
D—AO’48 ~31 CHARLLS STARK DRAPIR LAB INC CAMBRIDGE MASS FIG 9/2
PALEFAC. (U)
SEP 77 H b CHALSTROM F’ ~5—75—C—x 2oeUNCLASSIFLt.D R—S08 7 AF A L—T R—77—167 Nt.

fllOEhI~! ‘fl~~fl~~~~c

I

a

i__i~~
~~ ___________________________

- -

I f S

~~~~ 
::

~

:h7

~~

67

H. B. Chaistrom, Jr.
The Charles Stark Draper Laboratory, Inc. D D C555 Technology Square
Cambr idge, MA 02139

I~ DEC 30 ~r 
H!

September 197? ~~~~~ F

TECHNICAL REPORT AFAL-TR-77— 167

Final Report for Period IT~~~~~~~~r 1975 to 31 May 1977

Approved for public release ; distribution unlImited.

Prepared for
> Air Force Avionics Laboratory , APSC , AF~AL

~~~ Wright— Patterson Air Force Base
Ohio 45433

UJ

. .-

~

.--

~

--

~

-- ~~~~~~~~~~~~~~~~

NOTICE

When Gv3verrzment drawings, specifications , or other data are used for any pur-
pose other than in connection with a definitely related Government procurement
operation, the United States Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact tha t the government may have formulated ,
furnished, or in any way supplied the said drawings, specifi cations, or other
data, is not to be regarded by implication or otheri.rise as in any manner licen-
sing the holder or any other person or corporation , or conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Information Office (01) and is releasable
to the National Technical Information Service (NTIS) . At NTIS, it will be avail-
able to the general public, including foreign nations.

This techni cal report has been revi ewed and is approved for publication.

~~~~~~~~~ ~x _ _ _ _ _ _ _ _ _

,j Signature /~
‘ Signature

Name Name

Proj ect Engineer/scientist 
Supervisor

FOR THE COMMANDER

a i~rSignature and Title DEC 30 ~~

~i~u
F

0

“If your address has changed, if you wish to be removed from our rnai.ing list,
or if the addressee is no longer employed by your organiza tion please notify
~~i/~A .’:A:s ,w—pArB , OH 45433 to help us maintain a current mailing list’ .

Copies of this report should not be returned unless return is required by se-
curity considerations, contractual obligations, or notice on a specific document.

I)LiT UBUt1O~ ~~~~~~~~~~~~~~~~

App ro ’.~ :r ; ‘ . .,

~~ 1~~~~~~ L~~~~ul1 ~~~~~~~ I
• 0 ~~~~~ •~ .. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rn—-- ~~~~~~~~~~~~~~~~~~~ ~ -~

0 
~~ 0 _____



~ 

~~~~—— _ _ _ _ _ _

SECUR ITY SIFICATION OF THIS PAGE (Wli an Dot. Eni.r.d)

EPORT DOCUMENTATION PAGE BEFORE FORM
EPOR __________ 2. GOVT ACCESS ION NO. 3. RECIP S CATALOG NU M B E R

TR—77— 167 “ I _____________________________

4. LE d SubtIH. 5 T

(~~~~~~~~PAIZFAC • L Mar~~~~~ 75~~ay ’ ~
FE M I N ~~9RG. R N UM U E R~~~~

• 1 ~ R_LØ87L/
u~~~~(.5_~~~~~~~

_ _ _ _ _ _ _

9. PERFORMiNG ORGANIZATION NAME AND ADPRESS ~
.— .. ~O . PROGRAM ELEMENT. PROJECT. TASK

The Charles Stark Draper Laboratory , Inc. 1i ~. ~
~~EA~ & ______ N UMBERS

•

555 Technology Square Ta 2 / •,
-

Cambr idge, MA. 02139

0

II. ~~ c~12
: MB: :O;~~A S

14. MONITORING AGENCY HAM & ADDRESS (iE dilI.ren t from Controlling Olilc.) 15. SECURITY CLASS. (of fl i t. r.port)
System Avionics Division
Air Force Avionics Laboratory Unclassified

0 Wright—Patterson Air Force Base , Dayton Ohio IS.. DECLASSIFICATION /DOWNGRADING

45433 S C H E D U L E

O IS. O;STR~BUT;ON STATEMENT (of liii. R.port)

Approved for public release;
~
) 3

• distribution unlimited . ~~~ — ç ~~

Il. DISTRIBUTION STATEMENT (of itt. ab.tract .nter.d in Block 20, if di ff.,wt f rom

~~~~~~~~~~~~~~~~~~~~~~~~~~

15. SUPPLEMENTARY NOTES

19. KEY WORDS (Coafinu. on rev•ra • .id. ii n.c...asy and id.ntify by block numb.r)
Top—down Functional Design , Digital Avionics, Software, Coiupilers , 0

Higher Order Languages, Software Reliability, Real—time , Executives ,
Software Partitioning, JOVIAL.

2 A B S T R A C T  (Continu, on r.v .ra. aid. Il n.c...aty and id.ntt fr  by block numb.r)
This report describes the Palefac system which is part of the non—real—time
support software of the Digital Avionics Information System (DAIS) of the
Air Force Avionics Laboratory (AFAL) . Palefac is a tool which aids in the

0 development of real—time flight software for avionics embedded digital
computers. This report deals with three aspects of the relationsh ip
of Palefac to the DAIS program.

DD FORM 1473 £01 TION OF I NOV 69 IS OBSOLETEI JAN 73 Unclassified
0 SECURITY CLASSI F ICATION OF T H I S  PAGE (II ~,•n Data Eni.r.d)

Li ~



~~~~~~~~ ~~ 
-

Table of Contents

1. Introduction 1

2. Palef ac and the DAIS Approach 2

3. Mission Generation Using Palefac 5
3.1 The Application Environment 5
3.2 The System Build Environment 6
3.3 The System Verify Environment 8

4. Palefac Development 9
4.1 Def inition of Interfaces 9
4.2 Top—down Functional Design 9
4.3 Detailed Design 10

O
4.4 Coding 11
4.5 Integration and Testing 11
4.6 Coding Standards 12

5. Program Internal Structure 13
5.1 Pre—processor 13
5.2 Palefac 15

6. Conclusions and Recoi~nendations 17

7. Bibliography 19

ACCES S~ N f9L..~_~
NTIS

C
JUST C~1)M ..•- - -

BY

OISTRIB~1~C~!AYA1’ P. 1
•_ ~~0 0~ -

~~ ~~J.Dist . • . -O •

iii I

- _
~~~~~~~~~~~ PA~~ ID~

— —~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~



- -

List of Illustrations

1 Production of an Operational Flight Program 3

2 The Application and System Verify Environments 6

3 The System Build Environment 7

j I

I



, _
~~ ~~~~~~~~~~

— •-- 
~~~~~~~~~ ~~~ 

- . -
~

—-- •
~1~~~

0•~~ • • - -- -•-~~~~~- - .

1. Introduction

-
, This report describes the Palefac system which is part of the

non—real—time support software of the Digital Avionics Information

System (DAIS) of the Air Force Avionics Laboratory (APAL) . Palefac

is a tool which aids in the development of real—time flight software

for avionics embedded digital computers. This report deals with three

aspects of the relationship of Palefac to the DAIS program.

Section 2 gives some background of the DAIS program and its objectives

and explains how the need for Palefac arose. Section 3 is a step-by—

step description of the procedure for developing mission software using

Palefac . This procedure begins with the mission requirements and results

in operational flight programs. S ctions 4 and 5 deal , respec t ively,

with the development history of the Palefac programs and with their

internal structures.

Section 6 offers some conclusions and some recommendations for how to

implement Palefac in future DAIS—like systems. It will be shown how useful

Palefac is to the DAIS approach to digital avionics software development.

Section 7 is a bibliography.

1

2. Pale fac and the DAIS Approach

DAIS is an attempt by AFAL to demons t ra t e the b e n e f i t s
to be derived from the use of the following in the develop-

ment of avionics sof tware:

1) digital flight computers ,
2) a high order p rogramming language ,
3) greater programm ing rigor , including strict

software architecture standards ,

4) an automated software development and testing lab ,
5) uniform hardware and software interactions ,
6) a linkage-editor to produce flight load modules ,

and

7) fully integrated mission requirements encompassing

all mission subsystems.

The anticipated benefits were:

1) more efficient and more capable code produced due
to a more formalized and organized approach to the

coding and tes ting of flight code,
2) reduced costs of maintaining software and hardware

and of modernizing the avionics system to include

new technological developments, again due to better
methods of coding and testing,

3) greater software reliability, due to the availablity
of more t ho rough testing techniques and to the more
rigorous approach to code w r i t i n g .

The flight software is composed of two parts: the executive
software and ~he app licat ion sof twar e. The execu tive
software is the f l i g h t computer t s operating system. It
manages the resources of the flight computer in which it

runs and provides service to the applications , such as data

2

~ T~~~ 1:~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

moving and task activating. The application software

cons ists of the code for the subsys tems , such as nav igat ion
and weapon delivery . The execu tive w ill get developed
early on, w ill be fair ly hardware dependent (though it can
be coded primarily in the high order language) and will

change little from mission to mission or when new features

are added. The application code , on the other hand , will

need to be modified and re-tested for each new mission and

each new system capability. It is the development of this

application code with which Palefac is concerned.

Once a set of flight hardware is defined and an executive

is operating on it , the generation of a mission comes down

to this loop :

iterate until correct

link test

~~~~~p i i cat io~
j

[t t~~~~~~~~
~~~~~ftware )correct

Figure 1 Production of an Operational
Flight Program

With the use of a higher order language (HOL) for programming

and a simulation test lab for testing, it seemed as though

it would be easy to make several iterations of this loop in

a short span of time , thereby arriving at better., more

efficient code produced in less time . Problems arose , however ,
partly because of the DAIS federated computer architecture ,
which has several independent computers communicating over

a MIL-STD-1553A bus. Linking together a DAIS configuration

involves not only the usual functions of a standard link

3

- - -- - - 1. —~~ 
• - • - 0~~

__ 
-



- _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~

editor , but also the partitioning of the application software
among the several processors and the construction of the tables
to drive the executive and to control the data bus. Palefac
was conceived to automatically generate the executive and
bus control tables and to make the software partitioning
transparent to the application code .

4

-

~~
—— -— -: ~~~~~~~~~~~~~~~~~~~~~ -~~~ ,. - - _ • .. ~~~

. ,
~~~~

-.-
~~

_--
~~ 

—r—~~

3. Mission Generation U s i n g  Palefac

As Figure 1 shows , the production of an operat ional  f l i g h t
program (OFP) is an iterative process involving three steps:

application coding, system building , and system verifying .
For logical clarity, a different user is designated as the

active participant in each step : the application programmer ,
system designer , and system verifier . In practice , these

three users could be the same person.

3.1 The Application Environment

The application programmer writes the application code ,
which consists of the routines which do navigation , weapon

delivery, radar control , communication , pilot display , and

all of the other functions which help fly the airplane.

Figure 2 shows the environment in which he works . He should

be able to code modules without having any knowledge of

overall system (i.e. configurations). All that he is
concerned with is his inputs , his outputs , the algorithm
to use , and any other constraints placed upon the module.

(Since any additional constraints degrade both the code

produced and the efficiency of code production , they should

be kept to a minimum , or eliminated altogether if possible).

The application programmer comp iles his module and tests

it out as far as is possible. He then runs it through the

Palefac Pre-processor which extracts the executive pseudo-

instructions used by the module and stores them in the

Palefac Module Input (PMI) file. This PMI file is later
O used as input to Palefac and is the interface between the

Application and System Build environments.

5

L - - - -— -~~~~~~~~ 
.
~~~~~~

.- -

_—
~~~~w

r:~~ T 1 ~~~~~~~~~~~~ 

—w -W .. 0 

-

~~~~

SY STEM-VERIFY ENVIRONMENT • y~~si~~
SYSTEM ~~ v1~l IFIF ~• VER I F IER f17~ • CEfi~~ ILS

PIL OT~~REW

• FLIGHT IEST
(DEC 101

I
STAT EMEN T

AIRPLAN E HOTB ENCH LEVEL %.. H. 11)N

APPUCA~ ION ENV ~~ONMENT

:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f ,— - - — -—..
~~ IDEC-lOl IPMI1

APPLICATION

- APPLICATION PA L EFA C
SOURcE CODE PRE-PROCESSOR
U73/II (1000 LINES j7~ iiI I—

0 /
fly /

/
ONE RECORD FOR EACH
APPLI CATION MODULE

• WRIT E APPLICATI ON COOS /
• RUN PA LEFAC PRE.PR(~CE~~~ R — — — — —
• VI SUAL CHECI(

SYSTEM -BUILD ENVIRONMENT

I (see Figure 3)

L
Figure 2 - The Application and System &iild Environments

3.2 The System Build Environment

The system designer chooses a particular configuration of
hardware and software to use for the mission . He must

decide how to partition the software among the several

federated processors , how many remote device stations
(RT’s) to have and which devices will be on eech one ,
and where the remote devices get their inputs from and send

their outputs to (i.e. which compools). The criteria
used in partitioning the software are not well defined at
this point. Certainly if two modules communicate with
each other a g rea t deal, they ~hou1d he in the same
processor. Likewise , if two modules execute cyclically
in phase and at a hi gh rate , they prohab v should he in

rn ~~~~ 
~~~~~~~-


~0~~•

different processors so that they do not compete for limited
CPU resource.

Figure 3 shows the environment in which the system desi gner
operates. After confi guring the system and generating a
Palefac Global Input (PGI) file which represents that con-
figuration , he runs Palefac , also using as input the PMI
file created by the application programmer . Palefac
produces two outputs: a set of linker command file (one

for each flight processor) which will generate flight-
processor load modules , and the executive and bus command
tables as JOVIAL J73/I source code .

TO SYSTEM-VERIFY ENVIRONMENT
FROM A PPLICATION ENVIRONMENT

LOADXI OUTPUT
MODULESSYSTEM

SYSTEM
DESIGNER

S CONFIGURE HARDWARE

liv
DESIGNER(DEC. 151

~~~~~~~~~~~~~~~~~~~~~~~~~~~
: .

bOu101
• RUN PALE FA C

~~~~~~~~~~~ AND SOFTWARE

HOT BENCH CROSS-• VISUAL CHECK OUTPUT

LINKER

PALEFAC GL OBAL INPUT IPGII FIL
• RUN LINK EDIT OR

ONE PALE FAC RUN

DEC-1 0 LINKER OR TEXT

t MAIN LINK E R COMMAND FILES

S VISUAL CHECK

PA LE F AC ONE FOR EACH PLIGHT
o GLOBAL INPORMAT I ON FOR THIS PROGRAM PROC ESSOR

EXECUTIVE TABL ESI OVERRIDES OF AUX ILIARY FILE
IOEC.l 0I AS OBJ ECT FILES

S M000L ESINEACHPROCESSOR FOR DEC- b OW
1 BUS TRANSMISS IONS HOT BENCH
4 MI SCELLANE OUS (HARDWARE 5000 LINES .173/11 .173/I DEC-10

CONFIG URATION . ABSOLUTE COMPIlER OR
LOAD ADDRESSES . ETC I HOT BENCH CROSS-

— .~
9 COMPILER

IEXECUTIVE ~PALEPAC A U X I L I A R Y FILL IPAF I TA BL ES AS .173/I
- SOURCE CODE

G TTY

Ci INDIVIDUAL RECORDS FOR SEX1
191.11

• COMPOO L SI ZES
• COMSUB SIZES

SYSTEM S RUN COMPILER
DESIGNER S VISUAL CHECK

Figure 3 - The System Build. Enyironment

7

_ _

-~ ~~~~~ • 0 - -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - 1

-

The fact that the tables are output by Palefac as source

code allows them to be targetted to any machine which has

a compiler or cross-compiler for the language. Curre~ Llv

only two machines do have JOVIAL J73/I compilers: the

DEC-lU and the DAIS flight processor . This feature insures

that , while Palefac is executive-specific (it is useful
only for the DAIS executive), its outputs can be used for

a variety of computers which may be used for DAIS application
software development.

The system desi gner compiles the Palefac executive and bus
control table output files (PMD files) using the necessary
compiler or cross-comp iler to get them targetted properly.
He then links together a load module for each fli ght
processor. These flight load modules are what the system
verifier uses for testing , and comprise , along with the
mission specification , the interface between the system
build and system verify environments.

3.3 The System Ver i f y E n v i r o n m e n t

The system verifier tests the system and either certifies
its correctness or sends it back to the previous two users
for modification. Figure 2 shows that he has a variety of
tools available to him for these tests. Palefac does not
directly enter into the testing phase as DAIS is currently
constituted , though it should play a role here as is
discussed in Section 6.

8

A -~~~~~~~~~~~~~~~~~ ~~~

_ _ _ _ _ - -

4. Palefac Development

The Palefac programs (there are two: Palefac and the Palefac

Pre-processor) were developed in five phases :

1) definition of interfaces ,
2) top-down functional design ,
3) detailed design ,
4) coding , and

5) integration and testing .

4.1 Definition of Interfaces

Before any design work was done , several interfaces had
to be specified. When work was begun on Palefac , the

executive design was at a stage where the formats and , in

some cases , even the functions of various executive tables

were not known . Also , the manner in which application

modules were to request executive intervention was not

known . Several months of interface discussions were needed

for these issues to be resolved , during which time Draper
evaluated various design proposals as to their feasibility

and how efficiently they could be done automatically by

Palefac. The end result of these interface meetings was

the Draper produced Interface Control Document between

Palefac and the Mission Software. This was the first DAIS

publication which described the exact formats of the

executive and bus control tables. Other interface documents

were written during this time span , bu t were mu ch more
straightforward. These include the SDVS to Palefac and

JOVIAL to Pale fac interface contro l documents .

4.2 Top - down Functional Design

Once all of the interfaces were designed ,all of the Palefac

system inputs and outputs were known . The job of getting

9

~~~~~~~JM~



_____________  - —~~--—~~~~ --—-,.• -~~~~~~~~~~~~ ——.~~ - ~~~~~--~~~ -~~
--

~~~~~
- .--— —~~~. -. -W - . -

- --
~~~• ~ 0~~~ 

from a set of inputs to a set of outputs was viewed as a

function , which was decomposed , work ing from le sser to
greater level of detail , into sub-functions. A functional

diagram of the two Palefac programs was produced ,
containing about thirty modules for Palefac and ten for the

Pre-processor. The final versions of the programs have

forty-three and twenty modules , respectivel y, wh ich m ak es
it seem as if the original desi gn was rather far off.
This is not the case , however .

The modules in the original design retained their intended

functions and interactions with each other in the final

product. The additional modules were required for two

reasons which were not foreseen at design time. First ,
the JOVIAL J73/I language turned out to be grossly

inadequate in the area of input/output. Several FORTRAN
modules had to be added to do reading , writing , opening

and closing of disk files. The second area which required

additional programming was the interface with the DEC-10

operating system . Operation with the SDVS require the

special operating system feature s to be used which are not 
0

accessible from JOVIAL . Routines had to be added which
- were written in MACRO-b , the DEC-10 assembly language.

4.3 Detailed Design

This phase involved examin ing  each modul e  as a separate
f u n c t i o n  w i th  a set of inputs  and a set of ou tpu ts .  The

- 

work of this phase was to desi gn for each f u n c t i o n  an
alg o r i t h m  which  w i l l  a ccompl i sh  the t r a n s f o r m a t i o n  from
input to output. Occasionally, it became clear that the
desired output could not he obtained from the specified
input , at which time functional design specification had
to be changed.

10

A  -
~~~~~~ 

-

~~~~~~~~



~~~~~~~~~~~ 
‘ ‘~~ - — — — —~~~-- —.---.... -~ls

—

— •‘~~~—-- —-- --- -.-- -----. ——--—--,- .—-- -— -

4.4 Coding

Because each function had been specified in such detail
before any coding had been don e, the coding phase simply
involved translating algorithms from the language in which
•they were specified in the detailed design document into
JOVIAL J73/ I. For each module in the Palefac programs,
a standalone test module was written. This test module
executed the Palefac module on a specific se t of inputs
and verified the correctness of the results produced. By
the end of the code production phase , al l module s had been
wr itten and succe ssful ly standalone tes ted.

4.5 Integration and Testing

- -
This phase of program development is traditionally the
most expensive and the one whose cost can least be
accurately estimated. We found integration of Palefac to

be astoundingly easy and trouble-free. The almost forty

modules of the Palefac program were integrated into a
working program in the space of about two weeks from start
to finish. We attribute this to two factors. First , the
comprehensiveness of the design phase insured that all of
the interactions between modules were clearly defined.
Once this distinct division of responsibilities was made ,
coding each function became a relatively small and error-

free task.

The second fa ctor which made integra tion ea sier was the
standalone testing of the modules during coding . The

- . modules not only fit together easily but were nearly

error-free internally.

11

_ _ _ -

- - ___

Integration proceeded from the top down ward in the prog ram
functional tree. The control program was written , but
called only dummy sub-functions until those sub - functions

themselves had been integrated in a similar fashion.

Several modifications have been made to the Palefac
programs since they were first integrated due to changes
in the executive and SDVS requirements . Dur ing the debugging
which was necessary after each program modification , almost
none of the bugs found were interf ace problems , but were
instead problems in the algorithm of a particular module.
This situation supports the hypothesis that extra time
and money spent up front for a good design can save many
times its cost in coding and integration .

4 . 6 Coding Standards

Coding standards helped to make the code produced more
uniform in structure from one programmer to the nex t, as
well as more error free . Howev er , standards were not
employed as extensively as they should have been nor were
they enforced.

The block s truc turing of JOVIAL helped obv iate the use

1 of unconditional and conditional explicit branches in most
cases. The GOTO statement was used , however , only as an

- escape when an error condition was encountered.

12

L - - —-— - - . - - . - -~~~~~~~-~~~
—- -

~~~~~~‘- - -  - -  - - - - 
~~~~~

- -

_ _

5. Program Internal Structure

Detailed descriptions of the modules in both programs and

their interfaces can be found in the final spec ifica tion
documents. The present section describes the top-level of

program control and sub-function operation .

Both the Palefac and Pre-processor programs were originally

B written to run from the DEC-10 monitor , with the top-level
sequencer module as the main program . In order for the
Palefac programs to be executable from the SDVS, thre e new
modules had to be added to each program :

• a MACRO-b main program (EXEC),

• a JOVIAL module to set up the SDVS return parameter
block (SDVSFN) , and
• a FORTRAN module to print the SDVS return parameter

block (FORSDV) .

The MACRO-b program , EXEC f irs t de term ine s whe ther it
was executed from SDVS or the DEC-10 monitor . If run by
SDVS , then error traps are enabled so that errors will not
cause the user to return to the monitor , but to SDVS. EXEC
then pas ses control to the sequencer module of the program.

5.1 The Pre-Processor Program

The Pre-processor program has five parts:

1) command string interpret ,
2) appl ica tion code read ,
3) PMI output,
4) text output , and

5) decode .

I _

—

~~~~~~~~~~~ ~~~~~ -— ~~~~~~~~~~~-

‘

-~ --~~~~~~ — ~~ — —-

The command s tring interpre t phase fir st determines whether
this command str in g is for pre-processing or decoding. If

it is for decoding , the decode function is called and it

does the remaining command string interpretation for itself.

If the string is a pre-processor one , then the rest of it

is interpreted and the sub-parts of the string are stored

in internal tables for later use. For pre-processing , the

command string interpreter calls the application code
reader.

In this second phase , the JOVIAL J73/ I code for the appl ica tion
module is scanned for keywords wh ich indicate executive
pseudo-instructions . These are extracted and compacted by

the Pre-processor.

The PMI output phase combines all of the information ex tracted
from the application module into a PMI record of proper

format. This record is then written into the PMI file

specified on the command s tring .

The text output phase is called only if the verbosity level

specified in the command string is 2. This module outputs

the information which was ex trac ted from the application
module , formatted so as to be easier to read .

¾
The decode function is called when the Pre-processor is

being used to decipher PMI records rather than to Pre-

process application programs. This function completes

interpretation of the command string and then goes into
user query mode. The user is asked which records he

would like decoded from the PMI f i le speci f ied in the
command string. Then the same text output module as is

. 
used for pre -processing is called to dec de the specified

records and print them .

14



r 
-
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ R-*1•.,z_ ‘-

~ 
- - — ~~‘~~ -11~ ~ v-

- ——--— •------
~~~~~~~~~~~~~

5.2 The Palefac Program

There are six main components of the Palefac program :

1) initialization ,

2) Identifier Table construction,
3) table building,

4) tasking output ,
5) datablock output , and
6) other output.

In the initialization phase , the command string is read
• from the terminal and decomposed into its component file

specifications which are then stored in internal tables.
The current date and time are determined and saved . Two
segments of the PGI file are read into internal s torage
(the Miscellaneous and Partition segments). Finally , the
text output file is opened and some run identification

information is written into it.

The Identifier Table construction phase is concerned

with filling in most of the primary Palefac internal table

called the Identifier Table (IDTAB) . In this phase , the
PM! and PAF files are read , the comsub local storag e area s

- 3 are calculated , and absolute priorit ies are assigned to
al l tasks in the configuration .

- The table builder phase accomplishes some addi tional tasks
which must get done before output can begin. The Bus

-

-
Message segment of the PGI is read. The internal table
DMAP , which deals with synchronous transmissions , is

sorted and completely filled in. The indices which tasks

will have in Task Tables A and B are calculated and saved.

15

~
-‘-----

~

-

~
--‘ ~~~~~~~~ ~~~WW-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~2~ 5~~~~~~-~W .

—

—
- - -t~Is~• ..~~~~_ _ — -- * — - —• --•-—-— —• - -- - . - -. — - - -•

As the name s imply, the last three phas es are concerned
with 3utput . In the tasking output phase , table s concern ed
with task control are output. These tables include the
event , task , and mission cycle event generat ion table s.
Al so , the DMA pointer blocks and SYNPTR tables are output
here . The datablock output phase writes tables concerned
with I/O, li ke the SIL, RAT , MINR , MIST , RDT , and the
coinpool areas. The other output section has three functions.
First , the overlay statements are copied from the temporary
disk files into which they have been written into the PMD
files. Then the PPI file is written for whatever the target
linker is. Finally, the output files are copied into the
text output file, if the verbosity value so indicates .

16

A -
_ _ _ _ _ _ _

~~~ -~~‘~~ ~~~~~~ 

- 

- I

6. Conclusions and Recommendations

Based upon our experience with software development on DAIS

us ing Palef ac , we make recommenda tions for enhancemen ts to
the program . Palefac is the information clearing house of

the software development. It is the place where inform ation
about hardware configuration , software partitioning , task

h ier archy , and data flow all come together to form a total

picture of the avionics system being produced. There are a

number of ways in which this opportunity should be exploited.

First , Palefac should provide more extensive text output to

the user to aid in software production. Data-flow map s, control
structure maps , priority maps , and a variety of other graphical

displays of system operation can be produced here . These
things , when used in conjunction with other features of an
automated software production laboratory, can make the
generation of m ission code much simpler and more reliable .

Second, since Palefac is examining both the application
software code and the configuration it should determine both

feasibility and adherence to standards. Palefac should

determine if the software architecture standards are being

violated either in code itself or by the particular configura-

tion chosen. Analysis of finite shareable resources (e.g.,

processor time and data bus) would help the user determine

if his configuration is even feasible, given the resources
available to it.

- 
- 

Third , Palefac logically belongs as a subfunction of a software
production laboratory, like the Software Design and Verification
system (SDVS) of the DAIS program . Although the functions of
the Palefac are essential to software production in a DArS- like

env ironmen t, those functions should appear to the user as part
of the software lab. For example , the processing of mission
code throu gh the Palefac Pre-processor program should be part

of the general translation function where comp ilation is done .

-- :~ . _ _



~~~~~~ ~~~~~~~~~

Most efficient operation would have the Pre-processor

function accomplished by the comp iler . While the source

code was being scanned , the compiler would recognize

constructions of the language and the Pre-processor would

recognize executive service requests (which are the Pre-
processor inputs).

The functions of the Palefac program belong to ~he phase
of the software lab in which the test case is buil t. The
us er wou ld spec ify a conf igura tion , and Palefac would be

called on to generate the executive tables and linker commands ,
and do analysis and output. Then , the system would be linked
and tested as specified by the user .

To summar ize, it is clear from our experience with software
production on DAIS that Palefac is the information clearing

house of the software development process. This feature
should be taken advantage of to do much more system analys is
and output. Also , Palefac should be an invisible part of
the software production lab.

18

L ~
.

W~~~~~~~~T~-!- - ’ - - ~~rT :::
~~~

- - -- : -
~~ ~~~~~~~~~~~~~~~~~~~~~~

7. Bibliography

1. Palefac User’s Guide, Charles Stark Draper Lab., Inc.,

revised May 1977 (DAIS number MA202200).

2. “Palefac and the DAIS Program”, H. B. Chaistrom and J. A.

Chaistrom, NAECON 1977 proceedings, May 1977. (Draper report

number P—430).

3. ‘alefac Pre—processor Detailed Design Specification — Final,

Charles Stark Draper Laboratory, Inc., revised May 1977. (DAIS

number 202201).

4. Palefac Detailed Design Specification — Final, Charles Stark

Draper Laboratory, Inc., revised May 1977 (DAIS number SA202200).

5. Palefac Pre—processor/Pa].efac to Mission Softv~re Interface

Control Document, revised May 1977 (DAIS number SA802309C).


