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NUMERICAL RESULTS FOR MODIFIED IMAGE THEORY
QUASI-STATIC RANGE SUBSURFACE-TO-SUBSURFACE
AND SUBSURFACE-TO-AIR PROPAGATION EQUATIONS

INTRODUCTION

During the past few years, considerable interest has been shown in
determining the quasi-static field components of antennas located above
or buried beneath the earth's surface. The quasi-static range is de-
fined as the range where the measurement distance is much less than a
free-space wavelength. Quasi-static range results are useful for sub-
marine radio communication and detection as well as for the buried-miner
problem. They are also helpful to geophysicists engaged in determining
the electrical properties of the earth.

Some work has been donel-5 on determining the quasi-static fields
from various subsurface sources when the measurement distance R =
(02 + 2z2)1/2 js comparable to the earth skin depth §. However, the
resulting field strength expressions are very complicated because they
involve products of modified Bessel functions of different argument.
Computing the field component expressions is lengthy and difficult, but
some numerical results have been obtained. One method of obtaining
these results has bteen discussed by Atzinger, Pensa, and Pigott.® Nu-
merical integration techniques have also been employed.7’8

Recently,? by utilizing techniques of finitely conducting earth
image theory, the authors have derived approximate expressions for the
general quasi-static range electromagnetic fields produced by various
subsurface antennas. It is the purpose of this report to provide some
numerical calculations of these approximate field component expressions.
The image-theory expressions are also compared with the more exact
numerical integration results.

Physically, the essence of the finitely conducting earth-image
theory technique is to replace the finitely conducting earth by a
perfectly conducting earth located at the (complex) depth d/2, where
d = 2/y = 6§(1-i). Analytically, this corresponds to replacing the
algebraic reflection coefficient (u-1)/(u+)) in the exact integral
equations by exp(-Ad), where A is the variable of integration.

For antennas located at or above the earth's surface, the general
image theory approximation is valid throughout the quasi-static
range.m'11 However, if one or both antennas are buried, the pre-
viously derived!? surface-to-surface and surface-to-air image-theory
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4 results, multiplied by the exponential attenuation-with-depth factor

i exply(z + h)] or exp(yh), generally will be valid only for R > 3|z + h|,
where h and z, respectively, are the depth of the source and receiving
antennas.

Therefore, we modified further the exact subsurface-to-subsurface
and subsurface-to-air integral equations and obtained fairly simple
field-strength equations? for the general quasi-static range, which
Teducelto previously derived results when R >> § and when R << § and

z + h| << 6.

For the purposes of this report, we will consider a horizontal
electric dipole (HED) source that is oriented in the x-direction and
located at depth h(h < 0) with respect to a cylindrical coordinate sys-
| tem (p, ¢, z). The dipole is assumed to be of infinitesimal length 2
I and carry a constant current I. The earth occupies the lower half-space
5 (z < 0) and the air occupies the upper half-space (z > 0). Displace-
ment currents are neglected in both the ground and the air. The mag-
netic permeability of the earth is assumed to equal the permeability of
free space pg. Meter-kilogram-second (MKS) units are employed and a
suppressed time factor of exp(iwt) is assumed.

HORIZONTAL ELECTRIC DIPOLE (HED) FIELD
COMPONENT EXPRESSIONS

The appropriate modified image-theory equations for HED subsurface-
to-air-gropagation (h < 0, z > 0) are given on page 6 of the previous
report ° and are as follows:

e o e s

yah g 2
E o~ I2 cos ¢e [1 . 3b(z bh)

- (z - bh)} , (1)
P ZWOKE Lo ]

: yah 2K? K
| g, iR g 1+—1-(1-—l) , (2)
! ¢ 2moK] d? K2

g n 12 cos @eyah 6p(z - bh) 4 (z -bh) (d+ z - bh) 3
2 4no K? 0d? Ky K> » (3)
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5 o M sin ge¥3h l(d + 2z - bh) _ (z - bh)
g > K3 St 4

L [@sz-bh) (- bw
p? K2 Kj .

M. . Biccos geYah l(d *#z-bh) (z- bh)]

¢ 41|'p2 K> K, (5)
and
: vah
H o I2p 21n e L s : (6)
ht i EagE el
where
kZ = 2 + (z - bh)2 and K% =p2 4+ (d+z-bh)?,
a=0and b=1 for R << § and |h| << &,
a=0.4and b =0.96 for R/§ less than approximately 1,
a =0.96 and b = 0.4 for R/§ between approximately 1 and 10, and
a=1.0andb =0 for R > |3h].

The appropriate modified image theory equations for HED subsurface-
to-subsurface propagation (h < 0, z < 0), given on pages 13 and 14 of
the previous report,? are

12 cos ¢le-YR° 302 g '_ 2ir = R 2
Ep N l Ra Rg - IN(1 + yRg))- v“(z - h)

-YR) 2
y= ﬁ—-11+R - y2 + h)?
T e o

va(z+h)
+2L7,_[1+b-ib’(—’|(;-ﬂﬁ+yab(z+h)]l (7
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0 1
2
R oo e (1 ; Ei)]} '
Kg dZ K" (8)
B ow ok ges ofoz - 1) (3 + 3yRy + y2R2)e YR
'z 4no l R
0
p(z + h) opdy ~YRy
+ ——R_?_ (3 + 3yR; + v Rl)e > (9)
12 sin ¢ | (z - h) -YRg
Hp n e R3 (1 bl YRQ)e
0
, alz+h)|d - bz +h) b(z+h)  d- b(g + h) l , (10
| K“DZ K302 K§
1% cos z - h) -YRg , {z + h) -YRy
H¢ AL =2 ) {( Ré (1 + yRy)e + R% (1 + yRy)e
(M 14 - bz + h) , bz + h) } an
+ + ’
02 Ky K3
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§ -YRg e'YRI
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where

e

p2 + [b(z + h]1?2 and K2 =02+ [d - b(z + h)]?,
pZ + (z - h)2 and R% = p2 + (z + h)2,

6 and b = 1 for Ry/6 << 1,

0.4 and b = 0.96 for R;/68 less than approximately 1,

0.96 and b = 0.4 for R)/6 between approximately 1 and 10, and
land b =0 for p > 3|z + h|.

ol
PP PP oW

NUMERICAL RESULTS

Note that we have defined loosely the variables a and b. That is,
we let a = 0.96 and b = 0.4 for R;/§ between approximately 1 and 10, and
a=0.4 and b = 0.96 for R;/6 less than approximately 1. The specific
crossover point for each field-strength component will depend not only
on Ry/§ but also on |z + h|/s.

Because the resulting field-strength formulas can be calculated
easily on a desk-top calculator, the field strengths can be determined
by using both values of a and b, thus numerically determining the cross-
over point. Alternatively, we could set the two expressions (involving
different values of a and b) equal and solve for the crossover point.

Comparisons of modified image theory and numerical integration
results for the electric and magnetic fields in air (or earth) pro-
duced by a buried HED are presented in figures 1 through 28, which fol-
low page 8. The normalized amplitude of each component (E” or H”) is
plotted versus p/8 for various values of H(= h/§) and Z(= z/68), where

4m82H 41g83E
sin ¢ sin ¢
L {cos ¢} & {cos ¢}

The normalization factor (0 dB) is the numerical integration value
of each component at p/§ = 0.1.

H” = and BT = (13)

Presented in figures 1 and 2 are comparisons of the modified image
theory and numerical integration results for the magnetic fields at a
height of one skin depth (Z = 1.0) produced by an HED buried at a depth
of one skin depth (H = -1.0). From figure 1, we see that the crossover
point for this example is p/6 = 1.5 (R/§ = 1.8). That is, if 0.1 <
p/8 < 1.5, then a = 0.4 and b = 0.96, whereas if 1.5 < p/& < 10, then
a=0.96 and b = 0.4. A comparison (figure 2) of the ccmposite modi-
fied image-theory results with the numerical integration results shows

et N e ... SR T R S




s A R i g 1 B i

TR 5775

that the modified image-theory calculaticns are within approximately

1 dB of the numerical integration results over the complete range of
p/8 (0.1 to 10). In fact, the modified image theory even predicts the
Hp component amplitude dip at the right place (p/8 ~ 1.5).

Comparisons of the modified image-theory and numerical integration
results for the electric fields at a height of one skin depth produced
by an HED buried at two skin depths (H = -2.0) are presented in figures
3 through 5. From figure 3, we see that the a = 0.96, b = 0.4 curve is
in better agreement with the numerical integration result throughout
the range of p/¢& plotted. For values of p/8 > 3, a much better fit to
the numerical integration result can be obtained by letting a = 1 and
b = 0. Alternatively, one could employ the quasi-near range formulas
given in table 3.13 of Kraichman.l2

From figure 4, we see that the a = 0.96, b = 0.4 curve is in good
agreement with the numerical integration result for p/§ = 0.1 to 10.
However, for the E; component (figure 5), the crossover point is at
p/8§ ~ 1.5. That is, if 0.1 < p/8 < 1.5, then a = 0.4 and t = 0.96,
whereas if 1.5 < p/§ < 10, then a = 0.96 and b = 0.4.

Presented in figures 6 througk 8 are comparisons of the modified
image-theory and numerical integration results for the electric fields
at a height of two skin depths produced by an HED buried at one skin
depth. From these figures we observe that the a = 0.96, b = 0.4 curve
is in excellent agreement with the numerical integration result through-
out the range of p/& considered (C.1 tc 10C).

It should be noted that because of reciprccity, the normalized
electric field plots presented in figures 3 through 8 are also valid
for air-to-subsurface propagation if Z and H are interchanged. That is,
figures 3 and 4 also represent the horizontal electric field at a depth
of two skin depth produced by a horizontal electric dipole located at a
height of one skin depth, while figure 5 represents the horizontal
electric field at a depth of two skin depths procduced by a vertical
electric dipole (VED) source at a height of one skin depth. For fur-
ther details, see reference 9.

Comparisons of the modified image theory and numerical integration
results for the magnetic fields at a height of two skin depths produced
by an HED buried at one skin depth are presented in figures 9 through 11.
From figure 9, we see that the crossover point for the [IJ component is
at p/§ ~ 2.2, That is, if 0.1 < p/§ < 2.2, thena = 0.4 and b = 0.96,
whereas if 2.2 < p/6 < 10, then a = 0.96 and b = 0.4. For the H§ com-
ponent (figure 10), the a = 0.96, b = 0.4 curve is in excellent agree-
ment with the numerical integration result throughout the range of p/¢
considered. From figure 11, we see that the crossover point for the H;
component is at p/§ ~ 1.5.

mre :
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Presented in figures 12 through 14 are comparisons of the modified
image theory and numerical integration results for the magnetic fields
at a height of one skin depth produced by a buried HED at a depth of
two skin depths. From these figures, we see that the crossover point
is p/8 ~ 2 for the H; component (figure 12), p/8 ~ 0.8 for the H; com- P
ponent (figure 13), and p/§ ~ 1.7 for the H7 component (figure 12). {

It should be noted that because of reciprocity, the normalized
magnetic field plots presented in figures 9 through 14 are also valid
for air-to-subsurface propagation if Z and H are interchanged. That is,
figures 9 and 10 also represent the horizontal electric field at a
depth of one skin depth produced by a horizontal magnetic dipole (HMD)

E source located at a height of two skin depths while figure 11 repre-

: sents the horizontal electric field at a depth of one skin depth pro-
duced by a vertical magnetic dipole (VMD) source located at a height of
two skin depths. For further details, see reference 9.

Comparisons of the modified image theory and numerical integration
results for the electric and magnetic fields at a depth of one skin
depth produced by an HED located at the earth's surface (H=0) are given
in figures 15 through 19. From these figures, we see that the cross-
over point is p/§ ~ 1.5 for the E; component (figure 15), p/8 ~ 1.0 for
the E§ component (figure 16), p/8 ~ 1.5 for the H5 component (figure
17), /& ~ 1.0 for the H; component (figure 18), and p/§ ~ 1.0 for the
HZ component (figure 19). It should be noted that for p/§ > 3, an even
better fit to the numerical integration results can be obtained by
setting a = 1.0 and b = 0. Alternatively, one could employ the quasi-
near range formulas given in table 3.16 of Kraichman. !

Referring to equations (7) through (11), we see that, for the Ej,
E§, and Hj components, identical results will be obtained for the H=0,
Z=-1 and H=-1, Z=0 cases. However, for the H, and Hy components, this 3
will not be the case. This fact is further illustrated in figures 20 9
and 21, which present comparisons of the modified image-theory and
numerical integration results for the horizontal magnetic fields at the
surface (Z=0) produced by a HED buried at a depth of one skin depth
(H=-1). From figure 20, we see that the a = 0.96, b = 0.4 Hj curve is
in fair agreement with the numerical integration result for 0.1 <
p/8 < 3 and in very good agreement for p/§ > 3. Referring to figure
21, we see that the crossover point for the Hy component is at p/é -~
1.5. That is¢, if 0.1 < p/8 < 1.5, then a = 0.4 and t = 0.96, whereas
if 1.5 < p/& < 10, then a = 0.96 and b = 0.4.

Presented in figures 22 and 23 are comparisons of the modified
image theory and numerical integration results for the horizontal mag-
netic fields at a depth of one skin depth produced by a HED buried at
one skin depth. From these figures we see that the crossover point for
both components occurs at p/8 ~ 1.0. It should be noted, however, that
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for the H$ component (figure 23), the a = 0.96, b = 0.4 curve is in
good agreement with the numerical integration result throughout the
range of p/§ considered.

Comparisons of the modified image theory and numerical integration
results for the electric and magnetic fields at a depth of two skin
depths, produced by an HED located at the earth's surface, are presented
in figures 24 through 28. From these figures we see that the crossover
point is at p/§ ~ 1 to 1.5 for all five components. The agreement be-
tween the modified image theory and numerical integration results is
very good for the H and Hj components (figures 26 and 27) and fair for
the Eg, E&, and H; components (figures 24, 25, and 28). The modified
image theory fails to predict the Ej amplitude dip at p/8 ~ 2.5 (figure
24), although it did predict the Ej amplitude dip for the H=0, Z=-1
case (figure 15). For both the E§ and H; components (figures 25 and
28), the a=0.4, b=0.96 curve is in good agreement with the numerical
integration result from 0.1 < p/§ < 3. For p/§ > 3, better results can
be obtained by setting a=1.0 and b=0.

Because of reciprocity, the normalized electric and magnetic field
plots presented in figures 15 through 28 are also valid for subsurface
(or surface) to subsurface (or surface) propagation if Z and H are
interchanged. That is, figures 15 and 16 also represent the hecrizontal
electric fields at the surface produced by an HED buried at one skin
depth; figures 17 and 18 also represent the horizontal electric fields
at the surface produced by an HMD buried at one skin depth; and figure
19 also depicts the horizontal electric field at the surface produced
by a buried VMD located at H=-1. Reference 9 contains further details.

CONCLUSIONS

Numerical results have been presented for the previously derived®
HED modified image-theory quasi-static range subsurface-to-subsurface
and subsurface-to-air propagation approximate field component expres-
sions. It has teen shown that, for the most part, the modified image-
theory approximations are in good agreement with the more exact numerical
integration results.

These modified image theory results will be useful for sutmarine
radio communication and detection as well as for the buried miner prob-
lem. They also may be helpful to geophysicists engaged in determining
the electrical properties of the earth.

S TOSNREn T e s

i
|
|
I
§
§




NORMALIZED AMPLITUDE (dB)

'
—
(=]

1
n
o

NUMERICAL INTEGRATION

MODIFIED IMAGE THEQRY
(a=0.96, b = 0.4)

MODIFIED IMAGE THEORY
(a =0.4, b=0.9)

TR 5775

0.1

0.2

Figure 1.

p/é

2.0 5.0

Integration Results for the Magnetic Fields in Air
Produced by a Buried HED (H = -1.0, Z = 1.0)

i

10.0

Comparison of Modified Image Theory and Numerical




T T T

S

=

TR

NORMALIZED AMPLITUDE (dB)

10

AR e g e ; e e R Gl 3
Sk N ARG Rhad i SRR 2

PSS AN TRE

5775

— NUMERICAL INTEGRATION
MODIFIED IMAGE THEORY

(COMPOSITE)
-40t
4 s ' d i J
0.1 0.2 0.5 1.0 2.0 510 10.0

Figure 2. Comparison of Composite Modified Image Theory and
Numerical Integration Results for the Magnetic Fields in Air
Produced by a Buried HED (H = -1.0, Z = 1.0)




Sy S 5 e - é i = SEAE s o -
!
|
TR 5775
| o
8’4
@
(=]
Z o
—Q‘L‘;L‘L;;'“_';';'L;‘;‘:—Q_"
(%] =22l
: e,
% N ‘.“\\
9 H==2.0 2- 1.0 T
= e
i Al e INTEGRATION RESULTS e
i =V ~
} 0 i MIT 0=.96 b= .4 .
L]
S0 me=es MIT o= .4 b=-.96
g o
b 8 , ————— . —
- 10” 10° 10"
2 p/8
if Figure 3. Comparison of Modified Image Theory and Numerical
3 Integration Results for the Ej Component in Air Produced by a
3 Buried HED (H = -2.0, Z = 1.0)
:‘ o
ke |
©
@ =)
g el e e e e e
: Eh T s e e s s ]
- e e S
g 1 =) el
. EO 3 =y
£ R \\
& ~
S H=-2.0 Z== 100
>
2 o- ----- INTEGRATION RESULTS
&
SIS e MIT o-.96 b= .4
sel mome = MIT @= .4 b=.96
=
g
! : e ' s e e ¥ g8
o/8
Figure 4. Comparison of Modified Image Theory and Numerical
Integration Results for the E§ Component in Air
Produced by a Buried HED (H = -2.0, Z = 1.0)
11




—— S o BT S sk el
TR 5775
3 T R,
Zo __-%u/ ~.
P =
J
(=]
=
22
£ 27
=1
\ g H=-2.0 Z- 1.0
) ggw ----- INTEGRATION RESULTS
i
= [ MIT 0=.96 b= .4
: § ————— MIT o= .4 b-.96
g ; m v SRR ] LA H
: 19" 10° 10'
3 o/
3 Figure 5. Comparison of Modified Image Theory and Numerical
A Integration Results for the E; Component in Air
Produced by a Buried HED (H = -2,0, Z = 1.0)
8
zo
PiTh S e S a s SR S TR i
w e e
e \"‘\\
&Jg. B
£ \
9 H=-1.0 2- 2.0 S
S Sy
) S INTEGRATION RESULTS W
E i
SRS T MIT o-.96 b- .4
;J oS MG 4 b=.96
2 S —— SE—
10" 10° 10"
p/8
Figure 6. Comparison of Modified Image Theory and Numerical
Integration Results for the E] Component in Air
Produced by a Buried HED (H = -1.0, Z = 2.0)
12




RIS e AU A g

AT i

TR 5775
|
i
°
| ]
! 2]
. (=]
! E g'm':':'::'"—"—':'::'"—"‘ﬁ-%_> i
g \."-_‘\
: ‘~.~\
‘ dc- ‘-._‘\
z ] et S
m ; ‘.‘
g He=1.0 2= 2.0 . ]
go) v INTEGRATION RESULTS
o}:: v
Sl T e MIT o=.96 b- .4
;. —e-o= MIT o= .4 b=.96
o
8 . SRS r —_—
]0-l 100 lol

p/s

Figure 7. Comparison of Modified Image Theory and Numerical
Integration Results for the Eg Component in Air
Produced by a Buried HED (H = -1.0, Z = 2.0)

' ””‘_—-—— — =
“ g ~
£ @™ i T \ —s
' & ,,’—’/ 0 =
"f‘ =z _/'
g - 2_,_...-

W

[=]

=

(=4

Jo

]

a

a H=-1.0 Z- 2.0

~N

bl

‘E]é' ----- INTEGRATION RESULTS

0

= ) | N S MIT 0-.96 b= .4

=r=e~ BT o= <4 b=.96

-60.0
1

°
L

' 10° 10
/8

10°

Figure 8. Comparison of Modified Image Theory and Numerical
Integration Results for the Ez Component in Air
Produced by a Buried HED (H = -1.0, Z = 2.0)




T p T e . PR i N A AN 1

TR 5775

o
8‘.
20
a
=0 :
) i o R
= SR e,
= T el TS
o £ / o
€ 51 N\ By
b= ,
: 8 H=-1.0 Z- 2.0
: =
3 e INTEGRATION RESULTS
| C}E'
DI s MIT o=.96 b= .4
;_ oS ET G g b-.96
o
8
P —— - —
10" 10° 10
p/8

Figure 9. Comparison of Modified Image Theory and Numerical
Integration Results for the Hj Component in Air
Produced by a Buried HED (H = -1.0, Z = 2.0)

20]
{om]
z g4qqu,11ﬂ,,,,Jwv?.nwv;rzv,,,mn,,zxrrtlrr?_;
W e
o oS
S
M "~
a H=-1.0 Z= 2.0 o
IS
Sl ----- INTEGRATION RESULTS
T 27
&:.
Sl e MIT o-.96 b- .4
o
> T | ] -
o IT o= .4 b-.96
o
g - S —— '
16 10° 10
oV

Figure 10. Comparison of Modified Image Theory and Numerical
Integration Results for the H§ Component in Air
Produced by a Buried HED (H = -1.0, Z = 2.0)

14




NORMALIZED AMPLITUDE IN DB

— //’/

= 1=
o
~N

=10 Zar)
o - - 5
2 R R e INTEGRATION RESULTS

..... MIT o=.9E b 4
-]
2 MIT o= .4 be.O
[v<]
o
=
@

- — — — -
10 10
p/8

Figure 11. Comparison of Modified Image Theory and Numerical

NORMALIZED AMPLITUDE IN DB

Integration Results for the Hz Component in Air
Produced by a Buried HED (H = -1.0, Z = 2.0)

o
]
g e e e e
_____ 2
‘"~~\..\
< R ;:\

=) E N
& L g

H=-2.0 Z- 1.0
gl ----- INTEGRATION RESULTS

..... MIT o=.96 b= .4
;4 —e-e- MIT o= .4 b=.96
o
¥ s — . — e

10" ‘ 10° 10'

/8%

Figure 12. Comparison of Modified Image Theory and Numerical

Integration Results for the Hy Component in Air
Produced by a Buried HED (H = -2.0, Z = 1.0)

15




ol — s : . o —— O ..
TR 5775
°
=3
o
Eeb— e e e e i L
a e T
> o ;
: S
el B
= ; ~
m s Y
= H=-2.0 z- 1.0 A8
| £ 3
i SiEl INTEGRATION RESULTS
i v
| x
3 = o] IO e MIT o-.96 b= .4
=il +=e= MIT o= .4 b= 96
o -
e ¢ - 11‘:9 i
p/8 X
Figure 13. Comparison of Modified Image Theory and Numerical 1§
Integration Results for the Hj Component in Air i
Produced by a Buried HED (H = -2.0, Z = 1.0) 5
i
81 e ;
./"“’./ > S ¥L
S .-—-”"-”’ %
ze " R |
8 s i
b= {
—
So ‘
£ 81 i
a
o H=-2.0 Z= 1.9 i
r
T R INTEGRATION RESULTS
E lf
o MIT o-.96 b= .4
o
$- MIT o= .4 b=.96
°
8 - —— e—— - - —_——
i 10" 10° 10
E p/8
Figure 14. Comparison of Modified Image Theory and Numerical

Integration Results for the Hz Component in Air
Produced by a Buried HED (H = -2.0, Z = 1.0)

16




BRI 2\ s i : & ;-_ —
i
| TR 5775
]
o
S e S
s
foe) B
=) s
= g
& LJN s ‘\
) (=} TG
: =
= :
£°
=i
o > 2
g (= 2%
] & : S
: = 2 &
2 o H- .0 Z--1.0 S
; v j
§ g | - INTEGRATION RESULTS
] S I 1 MIT 0=.96 . b- .4
- MIT o- .4 b-.396
10" CECIE S
',. p/8
Figure 15. Comparison of Modified Image Theory and Numerical
Integration Results for the EE Component in Earth

Produced by a Buried HED (H= 0, Z = -1.0)

(=]
&
o
(-3 Dot b s A
o) \\\\».
(= e
N = ~~
Bi =g
& =
4 =
‘l’g :cg
I o
§ S
L § -5 )
¥ o e - 7= ]
: %‘g.‘ +1 Z==1
i 2 ----- [NTEGRATION RESULTS
3 = }
" gQul) L i MIT o=.96 B4
i o
MIT o= .4 b=. 96
!
‘ (=]
- v e e -
1 10” 10°
| 0/8

Figure 16. Comparison of Modified Image Theory and Numerical
Integration Results for the Ej Component in Earth
Produced by a Buried HED (ﬁ =0, Z = -1.0)

17




PNSURRSSIIRSS = SURP——

e

o

s ol i S S A i

—

o - '-‘(r o
TR 5775
| SRt L
\-.\'x;
o gl
Y \
' oy
L s
=
[ S
e iy
o
7
- N
=
(_;Jg_ H= .0 Z=-1.0
— ©
£
=) ----- INTEGRATION RESULTS
ShR Dt A MIT o=.96 b= .4
L
..... MIT o= .4 b=.3986
= B o il ‘0 ¥
10 10 10
p/8

18

Figure 17.

Integration Results for the H] Component in Earth
Produced by a Buried HED (H = 0, Z = -1.0)

Comparison of Modified Image Theory and Numerical

INTEGRATION RESULTS

..... 11T o=, 9t b= .4
! 1 b=.96

p—— o T

f\'\‘

3

Integration Results for the Hj Component in Larth
Produced by a Buried HED (H = 0, Z = -1.0)

Figure 18. Comparison of Modified Image Theory and Numerical

o

= SN




~

DL b e e e

i .

i TR 5775

o
2
@ B
o s =
wal o \*&“\\
— st
i 3 X
| = N
': EOJ \\\\
| ER ‘.‘\
g ¢ . | :
| o H= .0 z--1.0 R
i N Nl
S - INTEGRATION RESULTS s,
§ Y
- R MIT 0=.96 b~ .4
gﬂ “v= = MIT o= .4 b-.96
g o R—— T T
10" 10* .

p/8
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Integration Results for the H; Component in Earth
Produced by a Buried HED (H= 0, Z = -1.0)
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Figure 20. Comparison of Modified Image Theory and Numerical
Integration Results for the H Component in Earth
Produced by a Buried HED (H = -1.0, Z = 0)
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Figure 22. Comparison of Modified Image Theory and Numerical
Integration Results for the H] Component in Earth
Produced by a Buried HED (H = -1.0, Z = -1.0)
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Figure 23. Comparison of Modified Image Theory and Numerical
Integration Results for the H§ Component in Earth
Produced by a Buried HED (H = -1.0, Z = -1.0)
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Figure 24, Comparison of Modified Image Theory and Numerical

Integration Results for the E; Component in Earth
Produced by a Buried HED (ﬁ =0, 2= -2.0)
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Figure 25. Comparison of Modified Image Theory and Numerical
Integration Results for the Ej Component in Earth

Produced by a Buried HED (H = 0, Z = -2.0)
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Figure 26. Comparison of Modified Image Theory and Numerical
Integration Results for the Hj Component in Earth
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