
— —

AC—AflI 333 COU.*SIA UNIV NEW TOPIC LUSRICATION RESEARCH LAB Ft. fl/i
A REVIEW OF TItORIES FOP Tie FLUID DYNAMIC EFFECTS OF ROQI *LSS—cTC~up
DCC 77 H I CLROO / NOOO1~~7b.C—O1OI

UNCLASSIFIED 27

ij N

1
END

DA T E_________________________________________________________________ 
E~ I. ~~ED

2-.is

~~~~~~~~~~~

. 

_ _ _ _ _  

_

p 
— -~~~



- 

Report No. 27

H~~~~.
g~ t~ c~ of ~o~t

- A REVIEW OF THEORIES FOR THE

FLUID DYNM4IC EFFECTS OF ROUGHNESS

ON LAMINAR LUBRICATING FILMS

by

D:ce :e::

~~

7

T.. rnoN S~~~~!E!cfl
~~ p~ov~d fcz public L~tO

I~i~I 
Dstr t C ~ Unlimited

I ~ 
Lubrication Research Laboratory

School of Engineering and Applied Science
I — Department of Mechanical and Nuclear Engineering

__ Columbia University
I _ 

in the Clty of New York

-‘U ” _ _ _



A REVIEW OF THEORIES FOR THE

FLUID DYNAMIC EFFECTS OF ROUGHNESS

ON LAMINAR LUBRICATING FILMS

by

H. G. Elrod

December 1977

Report No. 27
Lubrication Research Laboratory

School of Engineering and Applied Science
Department of Mechanical and Nuclear Engineering

Columbia University
in the City of New York

Prepared under
Office of Naval Research
Department of the Navy

Task NR 062—360
Contract No. N000l4—76-C—0105

Supported by Information Systems Branch
and Fluid Dynamics Branch

-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~Lr . - .- -

ABSTRACT

This report contains a comprehensive survey of theoretical

work on the f luid dynamic effects of roughness in lubrication .

Of necessity,  much of the report deals with Reynolds

roughness; that is, roughness which can be locally ana lyzed

with Reynolds equation because the wavelength of the roughness

is not too short. One-sided and two-sided striated roughnesses

are considered. Statistical and multiple—scale treatments are

discussed and intercompared . Finally, the effects of short-

wavelength roughness (Stokes roughness) are treated, as well

as the consequences of slip in highly rarefied situations.

Some new results for isotropic Reynolds roughness, for

Stokes roughness , and for molecular slip are given preliminar y

exposure.
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A REVIEW OF THEORIES FOR THE

FLUID DYNAMIC EFFECTS OF ROUGHNESS

ON LAMINAR LUBRICATING FILMS

by

H.G. Elrod

I. Introduction:

The purpose of this paper is to summarize some theoret-

ical results concerning the effects of surface roughness on

laminar lubricating films. Old and new work are inter—relat-

ed in an attempt to show what is known , and what needs to be
found out. For potential investigators, a considerable bib-
liography is appended.

Surface roughness may be deliberately created , as in
grooved bearings, to promote a pumping effect. It may be the

consequence of a fabrication process , such as drilling, broach-
ing, grinding, lapping. Or it may be the consequence of

scratches produced by debris. Obviously , then , striations will
be associated with many forms of surface finish.

For present purposes, it suffices to observe that,

quite typically, roughness amplitude excursions have associat-
ed elevation angles of 100. Dependent on operating conditions,

this amplitude may become a substantial fraction of the film

thickness,h,with characteristics wavelengths rang ing from
0 (h) 

~~~~~~~~

In terms of film—thickness reduction , the analyses to
be discussed herein are to be regarded as the last purely
fluid dynamical treatments before some solid—to—solid inter—
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action of asperities takes place. The flow is treated as lam-

inar and Newtonian, with either liquid or gas, unless other-
wise specified. Cavitation or film rupture sometimes occurs

in conjunction with roughness, as in face seals. But these

effects are not examined here. On the other hand , molecular

slip, which takes place in ultra—thin gas passages, is dis-

cussed.

Figure 1.1 Striated Roughness

Figure 1.1 shows the striated roughness with which

this paper is mostly concerned. The film thickness is a

function only of the coordinate, z. Its cross—section may

be arbitrary , but is almost periodic. The moving surface is

smooth, and has , by choice of angle, “8” , only an x—wise com-

ponent, U. When 8=ir/2 , the striations are called “transverse” ,
and when 8 0 , the striations are “longitudinal” .

If the characteristic wavelength , A , of the striations

is large compared with the gap , h, then it is lcgitim~itc t~o

use Reynolds equation to evaluate roughness effects. Such

roughness we term “Reynolds Roughness” . On the other hand ,

if the wavelength is so small as to necessitate the use of the

full Stokes equation, we use the name “Stokes Roughness”.
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II. Analysis of Discrete Rippling.

The earliest analyses of roughness effects were made

by means of Reynolds equation for simple cross-sections si-

nusoidal, rectangular, triangular). Michell (1) and Burton

(4) used sinusoidal, first—order linearization treatments,

the former with longitudinal striations on a simple slider

bearing, and the latter with transverse striations in a par-

allel—plate thrust situation. Such analyses are useful  in
.disclosing some possible effects of roughness, but do not

yield the load , which is a second—order effect.*

Finite—difference solutions of Reynolds equation in

the presence of roughness were obtained by Cameron (3) (trans-

verse), Dowson & Whomes (7) (longitudInal), Shelly and Ettles
(8) (longitudinal & transverse), and by TØnder & Christensen

(9) (longitudinal). Because of the necessity of numerical

description of individual grooves, it is not feasible to in-
corporate . in analyses of finite bearings a large number of

striations. Thus the hypothesized surfaces, although retain-
ing validity in their own right, are not realistic renditions

of typical roughness profiles .... their roughness wavelength
is too long. Nevertheless, some of these numerical studies

show the important fact that the characteristic wavelength of

the roughness ceases to affect Reynolds-equation solutions ,

even when it is only moderately small compared with overall

bearing dimensions.

* Footnote: Although reference (1) is widely quoted as

providing the effects on load due to longitudinal roughness ,

the small-roughness portion of the analysis actually just ex-

hibits the effect of enlarged mean clearance.

L~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~. ~~~~~~~~ --. 
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Points of inflection .

Figure 2.1 Assumed Wavefort~i ofMachining Marks
(from ref. 2.8)

Figure 2.1 shows the profile assumed by Shelly and

Ettles to mimic machining marks from aero boring (longituJi-

nal) or from broaching (transverse). They studied the effects

on the performance of a 50.8 nun diam. journal bearing , 17.8 mm

long, with incompressible lubricant.

Figure 2.2 presents their results for a protuberance

amplitude (hg) of 1.6 urn in a clearance (c) of 25.4 urn. The

roughness wavelength was varied to produce different numbers,

n, of waves either circumferentially (longitudinal) or axially

(transverse). Solutions include cavitation with Reynolds

boundary-condition (p=~~=0). Note the dramatically rapid

approach of the load capacity to an asymptotic value. (The

indicated load reductions are the consequence of basing the

ref erence “smooth” loads on minimum , rather than mean , film
thickness). The early work of Cameron (3) with transverse

waves on an infinitely—wide slider (see Fig.2.2), and the more

recent work of Tønder and Christensen (9) with longitudial

waves on cylindrical rollers exhibit the same asymptotic effect.
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For the special case of roughness in the form of rec-
tilinearly striated rectangular grooving, Reynolds equation
reduces to Laplace ’s eq., . = 0,
in each of the constant film—thicknesses regions. Muijderman
(10) showed an exact solution could be obtained for the pres-

sure distribution by the juncture of linear patterns , (see

Fig. 2.3) all conditions being satisfied except for edge ef-

fects at the entrance & exit of the grooving. In the case
shown , there are pressure ripples across the grooving super-
imposed an a general buildup along the grooving. Subject to

the limitations of Reynolds equation and the hypothesis of in-

compressible Newtonian lubricant, the excursions of the pres-

sure ripple can be very substantial, and need only be small

compared with the total pressure buildup from the pumping ac-
tion i to minimize edge corrections.
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III. Averaged Variables with One-Sided Reynolds ~oughness.*

Even with the deliberate roughness of herringbone and

spiral—groove bearings, where A/L is much greater than for

typical surface roughness, it is desirable , if possible , to

deal with average pressures and average film thicknesses. On
good au~.hority , the writer has been told that an analysis

achieving this purpose was accomplished by Boeker circa 1944

(h a). However, the first publicly disseminated analysis is

due to Whipple (Jib) .

The analysis of Whipple,as well as those of Muijderman

(10), Hirs (12), and Elrod (13), takes advantage of the pres-

sure periodicity associated with parallel opposing surfaces ,

with surfaces uniformly grooved. Whipple and Muijderrnan con-

sider rectangular grooving only, whereas Hirs and Elrod ac-

count for “arbitrary ” roughness. We summarize briefly here

Hirs ’ analysis.

Figure 1.1 illustrates the situation analyzed . The

smooth upper face (towards reader) moves with velocity U in

the x—direction. Pressures at y=O and y=L are uniform at p0
and 

~L’ 
respectively. The bearing has infinite extent in the

x—direction. Without proof, Hirs makes the following plausi-

ble statements for the narrow—groove limit (i.e., when A/L~ <1)

with an incompressible fluid .

a) -
~~~~~ is independent of position (an hypothesis made

earlier by Michehl (2.1)

b) Q
~~~~., 

the film flow in the z—direction , is independent

of position.

* The roughness pattern must not move with respect to

the gross mean—film configuration . 

- -— —-----~~- —  ~.
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Applying Reynolds relations for the volumetric flows ,
one obtains from (a):

~~s~m 
= — ~-~-(h

3) (~~ ) + ~U(cos8) (h) [3.1]

where the subscript “m” indicates an average over one wave-
length , A , that includes one groove-ridge pair.

In addition , one obtains from (b):

z)m{(~ 3)}= 
- T~~~~~~m - mn8){

(~ 2)} [3.2]

Since spatial differentiation and integration commute:

(12) = (12) (12) = (12) [3 3]
~s m 35 m ‘ 3z m 3z m

where ~ is the local mean pressure. * With Q and con-
stant, both eqs. 3.1 & 3.2 can be integrated subject to pres-
sure or flow boundary conditions. The performance of a simp le
herringbone bearing can thereby by computed .

Details have been given here because the same equations
are crucial to the theory of Christensen (see section IV), and
because it is feasible, even in a review paper , to do so. We
shall reserve comment on the assumptions (a) and (b) until
section V.

In ref, (13) the same problem is attacked by assuming

that the pressure can be expanded in terms of n y/L and ç=z/A
with ~:A/L as a small parameter. Thus:

* Strictly, the p ’s for the s— and z derivatives are

not the same except for linear pressure profiles , but the
discrepancy vanIshes as A/L-’O. 

- -, ,.~~~~~~-—-
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p = p0(n,~~) + cp
1
(~~,~~) + e 2p2 (n,ç) etc . [3 .4 ]

This expansion is used in connection with

h = h0 + cf(~ ) [3.5)

and Reynolds equation, and periodicity is invoked . Differen-

tial equations are found for p0, the mean pressure, p1, the

first order pressure ripple, etc. The results apply for in-

compressible and compressible lubricants, and, in a sense,

legitimize earlier , more intuitive work.

The limitation of constant mean f ilm thickness , ernbod-
ied in Whipple ’s work , was removed by Vohr and Pan (14), again
on an intuitive basis.Their formulations are for the rectangu—

lar—grooving equivalents of eqs. (3.1) and (3.2). These ex-
pressions they employ with local mean thicknesses and local

mean fluid density , p, and write:

= 0 [3.6]

Many useful studies of grooved—bearing performance have been

made employing the Vohr-Pan differential equation .

In ref. (15) a small—parameter , multiple—scale analy-

sis is used to generate the appropriate differential equations

for varying mean film thickness, arbitrary orientation of the

roughness striations, and arbitrary roughness cross-section .

The expansion adopted is:

p = p 0(n,z,i) + cp 1(n,z,c) + c 2p2 (n,z,ç) etc . [3.7]

explicit recognition being given to the possible of slow pres-

sure variation in terms of the “slow” var iable , z, and fast

~ 

, . _ _~~J i  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— .-
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variation (rippling) in terms of the “fast” var iabl e, ~~~. An

analogy might be the expression of atmospheric temperature in
in terms of month and hour of the day. The slow seasonal

temperature trend would be known as a function of the month,

and the daily fluctuation as a function of the hour. Again,

the analysis is in agreement with more heuristic formula-
• tions~ namely, eq.(3.6) with components of ~ given by eqs.

(3.1) and (3.3) is supported.

Within their stated regions of validity , all of the

foregoing (section III) analyses yield results identical to

those to be given in the next section.

I

~

---
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IV. Statistical Treatments of One-Sided Reynolds Roughness.

The haphazard , semi-random distribution of roughness
on many surfaces has lead investigators to consider statisti-
cal methods of analysis. The first such treatment was made
by Tzeng & Saibel (16). Figure (4.1) shows the system

-4

/7/ Z/// //
‘U

Figure 4.1 Simple Slider Bearing with
Roughness on One Surface

analyzed.* The authors write, for an incompressible fluid:

~—h 
3~.E = 6 U~-~ [4 1]dx dx ~~dx

where “h” is the film thickness including roughness. One
integration yields :

* Fig. 1 of ref.(16) shows two—sided roughness, for
which their analysis is not applicable because of the neglect

of time—derivatives. (See section VI) The same comment ap-

plies to refs. (18 ,19,20).

_
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= 
6u U  

— 
l2j~Q [4.2]dx h2 h3

Now the authors write:

h = }
~(x)+O 

. [4.3]

where ~ is the mean of a population of bearings with similar
nominal specification and “0” is some random fluctuation about

the mean, being different from bearing to bearing .

Thus: <h>(expected value) = <h+e> = [4.4]

The authors now hypothesize that the through-flow, Q,

will be similar for all bearings of this type, and take the

expected values of the quantities in eq.(4.2). The result

is:

= 
d<p> 

= 6u U<-~—> 
— ( 4 . 5)dx x h2 h3

The boundary conditions on <p> are:

Integration of eq.(4.5) yields the load.

Thus:

Load = J<p>~ x [4.6]

To use these equations , some knowledge of the rough-
ness distribution is necessary. Tzeng & Saibel proposed a

so-called “beta distribution” function which yields finite

maximum deviations from a mean asperity height, but other-
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wise closely resembles a Gaussian normal distribution . Chri-

stensen(l8) followed their example with a slightly different

expression, which to avoid confus ion, is the only one to be

given here:

f(O) = ~{1~~~~ 2}3; —c<9<c [4,7]

According to this formula , the fraction of asperities at a

given “x” in the bearing population with heights (measured

from a mean) between h51 and h52 is:

h
~slf(o)de

h~2

The function is compared with the normal distribution curve

in Fig. (4.2)

04
~ Gaussian distribution

02 Polynomial distribution

35 {~
_ (fl~

)
2]3

L.... . .  I J_ .  _ L L ~~~~ i.-3 -7 -l 0 I 2 3
“s /a .

Figure 4.2 Roughness Distribution
Curves Compared
(from ref.l8)

Note that the maximum amplitude is three standard deviations

(i.e., c=3a).

-—

~

= 
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Tzeng & Saibel cite only one numerical example , but
their analysis yields the curves for transverse roughness

shown in Fig.4.3.

6 0  —~~~~~~~~

~c/ m /—O- I
40 

~\ 
-— -. —

— Longitudinal roughness
— Transverse roughness

2 0  — 

~~~~~ 

-- - --1.-.
~ \ I

I 0 —.~~ _ \c/m/ 05 — — — -—

< 0-6 --- - --— -- ___ -

0-4 -- - —- 
_

~
. è~

-
~

_t
~~

L:99__

~~~0.2 — . ——- — -— --

h I / ) / m /

Figure 4.3 Effect of Roughness on
Load Capacity of Infinitely
Wide Slider Bearing
(from ref.l8)

Christensen(l8) and Christensen & Tonder(9 ,l9,20) adopt

a somewhat different statistical viewpoint. They regard the

function f(O) as providing the roughness distribution for the

population of surface elements neighboring a given “x” in a

given bearing . This difference in approach has lead to mis-

understanding ,even among the analysts themselves(18).

Essentially, the Chr istensen (18) roughness theory
rests on the same two postulates adopted by Hirs (12), but

with the Vohr-Pan (14) viewpoint that the flow relations (3.1)

and (3.2) are locally applicable in a bearing with variable

. - .---- —- . . —.,- -
. .~~~~~
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mean film thickness. In addition , accenting the uncertainty

of the actual roughness distribution, they interpret all
means as statistical expectations.

For transverse roughness, 0=0 (x,t) or B=ir/2,eqs.(3.l),

(3.2), and

= .
~~~~~~ ( 4 . 8 ]

leads to one of Christensen ’s differential equations:

1 _L. 12 + ~~~~ 
.~.2 = 6~j tJ—1 ~~~~~~~~~~ + l2i4~

For longitudinal roughness, O=0 (y,t) or 8=0 , his re—

suit is: *

—
~~ i~ -

~~~~~ + —~~ _L- ‘~R = 6 ~~~ + 12 (4.10]
~x 3y— ~~~3y 3x 3t

h

Here hn stands for the local mean value or expectation of h~ .

In addition, for uniform isotropic roughness with

steady-state operation, Christensen & TØnder propose (19,20):

+ —
~~~ W~ = 6 ~ [4.11]3x 3x 3y ay

These differential equations resemble very closely the

usual Reynolds equation , although, as Christensen points,
there is no completely equivalent smooth bearing to be found

by adopting some appropriately chosen mean film thickness.

But the numerical treatments are almost identical and

there is no necessity , either, of treating every little rip-

ple individually .

* The more general case of arbitrary striation angle,

B , and variable fluid density is treated in (15).
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Christensen and Tghrider have applied differential

equations (4.9) and (4.10) to slider and journal bearings of

finite and infinite width (18 ,19,20) using roughness distri-

bution function (4.7). Fig.(4.3) shows the theoretical load

capacities of the slider bearing in Fig. (4.1) for the two

types of roughness, longitudinal and transverse. It is seen

that the longitudinal roughness has scarcely any influence

on load, whereas the transverse roughness certainly can pro-

duce a measurable increase in load capacity over that for a

perfectly smooth bearing . Notice that the curves terminate

where c/mL=h/mL since there is then incipient contact of the

asperities with the smooth opposing surface.

The effect of transverse roughness on slider friction

is shown in Figures (4.4) and (4.5).

3-C —
~~~~j ~~~

-
~~ 
-- 

I% ————Long itudinal roughness
— Transverse rough9ess

S2 0  _ _ _ _ \~~ 
ch~~ 0~ - -  

Figure 4.4 Longitudinal and Transverse
Roughness Effects on Slider
Friction. (from ref.l6).

From Fig. (4.4) it is observed that longitudinal roughness

scarcely affects the friction at all , whereas transverse

roughness can increase it appreciably. However , for a given
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/0

_ _  Ii
h

Figure 4.5 Normalized Friction
Coefficient (Cf./m) with
Transverse Roughness
(adapted from (16)).

mean film thickness, the friction coefficient is reduced by

transverse roughness , as shown in Fig. (4.5).

Christensen (18) summarizes his findings in the table

below.

COMPARISON OF SURFACE ROUGHNESS EFFECTS

Bearing Longitudinal Transverse
character istic roughness roughness

Load capacity Small decrease Significant incr.
Oil flow . Small increase Significant decr.
Friction force Insignificant increase Significat~t incr.
Friction coefficient Significant increase Significant decr.
remperature rise Insignificant increase Highly significant

incr.

_ _ _
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V. Intercomparison of Theoretical Methods

This is perhaps an appropriate place to summarize

some of the different viewpoints embodied in the analyses of

Sections 11,111 and IV, and to make intercomparisons.

In Section II the common feature is the assumption of

some specific roughness contour (rectangular, sinusoidal ,

etc.) to which Reynolds equation is applied , either by a

small-perturbation analysis or by a direct numerical method .

Moreover , the detailed interaction between the surface rough-
ness and the lubricating film is followed.

In Section III, on grounds of periodicity or short

roughness wavelength, detailed interactions are “smeared”

or averaged, and differential equations are developed which

permit calcualtions of load capacity, friction and other per-

tinent bearing quantities for wide classes of bearing config-

urations.

In Section IV, two different statistical approaches

are used to derive differential equations for bearing perfor-

mance. The second of these approaches has now been quite ex-

tensively applied .

We have already seen that there is a high degree of

overlap in applicability between the most general -of the de-

velopments described in Section II (ref.l5) and the most gen-

eral development in Section III (ref.l8) (with the latter hav-

ing publication priority). We have also seen that, for rough-
ness wavelengths which are small compared with overall bearing

dimensions, the results of Section I are in accord with those

of II and III, when the particular form of roughness is taken

into consideration. The question may now be asked: “To what

extent does the part icular form of roughness matter ”? 
—
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For small—amplitude roughness, the answer is given in

refs. (13) and (18), where it is shown that ,in this case ,the

special character of the roughness does not matter , only its

rms value. Consider the differential equations (4.9) and

(4.10). Four means of the film thickness appear namely,

h3 , h 3 
, h 2/h 3 and ~

The values for these quantities which would arise for

the same specified ~ and variance, a, are now in question.

If all roughness shapes resulted in exactly the same 3
values for the first three of these quantities , identical

pressure distributions would be predicted .

Now the first quantity, h3 = (h+e)3 = j 3~ 3~ 2

is the same for any symmetrical roughness distribution . Re-

sults for the other quantities, h
3 and h 2/h 3 are compared

in Figs. (5.1) and (5.2) for simple sinusoidal and rectangu-

lar roughness, and for the roughness distribution adopted by

Tzeng & Saibel and Christensen & Tghnder eq.(4.l). Even when

a/h 0.2 (0.33 corresponds to incipient solid-solid contact) ,

the discrepancies for i~ h 3 and for h 2/h h 3 do not exceed

4%. Therefore, in so far as Reynold roughness analyses are

concerned , there is virtually nothing t-~ choose among the

different forms.

In Section IV, the difference between the Tzeng & Sai-

bel and Christensen & Tghnder statistical approaches was de-

fined. Why , then, do the authors use virtually the same as-

perity distribution function? Because, as a practical mat-

ter the bearing population concept (many “like” bearings) is

difficult to implement, not only because of the number of

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . -~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~
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v’oughne;s~~~/ .-

diJ’tribi~t’0’~ ,.h~

Figure 5.1 Comparison of Diffusive
Roughness Parameters.

a-/h

Figure 5.2. Comparison of Convective
Roughness Parameters.

L~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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bearings required , but because of the virtual impossibility

of ascertaining positions “x” within the film to accuracies

of the order of roughness wavelength. These considerations

do not, of course, invalidate the Tzeng & Saibel approach ,nor

their slider analysis. In actuality , though , Tzeng & Saibel

must invoke an “ergodic hypothesis” , namely that the spatial

distribution of asperities on a given bearing is similar to

that obtained from replication of the bearing sample. This

reconciliation of roughness distributions does not, however ,
render the difference in the two statistical approaches triv-

ial, since the local sampling approach of Christensen & Tghn—

der permits them to generate second—order partial differen-

tial equations applicable to a wide variety of bearings.

In a manner of speaking, the ana].yses of Section II

embody microscopic determinism, those of Section III embody

macroscopic determinism, and those of Section IV embody mac-
roscopic statistical analysis. it is indeed reassuring to

see the agreement achieved , and there is always merit in “see—

ing a problem from different viewpoints. However , we have

so far considered only one—sided roughness , and some ques-

tions need to be answered before more difficult problems can

be successfully tackled. For example, most of the macroscopic

deterministic analyses (ref s.l1—14) take advantage of periodic-

ity or quasi—periodity (high spatial correlation) to derive

load support relations, whereas the statistical analysis of

ref. (18) invokes randomness (low correlation).Yet both ap-

proaches yield the same results!

The answer to this paradox lies in the fact that sta-

tistical analyses of Reynolds equation have depended on the

two postulates leading to eqs. (3.1) and (3.2), generalized , 
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however, to allow for weak spatial dependence.* But once

these postulates are accepted , there is really little need

for statistics For example , generalizations of the mass-

flux relations (3.1) and (3.2) then follow , whether or not

the striations are random . It is undeniably desirable to be

aware of the likely response of a film to haphazard surface

fluctuations but , it is also desirable to separate the cru-

cial from the non—crucial arguments in a derivation .

Since the validity of the Reynolds roughness equations

hinges on the correctness of the mass-flux postulates,one may

legitimately ask when they are valid . As Christensen (18)

emphasizes, and as all investigators agree in the

limit of short roughness wavelength. This conclusion is man-

ifest by the numerical studies cited in Section II, and sup-

ported by the multiple—scale analysis in (15). However , if

these postulates are taken as the starting point for a rough-

ness analysis, all trace of wavelength disappears from the

equations! So there can be no self—checking for consistency.

Nevertheless, these postulates have physical relevance and

irresistible simplicity , so all of us will doubtless continue

to use them in new applications, confident that experiment

and further mathematics will later corroborate .

Mathematically, the point to be made concerning the

postulates is that they constitute guesses concerning solu-

tions of Reynold equation . If one is to use Reynolds equa-

tion, why not use it from start to finish? The multiple-

scale analyses in refs. (15,21) essentially accomplish this

objective for one—sided roughness. The series in ~/L=~ of

eq. (3.1) is carried through to second-order , and interior

* The analysis of Tzeng & Saibel (16) postulates

that the total bearing throughput, Q, will be invariant .

~~~~~~~~~~
- --- - ._ . - -.--.
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solutions (to eqs. like (4.9) and (4.10)) are asymptotically

matched at film peripheries by Muijderman-type boundary so-

lutions (22). Additional aspects of film shape manifest

themselves in the second-order treatment , with rectangular

grooving preserving striking simplicity . The internal con-

sistency of the whole treatment is very convincing, but the

analytical difficulty is such as to discourage immediate

attempts on more complicated roughness patterns (two-sided ,

two—dimensional , etc.).

While difficulties have been pointed out in the deri-

vation by statistics of differential equations for Reynolds-

type roughness, there can be no doubt that statistics are

often necessary to describe properties of the roughness it-

self. In order words, the coefficients in differential equa-

tion such as (4.9) and (4.10) indicate what properties of

the local film contour are required , and statistical distri-

bution functions such as (4.7) give our best estimate of

their values.

On the other hand , it is writer ’s opinion that , at the
present time, much can be still be learned by using simp le
roughness functions and the short-wavelength postulates .
Statistics should be used sparingly, and principally to pro-
vide numerical estimates of various roughness parameters.

A conceptual difficulty which the smoothening and statis-

tical approaches have in common is the definition of sample

space for local averages. Both suppose the existence of

such local averages to be not critically dependent on the

choice of sample size. The problem here is precisly the same

as the definition of density for a gas. For too small a sam-

ple volume , fluctuations in the value of density occur as

individual molecules are included or excluded from the volume .

For too large a sample space, density definition is lost en-

tirely and a simple average for all available space results.
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VI. Two-Sided Reynolds Roughness

In 1971 Berthe & Godet (23) pointed out that roughness

analyses up to that time were not appropriate for films with

two rough bounding surfaces if mutual tangential motion

should also be present. Let us now consider situations where

.s’u~ taee #2

////
//////~

Lrw.i- face

Figure 6.1 Two Rough Moving
Surfaces.

such surfaces are involved . In these instances , the rough—

ness on the moving surface “sees” a varying mean film thick-

ness. For example, in Figure 6.1, surface *1 is “moving ” if

U1*U2. A steady-state case with transverse roughness will be

treated. The film-thickness distribution is given by:

h = h(x) + 01(x—tJ 1t) + 02(x—U 2t) [6.1]

and the applicable Reynolds equation for an incompressible

fluid is:

3 h3 ~~ 9 h3 ~~ (U1 -s-U2) ~~ th ~

‘

9 x + 

~ y 2 -
~~~~~ 

[ ,
~... I

* Velocities are restricted to the x—-directiort

~~~~~~~~~~~ --~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :--- _
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ... - .- - - - -  ~~~~~~~~~

- - —  
~~~~~-
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Substitution of the film-thickness expression (6.1) into

(6.2) yields:

~~ (U1+U2) (U 1-U2) (0 -e ) l+ ~i ~~~~~~~~. 12 = 0 6 33x~ l2~.i ax 2 2 1 2 J ay l2~ 3

For the case of two-dimensional contact of cylinders

in pure rolling, U~=U~=U and 9/ay=O , and eq.(6.3) reduces to:

(6 4]ax l2~ ax ax

This equation can be explicitly integrated subject to bound-

ary conditions on “p” . Michau , Lafont, Berthe and Godet (24)
and Tallian (25) have used it it estimate the pressures and

pressure excursions due to rippling which may occur in roll-

ing contact.

When U1*U2, rippling effects remain in the convective
term of Reynolds equation. Thus for the simple, infinitely

wide slider in Fig . 6.1, with U2=O , eq. (6.3) becomes:

2 - + ~
-i(e l_e 2)} 0 [6.5)

Chow and Cheng (26) invoke a generalized form of the flux

continuity postulate, hypothesizing

• i_
~~

. 
~~~~~~ 

— 

~~~~
0l+02) [6.6]

as locally smooth and continuous. Precisely as in eq. (3.2),

one then obtains:

- 

~~~~~ 
- 

~~~~~~~~ 
+ 

~~~~

- ~~~~~~~~ _ _ _ _ _ . 
-
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With taken as independent of “x” , Chow & Cheng eliminate

it by differentiation to obtain a second—order differential

equation. This they apply to the elastohydrodynamic contact

problem. Other forms of differential equation are derived

by them for longitudinal roughness, and for different combi-

nations of U1, U2.

The Chow-Cheng differential equations, although de-
rived in a different manner (i.e., on a postulatory basis),

are special cases of the di f ferent ia l  equation published in
ref. (27). This earlier derivation was via multiple-scales ,

and again in the interest of brevity, we shall forgo an ac-

count of the method. It is recommended , however , to those
who would like to contribute new results in this field. The

final result in (27) 1S:*

~~ (fi~ 0 ) + ( ~ 1+~ 2 ) . v ( f i i r 0 ) + 
i (

~ l 2 )
~~~{~~~ 

— }1T O
] =

— a~~ 3 0 a 1
= (H n o i~ 

+ 
~ 0 
j~

) [6 . 8]

H

Here the coordinate system consists of “n” norma l to the
striations (

~~~~ , 
the unit normal) and “s” parallel to the stri—

ations. The striations on one surface must be parallel to

those on the opposing surface, but the f lu id may be compres-
sible 

~‘o~~ 
in all coefficients, if incompressible), “ B ”

may be arbitrary, and the flow may be transient . In most in-

stances , Il (
~
_
~
)m and I2(~~

)m ? as in eq. (6.7).

* “n” and “s” are here made non—dimensional with “L” .

-

~

-- --

~

--- .--~~~~~ 
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For the case of transverse roughness with a simple
slider bearing , the effects of location of the roughness
are shown in Fig. 6.2.

.05 
_ _ _ _ _  

~~~~~1~~
_ _ _ i ’eu /J Y~tiane~,~ /

—-—DII, ~~au9lI/?‘o~~e9~6 fib vi
~~ ? ,~~

03 I _ _ _  _ _ _

— ~~~ —~~~~~~~~~

— 
‘

~~~ 
— Wc~/ (6) .* 1/4) ; ~~~~ 

c) 
=

I I I
0 .2 -4  - 6

Figure 6.2 Load Capacity as
Function of Transverse
Roughness Location
(from ref.27)

The maximum film thickness excursion due to roughness is the

same for each curve , whether from one surface alone , or two
in combination. The manner in which load capacity varies

with location can be rationalized. Essentially , pressure

buildup is the result of fluid resistance to being drawn

by convective shear into a narrowing film. For given surface

speed and mean film thickness, less resistance will be expe-

rienced if some of the fluid is drawn along in the inter-

stices of a moving rough surface. Hence the lowest load ca-

pacity is associated with the “rough moving” curve of Fiq .

6.2, with intermediate and highest capacities resulting from

transfer of part, or all , of the roughness to the stationary
surface.
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The argument advanced above would lead one to conjec-

ture that roughness would have less effect with a conlpres-

sible fluid , since then the fluid “has the choice ” of leav-

ing a location by pressure gradient , or simple being com-

pressed within the roughness depressions . Some examples in

ref. (28) illustrate the phenomenon.

-— .--~~~~~~~ - - ---- -- -- --. _ _ - .---- _ __._ _-~ _t___~ --  -~~ — -~~~~~~-— -- --- - .—_ - -
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VII. Two-Dimensional Reynolds Roughness.

The next logical generalization of treatment is to

non—striated, or two—dimensional Reynolds roughness. Natu-

rally, as we advance in difficulty the applicable literatui e

thins out.

For isotropic Reynolds roughness, Christensen & Tønder

propose (see also eq.4.ll)

7 . 1ax ax ay ay ax

To this writer ’s knowledge, no proof of this relation has

appeared in the open literature. For reasons to be qiven

below, I believe it to be incorrect.

There appears to be the opportunity for further pro-

gress along the lines of Hamilton, Walowit and Allen (29) and

Tsao and Tong (30). These investigators determine by Reynolds

equation the flow about a single cylindrical asperity with

flat or spherically-capped top (Fig. 7.1).

R0

Figure 7.1 Asperity Geometry
(from ref. 29)



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~— - ~~~
-----

~~
-- --

~~
------ 

.-. - - 
—.--~~~

- - -

30

To mimic surface roughness , they then form a q r i d  ol sueh

asperities (Fig. 7.2).

o 0

o t ~~~~,
I O

o / io
HEUGO$~~ I~~B~1~~T PRFS~IIRI £PP~ OiIMAT ING CIRCUL A R
IWP~~R I~ OAAR

Figure 7.2. Asperity Distributions
(from ref. 29)

An externally—impressed pressure gradient is not included in

their analyses, their interest being chiefly in face seals.

Cavitation is included , but only in the Gumbel sense with

“lopping off” of negative pressures.

For a single asperity of the form shown in Fig. 6.1 ,

where the film thickness has two different constant values ,

Reynolds equation reduces to Laplace ’s equation

v2p = 0 [7.2]

in both inner (rcR 0) and outer (r>R 0) regions. Suitable

solutions are:

Inner: p = k~ r }
1 ) 1 1 1  . 1  : k ’

1 i I

Matching mass fluxes and pressures at the rcgiona l

interface (r=R 0), we obtain :
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Inner: p ~ k~x + Kx }
Outer : p = k~x +

ket (a+b )3 —b 3 -6~Uawhere : K ~ (7•5]
(a+b)3 ÷b3

The above pressure distributions consist of an .xternally—
impressed gradient k~, and a deviational component. Typical
results for the latter are shown in Fig. 7.3.

~~~
• ~“ T~~ 7

Figure 7.3. Typical D.viational Pressure
Distribution (0 0) and
Isoba rs for Single Asperity
(frost r.f.29)

Now although the disturbance (deviationat) pressure vanishes

at r ~~~, there remains a net *drag e resulting from th~ as-
perity . Thu., limit K . ~~ .

Drag - 
[1M

1 

- 

[

~~
M

~
d}  

- J k ~2L dy (7.6]

-M x -L ~M z.+L -M

— ~~~~~~~~ .-----~~~ - ...- ---— - .-
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The result, independent of L>R0, is:

[l2l~Ua_2k
e{(a+b) 3—b3 }]

Drag = (~cR
2) [7.7]0 (a+b)3+b3

No net disturbance effect exists for the flow.

Now if many protuberances were present on a surface ,
as a first approximation one might consider each immersed

in an externa l pressure gradient, partly impressed by outside
agencies and partly an integrated effect from other asperi-

ties. A macroscopic theory relating average flow to surface

velocity and average pressure gradient might thereby be

built. This analysis has yet to be done.

For the case of purely Poiseuille flow (U1=U2 0) a

satisfactory analysis can be made. The differential equa-

tion is:

( 7 . 8 ]9x ax ay 9y

This is the heat conduction equation with “p” playing the role

of temperature,”h3” playing the role of thermal conductivity

and lineal mass flow playing the r8le of heat flux.

In ref.(3l) it is proved that the heat flow through a

region will be less than that with arbitrarily assumed shapes

for the isotherms, and greater than that with arbitrarily

assumed lines of heat flow (adiabats). Translated to Rey-

folds equation , this statement becomes: the lineal mass flOw

wil l .  be ici.~s than w ith ~t rb It r a r i ly  a~sumod Ia ub~ t.’s arni great er

than that with arbitrarily assumed streamlines . Let us apply

this theorem to the roughness pattern shown in Figure ( 7 . 4 ) .  

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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¶A4~~~~~~~~~~~4~~~~~4~ A

Figure 7.4 Two-Dimensional Roughness
Pattern

First, assume that the isobars are horizontal. Then for the

strip “dy ” lying along A-A , “tsp ” must be constant. The local

mass flow is

(&~,6y) = [7 . 9]

The integrated mass flow along the stretch “W” is:

= - 

r~
_Jh3dxap - ~~~_~T~

C
6~~ [7 . 1 0]

l2~iM ~y
Or: dp = - Y [7.11]W h

A second integration, this time with respect to “ y ’ ,
yields :

—-- — --—--.-- —- - - — - - —..--- -p
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p(L)-p (0) = - 

l2iiM~ ~~~ 
- 

l21A M
~~J)

Y
L [7.12]

Now so long as “W” and “L” contain many roughness elements,

eq. (7.12) is, effectively:

~~y~m 
= - 

1~~ 
(7.13]

and this is an upper limit for the flow.

Alternatively , one can assume vertical streamlines,

such as those for “Sx ” between B—B in Figure ~7.4). In this

case, for each element “ox ” :

(rny)h
3 

= — 

~~
-
1 

-~~~~~ [7.14]

p(L)—p(O) = - l2~~(rny)Jh
3
dY~~

_ 
~~~~~~~~~~ (7.15]

With the gross pressure difference p(L)—p (0) treated as con-

stant, integration is now performed along “W” to give:

W
= - 

1 p(L)-p(0) 1J~~~
Y ~~

y 1 ~ L ii
0

x
— 

1 p (L) — p ( 0 ) 1 1 \ W ( 7 . 1 6 ]
l2~ L t~~~ Y)h

A lower limit for the flow is thus obtained :

= - (7.17]
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Potential error in the estimate for is minimized

by use of the arithmetic average from eqs. t7.l3) and (7.17)

Thus:

~~y~m 
1 [ 1

X 
{~~~~~

Y}_].]~~ [7.18]

For the case of heat conduction and a configuration

similar to that shown in Fig. (7.4), Yovanovich(32) has found

the error of the equivalent of eq. (7.18) not to exceed 5%.

For isotropic roughness the indicated averaging processes must

be independent of direction. Equation (7.18) then reduces

to:

= - ~~~~~ + h3]v~ [7.19]

where the indicated averages are over areas local to the point

under consideration . Equation (7.19) differs from (7.1) and

this writer believes eq. (7.19) to be more accurate.

Equation (7.18) is actually valid for two-sided rough-

ness, but has only been deduced for the case of no surface

motion. Obviously, the subject of two-dimensional roughness

requires further resea~rch. 
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VIII. Stokes Roughness

All analyses so far discussed have been for “Reynolds

roughness” and have involved the assumption of the adequacy

of Reynolds equation to describe the flow within the film .

Now two conditions have to be met in order that Reynolds

equation be a proper approximation to the Navier-Stokes equa-

tions. First, the film Reynolas number , PUmh/IJ~ 
must be small.

Second , the change in film thickness per unit of film thick-

ness must be small (i.e., dh/dx<<1). Whereas the first of

these conditions is very often satisfied , the second condi-

tion may be violated by roughness contours , even when the

slope of mean film—thickness is very small. In such instances ,

Stokes equations , not Reynolds , must be used.

In 1962, Citron (33) used Stokes equations to calcu-

late the effects of longitudinal roughness in the gap between

concentric rotating cylinders. But the effects of transverse

roughness are more interesting . In an recent paper , Sun &

Chen (34) have investigated transverse Stokes roughness ef-

fects on simple slider bearings . For this case, they write :

~ , ~

+ —,- = 0 ( 8 . 1 ]ax ay

— 
a 2u ’ 

= ~~2 ~
2u ’ [8 2]

ax ’ ay ’2 ax 2

= ~ 2 a 2v ’ 
+ ~ a2v ’ [8.3]ay ~~~~~2 ax ’2

where :

U’ = u/U ; v ’ = v/cU p = pc2/uUL
[8.4]

x ’ =~~~~; y ’
~~~~~~; c c/L

— —t
_ _ _ _ ___ __ 

—.--
~
- — —— — --- —--— — —---—- -— ~- - - —-- --
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and the slider bearing in Fig. 4.1 will serve for nomencla-

ture .

In the limit of small “ c ” , the terms on the rhs ’s of

eqs. (8.2) and (8.3) disappear , and Reynolds relations are

recovered. Sun & Chen solve these simpler relations subject

to actual boundary conditions , including roughness , and insert

the results into the rhs ’s to obtain improved solutions

(“first iterations”). Figure 8.1 shows their results for

load capacity of a flat slider b’~aring .

o .o, .
~~~~~~ 

.
~3 -04 •05 -06

O/i;:N1fl

Figure 8.1 Load Capacity as Function
of Random Roughness for
Simple Slider (h ax/hmin=2.7)

Stokes & Reynolds Roughness
Theories Compared (from ref.
34).

The presentation in Fig. 8.1 is intended to reflect

variations about an operating condition of L’~.0(25min) , c’~0

(l2.5 i.~m), a~ 0(-25~jm), and ~‘~.O(l2.5 i.im) . Under these circum-

stances, Reynolds roughness theory predicts virtually no

effect, whereas the authors ’ theory predicts as much as 30%

load increase at a/c=0.06 and a roughness wavelength equal

~~ - -
~~~ ~~~~~~~~~~ 

- — . 
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to the minimum film thickness (i.e., c/~=l) ! On the other
hand , when c/~=l/2,~, the predicted load increment only slight-
ly exceeds that obtained by Reynolds equation . The curves
are for typical random roughness.

In his doctoral dissertation, Rhow (28) studied the

effects of transverse and longitudinal rectangular grooving
by means of accurate numerical solutions of the biharmonic
Stokes equation.

Y 

-

_ _  

I 
_ _ _ _

~~~ 
rx J_

Figure 8.2 Nomenclature for Rectangular
Grooving .

This particular roughness configuration (see Fig. 8.2) was

chosen because of its simplicity for computer calculations ,

its relevance to bearings with purposeful grooving, and its

indicative possibilities for other types of roughness. The

lineal flowrate corresponding to (a) U*0, ~
p=O and (b) 0=0 ,

~p*0 over c-ne wavelength was calculated , and presented in the

following form (for transverse roughness) :

= A[.~ —.
~~

]_ B[~~~j _:•
~ 

[8.5]

The coefftcients “A” and “B” are unity for h/A ~ ~~(Rcynolds

roughness), and their deviation from unity is theret~~ro ~

_

_

Ii i
._

~

_i_ ___ ._ . . .  —.—— .
~.-.— —- -..

~~ —- .—-----— --.- -..--—-,. --——. ---- ..-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . —-——.--. -~~~ - A



measure of the importance of using Stokes equation .

Over wide ranges of geometric parameters (d/a , h0/a,

a/ti ) the coef f ic ien t  “A” was found to lie f a i r ly  near uni ty ,
indicating that Reynolds roughness results for such flow

will be reasonably accurate. On the other hand , as shown in

Fig . (8.3) the Poiseuille coefficient “B” can drop substanti-

ally.

.3 — 
I I

0 -2 .4 •
~~~~ 

.g 1.0

h/~1

Figure 8.3 Poiseuille Coeff.”B” for
Rectangular Grooving (a=A/2)
(adapted from ref. 28).

To use the above results in a bearing calculation , one

invokes the short—wavelength flux postulate , and uses local

values of the film constructs A , B, 1~ 7, ~i 3 , etc., in eq.
( 8 . 5 ) .  This equation is then treated as a differential equa-

tion with constant. Figure (8.4) shows Rhow ’s results*

for a flat slider . The difference between Stokes & Reynolds

* For these calculations ,”A” was taken as unity, and
“B” was evaluated in a manner consistent with Fig . 8.3.

a—- -- ~~~— - — — -~~~~~~~~~~~~~~~~~~ - .- -
---~~~~~ - -.-- —-—---~~~~~ -—-
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results is here much less than in the work of Sun & Chen

(Fig.8.l)

o-C9!

0 .Z .4. 4 .
~~~ / Q

Figure 8.4 Load Capacity as Function of
Roughness (rectangular groov-
ing) for Simple Slider
(hmax/hmin=l) Stokes Analysis(from ref. 28).

When reasonable allowances are made for differences

in roughness configuration , bearing film convergence , etc.,

the differences in the results between Figs. 8.1 and 8.4

remain inexplicably large. Furthermore, the Sun-Chen con-

clusions tend to restrict drastically the applicability of

Reynolds roughness theory. Accordingly , this writer has

undertaken a different analysis which is less vulnerable to

criticism than those previously made. The gist of this analy-
sis, and its conclusion will here be presented .

Invoke the short-wavelength hypothesis , and consider

two parallel plates, the upper one moving , the lower one
rough , as in Figure 8.5. Tn Stokes approximation , the stream

function satisfies the biharmonic equation. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-..-
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_ _  _ _  ~ = Si( x)

Figure 8.5.

Thus:

= 0 [8.6]

Both externally impressed shear and pressure gradient are
accounted for by the following boundary conditions:

*(x,cf (x)) = *~~(x~ cf(x) ) = 0

[8.7]

U *(x,i~) 
J

An expansion is made in terms of amplitude , “0” ,

so that:

= ~p0
(x ,y) +0ip 1

(x ,y)+02~~2 (x
,y) + [8.8]

With this expansion , there is always a “6” small enough to

accommodate any chosen roughness wavelength,t~. The analysis

must be carried through to second order, since first-order

effects on load vanish .

It. I L  both impossible and lnappiopr ial ’ (~ qlvc do—

tails of the analysis here,but the conclusions can be ~umma-

rized as follows :

.— —. — _
,

~~~~~

_ _ —

_-.--•....~~ ~— —-- -
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In eq. (8 .5) : A = l_ 6 2?7(F~~~4 [ 8.9 ]

B = l_ 36 2T7(F~ 4) [ 8.10]

where 6 = (roughness amplitude) /h

f ( x )  = roughness shape function

expressed as = EB~ sinw~ x in Fourier Series.

f(x)Z F(hw .L )B , s in(w .~x)~
C

F* E 
A. J~ .5. [8.11]
X

and : = 
2~~ tanhj {l+~ tanh~ }— ~~] [ 8.12]

(l+~~~
2 ) tanh2

~ —~
2

Equations ( 8 .9—8. 12)  were used in eq. ( 8 . 5 )  for the
slider bearing of Fig . 8.1, with O/i~mifl = 0.06, and with

sinusoidal roughness.
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Figure 8.6 Load Capacity as Function
of Sinusoidal Rough ness fo r
Simple Slider (h max /h min =2~

7)
a/h tn~
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~

- ~~~~~~~~ — - —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—- - -~~~~ - —~~~ -- - - - -~~~~~~-. . -—-—-——.---~~~~



- —---
-- ----

~~~~

- . —  --i__ : -
- 

— —I

The resulting curves are shown in Fig. 8.6. Again the pre-

dicted magnitude of the Stokes roughness effects differs

markedly from the corresponding prediction of Sun & Chen .

Since I am familiar with the ingredients of two independent

theories which conflict with the Sun-Chen results, I have

to conclude the Sun-Chen re~u1ts are wrong. Why , I am not

certain , but possibly the iteration process they adopt does
not converge for ~~h. For example , in general:

_____ —

3x ’2

so that in eq. (8.2), ~~~~ =

Thus the rhs of ( 8 . 2 )  is not small compared with the lhs
when f~/ &El .  No doubt , with this questioning of their results ,
the authors will recheck their work and we shall hear more
of the matter.
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IX. Molecular Slip

There are occasions when it is pointless to consider

roughness effects without simultaneously considering mole—

cul r slip effects . For example , the “flying heads” used

f~~c information retrieval from ~~~t -~ting disks in modern

c vrputers are actually small air slider bearings. Minimum

n~e~ n clearance in these devices ii:; now being reduced to ap—

~~c-ximately 0.4km . At the same time , the mean—free path of

the air molecules is about 0.1-~n and the roughness amplitude

f the surface finish is about 0.03km.

The first effects of rarefaction are customarily ac-

counted for by the use of slip-flow aerodynamics. Thus,
with in the flow inter ior , standa :d continuum—fluid differen-
tial equations are employed , while failure of the macroscopic

fluid velocity to agree with that of its bounding surfaces

is modelled by the Maxwell slip condition . Thus:

Au [9.1]

Here “Au ” is the above-mentioned tangential velocity dis-
rrepancy , “k ” is the mean—free molecular path , and “ au/an ”

is the velocity derivative normal to the surface . When eq.

(9.1) is used in connection with Reynolds equation (Burgdor-

f e r , ~959 ,*) the lineal mass flow is given by the following
simp le equa tion :

= — 
~~~~l+ ~~) ~~ [9.2)

In the presence of one-sided roughness , smoothening

by means of the flux continuity postulate and the load in—

* Trans. A.S .M.E., 80, (1959), p.94
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c nuressibity assumption* y~.e1dr , i ~~~~~~~~~~~~~~~~~~~ e roughness:

12pRTLm “-2X 
= A ( ~~~~~ ) i r  — 

~~~~~~~ [9.3]

where : /

[H 2+6~~ ~LJ —1

} [9.4)
A 2

[H3
+6— ~~~ 

H~~~~~~— l

Correspondingly , for longitudinal r j i~: ~er;s, one gets:

l2~~i RTL : 
= [9.5]

where: E (H3+6~~ ~~—) [9.6]

The components can be combined , a~ ~x -~~~~ 
-~o form the

lineal mass flux vector.

Now the foregoing analysis br-u c~ -Jown for short

roughness wavelengths. Recently Cha~iq —wd this author

have performed kinetic-theory calculat~ s for rectangular

grooving. In this work the Bo1tzman~ ~~-~ation is solved by

dividing velocity space into ~.- ur .is - - -~ r~ergetic groups of
different direction . The method is suitable for low macro-

s~~pic speeds, and , in appropriat’~ i~ r 4tn ~~c”ds accurate

s’ip flow or continuum results. -
‘ . 1 ’ : ~~I L ’ .’~te overlap

with the continuum work of Rhow a~d ~‘1~ o 
- 1:~ ob~ained. It is

* Both are endorsed by an ur~p u ~ i5~~- 2- .i Tnultiple—scale
L:e3tment ~f the author .

~~~~~~~~~ 
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hoped that details will be published , but the gist of the
principal conclusion can be stated as follow :

“When the effects of molecular slip and of one-sided , trans-

verse Stokes roughness are simultaneously present, one can use
eg. (9.3), modified by the same continuum correction factors

as would be used with eq. (8.5) for the same roughness contour”

_ _ _ _  
_ _ _ _ _ _ _ _ _ _
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X. Conclusions and Acknowledgment

Although the accomplishments of analysis in predicting

the effects of roughness on laminar lubricating films are

perhaps encouraging, the work is incomplete, and a number of

differences in outlook and results remain to be reconciled .

Two-9ided Reynolds roughness has been analyzed only

for parallel striations on opposing surfaces. Two-dimension-
al (i.e., non—striated), roughness has been treated only

for stationary surfaces. Even the first effects of Stokes

roughness are in some dispute, though there is agreement that

Reynolds equation is not as suitable as we might like for

roughness analyses, due to its long-wavelength restriction .
Much of the more recent work would benefit from a less heu-

ristic development. And finally, the areas for utility of

statistical analyses need to be better delineated .

The writer is most grateful to his hosts at the Tech-

nical University of Denmark for providing time and facilities

for the preparation of this paper. A basis for its contents

was provided by experience and results acquired during re-

search contracted by the U.S. Office of Naval Research under

Task Mr. 062—360 , N000l4—67—A—0108—002l , and conducted at
Columbia University, New York , 10027.
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NOMENCLATURE

(Some symbols which are used in a restricted portion of the
text are defined there on—the—spot) .

A correction coefficient in Reynolds eq., eq.8.5

B correction coefficient in Reynolds eq., eq.8.5

c nominal clearance of bearing (= mi cl. for sliders)

parameter in roughness distribution , eq.4.7
C •Cf~ friction force/load

h film thickness, including roughness h, mean local film

thickness. h = h+e ; h5 = specific value of 0

H h/c

L characteristic gross dimension of bearing

m slope of slider bearing (h max
_h

mj n )/L
m, lineal mass flow rate per unit transverse distance

n coordinate perpendicular to striations

Also, number of waves used in deterministic calculations

p fluid pressure

Q lineal volumetric flow in film. Volume per unit time per

unit distance transverse to flow

r distance from asperity center
R R0 asperity radius

s coordinate parallel to striations —

t time

u fluid velocity, x—direction

U surface veloc ity in x—direction
v f luid velocity , y—direction
w (load)c2/i~UL

2

x cartesian coordinate
y cartesian coordinate
z coordinate perpendicular to striations. See Fig. 1.1

I
I
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~ orientation angle of striations. See Fig. 1.1
o roughness amplitude/mean film thickness
A striation wavelength

c A/L or c/L

~ z/~
r~ y/L also , fluid viscosity

o circumferential angle, or magnitude of roughness
A mean-free path of molecules; A a = ambient A
A 61JUL/Pac

2; for liquids, use 
~a 

=

~ fluid viscosity

‘
~
o standard deviation of roughness
T pac

2t
~
/’12

~~
2 for liquids, use

4 stream function. a~/~y = U; at/ax = -v

Special Symbols & Subscripts

in mean or local space average

rT mean, statistical or space average

< > expected value, or statistical mean

subscript zeroth order , first order, etc . function of an

0,1,2, expansion , or used to signify location .

a ambient

n unit normal in n—direction

j  unit normal in s—direction

— — - -r__ -. — -~~~~~ - .- — — — —--—--• _s_ - ~~~~
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