—_—

D-AO48 331 CHARLES STARK DRAPER LAB INC CAMBRIDGE MASS F/G6 9/2
PALEFAC, (V)

SEP 77 H b CHALSTROM F33615-75-C-1206
UNCLASSIFIED R=1087 AFAL=-TR=77-167

| oF |
DAD4833

END

DATE
FILMED

-78

ooc

n

o o

%
__—_————"I

AD No.

ADA048331

AFAL-TR-77-167

PALEFAC

H. B. Chalstrom, Jr.
The Charles Stark Draper Laboratory, Inc. [:) [:) (::
555 Technology Square

Cambridge, MA 02139

September 1977

TECHNICAL REPORT AFAL-TR-77-167

Final Report for Period ;/EZBSZ:;@z 1975 to 31 May 1977

| Approved for public release; distribution unlimitedLJ

Prepared for

Air Force Avionics Laboratory, AFSC, AFW,
Wright-Patterson Air Force Base

Onio 45433

DOC FILE COPY

(i

S

NOTICE

When Gdvernment drawings, specifications, or other data are used for any pur-
pose other than in connection with a definitely related Government procurement
operation, the United States Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact that the government may have formulated,
furnished, or in any way supplied the said drawings, specifications, or other
data, is not to be regarded by implication or otherwise as iIn any manner licen-
sing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable
to the National Technical Information Service (NTIS). At NTIS, it will be avail-
able to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

S hnid I / XO&MJM

Signature
// gignature Name
ame
Supervisor

Project Engineer/Scientist

FOR THE COMMANDER
DDC

s
R : (%
DEC 80 1977

Signature and Title

"If your address has changed, if you wish to be removed from our mailing list,
or if the addressee is no longer employed by your organization please notify
AFAL/AA/DAIS ,w-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by se-
curity considerations, contractual obligations, or notice on a specific document.

DISTRIBUTION STATSMne A 4
Approved for pullic ielecss; H
Disttibution Ualimited i

s i et A

. L aaiin
P~ arants

VilCiaopilicu
SECURITY WIFICATION OF THIS PAGE (When Data Entered)

‘} EPORT DOCUMENTATION PAGE oA IRSTRUCTIONS
: \/ 2. GOVT ACCESSION NO.| 3. ﬂ(C/P.ﬂ('\S CATALOG NUMBER
b,
S. T ED

MarQEel W75y GENS77,
MIN RG. R

R-1087/ 7

UTHOR(e) . GRANT NUMBER(s)
<|IO) H. B /Chaletrm;l /5>_m st

A SS = 0. PROGRAM ELEMENT, PROJECT, TASK
9. PE&E Deﬁgro GANIZATION %;,‘ME AND ADDRE AT PROJEC

aper Laboratory, Inc.
555 Technology Square
Cambridge, MA. 02139

1.

CONTROLLING OF EACE NAM DADDRESS / , , Jli2-—een0r
) // / //
?_/_,/D‘ \ 13. NUMBER orlsucss

. MQNITORING AGENCY NAMEG ADDRESS(M ditfferent from Controlling Office) 15. SECURITY CLASS. (of this report)

ystem Avionics Division

Air Force Avionics Laboratory Unclassified
Wright-Patterson Air Force Base, Dayton Ohio 15a. DECLASSIFICATION/ DOWNGRADING
45433 SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report) C
Approved for public release; L)

distribution unlimited. ~r n.. lr\

r) pgc 80 97

icﬁj

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Ropo“\-\

. SUPPLEMENTARY NOTES

ontinue on reverse e if necess. and ident!f block number)
Ki'vo ﬁos m {mctional 'I‘)des‘ign, fﬁgf:u',{ noicsu,m Sof tware, Compilers,

Higher Order Languages, Software Reliability, Real-time, Executives,
Software Partitioning, JOVIAL.

QA ACT (Continue on reverse side If necessary and identify by block number)

8 report describes the Palefac system which is part of the non-real-time
support software of the Digital Avionics Information System (DAIS) of the
Air Force Avionics Laboratory (AFAL). Palefac is a tool which aids in the
development of real-time flight software for avionics embedded digital
computers. This report deals with three aspects of the relationship

of Palefac to the DAIS program. __

)
|

DD ':2:'1“ 1473 EDITION OF 1 NOV 65 IS OBSOLETE

—Unclagsified
\ \ SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
il i " ; a it ~ ; i

Table of Contents

1. Introduction

2. Palefac and the DAIS Approach

3. Mission Generation Using Palefac
> 3.1 The Application Environment

3.2 The System Build Environment

3.3 The System Verify Environment

4. Palefac Development

4.1 Definition of Interfaces

4.2 Top-down Functional Design

4.3 Detailed Design

4.4 Coding

4.5 Integration and Testing

4.6 Coding Standards

5. Program Internal Structure

S Pre-processor

5.2 Palefac

6. Conclusions and Recommendations

7. Bibliography

| iii

- W WO NV |

19

NTIS
pDC
UNANNDLHGTD

Dist. .

ROCESSON for

L

Bl

JUSTINICATION G

BY fhi
OTRBETOA VAL 5. T 2088
o ” T Glak

‘

e

.
L Ay A T g A AT . R

List of Illustrations

Production of an Operational Flight Program

The Application and System Verify Enviromments

The System Build Enviromment

i An

i e

T PR S —

P
| ST ————

ke e

e simmp i S

G Introduction

This report describes the Palefac system which is part of the
non-real-time support software of the Digital Avionics Information
System (DAIS) of the Air Force Avionics Laboratory (AFAL). Palefac

is a tool which aids in the development of real-time flight software
for avionics embedded digital computers. This report deals with three

aspects of the relationship of Palefac to the DAIS program.

Section 2 gives some background of the DAIS program and its objectives
and explains how the need for Palefac arose. Section 3 is a step-by-~
step description of the procedure for developing mission software using
Palefac. This procedure begins with the mission requirements and results
in operational flight programs. Sections 4 and 5 deal, respectively,
with the development history of the Palefac programs and with their

internal structures.

Section 6 offers some conclusions and some recommendations for how to
implement Palefac in future DAIS-like systems. It will be shown how useful

Palefac is to the DAIS approach to digital avionics software development.

Section 7 is a bibliography.

2. Palefac and the DAIS Approach

DAIS is an attempt by AFAL to demonstrate the benefits
to be derived from the use of the following in the develop-
ment of avionics software:

1) digital flight computers,

2) a high order programming language,

3) greater programming rigor, including strict
software architecture standards,

4) an automated software development and testing lab,

5) uniform hardware and software interactions,

6) a linkage-editor to produce flight load modules,
and

7) fully integrated mission requirements encompassing
all mission subsystems.

The anticipated benefits were:

1) more efficient and more capable code produced due
to a more formalized and organized approach to the
coding and testing of flight code,

2) reduced costs of maintaining software and hardware
and of modernizing the avionics system to include
new technological developments, again due to better
methods of coding and testing,

3) greater software reliability, due to the availablity
of more thorough testing techniques and to the more
rigorous approach to code writing.

The flight software is composed of two parts: the executive
software and “he application software. The executive
software is the flight computer's operating system. It
manages the resources of the flight computer in which it
runs and provides service to the applications, such as data

A 08 D

A L AR ST Al ke

iy DG AR o

e s

g
. e e AR

moving and task activating. The application software

consists of the code for the subsystems, such as navigation
and weapon delivery. The executive will get developed
early on, will be fairly hardware dependent (though it can
be coded primarily in the high order language) and will
change little from mission to mission or when new features
are added. The application code, on the other hand, will
need to be modified and re-tested for each new mission and
each new system capability. It is the development of this
application code with which Palefac is concerned.

Once a set of flight hardware is defined and an executive
is operating on it, the generation of a mission comes down
to this loop:

iterate until correct

——— link test _J

pplication > together e —— in

dda a software
configuration lab j—pcorrect

Figure 1 Production of an Operational
Flight Program

With the use of a higher order language (HOL) for programming
and a simulation test lab for testing, it seemed as though

it would be easy to make several iterations of this loop in

a short span of time, thereby arriving at better, more
efficient code produced in less time. Problems arose, however,
partly because of the DAIS federated computer architecture,
which has several independent computers communicating over

a MIL-STD-1553A bus. Linking together a DAIS configuration
involves not only the usual functions of a standard 1link

e oo

P T

editor, but also the partitioning of the application software
among the several processors and the construction of the tables
to drive the executive and to control the data bus. Palefac
was conceived to automatically generate the executive and

bus control tables and to make the software partitioning
transparent to the application code.

f
£
i
!
g

——

T ot T Yo i A P 4 55 e

PR, =~

P U —

s S5 o

L S

T

3. Mission Generation Using Palefac

As Figure 1 shows, the production of an operational flight
program (OFP) is an iterative process involving three steps:
application coding, system building, and system verifying.
For logical clarity, a different user is designated as the
active participant in each step: the application programmer,
system designer, and system verifier. In practice, these
three users could be the same person.

3.1 The Application Environment

The application programmer writes the application code,
which consists of the routines which do navigation, weapon
delivery, radar control, communication, pilot display, and
all of the other functions which help fly the airplane.
Figure 2 shows the environment in which he works. He should
be able to code modules without having any knowledge of
overall system (i.e. configurations). All that he is
concerned with is his inputs, his outputs, the algorithm

to use, and any other constraints placed upon the module.
(Since any additional constraints degrade both the code
produced and the efficiency of code production, they should
be kept to a minimum, or eliminated altogether if possible).

The application programmer compiles his module and tests i
it out as far as is possible. He then runs it through the
Palefac Pre-processor which extracts the executive pseudo-
instructions used by the module and stores them in the
Palefac Module Input (PMI) file. This PMI file is later '
used as input to Palefac and is the interface between the
Application and System Build environments.

T T

e

ln e - e R, A L L 2

o SR

o

l SYSTEM-VERIFY ENVIRONMENT e eeTh
SYSTEM o VERIFIES
l VERIFIER S ethTirics
PILOT/CREW /W\
I © FLIGHT TEST s
STATEMENT me BENCH 1 i
l AIRPLANE HOT BENCH LEVEL nogerion] |
IMULATOR i
APPLICATION ENVIRONMENT k. SIMLL smuiaton | J
(Hardwere and software configuration T AT]
transparent 1o this user.)
TEXT QUTPUT
;
PALEFAC
MODULE INPUT
(0EC-10) PMI)
APPLICATION
PROGRAMMER
APPLICATION PALEFAC Q
SOURCE CODE | PRE-PROCESSOR ——— s —— —
73/ (1000 LINES J73/1) / o
O / :
ONE RECORD FOR EACH 7
APPLICATION MODULE
® WRITE APPLICATION CODE /
® RUN PALEFAC PRE-PROCESSOR e e e 7
® VISUAL CHECK

SYSTEM-BUILD ENVIRONMENT

| (see Figure 3)

Figure 2 - The Application and System Build Environments

3.2 The System Build Environment

The system designer chooses a particular configuration of
hardware and software to use for the mission. He must
decide how to partition the software among the several
federated processors, how many remote device stations
(RT's) to have and which devices will be on each one,

and where the remote devices get their inputs from and send
their outputs to (i.e. which compools). The criteria
used in partitioning the software are not well defined at
this point. Certainly if two modules communicate with
each other a great deal, they should be in the same
processor. Likewise, if two modules execute cyclically
in phase and at a high rate, they probably should be in

6

different processors so that they do not compete for limited

CPU resource.

Figure 3 shows the environment in which the system designer

operates.

After configuring the system and generating a

Palefac Global Input (PGI) file which represents that con-
figuration, he runs Palefac, also using as input the PMI

file created by the application programmer.
a set of linker command file (one

produces two outputs:

Palefac

for each flight processor) which will generate flight-

processor load modules, and the executive and bus command

tables as JOVIAL J73/1 source code.

FROM APPLICATION ENVIRONMENT

N

TEXT OUTPUT

SYSTEM
DESIGNER
TTY.
® CONFIGURE HARDWARE

S ”

AND SOFTWARE
® RUN PALEFAC

® VISUAL CHECK (DEC-10)

PALEFAC GLOBAL INPUT (PGI) FILE
e
MAIN
PALEFAC
GLOBAL INFORMATION FOR THIS PROGRAM
ONE PALEFAC RUN
1. OVERRIDES OF AUXILIARY FILE -
2 MODULES iN EACH PROCESSOR
3 BUS TRANSMISSIONS
4 MISCELLANEOUS (HARDWARE (5000 LINES J73/1)
CONFIGURATION, ABSOLUTE
LOAD ADDRESSES, ETC |
EXECUTIVE
PALEFAC AUXILIARY FILE (PAF) TABLES AS J73/1
SOURCE CODE
P
INDIVIDUAL RECORDS FOR
® COMPOOL SIZES
® COMSUB S1ZES
SYSTEM
DESIGNER

TTY

TO SYSTEM-VERIFY ENVIRONMENT

LOAD
MODULES

(DEC-10)

DEC-10 LINKEROR | 4
HOT BENCH CROSS-
LINKER

LINKER COMMAND FILES
ONE FOR EACH FLIGHT
PROCESSOR

(DEC-10)

J73/1 DEC-10
COMPILER OR

HOT BENCH CROSS-
COMPILER

COMMay,

<
TEXT out?>

® RUN COMPILER
® VISUAL CHECK

Figure 3 - The System Build Environment

TEXT
OuTPUT

©
00""”“

SYSTEM
DESIGNER

TTY

® RUN LINK EDITOR
® VISUAL CHECK

EXECUTIVE TABLES £
AS OBJECT FILES
FOR DEC-10 OR 1

HOT BENCH

s o ot

acal.

.3 The System Verify Environment-

The fact that the tables are output by Palefac as source

code allows them to be targetted to any machine which has

a compiler or cross-compiler for the language. Currencly
only two machines do have JOVIAL J73/1 compilers: the

DEC-10 and the DAIS flight processor. This feature insures
that, while Palefac is executive-specific (it is useful

only for the DAIS executive), its outputs can be used for

a variety of computers which may be used for DAIS application
software development.

The system designer compiles the Palefac executive and hus
control table output files (PMD files) using the necessary
compiler or cross-compiler to get them targetted properly.
He then links together a load module for each flight
processor. These flight load modules are what the system
verifier uses for testing, and comprise, along with the
mission specification, the interface between the system
build and system verify environments.

The system verifier tests the system and either certifies

its correctness or sends it back to the previous two users
for modification. Figure 2 shows that he has a variety of
tools available to him for these tests. Palefac does not

directly enter into the testing phase as DAIS is currently .
constituted, though it should play a role here as is 1
discussed in Section 6.

4.

Palefac Development

The Palefac programs (there are two: Palefac and the Palefac
Pre-processor) were developed in five phases:

1) definition of interfaces,
2) top-down functional design,
3) detailed design,

4) coding, and

5) integration and testing.

4.1 Definition of Interfaces

Before any design work was done, several interfaces had

to be specified. When work was begun on Palefac, the
executive design was at a stage where the formats and, in
some cases, even the functions of various executive tables
were not known. Also, the manner in which application
modules were to request executive intervention was not
known. Several months of interface discussions were needed
for these issues to be resolved, during which time Draper
evaluated various design proposals as to their feasibility
and how efficiently they could be done automatically by
Palefac. The end result of these interface meetings was
the Draper produced Interface Control Document between
Palefac and the Mission Software. This was the first DAIS
publication which described the exact formats of the

executive and bus control tables. Other interface documents
were written during this time span, but were much more
straightforward. These include the SDVS to Palefac and
JOVIAL to Palefac interface control documents.

.2 Top-down Functional Design

Once all of the interfaces were designed,all of the Palefac
system inputs and outputs were known. The job of getting

B —

from a set of inputs to a set of outputs was viewed as a
function, which was decomposed, working from lesser to
greater level of detail, into sub-functions. A functional
diagram of the two Palefac programs was produced,
containing about thirty modules for Palefac and ten for the
Pre-processor. The final versions of the programs have
forty-three and twenty modules, respectively, which makes
it seem as if the original design was rather far off.

This is not the case, however.

The modules in the original design retained their intended
functions and interactions with each other in the final
product. The additional modules were required for two
reasons which were not foreseen at design time. First,
the JOVIAL J73/1 language turned out to be grossly
inadequate in the area of input/output. Several FORTRAN
modules had to be added to do reading, writing, opening
and closing of disk files. The second area which required
additional programming was the interface with the DEC-10
operating system. Operation with the SDVS require the
special operating system features to be used which are not
accessible from JOVIAL. Routines had to be added which
were written in MACRO-10, the DEC-10 assembly language.

.3 Detailed Design

This phase involved examining each module as a separate
function with a set of inputs and a set of outputs. The
work of this phase was to design for each function an
algorithm which will accomplish the transformation from
input to output. Occasionally, it became clear that the
desired output could not be obtained from the specified
input, at which time functional design specification had
to be changed.

10

PO~y S—— o S

4.4 Coding

Because each function had been specified in such detail
before any coding had been done, the coding phase simply
involved translating algorithms from the language in which
they were specified in the detailed design document into
JOVIAL J73/I. For each module in the Palefac programs,

a standalone test module was written. This test module
executed the Palefac module on a specific set of inputs
and verified the correctness of the results produced. By
the end of the code production phase, all modules had been
written and successfully standalone tested.

.5 Integration and Testing

This phase of program development is traditionally the
most expensive and the one whose cost can least be
accurately estimated. We found integration of Palefac to
be astoundingly easy and trouble-free. The almost forty
modules of the Palefac program were integrated into a
working program in the space of about two weeks from start
to finish. We attribute this to two factors. First, the
comprehensiveness of the design phase insured that all of
the interactions between modules were clearly defined.
Once this distinct division of responsibilities was made,
coding each function became a relatively small and error-
free task.

The second factor which made integration easier was the
standalone testing of the modules during coding. The
modules not only fit together easily but were nearly
error-free internally.

11

=

3 oy S o s | S iites o ol AR pwn — r
R X - T i BB SRR —— S—— - . » -~

-| Integration proceeded from the top downward in the program
functional tree. The control program was written, but
called only dummy sub-functions until those sub-functions
themselves had been integrated in a similar fashion.

Several modifications have been made to the Palefac
programs since they were first integrated due to changes
in the executive and SDVS requirements. During the debugging

which was necessary after each program modification, almost
E | none of the bugs found were interface problems, but were

1 instead problems in the algorithm of a particular module.
This situation supports the hypothesis that extra time

and money spent up front for a good design can save many
times its cost in coding and integration.

4.6 Coding Standards

Coding standards helped to make the code produced more
uniform in structure from one programmer to the next, as

well as more error free. However, standards were not
employed as extensively as they should have been nor were

they enforced.

The block structuring of JOVIAL helped obviate the use
of unconditional and conditional explicit branches in most
cases. The GOTO statement was used, however, only as an

escape when an error condition was encountered.

gy

12

5. Program Internal Structure

Detailed descriptions of the modules in both programs and
their interfaces can be found in the final specification
documents. The present section describes the top-level of
program control and sub-function operation.

Both the Palefac and Pre-processor programs were originally
written to run from the DEC-10 monitor, with the top-level
sequencer module as the main program. In order for the
Palefac programs to be executable from the SDVS, three new
modules had to be added to each program:

e a MACRO-10 main program (EXEC),

e a JOVIAL module to set up the SDVS return parameter
block (SDVSFN), and

o a FORTRAN module to print the SDVS return parameter
block (FORSDV).

The MACRO-10 program, EXEC first determines whether it

was executed from SDVS or the DEC-10 monitor. If run by
SDVS, then error traps are enabled so that errors will not
cause the user to return to the monitor, but to SDVS. EXEC
then passes control to the sequencer module of the program.

'

5.1 The Pre-Processor Program

The Pre-processor program has five parts:

1) command string interpret,
2) application code read,

3) PMI output,

4) text output, and

5) decode.

o .

The command string interpret phase first determines whether

this command string is for pre-processing or decoding. If
it is for decoding, the decode function is called and it
does the remaining command string interpretation for itself.
If the string is a pre-processor one, then the rest of it

is interpreted and the sub-parts of the string are stored
in internal tables for later use. For pre-processing, the
command string interpreter calls the application code
reader.

In this second phase, the JOVIAL J73/I code for the application
module is scanned for keywords which indicate executive
pseudo-instructions. These are extracted and compacted by

the Pre-processor.

The PMI output phase combines all of the information extracted
from the application module into a PMI record of proper
format. This record is then written into the PMI file
specified on the command string.

The text output phase is called only if the verbosity level
specified in the command string is 2. This module outputs
the information which was extracted from the application
module, formatted so as to be easier to read.

The decode function is called when the Pre-processor is
being used to decipher PMI records rather than to Pre-
process application programs. This function completes
interpretation of the command string and then goes into
user query mode. The user is asked which records he
would like decoded from the PMI file specified in the
command string. Then the same text output module as is
used for pre-processing is called to decode the specified
records and print them.

14

5.2 The Palefac Program

| There are six main components of the Palefac program:

1) initialization,

2) Identifier Table construction,
3) table building,

4) tasking output,

5) datablock output, and

6) other output.

In the initialization phase, the command string is read
from the terminal and decomposed into its component file
specifications which are then stored in internal tables.
The current date and time are determined and saved. Two
segments of the PGI file are read into internal storage
(the Miscellaneous and Partition segments). Finally, the
text output file is opened and some run identification
information is written into it.

The Identifier Table construction phase is concerned

with filling in most of the primary Palefac internal table |
called the Identifier Table (IDTAB). 1In this phase, the i
PMI and PAF files are read, the comsub local storage areas

are calculated, and absolute priorities are assigned to
all tasks in the configuration. g

The table builder phase accomplishes some additional tasks {
which must get done before output can begin. The Bus
Message segment of the PGI is read. The internal table
DMAP, which deals with synchronous transmissions, is
sorted and completely filled in. The indices which tasks
will have in Task Tables A and B are calculated and saved.

15

As the names imply, the last three phases are concerned
with output. In the tasking output phase, tables concerned
with task control are output. These tables include the
event, task, and mission cycle event generation tables.
Also, the DMA pointer blocks and SYNPTR tables are output
here. The datablock output phase writes tables concerned
with I/0, 1like the SIL, RAT, MINR, MIST, RDT, and the
compool areas. The other output section has three functions.
First, the overlay statements are copied from the temporary
disk files into which they have been written into the PMD
files. Then the PPI file is written for whatever the target
linker is. Finally, the output files are copied into the
text output file, if the verbosity value so indicates.

16

PRV EFERRREREIE D ke

SR Yy -
RN TS S T S ROL Y R S

v

— ———— —

e e i

F.

6. Conclusions and Recommendations

Based upon our experience with software development on DAIS
using Palefac, we make recommendations for enhancements to
the program. Palefac is the information clearing house of
the software development. It is the place where information
about hardware configuration, software partitioning, task
hierarchy, and data flow all come together to form a total
picture of the avionics system being produced. There are a
number of ways in which this opportunity should be exploited.

First, Palefac should provide more extensive text output to

the user to aid in software production. Data-flow maps, control
structure maps, priority maps, and a variety of other graphical
displays of system operation can be produced here. These
things, when used in conjunction with other features of an
automated software production laboratory, can make the
generation of mission code much simpler and more reliable.

Second, since Palefac is examining both the application
software code and the configuration it should determine both
feasibility and adherence to standards. Palefac should
determine if the software architecture standards are being
violated either in code itself or by the particular configura-
tion chosen. Analysis of finite shareable resources (e.g.,
processor time and data bus) would help the user determine

if his configuration is even feasible, given the resources
available to it.

Third, Palefac logically belongs as a subfunction of a software
production laboratory, like the Software Design and Verification
system (SDVS) of the DAIS program. Although the functions of
the Palefac are essential to software production in a DAIS-1like
environment, those functions should appear to the user as part
of the software lab. For example, the processing of mission
code through the Palefac Pre-processor program should be part

of the general translation function where compilation is done.

17

P

Y AR LA e

S

.
3
]

T T R T AP IBAAR I A3 it e

o

Most efficient operation would have the Pre-processor

function accomplished by the compiler. While the source
code was being scanned, the compiler would recognize
constructions of the language and the Pre-processor would
recognize executive service requests (which are the Pre-
processor inputs).

The functions of the Palefac program belong to che phase

of the software lab in which the test case is built. The

user would specify a configuration, and Palefac would be
called on to generate the executive tables and linker commands,
and do analysis and output. Then, the system would be linked
and tested as specified by the user.

To summarize, it is clear from our experience with software
production on DAIS that Palefac is the information clearing
house of the software development process. This feature
should be taken advantage of to do much more system analysis
and output. Also, Palefac should be an invisible part of
the software production 1lab.

7 Bibliography

1. Palefac User's Guide, Charles Stark Draper Lab., Inc.,

B

revised May 1977 (DAIS number MA202200).

2. "Palefac and the DAIS Program", H. B. Chalstrom and J. A.

PR

Chalstrom, NAECON 1977 proceedings, May 1977. (Draper report

number P-430).

3. Palefac Pre-processor Detailed Design Specification - Final,

Charles Stark Draper Laboratory, Inc., revised May 1977. (DAIS
number 202201).

4, Palefac Detailed Design Specification - Final, Charles Stark

Draper Laboratory, Inc., revised May 1977 (DAIS number SA202200).

Se Palefac Pre-processor/Palefac to Mission Software Interface

Control Document, revised May 1977 (DAIS number SA802309C).

NE———

19

