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RSRE TECHNICAL NOTE 789 : ,

A REPORT ON SOFTWARE FUNCTI ONAL VARIABILITY - 

~

A D All en* ~~d J H Crowther

PREFACE

The work summarized in this report was carried out under MOD(~~T~~~~t~~~ts
by Computer Analysts and Programmers Limited with assistance from RRE.
The contract (KJLT21a/51l/CB/LT21a1) to design and implement a pilot system
followed an earlier contract (K/LT21a/373/CB/LT21a1) which studied the
problem and proposed the methodology known as Functional Variablility. The
study was undertaken in 1972, lasted for 6 months and involved an average
of 4 people. The pilot implementation involved 4 people over a period of
13 months up to May 1974, at which time the system was handed over to RRE.
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CHAPTER 1 INTRODUCTION

This report is concerned with the means by which the software of a computer—
based system can be safely modified without disrupting the service that the
system provides.

The Need

No specific system is considered but a system used for air traffic control
provides an example having the appropriate characteristics. It is vital that
the system should operate correctly and continuously because either erroneous
operation or non—functioning of the system could result in loss of life.
Nevertheless , requirements for making changes to the system will inevitably
arise for a number of reasons. The complexity of the software will ensure that
programming errors could remain hidden throughout the initial testing phase,
but as they are discovered during operational use it may become desirable to
correct them. The complexity of the interactions between the computerized part
of the system and the organization of men using the system will ensure that
the true requirements of the system are unlikely to be completely formalized at

• the time the system is first designed. Only by using the currently available
version of the system can a clearer idea be gained of what is really required.

• * A D Allen is with Computer Analysts and Programmers Ltd
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The complexity of the external environment within which the system operates
will ensure that the environment will change and hence what is required of the
system is also likely to change.

The Probl em

The requirement to change the system without disrupting the service is
specified in operational terms i.e. in terms of the functions the system is
required to perform. On the other hand , changes to the system are implemented
in engineering terms i.e. in terms of the actual construction of the system.
The task is to satisfy the operational requirements for change by making
suitable engineering changes. Hardware and software changes may both be needed
but it is only the software changes that are considered in detail here . Three
stages are recognized , each of which presents its own peculiar problems :

The first stage consists of designing suitable software changes. This involves
understanding the original software design and is difficult for the same reasons
that software design in general is difficult. For a program to operate
efficiently its structure is not necessarily related in any simple manner to the
functions it performs for the user: any one section of the program may be
involved in many functions and any one function will use many sections of the
program. (The term “function” is used here only in the sense relating to the
purposes of the system as a whole. Elsewhere the term is used , quite legitimately,
to refer to the purpose a section of program serves within the total software).
For this reason, even a change which has a simple specification in terms of user
functions may appear very complicated from the programmer~s view point; changes
may be required in many separate parts of the program and each part will have
to be understood in detail to ensure that other user functions are not inadvert-
ently affected.

The second stage is to test that the introduction of the proposed program
changes has precisely the effect that was called for. This is by no means
certain without testing because the program design process is so difficult. A
certain amount of testing can be done off—line , but a full test would involve
running the complete system in its changed form, fully manned and with live
input data. The problem is that testing must not interfere with the performance
of the operational system. If a new system is to be tested while the old system
continues to be used operationally then evidently the two activities will be
in competition for various types of resources — men , terminals , input data ,
processing power and computer storage . An economical solution will involve the
sharing of resources between the two systems but must nevertheless ensure that
the system under test cannot affect the operational system.

The third stage is to introduce the change into the operational system. This
may well necessitate a disruption of the service , but the disruption may be
considered negligible if it is of sufficiently short duration. It should be
noted that some hiatus may be inevitable due to the operational problem of
adjusting to a changed system. Replacing the old program by the new version
can be a quick operation if the new program is available in suitable form on
fast backing store. However, a system consists of more than a program ; the
current state of a system is represented by a data—base which may well contain
a model of the state of the outside world. A problem is presented by the need
to create a data—base that is suitable for use by the new system and that is
also up—to—date and in accord with the state of the environment .

~ 
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Work towards a Solution

In a CAP report of 1968 d’Agapeyeff and Clark coined the term “Functional
Variability” to describe the ability to vary the functions performed by a
system without sacrificing its reliability . In 1972 CAP won a Ministry of
Defence contract (K/LT21a/373/CB/LT21aI) to study the problem with particular
reference to air traffic control. The report resulting from this study
described a set of techniques, or methodology, for achieving functional
variability and described much of the proposed software structure in
considerable detail. The methodology was designed to be consistent with the
severe constraints anticipated for a future air traffic control system,
although there is no implication that the methodology can only be applied in
this field. The methodology proposed is referred to in this report as FV
and a system that uses the methodology is called an FV system. In order to
develop the ideas by testing them in practice CAP was awarded a further
contract (K/LT2la/511/CB/LT2lal) to implement a pilot FV system to run on a
Modular—One computer at RRE. The present report covers the work of both these
contracts.

The Nature of the Solution

An essential characteristic of the proposed method is that changes are not
made directly to the operational system by altering parts of it while it is
on—line. The ultimate change of the operational system is made by completely
replacing the system by a new version previously prepared and stored on fast
backing store. In order first to test the new system, facilities are provided
for allowing a test system to be run in parallel with the operational system
in such a way that resources can be shared between the two systems and yet
the test system cannot disturb the operational system. In order to make this
possible there is a non—variable part of the system, called the Nucleus, which
provides the necessary control , and the variable part of the system is obliged
to conform to fixed regulations concerning its structure. The proposed method-
ology is concerned only with the problems of testing and introducing a system
change; it offers no help with the design of the change and the representation
of this design in computer readable form. However, other developments, such
as structured programming, are helpful in this respect.

The approach lays great stress on reliability. The type of system being considered
is such that high reliability and availability are essential. (If this were
not so there would be no need to provide a safe means of testing and introducing
changes). Thus, in order to build a practical FV system to do a job such as air
traffic control, two goals must be achieved: the system must do the job reliably
and it must be possible to modify it safely. The approach taken in deriving the
FV method has been to concentrate first on the reliability and second on the safe
modification. Consequently the structure finally proposed is suited to the
techniques suggested for achieving reliability and can only be understood in these
terms. Had safe modification been considered first and reliability second , a
different concept might have emerged.

It must be understood that the FV method is not something that can be added
to an existing system in order to make it variable. Rather it represents a
radical approach to the design of the system. The Nucleus of an FV system must
first be constructed to suit the machine in question and then the remainder of
the operational system is constructed in a Functionally Variable form known as
a “job base”. The Nucleus contains only what is essential to support an FV
system so that as much as possible of the system resides in the job base where
it can be modified by the FV method. Thus functions normally expected of an
“operating system” are mostly supplied by the job base, not by the Nucleus
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The Remainder of this Report

• The proposed collection of techniques and principles that together constitute
the FV methodology are described in Chapter 2. Basically this is an account
of the results of the original study , but written in the light of our present
understanding, after the experience of implementing the pilo t system. The
order in which the ideas are introduced is for ease of understanding rather
than to give an historical account of the work. As explained above, aspects
of reliability are the first concern and variability is considered only when
a reliable structure has been established. Chapter 3 describes the implement-
ation of the pilot system. Finally in Chapter 4 there is a discussion of the
unsatisfactory features of the pilot FV system and some conclusions are presented.

CHAPTER 2 TECHNIQUES FOR ACHIEVIN G FUNCTIONAL VARIABILITY

Rel iabi l i ty  in the Presence of Faults

A belief , fundamental to this work , is that fau l t s  are always l iable to occur
within the system under consideration . Given this s i tuat ion , the re l iabi l i ty
of the system as a whole depends on its ability to tolerate faults. When a
faul t  occu rs it must be localized so that its e f fec t s  do not spread to a f f e c t
othe r parts of the system and something must be done about the work that has
failed to be completed correctly. There are two types of fault to consider:
those that develop in a part of the system that had previously been perfect ;
and those that correspond to intrinsic faults in the design or construction
of the system. Hardware problems will  usually cause faul ts  of the f i r s t  type
wh ile faul t s  of the second type can be expected to correspond to inadequate
softwa re.

It may be poss ible to desi gn the system so that it automatically corrects for
the effect of faults of the first type. For example, if data has been incorrectly
processed on faulty hardware the processing could be repeated on alternative hard-
ware provided the original data has been preserved and the fault has been
anticipated , detected and localized. However, faults of the second type cannot
be cor rected by a similar technique because an a lternat ive , correct version
does not exist. The long—term action required is to design and install an
improved version of the system. But this will take a long t ime , and in the
meantime it will be necessary to abandon the work that has been affected by the
fau l t .  If the system is to tolerate this type of faul t  there must be some method
of deal ing wi th abandoned work and the workload must be st ructur ed such that
a f au l t  a f f e c t s as l i t t le  as possible of the workload.

Structuring the Workload

Hence the total workload of the system is divided into units called 
____

As fa r as poss ible the j obs are “ transaction jobs ”; that is , they are of shor t
durat ion and are self—contained , meaningful units of work. On the one hand,
each j ob shoul d involve only a small amoun t of process ing and should last only
a short time from start to f inish so that l i t t le  is lost if the job fa i ls .  On
the other hand, each job must be self—contained so that its failure does not
a f f e c t  othe r jobs , and each job must be meaningful and recognizable so that the
si gnificance of its fa i lure  can be judged. An air traffic controller having
a keyboard and various displays connected to the compu ter system can regard
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his interaction with the system as consisting of transaction jobs. He will
initiate some jobs himself. For example, he may input new data concerning an
aircraft track and receive an acknowledgement or he may type in an enquiry and
obtain some information from the system. If a failure of any sort prevents
the completion of such a job then no other job need necessarily be affected.
The aim would be to localize the fault to the one job so that no other operator
is affected nor is any other work on the same console affected. In such
cases recovery action can be left to the operator himself. Since he initiated
the work he will be in a good position to decide after a failure whether to
try again, forget the matter or report it. Other transaction jobs will be
initiated by the system. For example , the information shown on a controller ’s
display might be updated at regular intervals, and the work of doing an update
could be a job. The system should have built into it the capability of taking
corrective action after failure of such a job.

It is inevitable that  some of the work of the system cannot be part i t ioned into
units having the characteristics required of transaction jobs. All such work
is attributed to a special job, known as the “owner job” of the system, which
continues to exist for as long as the system itself. The owner job thus provides
the continuity of the system; it is responsible for starting the transaction
jobs and dealing with any failures of transaction jobs. Failure of the owner
job is equivalent to failure of the whole system. It is possible for the
system to recover from such a fa i lure , but not without an interruption to all
wo rk in progress.

Thu s the methodology provides two line s of defence for dealing with fa i lu re
situations . First an attemp t is made to confine the e f f ec t s  of an error to a
s ingle transaction job and the fa i lure  of that job is tolerated by the sy stem.
If th is is not possible then recovery of the whole system is attempted. Only
if the first of these methods succeeds in a good p roportion of cases can the
me thodology as a whole be considered successful. Success, therefore , depends
on the following facto r s :

i Structuring most of the work in terms of transaction jobs. This
become s a bas ic princ iple f or desi gner s o f the appli cat ions
prog rams to fol low even if it conf l ic ts  with the interests  of
ef f ic iency .

ii Isolat ing jobs from each other.  This is the next top ic discussed
below. It is responsible for the basic software structure
p roposed.

iii Detecting faults and taking appropriate corrective action. This
is discussed later in this chapter. It a f f ec t s  both the s tructure
and the methodology proposed.

Bas ic Soft wa re St ructure

In order to maintain the separation of jobs it is necessary to control the flow
of information within the system. This implies that the software consists of
two layer s , one control l ing the other. The layer that provides the control is
called the “Kernel” . It is supposed to be small , independent of the application
programs and completely f ree of programming errors. The other layer contains
al l the application—dependent software for doing the actual processing required
by the jobs of the system and is called the “Job Base ”. The Job Base must be
s t ruc tu red  in a standard manner which is known to the Kerne l , al though the cho ice

5 



V ~~~~~~~~~ 
—

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

of the particular standard structure is rather arbitrary. In order to ensure
that the Job Base has the correct structure its construction is controlled by
a standard program called the “Composer” which accepts the designer~s specif i—
cation of the Job Base contents and casts it in the form required by the Kernel.

Processing on the Job Base is perf ormed by cooperating sequential processes.
• A “process” has a permanent existence on a Job Base and runs, on a processor

allocated by the Kernel , by obeying code that was determined for it when the
Job Base was composed. A process must be limited to obeying only that code
specified and to operating only on permitted data. This implies some form of
hardware storage protection and probably a processor with a “privileged”
instruction set (for such operations as setting the protection registers) which
a process must not be allowed to obey. Process code consists of non—privileged
instructions together with calls of “Kernel Functions”. Kernel Functions are
facilities provided by the Kernel for processes to make use of. Individual
Kernel Functions are introduced one by one throughout the following account.

Each thread of activity through a process is called a “task”. A task starts
at th~ b~.ginning of the process code and ends with a call of the Kernel Function
EOT (End of Task). For the implementation it was decided to make the processes
single—threaded: that is, each process supports only one task at a time. The
possibility of having multi—threaded processes is not considered here because
the implications have not been sufficiently explored.

Processes can communicate with each other by calling on the Kernel to transmit
messages for them. A “message” is simply a few words of information whose
meaning is agreed between the sender and the recipient but is of no significance
to the Kernel. The Kernel places the message together with various pieces of
control information in a package called an “event control block” or “event”
for short. The destination of a message is not simply a particular process but
rather it is a particular “port” of the process. A port is a named location at
which events are queued for~~~~rocess. Each port belongs to one and only one
process , dete rmined when the Job Base is composed , but a process can have more
than one port so that it can maintain a number of separate queues of incoming
messages. Ports are used only for incoming messages: outgoing messages are
not queued nor do they pass through ports belonging to the transmitting process.
The principal message—passing Kernel Functions are SEND and WAIT. A process
may use SEND by specifying a message and the name of a port to which the message
is to go. The Kernel takes immediate action by queuing an event containing the
message at the specified port, and the sending process continues with its work.
The message is not removed from the queue and supplied to the receiving process
until that process requests the Kernel to do this. A process can obtain a
message from one of its ports by calling WAIT and specifying the name of the port.
The Kernel will then mark the event at the head of the queue as having been
examined and supply the message it contains to the process. If the queue is
empty then the process will actually wait until a message arrives at the port.
In this way processes can synchronize with each other as well as pass information.

The Kernel must know at all times for what job each process is working. A
normal transaction job will  involve several processes. The job will  s tar t  at

-some instant , will  be given an identif icat ion number and one process wi l l  s tar t
wo rking for the job. That process can send messages to other processes which
may then also start  working for the job . Those processes in turn can set other
processes working for the job in question. Different processes working for the
same job can send messages backwards and forwards between themselves. Eventually
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each process will finish working for the job and when the last process finishes
the job itself will end. The Kernel keeps track of the information flow by
tagging every message with the number of the job that originated the message .
Thus when a process receives a message and starts working on i t  the Kerne l
knows which job is being worked on.

It is convenient to distinguish two different types of port according to the
purpose for which they are used. “Primary ports” are used for messages that
initiate a communication between two processes. Thus messages arrive at a
primary port asynchronously with respect to the work in progress at the process
whose port it is, and the messages queued at a primary port can relate to a
number of different jobs. If the process is working for a transaction job
then no messages are accepted from a primary port until the current task has
ended. “Secondary ports” enable a process working for a transaction job to
receive messages and hence synchronize its activity with that of other processes.
The messages arriving at or queued at a secondary port should all relate to
the job currently using the process whose port it is. This is arranged by
allowing nothing but replies to earlier messages to be transmitted to a
secondary port. The Kernel function SEND can only be used to send to a primary
port and another Kernel Function REPLY is used for communication to a secondary
port. When a process working for a transaction job sends a message to a
primary port of another process it can specify one of its own secondary ports
as a reply port and the Kernel will insert this port name in a field of the
event. The recipient then uses the same event for its reply, the message field
being overwritten with the reply message.

Control of T)ata

Transaction jobs must be isolated from one another and this involves careful
control of all the data areas in the system. Various types of data area are
recognized and these are now considered in turn. First there are the messages.
A process that is working for one transaction job must not be allowed to receive
a message relating to another job. Since the Kernel controls all message—
passing this rule is easily enforced. Second , there are “task data areas”,
each of which is used by only one process working for one transaction job . By
definition, this data cannot affect other jobs, but a mechanism must be found
for enforcing the definition . Third there are “process data areas”, each of
which is local to one process but may contain information carried over from
one task to another. Access to process data must be restricted and controlled
because it allows the possibility of different jobs interacting with one
another. Fourth, there is “global data”, i.e. data that belongs to the Job
Base as a whole. Again, if jobs are to be isolated their interaction with
the global data must be controlled.

When a process is working for just one transaction job and has no access to
process data it is said to be working in “application mode”; otherwise it is
working in “system mode”. The Kernel knows at all times in which mode a
process is working. Some processes operate exclusively in application mode
and they are declared to be “application processes” when the Job Base is
composed. Such a process has no process data. It starts a task by calling
the Kernel Function WAKE and specifying the name of its primary port. (An
application process has only one primary port). The Kernel locates the event
at the head of the queue at the named port , marks the event as examined ,
supplies the message it contains to the process and notes that the process
is working exclusively for the job recorded in the event. During the running
of the task the process is not allowed to examine any other events that may
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be queued at i ts  primary port .  The process may send messages and receive
replies at its secondary ports but the rules for secondary ports ensure that
it cannot receive messages relating to other jobs.

P rocesses that  need to operate in system mode are declared to be “ system
p rocesses” when the Job Base is composed. The Kernel allows these processes
the p rivilege of accessing data re la t ing to more than on job at a t ime and
co nseque n tly they have the power to prevent the Kernel from isolating jobs .
They must he trusted to use this power responsibly because any misuse can
affect the whole system. Usually the interaction between different jobs
necessary in a system process is slight. An example is a disc—handler process
that needs to examine all the requests for servicing in order to decide upon
the servicing order that will minimize head movement . A system process starts
by using the Kerne l Function SCAN (or a variant of this function) to obtain
a message from one of its primary ports. The process can choose to have
delivered the message from the first event in the queue , or the first relating
to a specified job or the highest priority job. When the message has been
delivered the process is not considered to be working for the corresponding
job : instead it is working for the owner job. The process has access to
process data and can examine any number of messages on any of its primary ports .
It can send messages (to primary ports only) and it has the privilege of using
the Kernel Function RELAY to redirect an event to a new destination.

System mode working is permitted because it is necessary for certain work —

often the sort of work that is done by an “operating system”. But , because
it frustrates the attemp t to isolate jobs from each other , it should be used
as little as possible. This rule cannot be enforced by the system and so it
becomes part of the methodology to be adopted by programmers. As soon as a
system process has finished the work that has to be done in system mode it can
revert to application mode by calling the Kernel Function AMODE. This causes
the process to lose access to its process data and to all events except the
one mos t recently examined. The job of this current event becomes the job the
process works for until the end of the task.

The only data Tzhose control has not yet been discussed is the global data. This
data is also known as the “state data” because its values describe the state of
that part of the environment that is represented within the system. In an air
traffic control system it includes flight plans and track lists. Most jobs will
require access to the state data and this represents the major interaction
between jobs. This interaction is inevitable. A study of the envisaged air
traffic control systems concluded that it was not feasible to divide the data-
base into parts such that each part is involved only in a subset of the total
system functions . However the data is divided into two parts according to
whether it is held in main store or on backing store and different methods of
protection are used in each case. Data which needs to be accessed frequently
and rapidly is held in main store and is terme d the “internal state data ”.
Data not immediately required can be held on backing store and is termed
“external state data”. A job is said to become “critical ” when it first alters
the internal state data because from then onwards it can affect other jobs
via the internal state data. The aim , therefori , is to perform as much as
possible of the job’s work before it becomes critical. Thus the methodology
to be adopted by programmers states that a job should first operate on a local
copy of that part of the internal state data it needs and only when the work
is finished and all validatory checks have proved successful should it update
the global data. The Kernel helps by physically preventing write—access to the

8
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internal state data until a job asks for critical access and thereafter
allowing the job only a short time before it must end. Updates of the
external state data are permitted at any time during a job’s life but they
are con tro l led by using audit—trailing techniques: each time a record is up—
dated the previous state of the record and the i d e n t i t y  of the  job are w r i t t e n
to a logging file.

Fault Detection

The structure described so far can be considered to consist of four layers.
The order of the layers , as shown in Fig 2.1 , is such that each layer uses
the layers below . At the bottom is the computer hardware. Above this is the
Kernel , t hen the Job Base and finall y the people who use the system. Each
layer has different abiliti t.— to detect errors: and so , f or hi gh reliabili ty,
each layer should try to detect whateve r errors it can and should be capable
of initiating recovery action. Only for the Kernel are detailed error—
detection methods proposed because the other layers are dependent on the
particular hardware or the particular application.

The computer hardware is capable of detecting errors ori ginating in the
hardware : for example , t ailure of a parity check may be due te  a faulty
module of core store . It cail also detect errors originating in so f tware : for
example , an atte:!pt to a~ drcss the store outside the range of a protection
register. The hardware may itself be fault—tolerant to some extent in that
it cjn utilize redundancy to correct some hardware errors. Other errors are ,
however , reported to the Kernel for action to be taken.

The Kernel controls the whole system and employs a number of techniques to
ensure that all is working correctly. It uses the protection provided by the
hardware to isolate Drocesses and give them access to only that data they are
entitled to access at any given time . It checks the validity of each call of
a Kernel Function. For example , in the case of a call of SEND, it checks that
the destination port is primary and that the repl y port (if one is g iven)  bel ongs
to the calling process. For each secondary port , the Kernel maintains a count
of the number of outstanding events that could subsequently arrive at the port
(i.e. events whose reply port is the port considered). An error is detected if
a process WAITS at a port where this count is zero . The Kernel also maintains
a count of the number of events relating to each job and can fault a process
that tries to end its current job while there are outstanding events elsewhere
in the system. The Kernel controls the allocation of processors to processes
and makes several important time checks. The programmer has to specif y vario~.;s
time limits within which he expects certain actions to be completed and if a
Limit is exceeded the Kerne l should detect the fault. For a process , there is
a limit to the t ime taken to comp lete a task and a limit to the amount of
processor time that can be used without making a Kernel call. For a job ,
there are limits to the total life—time and to the life—time after becoming
critical . These checks detect loops and deadlock situations o~i the Job Base.
The Kernel also expects to receive r~ gular messages from the owner job of the
Job Base as an assurance that the Job Base is still working. In order to
exercise these controls the Kerne l must be activated frequentl y by interrupts
from a Fiardwa r& timing device. The Kernel checks that interrupts are being
rec e ived mJ i c  t~~d upon by h a v i n g  two sepa ra te  rou t ine s  that check each other
and are ~t imul,tted by separatel rived interrupts. For complete safety these
r~ u t i n e s  mi st share no hardware; ey must use differer~t proce ssors and
dif e r.n~ m 1 ~ les of n-u n St The Kernel can periodicall y exercise the
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the various parts  of the hardware to check that  they are s t i l l  working.

The Job Base is the first level at which checks can be made on the validity of
the data processing. No special techniques are suggested but the programme r
is encouraged to build into the program as many checks as seem appropriate.
The objec tive , for each transaction , should be to discover any inconsistencies
in the data before gaining write—access to the internal state data .

Ul timately the decision as to whether the system is satisfactory has to hi
made at the operational level , by the people using the system. They should not
need to use any pre—p lanned tests since these could be built into the Job Base.

• Rather they should use their essentially human abilities to assess the system
in the situation that presents itself.

Dealing with a Fault

No matter at what level a fault is discovered there exists a mechanism for
reporting the fault to the Kernel. The hardware uses an interrupt to activate
the Kernel. A process on the Job Base calls the Kerne l Function FAILJOB and
specifies the job affected by the fault and supplies a message indicating the
nature of the fault. A user of the system can type in a command to be
translated by the Job Base into a call of FAILJOB.

The action taken by the Kernel after a fault has been notified depends on how
much of the system has been affected by the fault. There are four cases to
consider depending on whe ther the affected part is one transaction job , the
whole Job Base , the Kernel itself or the hardware. If the fault is limited
to one job the Kernel stops all further activity on behalf of that job. Any
pr ocess working for the job is stopped and forced to end its current task when
it is next scheduled to run , or when it calls any Kerne l Function , or when its
time s l ice  exp ires. Events relating to the job and still queued at ports are
discarded when next examined by the Kernel. Thus the Kernel terminates the
job but any recovery action is left to the Job Base. On the Job Base there
is a special “fail ure port ” where the Kernel queues an event with a message
that says which job has failed and why. The failure handling process that
services the failure port can then take whatever further action is required.
It may main tain a log of failures for future analysis. If the job originated
at an operator ’s console it may be sensible to inform that operator of the
nature of the failure . Or it may be appropriate to restart the job automatically
provided the input data has been preserved.

if the fault affects the whole Job Base then the owner job is failed and the
recovery mechanism is as follows . First the Job Base is reloaded from backing
store where it is held in a permanent form known as a “template ”. Then the
internal state data is reset from the copy preserved on backing store at the
most recent checkpoint (see next paragraph). At this stage the Job Base is in
a standard self—consistent state with no transactior. jobs current. On the Job
Base there is a special “activate port ” where the Kernel now queues an event
with a message giving information about the failure that led to the present
recovery action. The process that services the activate port is then respon—
sibl e for completing the recovery action and restarting normal working.

In order to provide checkpoints for use in recovery , the internal state data
must be cop ied to backing store at frequent intervals during normal working . For
a pr esent day air traffic control system it may be appropriate to do this every
10 seconds . To ensure the consistency of the data those checkpoints should only
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be taken when all jobs that have started to write to the internal state data
have ended. This is another reason why jobs are allowed only a short life-
time after reaching this critical state. When a check—point is taken a record
is also made of what job numbers correspond to completed jobs. After recovery
of this information the external state data can be reset to a state consistent
with the internal state data by means of the audit—trail information . Jobs
that were in progress at the time of the checkpoin t or started after that time
can be restarted without danger of updating the data base twice. No jobs need
be lost provided an external record has been kept of all jobs started and of
all input data . Having rerun any outstanding jobs the system is ready to
accept new jobs. The break in service between the time of the failure and the
time that normal working is resumed is of crucial importance. An interval of
the o~ -ier of 15 seconds might be appropriate for an air traffic control syste~r .

It the fault is In the Kerne l itself a similar recovery technique is used.
The Kernel is replaced by a clean copy obtained from backing store . The code
needed for this rep lacem ent is itself part of the Kernel and so must be protect ih
from corruption by being kept in main store in duplicate and sum—checked at
intervals. The new Kerne l then proceeds to recover the Job Base as described
above . If the fault is in the hardware and the Kerne l is distributed in such
a way that it can still operate then the Kerne l may be able to reconfigure the
hardware and then reload the software . If the Kernel cannot operate on the
faulty hardware then manual intervention and a cold restart will be needed.

Variability

What has been described so far is a system structure and methodology desi gned
to provide high reliability. However it will now be shown that it forms a basis
for Functional Variability . The method used for recovery after failure of the
Job Base suggests a way of changing the Job Base. The Job Base is simply replaced
by loading a different one from backing store . It can be arranged that should
the new version fail then the system would revert to the old version. Using
the same mechanism for normal recovery , change ove r to a new sys tem and reversion
t the old system represents an economy of design and results in a robust system
since the critical reversion process does not depend on an untested mechanism.
What is therefore required is a framwork in which new variants of the app lication
can s a f e l y  be devel oped and checked out prior to replacing the live version.

Hie ra r ch y ci Job Bases

In order to allow testing of new job bases the structure is extended to
accommodate more than on job base at a time . The work of the operational system
continues to be done by just one job base , known as the “l ive j ob base ”, and
other job bases are called “tes t job bases”. The organization of job bases is
hierarchi cal with the live job base senior to all the test job bases. The
hi erarchical organization is reflected in an hierarchical owning relationshi p
between jobs. Each job base has an owner job which owns all the transaction
jobs on that job base and each owner job is itself owned by the owner job of a
more senior job base. (An exception is the owner of the most senior job base
whi ch cannot be owned in this way.) An owner job has contro l over the jobs
it directly owns to the extent that it can create or destroy them. New
transaction jobs come into existence by the owner job using the Kernel Function
STARTJOB. They end when they themselves call either ENDJOB to end tidily or
FAILJOB to end abortively or when their owner aborts them using FAILJOB. In
order to add a new job base to the system a job is first started on an existing
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job base. The work of loading the job base from a template on disc is done by
this job which then calls the Kernel Function INITIATE to change the job into
an owner job and to start the job base running by queuing an event at its
activate port. Thus the new job becomes the owuer of the new job bas e b ut
continues to be owned by the owne r et  the ori ginal job base so establishing
the hierarchy. An owne r job can stop all work on a junior job base by applying
FAILJOB to the junior o~.~aue r job. FALLJOB applied to an owner job stops the
work of tha t job and a l l  j obs j un ior  t c  i t  bu t  does not a f f e c t  the rest of the
hierarchy . Only in the case of the owner of the live job base does the Kerne l
initiate an automatic recovery. In ather cases an event is formed containing
a message indicating the nature of the failure and this is queued at the failure
port of the job base immediately senior to the  principal failed job base. An
al terna t ive to FAILJOB app lied to an owner job is QUIESCE which allows trans-
ac tion jobs a l ready in progress to end before tn . activit y of the job base is
stopped. This ensures that the job ends such that its external state data is
consistent with the internal state data.

Res ou rc e Sharing

It has been assumed that the live job base is a system that cannot be
decomposed into subsystems . Consequently the method used to change the system
is to replace the entire live job base with a new v e r s l c n  and no means is
provided for replacing a part of the live job base . However , it is likely that
a given modification will affect only parts of rhe system an~ tnat. mu ch of the
job base will remain unchanged. Thus when the ne - v e r s i - n is being ruT , as a
test job base much of the test job base will be identical to  the iLV ~ job base.
Economies of space and processing powe r can be made by allowing the test job
base to use facilities already present on the live job base. Thus Irrangements
are made for sharing code , processes and data rather than duplicating them on
the test job base. It is a fundamental requirement that the same set of
external equipment (disc drives , opera tor ’s cons oles , di giti zers etc) should
be potentially available to the live and test systems . Thus the total set of
external resources must be sharable between the two systems . Shortage of
equipment may require that a particular device such as a disc drive should be
usable by both systems. Also information input on certain devices may be
required by both systems . The provision for these various types of sharing ‘ ill
now be described. The problem is to provide them in such a way that the test
system cannot affect the operation of the live system. Provide l code is pure
(is not altered by being obeyed) and addresses all data through suitably
supp lied base values , then the code of the live job base can be shared by the
test system with safety . The only affect on the live system is a possible
slight delay in accessing the storage module containing the code . A mechanism
is needed by which one job base can refer to code on another job base. Each
job base has a table called the “code name base” each entry of which contains
the name of a code section that can be used from that job base and a pointer
to the actual code (which may be on another job base). During construction ,
a job base inherits a copy of the code name base of its immediate senior.
Entries are changed if new code is defined to correspond to oid names and new
entries are added if new code is defined to correspond to new names. Unchanged
entries correspond to code available on some senior job base. Each pro ces s
is associated with the name of a code section and hence , vi a the code name base ,
with the code it is to use.

A process can be shared in the sense that it can accept messages that ori ginate
on a junior job base in addition to messages from its own job base. The message
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passing Kernel Functions are as previously described but port names are
interpreted by the Kernel in terms of a “port name base”. Each job base has
a port nante base constructed in the same way as the code name base so that it
contains pointers to ports on the job base in question and on job bases
senior to it but on no others. A complicated situation is possible in which
a process on one job base is using code on a second job base and is working
for a job that belongs on yet a third job base. When a Kerne l Function
involving a port name is called , the Kernel uses the port name base on the
job base to which the current job belongs to translate the name into actual
port address. Thus each job base has the power, through its port name base ,
to determine how its transactions thread the system even when they are being
processed by a process or code on a senior job  base.

The Ke rne l control  of jobs , which  was designed to isoLate transaction jobs
f rom one another , now p r o t e c t s  the live job base f rom i n t e r f e r e n c e  by jobs
from the tes t  sys tem.  Ex t ra  p ro t ec t ion  must , however , be g iven to the
i n t e r n a l  s t a te  da ta .  When a job reques ts  wr i te—access  to the i n t e r n a l  state
data , the Kernal  must  de te rmine  what  job base the job belongs to and g iv e it
access to i ts  own in t e rna l  s t a te  data.  Processes working in sys tem niode , w h i c h
always did have to be c a r e f ut  tha t  the i r  process data could not be corrupted
by bad data received , now have to be prepared for  had data from a test system.
The principle danger of interference is that an app lication process could be
overloaded by rece iv ing  so much work from the tes t  job base that work on the
l ive base is ser iously de layed .  A system process can overcome this problem by
servicing the higher priority jobs from its own job base first or even , if
necessary, failing the owner of the test  system.

There is no harm in allowing the test system to read data that is present on
the live job base. Provided suitable processes exist on the live job base
the test system can send request messages to them and receive as rep lies
copies of the data it wants. However , what is wanted to save space is that
when the test system tries to read its own data base it should actually read
the live system ’s data base if the data read is iden t i ca l  in the two cases:
the data does not then need to be stored in the test data base at  a l l .  T h i s
mi ght be organized via a d i rec tory  table  s imi la r  to the port  name base  but
the de ta i l s  have not been worked ou t .

Each job base has i ts  own “resource table ” and all  the ex te rna l  devices  that
the job base may wish to control are included as resources in this table.
Associated with each resource table is a process to manage the allocation of
the resources. This process works for the owner of the job base and can
dynamically allocate resources as required to the jobs it owns. Thus it can
allocate resources to a job that is about to become the owner of a junior job
base. In this way the junior job base inherits the resources and can then
manage them itself. If the senior job base later finds it needs some of these
resources itself then it can retrieve them by failing the owner job of the
junior. As an alternative to inheriting resources , a job base can , when being
introduced , declare some resources to be new to the system , thus permitting
uew equipment to be added. It is expected that resources internal to the job
bose , such as records in the data base , will be declared as new resources and
handled  by the same management process.

The N uc leus

Ori ginally the Kerne l was supposed to be small , being the minimum necessary t o

support the structure of a job base. Since then the single job base has been
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replaced by a hierarchy of job bases with the possibility of adding and
removing individual job bases. This has added considerably to the amount of
code needed to control this structure . However some of the control work could
be done by processes and jobs organized in the manner of a job base. Thus
a “Nucleus job base” is introduced to do such work and takes a position at the
top of the hierarchy , senior to the live job base. The “Nucle us” is the name
given to the Kernel and Nucleus job base combined. The operational system that
performs the func t ions  required of i ts  users consists  of the live job base plus
the Nucleus . The live job base is tha t  par t  of the system which  is var iab le
by the technique of job base replacement , whereas the Nucleus is that part of
the system that remains unchanged. The greatest scope for varying the system
is achieved by maximizing the amount of the system included in the live job
base. Thus the design policy is to include in the Nucleus as little as is
necessary to enable the techniques of Function Variability to operate: it must
support the job base hierarchy and allow safe job base testing and replacement.
With in  the Nucleus the division into Kernel and Nucleus job base is not
critical. (Indeed the term Kernel has been used rather loosely in this Chapter
where Nucleus would have been more correct.) Certain facilities must be
provided by the Kernel because they are needed to allow the Nucleus job base to
run as a job base. (These do include the Kernel Functions described earlier.)
Other facilities may be better included in the Kernel for reasons of efficiency ,
but othe rwise as much as possible should be included on the Nucleus job base
where all  the techniques for  checking r e l i ab i l i ty  wil l  be applied and the code
wil l  be available fo r  being shared by other job  bases if requi red .  A f u r t h e r
advantage of having a Nucleus job base is that the live job base is a junior
job base and obeys the same hierarchy rules as any test job base.

Method of Use

The way the system would be used to make changes to the opera t iona l  system is
as fol lows . The normal s i tua t ion  is that  the live job base , supported by the
Nucleus , is running and pe r fo rming  the func t ions  it is capable o f .  At the
same time there are various requirements for making (probably minor)
al tera t ions  to those functions . Programmers would desi gn changes to che live
job base intended to sa t i s f y the requi rements  and they would then want to test
these modifications under realistic conditions. They would therefore devise a
test job base for this purpose and produce a template for it by using the
composer. The composer is a program capable of running as a job base itself; so
it  would be loaded and run in any convenient j un io r  pos i t ion  in the h ie rarchy.
Having composed a template the programmers would load their job base , probably
as a j un io r  to the live job base. It would have i ts  own set of resources , some
allocated to it by its senior , some new to i t , and i t  could be used f ree ly
wi thou t  i n t e r f e r ing  wi th  the operation of the live system.  A s i t u a t i o n  is
possible where separate programming teams can be working s imul taneous ly w i th
separate test job bases to test different modifications . Programmers would
be free to make modifications to their own job bases. They can do this by
removing their job base , composing a new template and loading the new job base.
A system could be devised that , without affecting the live system , would allow
modifications to be made to a test job base on—line . The work of such a
modification could be assigned to the owner job of the job base , but an
excessive amount of code would be necessary to provide a useful facility of
th is kind and so the idea is not considered f u r t h e r .

Once a set of mod i f i c a t i ons  had been tes ted  sepa ra t e ly  they would be incorporated
into a s ingle  tes t  job base which would represent the new system that is to
replace the l ive job base. After this too had been thoroughly proved the live
job  base would be QUIESCEd , checkpointed and replaced by the new live job base.
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‘
~he template of the old live job base would be retained so that if the new
system failed it would be possible to revert to the old system. Eventually,
if the new system proved sa t i s fac tory , it could be designated “ trusted” so
tha t , in the event of a system fa i lu re , f al lback would be to t he new t rus ted
sys t em r a the r  than to the old out—of--date system.

When one vers ion of the live job  base is replaced by another there is a problem
concerni~ng the availability of suitable up—to—date and reliable state  data.
One s i t u a t i o n  to consider is where the only changes to the live system are
additions: i.e. the new version contains all the code and data fields of the
old version togethe r with additional code and data. Fall back to the old
version is then a matter of loading the old job base and recovering from the
last checkpoint those parts of the internal state data that are needed. Cut-
over from the old to the new job base is more difficult because the new fields
in the state data will be absent in the recovered checkpoint. However, the
time of cut—over can be chosen to coincide with a period of light loading of
the sys tem so that  t ime is available for bringing the data—base up to date.

The more genera l s i t u a t i o n  is where the change to the system is not simply
an addi t ion  to the old system. It mi ght be required to remove some code or
data that  is no longer required or to reorganize the data—base.  This
s i tua t ion  w i l l  arise a f t e r  a number of modif icat ions  that  involve only
addit ions because the system wi l l  cont inual ly  grow and so become inef f ic ien t .
The cut—ove r to the new system can be as before but in the event of fa i lure
failback will be to the new system. Failback to the old system is not possible
becaus~ of the absence of a curren t checkpoint of data that is compatible with
the old system. Thus t h i s  type of change is irreversible and therefore not as
safe as a change involving addi t ions  only.

A technique has been proposed t ha t  allows a general change to the system to be
reversed and also solves the d i f f i c u l t y  at cut—over .  The technique is to run
the old and new systems in para l l e l  for  some time before and a f t e r  the change .
The new system is introduced as a test job base , i t  is f u l l y  manned and run
un t i l  i ts s ta te  data  is u p — t o — d a t e .  Both the live and the test systems are
then QUIESCEd and checkpointed .  The new system is introduced as the live job
base and the old system in the test job base position and each system recovers
i t s  own data from the checkpoints. The new system carries on with the work of
the operat ional  system while the old system continues to be manned and maintain
i t s  data—base so that  revers ion  to the old system is possible .  Provided common
par t s  of the two systems are not dup l i ca t ed , the spare capaci ty  that the
computer needs to maintain two systems is not necessarily very great. Some
inputs form men can be fed to both systems but where the men need to respond
d i f f e r e n t l y  to the two systems then ext ra  manpower may be necessary. Eventually
the new system must be accepted as t ru s t ed  and the maintenance of the old
system discontinued. It is worth noting that some changes are inherently
irreversible and so the old system can be discarded immediately the change is
made . For example if an external organization declares that certain rules
bui l t  into the system w i l l  be changed from a certain date , or if the computer
confi gurat ion is changed in such a way tha t  the old system cannot operate.

CHAPTER 3 A PILOT IMPEMENTAT ION OF THE TECHNIQUES

The ori ginal report  that  presented  most of the t echni que s described in
Chapter  2 recommended tha t , be fore  a f u l l — s c a l e  f u n c t i o n a l l y  variable system
could be bu i l t  fo r  a spec i f i c  app l i ca t ion , three areas of development should
firs t be pursued. :
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i A p ilot implementat ion of a Nucleus  and Composer to demonstrate
and evaluate the techniques of Functional Variability.

ii Analys is  and evaluat ion of methods for representing and accessing
the I n t e r n a l  S ta te  Da ta .

iii Application of the proposed techniques to existing systems .

The first of these was undertaken by a joint CAP/RRE team and the work is
described in this chapter. The second and third areas of development have not
been investi gated.

The Computer Hardware

The original study had said little about the type of compu ter hardware
required  fo r  FV. E v i d e n t l y  i t  must  o f f er  some sor t  of data protection and
also fo r  reliability in the event of breakdown of components it must be modular
wi th  more than one module of each k ind .  But it seemed that the choice of a
par t i cu la r  computer for  the p ilot implementa t ion  was not c r i t i c a l .  The CTL
Modular—One computer belonging to RRE ’s Computer App l i ca t ions  Divis ion was
chosen , largely because i t  could be made ava i lab le  fo r  the project. The
computer consists of 3 processors , 7 modules of core s tore (each of 8k
16—bit w o r d s ) ,  one exchangeable disc  drive and a number of other peripherals.

A f ull FV system must be based on a m u l t i processor  computer so that  if a
processor fails other processors can take over the work. Peripheral devices
must be attached in such a way that whichever processor fails they can be
serviced by another. The Modular—One computer is not capable of providing the
symmetrical type of configuration that is needed because each peripheral
device can be connected to only one processor. Never theless it was decided
that the pilo t FV system should be implemented to run on a multiprocessor
confi guration. This was achieved by adopting the configuration shown in
Fi gure 3.1. The FV system runs in the multiprocessor computer consisting or
processors A and B, while a separate system runs in processor C to control the
peripherals. Communication between the two systems is via the common store.
As far as the FV system is concerned peripherals can be regarded as capable of
doing direct transfers of blocks of data to or from core store , the transfers
being controlled by control data also in core store. Thus the FV system does
not handle interrupts from devices except for the two interval timers attached
one to each processor.  Processors A and B have an identical view of the core
store (and hence of the peripherals) except for a small range of addresses
which are incremented by 512 in the case of processor B by a specially bu i l t
modification box; so that each processor has a small region of private work-
space .

Use of available Software

The configuration chosen had in any case to be compatible with the requirements
of othe r work being done on the computer during the period of this project.
Most users made use of a genera l purpose operating system called Minos which
ran in processor C and used the whole of the core store. Another project was
developing a mul tiprocessor operating system to run in A and B with a system
called Miniminos running in C to handl e peri pherals in the same way as in the
FV project. Sufficien t collaboration between the projects was possible for
Miniminos to be constructed so as to satisfy most of the front—end processor
requirements of the FV project as they were initially envisaged. The development
of Miniminos is not regarded as part of the present work .
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The FV system is implemented to run directly on the bare machine rather than
depending on any other operating system. Nevertheless it was decided to
make maximum use of existing software in a supporting role. En particular
the Minos operating system was used extensively for program preparation,
module testing and postmortem analysis. Thus there are two modes of operation
of the machine : either (i)  Minos is loaded to run in processor C or (ii)
Miniininos is loaded to run in processor C together with the FV system in A and
B. This technique would be accceptable for the development phase of a full
FV system but once operational a full FV system would have to be self—
sufficient because of the requirement for continuous operation. In contrast,
the pilot FV system is required to run only for a sufficient period to
demonstrate the princip les , after which the machine can be released. Thus it
was also considered permissible to write the composer as a normal program and
to run this  under Minos when a new job base is to be composed. In a full FV
system the composer would itself have to be in the form of a job base so that
it could be loaded and run without disturbing the system.

Core Store

A simple approach is adopted towards the use of core store. The core store
available to the FV system consists of 5 physical modules each of 8k words.
These are set up to provide a continuous range of addresses from 0 to 40k
and the boundaries between the physical modules are disregarded. If one
module were to fail it would be desirable to reconfigure the remaining modules
so that the range of addresses was still continuous (from 0 to 32k).
U n f o r t u n a t e l y  it is not possible to do this by software control because the
range of addresses of a module is determined by the physical connection to it.
Consequently a physical reconfiguration would be necessary . The alternative
approach of constructing the software so that it could operate in an address
space having an arbitrary 8k gap was rejected as being too complicated.

Processors

A processor in the Modular—One computer operates in one of two states: normal
s ta te  or special s t a te .  In norma l s tate  access to core store is restr icted to
3 segments control led by 3 base/ l imi t  reg isters X , Y and Z. Segment boundaries
can only occur at addresses that are muliples of 256 words. The X segment
contains the code being executed and may contain read—only data: it is not
possible to write into the X segment. Y and Z each provide read/write data
segments and differ only in the address modes available: the mode determines
what modif ier  reg isters can be used and whether addressing is direct or indirect.

In special s tate  the whole of the core store can be accessed. Some address
modes still operate as displacements within one of the three segments but
absolute addressing is also possible. The code being executed is now in the
first 8k absolute rather than being in the X segment. Privileged operations
permitted only in special state are the resetting of the X, Y and Z registers
arid the control of the interface with peripherals.

A transition from normal state to special state is brought about by an interrupt
which is of one of three types: (i) an interrup t from a peripheral device,
(ii) a violation interrup t resulting from such causes as addressing beyond the
limits of a segment , addressing a non—operat ional  core module or failure of the
processor ’s power supply or (iii) a software interrup t caused by obeying an
instruction known as an SVC (Supervisor c a l l ) .  In each case the interrupted
processor ’s mode is switched to special s t a te  and the contents of the 4
reg isters that  de f ine  the working  context  (not X , Y , Z) are exchanged with the

17

_



— -~~--- -~~ - —~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 
-~~~~~~~~~~r —~~~~~~~ _ .____

contents of 4 words of store known as dedicated locations. Each interrupt has its
own dedicated locations and so can have its own service routine.

The Programming Language

The programming language chosen for the implementation was Coral 66, a high—
level language suitable for real—time work and for which a compiler was
available for the Modular—One computer. Machine code inserts are permitted to
perform operations that cannot be done directly in Coral and by representing
these as macros the readability of the Coral can be maintained. The benefits
of a high—leve l language were considered so great that it was decided to use
standard Coral wherever possible and to restrict  code inserts to purposes
for which they are essential. Only normal state code may be inserted into a
Coral program so the special state code required had to be written as a
separate machine code program.

A program can be divided into a number of modules for separate compilation
and consequently a link—editor is needed to form the compiled modules into
a complete program . Again it was decided to use the standard link—editor that
was available even though it restricted the way in which the compiled code
could be used. The result of using the standard compiler and the standard link—
editor is that an object program is produced that requires one X segment, one
Y segment and possibly one Z segment. Once loaded the program is expected to
run with fixed settings of the X, Y and Z segments. The X segment contains
all the code and constants such as character strings and is limited to a
max imum size of 8k words . The Y segment contains declared variables and
compiler generated workspace . Because of the addressing modes provided by
the computer, the compiler also generates dope vectors for accessing data
structures and places these in the first 256 words of the Y segment, a region
known as 10. The Z segment is not used unless variables are explicitly declared
to be in Z.

The Kernel

The Kernel of the FV system consists of two programs : the SS Kernel operating
in special state and the NS Kernel operating in normal state. Operation in
special state is so privileged that it cannot be permitted outside the Kernel
and consequently the SS Kernel must trap every possible entry into special
state. This is easily achieved since entry is always via the dedicated locations
and these can direct control to the appropriate special state interrupt service
routine. As little processing as possible is done in special state and then
cont rol is passed to the NS Ke rne l for fu r the r  processing. (See Figure 3.2)
After the NS Kernel has done its work the SS Kernel is re—entered to set up the
correct context for the next activity of the processor. The NS Kernel has only
one entry point and one exit point, so the SS Kernel can be regarded as
providing a set of routes for interrupts which fan—in to the NS Kernel and then
fan—out to the next activity . The interrupts possible are those from the interval
time rs (the only peri pherals at tached),  the violation interrupts from the
processors and the software interrupts (SVC’ s).  The lat ter are used to implement
calls on Kernel Functions by job base processes. The main function of the SS
Kernel is thus to establish the correct processing context on entering and
leaving the NS Kernel. Another function is to serialize the use of the NS
Kernel to one processor at a time using a lock mechanism. It was decided to
make the NS Kernel single—thread in this way for simplicity : it is then not
necessary to write re—entrant code or to impose semaphore mechanisms on the use
of system variables. On the other hand, the SS Kernel is re—entrant per
processor; code is shared but each processor has its own dedicated locations
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for interrupts and a small amount of private workspace.

The NS Kernel is written as a normal Coral program. It runs with the X
segment set to cover its code and the Y segment set to cover its internally
declared variables. Since the Kernel’s purpose is to control the processing
on job bases it evidently needs to access the job bases and this is
accomplished by se t t ing  the Ke rnel’ s Z segment to cover all  the space available
for  job bases (see Fi gure 3 .3) .  The ~~~~~~~~~~ Z segment also contains a data
area known as the Kernel Parameter Block which is used fo r  communication with
the SS Kernel .  It happens tha t  the pr inc ipa l  contro l  blocks and tables that
the Kernel mainta ins  need to be examined by several processes on the Nucleus
job base. These too are placed in the Kernel’ s Z segment and the Nucleus
processes run w i t h  the same s e t t i n g  of Z. The addressing mode used to access
the Z segment l imi ts  i t s  s ize  to 32k words. The occupancy of core store is
as shown in Figure 3 .3 , w i t h  the  SS Kernel  occupy ing the lowest addresses.

Job Base Code

Important considerations were how the X , Y and Z segments should be used when
a job base process is running and how the code of a job base process should
be wri tten. These problems are intimately related. It was decided that one job
base should correspond to one program and hence , because of the decision to use
the standard comp iler and link—edi tor , all the code of the job base is put
together in one X segment. Therefore , when a process runs , the X segment is
set to cover the total code of one job base (which is limited to a maximum size
of 8k words). The code of each process is represented by a main procedure which
can call other procedures , provided they are part of the same program . Thus
different processes represented by different main procedures on the same job
base can share common subroutines. However it is not possible for a procedure
to call a procedure on another job base. Obeying such a procedure call would
involve changing the X segment , which would have to be done by the Kernel.
But a procedure call is a standard feature of Coral and as such does not invoke
the Kernel. A process may use the same code as a process on another job base
but the code shared must be the whole code of the process not just a sub-
routine . One consequence of setting the bounds of the X segment wider than
the code of one process is that no code can be regarded as private to a given
process. Corrupted or bad code can gain access to any other code on the same
job base. Provided special state code is excluded (by trapp ing all SVC’s in
the Kernel) then no harm can be done by a process that starts obeying code
other than its owl-i. The code itself cannot be overwritten because of the X
segmen t read—only c a p a b i l i t y  and the  data of o ther  processes is also protec ted
as described next .

Process and Task Data

It is essential that the process data and task data of each process should be
protected from influence by any other process. This is achieved by allocating
to each process a separate Y segment. The Y segment of a normal Coral  program
conta ins  a l l  the data  of the whole program and so would be too large for  each
process to have i t s  own comp lete Y segment.  Data is accessed by its offset
f rom the  s t a r t  of the  segment and so it is not poss ib le  to narrow the bounds
of the Y segment to cover jus t the data of one process.  The solution to this
problem involved prohibiting the use of normal procedures and insisting that all
process code be written in term s of p rocedures which are declared as recursive .
The compiler  does not a l l oca t e  space for  data  dec lared  w it h i n  a recurs ive
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procedure but it addresses the data using a register called W as a modifier
within the Y segment and it assumes that W will have been set up at run time
as a suitable stack pointer. The compiler implants code to increment the
stack point, W, when a recursive procedure is called and decrement it on
return, so the Kernel need only set W for the main recursive procedure of
each process (which of course is never “called”). Although dope vectors for
arrays and tables declared in recursive procedures are not put in YO the
compiler sti l l  uses this region at the s tar t  of Y for constants used in
addressing some objects: for example a Coral string is stored in X but it is
accessed via a word in Y0. Not all processes need access to YO but any that
do must have the constants from the compiled YO reproduced in the correct
locations of their own Y segments. Only a small number of words will  be
involved so the waste of space is not serious. On entry to the main recursive
procedure of a process , W should be set to point to the f i r s t  free location
following the YO constants .

There are restrictions associated with the use of recursive procedures in
Modular—One Coral which make the writing of job base code rather difficult.
Recursive procedure declarations cannot be nested so that process or task
data declared in a main recursive procedure have to be passed as parameters
if they are to be used by a subroutine . A maximum of 256 words of data space
can be created by any one recursive procedure so that if more space is needed
it is necessary to have extra recursive procedures. Arrays which in normal
Coral can have one or two dimensions can only be one—dimensional in a
recursive procedure.

A serious deficiency of the FV implementation is that no distinction is made
between process data and task data. Both are located in a p~Ø~~5s~ Y segment
and are always accessible to a process even though which is accessible should
depend on whether the process is in system or application mode. Also, because
a process retains the same Y segment throughout its life, all data behaves
as process data in that it is preserved from one task to the next. No method
was devised for enabling the Kernel to distinguish between process data and
task data.  It is not possible , for instance , to make use of another segment
by using Z in the same way as Y because all data declared in Z wi l l  be
aggregated into one segment even when declared in recursive procedures.

Kernel Function Calls

It happens that the first 9 words of Y are not used by the Coral program and
these are very conveniently available for the communication of data between
a process and the Kernel. A Kernel Function call , which normally has parameters ,
is wri t ten  as a macro (with parameters) and this expands to code which pla n ts
the parameter  data  in the f i r s t words of Y before  making an SVC cal l .  The
same space is also used for  informat ion passed from the Ke rne l to the process.
If a process wishes to keep such information it must copy it elsewhere before
making another Kernel call.

Event Control Blocks

The messages used for interprocess communication are another type of data that
must be well protected. The method of achieving this protection is to make
the Kernel copy the message out of the regime of the transmitting process and
later to copy it into the regime of the receiving process. In transit the
message may need to be queued and for this purpose it is stored in an event
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control block (ECB) accessible only to the Kernel. ECB’s are located on each
job base so that the number available can be chosen to sui t  the job base. They
are all of equal length to avoid problems of store fragmentat ion.  Free ones
are chained together , wi th  the head of the chain located in the Kernel data
area (see Fi g 3.3) . When a f resh ECB is required one is removed from the free
chain of the job base to which the relevant job belongs and i t  is queued at
the por t  fo r  which it is dest ined.

The length of message required will depend on the application : sometimes the
arrival  of a message wi l l  i t s e l f  provide the required s t imulus  wi thout  the
message containing any informat ion; at the other extreme it may be required
to t ransmit  a large block of data. Two lengths of message are supported in
the present implementation : a simple message is just one word while a compound
message is nine words long . The size of an ECB was chosen to hold th e contro l
informat ion  such as chaining pointers , job number , reception and reply ports
together wi th  a one word message . A compound message is two ECB ’ s wi th  the
control information in one and the message in the other. Longer messages are
not possible and a different means by which processes can communicate larger
amounts of data is described la te r .

In the method described above each message is copied twice by the Kernel.
This could have been rendered unnecessary if the sending and receiving
processes could have been given di rect  access to the message area of an ECB.
The Kernel could possibly have controlled the access by setting a process ’ Z
segment to cover the message area. Access to only one message at a time
would be provided and a process wishing to handle more messages would have
to make cop ies for itself. Unfortunately segment boundaries can only be
placed at addresses tha t are mul tiples of 256 so that the smallest segment
possible occupies 256 words. This method was therefore rejected because
it would have wasted far too much space in view of the large number of short
messages expected to be present in the system. A possibility that was not
seen at the time would have been to implement this method for long messages
in addi t ion to the method actual ly  implemented for short mEssages.

Transaction Communication Areas

Nevertheless it was recognized that processes would sometimes need to
communicate large amounts of data. One possibility would be to send a
sequence of messages each .containing a small packet of the data. Because this
would be so inefficient a method was proposed that introduced data areas of a
new type , known as “transaction communication areas”. The idea was that a
transaction communication area (TCA) should be freely accessible by all processes
working for  a given t ransac t ion  job . In order to maintain the indepet.dence of
jobs required in an FV system it would be necessary to a l locate  a TCA to only
one job at a time and to prevent access by processes working for  other jobs .
Provided this  is done then th is  new type of data area can be introduced without
c o n f l i c t i n g  wi th  the aims of the FV design. Certainly, processes having
simultaneous access to one TCA have the problem of coordinat ing  the i r  use of
the area but  this  problem can be resolved by the processes themselves , using
synchronizat ion messages.

As implemented , ~~~~~~ each of 256 words , are loca ted on each job base , the
number of them being a job base pa ramete r .  They are regarded as resources and
are allocated to jobs on t h e i r  job base by the resource manager process.  Other
processes access them via their Z segment which is set permanently to cove r al l
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the TCA’s of the job base. Two deficiencies of the implementation are that a
process has physical access to TCA’s that have not been allocated to it and
a TCA cannot be shared by processes on different job bases even through they
are working for the same job. A better system would have been for the resource
manager to have informed the Kernel of its allocations and for the Kernel to have
dynamically set the Z segment of each process according to what job it was
working for. -

Internal State Data

Processes also require access to the internal state data (ISD). Write—access
can onl y be granted for  a short t ime at the end of a ~~~~~ l i f e  and the Kernel
must  be informed so that it knows the seriousness of a fa i l u r e  dur ing  this
critical time and can check that the job soon ends. Read—access can be
granted f ree ly  without  v io la t ing  the FV pr inc ip les  but  some t ransact ions  w i l l
require exclusive use of par t  of the ISD : having read some records a job may
require t ha t  they are not changed by another job  u n t i l  it has updated them.
Therefore  the component p a r t s  of the ISD are a l located as resources by the
resource manager process .  Ideal ly  the resource manager should be able to ask
the Kernel to give processes the physical  capability to access the resources
allocated to the job for which they are working. Again the problem is that
segment boundaries cannot be set finely enough. The solution adopted is to
allow only the resource manager to access the ISD and for it to copy into a
TCA any data that another process wants to read . The resource manager also
writes into the ISD on behalf of other processes , informing the Kernel before
doing so. This method has the disadvantages of requiring extra copying of
data and rely ing on the resource manager to inform the Kernel correctly when
jobs go critical. The resource manager needs to access the resource table ,
the ISD and all the TCA’s and it was found convenient to group these together
and set the resource manager ’s Z segment to cover them all. Thus the resource
manager has its Z segment set differently from other processes.

Structure of a Job Base

Fi gure 3.4 shows the component parts of a job base and summarizes the use
made of the X, Y and Z segments. The parts occupy successive areas of store ,
although some space m ay be wasted because segments have to start on page
boundaries (addresses that are multiples of 256). Once established in core
store , a job base remains at a fixed location and so addresses of components
are stored as absolute offsets from the start of the Kernel ’s Z. The first
component is a control block of 37 words containing important parameters of the
job base and pointers to the start of each major component on the job base.
The Kernel accesses objec ts  on the job base via these pointers.

Task Control Blocks and Dispatching Strategy

Each process is represented by a task control block (TCB) ef 30 words which
contains all the static and dynamic information that the Kerne l needs in order
to control the running of the process. The static information includes the
location of its code (which can be on a senior job base) and its ports , the
identity of the process and its owner job, the type of process , its priority,
time limits for the length of a task and the time spent running between Kernel
calls , and initial register settings and access ri ghts. The dynamic in fo rmat ion
includ es the values of the registers (preserved when the Kerne l is entered),
current status , access rights , time s when current time l imits expire and the
identity of the job currently using the process. A proc ess can be in one of
three states: either it is currentl y using a processor (active) or it is
waiting for an event at a port (blocked) or it is waiting f or a processor
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(ready). The TCB’s of ready processes are chained together on dispatcher
queues of which there is one for each priority level. (The priority is a
parameter of the job base.) The dispatching strategy of the Kernel is to
allocate a free processor to the first process on the dispatcher queues taken
in order of p r io r i ty .  Unles s a time limit is exceeded , which is a fault condition,
a process runs until  it makes a Kernel call. If the process is ready to run
again when the Kernel Function is completed then it is placed on the end of a
dispatcher queue , or reactivated , depending on the nature of the Kernel Function.

Port Contro l Blocks

Each port is represented by a port control block (PCB) of 11 words , which
contains the information that the Kernel requires concerning the port. The
PCB points to the head and tail of the queue of messages currently waiting at
the port. The PCB also contains such information as which message , if any ,
is currently being serviced by the process owning the port and whether the
process is currently blocked , waiting for a message to arrive at the port.

Port  Name Base

The port name base contains a list of the PCB addresses of ports that can be
referred to by jobs on this job base. The PCB’s may be on this job base or on
a more senior job base. The port name base is used essentially as described
in Chap ter 2. However, the names of por ts are not actually stored as character
strings . Names in the source code are in fact macros that are replaced by
integers that represent offsets in a port name base. Each time a port is
r e fe rred to by a running process the Kernel applies the offset to the appropriate
port name base (i.e. that belong ing to the job base of the cu rren t job)  to
find the PCB address.

Cod e Name Base

The code name base contains information about each unit of code that could be
the code of a process on this job base. The code can be on this job base or
on a more senior one. The information includes the X segment setting and the
start address within the segment needed to obey the code , how much data space
the code requires (Y segment) and how much preset data in Y0 is required. The
code name base is not used during normal running (as the port name base is)
but is needed when loading a junior job base which may use code already in
core store on a senior job base.

Nucleus Job Base

The Nucleus job base is essen t ia l ly  similar in structure and operat ion to other
job bases but it d i f f e r s  in a number of respects. Several Nucleus processes
require privileged capabilities for accessing core store beyond the domain of
a norma l process. This is provided by giving Nucleus processes a Z segment
which is ident ica l  to the Kernel’ s Z segment i.e. one that covers al l  the job
bases ( inc luding  the  Nucleus itself) and some of the control tables in the
Kernel area (see Fi gure 3 .3) .  For s impl ic i ty  th is  extended se t t i ng  of the Z
segment is given to Nucleus processes whether or not they need to make use of
it. The only exception is the resource manager process: so that it can access
its resource table in the same way as a resource manager of any other job base
its Z segment is set to cover i ts  resource tab le  as though it were on a normal
job base. There are no transaction communication areas on the Nucleus job base ,
nor is there any internal state data. Thus the only resources belong ing to the
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Nucleus  are external resources such as peri pherals and files.

The Nucleus job base comprises ten processes which are described briefly below.
Fur the r informat ion  about some of them is given later under headings covering
p a r t i c u l a r  top ics. The first six processes provide services for other job
bases , the  request  for a service being made by sending a message to the
princi pal port of the appropriate process. The remaining four processes
pe rform funct ions  required only by the Nucleus and should not receive messages
from other job bases.

i SOFTWARJ~ CLOCK The message received is a request by the sender to
be stimulated at a given clock time . The SOFTWARE
CLOCK does this by sending a reply when the requested
time is no longer ahead of the system time . (The
system time is maintained by the routine s dealing
with interrupts from the hardware tinm~ rs.)

ii ASSURANCE This process must be used periodically by the owner
job of every job base. When a request is received
each process and each j ob owned by the owner j ob is
checked for having exhausted any time limi t allocated
to it and the time limi t placed on the owner job is
extended.

iii PREPARE This process is used to introduce a new job base into
the current hierarchy of job bases. The process
organizes the whole operation , from allocating core
for the new job base to causing the new job base
processes to run. It may be used by any job  base
that wants to introduce a new job base as a junior
to itself.

iv DISC HANDLER This process can be used by any other process to
transfer a block of data from a Minos file into its
own environment (either its Y segment or its Z segment)
or vice versa. It is the only way in whi ch processes
can use the disc.

v CHECKPOINT This process is used by an owner job to cause its
internal state data to be cop ied on to a check point
file. It is also used in a recovery situation to
reset the internal state data from the latest checkpoint.

vi ROUTER This process deals wi th input and output on the Nucleus
teletypes. Any job base can send a message for out-
putting . Inputs are assembled into message s and dealt
with according to the initial digit: if it is zero
the STARTJOB function is used to start a Nucleus job
and send the message to the VALIDATE process; otherwise
the digit determines which job base the message is
intended for and Kernel Function ROUTE is used to start
a j ob on tha t job base and send the message to a special
port  on t ha t  job base known as the “router_port ” . The
process sends to the SOFTWARE CLOCK to be woken up a f t e r
a short interva l so that it can poll the teletypes for
input.
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vii VAL IL)ATE This pro cess  receives  messages f rom the ROUTER
process  c o r r e s p o n d i n g  to o p e r a t o r  r eques t s  f o r
N u c l e u s  f a c i l i t ie s .  The process checks the legality
of the r e q ue s t  and i n i t i a t e s  the requested action.
The o n l y  f a c i l i t ie s  p r o v i d e d  in this way are the
a b i l i t y  to load a live job base (when none exists
a l r e a d y )  o r  to terminate a job base.

viii ACTIVATE This is the first process to run when the Nucleus job
base is loaded into the system. It starts the other
processes running and in the case of automatic recovery
it initiates the re—loading of a live job base. It
sends to the SOFTWARE CLOCK to be woken up at regular
intervals in order to send to the ASSURANCE process to
assure the Nucleus job base.

ix FAIL HANDLER This process services the failure port at which the
Kernel queues messages notifying failure of jobs owned
by the owner of the Nucleus. It uses the ROUTER process
to inform operators of failures.

x RESOURCE MAN AC I I R Th e only function of this process is to allocate
a l l o c a t a b l e  resources  to the l ive job  base when the
l a t t e r  is being loaded.  This a c t i o n  is in response
to a message from the PRE PARE process. (The only
resources  possessed by the Nuc leus  are the l ine p r i n t e r
and two t e l e t y p e s :  these are a l l  marked as a l l oc a t a b l e .)

I n t r o d u c t i o n  and Removal  of Job Bases

I t  is the Nucleus PREPARE process  t ha t  loads a job base i n to  the  runn ing  FV
sy s t e r i , bu t  b e f o r e  i t  can do t h i s  the job  base must ex i s t  as a template on
b a c k i n g  s t o r e .  T h e  g e n e r a t i o n  of templates is the function of the Composer and ,
as already exp lained , this is a program that runs under the Minos operating
system rather than within the FV system. The Composer generates templates from
job base specifications supplied by Pr 1TaI:im~ rs and stores them in a template
lib rary on disc. The PREPARE process extracts the required temp late from the
l i b r a r y , loads it into store and converts it into a working job base within the
hierarchy . The Composer goes as far as possible with the construction of the
jab base , given that it dues not know where it will be lc-~~ted either in the
hierarchy or in core store. Thus the structure of the template is essentially
a cure image of the final job base and the work to be done by the PREPARE process
is minimized.

The pr ocrimnie r writes modules of regular Coral in order to express his
specification of the job base including its cod e. These modules are linked
together with standard composer r~odules to yield a program which when run
generates the required templat e . The advantage of combining the particular
specit ication with the genera [ ~o~~ oser functions is that it facilitates cross—
referencing between t h e  ~~~~~ For example , a job base process is specified by
- m p r o c e d u r e  c a l l  in which ‘he parameters define prupt rties of the job base
pr ocess  such as the  na~n s  of i t s  p o r t s , the  code i t  uses , the  mode of the
p ro c es s  and the t i~-a I i  i t s  i be s o t  on its operat ions ; whereas the procedure
bod y i s  a s t a n d a r d  part u t  t h e  c o mp o s er  and actuall y se ts  up a task  cont ro l
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b lock  on the t empla te .  The only r e fe rences  that  need to be made to objec ts  on
t h e r  j ob  bases are to po r t s  or code t h a t  w i l l  be r e f e r enced  ( i n  the  por t  name

l’ase or code name base) on the job base under  w h i c h  th i s  one w i l l  be loaded.
In tact port names and code names are macros th a t  are d e f i n e d  to be inte~;ers
representing offse ts in the appropriate name base. Hence all tha t need be known
abeut the job base ’s senior is the macro definitions of its port names and code
names. The job base specifier has to be careful to supply this list of
defini tions and to add to it definitions of new port names and code names
according to simp le rules such that the 1ina l effect will he as though the names
had ac tually been stored in the name bases . Several temp l ates mi ght yield
a job base that would be a valid senior to the one being composed , so they are
lis ted in “possible  seni or j ob base s” on the template (sc*. Fi~ 3.4)

A new job base can only be introduced into the i-V system it an existing job
base is willing to support it as a junior to itself and sends a request to the
PREPARE process. The work is done on behalf of a job , newly sta rted on the
exi sting job base , which eventuall y becomes the owner uf the new job base. The
request to the PREPARE process supplies no information other than the Identifier
of the job base temp late. The allocation of core store to job bases is managed
by the PREPARE process which maintains time table telling the Kernel where
existing job bases are. The template requested is loaded into the tirst
sufficiently large conti guous region found and thereafter remains at the same
location in core for the whole life of the job base. Address reterences within
the templatL which had been relative to the start uf the t~~m 1)latc are modified
to be relative to the start of the Kernel’ s Z st~;inent . The code name base and
port name base of the senior job base are used to complete the name bases of

the new job base. Messages are sent to the senior ’s resource manager to acquire
any resources that need to be allocated down . Finally the Kernel Function
INITIATE is called to finish the job of estab 1ish in~ the job base , by per f orming
those actions that must be synchronized with other Kernel activities.

Because the PREPARE process is a part of the Nucleus ~ob base it is obvious
that the Nucleus job base itself canno t be loaded i n  this way. Instead , a further
off—line program (running under lim os) operates on the template of the Nucleus
job base to perform those actions normally carrie d out by PREPARE and iNITIATE.
This is p~ ssib1e in the case of the Nucleus because it is known in advance
what its position in the hierarchy will be and what the running state of the
whole system will be. Thus the Nucleus template is a true core image of a fully
initialized Nucleus job base and it is a strai ghtf orward job for the Kerne l
to load it and let it run .

The reverse action of removing a job base is supervised by the ASSURANCE process.
A job base cannot be removed until all its elements , such as event control
bl ocks , have been detached from the various system queues. It is the Kernel
that detaches the job base elements (after a call of the Kernel Function
QUIESCE or FAILJOB applied to an owner job) but it does this only as the elements
ar e disc overed one by one during the norma l work of the Kernel. The ASSURANCE
process periodically examines all the elements of the job base and when it
fi nds that all have been detached from the rest of the system it informs the
Kernel by calling TERMINATE . The Kernel ends the owner job of the job base
and marks the job base as terminated so that the PREPARE process can de-
allocate the space when next it runs .

Resource Management

lim e resources belonging to a job base a re  represented by entries in the resource
t ab l e and are managed by the resource manager process of that job base . In
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principle each job base is free to choose what sort of entities it wishes to
regard as resources and how these should be managed. However in order for
the management to be effective it is necessary for the manager to control the
physical access to the resources and in practice therefore the amount of
freedom is limited by the overall structure of the FV system. The management
of various entities is already taken care of by the system, so they cannot be
treated as resources. Thus processor time is handled by the Kernel; processor
a l loca t ion  being determined by a simp le d ispa tcher  s t ra tegy toge ther  wi th
parameters  such as p r io r i ty  and maximum run time set up when a job base is
composed. Core alloca tion for new job bases is managed by the PRE PARE process
according to a policy of first come first served. The accessibility of process
code and process ports is determined during composition and there is no
mechanism for managing it at run time . By the time a job base starts to operate
the segment settings for each process have been determined and cannot be
changed , so time resource manager canno t pass any phys ica l  access capab i l i t i es
to other processes.

Hence resource management is only achieved by cooperation between various par t s
of the sys tem and therefore it is strong ly recommended that the resource manager
uses the standard code provided. This code would be provided on the Nucleus
except that the Nucleus code would then exceed 8k words which is the l imi t to
the amount of code possible on one job base. Instead the resource manager code
is provided as a separate module which can be incorporated in the live job base
while a cut—down version of the code is provided on the Nucleus . The resource
manager provided deals with 4 categories of resource which are described below.
It operates in response to messages received at its principal port and allocates
resources to jobs (never to processes) by making appropriate entries in the
resource table. Requests received may be to gain exclusive access or shared
access or to release resources. They may refer to all resources , all resources
within a category , a par ticular resource or any resource from a category . When
a junior job base is loaded the resource manager will receive requests from
the PREPARE process to allocate resources needed on the new job base. When
a job fails the Kernel will send a message to the resource manager requesting
release of all resources being used by that job.

The 4 categories o f resource are as f o l l o w s :

i Periphera ls  This ca tegory does not include the disc drive but
incl udes the other devices connected to processor C:
these are 2 tele types , 2 paper tape readers , 1 punch ,
1 l ine  p r i n t e r , and 2 visua l d isp lays .  The 2 teletypes
and the line printer belong initiall y to the Nucleus
but can be al loca ted to the live job base , and the
other devices can be introduced as “new” resources on
a job base. Miniminos running in processor C actually
controls the physical devices but provides for each
a logical device which is controlled by a “device con t ro l
block” . A device control block is an area anywhere in
core store pointed to by an entry in a unique “interface
contro l block ” belong ing co the FV Kernel. A pr ocess
on a job base can gain control of a device by calling
the Ke rnel Function ENGAGE and specifying 2 areas within
its own process data area to be used as a device control
bl ock and a data transfer buffer. Before entering in
the interface control block a pointer to the device
control block (and thus connecting the process to
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Miniminos) the Kernel checks that the device is not
already engaged and also that the device is listed as
present in the resource table of the job base to which
the current job belongs. A process is disconnected
from a device by calling the Kernel function DISENGAGE.

ii Files There is only one disc drive in the system and this
is needed for the work of the Nucleus (for check—
pointing and for the library of job base templates).
The control of the disc by Miniminos is governed
exclusively by the DISC HANDLER process on trie Nucleus
and the disc drive is not treated as a resource . The
DISC HANDLER allows other processes to access Minos
files : in response to messages received files can be
opened and closed and block transfers can be made to
and from a process ’ data area. Files are identified
by name. File names are treated as resources by the
resource manager but the sys tem desi gn is defi cient
in that there is no cross check between the DISC
HANDLER and the resource manager on the use of files.

iii ISD resources The internal state data is considered to be a two—
dimensional array or table with rows and columns
being the individual resources. The resource manage r
has absolu te con trol of these resources since ordinary

— processes have no means of direct access to the area.
Read requests are satisfied by copy ing the data into
a TCA belong ing to or allocated to the current job.
Before writing to the internal state data the resource
manager calls the Kernel to Set the current job’s
status to critical.

iv TCA ’s Transaction communication areas constitute the fourth
category of resource. Their properties have already
been descr ibed.  Al though  hand led  as resources  t her e
is no physi cal pro tection to prevent them being used
wi thout the resource ma~ ag~~~ 5 knowled ge.

Thus although the resource manager handles 4 categories of resource it has
phys ic al con trol of only one , the ISD. In other cases the granting or denial
of access can be ignored and the successful operation of the resource manahe r
depends on the cooperation and i n t e g r i t y  of the processes  us ing  r e sou rce s .  In
practice the Kernel and the DISC HANDLER play management roles in controlling
access to devices and files respectivel y.

Timi ng Assurance

Assurance that the system is still running correctly is based on having two
mutually checking routines activated by separate timing device interrupts. The
hardware  p rov ides  two interval timers , one on each processor. Consequently both
processors are needed for the cross—checking function. When only one processor
is in operation the interrupts received from the one timer are used to activate
both routines: t i-c system can operate in this way but there is no independent
check that the system is still running.

The two routines are called the Kernel Assurance Routine (KAR) and the Timing
Assurance Routine (TAR). The KAR runs at intervals of 1 second. It checks a
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flag set by the TAR to verify that the latter has run during the interval.
It also inspects some of the critical Kernel code and data , checks that each
processor has been used during the interval , checks the time limi t of the
owner job of the Nucleus and updates the system time. The TAR runs at intervals
of 0.2 second. Every sixth entry it checks that the KAR has run since the last
check .

Each job base is responsible for periodicall y sending a message to the ASSURANCE
process which will then check whether time limits for objects on that job base
have been exceeded. Assurance tha t each job base is doing this depends on the
fact that job bases belong to a hierarchy. When an owner job sends to the
ASSURANCE process the latter extends the time limi t of the owner job by an
amount determined when the job base was composed. Except in the case of the
Nucleus , the owner job is itself owned by the owner job of a more senior job
base and hence its time limit will be examined when the senior job base sends
to the ASSURANCE process. As stated earlier , the time limit of the owner of
the Nucleus is checked by the KAR.

Fail u re and Rec overy

Failure and recovery are treated much as proposed in Chapter 2 but a few extra
de tails should be given. After a job has failed , the Kernel places a message
at the failure port of the appropriate job base and further action is a matter
for the process servicing that port . If, however , the job owned any resources
it will be necessary to inform the resource manager that the job has failed.
In order to save time and effort therefore the Kernel automatically sends a
“release all reso urces ” message to the appropriate resource manager.

Automatic recovery of the system is instigated by a failure of the owner of
the live job base , the owner of the Nucleus or the Kernel. The recovery logic
treats these cases in the same way and reloads the Kernel , Nucle us and live
job base. Although some of this may be unnecessary it is simpler to have just
one log ic , and li ttle time is wasted in reloading the Kernel or Nucleus. The
“Fal lback ” rout ine , although par t of the Kerne l , is probably uncorr up ted since
it  is checked f r e q u e n t l y  by the KAR. This is used to read from disc a program
cal led  “Startover”. Startover reads in a clean copy of the Kernel and activates
i t  as though a power—on in te r rup t  had been received. The Kernel reads in a
clean copy of the Nuc leus  job base and s t a r t s  i t  w i t h  a message at i ts  ac t iva te
p o r t .  The Nucle us i n t e r p r e t s  t h i s  message as a job base i d e n t i f i e r  and duly
loads the appropr ia te  job base as the live job base. It is the responsibility
of the live job base to recover i ts  checkpointed data  and to restart normal
working.  Informat ion that has to be carried over from the failed system to
the recovered system has to be carefully preserved throughout this sequence
of operations : this includes the reason for failure and the identifier of the
job base to be used for recovery .

The automatic recovery logic is complicated by the need to prevent interference
by processors other than the one instigating the recovery . The strategy adopted
is that the processor executing the Fallback routine in the NS Kernel releases
the Kernel lock but holds the other processor on an inner lock at the start of
the Faliback routine. This lock is released only when the Startover program
is about to be activated. Startover in turn is protected by another lock
which the processor executing the code releases only when the new Kerne l is
about to be activated. This solution is unsatisfactory in that the processor
carry ing out the recovery has to wait for the other processor to enter the
Kernel before the Startove r program can be loaded. There is no guarantee that
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the other processor has not gone out of control. An interprocessor interrupt ,
whi ch was not available , would be required to improve the position.

Live and Test Job Bases

The pilot implementation provides the Nucleus and Composer to support a
functionally variable system. Although there was no requirement to produce
a specific live job base , thereby completing a system, it was necessary to
write  appl icat ion job bases in order to demonstrate tha t the Nucleus and
Composer do provide the facilities intended. The five demonstrations or
tests that were carried out are described below . The job base construction
and testing necessary for these demonstrations constitutes the only experience
of using an FV system.

System test 1 The primary aim of this test was to exercise the basic Kerne l
facilities using a primitive job base as a test driver. The test demonstrated
the process management and intercommunications mechanisms , the dispatching
s t r a t egy,  job management and failure localization , and basic job base
composi tion .

System test 2 The purpose was to exercise the basic Nucleus job base and to
test the ability of the Kernel to support a hierarchy of job bases. Facilities
demonstrated were timing assurance mechanisms , detection and handling of
fa i lures , true multi processing, the ability of the Nucleus to load , activate ,
support and remove an application job base , the ability of a junior base to
use objects (code and processes) of a senior , and generalized job base
composition.

System test 3 The purpose was to test the management of resources and the
recovery and variability (cutover) mechanisms . The facilities demonstrated
were the allocation and sharing of resources (particularly the elements making
up the Internal State Data of an application), checkpointing and reinstatement
of the ISD, the identification of errors necessitating a system restart , the
Cold S ta r t  sequence (an opera tor controlled reload of the system), the Hot
Start sequence (automatic fallback and recovery) and the ability to terminate
the l ive application job base and replace it by another version and continue
from the point in service reached.

System test 4 The purpose was to test the capabilities of the complete
Nucleus. The facilities demonstrated (additional to those covered in the
previous system tests) were the ability of the Nucleus to support parallel
operation of a live and test application , the ab i l i ty of the tes t base to
share various objects on the live base and the Nucleus while not prejudicing
the live service , failure of the test base without disturbing the live job
base , termination of a hierarchy of job bases , simul taneous checkpointing of
live and test job bases , and cutover (termination of the live base — and
hence the test base — and continuation of the service from the point reached
by the live base and re—instatement of the test base).

System test 5 This test involved what was known during the development as
the “RRE application”. This is a job base that performs in a manner that
has some similari ties to a system providing information for air traffic
control. The system maintains in a da ta base the current positions and
velocities of “aircraf t” and up dates the positions at intervals. Labelled
positions of aircraft are displayed on a VDU. Teletypes are used to input
data and to control the system. Using this as a live job base the full test
involves (i) introducing a test job base that performs in a similar but
different manner to the live and shares facilities with the live , (ii) cutting
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over to the new system and falling back to the old system as required and
(iii) removing the old system so that the new system carries on as the live
system and fal ls  back to i tself  a f t e r  a failure .

Size of the Run—time System

The software of the run—time system proved to occupy more core store than
had been anticipated. The sizes of the major components are indicated on
Figure 3.3. It can be seen that the Nucleus (i.e. the Kernel plus the Nucleus
job base) occupies 24k words of the 40k available to the FV processors , so
that only 16k remains for the live and test job bases. Thus the amount of
free core store is so small that there is no real possibility of making
use of a hierarchy of test job bases. If equal space is allowed for one
test job base and the live job base then each can occupy 8k. This is too
small for any practical system: it should be remembered that the Nucleus
is not an operating system and the live job base must provide its own input!
output routines for  example. Functional Var iabi l i ty  applies to only a minor
part of the operational system since the major part of the system , the Nucleus ,
is invariant.

CHAPTER 4 DISCUSSION

The objectives of the implementation have, in broad terms, been achieved.
A Nucleus and Composer have been implemented which are capable of supporting
a Functionally Variable system as described in Chapter 2. Most of the
proposals made in Chapter 2 have been incorporated in the implementation s
The Nucleus runs on a bare machine (rather than depending on a general
purpose operating system) and makes use of a multiprocessor configuration.

However, this achievement must be qualified by a discussion of the rather
large number of unsatisfactory features of the implemented system. It is
convenient to divide these into four classes. First there are the accepted
limitations corresponding to deliberate simplification of the objectives.
Second there are the undesirable features that resulted from the decision
to use the available hardware and Coral compiler. Third there are the
defects due to poor design of the software. Fourth there are the problems
inherent in the proposals made in Chapter 2. The divisions between the
classes are not always exact but they form a useful basis for discussion.

I Accepted Limitations

The aim of the pilot implementation was to demonstrate the fundamental
principles of FV using available hardware and a limited amount of effort.
Consequently decisions were made that would reduce the amount of work needed
to implement a system. Inevitably the p ilot imp lementation is more limited
than a full FV system, but the limitations listed here are considered to be
acceptable because they do not interfere with the study of FV principles.

1 No attempt was made to provide a complete system for a specific
application: only the Nucleus and Composer were produced , together with
sufficient applications programs to demonstrate their facilities. Thus many
of the features that a live job base would be expected to provide were not
implemented. These include the handling of external state data and the
recovery action to be taken after failure of transaction jobs.

2 No attempt was made to provide a high level of reliability by using
hardware redundancy. Clearly the available hardware would not have been
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sufficient to do this: for example theie is only one disc drive and both
processors depend on the same store module zero.

The Kernel does not test or reconfi gure the hardware. If a permanent
fault develops in a hardware module it is likely to lead to repeated failure —

and recovery of the syster~ and human intervention is necessary first to
locate the f a u l t y uni t  and then to reconf i gure the system. The only hard-
ware effects the system will automatically tolerate are a power—off on one
processor (which will cause failure and recovery to the last checkpoint)
and failure or removal of a core store module used only by test job bases
(which will cause failure of the test job bases only).

3 The FV system does not handle external interrupts (except those from
the timers). The interrupts from peri pherals are dealt with by the
Miniminos front—end processor which is outside the scope of FV. The reasons
for this have already been discussed (see page 16).

4 The no rmal s tate  Kernel is single thread . This decision should have
little effect on the efficiency of operation of the system since the time
spent in the Kernel is small.

5 The Composer is not desi gned to run as a job base. Consequently
compos i t ion  has to be done f i r s t  under Minos before running any demonstration
tha t involves introducing a job base into the FV system.

6 It was decided to use the standard Coral comp i ler  and l ink—edi to r .
This  gave r ise  to no difficulties in writing the Kernel although some par ts
could  have been made more e f f i c i e n t  by using mcre code in se r t s .  However
the writing of the job base code is made awkwa .-d by the restrictions associated
wi th the exclusive use of recursive procedures (see page 20). Also it is
not possible for different job bases to share code at the procedure level.
(They can only share the code of a whole process.)

II Undesirable features due to the hardware and language

The decisions to use the available Modular One hardware configuration and
the Coral comp iler resulted in certain accepted limitations of the system ,
as discussed above. However , these same decisions caused the system to
be unsatisfactory in a number of ways that were not anticipa ted and accep ted
from the start. These are discussed here. In order to overcome these
deficiencies it would seem necessary to choose more suitable hardware and!or
a more suitable language compiler.

1 No distinction is made between process data and task data. This is a
serious deficiency in that it upsets the principle of preventing inter-
actions between different transaction jobs. It results from the decision
to use Coral and has already been discussed (see page 20).

2 There is no continuity in the record of time across a failure and recovery
of the system. This is because there is no real hardware clock that  continues
to measure the passage of time. The two interval timers require operational
software to keep them running. As imp lemen ted , the system time maintained
by the Kernel is reset to zero during a system recovery , which is not at all
satisfactory . The problem could be overcome by using a hardware clock that
continues to measure real time throughout a system failure .
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3 It is possible to write a poor resource manager process that updates
the internal state data without obtaining critical access rights from the
Kernel. This is because the resource manager has full access to the
internal state data and does not need to apply to the Kernel for access
capabilities. Hardware with a more sophisticated capability mechanism would
be required in order to solve this problem. For the pilot implementation
it is recommended that the problem is avoided by using the trusted code
provided for the resource manager, although this denies the possibility
of regarding the resource manager as functionally variable.

III Defects due to software design

The limitations listed here are defects in the way the software was designed.
They could all have been overcome by more careful design of the software ,
without changing the hardware , the Coral compiler or the link—editor.

1 Device control blocks , which are accessible to processes that use
peripheral devices , contain control information whose corruption could
have serious ~consequences for the integrity of the system. The inclusion
within one coittrol block of elements that are used directly by a process
and elements that should only be used by the Kernel and Miniminos is a
deficiency of the design of the interface between Miniminos and the FV
system. A process thus has access to a pointer giving the absolute address
of the data area to be used for peripheral transfers. If it accidentally
or maliciously changes this pointer some other area (even on a different
job base) can be overwritten. This deficiency could have been overcome
by separating those data fields in the device control blocks that need
to be accessed by a process from those that do not.

2 The misuse of transaction communication areas allows jobs to interact
in a manner contrary to the principles of FV. These areas are intended
to be used for communication between different processes working for the
same job . The resource manager can be used to reserve a TCA for a particular
job but each process has access to all the TCA ’s on its job base and the
system provides no checks that the reservations are being honoured. A
solution to this problem has already been proposed (see page 22).

3 Transaction communication areas can be accessed only by processes on
their own job base and consequently a process on a more senior job base
cannot be used to process data in a TCA. Indeed if this is attempted the
affects can be confusing. Suppose a process working for a job on a more
junior job base sends a message to the resource manager to obtain some
internal state data . The junior ’s port name base will be used to find the
destination of the message which will therefore be the junior ’s resource
manager. As expected the resource manager will access the junior’s internal
state data, copy some of it into a TCA and reply with the address of the
TCA relative to the start of the Z segment. However if the senior process
tries to access the TCA it wil l  apply the address as an offset from its own
Z segment and will access something quite different. The confusion arises
by thinking of a TCA as an extra—long message ; messages can be sent to
senior job bases. Ra ther than implementing TCA’s it would have been better
to have implemented the extra—long message as discussed on page 21.

4 New jobs on the live job base can be prevented from starting by the
presence of too many jobs on test job bases. This is because there is a
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f ixed number of slots in the job table to hold information about current
jobs. A better scheme would have been for each job base to have its own
job table.

5 The multiprocessor aspects of the implementation do not work reliably.
If power to one of the FV processors is switched off the sys tem should
continue to operate provided one processor is operational. However if this
is done it sometimes causes a failure of the system frqm which it does not
recover. Presumably this is due to some error in the logic for processor
synchronization. Sometimes automatic recovery after a failure of the FV
system is not possible because of lack of synchronization with the Miniminos
system. This could have been overcome by providing an emergency channel
on the interface through which to notify Miniminos of a breakdown of the
FV system.

6 In the case of single processor operation, a process that monopolizes
the processor by looping in its code will cause the current time limit of
the Nucleus ’ owner job to expire and hence an automatic recovery of the whole
system. This is because the assurance process does not run and hence it
is not discovered that the looping process has exceeded its allotted
processor time. The routine activated by one of the timer interrupts
checks the time limit of the Nucleus’ owner job and this eventually expires.
The problem could be overcome by implementing some form of time slicing
so that t imer interrupts cause the loop ing process to stop and hence allow
the assurance process to run.

7 Checks that certain time limits have not been exceeded are made too
infrequently. This is because most checking is left to the assurance
process and the checks involve limits differing by one or two orders of
magnitude. The time for which a process is allowed to use a processor
without  making a Ke rnel call may be say 100 ms and it is therefore not a
useful safeguard to make such a check say every 5 s. However to run
the assurance process more often would entail unacceptable overheads. A
better safeguard and a more efficient check would be provided if the
Kernel were to check processor time consumed by the current process.

LV Problems inherent in the FV proposals

During the design, implementation and use of the pilot system a number
of problems were encountered which can be identified with inadequacies in
the FV proposals as described in Chapter 2. Some of these concern matters
where the proposals provide insufficient guidance. Other problems are such
tha t  their solution would seem to require a change to the proposals of
Chapter 2, although what changes are needed has not been determined .

1 Resource management

The original proposals provide insufficient guidance on the handling of
resources. They do not specify what entities are to be treated as resources.
The four  categories of resource in the implementation were chosen rather
arbitrarily from a large number of possibilities. Other possible resources
that might have been considered include processor time, storage , code ,
process ports , event control blocks and slots in the job table. The need
to manage resources was recognized and the resource manager processes were
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suggested with the intention of fulfilling this need. However, in order to
manage a resource effectively it is necessary to have control of the physica l
access to it , and a mechanism for providing this control was not discussed.
Physical access should surely be granted by the Kernel. This is not done in
the implementation however and consequently the control of resources is
ineffectual. The resource manager can be bypassed or ignored by a process
trying to access a resource from any of the categories devices , files or
TCA ’s and the resource manager only succeeds in retaining control of the
fourth category, internal state data elements , by not allowing other
processes to have direct access to such resources.

2 The test job base interface

An operational system designed according to the proposals of Chapter 2
may f a i l  to be functionally variable because the live job base does not
provide the facilities needed to support a test job base. Since the
Nucleus is intended to provide what is needed to support an FV system
it would be expected that any live job base that could run under the
Nucleus would be variable. However, variability is achieved by first
testing a new version running as a junior to the live job base and this
requires support from the live job base, which is only available if the
required support was anticipated when the live job base was constructed.
Fir st the live job base must cooperate in order for a test job base to
be loaded as a junior. Second , if a test job base is to be allowed to use
processes on the live job base then the latter must be constructed in such
a way that it can cope with unexpected and possibly misleading messages
f rom a jun ior job base , whe reas its ability to do so may never have been
tested. Third, since no general method has been suggested by which a
test job base can access data on the live job base such access can only
be obtained with the cooperation of the live job base — it could supply
data in reply to messages requesting such a service. The problem is that
if the live job base does not already provide the necessary support then
the technique of functional variability is not available to make the
changes that will provide it.

3 The role of the Composer

A new job base that has been tested in a junior position cannot be
introduced as a replacement for the current live job base wi thout  f i r s t
being changed. This is because in the test position it wil l  have used
fac i l i t ies  provided by its senior , the live job ba se , which wi ll not be
available when it becomes the live job base. Since there is no formal
specification of what facilities of the senior are used it is difficult
to see how an automatic program such as the Composer could modify the
tested job base so that it could provide those facilities within itself.

A new job base may be unsuitable as regards the FV methodolgy for
reliability even though it has been shown in tests to perform well. For
example (i) ~t may not checkpoint its internal state data with sufficient
frequency (ii) it may have unsuitable values set for the various time
limits that the Kernel checks are not exceeded or (iii) it may specify
that failback shall be to the old system with a checkpoint from the new
system even though the change is in fact irreversible. Some checking
of suitability could be done by the Composer but the mechanism and criteria
to be adopted is not clear. A determination of whether a change is reversible
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or not depends on detailed knowledge of the structure of the data—base
and the processing of the data. It is difficult to see how a fixed
program such as the Composer can make such assessments without imposing
unacceptable constraints on the flexibility of a job base.

4 The backup system

Afte r  an irreversible change has been made the proposals suggested that
the old system could be maintained in the tes t  job base- position so that
i ts  data—bas e would be kept up to date and it would be available as a
backup should the new system fail. However, this provides a very insecure
backup system since there is no automatic recovery of a test job base after
a failure and so the old job base may be failed as a result of some error
in the new live system.

5 Programming problems

The FV system s t ruc ture  and methodology impose constraints upon the design
of the live job base. Difficulties were experienced in designing job
bases to run on the pilot implementation because the proposals gave too
little advice on how to work within the constraints. The necessity for
processes to communicate only via messages led to the wr i t i ng  of obscure
code for the generation and interpretation of messages. The complexity
of the rules concerning the validity of message passing functions according
to circumstances resulted in the rules being frequently broken. When
parallel activities are used within one transaction job it is necessary to
synchronize the activities before ending the job and this seemed difficult
to achieve without causing a bottleneck. A live job base contains functions
that in a conventional system would be regarded as operating system functions
and also application program functions but with no sharp demarcation between
the two. Applications programmers are used to working in an environment
where operating system functions are provided as supervisor calls , bu t in
an FV system supervisor calls are used for Kernel functions and operating
system functions provided on the job base can only be provided in terms of
messages between processes.

6 Error diagnosis

The proposals of Chapter 2 make no provisions for diagnostic aids and in
f act the implementation provided only very basic ones. Errors result in
job failures which are notified by the Kernel to the appropriate failure
handling process. Thus the test job base itself is expected to handle
failures of its own transaction jobs , using the live job base failure logic
if so desire , and complete failure of the test system has to be handled
by the live system. The Nucleus job base failure handling is rather
primitive , at best printing out the immediate reason for the failure which
is rarely much help in tracing the primary error .  The Kernel of the pilot
implementation maintains a file in which each Kernel action is monitored
by recording a reference number: diagnosis consists of halting the whole
system and tediously analysing this file and a core dump . Monitoring on
a selective basis is clearly required.

Conclusions

Some of the difficulties encountered in the implementation were due to the
choice of hardware and the choice of language for writing job bases.
Although a detailed study of what is required has not been made it is
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possible to draw some conclusions from the experience of the present work.
To cope with hardware failures peripheral devices should be capable of
being serviced equall y by any of the main processors and it would be helpful
if the address range covered by a store module could be changed under soft—
ware control. The required storage protection demands more than the 3
segments provided on the Modular—One , al thoug h exac t ly how many is not clear.
Fine control is needed of the range covered by a segment: the unit of 256
words on the Modular—One is much too large and control at the single word
leve l would be highly advantageous. A suitable language in which to
program job bases would have to be specially designed and have a special
comp iler. Ideally there would be an object type in the language corresponding
to each type of object recognized by the FV methodology and the compiler would
check , as far as is possible before run time , tha t the objec ts are only used
in the permitted way. Object types such as PORT could be implemented in
Algo l 68 by MODE PORT or in Coral by using macros (although in this case
there is no mode checking). However, object types such as PROCESSDA TA
have to be built into the language so that they can be mapped correctly
onto the hardware protection segments.

The main value of the implementation work has been the light it has thrown
on the concepts imp lici t in the methodology proposed. The difficulties of
main taining , modify ing or using the pilot system make it unattractive as
a tool for further investigations, and it is not currently being maintained.
If the facilities provided by the Nucleus for the job base programmer were
to be further experimented with it would probably be be tter to simulate
them on a large general purpose computer using a more powerful language
(e.g. Algol 68) and using the diagnostic aids available on such a computer.

However , we do not think that an improved implementation of the existing
design is what is now required. Future work should concentrate on improving
the FV methodology in such a way as to overcome the problems revealed by the
present implementation.
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