
r - . ___

u—AO’48 299 TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES FIG 9/2
AN EVALUATION OF MATHEMATICAL PROGRAMMING AND MINICOMPUTERS. (U)
OCT 77 4 ELAM, 0 KLINGMAN , 4 MULVEY N0001U—76—C—0616

UNCLASSIFIED CCS—fl3 NL

I
L~IUI ___

a


~~~~~
-

~~~~
--

______ ______________________ ____

El

I

CENTER FOR
~~~~

‘ CYBERNETIC
STUDIES

I The Univers it yof Texas
\ Aust in ,Texas ~~~~

D D C

~~~

j

~~~~~~~~~ 191B~~~~

7 ‘

___________________________________ 

4
—-—

U iiu.u iIWI~~W !TMfl ~~ T U~
I Clith butior * Unlimtt .d



Research Report CCS 313

AN EVALUATION OP MATHEMATICAL

PROGRAMMING AND MINICOMPUTERS

by

Joyce Elam*
Darwin Klingman **

John Mulvey***

October 1977

* Depar tment of Decision Sciences , The Whar ton School University of
Pennsylvania , Philadelphia , PA 19104

** Depar tment of General Business, The University of Texas at Austin ,
Austin , TX 78712

*** Graduate School of Business Administration , Harvard University ,
Boston , MA 02163

This research was par tly, suppor ted by ONR Contract N00014—76—C—0383 with Decision
Analysis and Research

11
Z~kstitute , Project NR047—021, ONR Contracts N00014—75—C—0616

and N000l4—75— C—0569 and Department of Transportation Contract DOT—OS—70074 with
the Center for Cybernetic Studies , The University of Texas. Reproduction in
whole or in par t is permitted for any purpose of the United States Government.

1~~ 
D D C

CENTER FOR CYBERNETIC STUDIES 

~ r7~’pnn tire
• A . Charnes Direc tor U• Business—Economics Building , 203E JAN 12 1978

The University of Texas at Austin 
_______________

Aust in , Texas 78712 ~.‘ ISU U lb
(512) 471—1821 B

_ _ _  !TAT A1L~~~~u



______________________

• ABSTRACT

The purpose of this paper is to explore the viability of implementing

mathematical programming algorithms on minicomputers. We feel that the mini-

computer explosion presents many exciting research challenges in terms of

both identifying and matching appropriate algorithms and applications for

such hardware. This paper partially examines these issues by comparing the

computational performance of two shortest path algorithms on four very

distinct types of computer hardware.

w~te Sect~o~ ~
l.,c
luwauIoUI~~,uitIflCAmk .. ____—

— .— I

p~~ML ” ~~ 
~~~~SP

ft

-~~~~~ -• - - - — —
- - —- -

AN EVALUATION OF MATREM~TICAL PROGRAMMING AND MINICO?~U’1.rrERS

1.0. Introduction

— The purpose of this paper is to exp lore the viability of imple-

menting mathematical programming algorithms on minicomputers . We feel that

• the minicomputer explosion presents many exciting resear ch challenges in

terms of both identifying and matching appropriate algorithms and applica—

tions for such hardware . This paper partially examines these issues by

comparing the computational performance of two shortest path algorithms on

four very distinct types of computer hardware.

Today , minicomputers represent the single largest category of

installed and working computers. Over 200,000 units are operational and the

current growth rate is over 30% per year (21] . The remarkable growth of

- . the minicomputer industry in the past decade can be attributed to innovations

in technology which have steadily increased the capabilities of minicomputers

while decreasing the cost in an equally rapid fashion. Many organizations who

previously fo und computers too expensive are finding that minicomputers offer

low cost systems tha t are simple and easy to use .

The availability of efficient mathematical programming sof tware on

minicomputer systems could greatly increase the use of opera tions research

techniques in industry and government simply by placing a decision—making

capability at the fingertips of managers. In fact, since minicomputers are

v ively inexpensive, it is also possible to dedicate a minicomputer to

•
- a specific decision problem and thus create an environment which is

áonduciva to an effective man/machine decision—making system. This could be

accomplished by deaigning the operating system of the minicomputer to improve

- —..- --- . - ~--•• -
-

~~—•-~--- . • - ~ —.--- — -- -—.—--- . - -

— 2 —

the human engineering aspects of problem solving — that is, to minimize the

difficulties of entering, modifying and verifying problem data , passing the

problem data to the solution procedure, interpreting the output, and so forth .

In addition, the availability of optimization software would make it possible

to demonstrate mathematical programming techniques easily and conveniently to

managers in their own offices, and at management seminars . Thus incorporating

mathematical programming techniques into available minicomputer software is

clearly desirable . However , the feasibility and implications of accomplishing

this are currently unknown .

This report is arranged as follows . Section 2 of this paper describes

the experimental design (the computer codes, computers, test problems , and

evaluation criteria) used in the computational study comparing the shortest

path algorithms. Section 3 s~~~arizes the empirical results of the study and

indicates conclusions about what types of mathematical progr~~~ing techniques

are computationally attractive for a minicomputer. The final section indicates

some areas where additional resear ch is needed.

2.0. Experimental Design

2.1. Computer Codes

Among the simplest mathematical programs are shortest path (SP) algo-

rithms, i.e., finding the paths of least distance from a single node (called

the root) to the remaining nodes in a directed network. Such algorithms

require a minimal amount of storage, can be coded in approximately one hundred

BASIC or FORTRAN statements , and have been extensively analyzed . For these

reasons, SP methods were chosen to be tested in this study as candidates for

implementation on a minicomputer .

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ .~~~~~~~~~~~~~~~~~~~ • _  ~~•
. —  •~~~~ ~~~~~~~



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ - ~~~~~~~ - - -
~~~~~~~

-
~~~~~~~

--
~~~: ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

- 3 -

Methods for solving shortest path problems fall into two general

categories — label—correcting and label—setting (7, 10]. Based on the

computational studies of (7, 10], we choose to use the labeling—correcting

method proposed by Pape (18] and the label—setting method proposed by Dial

[6]. The characteristics of these codes ares shown in Table I.

Both codes were initially obtained in the form of FORTRAN IV source

listings (7], and each was translated directly into BASIC. BASIC was chosen

since it has become the de facto standard for minicomputers. It i8 interesting

to note that, with the exception of the statements used to assign an external

file for input and to call the system internal clock for timing, identical

BASIC codes were used on all four computers.

2.2. Computer Systems

Four computers were used in this study — two minicomputers (DATA—

POINT 5500, DATA GENERAL NOVA 840), one large general—purpose computer (CDC

• 6600), and one medium—size computer (DEC—10). The term “minicomputer” is not

well defined in the literature. It is associated with computers which have

a wide variety of capabilities and characteristics. The DATAPOINT and the

NOVA computers were chosen aS being typical and representative of the extremes

• in the spectrum of minicomputers. The major characteristics of the actual

• machines used in this study are s~~~arized in Table II.

The CDC 6600 operates under the UT—2D operating system (a specialized

operating system written by the University of Texas Computation Center) and has

131,000 60—bit words of central memory. The DEC—10 operates under the Time-

sharing Operating System (TOPS—b) and has 256 ,000 36—bit words of central

memory. A full range of peripherals and an extensive software library, including

a BASIC compiler, i~ available on both the CDC 6600 and the DEC—10 systems.

-

—

— 4 —

Table I -

Computer Code Characteristics

CODE N AME PAPE DIAL

ALGORITHM CLASS LABEL-CORRECT INC LABEL SETTING

NUMBER OF LINES 91 124
OF SOURCE CODE

ARRAY STORAGE 4 NODE LENGTH 6 NODE LENGTH
REQUIRED 2 ARC LENGTH 2 ARC LENGTH

1 MAXIMUM DISTANCE LENGTH

- -

- ~~ —~___________________________ -

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - - —~~

— 5 —

TABLE II .

Computer System Characteristics

p

CDC 6600 DEC—10 NOVA 830 DATAPOINT 5500

MAIN STORAGE TYPE CORE CORE CORE

WORD LENGTH 60 BITS 36 BITS 16 BITS 8—BIT BYTE

CHARACTER LENGTH, 6 7 8 8
BITS

CYCLE TIME , 1/MAJOR .95 1.2 1.6
MICROSECONDS .1/MINOR

OPERATING SYSTEM tlr—2D TOPS-j O RDOS DOS

MEMORY SIZE 131K 256K 64K 64K
WORDS WORDS WORDS BYTES

PERIPHERALS:
DISKS FULL FULL 4 CARTRIDGES 2 PACKS

RANGE OF RANGE OF 5 MEGABYTES 25 MEGABYTES
PERIPHERALS PERIPHERALS EACH EACH

TAPE DRIVERS 1 8-TRACK 2 CASSETTES
PRINTERS 1 LINE PRINTER 1 LINE PRINTER
CARD READERS NONE 1

TYPE OF BASIC COMPILER COMP ILER INTERPRETER INTERPRETER

APPROXIMATE $6M $600K $50K $40K
SYSTEM COST

_ _ _ ~~

— —
~~

—
~~~

- 
~~~~~~~~~~~~~~~~~~~~ 

—
~~~~~~~~~~~~~~~~

— — “
~~ ~~~~~~~~~ --~-~~~~ —

fl - -  ‘~
— 6 —

The NOVA 830 operates under the- Real—Time Disk Operating System

(RDOS) and has 64 ,000 16—bit words of central memory. The DATAPOINT 5500

operates under the Disk Operating System (DOS) and has 64,000 8—bit bytes of

addressable central memory. The NOVA 830 has 4 disk cartridges, each with 5

megabytes of storage; 1 8—track tape drive; 1 line printer; and several CRT

and teletype terminals. The DATAPOINT 5500 has 2 disk packs, each with 25

megabytes of storage; 2 cassette tape readers; 1 line printer; and 1 card

reader. The software libraries of both systems contain a BASIC interpreter.

In BASIC, each number is represented as floatitig point which requires 2

word. of storage on the NOVA and 4 bytes of storage on the DATAPOINT 5500.

The cost and cycle time of these computers vary greatly. The

approximate costs of these computer systems (CDC 6600, DEC—10, NOVA 830, and

DATAPOINT 5500) are $6,000,000, $600,000, $50,000, and $40,000 respectively.

The cycle times for the DEC—10, NOVA 830, and DATAPOINT 5500 are .95 , 1.2 ,

and 1.6 microseconds , respectively . (Cycle time is the minimum time interval

that elapses between the start of two successive accesses to any one storage

location.) Due to the special architecture of the CDC 6600, both a major and

a minor cycle time are defined for this system. In particular, the CDC 6600

central processing unit contains a stack which holds eight words from main

storage. The minimum time that must elapse between the starts of two successive

accesses to the stack is a minor cycle. The minimum time that must elapse

between the starts of two successive accesses to central memory, which includes

the time required to fill the stack , is a major cycle. The minor and major

cycle times for the CDC 6600 are 1 and 1. microseconds, respectively

Cycle time is often used as a performance indicator of computer

systems whereby inference on how a code will perform on another computer are

L

~

-

~

--

~



- ~~-‘-~~~ --- -- — —
~

——- 
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 7 —

based on cycle time ratios. We shall see that cycle time is an unreliable F
measure for the relative performance of shortest path techniques.

2.3. Test Problem ¶
A variety of randomly—generated shortest path problems were used.

The problen. were created on the CDC 6600 using two FORTRAN program generators .

AU testing was conducted with the identical test problems.

The shortest path problems which were generated fell into two

distinct categories — grid problems (which are typical of highway networks), and

random problems (which are typical of critical path prob lems) . Structurally ,

a grid problem can be represented by a rectangular matrix such that each matrix

position is represented by a node . The only permissible arcs lie between

adjacent nodes. In contrast , the adjacent node requirement is dropped in a

random network.

The grid network test problems consisted of 25 node and 100 node

networks with rectangularities of 5 x 5, 10 x 10, 5 x 20 , and 2 x 50. A

uniform probability distribution was used with two ranges for the lengths of

the distances between nodes , i.e., (1 ,200] and [1,800].

The random network test problems contained 100 nodes with an

average of 5, 10, 15, and 20 arcs per node. The nodes which form endpoints

for the arcs in the network were also selected using a uniform probability

distribution, subject to the restrictions that an arc cannot originate and

terminate at the same node and that duplicate arcs are not allowed. For each

network size , two problems were generated , one with arc lengths (i ,zoo] and the

other with arc lengths (1,800]. Again, the arc lengths were selected by means

of a uniform probability distribution.
-

H _

____________________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ --

The problem specifications are shown in Table III. These problems

represent a scaled—down subset of the 2500—node grid network test problems and

the 1000—node random network test problems used in the study by Dial, et al.

[7]. The test problems in this study have fewer nodes than the larger network

test problems in (7] but have approximately the same average number of arcs

per node. For the grid problems, the same degree of rectangularity is also

maintained. These networks were chosen because larger problems could not be

stored in the memory of the DATAPOINT 5500 computer .

2.4. Performance Criterion

We employed central processing time as a measurement of each code’s

performance. For many applications , such as real—time routing and scheduling

of vehicles, the solution time is an important factor which limits the use—

abi lity of an algorithm. This is especially pertinent for minicomputers

because of their relatively slow processing speeds . Also, we do not fo resee

the useage of multiprogramming operating systems on minicomputers; hence,

central processing time could be. used without introducing random errors in

the data .

2.5. Other Experimental Design Considerations

In all machines except the DATAPOINT 5500 , internal clock routines

were employed for timing computation. Since the DATAPOINT 5500 does not have

a user accessible internal clock, timing was performed with a stopwatch and a

BEEP instruction; however, the accuracy was not significantly affected since

solution times were generally measured in minutes on the DAT APOINT computer .

The reported solution times do not include input or output time . Both codes

were written to accept problem specifications in fo rward star forma t [7] and

neither required any preprocessing prior to optimization . The algorithm

initialization steps in which the arrays are set to zero were included , however.

-~~~

_
__

GRID NETWORKS

- Grid
Problem Nodes Dimensions Number Cost

No. Node x Node Of Arcs Range

1. 25 5 x 5 80 1 — 200

2. 100 10 x 10 360 1 — 200

3. 100 5 x 20 350 1 — 200

4. 100 2 x 50 296 1 — 200

5. 25 5 x 5 80 1. — 800

6. 100 10 x 10 360 1 — 800

7. 100 5 x 20 350 1 — 800

8. 100 2 x 50 296 1 — 800

RANDOM NETWORK S

Problem Nodes Average Number Cost
No. Arcs per Node Of Arcs Range

9. 100 5 532 1 — 200

10. 100 10 949 1 — 200

11. 100 15 1362 1 — 200

12. 100 20 1947 1 — 200

-13. 100 5 532 1 — 800

14. 100 10 949 1 — 800

15. 100 15 1562 1 — 800

16. 100 20 1947 1 — 800

Table III

Test Problem Specifications

-~~~~-~~~~~ —- -~~~~~~~~—~~~~ -

- -

~T ~~~~~ ~~~~~~~~~~

‘ ‘p . .,

— 1 0 —

In order to reduce the e f f e c t s-t h a t a particular root node might

have on solution time, each of the 16 networks was solved five times (i.e.,

for five different roots) on each machine (with the exception of problems

13 and 16 which were not available on the NOVA 830) with each code. Median

solution times are used as a basis for comparison.

3.0. Computational Results

Computational results are summarized in Table IV. Notice the

magnitudes of difference between solution times on the minicomputers and on

the larger computer systems. The differences can be attributed to both

slower execution speeds on the minicomputers and to the fact that BASIC is

compiled on the larger systems while it is interpreted on the minicomputers.

It is interesting to no te that the differences in the cycle times between

the computer systems in this study are relatively small when compared to the

differences in run times, and that a system with a smaller cycle time does not

necessarily have a smaller run time (the DEC—10 cycle time is shorter than the

COC 6600 major cycle time). Thus, the overall performance of a computer system

not only depends on cycle time, but also on the flexibility and power of its

instruction repertoire, the number of storage cycles per execution of an

instruction, and the input/output capabilities.

These results strongly indicate that there is consistency in the

relative behavior of the SP algorithms across all the computer systems used in

this study . In particular , the following observations appear to hold regardless

of the computer system on which the algorithms were tested . The distance range

has very little effect on the PAPE code and grid rectangularities have negligible

ef fec ts . In fact , the pr imary parameter affecting solution times of the PAP E

code (othe r than number of nodes) is the arc density of the network. Conversely,

U

- -- ~~~~ -~~~~~~ -~~ - .
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ____ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

-11 -

COMPUTER CDC 6600 DEC—10 NOVA 830 DAT APOINT 5500

CODE NAME PAP E DIAL PAPE DIAL PAPE DIAL PA ’E DIAL

GRID NETWORKS
DISTANCE RANGE [1,200]

— Problem No.

1 .008 .024 .06 .15 1.5 6.8 12 31
2 .032 .057 .23 .38 7 16.8 49 85

3 .03]. .073 .21 .46 7 20.59 49 86

4 .033 .105 .18 .61 6.09 34 43 132

DISTANCE RANGE [1,800]

5 .008 .064 .06 .38 1.5 21 11 87

6 .035 .124 .21 .75 7.1 39.39 50 177

7 .031 .182 .23 1.00 6.69 55.8 47 225

H 8 .03 .305 .2 1.63 5.9 111.1 41 385

RANDOM NETWORKS
DISTANCE RANGE [1,200]

9 .047 .062 .31 .4 10 16.4 70 89

10 .081 .078 .53 .5 16 20.2 111 115
11 .156 .103 .86 .66 28 27.09 198 155

1.2 .169 .127 1.01 .8 35 32.2 242 187

DISTANCE RANGE (1,800]

13 .055 .105 .36 .6 NA* NA* 80 145
14 .082 .119 .55 .7 17.39 30.6 118 158
1.5 .131 .14 .9 .9 28.8 37.9 1.98 199
16 .164 .157 1.0 .89 NA* NA* 243 223

NA not available
Table IV

Solution Time Comparison of PAPE and DIAL Codes
Median Time in Seconds

LL
_ _ _ _ _ _ _

-~--~~~~~~ ____

—_
______ -_- •1

— 1 2 —

the DIAL code is considerably affected by both the rectangularity of the grid

and the distance range. For the grid problems, as the problem becomes more

rectangular (i.e., larger arc/node rations) and as the distance range increases,

- - the solution times increase markedly . For the rand om problems , the solution

times for the DIAL code increase as the distance range and/or the arc density

• increase.

To compare the techniques, the PAPE code easily dominates the DIAL

code on grid problems. Yet as the arc density of the random problems increase ,

the DIAL code times increase at a slower rate than the PAPE times as shown in

Figure 1. Thus , as arc density increases in the random networks, we observe

that there is a transition in time advantage from the PAPE code to the DIAL

code. This transition occurs at higher arc densities as the distance range

increases. For example, the transition is approximately at [8—13] arcs per

node for the distance range (1,200] and (15—18] arcs per node for the distance

[1,800].

The conclusions drawn from this study concerning the ef f i ciency of

SP algorithms for networks with a fixed arc/node ratio and distance range are

identical to the study by Dial, et al. [7] which concluded that the DIAL code

is superior to other label—setting and label—correcting implementations. This

seems to indicate that the relative behavior of an SP algorithm for certain

classes of network problems is not greatly affected by choice of programming

language, computer system, or size of problem .

—— — — - — — —-, ,— —

- ~~~~~~~~~~
-
~~~~,~~~~==.- • •

~ 
-
~~

--
~~~

--
-
-
~

--
- • • —

~
-‘- -

~~~~~ - —— ~~~~~ • ,— ,--~—~--~- • ~~~~~~~~~~~~ - 
- 

- - --.- ---- - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ..~~~. - - -

— 1 3 —

t 240 ’
230
22 0~ Dial
210 -

J 200’
190’
180
170 DATAPOINT 5500
160 -
150 -
140
130 -
120
110 -

t 100
90
80
70-

+
rape

‘ Dial

j 3f~
NOVA 83O

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.14

.13

,,“ _ . CDC 6600

.10

.09

.08

.07

.06

.05•

_ _ _ _ _  I I I I
5 10 15 20 ARCS/Node

Figure l
Relationship of Random Network Density to Solution Time for

SP Algorithms on Four Compute a Is Range 1-200)



- - - - - ~~~- -- -- •• 

- - - ---~~~~~~ --~~~~~~~- W — 
~~~~~~~~~~~~~~~~~ 

— ____ ____r -

~
-

— 14 —

The computational results demonstrate the feasibility of solving

shortest path prob lems on minicomputers. Although the solution t imes for

ainicomputing are several magnitudes greater than for larger computers, they

are still reasonable for many applications . Note that all PAPE code times

are under four minutes. The PAPE code is particularly attractive for mini-

computers due to its low storage requirements and short execution time——all

grid problems were solved in less than a minute. The PAPE code also performs

well on random problems with Low arc density (average of 5—10 arc/nodes).

Such problems are representative of many real—world PERT network problems.

The results also show that the relative performance of an SP

algorithm is uniform over hardware of varying capabilities and various sizes

of certain classes of problems. This suggests performing initial testing of

an algorithm on a minicomputer with scaled—down test problems before final

implementation on a large—scale system. The question then arises as to what

other types of. mathematical algorithms lend themselves to implementation on mini-

computers . Obvious classes are heuristic and spanning tree procedures be—

cause they have low data requirements, and computer codes for such algorithms

are often short and their algorithmic storage requirements are low. Given

the dramatic recent improvements in the speed and memory requirements of net-

work algorithms (1, 2 , 3, 11, 12, 16], it appears likely that algorithms for

solving minimum cost flow networks are also feasible for a minicomputer.

This belief is partly based on the work reported in (11] which illustrates

that general network codes can be designed which only requi re two more node

length arrays than the PAP E code . Further , Karney and Klingman [16] indicate

that these simplex based codes do not suffer undue increases in solution

times by keeping a portion of the problem data on external computer memory

(i.e. , on a disk file) . Thus , it appears possible to Imp lement an e f f ic ient


~~~~
‘ 

—-.--------•----

~~~~~~ .— _______ 

~~~~~~~~~

r ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ — -~~ •

— 15 —

• in—core/out—of—core network code when the problem data cannot be stored within

internal memory. Due to the basic similarities between the label—correcting

algorithm and the primal simplex minimum cost flow network algorithm, solution

times for the network codes can be approximated from the solution times of the

PAPE code . The differences in solution times between the two codes for a given

network is largely due to the time spent in changing node potentials (dual

variable values) (7 , 111. Experience has shown that the node potentials change

1½ times, on the average , for the label—correcting algorithms [7] and 6—10 times

for the min imum cost flow network. algorithm. Thus, we estimate that the solu-

tion times for solving network problems will be roughly 6— 10 times longer than

the t imes for solving shortest path prob lems using the PAPE code .

4.0 FUTURE DIRECTIONS

The emergence of minicomputer network and heuristic codes could sub-

stantially increase the use of mathematical programming since many real—world

applications are network type problems and the major components of many

scheduling systems are network—based (3, 4, 5, 10, 13, 14, 20]. One time—

• sharing service reports that hundreds of thousands of dollars are spent for

PERT analysis alone by their users. Given that problems of this type can be

solved on a minicomputer, it would be desirable to design effective, dedicated

man/machine systems where the operating system is completely tailored to the

• application and , perhaps, to the user. Thus, while mathematical programming

is at present used primarily by larger companies and governmental agencies,

the envisioned coupling of inexpensive minicomputers and network algorithms

suggest that it might soon be possible for smaller firms to use them. As men—

tioned earlier, the capability of a minicomputer to solve network problems

cothined with its low cost may allow a minicomputet to be dedicated to a

particular network application . This suggests research into the design of

______ - -~~~~~~~ - 

~~~~
—.-—.—.---

~~~~~
.

_

~~~~~~~~~~~~~~~
—--—


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘
~ ~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~

-.- --
~~~

----‘
~~~~ 2~~~~

’ —---
~ ~

- —
— 16 —

software for effective man/machine interfaces and possibly the design of

specialized hardware for performing this interaction.

The implementation of general linear, nonlinear , and integer

programming algorithms does not appear to be feasible at this time since the

• data and storage requirements of these algorithms are much larger than for

networks and solution t imes are generally long even when executed on large

computer systems. It may, however, be possible to solve some special classes

of integer programming problems via reformulation as integer generalized or

pure networks.

In stsumary , the coupling of inexpensive minicomputers and network

algorithms appears to be both attractive and viable. Research is needed before

these areas can be successfully wed, however. Multifaceted research is re—

quired between algorithmic researchers, systems analysts, and computer

designers. In general, research is needed to determine the types of algorith—

mic techniques which are most effective for minicomputers. Such research

would probably confirm our belief that linked—list pointer techniques should

be used whenever posaible to replace arithmetic operations; however, since

random access is often slow on current minicomputer hardware, this points out

the need for a string manipulation minicomputer which could efficiently handle

linked—list pointers.

With regard to future activities, algorithms should be devised and

tested which simultaneously use a series of hardwired minicomputers (that is,

an array of minicomputers) for performing the steps of an algorithm... For

example , network algorithms might be devised where one minicomputer only corn-

putes reduced costs~ another minicomputer only computes flow changes , and a

third minicomputer only updates linked—list pointers. Although this marriage

is a long way in the future, its advantages are apparent and its applications

~~f l & c -~~~~~~~~~~• - •~~ • • - — —~~~-~ —~~~~~~~~~.--.•~ —-~ ______

— 1 7 —

are abundant . For example , since all 0— 1 integer programs (14] can be

modeled as integer network problems, these developments might allow integer

applications to be solved on minicomputers. Additionally, many multi—criteria

decision making problems can be successfully modeled and solved as network

problems (cf. Ziever et al. (22] and Collins et al. [4]). The paper (Glover

and Klingman [13]) discusses several real—world problems which have been

modeled and solved as network problems .

Another fundamental research area is on the interface of information

-
and optimization systems. Since the capabilities of minicomputers are greatly

restrict ed , it is crucial to recognize that information systems and optimiza-

tion models are part of the same decision support facility (see (17]). Both

elements must be taken into consideration during design. Unfortunately, the

• optimization modelers and the informat ion management specialists usually tread

over different terrain and rarely understand or speak each other’s language.

If this situat ion continues , it will severely retard what we believe is a most

promising area for future applications.

F —

IL __
~~~~~~~~~•



I”— ‘— • —••———- — -- ~
_ -_ —-  —,_ —•—— —.—~ .—•,—- •— .-— --—— ‘- ——- .—-—.,—-—— ,— ———- .-——.— •

- 
—:-~~~ -:-~~~~

• _ -~. --- • —=:--—•~
z-—--- --

~
--, .

~~~~~~-~— -— — —  • - —

I
— 1 8 —

REFERENCES

1. P. Barr, F. Clover, and D. Klinginan , “Enhancements of Spanning Tree
Labeling Procedures for Network Optimization,” Research Report CCS 262,
Center for Cybernetic Studies, University of Texas at Austin, 1976.

2. C. Bradley, G. Brown, and C. Graves, “Design and Implementation of Large
Scale Primal Transshipment Algorithms ,” Technical Report NPS55BZBW76 O91,
Naval Postgraduate School, Monterey, California, 1976.

3. A. Charnes, F. Clover, D. Karney, D. Klingman and 3. Stutz, “Past, Present,
and Future Development, Computational Efficiency, and Practical Use of
Large—Scale Transportation and Transshipment Computer Codes,” Computers
and 0.R., 2 (1975).

4. !4.A. Collins , L. Cooper, and J.L. Kennington, “Solving the Pipe Network
Analysis Problem Using Optimization Techniques ,” Technical Repor t IEOR
76008, Southern Methodist University, 1976 .

5. D. Dantzig, Linear ~~~~~~~~~~ and Extensions, Princeton University Press,Princeton, New Jersey, 1963.

6. R. Dial, “Algorithm 360 Shortest Path Forest with Topological Ordering,”
Communications of the ACM, 12 (1969), 632—633.

7. P. Dial, F. Clover, D. Karney, and D. Klingman, “A Computational Analysis
of Alternative Algorithms and Labeling Techniques for Finding Shortest
Path Trees ,” Resear ch Report CCS 291, Center for Cybernetic Studies,
University of Texas at Austin, 1977.

8. E. Dijkatra, “A note on Two Problems in Connexion with Graphs,” Numerical
Mathematics, 1 (1959), 269—271.

9. S. Dreyfus, “An Appraisal of Some Shortest—Path Algorithms,” Operations
Research, 17 (1969), 395—412.

10. 3 Cilsinn and C. Witzgall, “A Performance Comparison of Labeling Algo—
rithms for Calculating Shortest Path Trees,” NBS Technical Note 772,
U.S. Department of Commerce, 1973.

11. F. Clover, D. Karney , and D. Klingman, “Implementation and Computational
Study on Start Procedures and Basis Change Criteria for a Primal Network
Code,” Networks, 4 (1974), 191—212.

12. F. Clover, D. Karney, 1). Klingman, and A. Napier, “A Computational Study
on Start Procedures Basis Change Criteria, and Solution Algorithms for
Transportation Problems,” ~~~~~~~~~ Science, 20 (1974), 793—813.

~~~~ 13. F. Clover, and D. Klingman, “Real—World Applications of Network Related
Problems and Breakthroughs in Solving them Efficiently, ” AcM Transactions
on Mathematical Software, 1, 1, 1975.

-. s ~~~~~~~~~~ — —  ..â # 4 _ t _  - - —



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
~

••

~
•
~

• ____________________________________________________F —
~~~

-- .- — ________________ — --- --•--—-----
~~ —

~
— •- .— — -~ ~~~—-- - - - -—--- --

~~~
• - - -

~
--

~
-

r— 

— 1 9 —

14. P. Clover, and J.M. Mulvey, “Equivalence of the 0—]. Integer Progra.
to Discrete Generalized and Pure Networks,” to appear in 0p~rationsResearch, 1977 .

15. B. Golden, “Shortest Path Algorithms: A Comparison,” Research Report
OR 044—75, Massachusetts Institute of Technology, 1975.

16. D. Karney and D. Klingman, “Implemen tation and Computationa l Study on
an In-Core Out—of-Core Primal Network Code ,” Operations Researc,~~ 24 ,
(1976).

17. J.M . Mulvey, “Coordinating Database Design and Network Optimization,”
presented at the XXIII International TIMS meeting, Athens , Greece ,
July, 1977.

18. B. Moore, “The Shortest Path Through a Maze,” Proceedings of the
International Symposium on the Theory of Switching, 1957 .

• 19. U. Papa , “Implementation and Efficiency of Moore—Algorithm for the
- Shortest Route Problem,” Mathematical Programming, 7 (1974) , 212—222 .

20. D.W. Robinson, “Analysis of a Shortest Path Algorithm for Transportation
Applications,” Control Analysis Corporation, Technical Report, March ,
1976.

21. E .K . YasakI , “The Mini: A Crowing Alternative,” Datamation, May,  1976 ,
139—142.

22. T. Ziever, U. Mitchell, and T.R. White, “Practical Applications of Linear
Programsing to Shell’s Distribution Problems,” Interfaces, 6, 4, 1976.

.

I

• 
•



___ — - • 
- •

Unclassified
— 

Sct itnt~ CIj ss,I ic a I,on -
~

DOCUMENT CONTROL DATA - R & D 
-

~~. .,. Iv ci. ,,, ttc~ iiu,, ol I, tic , body ~~ ~~~ l,o r S ~Hd ,nd.-. ~~~~ .,m,o I,, I, fl ,c o S t  b. ,~~tc,cd .ct,.-n Ihr o ~‘c,.ti repofl is ci... ilied)
I OR IG I N A  IING A C T I V I T Y  (CorponaIe UOthoC) ~s. R E P OR T  S E C U R I T Y  C L A S S I F I C A  T I O N  

— I -

Center for Cybernetic Studies —“ Unc lassified
The University of Texas m. G R O U P

i O R T  T I T L E

, ~~~~An Evaluation of Mathematical Programming and Minicomputers 0 /

4 -  D E S C R I P T I V E  N O TES  (Tip .  of r.po,, .snd,incius,ve dat..)

______ name)

Darwin/Klingman 7, 7
6 

/ 
7•. T AL NO. F P A G E S

SS~~CON T R A C T  ..... . -$-. 
___________ Ia. O R I G I NA T O R S R E P O R T  NUM$ ER(S)

Nfl0014-76-C-0383 d
N OOO 14-75-C -O569;~~~I6 ; DOT-OS-7OO74 Cente r for Cybernetic Studies
S. P R OJ E C T  NO.

NR047 -021 
Researc h Report CCS 313 ,

-~~~~~

95. OTy I E R  R E P O R T  (Any other non,ber. that may be s.signedthis report) _______________________________ _______
d. 

- ,I
~ 

( (
~~31~~J -10 .  OI S ’ T R I U U T I O N  S T A T E M E N T  ___________________

This document has been approved_ for r’ i.hlie release ~snd s~~l~ j
its distribution is unUmi

~~~~~
1’/

~i~9/ j _ Z-c
~~~~~~~~~~~~~~~ 

-~p iç ’~ - ~~~~~~~~~~I i -  SUPPL. E M E NT A R Y  N O T E S  I S.  S P O N S O RI N G  U ~~y ~~~Office of Naval Research (Code 434)
Wash ington, DC

13 .  AOSTII I ~~~~~ 
-

The purpose of this papçr is to explore the viability of implementing
mathematical programming algorithms on minicompu ters. We feel that the
minicomputer explosion present s many exciting research challenges in
terms of both identif ying and matching appropriate algorithms and applications
for suc h hardware . This paper partially examines these issues by comparing
the computational , performance of two shortest pat h algorithms on four very
distinct type s of computer hardware .

~“~‘ ~~~~‘

F~fl 
FORM I A 7 2  (PAGE ~~

~~~~~~~~ I NOY IS ‘~~~~ Unclassif ied
S /N 0 1 0 1 - 6 0 7 - 6 8 1 1 Securi ty C lass i F ic at ion

&-314 O~

_ _ _ _ _ _ I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~ ~!~~‘T

- Unclassified
- Security Class if ication 

_________________

L I N K  A L IN K  B L I NK  CK E Y  W O R D S  ______ ______ ______ ______ ______ _____

R O L E  W Y  R O L E  W Y  R O L E  W Y

Shortest Path

Traffic

SNetworks -

Minicomputers -

I

_________________________________________________ _____ _____ _____ _____ _____ ____ - •

0 D ~‘?..1473 (BACK ) Unclassified

______ - 

~fl, O,Oa . o ,4 . ,s OO Security Classificat ion A - 3 1 4 0 5


