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TECHNICAL DISCUSSION

The grant period was devoted to a study of two classes of non-
linear optical processes:

(1) Nonlinear optical mixing of microwave radiation at 4 GHz,
with the 944 cm'] P(20) line of CO2 in a NHZD gas. This analysis formed
the basis for a series of experiments at the Hughes Research Laboratories,
Malibu, where the effect was observed and agreement with the theory es-

tablished.

The work is described in the enclosed reprint (Appendix 1).

(2) Conjugate four-wave mixing for time reversed propagation: A

theoretical analysis of four-wave mixina in aases was conducted. Special

emphasis is on the use of this effect for correcting for aberrations in

optical propagation.

In addition, we carried out a theoretical study which treats all
orders of nonlinear optical mixing phenomena, including Raman processes,
using a unified point of view and introducing to nonlinear optics the
formalism of Feynman diagrams. This study will be useful to identify
candidate materials for resonantly enhanced four-wave mixing experiments l
described in (2) above. (See Appendix 2).

The research effort involved, in addition to the Principal

Investiaator, the full time of a graduate student, Pochi Yeh, who will

obtain his PhD dearee from Caltech for work supported by this grant, "' Section

Buff Section 3
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APPENDIX 1

Stark-Induced Three-Wave Mixing in Molecular
Gases—Part |: Theory

RICHARD L. ABRAMS, memBER 1EEE, AMNON YARIV, reLrLow, 1EEE, AND PO CHI A. YEH

Abstract— Application of a dc electric field to a gascous system
destroys the basic inversion symmetry and allows three-wave mixing
processes (o occur. A theoretical denivation of this effect under con-
ditions of resonantly enhanced nonlincaritics is given for a three-level
system.  Calculations are presented for mixing of a CO, laser with
4-GHz microwaves in the molecule NH;D, producing single lower
sideband radiation.

Manuscript received September 2, 1976. This work was supported in
part by the Advanced Rescarch Projects Aecency, monitored by the
Office of Naval Rescarch, and i part by the Army Rescarch Office,
Dutham, NC.

R L. Abrams is with Hughes Research Laboratorics, Malibu, CA
90265.

A. Yariv and P. Yeh are with the California Institute of Technology,
Pasadena, CA 91109,

I. INTRODUCTION

T\ ONLINEAR optical mixing in atomic vapors has been
1 N demonstrated for a number of different processes in-
cluding third harmonic generation [1]-[4], dc-induced
second-harmonic gencration [S], [6], infrared upconversion
{71, [8], and multiphoton gencration of new wavelengths
[9]. Resonant enhancement and phase matching of three-
photon processes has led to rather impressive conversion ef-
ficiencies for certain interactions in atomic vapors [2]-[4].
In this paper we discuss three-wave mixing processes in mole-
cules where resonant enhancement is achieved via Stark tuning
of the molecular energy levels.  This interaction and its sub-
sequent experimental observation [10] suggest a new type of
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electrooptical effect. namely singlesideband generation by
applied microwave frequencies. A theoretical derivation and
calculations of the interaction for a three-level system are
presented here, specialized to the case ot a particular molecule
(NH,; D). The experimental observations are discussed in the
following paper [10].

II. THEORY

The application of a de¢ electric field to a gas introduces a
preferred spatial direction, thus destroying the inversion sym-
metry. The second-order-induced polarization amplitude can
then be related to the product of the field (complex) ampli-
tudes by

P:’I‘w:""x :d“}z:;w:'w:k‘mb‘;‘r 1)

Choosing the direction of the dc field as z, the allowed dgyg,
are d,.,,d,;;, and d;,;, where i =x or p.

In searching for a candidate gas in which to observe the
effect, one should look for: 1) molecules with a strong perma-
nent dipole moment or 2) molecules which, in the presence of
a dc field, acquire a large dipole moment so that the presence
of the dc field constitutes an appreciable perturbation.

A molecule'meeting criterion 2) is NH, D. The molecule has,
among others, the three levels shown i Fig. 1, which can be
Stark-tuned into simultaneous resonance with the £(20) line
of the CO, laser [11]-[14] and microwave radiation near 4
GHz as shown. Tnis should lead to a strong resonant mixing
of the P(20) line (of frequency ws;/27) and the microwave
field at w, /27 =4 GHz, giving rise to the difference frequency
radiation at w; = w, - w, when the Stark field is near Ey. =
3570 V/em. Levels 1 and 2 belong to the lowest vibrationa
state (v, = 0) and have molecular angular momentum quantum
numbers J =4 and |[M]|=4. The subscripts 04 and 14 corre-
spond to the standard asymmetric top designation [15]. The
symbols a (asymmetric) and s (symmetric) refer to the parity
of the inversion-split vibrational wave functions. The applica-
tion of an electric field £y, causes an admixture of the wave
functions [4¢4a) and [4,45) which is due to a nonvanishing
matrix element of the molecular dipole operator connecting
the two states. This admixture. which will soon be shown to
be responsible for the nonlinear mixing, disappears at zcro dc
field. The parameter A appearing in the expression for the
wave functions corresponds to the energy splitting £, - £,
between the two low-lying states and is given by

A= [41(4oaalu, 14145 (Fge)? +62]'/2 ()

while the admixture wave functions are

|1>=;/]—§. (VT +8/A |4gaa) +/1 - 6]A |4145)],

. )
12) = \7|;. [\/T“—M\ [44a) - I/ s A |4“$)]

where § is the ze
the molecular dip
the de ficld.

The cexpression for the nonlinear dipole moment of an
NII; D molecule depends on matrix clements which can be

.tting and u. is the projection of
* operator along the direction of
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Fig. 1. Some of the encrgy levels relevant to the derivation of the non-
linear coefficient.

determined from linear absorption data as well as from the
data on Stark splitting. This makes possible, in principle, a
precise theoretical derivation of the nonlinear mixing behavior
of this molecule and of its parametric dependencies.

Applving second-order perturbation theory (16, p. 556] to
the three-level system of Fig. 1, and keeping only the resonant
(i.e.. with near vanishing denominator) term, leads to the fol-
lowing expression tor the poiarization generated at w,; = w3 -
w, by the applied fields at w,, wj:

P = b {__‘ Ny(ji-E3)ya(id-E3)sy (Ha)s-
a an? [y ti(ws - wyy)] [Nz Hiwy - waa)] .
(N2 - Ny )1 'Ea)n(if 'Ez')u(#a):z }
[Cy2 +i(wy - wa)] (a2 +i(wy - wsa)]

cexp (fw,t) +c.c. 3)

where N; is the population density of level i with £, = £53 =0.
At thermal equilibrium N, =V, , and the main contribution
to P{Y) is from the first term, the one proportional to V.

At zero dc field the matrix element (ug)s; is zero. This is
due to the fact that, as can be shown by group theoictic
arguments, only the molecular dipole moment along the b of
NH, D axis (#,) may possess a nonvanishing matrix element
(Sosalpyl4,48), but i, =0 due to the basal plane symmetry
of NI, D. It follows from (3) that for £4. =0 no frequency
mixing takes place. When Ey. #0 the ground stite wave
function [4psa) is admixed into level 2 as shown in Fig. 1.
This results in a nonvanishing matrix element (g,)3; pro-
portional to (Sosalu, |40aa)d.

For E, ||z, a=x, and E;[|X we find, using the admixed
wave functions, that the triple matrix element product ap-
pearing in (3) is given by

(k)2 (e hs(kx)sa = -4 (4040“‘:'5030)1

Eqe M? ( -A&—;) @)

The dependence of the triple matrix element product on the
de electric field is contained in the factor £y §/A? with A the
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energy separation between levels 2 and 1, as given by (2). The
nonlincar mixing is thus absent, ie., P{*) =0, at zero ficld
(E4c =0) and at very high fields (A >>6). From (1)and (3)
and using the fact that at room temperature Ny =N, we
obtain

d@r Wi w, =__l___ Nl(ﬂ-,)n(i{g)}a(ﬂn)n )
oy 267 [y ti(ws - w3y)) [Faz +i(w) - wiy))

)

Expression (5) applies to stationary molecules with energy
levels at £, £,, and £5. In a gas sample we need to account
for the Doppler shift of the transition energies of individual
molecules. This is done by averaging the nonlinear cocfficient
dyp, over the Maxwellian velocity distribution function with
the result, for operation at line center, that

Wy W, —w, _ “Ni(ey )21 (pha(k)ar -

afy 242
‘ fht AF (x)
"zawg, ol (6)
where

F(x)zex’ erfc (x), w3t ® w3y 2> wy,y, M3 =Ty, =T,
o=kT/M

is the rms molecular velocity, and x = cI'/(v2cws, ) is the
ratio of the homogeneous (spontancous plus pressurc) line-
width I' to the Doppler linewidth /2 0w, /c.

Although a numerical estimate of the nonlincar mixing coef-
ficient based on (6) is possible, a safer procedure, and one that
serves as a check on the matrix elements needed to evaluate
dyy, (the largest coefficient in NH,D) is to relate it to the
linear absorption coefficient of x polarized field at w; = ws;.
The latter can be shown to be given (in esu units) by

Va1 =1 V7 xe* erfe (x) )
where 7, is the value of 3, at high pressures (cI"' >> ow;;)
and is given by

ypy = M3 0

H Zicl 1

Combining (6) and (7) leads after some mathematical
manipulation to

d@im9 s o c(u:), Ha3
= 8nfiwsy \uys

.]/IL’L'L 2p(x) - -2
3 os; [2x F(x) ﬁx] (8)

The various constants in (8) are evaluated as follows: the
matrix element (u.),; is a function of the admixturc and
according to the wave functions (2) is given by

$
(H:)12 =K<4oaﬂ|u,|4,4s). ©)

We obtain the matrix element (a|u.|s) from comparing the
splitting £ - £, as given by (2) to the experimental tuning
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Fig. 2. Theoretical dependence of NH,D nonlinear coefficient on

piessure when the applied ticlds are exactly resonant with the Stark-
tuncd encigy levels.

curve of £, - E, versus Ey. [14]. This yields (a|u,|s)=
1.14 X 107" esu. At resonance £y, = 3570 V/cm and §/A =
0.174. These data are used in (9) and result in

(1;)12 =0.174 {auls)=0.198 X 107'% esu.

The saturated absorption 7, and pressure broadening coef-
ficient are obtained from the data in [13] as

Y4 =0.028 cm™!
I'/P = 2n(20.1 MHz/torr).

With these data we obtain

dyxz ©*7“? =231 X 1077G(x) esu (10)
G(x)=2x [ﬁ - xe* erfc (x)]. 1)

The theoretical dependence of dy 5, on pressure [see (10)] is
plotted in Fig. 2. The peak occurs at P = 2 torr and has a value
of

(@79 @) =64 X 10" esu=24 X 10727 MKS.
m

A comparison of this predicted behavior with experiment is
given in [10].

The coefficient d estimated above refers to the generation
of sideband radiation at w; by mixing a CO, P(20) line with
a microwave field w, (at 4.1 GHz). It is thus appropriate to
compare it to the electrooptic coefficient r4y; of GaAs which
can be used, alternatively, to generate the sideband by con-
ventional electrooptic modulation.

Using the correspondence [16, ch. 16]

2("0

P, =-— d: 12
Jlk €,-€‘ Tkl ( )

we have
(i
(" r)Gans

We thus reach the conclusion that for sideband generation, de-
biased NH; D at =2 torr is comparable to GaAs (which is

08. a3)
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one of the best infrared modulation materials).  We must
recognize, however, that this large coefticient was obtmned
by exploiting the resonant nature of the effect. The penalty
we pay for this is that of reduced bandwidth.

I1I. CONCLUSIONS

In conclusion, we have shown in detail how Stark admixing
can give rse to second-order optical nonlinearities in gases.
We have derived an expression for the coefficient describing
the mixing of an infrared and a microwave field in NH, D.
Available absorption data were used to obtain a numerical
estimate for the mixing and to describe its parametric de-
pendence. An experimental demonstration of this effect is
described in the following paper [10].
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APPENDIY 2

The Application of Time Fvolution Operators and

Feynman Diagrams to Nonlinear Optics*'

Amnon Yariv

California Institute of Technology, Pasadena, California

ABSTRACT

The paper develops a consistent formalism for describing
nonlir2ar optical mixing and multiphoton processes of any arbitrary
order. The theory uses the time-evolution operators of quantum

mechanics and the related, Feynman diagrams.

(To be published in the IEEE Journal of Quantum Electronics)

*x
Research supported by the U.S. Army Research Office.
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I. General Background

The purposé of this note is to demonstrate the use of the quantum
meéhanical evolution operator formalism and the closely related technique
of Feynman diagrams in deriving the nonlinear constants characterizing
different multiphoton nonlinear optical processes.

As an illustration we apply the method to sum and frequency genera-
tion, two-photon absorption and stimulated Raman scattering. lle start with
a short review of the evolution operator forma]ism.(])

The eigenfunction y(t) of an atom subjected to an electromagnetic
fie]d can be obtained formally by solving the Schrédinger equation |

Hy = ifi 2 (1)

(B35
(515

or, equivalently, by opcrating on the eigenfunction at time ta with the

evolution operator u(tb,ta) according to

‘J’(tb) ) u(tb‘ta) lP(ta) (2)
where u(tb,ta) satisfies

u(tb,ta)

ey = Hu(tb,ta) (3)

If H does not depend on time, then it follows from (3) that
. H
-1 =(t, ~-t_)
_ H'b Ta
ult,t) =e (4)

-iwm(tb-ta)

) [m> <m| e
m




where W, = Em/ﬁ and [m> is the eigenfunction of H with energy fm’ 1285,

Hlm> = fig [m> .

In the cases of interest to us we take the Hamiltonian as
H(t) = Hy + v (t) (5)

where Ho is time independent and v(t) represents the time dependent in-
teraction of the atom with the optical fields.
The solution of u(tb,ta) when the Hamiltonian is given by (5) can

be obtained by a perturbation expansion in powers of v(t). The result 15(])

u(tb.ta) = u(o)_(tb,ta)+u(”(tb,ta) + u(z)(tb,ta)+--'u'(‘n)(tb,ta)+

(6)
where e H
Lhae (F =t
(°)<‘b=t W
. b .
L (—%—) IC u(o)(tb,t) v(t) u(o)(t,ta) dt
£ty |
u(z) = %—zl JC dt dt u(o)(t ) v(t]) u(o)(t].tz) v(tz)u(o)(tz.ta)
(7)

] tb>t]>t2
ul® - (- %—)3J J f dt]dtzdt3u(0)(tb,t]) V(t])u(o)(tl,tz) v(t,)
t

-
we x u(o)(tz.t3) v(t,) u(o)(t3,ta)

where

tb > t] > t2 > t2 > t, e > tn

3

The manner in which we are going to apply this formalism may be per-

haps best illustrated by an example:
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Consider the Raman scattering process in which an atom (or molecule),
subjected to an optical field confaining frequencies w and @, and initi-
ally in the ground state n, absorbs a photon at Wy while simultaneously
emitting a photon at wy < Wy while making a transition to state k. This
process is illustrated in Fig. 1. Each scattering event results in the ab-
sorption of a photon at W) and the emission of a photon at Wy We may wish
to calculate the rate at which Wy photons are generated per unit volume.
This rate divided by the Wy photon flux (photons—m'zlsec']) gives us the
exponential gain constant of the w, field (the Raman gain).

We calculate the rate at which an atom makes the Raman transition
n >k by taking the time derivative of the probability that an atom ini-
tially in the ground state n will be found at time t in state k. This prob-
bility is -
<kl p(t)>]?

i

P (1)

l<ku(t,0)[n>|? : (8)

n

Since the basic scattering involves two photons, one at @ and a second at

Wy, Ve need to consider only the second order term, i.e., u(z)(t,o) so that

P (t) = [<kul®)(t,0)[n>|2 (9)

An alternative method would be to solve for the third order induced
dipole moment of an atom subjected to fields E]exp(iw]t) and Ezexp(iwzt).

Specifically we are looking for an induced dipole moment which is propor-

tional to

iw]t iwt by ‘iwzt > 'iwzt
Eje (E]e ) Epe = IE]| Epe (10)

Since the expectation dipole moment is given by
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<ug> = <p(t) g Jult)> (1)

The desired dipole moment will result from terms such as <¢(])lui|w(2)>.

<w(o)|u1]w(3)> where

(M (£,0) y(0) (12)

‘P(n)(t)

since they involve the third power of the perturbation, v(t).
Using the first approach the power per unit volume gencrated at W,
is

Plap) = Wy oy - (13)

where

: _d
Wk = G

P, (t)
is the transition rate per atom from |n> to |k>, and N is the density of
atoms,

Using the second approach, i.e., the one leading to (11), we calculate
fhe power P(wz) as

¥

g
P(“’z) =7 By 5%

N<“i> (14)

where the bar denotes time averaging.

Either result, i.e., (13) or (14), can be obtained in a quick and
straightforward manner using Feynman diagrams. This makes it possible to
limit the considerations to resonant terms which dominate the process,
when such terms exist, while ignoring the remaining terms.

By insisting that the results of (13) and (14) agree with each other

we will learn how to include finite linewidths in the analysis.




To calculate the expectation value of physical observables as in (11)

we need to obtain an expression for the wavefunction to any desired order

of perturbaticn., The optical field at the atom site is taken as

iw]t i iwzt

E(t) = %—E} e t 5 e + C.C. (15)

and the interaction Hamiltonian as

E iwzt

iw]t
+=e °+c.c.) (16)

Ni mi

A E]
v(t) = - o - (Te

The perturbation is assumed turned on at t0 = - at which time the atom is

in its ground state n. The eigenfunction at a subsequent time t is

w(t) = o0y + oMy + oo gy + o0 (17)

where from (2) and (6)

o) = oMt ) o> (18)
Using (7) we write
- 2 (t-t ) = (-t )
W(O)(t) = e t ] ln> = @ 1wn( |"> (]9)
B 2O (.-t )
w<])(t) = %—f e T ! v(t,) e R dty[n>
t
0

which using (4) becomes
-iw (t-t,) “iw (ty-t )
w(])(t) = f,%-i J Im> <mje ™ ! v(t])e B [n> dt, (20)

m
tO

Since v(t]) is, according to (16), a sum.of four terms, the integrand in
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(20) is made up of four terms. One such term, for example, resulting from

*

the part of v(t) involving £ oxp(-iu]t) will yield

(1) i T * i(wmn'wl)tl o untg
Wt IRE) # i) % J <1J])n!n [1 5 e e dt]'m>
O-)-oo
i ("(A) =W )t
) Y (uy)  E¥ 9..-‘1-11-- [ m> (21)
2h Vim0 Tl e =g 1Y ;

where Hy is the projection of 1 along f}. In (21) we added the usual con-
vergence factor y by letting 0, * “hfiY‘ The factor vy is then allowed
to approach zero. This causes the integral at t=-« to be zero. We will
show later that if we leave y as in (21) it will account correctly for the
finite lifetime or linewidths of the transition. The constant factor
exp(imto) has been left out since it cancels out (through multiplication by
its complex conjugate) in the calculation of physical observables. As men-

(1)

tioned above ' /(t) has three more terms each of a form similar to (21) but
involving T W, and g . These arise from using the remaining three terms

of the Hamiltonian (16) in (20). We thus have

i(-wy-w )t i(wy-w )t
(1) 1 e " w e " w
Pt (L) = §ﬁ'z (“])mn S i (“1)mn w + w1
m Wan™ ©17 1Y m” 7Y
i(~wy-w )t P(wy-w )t
Ef e 5 T g e ° " w

(22)

it (”2)mn Won~ Yo~ 1y g (UZ)mn Wyt~ 1Y

Using (7) we write the second order wavefunction w(z)(t) as




.t J .
- 1 -iH (t-t,) -iH (t,-t,) -iH (t -t )
i\2 1 I
(- ﬁJ ! I dt]dt2 g 7 v(t]) 2" ! v(tz) . P (I n>
to to
B SSE . : ;
1772 -iw_(t-t -iw (t,-t,)
= (_ l,2 2 z J j e S ]IS> <S, V(t]) & m*l] 2 lm>
ms 4
VO 0 -iw (tz—to)
x <m| v(tz)e [n> dt,dt, (23)

Since v(t) contains four frequency terms and appears twice in (23) the

full integration in (23) will yield 16 terms. A typical term, as an ex-
: ; -iw]tz —iw2t] :
ample involving the use of -u]ET e at tz and -u2E§ e at t] is

1(—wn-wl-w2)t

(Uz) e

mn sm

EXEX (1))
N e (%)2 14 5
ms

i | s> (24)
(.0]. w2

‘wmn—w]-iy)(msn~w]—w2-iY)

A convenient way to represent (24) is thfough the use of a Feynman
diagram as shown in Fig. 2. Time increases from the bottom to the top.
Each solid line segment represents an eigenstate. The atom starts at to in
state n, scatters at t, into state m by absorbing a photon at Wy - This

-1w]t

scattering is accounted for by the factor (u]) E, e /(wmn-m]-iy) in

mn
(24). The next "scattering" is at t and involves an absorption of a

photon at Wy« A negative frequency denotes absorption and is represented
by an arrow terminating at a corner, while an arrow starting at a corner
denotes the emission of a photon. A case where the transition from state

n to s involves the absorption of a photon at Wy and the emission of a

photon at wys @S an example, is shown in Fig. 2b.
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(2

The corresponding contribution’ to y )(t) can be written by inspection

i(-wn-w]+w2)t
(u,) . e

27 sm 5, s> (25)
-V g mw tw, Y] )

1,2 By E (“1)mn

(2) _ ¢ ;
e e

-w] ’wz

wmn

We note that each scattering, i.e., each corner in the diagram contributes
one factor to the denominator and the factor is equal to the eneray in
units of h of the atom and field after the scatterino minus the initial

(t = to) enerqy. The second factor in the denominator in (25), as an

example, is obtained from wetw,- (w]+w ). The remaining fourteen wavefunc-

tions are obtained by taking all the possible permutations of uEZ)
1°
isJ =1,2 where our convention is such that p(z) i for example, corre-
S
sponds to emitting an w; photon at t2 and absorbing an w; photon at t]

: 511 R (2)
; t
(t] >12). We note that w w18 not equal to wu_’_w'.
L i
Using the diagram technique we can write the wavefunction to any
order of perturbation. As an example consider the process in which an
atom makes a transition from state n to state s while absorbing one photon

at wys ONE photon at w, and emitting a photon at W One diagram describ-

(3)

ing this process is | as shown in Fig. 2c. We obtain by inspec-

~Wos =Wy 5 Wy
tion
i(~w_-w,=w,tw, )t
. : oy g 0y
(3) § “EY B By (o)) (3) )
=Wy s =Wyt [s>

: 3 |
mkKSs 8h Qﬁ“n—w])(wkn-w]-wz)(wsn—m]-w2+u3)
(26)

The total number of ¢53) combinations is 63 = 216. The tremendous

W W0 4 *Ww,

Pk
advantage of the diagrammatic representation is that it enables us to single
out and then treat very simply the terms which dominate in any given physical

situation. This will bccome clearer in the examplies which follow.

§
s
|
|
|
|
|
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11. Frequency Addition

In this section we will calculate the nonlinear susceptibility

w 5u +
di;k 12 which describes via the relation
WL=Ww, W WaT W, Tw,
. S S SN el 2
P = 45k T (27)

The induced polarization along the i direction

/ Wymwytw, Tw,t
S [ 3 (28)

Pi(t) = Re\Pi e

lw]t wzt
due to input fields RelE 1 e )and RC(EZk 2 )po]arized along j and
k, respectively.

The total atomic dipole moment is obtained from

<ug(€)> = <y(t) fugu(t)> (29)

so that contributions containing the electric field to second power as

* in (27) must come from

(2)(t)> e <\P IU N’(Z >+ <W(2)|U N)(O)> +<¢(])|u H,(]) (30)

Each term in (30) contributes two terms to the desired polarization--one

in which E] scatters first and then EZ‘ and vice versa.

(),

Consider as an example the terms due to <w(])]ui|w
@M o)

i(w2+wn)t i(w -u )t

11— <slgyn) e lus 1€, (u ) e |m>
s m 4 sn wsn w2+ 1Y mn wmn+u),| 1Y

1 2 (”k)sn(“i)sm(“j)mn i(w]+w2)t

4ﬁ2 (wsn ~wyt i ‘,T(mmnﬂu] -1Y)

g

Q.

rE




n

Note that any constant pfemu]tip]ying a wavefunction to the left of
¥y is replaced by its complex conjugate. Collecting all the terms con-

tributing to dijk yields

d- s T Y - 5 ) [(uk sn(“1)sm( J)mn (u ) (‘1)sm P)mn
ijk e s L m 0w +1~)(~ ne -1y)- (, n-Y +1y7( ntoo -iy)
(ug)nm Yy sm(u1)ns (“ ) (u )sw( 1)ns

(w At —Iﬂ(w +w]+w2—iy) % (wmn+uJ2-1(ﬂusn*-uﬁwz-i‘()

J nm i‘ns (”k)nm sm'"i’ns

(), () g (15) ) guidas ]
+ (wmn-w]+iYT(wsn 1" 2+]-\,) + (‘*’mn'wzﬂﬂ(u‘sn“w]““zﬂ"Y)j

A more conventional derivation is given in References (2), (3) and (4).

ITI. Two-Photon Absorption

i Here we will apply our formalism to derive tihe transition rate for
absorption of two photons--one at W) and a second at w2~-by an atom. By
allowing ©) wp We will get the familiar expression for two-photon absorp-
tion coefficient.

We start by writing the second order wavefunction w(z)kt) correspond-
ing to an atom which at t=0 is at state n and which interacts with the

radiation field, Eq. (15), consisting of fields at w, and W« We will

assume that the largest contribution to w(z) comes fiom w(z) -y, COYYES-
2
ponding to the diagram of Fig., 3. We write by inspection
“jw t - ilw  ~w~w,)t
o2) EX B nho bl e f [ T e L g
Waa o 651 = ] ) o) s>  (31)
1074 ms 4f Lo~y ) (0gp=wy-w,) )

The -1 term is due to the fact that here we integrated from O to t. Let

us assume that for some level m, w

- & wy so the term m dominates and we

rewrite (31) as




[

-iwt i(wsn-w]-wz)t
2y g : ]Jls> (32)
s (wpn-wp)lug,-uy-w,)

(ul)mn(“?)sm

The probability of finding the atom in some state k at time t is

|<k|w(t)>|2 so that the transition probability due to two-photon absorp-
tion is
2 ;
Py = <k o{2)(1)> [ _ (33)

o IE | lE ‘2 U] mn(U?) Sinz[%(wkn'w]'wz)t] (34)
- (“mn“w1) [i(“kn"wl‘“z)]

16h

'we note that transitions occur to the state k which conserves energy,
i.e., to that state where E -E —‘h(w +w2) If the normalized lineshape
function for the transition n » k is g(wkn) then the average value of

Py is obtained by multiplying (34) hy g(wkn) and integrating from -« to

=, Using
| 2 Xt
S1n
Wy ———2 > 25t 6(x) " {38}
t > oo (x/2)

we obtain for the transition rate

Zip 125, 12 1, A2 3
L TIESTTERL ™oy D ot iy 9oy =y ) (36)
8w ~wy )
mn "1

The special case of one frequency two-photon absorption where w = w,

(5)

has been considered in some detail . We may obtain the absorption coef-

ficient for this case by equating the change in the intensity Iu)of E] to




the number of transitions per unit time per unit volume,

dl '
w = ) 0 -
&z 2hw Un >k (Nk Nn) (37)

where Iw is the intensity (watts/mz) at w and Nk and Nn are the popula-

tion densities of level k and n, respectively. Using 1(): %f‘]E]l?/2 we

obtain
2 2 2 L
Ol Gty Do O i 17 9072001, (38)
“two 30 )t
photon T R

IV. Raman Processes

As the most detailed example of the diagram formalism we take the
case of Raman processes in whicn an atom initially in the ground state n
absorbs a photon at wys emits one at “2; while making a transition to the
state k. The situation is depicted in Fig. 4. The situation is identi-
cal to that considered in the previous section, except that here the
second photon at w, is emitted rather than absorbed; This causes the Wy
arrow in the Feynman diagram of Fig. 4 to have the opposite sense to that
in Fig. 3. wevcan use directly the result of Section III and merely re-

verse the sign of Wy - Using (34) we obtain for the transition probability

1521 22 ()

7 g 2nt 6(wkn-w]+w2) (39)
] G'ﬁ ((ﬂmn"w] )

P(t)

In (39) it was assumed that one term m dominates, so that the summation
over m is omitted. As in (38) we introduce the normalized Raman line-

shape function g(wkn) such that g(wkn)dwkn is the probability of having
Wy n within the interval dwkn‘ Multiplying (39) by g(wkn)dmkn and inte-

grating leads to
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2 2 2. 2
8 Gl 18 T L T
R Ml e L e YN S (40)
3 8h47 o )2 kn ") 2
mn 1
and a corresponding transition rate
2 2 2 2
y ) dpk N m 'E]‘ |F2I (u])mn(uz)km (w = W, -Ww ) (4])
mn 1
2 2
R P e L R (42)
= ey P12

47 7 9
aicTeyepluy,-wy)

where I is the intensity and € and €5 the dielectric constants at W) and
Wy respectively and N and n, are the refractive indices.

The exponential gain coefficient describing the amplification of the
field at Wy is obtained from

dI | !
2 4
37 = ril2 = Yoo k(NN e,

which, using (42) gives

2 2 '
mnnw, (uy ) (uo)p (N =N, )T
22t 2 lknant kil _

ey 32
2h~c CIEZ(wmn-w]

Next we will describe the same Raman scattering leading to (43) by
a different approach. Instead of using the concept of a transition rate i
we will calculate the induced dipole moment at Wy of an atom interacting 1
with the W) and w, fields. To make sure that we will treat the problem

! to the same order of interaction we look for a dipole moment cubic in the

applied field amplitudes.

22




15

i(m]—w]+ wz)t \

fw,t
U = BEYE, e = 15 ;

2 e

Such a contribution to u, which involves the third power of E can come

from combinations such as (w(])fui!w(2)>. <w(0)(uilw(3)>. An examination
of (22) and (25) shows that the largest dipole moment will arise from the

use of

g » <w(”(t)lui|w(2)> * £.C (44)
where taking the direction of E} as j and Eé as 2

. E¥lu) P(-wy-w )t

il TS AT

o~
—

m .

e1(-w]+w2—wn)t
-8 s> (46)
(wgn-w]-ly)(wsn-w]+m2-1y)

E:T E2 (“1 )gn(llz)
4#°

Wy =17
gs

so that using (44),

1w2t

*E (u] )mn(ui )mS(U])gn(uz) e + c.C. (47)

1 sg
wp> = —5 ] )] EE
; 8ﬁ3 mgs 17172 (wmn-w])(wgn-w])(wsn-w]+w2-1y)

where we dropped the term iy in the first two factors in the denominators.

1Y
= w
mn w] or

e |

’

These must be reintroduced if operation is such that w Wy

gn
We will assume that the summation over m is dominated by one term

where Won = W1 Also, that w, and w, are chosen so that for some level
s = k Wiy = W= wy.  We thus simplify (47) to
2 lwzt
1 (ul)mn(”i)mk(UZ)km %

3 E,E¥ E,* c.cC. (48)
8h™ (

e M

bl it 2 )
W07 )" (@ p=wytwp+iy)

We define a nonlinear Raman susceptibility by




)
pfw?

0 e 2
; = Newy> = eoleE]I E-2 : (49)
(w,)

where P 2 is the complex amplitude of the polarization at w From (48)

o
and (49) we obtain

2
e (“])mn(“i)mk(UZ)mk (50)
R JTER (w ~w )z(w ~wqHw,=iY)
o "mn 1 e e ;

The average power per unit volume generated at W, is

2 n
E]l XR (5])

w €
0 2
= 2 lszl I

where xp = X - ixg- (52)

Ar examination of (50) shows that when y = 0 xp is real and p = . 0. The
convergence factor y in the Feynman formalism is thus fundamentally related
to the problem of power dissipation. Let us for a moment consider y as a

parameter and calculate the power p. Ve obtain

N (“1)mn(U )mk(ﬁz)mk[wkn‘ (wy-u,)]

R, a0y Ll oorra ) 1]
(53)
e _2 (u])mn () e (uz)mk'; 2
4hey (w ]) [(wkn 119) "+ Y]

and from (51) (putting i=2 since on]y the polarization component along F}
contr1butes to absorptIon)

). Gisdee 7

(54)
(i) T (=) + 7]

This power must be the same as that calculated using the transition rate

approach leading to (41). The latter leads to
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p = an ok 'hwz ,
.
2 2 2 2
iy N"“’z IE]I IEzl (u])mn(uz)km b P
= 5 > 9(w, = w]-wz) (55)
8h (wmn—m])
Equating (54) to (55) and taking WiTHy gives
Y 5= alu - (w-w,)] (56)

Loy~ (g -0,) 1 + ¥

We thus obtained an explicit expression for the transition lineshape func-

tion g[wkn-(w1—w2)]. We now find that the result of the coherent treatment

in which the problem is treated by the induced dipole agrees exactly
with the transition rate approach if we merely regard y as the Lorentzian

width of the k-»n transition.

V. Two-Photon Raman Processes

As the last application of the evolution operator techniques we
consider the problem of two-photon Raman transitions of the type consid-
ered in Fig. 5. These processes were described by Yatsiv et a].(6). e
shall expand this discussion and show how these processes can be de-
scribed in the formalism of nonlinear optics.

In the first of these processes (5a) one photon at W, and one
photon at w, are absorbed and a photon at ws is emitted, while the atom
(molecule) makes a transition from the initial state n to some final
state k. In the second process one photon (w]) is absorbed while photons

wy and wy are emitted during the same transition.
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The analysis of both these processes is similar and the results
for 5b can be o5tained from those of 5a by reversing the sign of W -

Using the formalism of nonlinear optics, the scattering events of
Fig. 5 can be represented by

W=y =0y HW, -ty i (w3=w] —w]+w2-w2+w3)

2 2
P R 16,1216, 12 € (57)

3

so that we may expect an amplification (or attenuation) at wg with an

exponential constant proportional to |E]|2|E2|2 in analogy with the one-

photon Raman process (43). Alternatively, we can, as in Section IV,

[ e el

obtain the gain by calculating the transition rate per atom for the
-process illustrated in Fig. 5a.
By direct analogy with the calculation leading to (39) we obtain for

the probability Pk(t) of finding an atom in state k

| 2 6 . b B

o 161216, 21ES (02 ()2 (a2,
& 3 7 2
ZQﬁ (“hm-wl) (wsn-w]—wz)

AT i

Pk = |<k|¢(3)(t)>| 2ﬂt6(wkn-w‘-w2+w3)

(58)
so that the transition rate wn+~k is
2 2 2
C T )5 O ) (ugdgengnong L I, :
W - : g(w,, =wytw,-w,) (59)
n"k 4‘ﬁ6c3i‘3(w o )2((.0 o )Z kn ] 2 3
SV mn sn 1 2
The power per unit volume generated at Wy is thus
p(w3) = Nn-»k Nn ﬁw3 = gRZI3 (60)
where the two-photon Raman gain 9R2 is
2 2 2
5 Nn"wB(“1)mn(u2)ms(“3)sk I112 (61)

7 9wy =0y te,-u;)
(1)1 ‘wz)

q =
“R2 933 2
4 ce wmn-wl) (wsn-
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and is thus proportional to the product of intensities at W) and Wpe
We note by comparison to the expression (43) for the one-photon (i.e.,

conventional) Raman gain gpy that

U212n3
92 = R 7 2 (62)
2h c&(wsn-w]-wz)
If we assume that 12 v 106watt/cm, (wsn-w]-wz) n 1010, i.e., near resonant

tuning, u v 10730

MKS, we obtain

92 % Ip
so that, using intense laser sources tuned near atomic resonances, it may be
possible to obtain two-photon Raman gain approachirg those of normal Raman
processes.

' Unlike frequency addition and multiplication, this process does not
require phase matching. This is due to the fact that if the spatial phase
factors are included in (57) they will cancel out, since each field ampli-
tude is multiplied by its complex conjugate except for E3. The induced
polarization P(m3) thus has the same spatial phase as E3 and the interac-
tion is spatially cumulative. If the interaction reéion is provided with
feedback, oscillation at w3 may result. '

To describe the same process using the concept of noniinear Raman
susceptibility, we proceed to derive thc¢ dipole moment per atom <uy> at wg
induced in the presence of fields at Wy Wy and wg. Resonant contributions

to the fifth order dipole moment arise from

(2)

-m],-m2|“i|w(3) > % 6.c. (63)

<H3> =y RO PRI

From (25) and (26) we obtain
1(~wy-w,~w )t
pE{Ese PN ) ()

(Ugn"w] -iY7 (wsn"w] 'wz'iY)

9 |g>

“W1y-Wy

W2 (1) =11 ()
gs
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e 1(—w]-w2+w3—wn)t
E] E? E3 e
) E '
2 m K

(wzn-w]-iy)(wmn-w]-wz-iy)(mkn—w]-m2+u3-1y)
(64)

(ul)nR(HZ)Qm(HB)mP

o3 (t) =

v . k>
Qys =gy )

so that

1
¥ = (-rep)
: 3207 gsimk

2 iw3t
f |7 E3liy) g (g ) lug D Cupd py Cug)y (i) - @ Sy

(w ]-1Y)(m .—J]-wz-ly)(@kn-w]-w2+w3~iy)(m —w]+iy)(msn-u]-w2+iy)

an” gn

(65)

0

Let us assume that Wy and w, are adjusted so that for some levels £

and m, Yon = W while Won = w]+w2. Also, that a level k exists such

that W = Wytwy-wg. Keeping only the resonant term of (65) we obtain

Zop Bty 2 tagt
[E{1E1ES 1S Eqlug g (uo) (u3 r].l'w - (wy+e, -, -1\Pn]e oy

<U.> = |

30 [lugy ) 2492 I (oo =) o4y Ty - (0 pupmuag) o4

(66)
If we relate the complex amplitude Pi(w3) of the induced polarization

N<ui> to the complex field amplitudes via

(w)

3 el 2 2 - i o A
Py 7 = egXpal B ITIER 1T Eg s xpp = Xpo 7 iXRe (67)
we obtain ¢
()30 (1) oy (13 ) (1) Lo~y +e0p05)
. _ N 1 on 2 am M3k W Tk kn~\@17TWoTw3
XRe = 75 2. 2 R 2t ]

1607e, [(wgn=wy) +ypndLapn-wy-wp) il Eloy = (wytwpmwg) 17 pn

Xt __N (ul) (u2 lm(“3)mk(u1)mk pn >
R2 o 2* 2

167 [lwgn-y) vy, Jlup,ey-0p) +Ymn][{wkn-(w1+m2‘“3)} *¥on ?
(68) I

where zYij is the full width at half maximum of the i+ j transition.




It follows immediately that the presence of a negative xﬁz causes

an amplification at wg with an exponential -gain constant( )
- w |
92 * XRZ’ ]l |E l . (69)
2 ?
N (ug)d ()5 ()5 nyaanslsl, Yin/™

T W S T
455& E1626'3[((‘)% w1> +YQn][“’mn_m] wZ) +Ymn] [{mkn-(w14w2'“3)} +'LnJ

(70)
where we used Iy = C€i|Ei|2/ 2"1' The result (70) for agp 1s identical
with (61) once we associate the second factor in (70) with the normalized
lineshape function g[mkn-(w]+w2-w3)].

We tnus find that the gain exercised by the wave [3 is proportional
to the product I]I2 of the intenzities at @y and Wys SO that a stimulated
Raman emission at w3 may be expected at some criticar value of 1112

The analysis of the two photon (emissive) Raman process shown in
Fig. 5b is similar. A1l we need to do to obtain the gain at Wy is to

replace W, by Wy« A fundamental difference between the two processes,

however, would be revealed had ve considered the consequence of the quan-
tized nature of the field operators. The temporal rate of the photon number
at wg corresponding to process 5a is

dn3
- C]n]nz(n3+1) (71)

while that of 5b is

dn3 dn2
& =@ - Camingtlingl)

where n; is the number of photons at Wys C] and C2 are rate constants.

It follows immediately that the stimulated emission of photons in 5a
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requires the stmultaneous pregencc of the fields at w and w, while in
5b stimulation can take place with a single input at Wy since dn3/d2-'0
when ng =n, = 0.

We may also note that the emissive two-photon Raman process of Sb
can be used to generate long wavelength radiatfon at Wy
To summarize, the formalism of time evolution operators and the
;e]ated technique of Feynman diagrams was applied to a variety of multi-

photon processes in nonlinear optics. The formalism affords relatively

direct and orderly treatment of complicated high order processes.
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Figure Captions

The levels and frequencies involving a Raman scatterinaq

from state n ‘o K.

The Feynman diagrams uvsed to obtain: (a) wfi) e (L),
||
(2) i{3)
(b) w_w] ’.I.wz(t)’ (C) lr_w]‘_wz,w:‘(t)'

Feynman diagram used in treating two-photon absorption.

Energy levels and Feynman diagrams involved in Raman scattering.

Energy levels and Feynman diagrams involved in two-photon

Raman scattering
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