EARTHQUAKE EVENTS

Table Al

List of Earthquake Events

No.	Earthquake Area	Date	Time	Time	Lat o ' " N	Long.	Depth km	Magni- tude	Maximum Intensity
とちるよう	Long Beach, Calif. Southern California Eureka, Calif. Lower California Helena, Mont.	10 Mar 1933 2 Oct 1933 6 Jul 1934 30 Dec 1934 31 Oct 1935	1754 0110 1449 0552 1138	PST PST PST PST MST	33 37 00 33 47 00 41 42 00 32 15 00 46 37 00	117 58 00 118 08 00 124 36 00 115 30 00 111 58 00	16.0 16.0 16.0	6.5 6.5 7 ± 2 6.5	σονοσ
0 L 8 9 01	Helena, Mont. Helena, Mont. Helena, Mont. Humboldt Bay, Calif. Imperial Valley, Calif.	31 Oct 1935 21 Nov 1935 28 Nov 1935 6 Feb 1937 12 Apr 1938	1218 2058 0742 2042 0825	MST MST MST TST PST	46 37 00 46 37 00 46 37 00 40 30 00 32 53 00	111 58 00 112 00 00 111 58 00 125 15 00 115 35 00	16.0	1111°.	۱۱ ممس
1212121	Imperial Valley, Calif. Imperial Valley, Calif. Northwest California Imperial Valley, Calif. Northwest California	5 Jun 1938 6 Jun 1938 11 Sep 1938 18 May 1940 9 Feb 1941	1842 0435 2210 2210 2037 0145	PST PST PST PST PST	32 54 00 32 15 00 40 18 00 32 44 00 40 42 00	115 13 00 115 10 00 124 48 00 115 30 00 125 24 00	16.0 16.0 16.0	5000 FN	11901
16 17 19 20	Santa Barbara, Calif. Northern California Torrance-Gardena, Calif. Borrego Valley, Calif. Northern California	30 Jun 1941 3 Oct 1941 14 Nov 1941 21 Oct 1942 9 Mar 1949	2351 0813 0042 0822 0429	PST PST PST PST PST	34 22 00 40 36 00 32 58 00 37 06 00	119 35 00 124 36 00 118 15 00 116 00 00 121 18 00	16.0 16.0 16.0	v v v v v 1 4 v v v v v v	8 7 8 7 7
St 53 55 55	Western Washington Imperial Valley, Calif. Northwest California Kern County, Calif. Kern County, Calif.	13 Apr 1949 23 Jan 1951 7 Oct 1951 21 Jul 1952 23 Jul 1952	2317 2317 2011 0453	PST PST PST PDT PDT PDT	47 06 00 32 59 00 40 17 00 35 17 00 35 17 00	122 42 00 115 44 00 124 48 00 119 01 00 118 39 00	16.0 16.0	7.1	8 2 2 1
								100	100

(Sheet 1 of 3)

A2

Table Al (Continued)

No.	Earthquake Area	Date	Time	Time Zone	o i " N	Long.	Depth km	Magni- tude	Maximum Intensity
26	Northern California Southern California	22 Sep 1952 21 Nov 1952	0441 2346	PDT PST	40 12 00 35 50 00	124 25 00 121 10 00	11	5.5	7
28	Imperial Valley, Calif. Wheeler Ridge, Calif.	13 Jun 1953 12 Jan 1954	2017 1534	PST	32 57 00 35 00 00	115 43 00 119 01 00	16.0 16.0	5.5	6
30	Central California	25 Apr 1954	1233	PST	36 48 00	121 48 00	1	5.3	7
31	Lower California	12 Nov 1954	1240	PST	31 30 00	116 00 00	16.0	6.3	5
33	Eureka, Calif. San Jose, Calif.	21 Dec 1954 4 Sep 1955	1801	TST TST	40 47 00 37 22 00	121 47 00		0.0 7.8	- 1-
34	Imperial County, Calif. Imperial County, Calif.	16 Dec 1955 16 Dec 1955	2112	PST	33 00 00 33 00 00	115 30 00 115 30 00	16.0 16.0	4.3 3.9	11
36	Imperial County, Calif.	16 Dec 1955	2207	PST	33 00 00	115 30 00	16.0	5.4	7
37	El Alamo, Baja, Calif. El Alamo, Baja, Calif.	9 Feb 1956 9 Feb 1956	0633 0725	TS4	31 42 00 31 42 00	115 54 00 115 54 00	16.0	6.4 6.4	11
40	Southern California San Francisco. Calif.	18 Mar 1957 22 Mar 1957	1048	PST	34 07 06 37 40 00	119 13 12 122 28 00	13.8	4.7	20
141	San Francisco, Calif.	22 Mar 1957	1144	PST	37 40 00	122 29 00	I	5.3	
42	San Francisco, Calif.	22 Mar 1957	1515	PST	37 39 00	122 27 00	1	4.4	5
47 47	San Francisco, Calif. Central California	22 Mar 1957 19 Jan 1960	1926	PST	37 39 00 36 47 00	122 29 00	11	4.0	50
57	Northern California	5 Jun 1960	1718	PST	40 49 00	124 53 00	1	5.7	9
94	Hollister, Calif.	8 Apr 1961	2323	PST	36 30 00	121 18 00	11.0	5.7	7
17	Northern California	4 Sep 1962	1160	PST	40 58 00	124 12 CO	1	5.0	9
48	Puget Sound, Wash.	29 Apr 1965	0729	PST	47 24 00	122 18 00	1	6.5	8
64	Southern California	15 Jul 1965	2346	PST	34 29 06	118 31 18	15.1	4.0	9
20	Parkfield, Calif.	27 Jun 1966	2026	PST	35 57 18	120 29 54	6.0	5.6	7
			(Con	tinued	(

(Sheet 2 of 3)

A3

Table Al (Concluded)

No.	Earthquake Area	Date	Time	Time	o ' " N	Long.	Depth km	Magni- tude	Maximum Intensity
12	Gulf of California	7 Aug 1966	0936	PST	31 48 00	114 30 00	16.0	6.3	9
52	Northern California	12 Sep 1966	0841	PST	39 24 00	120 06 00	1	6.3	2
53	Northern California	10 Dec 1967	2040	PST	40 30 00	124 36 00	1	5.8	.9
54	Northern California	18 Dec 1967	0925	PST	37 00 36	121 47 18	1	5.2	9
55	Borrego Mtn, Calif.	8 Apr 1968	1830	PST	33 11 24	116 07 42	1.11	6.4	2
56	Lytle Creek, Calif. San Fernando, Calif.	12 Sep 1970 9 Feb 1971	0630 0600	PST PST	34 16 12 34 24 42	117 32 24 118 24 00	8.0 13.0	5.4 6.4	17

(Sheet 3 of 3)

APPENDIX B: STRONG-MOTION DATA, EARTHQUAKES OF WESTERN UNITED STATES, UNIFORMLY PROCESSED AT CALIFORNIA INSTITUTE OF TECHNOLOGY Table B1 Strong-Motion Data, Earthquakes of Western United States, Uniformly Processed at California Institute of Technology

In for N/A	0.1 0.5	55.6 1.90 41.6 1.38		100.5 4.44	85.3 2.09 74.8 2.37	136.2 3.10 70.1 3.61	150.7 3.94 90.8 2.62	145.7 2.51 102.7 4.04	31.4 1.70 41.0 2.70	53.0 5.20 52.3 3.20 -	17.7 1.39	145.8 2.91	1	1	13.8		
3	0.02	230.9		247.2	268.7 294.3	366.2 192.9	214.7	493.1 230.8	157.9	167.7 187.0	70.4	427.9			228.1	228.1 1.65	228.1 14.5 125.8
	X Duratio	30		-20	25	28	82 82 82	79	36	20	30	70			56	52 58	26 25
Modifie	Intensi	IIIA	Α	IIA	IIA	IIA	IIA	IIA	IIA	IIA	IIA	IA			IIA	11A 11A	IIA IIA IIA
al Richten	e Magnitud	6.7		7.7	7.7	7.7	7.7	7.7	6.5	6.5	5.5	6.8			5.3	5.3 5.3	5.3 5.3 5.3
Epicentri	Distanc	9.3	56.3	126.0	43.0	89.5	119.5	119.5	24.0	4.04	9.6	125.9		125.9	125.9 16.8	125.9 16.8 15.2	16.8 16.8 15.2 11.8
k ace- A D	v.2	6.6 6.6 6.6	10.6 7 5.4 8.7 8.7	9 9.3 4.3	5.2 4.2	3.8.0	2.8	5 6.0 4 3.3 1.7	+ 2.0	2.8	2.4 6.9 6.8	5.5.5		3.9.9	10.12 10.12	9.4 9.6 9.6 9.6 9.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
r Peal	sec cm	10. 19. 19.	1 S S S S S S S S S S S S S S S S S S S	.5	.7 6. .7 9.5	.8 .3 .0 .0 .0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.6 .9 .0 .3 .1	.6 12.1 .4.1 .4.1 .4.1	6.0 11.0 6.6 9.6	.1 1.7 2.5 1.7 2.5 1.7 2.5	0.0	0 1.7	8.0	8. 60. 60. 60. 60. 60. 60. 60. 60. 60. 60	66. 60.6 60.6 6.8 6.6 110 110 110 110 110 110 110 110 110 11	6.8 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6
ak	ec2 cm/	1.7 35 1.1 36	0 10 10	210	10 11 11 11 11 11	899 899 191	1.5.5	1966			8.9 10	104	.8	.7	4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	4. 6.00.04.0 0. 0.00	പ്പ് ഗ്ഡ്ബ് ബ്പ്റ് ബ്ഡ് ബപ ഗസപതതപടാപ
e.	ent cm/s	241 210 206	и и 100 26	ыж 3 % £	E 152 E 175 102	E 87 128 138	ж н 2.55 2.	8 E 8	ы 164 Е 252 81	E 155 W 197	ы 105 Е 105 44	ж ж 200 21	1	a Si m	80 8 80 1 80 1111111111111	x ox xe Uu 73303786	× ∞× ×∞ × 305833455552 °°2
	n Compon	00 s s s s	00 N 160	3 900 8 900	40 S 696	271 N S 10	а 90° ир	000 S 000 Up	907 N 110	oft n M Htto	N 31° N 59°	00 s 00	200 S	B	ор и 150 и 150	ср ср ср ср ср ср ср ср ср ср ср	ср ср ср ср ср ср ср ср
	Locatio	32° 14 ' N	121°18' W	35°00' N	35°00' W	35°00' W	35°00' N 119°02' W	35°00' N 119°02' W	32°38' N 117°07' W	32°38' N 117°07' W	37° 22' W 121° 53' W	31° 45' W	31°45' W		м ,62 ₀ 221 31 ₀ 10, И	37°40° N 122°59° W 37°40° N 122°59° W	37°40° N 122°29° W 37°40° N 122°29° W 37°40° N
Bate	Earthquak	5-18-40	10-7-51	7-21-52	7-21-52	7-21-52	7-21-52	7-21-52	12-21-54	12-21-54	6-4-55	2-9-56	2-9-56		3-22-57	3-22-57	3-22-57 3-22-57 3-22-57
Site	cation.	æ	H	¥	¥	×	¥	¥	H	н	¥	*			I	нн	н н н
	Recording Station	El Centro Site, Imperial Valley	Northwest California Earth- quake, Ferndale City Hall	Kern County Earthquake, Athenaeum	Kern County Earthquake, Taft Lincoln School	Kern County Earthquake, Santa Barhara Courthouse	Kern County Earthquake, Hollywood Storage Basement	Kern County Earthquake, Hollywood Storage F. E. Lot	Eureka Earthquake, Eureka Federal Building	Eureka Earthquake, Ferndale City Hall	San Jose Earthquake, San Jose Bank of America Basement	El Alamo, Baja, California Earthquake, El Centro Site, Imperial Valley Irrigation District	El Alamo, Baja, California Earthquake, El Centro Site, Imperial Valley Irrigation District	(Aftershock)	(Aftershock) San Francisco Earthquake, San Francisco Facific	(Afterthock) San Francisco Earthquake, San Francisco Earthquake, San Francisco Earthquake, San Francisco Alexander Buildin, Basement	(Aftershock) San Francisco Earthquake, San Francisco Factiquake, San Francisco Aithquake, San Francisco Aithrander Building, Basement San Francisco Sarthquake, San Francisco Guiden Gate Purk
ti a	No.	A001	A002	A003	A004	A005	A006	A007	A008	4004	AOIO	AO11	A012		A013	A013 A014	A013 A014 A015

(Sheet 1 of 12)

Note: Locations in California unless otherwise noted. • A = alluvium, I = intermediate, and HR = hard rock.

								e								
			į			¥	*	Peak								
File		Classifi-	of	Epicenter	Instrument	Acceleration	Velocity	ment	d V	Distance	Magnitude	Mercalli	Duration	. "n	in., for N	/A
No.	Recording Station	cation	Earthquake	Location	Component	cm/sec ²	cm/sec	CH	42	5	W	Intensity	sec	0.02	0.1	0.5
A017	San Francisco Earthquake. Oakland City Hall Basement	н	3-22-57	37°40' N 122°29' W	N 26° E 3 64° E Up	39.0 23.7 15.3	8.0 1.5 0.9	111	14.6 18.1 24.5	24.3	5.3	I				
A018	Holister Earthquake, Holister City Hall	*	19-8-1	36 40' N 121°18' W	s 01° w N 89° w Up	63.4 175.7 49.1	7.8 17.1 4.7	8.8.8	2.9 2.9	40.0	5.6	Ш	30	164.7	36.5	0.65
4019	Borrego Mt Earthquake, El Centro Site, Imperial Valley Irrigation District	×	4-8-68	33°09' W	х 900 к 20 м 10 м	127.8 56.3 29.7	25.8 14.7 3.4	12.2 11.0 3.9	2.3 2.9 10.0	69.8	6.5	IA	69	151.9	39.3	0.88
A020	Borrego Mt Earthquake, San Diego Light & Power Building	×	4-8-68	33°09' W	и 900 г и 906 и и 906 и	29.5 28.9 12.7	6.0 6.1	4.4 3.0 1.3	9.6 9.9 4	109.9	6.5	IA	30	151.9	39.3	0.88
B021	Long Beach Earthquake, Vernon CMD Building	×	3-10-33	33°35' W N '92' N	и 06° Е 3 82° Е Ир	130.6 151.5 149.5	28.7 17.0 12.0	15.5 17.5 7.4	2.5	47.8	6.3	и	30	115.7	22.6	0.66
B022	Southern California Earth- quake, Hollywood Storage Building Penthouse	×	10-2-33	33° 47° N 118° 08° W	з 900 г з 900 г ир	13.3 85.4 86.8	5.2 9.4 1.9	8.1.9	2.9	38.2	5.4	>				
B023	Southern California Earth- quake, Hollywood Storage Building Basement	×	10-2-33	33° 47' W	з 000 Е З 900 Е Up	32.1 26.4 10.7	5.5 5.5 0.5	0.8 4.0 2.5	6.4 8.2 6.6	38.2	5.4	٨				
B024	Lover California Earthquake, El Centro Imperial Valley	×	12-30-34	32°12' W 115°30' W	N 90° E N 90° E Up	156.8 179.1 68.1	20.5 11.5 8.8	4.2 3.7 5.6	1.6	60.8	6.5	IA	30	567.5	157.7	1.94
B025	Helena, Montana Earthquake, Helena, Montana, Carroll College	£	10-31-35	111° 58° W	и 90° Е Ир	143.5 142.5 87.5	7.3 13.3 9.5	1.4 3.7 2.8	9.8 9.0 2.7	6.6	6.0	IIA	5	94.6	1 23.8	1.06
3026	lst Northwest California Earthquake, Ferndale City Hall	н	96-11-6	124°18' W	з 45° к и 45° к Up	140.9 87.1 31.6	6.6 6.6 1.4	3.9 1.6 0.6	12.6 3.2 9.7	55.3	5.5	1Å				
B027	2nd Morthwest California Earthquake, Ferndale City Hall	н	2-9-41	125024° W	s 45° w N 45° w Up	61.3 38.4 19.2	3.5 3.1	2.2 2.2	10.0 7.3 8.3	98.4	6.6	и				
B028	Western Mashington Earth- quake, District Engineers Office at Army Base	æ	4-13-49	1220 12° W	s 02° и и 80° и Up	66.5 65.9 22.0	8.2 7.9 2.4	8.4 8.4 8.3	2.8 8.8 8.8	57.8	1.7	IIIA				
9029	Western Washington Farth- quake, Olympia, Washing- ton, Highway Test Laboratory	×	4-13-49	1620 12 W	з 04° Е з 86° и Up	161.6 274.6 90.6	21.4 17.0 6.8	8.5 10.4 4.0	0.68	16.8	7.1	ш	56	582.9	1.71	0.50
8030	Northern Californis Earth- quake, Ferndale City Hall	H	9-22-52	120° 12' W	s 110 u N 140 u Up	53.1 74.1 29.2	6.9 4.7 3.0	0.05	8.4 9 7 7 7 7 7 7 7 7 7 7 7	43.2	5.5	и				
B031	Wheeler Ridge, California Earthquake, Taft Lincoln School Tunnel	¥	1-12-54	35°00' W	N 21° E S 69° E Up	63.9 66.8 35.5	5.9 5.7 5.7 5	1.1	3.2 5.7 17.9	43.0	6.14	IIA				
B032	Paget Sound, Washington Earthquake, Olympia, Washington, Highway Test Laboratory	×	4-29-65	ц7°24, и 122°18, и	s 04° E s 86° W Up	134.2 194.3 59.9	8.0 12.7 3.0	2.7 3.8 1.7	5.7 4.6 11.3	1.13	6.5	П	×	382.2	83.0	0.89
B033	Parkfield, California Earthquake, Cholame, Shandon Array No. 2	æ	6-27-66	35° 54° N 120° 54° W	N 65° E Down	1,79.6	14.1	26.3 4.3	2.1	31.9	5.6	IIA	14	138.8	25.2	0.44
))	Continued)									10

	0.5	.02	.45	0.02	0.73		.02	0.16	10.07			. 26	14.	.31		83 83		0.35	
. for N/I	1.0	161	161	151	191	1 11	181	1.5	2.5			1311	9.6	8.0	1.10	2.0	5133	9.5	
, in.	02		.0 6	4.	.6 2	10	.6	4 1.4	1.6. M.6.			0.0 12	0.	6.0	1.1 5.	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 5	.4 10	
3	0	198	363	323	100	2695	102	279	346			398	172	247	223	210 281 236	382	140	
	Bec	22	20		22				16 14			7	15	99	818	999	2 2 2	55	
Modified	Intensity	IA	IA I	IA	П	>	А	٨	x			IIA	IIA	IIA	IA	IIV	IIA	IIA	
Richter	Magnitude	5.6	5.6	5.6	5.6	5.6	5.8	6.5	6.6			9.9	6.6	9.9	6.6	6.6	6.6	6.6	
Epicentral	ulstance km	32.4	34.1	36.5	31.0	76.1	50.6	134.4	9.1			22.4	42.8	41.9	28.6	37.1	37.1	39.8	
AD	42	3.6 4.7 8.6	8.8 7.6 8.0	4.6.6.4	9.4.6 9.4.6	14.1 10.7 3.2	3.5 4.4	1.5	3.4.6 9.6 9.6	5.5 10.2 6.8	10.5 11.8 12.5	4.1 2.4 2.4	310 310 51 310 310 310 310 310 310 310 310 310 31	5.7 2.3 2.3	4.8 3.3 14.0	3.1	4.9 6.8 10.4	10.9 6.4 7.2	
Peak Displace-	Cm	5.2 7.1 3.4	4.4 3.9	4.1 5.7 2.6	4.7 5.5 1.4	1.2 0.6 0.9	0.9 1.4 1.3	1.6 2.9 1.7	37.7 10.8 19.3	1.7	0.00 0.00 1.00	14.9 13.8 14.6	9.2 11.6 5.8	11.8 11.8 5.1	9.9 9.3 9.5	8.6 13.1 3.8	8.0 14.7 3.0	7.5 12.2	
V Peak	cm/sec	22.5 25.4 6.8	10.8 11.8	7.0 8.0 5.0	14.5 22.5 4.4	1.1 0.8 1.3	0.0 1.0 0.0	3.5 3.5	113.2 57.7 58.3	6.5 1.1 1.1	8.4 1 1 1 1	30.0 23.9 32.0	17.1 21.9 7.8	17.4 17.3 10.7	21.5 27.2 6.2	17.0 19.4 6.0	16.5 21.1 5.0	9.6 16.7 1.8	ontinued)
Peak	cm/sec	347.8 125.7 116.9	232.6 269.6 77.7	52.1 63.2 44.6	264.3 340.8 129.8	11.2 11.1 11.1	20.4 19.5 7.7	40.0 45.5 54.2	1148.1 1054.9 696.0	27.1 20.7 8.2	109.9 113.2 10.5	250.0 131.7 167.5	97.8 122.7 148.0	117.1 117.0 51.7	309.4 265.4 153.3	103.8 148.2 49.8	167.3 207.0 87.0	133.8 147.1 66.7	0)
	it a																		
2	Componer	N 05° W N 85° E Down	N 50 ⁶ E N 10 ⁶ W Down	N 50° E N 40° W Down	N 65° W 8 25° W Down	N 36° W S 51P W Up	S 11° E N 79° E Down	N 33° E N 57° W Down	S 16° E S 71° W Down	S 74° W S 16° E Down	S 74° W S 16° E Down	N 00° W S 90° W Down	N 36° E N 54° W Down	N 52° W S 38° W Down	N 21° E N 69° W Down	з 00° и И 90° Е	и 900 в и 900 в и 900 в	N 146° W S 444° W Down	
Polyantan The	Location Componen	35°54' N N 05° N 120°54' N N 85° E Down	35°54' N N 50° E 120°54' N N 10° N Down	35 ⁰ 54 ¹ W N 50 ⁰ E 120 ⁰ 54 ¹ W N 40 ⁰ W Down	35° 54° N 8 65° W 120° 54° W 8 25° W Down	35°54'N N36'N 120°54'N S512 W Up	124°36' N 8 11° E Down	33°09' N N 33° E 116°06' W N 57° W Down	34°24'N \$ 16°E 118°23'42"W \$ 74°W Down	34°24'N S 74°W 118°23'12"W S 16°E Down	34°24'N S74°W 118°23'42"W S16°E Down	34°24' W N 00° W 118°23' 12" W S 90° W	34°24' W N 36° E 118°23' 142'' W N 54° W Down	34°24'W N 52°W 118°23'42"W 538°W Down	34°24' N N 21° E 118°23.7' W N 69° W Down	34°24' N 30° E 118°23.7' W 30° E Up	34°24' N S 00' W 118°23.7' W N 90° E Up	34°24' N N 16° W 118°23.7' W 8 146° W Down	
Date Secondary 114	or spicenter Listrum Earthquake Location Componer	6-27-66 35°54' N N 05° N 120°54' N N 85° E Down	6-27-66 33 54' N N 50° E 120° 54' N N 40° N Down	6-27-66 35 54' W N 50° E 120° 54' W N 40° W Down	6-27-66 35°54° и 865° и 120°54° и 825° и ромп	чл. 120°54' N 15° и 120°54' N 15° и Up	12-10-67 40°30'N 3 11° E 124°36' W N 79° E Down	4-6-68 33°00' N N 33° E 116°08' W N 57° W Down	2-9-71 34°24'N \$16°E Norm Down Down	2-9-71 34°24'N "21'E" 100 23'12" N "21'E" 2012 23'12" 23'12"	2-9-71 34°24'N 8 71° 8 118°23'42" W 5 16° E Down	2-9-9-11 34°24'14 N 000" N "40" N 000" N "40" "40"	2-9-71 34°24' W N 36° E 118°23'42" W N 54° W Down	2-9-51 N "GIP" N "22" N "22" N "22" N "22" N "GE" "GE"	2-9-71 34°24' N N 21° E 118°23.7' W N 69 ⁰ W Down	2-9-71 34°24'N 8 00°E 118°23.7'W 8 00°E Up	2-9-71 34°24' N 8 00° E N 90° E Up	2-9-71 34°24'N N 145° W 118°23.7'W 3 140 W Down	
Site Date Secondary The	Classifi- of spicenter listrum cation Earthquake Location Componer	а 6-27-66 35°54° и и 05° и 120°54° и и 85° 5 Down	A 6-27-66 32°54'N N 50°E 120°54'W N 40°W Down	A 6-27-66 33954' W N 90° E 120° 54' W N 40° W Down	HR 6-27-66 33°54, N N 65° N 120°54, ¥ 3 25° N Down	40 M -15 S M -150021 M -95 N N -150021 M -95 N N -150021 M -95 N N -150021	I 12-10-67 40°30' N 311° E 124°36' W N 79° E Down	I 4-8-68 33°00'N N 33°E 116°08'W N 57°W Down	HH 2 2-9-71 34°24'N 34°25'E N 9178 N "GJ'E2°811 Davin	2-9-71 34°24' N 3 74° W Down Down	2-9-71 34°24'14 8 74° W 2-9-71 118°23'12" W 3 16° E Down	N 2-9-71 31 ⁹ 2 ⁹ 11 N 200 N W 12 ⁹ 2 ¹⁰ N 200 N W 200 N N 200 N 20	A 2-9-71 34°24'W N 36°E N N 24°24'W N 54° E Down	umog ₩ 985 ₩ "51'55'811 ₩ 922 ₩ "51'55'811	I 2-9-71 34°24' N N 21°E N 969 W N 69° W Down	A 2-9-71 34°24'N 8 00° W 118°23.7'W N 90° E Up	А 2-9-71 34°24. И 5 00° 8 118°23.7' И 19°2 5 U	A 2-9-71 34°24'N N 16° N 118°23.7'W 341° N Down	
Site Date of monoton to	Recording Station cation Earthquake Location Compone	Parkfield, California A 6-27-66 32°54'N 80° K Barthouske, Cholme, A 6-27-66 120°54'N 80° E Bandhon Arry 10-5	Parkfield, chifornia A 6-27-66 3/2 54, N N 50 ⁴ E Barfoluske, choinear, A 6-27-66 120 ⁴ 54, N 240 ⁴ X Bandon Array Bo. B	Parkfield, California A 6-27-66 3/9 Su' M N 90° E Earthomake, Choisean A 120° Su' W N 10° M Shandon Arrow No. 12	Parkfield, California HR 6-27-66 39°54'N N 60° N Earthquake, Temblor No. 2 HR 6-27-66 30°54'N 529'N Dom	Parkfield, California I 6-27-66 35°54' N N 36' W Earthquake, San Luis I 6-27-66 120°54' W S 54' W Obigo Recention Up Building	2nd Northern California I 12-10-67 LG ² 30'N 311°E Excernades, Eureen Federal 124-10-67 124°36'W N°7°E Building	Borrego Mountain Earth- I 4-8-68 32'00'N N 32'E quake, Ban Chofre SUE Fower Plant	Sam Fernando Earthquake, HR 2-9-71 3/°24'N 3-10°E Pacoffan Dam 118023'12'N 3-71°E Doorn	Sam Fernando Earthquake, 2-9-71 3/22/1 K 3 7/2 M Afternation at 22.5 sec, 110/231/2" K 3 1/2" E Patrice Decime Law Down	San Fernando Earthquake, 2-9-71 3/24/ N 3/7/2 M Afternhois at 104.6 sec, 110/27/42/ M 3/07 E Redorms Law Down	Sam Fernando Earthquake, A 2-9-71 34224'N N 00°N Belu Acad Boultevet, lat 11823'12"N 3-99'N Floor, Holdawy Inn	San Fernando Earthquake, A 2-9-71 3/°24'N N 3/°E 20 Sant First Street, A 2-9-71 110°23'L2'N N 54'P Beneart, Down	San Fernando Earthquake, I.A. 2-9-71. 3424'W.N.S2 ⁰ W. MuS Fisteran Street, 30b- 1.A. 2-9-71. 11872.12" W. 3.38" W. basements, José Angeles	San Permando Earthquake. I 2-9-71 3/°24' % N 22° E 04 Hidge Soure, Castaic I 2-9-77' % H 69' % Domen	San Fernando Earthquake, A 2-9-71 34/24/1 8 00 ⁶ M Hollywood Storege A 2-9-71 11/9/32,77 M 190 ⁶ E Batements	San Fernando Earthquake, A 2-9-71 34°24'N 8 00° M Hollywood Storage P. E. Lot	San Fernando Earthquake, A 2-9-71 34224'N N 45° M 19- Avenue, The Stars A 2-9-71 118°29,7' N 344° M 10-Starsener	

(Sheet 3 of 12)

•

.

Mie Nie Recording Sta	062 San Fernando Eart) 1640 South Maren 1st Floor, Los A	065 San Fernando Earth 3710 Wilshire Bo Basement, Los An	068 San Fernando Eart) 7080 Hollywood 1 Basement, Los An	071 San Fernando Earth Wheeler Hidge	0072 San Fernando Earth 14680 Wilshire Bo Basement, Los An	0075 San Fernando Eart) 3470 Wilshire Bo Subbasement, Los	2078 San Fernando Eart) Water and Power Basement, Los An	0081 San Fernando Eart) Santa Felícia De Outlet Works	0082 San Fernando Eart) Santa Felícia De Crest	2083 San Fernando Eart? 3407 6th Street. Los Angeles	0066 San Fernando Fart? Vernon, CMD Buil	087 San Fernando Earth Engineering Suil Santa Ana, Orang	098 San Fernando Earth 633 East Broaden 1pal Service Bui Glendale	089 San Fernando Earth 808 South Olive Los Angeles	092 San Fernando Farth 2011 Zonal Avenu ment, Los Angele	005 San Fernando Earth 120 North Rotert Boulevard, Subba Los Angeles	
tion	nguake, ago Street, Angeles	hquake, pulevard, Geles	hquake, Soulevard, Reles	hquake,	nquake, pulevard, Geles	hquake, pulevard, I Angeles	hquake, Building, Geles	hquake.	nguake.	nguske, Basement,	hquake. Iding	nquake, Iding, Te County	hquake, ay, Munic- liding,	Street.	hquake. 1e. Base-	nquake, tson tsement,	
Site Classifi- cation	æ	A.I	æ	¥	H	۰t	H	T		ч	æ	¥	Α.Ι	ĸ	*1	æ	
Date of Earthquake	2-9-TI	2-9-71	11-6-2	11-6-2	2-9-71	2-9-71	2-9-71	12-6-2	2-9-71	2-9-71	2-9-71	2-9-71	2-9-71	2-9-71	17-9-5	17-9-5	
Epicenter Location	34°24' N 118°23.7' W	34°24. N 118°23.7' W	34°24' N 118°23.7' W	34°24' W	34°24' N 34°24' N	31°24' N 118°23.7' W	34°24' N 118°23.7' W	34°24' N 118°23.7' W	34°24° N 118°23.7° W	34°24' N 118°23.7' W	34°24' N 118°23.7' W	34°24' N 118°23.7' W	зц°г4, и 118°23.7* и	34°24' N 118°23.7' W	34°24' N 34°23.7' W	34°24. И 118°23.7° и	
Instrument Component	N 38° W S 52° W Dome	3 000 x 3 900 x Dom	N 00 ⁶ E N 90 ⁰ E Down	а 906 и 10 906 и 10 10 10	N 15° W N 75° W	N 000 E S 900 W	N 50° W S 40° W Down	S 08° E S 82° ¥ Down	S 15° W S 75° W Down	s 00° u N 90° E Mom	N 83° W S 07° W Up	S 04° E S 86° W Up	S 70° E S 20° W Down	5 53° E 5 37° W Down	5 62° E 5 28° W Down	3 88° E 3 02° ¥ Dom	
A Peak Acceleration cm/sec ²	118.0 130.0 74.6	146.7 155.7 73.1	81.2 98.0 57.2	26.5 25.3 13.0	82.2 115.0 64.8	133.8 111.8 171.3	126.5 169.2 67.2	213.0 198.3 63.7	203.3 174.0 65.0	158.2 161.9 55.5	104.6 80.5 12.7	26.8 28.2 16.7	265.7 209.1 131.5	131.9 139.0 75.3	64.2 79.1 18.7	86.8 83.9 86.5	
y Peak Velocity cm/sec	1.61 1.7.6 9.0	18.0 22.1 9.0	12.6 13.3 5.6	5.5 5.5 5.5 5.5	20.8 21.5 6.9	22.3 18.5 7.3	23.2 16.1 10.2	9.9 6.2 4.5	22.2 18.1 6.2	18.3 16.5 8.8	17.4 15.1 6.7	0.0.4 0.0	30.7 23.5 15.6	20.8 20.7 9.9	13.8 11.5 7.1	16.8 17.9 6.2	
Peak Displace- ment cm	12.0 6.9 4.1	10.3 12.9 4.9	8.1 4.2	9.14 8.14 8.14	14.7 11.7 3.2	11.4 3.9 3.9	13.7 8.9 6.4	7.0 8.6 8.8	7.1 2.8 8.8	9.0 10.3 4.4	14.8 10.7 4.0	3.6 5.7 1.7	11.1 5.3 5.6	14.5 11.6 6.0	10.3 6.3 3.8	10.6 12.1 3.9	
V ²	2.9 3.89 8.6	1.1.4 1.1.4	4.1	10.2 8.5 7.4	2.9 2.4	3.1 9.8 9.8	3.8	15.2 23.7 8.8		4.2 6.1 1.2	3.8 3.8 3.8	8.5 2.5	3.0 3.0	4.4 9.6 9.9		3.6 2.7	
Epicentral Distance km	42.8	40.0	35.0	86.0	39.5	40.1	42.5	32.9	32.8	40.0	4.9.4	88.5	34.1	44.0	43.1	37.4	
Richter Magnitude M	9.9		6.6	6.6	6.6	6.6	9.9	6.6	9.9	9.9	9.9	9.9	6.6	6.6	6.6	9.9	-
Modified Mercalli Intensity	ША	IIA	IIA	А	Ш	IIA	IIA	и	IA	IIA	٨	Ĩ	IIA	IIA	IIA	IIA	
Duration	30	555			18 18 18	22	17	19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	37 37	25 25 25			22	22			
us .	231.2	155.9		259.5	329.1	207.2	179.5	505.5 525.6	274.6	228.3 266.7	306.8	269.7 488.1	221.0	181.4			
in., for	63.9	34.7		1 33.1	49.3 110.6	48.9 1 1	36.2	63.2 96.4	78.3	64.3 - 72.7	62.2	77.6	117.5 92.6	1.1			
8/A	2.77	0.39		1.08	0.35	2.17	2.18	3.27 1.13	4.19	1.75	2.36	0.65	4.62 2.95	0.18			

(Sheet 4 of 12)

	CIT FILe	No. Heco FIOI San Fernan	Edison 0	Flog San Fernan Fort Tej	FIO3 San Fernan Pumping blossom	Flou San Fernan Oso Pump	F105 San fernan UCLA Rea Los Ange	G106 San Fernan CIT Seis ratory.	G107 San Fernan Athenaeu	GIO8 San Fernan CIT Mill	G110 San Fernan CIT Jet ratory B	G112 San Fernan 611 West Basement	Gll4 San Fernan Falmdale Storage	H115 San Fernan 15250 Ve Basement	H118 San Fernan 8639 Lin Basement	H121 San Fernan 900 Sout Basement	H124 San Fernan 2600 Nut ment, Fu	1128 San Fernan 435 Nort Basement	1131 San Fernan 450 Nort 1et Flood
		ding Station D Earthquake.	mpany, Colton	o Earthquake, n. Tejon	o Earthquake. Lant, Pear-	o Earthquake, ng Plant, Gorman	o Earthquake, tor Laboratory,	o Earthquake. ological Labo- asadena	o Earthquake, , CIT	o Earthquake. Kan Library	o Earthquake, ropulsion Labo- sement	o Earthquake, Sixth Street, Los Angeles	o Earthquake, Fire Station Dom, Palmdale	o Earthquake, tura Boulevard,	o Earthquake, oln Avenue, Los Angeles	o Earthquake, Fremont Avenue, Alhambra	o Earthquake, ood Avenue, Base- lerton	o Earthquake. Oakhurst Avenue. Beverly Hills	o Earthquake. Roxbury Drive. Reveriv Wills
	Site Classifi-	cation A		fi	¥	I	¥	臣	¥	¥	Α,Ι	æ	*	A	æ	æ	æ	¥	¥
	Date	Earthquake 2-9-71		11-6-2	2-9-71	11-6-2	2-9-71	2-9-71	2-9-71	5-9-71	12-6-2	12-6-2	2-9-71	12-6-2	5-9-71	11-6-2	2-9-71	11-9-2	12-9-2
	Epicenter	Location 34°24 N	W .1.82.911	34°24' W	34°24. N	34°24. N 118°23.7' W	34°24' N 118°23.7' W	34°24.00" W	34°24,42" N 34°24,12"	118°24''00'' W N "24''24'' N	34°24.42" N 118°24.00" W	31°24.12" и 118°24.00" и	34°24.100" W 118°24.100" W	34°24.12" N 118°24.00" W	31°24.12" N 118°24'00" W	31°24.12" W	34°24'12" N 118°24'00" W	34°24'12" N 118°24'00" W	34°24'12" N 118°24'00" W
	Instrument	S 00° W	Up E	N 000 E N 90 ⁶ E Down	N 90° E N 90° W Down	N 90° W N 90° W	S 00 ⁰ W N 90 ⁰ E	200 S S S S S S S S S S S S S S S S S S	N 900 E N 900 E Mont	N 000 E E Moor	S 82° E S 08° ¥ Down	N 52° W N 38° E Down	s 60° E S 30° ¥ Down	N 11° E N 79° W Down	s 45° ¥ 5 45° ¥ Dom	3 90° ¥ S 00° ¥ Dom	3 90° W 3 00° W Down	N 000 E S 900 W Down	N 50° E
	Peak Acceleration	37.5	19.7	24.6 20.6 15.3	91.5 120.5 17.1	85.2 103.1 35.5	83.1 77.6 67.1	87.5 188.6 83.5	93.5 107.3 92.9	198.0 181.6 91.2	207.8 139.0 126.3	101.9 78.5 53.2	110.8 136.2 86.6	220.6 146.0 94.5	33.7 32.7 41.0	119.4	34.9 34.5 14.7	60.9 91.6 36.4	184.3 160.6 37.2
	Peak	2.5	1.5	1100	4.4 5.4 2.3	8.5 6.0 3.80	8 8 4 8 8 9 4	5.8 11.6 5.7	14.3	9.8 26.3 8.7	13.4	17.0 15.7 9.9	14.0 9.3 7.6	28.2 23.5 9.3	11.8 9.1 6.9	17.1 10.5 8.2	1.9	13.2 15.0 5.8	17.2 14.1 1.5
D	Pisplace- ment	1.1	114	0.8 0.7 0.5	2.5 2.1	2.9 5.3 1.5	2.99 2.99 2.99	1.6 5.0 2.3	9.9 9.9 9.9	2.7	2.6 2.6 2.6	11.0 9.2 5.2	8.8 8.7 1.9	13.4 10.3 1.3	8.8 7.8 3.9	8.6 9.4 9.4	2.1 2.7 1.9	7.2 8.1 2.3	8.1.¢
	A D	9.9	12.2	10.0 8.5 7.6	11.8 9.9 15.2	2.4 6.6 2.9	4.8 5.3 9.6	4.2	4.5 3.8 5.5	5.6 2.9	5.8 5.0 10.1	8.8.8 8.8.8	2.1 4.3 3.6	8.7 2.7	8.1 3.1 3.3	6.5 5.5 7	3.8 2.8 5.3	2.53	6.4 A
	Epicentral Distance	107.6		68.5	45.4	52.2	38.7	36.1	39.8	39.8	31.5	40.5	32.3	29.3	50.2	41.1	76.8		38.2
	Richter Magnitude	6.6		6.6	6.6	6.6	6.6	6.6	6.6	9.9	6.6	6.6	6.6	6.6	6.6	6.6	6.6		9.9
	Modified Mercalli	Intensity		A	>	Λ	IIA	н	IIA	IIA	IIA	IIA	IA	IIA	И	IIA	И		IA
	Duration	200						25	26	35	83	45 45	30	39	76	51	34		1,8
	u. 1	178.2		122.6	605.1	180.1	338.5	204.1	257.9	540.7		154.8	287.2	351.6	318.8	253.1	287.1		244.7
	n., for N	72.0		3.5 1 1 3	161.0	36.7	55.8	53.9	18.3	10.9		1 25.1	1.011	11.4	130.0	67.4	82.5		38.7
	(A	11.5		0.11	2.95	1.21	1.49	4.07	46.0	0.09		1.99	2.51	1.20	1.85	2.64	1.27		0.34

(Sheet 5 of 12)

	111	10. 	1134 San 18 8a	1137 San 15 Ba	1141 Sen La	rike San La	rika San La	nulu San La	1145 San 15 Ba	1148 San 61 00	166 San 38 38	171 San Nu Sa	076 San 11 50	0.79 San Te	1180 Sen 140 Ba	4183 San 60 1e	1184 San 60 1e	
		Recording Station	Fernando Earthquake, 00 Century Fark East, sement (P3), Los Angeles	Fernando Sarthquake, 1910 Ventura Boulevard, sement, Los Angeles	Fernando Earthquake. ke Hughes Array No. 1	Fernando Earthquake, ike Hughes Array No. 4	Fernando Sarthquake, ke Hughes Array No. 9	Fernando Earthquake. 18 Hughes Array No. 12	Fernando Earthquake, NIOT Van Owen Street, sement, Los Angeles	Fernando Earthquake, 16 South Normandie Ave- e. Basement, Lon Angeles	Fernando Earthquake, 38 Lankershim Boulevard, sement, Los Angeles	Fernando Earthquake, ulear Power Flant, n Onofre	Fernando Earthquake, 50 South Hill Street, bbasement, Los Angeles	Fernando Earthquake, thachapi Pumping Plant, R Site, Grapevine	Fernando Earthquake, 00 West Chapman Avenue, usement, Orange	Fernando Earthquake, 774 Fark Drive, Ground vel, Wrightwood	Fernando Earthquake, 74 Bark Drive, Ground 1911, Wrightwood	
	Site Cleestet.	cation	٠£	4	ЯК	НН	5i	Ŧ	¥	A, J		I	ત	I	٩Ę	I	н	
	Date	Earthquake	2-9-71	2-9-71	12-6-2	12-9-21	2-9-71	2-9-71	2-9-71	2-9-71	11-6-2	2-9-71	2-9-71	12-6-2	12-6-2	12-6-2	12-6-2	
	Shicantar	Location	31°24'100" ¥ 31°24'12" ¥	34°24.12" ¥	N00.472.8TT N	31° 24' 12" N	M	34°24.12" N N "54'16" N	34°24' N 118°23'42" W	31°24' N 118°23'12" W	л, та, та, м 34°24, м	34°24' N 34°24' N	310 21, 12 N	34224" N 118"23"42" W	34°24, W N "91°23'18	34°21' И И 118°23'42' И	34°24' N 34°24' N	and the second s
	Twet mimorit	Component,	8 34° E 8 36° E	5 81° E S 00° W Down	N 21° E S 69° E Down	5 69° E 5 21° W Down	N 21° E N 69° W Down	N 21° E N 69° W Down	s 900 % s 900 %	N 00° E S 90° W Down	N 00° E 3 90° W Down	N 33° E N 57° W Down	N 37° E S 53° E Down	S 00° W N 90° E Down	s 90° w S 90° w Down	N 65° W N 25° E Down	N 65° E S 299 W Down	- 640 -
A	Peak	cm/sec	97.9 82.3 62.5	140.2 129.0 99.9	145.5 108.9 93.0	168.2 143.5 150.8	119.3 109.4 71.5	346.2 277.9 105.3	113.9 103.4 106.4	112.0	164.2 147.6 69.7	12.0 15.9 10.3	83.4 116.0 11.6	20.8 16.7 38.5	23.9 29.9 18.2	42.4 55.7 22.9	13.1 57.2 24.7	(
A	Peak	cm/sec	16.7	16.1 22.3 7.9	18.0 14.4 11.7	8.99 9.99 9.99	9.4.4 0.0 0.0	14.7	31.5 28.8 18.1	16.2 17.5 6.7	12.3 15.0 5.0	1.8	20.9 17.7 0.9	2.6 2.6 2.0	5.7 8.5 3.9	8.9.9 9.9 9.9	4.6 2.9 1.8	
Desk	Displace-	CE	11.3 6.2 2.5	7.1 9.4 9.4	400. 600	11.7 8	0.4.0	8 9 8 F	17.5 15.3 7.0	7.3 1.1 3.4	6.4.0 4.7 7	2.1	13.7 13.7 4.3	0.7 0.9 1.2	999 999 999 999	1.2 0.9 1.2	1.2 0.7 0.9	
	A D	2×	0 6 6 0 n 4 4	6 6 6 6 6 6 6 7 6	1.5 2.0 2.0	7.2	10.4 14.2 18.7	2.9 16.1 20.7	2.5 2.5 2.5	3-0 4-1 9-6	5.3 5.5 6.7	7.8 4.3 9.1	8.6 5.1 2.3	12.0 6.2 11.6	2.6 3.0	3.5 7.4 6.9	2.4 4.8 6.9	
	Epicentral Distance	- Ka	38.9	29.0	29.6	26.8	26.6	23.3	34.9	39.9	30.8	139.8	42.9	70.7	84.3	70.8	70.8	7 2 4
	Richter	W	6.6	9.9	6.6	6.6	6.6	6.6	9.9	6.6	9.9	9.9	6.6	6.6	6.6	6.6	6.6	66
	Modified Mercel16	Intensity	IIA	IIA	14	ц	и	И	IIA	IIA	IIA	Α	IIA	IA	۸	٨	>	.0
	Duration	Sec		39	22	37	21	22	07	19	26	25	33	EI	56	50	56	
	, "n	0.02		285.7	183.3	204.5	331.8	254.9	227.7	185.0	166.2	152.4	183.0	144.9	403.6	234.9	290.8	
	in., for N	1.0		122.7	57.3	1 24.2	93.2	12.9	91.3	62.2	1.9.1	24.3	59.4	39.5	120.3	78.2	13.4	;
	A/A	0.5		0.56	1.76	1.29	4.25	97.9	3.23	2.22	3.79	0.36	1.19	2.02	0.34	3.07	0.88	

•

(Sheet 6 of 12)

(Contin

•

	Record	San Fernand Whittler	San Fernand San Anton Upland	San Fernand 1880 Centu Parking, 1 Los Angele	San Fernand 2516 Via level, Pal Estates	San Fernand 2500 Wils Basement,	San Fernand San Juan	San Fernands Long Beach Ground lev	San Fernands Anza Fost Storage Ro	San Fernand: Griffith I Los Angele	San Fernand: 1625 Olymp Los Angele	San Fernando 205 West 1 Long Beach	San Fernand Terminal 1 Long Beach	San Fernands Hall of Re San Bernar	San Fernand Fairmont P Fairmont	San Fernand: University Santa Barb	
	ing Station	lo Earthquake, Narrows Dam	io Earthquake, io Dam,	lo Earthquake, ury Park East, lst level, es	lo Sarthquake, Tejon, Ground Los Verdes	lo Earthquake, hire Boulevard, Los Angeles	o Earthquake, Capistrano	o Earthquake, h State College, vel	o Earthquake, Office Dom, Anza	o Earthquake, Park Observatory, es	o Earthquake, pic Boulevard, es	o Sarthquake, Broadway, b	o Earthquake, Island, h	o Earthquake, ecords, rdino	o Earthquake, Heservoir,	o Earthquake, y of California, bara	
Site Classifi-	cation	æ	~	×	н	н	¥	×	×	ен Н	×	4	ч.	R	ġ.	н	
Date	Earthquake	11-9-2	2-9-71	12-6-2	12-6-2	12-9-21	17-9-5	12-6-2	2-9-71	2-9-71	12-6-2	12-6-2	12-6-2	12-6-2	12-9-21	2-9-71	
Enter	Location	34°24*12" W 34°24*12" W	34°24.00" W 118°24.00" W	31°24'12" N 118°24'00" W	30°24.12" N 118°24.00" W	34224.12" N 34224.12" N	34224.12" N 11824.00" W	34°24,12" N 118°24,00" W	34°24,12" N 118°24,00" W	34° 24, 12" N 318° 24, 10" W	34°24'10" W	34°24.12" X 118°24.00" ¥	34°24.12" N 118°24.00" W	34°24'12" W	34°24,42" ¥ 118°24,00" ¥	NN _	
Inst mment	Component	3 37° E 3 53° W Down	N 75° W N 15° E Down	N 54° E N 36° W Down	N 65° E S 25° E Down	N 290 E N 61º W Down	N 57° W N 33° E Domi	N 76° W S 14° W Down	N 450 K Down Down	ы 000 к 200 к Бойн и	N 28° E N 62° W Down	и 900 в 10 906 в	N 21° W S 69° W Up	и 00 ⁶ Е И 90 ⁶ Е Бочен	и 96° Е и 316° и Up	и 12° в 5 42° в 0р	
A Peak Acceleration	cm/sec ²	95.7 94.7 58.6	55.7 75.9 28.3	114.4 126.5 62.5	24.7 10.1 18.9	8.98 6.98 7.08	31.0 10.9 21.0	35.0 31.2 25.8	25.6 35.4 14.0	176.0 167.0 120.0	137.0 238.0 118.0	25.9 20.7 12.2	28.4 28.1 16.1	37.4 1/3.9 18.5	64.6 97.0 32.90	16.40 17.00 11.00	
V Peak Velocity	cm/sec	8.8 9.4 6.7	3.1 3.7	17.0 12.1 5.0	1.0 0.0	14.8 19.5 7.7	9.4.6 9.4.6	9.9.4 2.5.9.4	5.5 1.1 1.1	20.5 14.5 7.42	17.60 21.30 10.40	8.17 9.38 6.12	7.37 10.30 4.24	3.45 2.86 1.52	3.84 8.35 3.37	2.69 3.67 1.69	
Peak Displace- ment	ED	4.9 5.0 2.3	6.0 8.0 8.0	10.8 5.4 2.4	0 4 4 4 7 9 7 7	7.7	1.00	8.0 8.7 8.8	1.2	7.28 5.45 3.38	9.78 10.30 5.74	5.81 7.27 3.38	6.39 8.72 2.83	1.30	1.23	1.65 2.32 1.45	
AD	V2	6.1 5.0 10.4	10.1	4.4 6.4 9	8.5 7.5 8.4 2.5	9.1.4 8.8 8.1.4	8-4-9 5-4-9 5-4-9	3.1 2.4	6.3 7.8	0.0 7.13	4 W F	2.2 1.6	6.6.0 6.6.0	194	2.5	F 6 9 5	
Epicentral	Ę	54.1	72.1	38.9	67.8	1.04	122.6	15.4	185.0	34.0	42.0	73.8	73.6	108.2	32.8		
Richter	W	6.6	9.9	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6		
Modified Mercel11	Intensity	и	ĨÅ	IIA	IA	IIA	*	12	>	IIA	IIA	IA	IA	IA	IA	*	
Duration	sec	54	23	54	65	25	8.8	50	F.4	23	30	69	99	23	50		
2 ⁶	0.02	405.2	498.0	200.5		110.9	655.2	288.0	446.3	174.5	4.162	281.3	275.8	451.7	103.7		
in., for	0.1	1 2 1	187.3	1 1 1		33.3 1	198.8	91.3	128.0	34.1	1.69	123.5	118.6	102.2	26.7		
r X/A	0	1.2	8.6	0.3		0.5	1.4	1.4	4.3	1.9	2.4	3.6	1.6	3.6	1.3		

(Sheet 7 of 12)

1						A .	Å	Peak								
in .	Recording Station	Classifi-	Of Of Farthonake	Epicenter Tocation	Instrument Comment	reak Acceleration cm/sec2	Velocity cm/cer	Dispiace- ment	A D	Epicentral Distance	Richter Magnitude	Mercalli Triandi	Duration	us . 1	n., for	/A
5	San Fernando Earthquake, 1215 Gallery, Hoover Dam	HR	14-6-2	34°24.12" N 34°24.12" N	8 45° 8 8 45° 8 Up	0.65 1.23 0.86	0.27 0.29 0.55	12.0 91.0 17.0	1.9 2.8 2.0	378.3	6.6	III	Dan	30.0		2.0
214	San Fernando Earthquake. 1867 Sunset Boulevard. Los Angeles	ч	5-9-71	31°24'10" W N "21'12" N	5 89° W 3 01° E Down	154.00 156.00 115.00	23.20 16.20 9.84	8.02 7.94 5.15	2.3 4.7 6.1	36.2	6.6	IIA	15	122.8	1.94	3.25
113	San Fernando Earthquake. 3345 Wilshire Boulevard. Los Angeles	٩Ľ	2-9-71	34°24'00" W 118°24'00" W	S 00° W N 90° E Down	108.00 88.10 60.10	14.70 16.10 7.07	46.6 60.4	5.5 5.5	40.0	6.6	IIA	35	294.0	88.1	1.60
520	San Fernando Earthquake. 666 West 19th Street. Costa Mesa	н	2-9-71	34° 24' 100" W 118° 24' 100" W	s 00° w N 90° E Down	24.10 34.30 9.29	7.01 5.78 3.47	6.92 6.70 2.32	3.4 6.9 1.8	95.8	6.6	ц	60	698.5	137.3	2.49
122	San Fernando Earthquake, Santa Anita Reservoir, Arcadia	8H	5-9-71	34° 24' 100" W N 118° 24' 100" W	N 03° E N 87° W Down	137.00 165.00 47.60	5.29 6.66 4.46	3.15 5.91 2.46	15.4 22.0 5.8	43.3	6.6	Ľ	28	231.7	63.5	1.73
2255	San Fernando Earthquake. Navy Laboratory. Fort Hueneme	æ	2-9-71	34° 24' 100" W	8 000 S	25.90 25.20 10.40	7.25 5.51 3.19	4.54 4.92 2.17	2.2	79.3	6.6	Ĩ	58	336.6	137.7	1.73
553	San Fernando Earthquake. Fuddingstone Reservoir. San Dimas	fi	2-9-71	318 24, 100" N	N 55° E N 35° W Down	69.70 53.20 37.80	4.60 4.39 2.24	2.07 1.82 1.79	6.8 5.0 13.5	65.0	6.6	٨	32	327.4	11	1.86
162	Ban Fernando Earthquake. 9841 Airport Boulevard. Los Angeles	æ	17-9-5	31° 24' 10" W 118° 24' 00" W	N 00° E S 90° W Up	41.30 37.70 17.90	10.60 13.30 5.68	8.28 10.20 3.47	3.0 2.2 1.9	51.7	6.6	Ĩ	30	159.9	1.5	0.45
233	San Fernando Earthquake. 14724 Ventura Boulevard. Los Angeles	æ	12-6-2	34° 24' 00" W 118º 24' 10" W	s 12° w N 78° w Up	243.00 197.00 96.00	31.50 17.80 9.65	18.30 9.46 3.82	4.5 3.9 3.9	29.3	9.9	IIA	36.35	257.6 371.0	66.5 89.2	1.68
636	San Fernando Earthquake, 1760 North Orchid Avenue, Los Angeles	et.	12-6-3	34° 24. 100" W N "00" V	South East Up	167.00 122.00 73.20	13.40 10.30 7.49	6.13 5.85 1.87	5.7 6.7 2.4	34.9	6.6	IIA	30 30	372.1		1.94
6539	San Fernando Earthquake, 9100 Wilshire Boulevard, Los Angeles	et,	12-9-21	34° 24, 100" W 118° 24' 100" W	South East Up	119.00 161.00 10.50	17.20 19.10 7.16	9.79 11.60 2.88	3.9 5.1 2.3	38.0	6.6	ША	%%	255.9	63.5 54.3	2.48
1712	San Fernando Earthquake. 800 West First Street. Los Angeles	**	2-9-71	31° 24' 100" N 118° 24' 100" N	N 37° E N 53° W Up	86.80 138.00 60.80	17.90 19.60 8.73	9.22 9.98 5.08	8.5 9.6 1.0	41.8	6.6	IIA	25	160.7 221.8	52.4 50.4	1.42
The	San Fernando Earthquake. 222 Figueros Street. Los Angeles	A or I	12-6-2	34°24.100 N "01'42 °11	N 53° W S 37° W Up	149.00 126.00 43.20	18.30 18.70 8.50	9.80 9.93 8.36	4.4 2.6 2.6	41.9	6.6	ш	20	191.8	45.6	1.69
515	San Fernando Earthquake, 6464 Sunset Boulevard, Los Angeles	æ	14-6-2	34° 24' 100" W 118° 24' 100" W	South East Up	115.00 106.00 74.10	16.70 18.30 7.07	8.29 10.40 1.99	3.4 3.3	35.7	6.6	IIA	33	198.4	57.2	1.49
218	San Fernando Farthquake. 6430 Sunset Boulevard, Los Angeles	39	12-6-2	M00.178.011 N	South East Up	184.00 174.00 88.90	19.70 18.20 6.33	7.68 10.20 2.76	3.6 5.4 6.1	35.7	6.6	IIA	28	227.7	59.2	1.68
610	San Fernando Earthquake, 1900 Avenue of the Stars, Los Angeles	æ	12-6-2	34°24'12" N 118°24'00" ¥	и 44° Е 3 46° Е Up	79.80 81.10 57.30	16.20 10.00 4.56	11.40 7.34 2.03	3.5 6.2 5.6	39.2	6.6	IIA				
152	San Fernando Earthquake. 234 South Figueros Street, Los Angeles	A or I	12-6-2	31°24'12" N N "00"42" N	и 37° Е 3 53° Е Up	195.00 188.00 67.50	16.70 18.70 7.78	8.93 9.49 4.75	6.2 5.1 5.3	41.8	6.6	IIA	20	189.6	34.8	0.18

(Sheet 8 of 12)

(Continued)

	N/A	0.5	1.41	69.0		0.63	1.46	0.43	0.74	0.70	1.27	2.79	2.92	1.46	4.27				0.72	
	in., for	1.0	64.5	61.5		56.5	47.4 42.0	1.12	1 2.1	40.3 58.6	141.5	0.61	1 61.3	10.1	121				50.6	
	• • •	0.02	280.2	206.4		200.1	100.8	200.1	175.6	157.9 218.9	531.4	323.2	234.2	201.8	310.1				310.7	
	Preseton .	Sec	25	12		39	50	12	30	94 64	30	30	90	œ	30				50	
	Modified	Intensity	IIA	IIA	IIA	П	Ш	IIA	IIA	ц	и	r,	>	IV	ц	IA	ħ	IIA	IA	
	Richter	W	6.6	6.6	6.6	6.6	9.6	6.6	6.6	6.6	6.5	5.6	5.5	6.3	5.4	6.3			5.0	
	Epicentral Distance	E.	42.0	38.9	9.44	39.6	39.0	39.9	40.0	52.0	46.5	27.5	23.6	149.8	23.5	148.1	128.9	6.9	5.8	
	A D	v2	4.5 4.5	3.8 2.9 4.69	8.6 9.8	3.6 5.9 5.9	1.7 2.4	2.9 4.1	9.9.4.0 9.4.0 9.4.0	2.6 3.1 3.1	6.1 7.9	6.6 8.0 8	6.8 1.4 21.3	117 711 811	6.1 5.8 14.7	90.9	8.3 16.7 9.2	32.1 26.5 17.6	6.0 5.5 12.3	
Peak	Displace-	CH CH	11.40 12.40 04.5	15.80 10.90 2.65	10.30 10.50 3.56	12.20 5.92 2.26	16.50 13.70 2.74	8.6 8.50 3.56	8.04 11.60 3.15	8.49 9.38 3.64	4.24 3.33 0.79	1.95 1.00 0.89	11.1 12.1 86.9	0.99 2.66 1.09	2.06 2.19 0.62	2.02 1.66 1.72	1.12 1.26 1.03	0.32 0.16 0.67	0.84 0.99 0.78	
٨	Velocity	cm/sec	19.20 18.00 9.88	22.50 21.90 5.20	17.20 18.50 7.14	18.30 11.20 4.95	25.70 27.80 6.17	17.80 18.20 6.79	17.50 21.160 7.08	13.50 13.80 5.46	6.22 6.05 1.58	2.98 3.09 1.21	1.39 6.32 0.88	3.16 3.17 0.95	4.60 5.16 1.54	2.43 2.40 1.36	1.40	0.54	3.22 3.88 1.42	ontinued)
A	Peak Anna Inna Inna	cm/sec2	242.00 220.00 81.60	123.00 128.00 16.80	8.3 83.30	91.70 101.00 64.00	68.30 33.60 32.90	104.00 125.00 53.70	153.00 129.00 54.20	55.59 61.50 25.46	58.40 46.50 25.10	30.30 27.50 13.20	1.21 35.80 16.80	24.10 27.00 6.74	62.50 71.00 56.40	13.50 14.70 4.96	14.50 14.60 5.98	29.30 25.20 7.11	74.80 83.00 31.70	(c
	Instrument.	Component	и 30° и 3 60° и 0р	и 08° в и 82° и Up	N 29 ⁰ E S 61 ⁰ E Up	N 59° E N 31° W Up	и 83° и с. 07° и Съ	South West Up	North West Up	North Bast Up	North East Up	North East Up	Morth East Up	North East Up	North East Up	Worth East Up	N 45° W S 45° W Up	Worth East Up	North East Up	
	Spicenter	Location	31°24.12" N 118°24.00" V	34°24.42" N 118°24.00" W	34°24'12" N 118°24'00" ¥	310 24.12" N	31°24.12" N 118°24.00" W	31°24.12" N 118°24.10" ¥	34°24.12" N 118°24.12" N	34°24.12" %	32°58'00" N	32°59'00" ¥	32°57'00" ¥ 115°43'00" ¥	31°30'00" ¥	33°00'00" N	31°48'00" ¥	k1°42'00" % 124°36'00" W	46°37'00" %	46°37'00" ¥	
	Date .	Earthquake	12-6-2	12-6-9	12-6-2	12-6-2	u-6-2	11-6-8	12-6-2	12-6-2	19-21-47	1-23-51	6-13-53	11-12-54	12-16-55	8-7-66	7-6-34	10-31-35	11-28-35	
	Site Classifi-	cation	<	н	×	*	**	**	×	ef.	×	×	٩Ę	¥	A	×	н	亞	8H	
		Recording Station	San Fernando Earthquake, 533 South Fremont Avrnue, Sos Angeles	San Fernando Earthquake, 6200 Wilshire Boulevard, Los Angeles	San Fernando Earthquake, 3440 University Avenue, Los Angeles	Sam Fernando Earthquake, 1177 Beverly Drive, Los Angeles	San Fernando Zarthquake, 5900 Wilshire Boulevard, Los Angeles	San Fernando Eartnquake, 3411 Wilshire Boulevard, Los Angeles	San Fernando Earthquake, 3550 Wilshire Boulevard, Los Angeles	San Fernando Earthquake, 5260 Century Boulevard, Los Angeles	El Centro, Imperial Valley Irrigation District	City Hall, Ferndale	Federal Building, Helena, Montana	Helens, Montans, Federal Building						
	511e		65.28	3255	8525	1925	2923	5965	32666	2567	7286	T287	7288	7289	1292	T293	0294	1595 1	162N	

(Sheet 9 of 12)

memorine interm ottom Derivation intermeter Attom intermeter	t d		Site Classifi-	Date	Entcenter	Instrument	A Peak Acceleration	V Feak Velocity	D Feak Displace- ment	A D		Epicentral Distance	Epicentral Richter Distance Manitude	Epicentral Richter Modified Distance Manifude Mercalli	Epicentral Richter Modified Distance Manifude Mercalli Duration	Epicentral Bichter Modified Distance "	Epicentral Richter Modified buration "s Ab., für Distance Manifishe Morcalli buration "s Ab., für
City Mail, Fenalue I 2-6-11 10,900," N <th< th=""><th></th><th>Recording Station</th><th>cation</th><th>Earthquake</th><th>Epicenter Location</th><th>Component</th><th>Acceleration cm/sec2</th><th>Cm/sec</th><th>1</th><th>ment.</th><th>cm v²</th><th>cent V² Distance</th><th>ment V² Distance Magnitude cm V² km M</th><th>ment. V² Distance Magnitude Mercalli cm V² km M Intensity</th><th>ment V² Distance Magnitude Mercaili Duration cm V² Km M Intensity sec</th><th>cm V² Distance Magnitude Mercalli Duration a cm V² km M intensity sec 0.02</th><th>cm V² En Magnitude Marcalli Diretion a</th></th<>		Recording Station	cation	Earthquake	Epicenter Location	Component	Acceleration cm/sec2	Cm/sec	1	ment.	cm v ²	cent V ² Distance	ment V ² Distance Magnitude cm V ² km M	ment. V ² Distance Magnitude Mercalli cm V ² km M Intensity	ment V ² Distance Magnitude Mercaili Duration cm V ² Km M Intensity sec	cm V ² Distance Magnitude Mercalli Duration a cm V ² km M intensity sec 0.02	cm V ² En Magnitude Marcalli Diretion a
Gate a beckers Calculation A G-30-bit 13*02:0 53:00 23:00 24:00<		City Hall, Ferndale	•	2-6-37	40°30'00" N	N 45° W S 45° W Up	38.40 35.90 13.90	4.07 2.71 1.59	0.0	004	0 2.1 9 4.8 4 5.7	0 2.1 85.1 9 4.8 4 5.7	0 2.1 85.1 9 4.8 4 5.7	0 2.1 85.1 V 9 4.8 4. 5.7	0 2-1 85-1 V 9 4-8 1 5-7	0 2-1 85.1 V 1 5-1 1 5-1	0 2-1 85.1 V 9 5-1 1 5-1
City Nail, Fernalse I Lo-bit Lo-bit <th< td=""><td></td><td>Santa Barbara Courthouse</td><td>¥</td><td>14-02-9</td><td>34°22' W</td><td>N 45° E S 45° E Up</td><td>233.00 172.00 68.50</td><td>21.70 21.60 3.64</td><td>3.74 3.92 2.59</td><td></td><td>1.9 1.4 13.4</td><td>1.9 35.9 1.4 13.4</td><td>1.9 35.9 5.9 1.4 13.4</td><td>1.9 35.9 5.9 VIII 1.4 13.4</td><td>1.9 35.9 5.9 VIII 15 13.4</td><td>1.9 35.9 5.9 VIII 15 40.8 13.4 13.4</td><td>1.9 35.9 5.9 VIII 15 40.8 12.7 1.1 13.4 -</td></th<>		Santa Barbara Courthouse	¥	14-02-9	34°22' W	N 45° E S 45° E Up	233.00 172.00 68.50	21.70 21.60 3.64	3.74 3.92 2.59		1.9 1.4 13.4	1.9 35.9 1.4 13.4	1.9 35.9 5.9 1.4 13.4	1.9 35.9 5.9 VIII 1.4 13.4	1.9 35.9 5.9 VIII 15 13.4	1.9 35.9 5.9 VIII 15 40.8 13.4 13.4	1.9 35.9 5.9 VIII 15 40.8 12.7 1.1 13.4 -
Phile Lither, Buile Lither, Mall area J-9-49 JT*9-6 JT*9-6 <thj< td=""><td></td><td>City Hall, Ferndale</td><td>н</td><td>10-3-41</td><td>40°36' N 124°36' W</td><td>N 45° W S 45° W Up</td><td>118.00 113.00 37.50</td><td>6.92 5.74 2.56</td><td>2.95 2.51 1.12</td><td></td><td>7.3 8.6 6.4</td><td>7.3 29.8 8.6 6.4</td><td>7.3 29.8 6.4 8.6 6.4</td><td>7.3 29.8 6.4 VII 8.6 6.4</td><td>7.3 29.8 6.4 VII 30 8.6 6.4</td><td>1.3 29.8 6.4 VII 30 366.5 6.4 6.4</td><td>1.3 29.8 6.4 VII 30 366.5 93.4 6.6 6.4</td></thj<>		City Hall, Ferndale	н	10-3-41	40°36' N 124°36' W	N 45° W S 45° W Up	118.00 113.00 37.50	6.92 5.74 2.56	2.95 2.51 1.12		7.3 8.6 6.4	7.3 29.8 8.6 6.4	7.3 29.8 6.4 8.6 6.4	7.3 29.8 6.4 VII 8.6 6.4	7.3 29.8 6.4 VII 30 8.6 6.4	1.3 29.8 6.4 VII 30 366.5 6.4 6.4	1.3 29.8 6.4 VII 30 366.5 93.4 6.6 6.4
Philic Liberary, Sullister A bu35-51 129'69' 7 8 90' 7 9 200 110 7 20 110 7 20 110 7 20 110 7 20 110 120		Fublic Library, Hollister	¥	3-9-49	37°06' N 121°18' W	N 89° W S 01° W Up	193.00 119.00 69.50	11.70 8.26 3.63	1.40		3.0	2.0 29.3 3.0 5.1	2.0 29.3 5.3 3.0 5.1	2.0 29.3 5.3 VII 3.0 5.1	2.0 29.3 5.3 VII 30 3.0 5.1	2.0 29.3 5.3 VII 30 170.7 3.1 5.1	2.0 29.3 5.3 VII 30 170.7 32.9 3.0 5.1
Public Library. A 1-19-60 36°+7 X 50° X 50° X 50° 50° 50° 10° Maillater 1 6-5-60 12°°56' X		Public Library. Hollister	¥	4-25-54	36°48' N 121°48' W	N 89° W S 01° W Up	52.00 48.90 23.10	4.19 4.52 1.94	2.24 1.36 1.06		6.6 6.5 6.5	6.6 36.2 3.2 6.5	6.6 36.2 5.3 3.2 6.5	6.6 36.2 5.3 vi 3.2 6.5	6.6 36.2 5.3 VI 33 3.2 6.5	6.6 36.2 5.3 VI 33 204.9 6.5 6.5	6.6 36.2 5.3 VI 33 284.9 83.8 3.2
City Hall, Fernals I 6-5-60 100 09 18 N H6 V 97:50 311 1.21 PAblic Liberary, Bulliter A 1-3-61 360 07 31 11.20 1.06 0.11 PAblic Liberary, Bulliter A 1-3-61 360 07 31 1.120 1.06 0.11 Photic Liberary, Bulliter A 1-3-61 360 07 31 3 100 5.25 1.120		Public Library. Rollister	¥	1-19-60	36°47' N 121°26' W	N 99° W S 01° W	55.50 35.30 23.60	5.25 3.64 2.10	1.85 1.21 1.08		3.2	3.7 8.5 3.2 5.8	3.7 8.5 5.0 3.2 5.8	3.7 8.5 5.0 VI 3.2 5.8	3.7 8.5 5.0 VI 35 3.2 5.8	3.7 8.5 5.0 ¥I 35 222.6 5.8 5.8	3.7 8.5 5.0 VI 35 212.6 62.0 5.8 5.8
Public Libeary, builder A L-B-61 35'90' N 5 80' N 168.00 10.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00		City Hall, Ferndale	н	6-5-60	40°49' W	N 160 W S 440 W Up	57.50 73.50 14.40	3.11 3.60 1.06	1.21 1.18 0.81	1001	4-10	.2 60.3	.7 60.3 5.7	.7 60.3 5.7 VI	2 60.3 5.7 VI 65	.2 60.3 5.7 VI 65 568.9	2 60.3 5.7 VI 65 568.9 65.5
Federal Office Building, Section, Vanhington Lage 50 Lage 50 <thlage 50<="" th=""> <thlage 50<="" th=""> Lage 50</thlage></thlage>		Public Library, Rollister	¥	4-8-61	36°30' N 121°18' N	N 89° W S 01° W Up	168.00 74.90 60.20	10.80 6.28 4.23	3.00 1.77 1.99	à mù	mar	4 40.0	3 40.0 5.7 1	3 40.0 5.7 VII 4	3 40.0 5.7 VII 30	3 40.0 5.7 VII 30 177.5	3 40.0 5.7 VII 30 177.5 39.8
Linceln School Tunnel, Turt A 6-27-66 39°7110" N N N 0.0 2.10 2.53 N City Hall, Ferndale I 12-10-67 120°29'5" N N 0.0 2.10 2.10 11.00<		Federal Office Building, Seattle, Washington	¥	4-29-65	47°24 W	S 32° E S 58° W Up	52.10 77.50 32.10	5.59 9.35 8.35	2.55 5.43 1.62	446	m m	3 22.3 4	3 22.3 6.5 4	3 22.3 6.5 VIII	3 22.3 6.5 VIII 30	3 22.3 6.5 VIII 30 242.3	3 22.3 6.5 VIII 30 242.3 76.5
City Hali, Ferndale I 12-10-67 10° 90' X X M° V 1000 1100 1176 1110 1176 1110 1176 1110 1176 1110 1176 1110 1176 1110 1176 1110 1176 1110 1176 1110 1110 1120 1176 1110 11111 1111 11111		Lincoln School Tunnel, Taft	¥	99-51-66	35°57'18" N 120°29'54" W	# 21° E S 69° E Up	8.10 11.20 5.95	2.21 2.21 1.10	2.53 1.49 1.50	4.4		130.5	130.5 5.6	130.5 5.6 III	130.5 5.6 III 55	130.5 5.6 111 55 319.6	130.5 5.6 111 55 319.6 8-7
Ballierer A 12-18-67 37°00736" x x 80° w 13.10 2.67 2.3° 1.1.11 2.3° 1.1.11 2.3° 1.1.11 2.3° 1.1.11 2.3° 1.1.11 2.3° 1.1.11 2.3° 1.1.11 2.3° 1.1.11 2.3° 1.1.11 2.3° 1.1.11 2.3° 1.1.13 1.000 2.1° 1.1.13 1.000 1.1.11 1.1.33 1.000 2.1° 1.1.11 1.1.33 1.000 1.1.11 1.1.33 1.000 1.1.11		City Hall, Ferndale	н	12-10-67	40°30' N 124°36' W	N 46° W S 44° W Up	103.00 232.00 32.40	11.80 11.90 2.69	1.76 1.66 1.00	2.73		30.6	30.6 5.8	30.6 5.8 VI	30.6 5.8 VI 35	30.6 5.8 VI 35 108.4	30.6 5.8 VI 35 108.4 -2
Low Angeles Subway Terminal I,A 3-10-33 33°37' N N 30° E 65.30 11730 68.21 117 Subbasenent. 1.A 3-10-33 13°37' N N 200 15.60 23.60 25.60 16.30 26.30 10.00 200 26.30 10.00 200 26.30 10.00 200 200 26.30 10.00 200 200 200 200 200 200 200 200 200		Hollister	¥	12-18-67	37°00'36" N 121°47'18" W	N 89° W S 01° W Up	13.10 16.20 10.00	2.67 1.74 1.14	2.26 2.03 1.33	10.9		39.0	39.0 5.2	39.0 5.2 V	39.0 5.2 V 60	39.0 5.2 V 60 553.2	39.0 5.2 V 60 553.2 154.2
Public Utilities Multing A 3-10-33 39°7' M South 192.00 25-10 22.70 55.00 11.0 55.00 11.0 55.00 11.0 55.00 11.0 55.00 11.0 55.00 11.0 55.00 11.0 55.00 11.0 55.00 11.0 55.00 11.0 55.00 11.0 55.00 55.10 25.10 55.11 11.0 55.00 55.10 55.10 55.11 11.0 55.00 55.10 55.11 71.0 12.0 55.00 55.11 71.0 75.00 55.00		Los Angeles Subway Terminal Subbasement	Α,Ι	3-10-33	33°37' N 117°58' W	N 39° E N 51° W Up	62.30 95.60 63.60	17.30 23.60 9.07	8.21 16.30 5.72	1.7		54.9	54.9 6.3	54.9 6.3 VII	54.9 6.3 VII 80	54.9 6.3 VII 80 293.8	54.9 6.3 VII 80 293.8 87.6
Public Utilities Building, A 11-14-bi 139°47'8 North 3370 7.61 2.47 1.7 Long Beech Long Beech 110-10.5 West 9.28 3.56 0.18 3.56 0.18 3.56 0.11 0.05 7.10 0.56 0.11 0.56 0.14 0.15 0.55 7.10 0.56 0.14 0.56 0.14 0.56 7.10 0.56 7.10 0.56 7.10 0.56 7.10 0.56 7.10 0.56 7.10 0.56 7.10 0.56 7.10 0.56 7.10 0.56 7.10 0.56 7.10 0.56 7.10 0.56 7.10 0.56 7.10 0.40 2.56 0.41 0.56 0.41 <t< td=""><td></td><td>Public Utilities Building Long Beach</td><td>¥</td><td>3-10-33</td><td>33°37' N 117°58' W</td><td>South West Up</td><td>192.00 155.00 279.00</td><td>29.40 16.50 30.10</td><td>22.70 11.80 26.30</td><td>5.0 6.7 8.1</td><td></td><td>27.2</td><td>27.2 6.3</td><td>27.2 6.3 VIII</td><td>27.2 6.3 VIII 34 </td><td>27.2 6.3 VIII 34 213.2 30 110.5</td><td>27.2 6.3 VIII 34 213.2 31.7 30 110.5 21.6</td></t<>		Public Utilities Building Long Beach	¥	3-10-33	33°37' N 117°58' W	South West Up	192.00 155.00 279.00	29.40 16.50 30.10	22.70 11.80 26.30	5.0 6.7 8.1		27.2	27.2 6.3	27.2 6.3 VIII	27.2 6.3 VIII 34 	27.2 6.3 VIII 34 213.2 30 110.5	27.2 6.3 VIII 34 213.2 31.7 30 110.5 21.6
Los Augeles Chamber of A 11-14-41 33°7'00" % 5 50°E 114-90 11-3 0.65 7.7 Commerce Basement 1180'5'00" % 5 40° % 11.20 1142 0.49 2.11 Cdry Recreation Building, San I 11-21-52 33°50' % 8 40° % 52.90 2.89 0.43 2.40 Luis Obispo 11-21-52 33°50' % 8 73° % 52.90 2.69 1.26 5.1 Luis Obispo 5.69 1.20 0.90 1.20 4.0 Bauthern Facific Building A 3-22-57 37°40' % 8 40° % 2.42 0.33 0.43 9.6 Bauthern Facific Building A 3-22-57 37°40' % 8 40° % 2.42 0.33 0.43 9.6 Bauthern Facific Building A 3-22-57 37°40' % 8 40° % 2.42 0.33 0.43 9.6 Bauthern Facific Building A 1.22°28' % 8 40° % 1.52 0.33 0.43 9.6 Bauthern Facific Building A 1.22°28' % 9 40° % 1.52 0.33 0.46 6.4		Public Utilities Building. Long Beach	¥	14-41-11	33°47' N	North East Up	39.70 53.60 8.47	7.61 9.32 1.04	2.47 3.56 0.56	2.2		6.2	6.2 S.4	6.2 5.4 VI	6.2 5.4 VI 20	6.2 5.4 VI 20 260.2	6.2 5.4 VI 20 160.2 4-0
City Recreation Building, San I 11-21-52 39°90'N N 30° M 52.90 3.35 0.60 3.6 Luis Obispo Building, San I 11-21-52 39°90'N N 30° M 52.90 2.69 1.26 5.1 D Up 26.130 2.69 1.26 5.1 Bouthern Pacific Building A 3-22-57 37°40'N N 40° E 2.02 0.28 0.33 0.43 9.6 Buethernet, San Francisco 1,22°28'N N 40° W 1.52 0.33 0.46 6.1		Los Angeles Chamber of Commerce Basement	4	14-41-11	N00.51.011	S 50° E S 40° W Up	14,90 11.20 6.69	1.33	0.85 0.49 0.41	2.7.2		28.5	28.5 5.4	28.5 5.4 VI	28.5 5.4 VI	. 28.5 5.4 VI	28.5 5.4 VI
Southern Pacific Building A 3-22-57 37%00'N N No°E 2.02 0.28 0.32 B.5 Barenderi, San Prancisco A 3-22-57 37%00'N N No°W 2.42 0.33 0.43 9.6 Revensions, Differentices U D		City Recreation Building, San Luis Obispo	H	11-21-52	35°50' N	и 36° и 8 54° и Up	52.90 35.40 26.30	3.35 2.89 2.63	0.80 1.26 1.20	8.6 9.9		76.1	76.1 6.0	76.1 6.6 VI	76.1 6.6 VI 26	76.1 6.0 VI 26 449.2	76.1 6.0 VI 26 449.2 114.6
		Southern Pacific Building Basement, San Francisco (Foreshock)	¥	3-22-57	37°40' N 122°28' W	N 45° E N 45° W Up	2.02 2.42 1.52	0.28 0.33 0.33	0.32 0.43 0.46	000	1.00	2 16.2 6	2 16.2 3.8 6 4 ~	2 16.2 3.8 V 6	2 16.2 3.8 V 6	2 16.2 3.8 V	2 16.2 3.8 V

FILE		Site Classifi-	Date	Epicenter	Instrument	A Peak Acceleration	v Pesk Velocity	Peak Displace- ment	A D	Epicentral Distance	Richter Magnitude	Modified Mercalli	Duration	and and a	in., fo	N/A
.0N	Mecording Station San Francisco.	Cation	Rarthquake	T020100" N	N Leo c	CEV SECC	Cm/ Sec	CB 0 PO		E .	W I	Intensity	sec	0.02	1.0	0.5
1	South Pacific Building		10-33-0	122°27'00" W	N 450 W	24.50 6.05	2.61	1.17	6.9	C.11	;					
V323	San Francisco, Alexander Building	1	3-22-57	37°39'00" W 122°27'00" W	N 81° E N 09° W Up	15.60 18.50 5.80	0,82 0,98 0,88	0.26 0.72 0.86	6.0 13.9 6.4	15.60	4.4	>				
V328	Southern Pacific Building Basement, San Francisco (Aftershock)	ĸ	3-22-57	37°39' N 122°29' N	N 45° E N 45° W Up	2.07 9.00 2.79	0,42 0,91 0,54	0.38 0.48 0.51	4.9	18.30	4.0	^	20	173.1	34.7	0.84
V329	Port Hueneme	A	3-18-57	34°07'06" N N "31'51'00" N	South West Up	163.00 86.80 24.70	17.90 8.85 1.93	4.02 2.61 0.48	2.9 3.2 3.2	5.4	4.7	IA				
V330	Federal Building, Eureka	н	9-4-62	40°58' N 124°12' W	N 79° E S 11° E Up	45.30 47.30 12.90	3.52 2.67 1.50	1.70 1.18 2.00	6.2 7.8 11.5	19.0	5.0	IA	70	189.2	28.7	1.67
1EEV	Old Ridge Route (CWR Site). Castiac	н	1-15-65	34°29'06" N N "36'29'06" N	South East Down	40.40 35.90 26.20	2.12 1.13 0.58	0.87 0.42 0.18	7.8 11.8 14.0	21.2	4.0	А	30	57.9	15.5	0.52
V332	Sacramento, Pacific Telephone and Telegraph	×	9-12-66	39°24'00" N	South East Up	14.40 12.40 8.07	1.57 1.74 0.83	0.74 0.75 0.65	4.9 1.6 1.6	151.5	6.3	И				
#33 #	6074 Park Drive, Wrightwood	I	9-12-70	34°16'12" N 117°32'24" W	S 65° E S 25° ¥ Down	139.00 194.00 53.00	8.87 9.63 3.18	2.21 1.03 1.44	3.9	13.4	5.4	IA	11	155.2	37.2	3.84
¥335	Cedar Springs, Allen Ranch	₩.	9-12-70	34°16'12" N 117°32'24" N	S 85° E S 05° ¥ Down	69.80 54.90 59.30	5.55 1.96 2.56	2.42 2.00 1.15	28.6 28.6	20.8	5.4	Ĩ				
M336	Cedar Springs, Pump House on dam abutment	н	9-12-70	34°16'12" N 117°32'24" W	5 54° E 3 36° W Down	55.90 69.40 36.90	2.94 3.96 1.25	0.78 1.21 0.36	5.0 8.5	23.8	5.4	IA				
#338	Hall of Records, San Bernardino	¥	9-12-70	34°16'12" N 117°32'24" N	North East Down	113.00 57.50 52.50	4.75 3.10 1.85	1.75 1.66 1.54	8.8 9.9 23.6	22.9	5.4	IA	25	197.3	1.14	4.25
4339	Southern Californía Edison Company, Colton	¥	9-12-70	34°16'12" N 117°32'24" W	South East Up	40.20 35.30 33.60	2.55 1.87 1.30	0.95 0.70 0.72	5.9 7.1 14.3	31.5	5.4	Ĩ	35	131.8	44.8	1.97
SHEM	Millikan Library Basement, CIT, Pasadena	¥	9-12-70	34°16'12" N 117°32'24" W	North East Down	19.30 18.70 12.30	1.53	1.74	14.3 10.2 13.8	56.0	5.4	>	54	324.7	83.6	2.09
ALAC W	J. P. L. Basement, Pasadena	г	9-12-70	34°16'12" N 117°32'24" W	5 82° E 5 08° ¥ Down	14.40 24.10 15.40	2.00 1.86	1.03 2.37 1.44	14.0 14.3 6.4	58.9	5.4	Λ	54	136.7	15.7	0.92
¥370	Southern California Edison Company, Colton	¥	4-8-68	33°11'24" W	South East Up	21.40 28.10 21.40	3.53 2.71 1.80	4.25 2.11 1.07	7.1 8.1 7.1	146.2	6.4	ĸ	18	212.8	35.0	0.47
1371	Engineering Building, Santa Anna, Orange County	¥	4-8-68	33°11'24" N 116°07'42" W	S ON° E S 26° W Up	13.10 11.70 5.65	4.38 4.28 2.21	3.47 2.85 1.94	2.2	173.1	6.4	٨	82	286.5	102.5	0.57

(Sheet 11 of 12)

(Continued)

Table Bl (Concluded)

X/A	2.60	2.81	1.96			0.36	1.34	2.19
in., for	50.5	1.97	111			1.85	19.8	78.5
, sn	161.5	263.7	210.9			187.9	245.8	231.1
Duration	52	30	52 52			30	60	2
Modified Mercalli Intensity	И	IA	и	IA	и	и	ii	IA
Richter Magnitude M	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4
Epicentral Distance km	205.1	220.3	212.9	212.0		218.8	212.2	227.3
4 D	4 % % 9 % %	2.1 3.6 3.6	9.9 4.8 7 7 7 8 7 8	3.2	8.9 9.9 9.5 9	8.9 9.6 9.6	2.5 1.8 1.8	3.9 4.1
p Pesk Displace- ment cm	4.98 2.11 1.82	0.53 0.96 0.72	1.70 1.84 0.85	2.02 1.62 1.05	1.98 2.31 1.36	1.07 2.30 1.01	2.50 2.69 1.47	2.12 1.38 1.06
v Peak Velocity cm/sec	3.19 2.86 1.75	1.35 1.32 0.99	2.20 2.24 1.14	2.10 2.45 0.99	2.33 3.08 1.33	2.23 3.07 1.23	4.27 4.65 2.38	2.42 3.18 1.11
A Peak Acceleration cm/sec ²	8.73 9.51 5.14	7.35 7.02 4.89	9.82 10.30 6.38	6.99 10.00 3.81	7.66 11.90 4.12	6.97 11.40 5.41	18.40 18.50 6.97	10.90 12.30 4.79
Instrument Component	N 21° W S 69° W Up	5 82° E S 08° ¥ Down	North East Down	South West Up	N 52° W S 38° W Up	s 52° E s 38° ¥ Up	N 83° W S 07° W Up	South East Up
Epicenter Location	33°11'24" W 33°11'24" W	M71.10.911 N172.11.0	M71.10.911 N	33°11°24" N N "42"11°51	33°11'24" N N "42"12°07'42" W	33°11'24" W	33°11'24" W 116°07"42" W	33°11'24" W
Date of Earthquake	4-8-68	4-8-68	4-8-68	4-8-68	4-8-68	4-8-68	4-8-68	4-8-68
Site Classifi- cation	¥	Α,Ι	¥	¥	¥	Α,Ι	ĸ	æ
Recording Station	Terminal Island, Southern California Edison Plant, Long Beach	J. P. L. Basement, Pasadena	Millikan Basement, CIT, Pasadena	Pasadena, CIT Athenaeum	Southern California Edison Building, Los Angeles	Subway Termínal Basement. Los Angeles	CMD Building, Vernon	Hollywood Storage P. E. Lot, Los Angeles
No.	¥372	¥373	\$375	316X	1161	¥378	¥379	¥380

(Sheet 12 of 12)

APPENDIX C: SYNTHETIC EARTHQUAKE RECORDS

Table Cl

Synthetic Earthquake Records

Simulated Earthquake Type	Approximate Magnitude	A Maximum Acceleration cm/sec ²	V Maximum Velocity cm/sec	D Maximum Displacement cm	US VS	AD V2	Approximate Predominant Period sec	Total Duration sec
CIT ⁴ A-1	8 +	382.77	58.99	39.83	4.38	0.228	0.50	120
A-2	+ 8	19.144	55.05	72.97	10.63	0.094	0.35	120
B-1	7	368.12	45.72	33.17	5.84	0.171	0.20	50
B-2	7	308.70	48.26	22.22	2.94	0.339	0.22	50
C-1	9	66.93	6.65	1.36	2.06	0.486	0.15	12
C-2	9	57.23	6.09	0.88	1.36	0.736	0.20	12
D-1	5	470.40	26.67	4.88	3.23	0.310	0.15	10
D-2	5	490.00	28.94	6.84	4.00	0.245	0.15	10
Seed-Idriss	8-1/4	412.21	57.76	I	1	1	0.40	73

APPENDIX D: NOTATION

- A Maximum ground acceleration as a fraction of g
- D Maximum displacement
- g Acceleration of gravity
- M Earthquake magnitude
- N Ground acceleration, as a fraction of g, required to make factor of safety unity
- P Resultant of normal stress on slip surface
- p Normal stress on slip surface
- S Resultant of shear stress on slip surface
- s Shear stress on slip surface
- Subscript s Scaled value
 - t Time
 - t_ Time at cessation of relative motion
 - t Time at end of acceleration pulse
 - u_{m} Displacement of sliding mass relative to ground
 - u Standardized maximum displacement; i.e., scaled permanent displacement of sliding mass for A = 0.5 and V = 30 in./sec
 - v Velocity
 - v_b Instantaneous velocity of sliding mass
 - v_ Instantaneous ground velocity at time t
 - V Maximum ground velocity
 - W Weight of sliding mass
 - β Inclination of the resultant of shearing resistance, S, with respect to horizontal
 - θ Inclination of critical earthquake acceleration to horizontal

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Franklin, Arley G Earthquake resistance of earth and rock-fill dams; Report 5: Permanent displacements of earth embankments by Newmark sliding block analysis / by Arley G. Franklin, Frank K. Chang. Vicksburg, Miss. : U. S. Waterways Experiment Station ; Springfield, Va. : available from National Technical Information Service, 1977. 38, 21, p. : ill. ; 27 cm. (Miscellaneous paper - U. S. Army Engineer Waterways Experiment Station ; S-71-17, Report 5) Prepared for Office, Chief of Engineers, U. S. Army, Washington, D. C., under CWIS No. 31144. References: p. 38. 1. Dam stability. 2. Displacement. 3. Earth dams. 4. Earthquake engineering. 5. Earthquake resistant structures. I. United States. Army. Corps of Engineers. II. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Miscellaneous paper ; S-71-17, Report 5. TA7.W34m no.S-71-17 Report 5