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ABSTRACT

This paper examines a variety of relaxation strategies for zero—one

integer programming problems, containing from 54 to 2,683 variables, that

arise in manpower planning applications. The8e strategies are compared by

a primal criterion, which emphasizes the ability to obtain high quality

feasible solutions. This contrasts with the usual dual criterion for com-

paring relaxations, which emphasizes objective function bounds obtained from

solutions that are generally not feasible. The changed emphasis requires a

change in the use of relaxations, which may be viewed from the standpoint of

generating trial solutions for heuristic programming or as a fundamental

component of branch and bound. Computer tests show that a combined surrogate—

Lagrangean strategy is the most effective for the problems examined followed

by a pure surrogate relaxation strategy. All other approaches, including

generalized Lagrangean relaxation, fared substantially worse , particularly in

terms of solution quality.
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1. Introduction

Manpower planning is an area of growing importance for the effective

utilization of human resources. Today, increased recognition is being given

to the fact that the assignment of individuals to jobs to make use of their

skills while providing adequate job satisfaction is crucial to the smooth

and economical function of any large organization. This recognition, coupled

with the awareness that mathematical and computer optimization techniques can

materially assist in large—scale planning operations, has brought about a

wealth of research into ways of formulating and solving manpower planning

problems [3 , 4, 5, 6, 9, 17, 26, 27 , 28, 29].

Advances in mathematical formulations designed to capture significant

real—world complexities of the manpower planning problem have been achieved

in an evolutionary succession of models, beginning with the CADA system and

its offspring [26,27,28, 29] , and culminating most recently in the extended

goal programming (EGP) manpower planning model of [17]. This model, which

consists of a network quasi—assignment component augmented by two linear side

constraints, can be developed as follows.

The classical assignment problem may be stated as

Minimize E c~ x~ 
(1)

(i,j)CA ~

Subject to:

x~~ 
= 1, 1cM (2)

{j I(i,j)cA}

E x = 1 , icN (3)
‘i ,j)cA } ~

(i,j)eA (4)

- -~~~~~~ .- --~~~~~~—-~~.--. ~~~~~ . --- -—-~~- .~ -~~ - -
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where M — (1, 2, ..., m} is the set of men, N U, 2, .. ., n} is the set of

jobs, A is the set of admissible assignments (arcs), xii 1 (0) if man 1 is

(is not) assigned to job j, and c
1~ 

is the cost of assigning man I to job j.

Many real—world situations have two features which this simple formulation

cannot handle satisfactorily. First, the set of admissible arcs A may be such

that there are no feasible solutions to constraints (2) — (4). Second, the

problem may have multiple competing objectives. The first difficulty can be

overcome by adding a dummy man m + 1 which can fill any job and a dummy job

n + 1 which can be filled by any man. This augmented model, called the quasi—

assignment model, can be stated as follows :

Minimize E c1sx (1)
(i,j)cA ’ -~

Subject to E x 1, icM (2’)

. 

jki,i~~~’ ~

(2a ’)
jcN’ ~~ ,j

X = 1, jcN
{i~ (i,j)cA’} 

ij

E X m (3a’)
1cM’ i,n+l

x
ii ~ 

0, (i,j)cA’ (4’)

where M’ M U {m + i}, N’ N U {n + l}, and A’ A U ((in + 1,1)1 jcN} u
{(i, n+1)I icM}Ij{(m + 1, n + 1)). Note that (2’) — (4’) always have a

feasible solution for any A and that the c11, (i,j)cA ’ — A , can be def ined

to r.flect the cost of an unassigned man or unfilled job or to provide for

the maximum assignment of men to jobs.
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The EGP model is an extension of (1’) — (4’) which accommodates multiple

objectives. Specifically, suppose there are three objectives i, i = 1, 2, 3,

and let ~~~~~, I — 1, 2, 3, be the optimal objective function value obtained when

(1’) — (4’) is solved using c c~. Then the EGP model can be stated as

Minimize 1z c x
(i,j)cA ~i (1’)

Subject to

The quasi—assignment constraints (2’) — (4’)

and 

~ 

c~~1 xij 
c 

~ ~k ~~i~jcA ’~~~~ 

ij 
— 

k = 2 , 3 (5’)

(i,j)cA ’

where the ct.K 
are weights defining the relative importance of the objectives.

The model is not only relevant to manpower planning but is representative

of the class of integer programming problems with major imbedded network struc-

tures that have appeared in wide varieties of real—world applications (see,

e.g., [3, 6, 17, 18, 26 , 30]).

Purpose and Scope of Investigation

The goal of this paper is to determine strategies for solving these man-

power planning problems effectively. Advances toward this goal almost inevi-

tably have implications for solving other members of this problem class,and

thus provide the foundation for algorithmic investigations beyond the domain

of our present concern.

The multi—objective manpower planning problem, whose origins and nature

are more fully described in [6, 17], may contain almost a half mill ion variables

and 2400 constraints (disregarding bounds on variables). The computational

testing reported in this paper was performed on the set of fifteen EGP problems
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reported in [17]. These problems range in size from 20 constraints and 54

variables to up to 135 constraints and 2,683 variables. Integer programming

problems of this size would normally be viewed as extremely difficult, perhaps

even impossible, to solve (within a practical time limit). However, because

of the large imbedded network structure , a more optimistic outlook is warranted.

The primary concern of this paper is to identify ways to exploit the

network—related form of this problem. More particularly , our goal is to

identify an effective solution strategy to be incorportaed within branch and

bound (B&B) and related or extended methods such as Parametric B&B [13].

Numerous investigations into combinatorial problem solving have emphasized the

value of relaxation strategies in B&B, and thus, we focus on relaxation

strategies acclaimed to be successful in the literature, as well as several

supplemental strategies that have been made the basis of integer programming

solution routines. However, we also examine a relaxation strategy (in two van —

ants) that has so far escaped practical study. One of our principal discoveries

is that this strategy , which is a composite of surrogate constraint and gener—

alized Lagrangean relaxations, proves to be far more effective than any of

the other approaches examined.

A Primal Orientation

It should be stressed that we favor the use of a different (or , more

precisely, an additional) measure of the effectiveness of a relaxation strategy

than emphasized in previous studies. Whereas customary measures, both theoretical

and pragmatic, have concentrated on a dual measure of effectiveness (by refer—

ence to optimistic bounds on the objective function), we choose to call attention

to the Importance of a primal measure of effectiveness (by reference to the

capacity to generate feasible trial solutions).
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This altered emphasis has not been undertaken before, primarily because

the notion of a problem relaxation Is the cornerstone of duality theory.

Indeed, customary uses of relaxations have been characterized as “duality ex-

ploiting” [16]. Yet it is repeatedly conceded that one of the prime virtues

of B&B is the ability to obtain good feasible solutions and users of B&B

solution routines look for this ability, especially in their attempts to solve

large problems, when integer programming algorithms are often unable to verify

optimality. Since the verification of optimality is a dual—related function

(employing objective function bounds) and the identification of good feasible

solutions is a primal—related function (employing “solution completions”), the

inclusion of a primal orientation in evaluating problem relaxations would seem

to be particularly justified. This is notably so for parametric B&B, which F
has an even stronger connection to primal solution strategies.

This change of emphasis to a primal orientation, however , harbors a few

difficulties. Except under special circumstances, it is generally necessary

to go beyond the solution to a relaxed problem to obtain a trial solution

that has a chance of being feasible for the original problem. Thus, for

example, the solution to an LP problem must, at the very least, be rounded

in order to obtain an integer—valued trial solution to the integer problem.

Consequently, the introduction of a primal solution criterion for a problem

relaxation, at the very least, carries with it the burden of specifying how to

replace a fractional solution by an integer solution when the integer restric—

tion is not automatically satisfied. More complex types of “solution comple—

tion” may also require strategies to come closer to satisfying other types of

problem constraints (see , e.g., [15]).
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This changed emphasis has further ramifications; it also necessitates a

change in the characterization of a good relaxation. Parameter values that

yield a good relaxation in a dual sense may be substantially differen t from

those that yield a good relaxation in a primal sense. The findings of our

study show that this happens In the majority of cases. Such a possibility has

escaped previous investigations that have focussed wholly on the dual evalua-

tions of relaxation strategies. The implications of these findings are clearly

profound : if we seek improved feasible solutions, then the relaxation strategies

based on duality considerations are inappropriate. This is not to say duality

considerations are without value. Rather, they should be supplemented by other

considerations to obtain a more effective overall strategy.

The present study demonstrates that combined surrogate—Lagrangean

strategies dominated all other solution strategies we investigated, according

to a primal solution criterion. Further, these strategies succeeded as well as

they did, not because the problems studied were easy to solve (i.e., not

because good feasible solutions were easy to find by the customary approaches),

but in spite of the failure of traditional alternatives. The power of the

primal—related relaxation strategies is illustrated by the fact that we were

able to obtain good feasible 0—1 solutions at the root of the B&B tree (before

branching to deeper levels) in a total elapsed CPU time of 150 to 380

seconds for the entire collection of 15 problems. Since it is rare to obtain

good feasible integer solutions from a root node, and since the other methods

fared much less successfully, the remarkable speed at which the feasible solu—

tions were obtained indicates a major advance in solution strategies for this

class of problems. 

—- ‘ - - - - - - -—-—--
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To provide a foundation for unders tanding the uses we have made of

problem relaxations, and the specific results obtained by our testing, we

sketch the essential concepts of problem relaxations in the next section.

2. Problem Relaxations

The problem

Minimize g(x) (R)
xCX

Subject to
ycY G(x)~~~0

is said to be a relaxation of the problem

Minimize f (y )  (P)

Subject to

F(y)~~~ O

if the following conditions hold :

(1) If x* is optimal for (R) and y* is optimal for (P), then

g(x *) ~ f(y*) (bounding condition)

(2) There is a transformation T(x) = y such that if x* is optimal for

(R) and y* = T(x*) is feasible fot ( P )  (satisfies y*CY and F(y*) < 0),

then f(y*) = g(x *) implies y* is optimal for (P).

(3) If (R) has no feasible solution, then (P) has no’ feasible solution.

(This condition may be viewed as an instance of condition (1) under

the convention that g(x) and f(y) are minimized at infinity when the

constraint sets of (R) and (P) are empty.)

The motive for calling (R) a relaxation of (P) is that the foregoing con—

ditione are satisfied most simply when x — y, the constraint region of (R) is

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____________
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less restrictive (more “relaxed”) than that of (P), and g f (or else g is

a simple underestimating function that yields g(x) ~ f(x) for all x that are

feasible for (P)). Many, but not all, of the relaxations that have been

studied extensively or used in practical applications (including those in-

vestigated here) are of this simple form. Nevertheless, their theoretical

content and power is extensive. Indeed , the relaxations we employ in this

study give rise to remarkably rich duality results and have intriguing conse-

quences when incorporated into primal strategies.

The intimate connection between problem relaxations and nonlinear duality

theory can be expressed as follows. As noted in [16], all duality theories

arise by defining the dual of (P) to be the problem of finding the strongest

(R) (from the class of relaxations under consideration), where (R) is defined

parametrically. Thus, f or example, if the functions composing (R) are expressed

as

g(x) = ug (x) ucU

G (x) = wG (x) wcW

where u and w are vectors or matrices of parameters (some constant , some

variable, depending on the limiting conditions of uCU and wcW), then the

problem of finding the strongest relaxation (R) is that of determining

u*EU and w*EW to yield the tightest bound for (P) by condition (1). Namely,

the dual of (P) is defined as

Maximize Minimum ug
0xucU, wcW xcX

wG (N) < O
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(replacing maximum and minimum by supremum and infimum for the general case).

Viewed in the form of a “maximin” problem, the dual seems rather tricky ;

viewed as a problem of finding the relaxation that yields the tightest objec-

tive function bound for (P), the dual seems more intuitively reasonable.

From a pragmatic standpoint, the dual problem is that of finding the re-

laxation (from the class considered) whose solution Is most likely to solve the

original problem (P), at least by providing a strong bound . Every relaxation

gives an optimistic estimate of the minimum f(y) for problem (F). A weak relax-

ation gives a grossly optimistic estimate, a strong relaxation gives a more

accurate estimate, and the study of strongest relaxations is what duality theory

is all about. (That is, duality theory seeks to characterize the conditions

that indicate optimality for the dual and to express the relation between opti-

mal solutions to the primal (P) and the strongest relaxation (R).)

Beyond the realm of theoretical significance, as embodied in duality

theories, problem relaxations have turned out to have major practical conse-

quences for solving nonlinear and combinatorial optimization problems, parti-

cularly those of integer programming. In practical applications, it is natural

to seek a relaxation that is good, which is most often interpreted to mean

(I) it should be relatively strong, in the bounding sense

(ii) it should be easy to solve by comparison to (P).

These criteria for a good relaxation are, of course, not clearly defined ,

except in terms of a simple dominance scale, whereby one relaxation can be called

better than another if it yields a stronger bound and is also easier to solve.

The weakness in this type of characterization of goodness has not occasioned much

difficulty, however, because the ultimate pragmatic test has always been to

imbed a relaxation strategy (i.e., a subroutine for generating and solving

—— .~~ ~~~~~ i- - -
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problem relaxations) within a global solution method——such as branch and

bound——and to determine whether the method works better with or without the

relaxation strategy (as measured by such things as speed of obtaining optimal

and near—optimal solutions, and reliability over the class of problems ex-

amined). Experience has shown that relaxation strategies indeed markedly im-

prove solution efforts for many types of optimization problems (see, e.g.,

[7 , 8 , 10, 21, 24]).

Two Major Relaxation Approaches

Two types of problem relaxations, each of which has given rise to a duality

theory and has proven especially valuable in practical settings, are the

generalized Lagrangean and the surrogate constraint relaxations. The generalized

Lagrangean relaxations, most notably, have found use in a wide spectrum of

combinatorial applications of scheduling and planning.

The generalized Lagra~’gean relaxation has the form

Minimize f(y) + XF(y) (LR)
ycY0

where Y is a superset of Y and A is a vector of nonnegative parameters. (The

dual problem is thus to find A ~ 0 to maximize the minimizing value over y,

thereby yielding the tightest bound and strongest relaxation.)

The surrogate constraint relaxation on the other hand has the form

Minimize f(y) (SR)
ycY

subject to
wF(y)~~~0

where w is a vector of nonnegative parameters (as is A). In the case where

more than one constraint is allowed to replace the system F(y) ~ 0, w is a
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matrix of nonnegative parameters.)

Almost completely unexamined in prior studies is the combined surrogate—

Lagrangean relaxation

Minimize f(y) + AF(y) (SLR)
ycY

subject to
wF (y)~~~0

aitnough the theory of such relaxations, in the setting of nonlinear duality,

is well—developed [14, 19].

In each of these three types of relaxations, the constraining relation

ycY0 
is generally taken to be one over which it is relatively easy to obtain a

minimizing solution. Rence in the manpower planning context ycY0 is quite

naturally taken to be the constraint condition defining the quasi—assignment

network portion of the problem. The inequality F(y) ~ 0 then conveniently sum-

marizes the side constraints of the manpower planning problem. Note that the

stipulation that Y is the network constraint region restricted to 0—1 solutions

causes Y to be a superset of Y.

Typically , for most types of problems, the Lagrangean relaxation (LR) is

easier to solve than the surrogate relaxation (SR). Also, theory suggests that

the values of A that give strong Lagrangeans are likely to be easier to find

than the values of w that give strong surrogations, though little prior ex—

perience exists on this matter . Balancing this is the fact that surrogate

relaxations are stronger than Lagrangean relaxations and have smaller duality

gaps. That is, a solution to a surrogate problem is more likely to solve the

original problem than a solution to a Lagrangean, when the strongest version
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of each is used.

Thus, as a general rule, if a Lagrangean relaxation (LR) works well for a

particular class of problems, it is probably the method of choice, since (at

least for most of today ’s solution technology) it is easier to implement. On

the other hand , If the Lagrangean relaxation does not work well (i.e., does

not give rise to a strategy that renders the original problem readily solvable,

then the surrogate relaxation (SR), or even the combined surrogate—Lagrangean

relaxation (SL1~) ,  may prove valuable.

This “rule of thumb” guideline for determining when to use a particular re-

laxation applies to the more customary uses of such relaxations in a duality set-

ting. We shall now discuss uses of these relaxations in a primal setting.

3. Relaxations and Primal Strategies

In order to use the (LR) , (SR) , and (SLR) relaxations in a primal strategy

it is necessary to convert the solution for ycY (which satisfies the network

quasi—assignment constraints of the manpower planning problem) to a solution in

which ycY (which also satisfies the 0—1 conditions). There is no difficulty doing

this for the Lagrangean (LR), since in the absence of additional constraints,

the network solutions to ycY will automatically be integer (for integer data,

using standard methods), and no additional effort is required .

The surrogate and surrogate—Lagrangean relaxations (SR) and (SLR) pose

an additional problem, since by including the constraint wF(y) $ 0 they consist
of network problems subject to a side constraint , and solutions to this problem

• characteristically are not integer valued. (For the problems we studied , the

number of non—integer valued variables for relaxations with a side constraint

generally ranged from 3 to 7.) Based on the study of [18], we elec ted to modify 

- --~~~-- —-~~ - - —— ~~-~~~~~ -~~~~~~~~~~~~~~ - --~~ - - “
~ ---

~~~
—- -——‘— ~~~~~~--‘
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the non—integer solution for such a problem by executing a single pivot to

bring the slack variable for wF(y) ~ 0 into the basis. The resulting solu-

tion was an extreme point of the network constraint region and therefore inte-

ger, With only this modification we obtained trial solutions to be compared

with those obtained from the (LR) relaxation, and which we plugged into the

original problem (P) to be checked for feasibility.

As noted earlier, while a rigorous definition of the strength of a

relaxation in a dual setting is easily supplied , a definition of the goodness

of a relaxation is considerably murkier (though this seems not to cause any

practical difficulty) . The same is true in the primal setting. More speci-

f ically , we would loosely stipulate that a relaxation is good in the primal

sense if , in addition to being relatively easy to solve, it can give rise to

a trial solution (by a suitable modification of its own solution) that has a

high probability of being feasible and near—optimal . We particularly value near—

optimal solutions obtained for subproblems of a B&B enumeration tree at nodes

close to the root.

The liberal use of qualitative and imprecise terms in this description al-

lows , as in the dual setting, only a simple type of dominance condition to emerge

with any rigor; for example , one relaxation may be termed better than another

(from a primal standpoint) if it yields a greater number of near—optima l solu—

tions at earlier nodes of a B&B tree than another relaxation. This vagueness

occasions no embarressmen t for problem solvers, however. The intuitive thrust is

clear , and the ultimate test is whether imbedding such a strategy in a global soiw-

tion algorithm yields better solutions at earlier stages of calculation.

For this reason, in our tests of different approaches by the primal orienta-

tion, we have elected to face the hardest challenge in seeking trial solutions:
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all solutions were generated only for the problem at the root of the B&B

• tree (hence for the original “unbranched” problem). Although this reduced

the chances of finding feasible solutions (and certainly of finding good feasi-

ble solutions), any successes obtained could be viewed as significant. The

special structure of the manpower planning problem would seem to enhance the

likelihood of generating good feasible trial solutions, yet as our results

show, by employing tests of other methods that fared much less effectively than

the front runners, this enhanced likelihood seems nonexistent or negligible

for standard procedures. The significance of these remarks will become

clearer upon describing the f ull range of test procedures and their outcomes

in detail.

4. Alternative Strategies Tested

To provide a solid basis for comparison, and to determine the general level

of problem diff iculty,  we have undertaken to test a variety of trial solution

approaches, both from classes that are viewed as relaxation strategies (as

previously characterized) and from other classes as well. The various ap-

proaches are itemized below.

A set of fifteen EGP problems described in Table 1 were employed in

the testing which was performed. These problems represent actual Navy per-

sonnel rotation assignment decisions [17 ] and have three objectives: c, the

dollar cost of making an assignment; d, the desirability to the man of an

assignment ; and u, the utility to the Navy of an assignment. Table 1 also

gives the optimal values of these objectives considered independently (i.e.,

c, d, and u). In the following, the dollar cost objective c was always con—

sidered to be the primary one appearing in the objective function (1’) and

in the right hand side of the two extra non—network constraints (5’). In

L~~~~~~~~~~ 
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Table 1

Problem Specif ications

Problem Men Jobs Arcs C d u

1 15 12 105 1974 5342 2711
2 21 12 175 216 7312 771
3 9 9 41 1049 908 3014
4 27 9 117 142 1254 2028
5 30 18 280 121 8390 4329
6 9 9 51 2806 3246 3584
7 21 14 205 167 457 4499
8 74 41 1207 11231 23009 14387

9 90 22 697 6938 13298 6893
10 86 47 2549 264 19622 8555
11 19 7 66 1215 3275 1556
12 24 17 51 14221 14904 14767

13 44 33 363 22917 28704 21997

14 18 14 105 5470 8619 7254
15 13 5 35 1948 1357 958
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Table 2

Best Feasible Integer Solutions

Problem cx dx ux

1 2870 5342 2984
2 256 8259 863
3 1923 1368 3139
4 175 1254 2098
5 138 9365 4890
6 3085 3246 3763
7 1100 457 5544
8 12255 23009 15414
9 7024 13338 6919

10 313 22985 10125
11 1658 3363 1730
12 14918 15106 15228
13 23410 28704 22253
14 5607 8726 7419
15 380 2044 1251
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order to facilitate comparison of the relative effectiveness of the stra tegies

tested, we present in Table 2 the best feasible integer solutions available

(from any method) for these problems. For each problem the values of the

objectives cx, dx , and ux are given. Subsequent tables give the same infor-

mation about integer solutions obtained from the various strategies to be

described and , for the feasible integer solutions, give the percent deviation

from the best solution in Table 2 in terms of the primary objective cx.

4—1 Vertex Ranking Method

This method can be applied as a complete algorithm (see, e.g., [30])

or as a means of generating trial solutions. Basically it involves two steps

starting at an optimal extreme point of the continuous (LP) relaxation of the 0—1

problem : (a) Examine all adjacent extreme points, ranking them in increasing order

of their objective function value; (b) Select the lowest ranked point not pre-

viously chosen. If the latter is integer feasible it is optimal; otherwise return

to step (a) to incorporate the adjacent extreme points of this newly selected

point in the ranking. Various refinements are possible to streamline the approach

and help avoid multiple examinations of a given point, though these are not criti-

cal to the method as a strategy for generating integer trial solutions.

Quite briefly, the ver tex ranking approach fa iled fo r the problems studied

because of the very large number of adjacent extreme points and the fact that

most of these, due to degeneracy, had the same objective function value as the

optimal continuous solution, yet were all non—integer. It was far too time

consuming to undertake examination of the full range of adjacent vertices look—

ing for an integer solution , thus rendering the approach impractical.

____________________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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4—2 Linear Search

The linear search approach is a heuristic procedure due to Hillier [22] and

tested in the B&B setting by Jeroslow and Smith [23]. Its implementation is

based on rounding points that lie on a line segment determined by reference to

a simplex whose edges coincide with those through the adjacent extreme points.

The very large numbers of these edges, and the necessity to perform recovery

calculations on each from data that is not explicitly available in the LP

tableau (due to the use of network basis compactification for economy of

memory and efficiency of solution) turns out to be wholly impractical for the

problems under consideration. Consequently, in contrast to the other proce-

dures cited, this method was merely studied without undertaking a computer

implementation, and abandoned on the basis of the resemblance of its calcula—

tions to the determination of adjacent extreme points required by the vertex

ranking approach. A possible variant of this approach would be to construct a

search line by reference to only a subset of the edges , though the value of this

is unclear since it places the search line on a substantially lower dimensional

face of the simplex . Furthermore , the efficacy of rounding is somewhat question-

able due to the multiple—choice structure of the quasi—assignment problem.

4—3 Restricted Basis Entry

The restricted basis entry approach has been used most frequently as an

approximating solution method for piecewise linear problems in nonlinear pro—

gramming, and has also been applied to 0—1 integer programming problems by

Berman [2 ]. Due to the large network component of the problem, it seems

plausible (in spite of the difficulty of finding integer vertices in the vertex

ranking scheme) that once a feasible integer vertex is identified , it may be

— - - - — —•----- ‘—- ~~~~~~~~~~~~~~~ ~~.• .— ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • •‘——
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possible to progress to improved feasible integer solutions by allowing only

basis exchanges that are integer feasible . Our tests disclosed otherwise. In

fact , our tests of this method beginning from integer solutions obtained from

the surrogate—Lagrangean approach (discussed later in Section 4—11) failed in

every case to find an integer solution better than the starting solution.

4—4 Solution Testing of Quasi—Assignment Extreme Points

The solution of the quasi—assignment network problem , independent of the

side constraints, involves the examination of several hundred integer points.

A colleague proposed to us the likelihood that a number of these points would

be feasible for problem (P),  and that some of these points would yield rather

decent objective function values. Accordingly , we tested this hypothesis for

each of the manpower planning problems. The outcome was entirely negative.

Feasible solutions were found for six of the problems, and those found were

without exception very poor. At this stage of the testing we were convinced

that the problems we dealt with were anything but trivial, and our next sets

of tests reinforced this conclusion.

4—5 Surface Optimization

This approach is an instance of multi—objective and goal programming which

is strongly suggestive of generalized Lagrangean relaxation. Surface optimiza—

tion takes the slacks for the side constraints into the objective function (in

conjunction with a slack for the original objective function) in a strictly hier—

archical or pre-emptive fashion. This approach was tested for generating trial

solutions primarily because it has been regarded in the past as one of the more

useful approaches for dealing with manpower planning problems.
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The results of applying surface optimization according to different

priority sequences are indicated in Table 3. In sum these results show

that the past enchantment with surface optimization was out of place, at least

from a primal standpoint. The worst variant, which ranked the objectives in

the order c , d , u , failed to obtain any feasible solutions . The best variant,

which ranked the objectives in the order d,u,c,obtained feasible solutions for

only eight of the problems, and these solutions, in terms of the objective c,

are rather poor by comparison to those obtained by the better methods.

4—6 Generalized Lagrangean Using Optimal Dual Weights t

This is the classical, most widespread use of Lagrangean relaxation in B&B,

by which trial solutions from optimal dual weight~. (i.e., those yielding the

strongest relaxation) are plugged into the original problem (P). (In subgradient

search approaches , trial solutions to relaxations identified en route to solving

the dual are also used as trial solutions, and these are considered subsequently.)

Table 4 shows that the strongest Lagrangean relaxation (in the dual sense) yielded

feasible trial solutions to only 10 of the problems, and that the quality of

these feasible solutions was generally not as good as those obtained by other

methods.

4—7 Generalized Lagrangean Using A Priori Intuitive Weights

Although standard applications of Lagrangean relaxations generate trial

solutions from the strongest relaxation, as in 4—6, the possibility that primal

solution capability may result from alternate parameter choices prompts the in—

vestigation of the weighting scheme that was determined on the basis of intuitive

argument (261 to be best for the manpower planning problem . Table 5 shows this

approach obtained feasible solutions for eight of the problems, and that the

- ~~~-~~~~~~- ~
_
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Table 3

Surf ace Optimization

% From
Problem cx dx ux Best

Priority ordering c — d — u

1 1974 7004* 3688* inf
2 216 9367* 1426* inf
3 1049 1807* 3131* inf
4 142 4327* 2358* inf
5 121 10004* 5192* inf
6 2806 3246 4608* inf
7 167 4952* 5383* inf
8 11231 25581* 16921* inf
9 6938 14566* 7872* jnf
10 264 24222* 12913* inf
11 1215 3807* 2352* inf
12 14221 16005* 15912* inf
13 22917 28704 22791* inf
14 5470 8726* 7429* inf
15 1948 2255* 345Q* j~~f

Priority ordering d — u — c

1 2870 5342 2984 0
2 2006 7312 1190 683.59
3 1070 908 3466* inf
4 175 1254 2098 0
5 1045 8390 5083 657.25
6 2806 3246 3763* inf
7 1100 457 5544 0
8 11315 23009 15391* jnf
9 7891 13298 7144* inf
10 323 19622 11437* inf
11 2097 3275 1556 26.48
12 14947 14904 14894 .19
13 22917 28704 21997* inf
14 6099 8619 7783 8.77
15 2035 1357 1691* inf

inf — no feasible integer solution was found

* — extra constraint corresponding to this objective was violated
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Table 4

Generalized Lagrangean with Optimal Weights

% From
Problem cx dx ux Best

1 2074 6241* 3354 j~~f

2 276 9157 787 7.81

3 1081 908 3466* j~~f - -

4 175 1254 2253 0
5 138 9365 4890 0

6 2896 3246 3763* inf

7 1209 457 6090 9.91

8 12339 23547 14664 .65

9 7002 13448* 6917 inf

10 313 22985 10125 0

11 1694 3363 1600 2.17

12 14918 15106 15228 0

13 23496 28704 22083 .37

14 5638 8726 7419 .55

15 2846 2223* 958 inf

inf — no feasible integer solution was found

* — extra constraint corresponding to this objective was violated
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Table 5

A Priori Weighting

Z From
Problem cx dx ux Best

3. 2947 5342 3096 2.68

2 303 7851 1142* inf

3 1072 908 3468* inf

4 196 1254 2200 12.00

5 193 8734 5095 39.86

6 2896 3246 3763* j1~f

7 228 1356* 5184 inf

8 11386 23547* 16706* jul

9 7028 13338 6896 .06

10 372 19622 11757 18.85

11 1694 3363 1600 2.17

12 15034 14904 15228 .78

13 23496 22083 28704 .37

14 5470 8726* 7429* inf

15 2035 1357 2424* j~f

inf — no feasible integer solution was found

* — extra constraint corresponding to this objective was violated

_____ - -—_ — •~~~~~ — - - -~~~~~~ -—~~~~ —— --~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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quality of these solutions is generally inferior , and in some cases much

worse, than those obtained by the better strategies.

4—8 Generalized Lagrangean Using Weights from Subgradient Search

As already noted, standard dual procedures based on subgradient search

generate trial solutions en route to determining optimal dual weights. The

full collection of trial solutions generated in this fashion was examined for

feasibility and the best recorded. The results tabulated in Table 6 show that

feasible solutions were obtained for thirteen of the problems. In quality,

these solutions are generally the same as those obtained using the weights of

4—6 although one of the new feasible solutions (to problem 15) is extremely

poor. Only four of the solutions tied in quality with those obtained by the

better approaches.

4—9 Surro~gate Relaxation Using Optimal Dual Weights

The surrogate relaxation defines a dual problem , as does the Lagrangean ,

in the manner indicated in Section 2. Surrogate duality theory [i!~. 19] however ,

discloses that the optimal weights for the surrogate may be different from those

of the Lagrangean, and are characterized by different relationships. In parti-

cular, the dual functional for the surrogate problem is quasi—concave , and due

to the shorter history of application of surrogate duality , no extensive body

of empirical research yet exists for identifying the most efficient ways to

search for optimal dual surrogate weights. Consequently, we employed a sub—

gradient procedure resembling the standard approach for the Lagrangean . This

procedure worked , but clearly was not ideally tailored to the surrogate dual

functional. The most notable difficulty of this type of adaptation was the

determination of step sizes. This discovery, we believe , pinpoints a key
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Table 6

Generalized Lagrangean Using Interval Weights

% From
Problem cx dx ux Best

1 2947 5342 3096 2.68

2 276 9157 787 7.81

3 1934 908 3537 .57

4 175 1254 2253 0
5 138 9365 4890 0

6 2896 3246 3763* inf

7 1209 457 6090 9.91

8 12339 23547 14664 .65

9 7002 13448* 6917 inf

10 313 22985 10125 0

Il 1694 3363 1600 2.17

12 14918 15106 15228 0
13 23496 28704 22083 .37

14 5638 8726 7419 .55

15 4323 2223 1251 1037.63

inf — no feasible integer solution was found

* — extra constraint corresponding to this objective was violated
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direction for fu ture  research in this area.

Having found optimal dual surrogate weights by our adapted subgradient

procedure , we utilized the slack pivot technique described in Section 3 for

obtaining an integer trial solution. One further point should be noted .

The surrogate dual, and hence the subgradient search, was defined by letting

Y consist of the network semi—assignment region, excluding the 0—1 integer

condition (as specified in Section 3). This composition of Y makes no differ-

ence in the case of the generalized Lagrangean, since optimization over Y is

the same as optimization over Y (which includes the 0—1 condition), as a re—

suit of the integer extreme point property of the network. However, contracting

Y to Y makes a good deal of difference in the surrogate relaxation , as evi—

denced by the fact that the surrogate solutions were generally noninteger

(usually containing from 3 to 7 fractional—valued variables). In view of the

importance of this difference reflected in our findings, we anticipate that it

would be more valuable to employ a surrogate search strategy by reference to

integer trial solutions rather than continuous solutions, using a heuristic such

as the slack pivot technique at each level of the search. (This accords with

the strategy for surrogate constraint determination originally proposed in [11).)

Results from using the surrogate relaxation defined relative to continuous

solutions are shown in Table 7. In this instance, feasible solutions were ob—

tam ed for seven of the problems, and the solution quality for these feasible

solutions was generally quite good , particularly in view of the fact that only

a single weight vector was tested for each problem.

4—10 Surrogate Relaxation Using Interval Weights

Results obtained from using the slack pivot heuristic with the surrogate

relaxation noted above indicated that surrogate constraints whose weights differed
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Table 7

Surrogate Relaxation Using Optimal Weights

7. From
Problem cx dx ux Best

1 2892 6105 2823 .77

2 254 7861 1223* inf

3 1923 1368 3139 0

4 175 1254 2253 0

5 148 10264* 4645 inf

6 2922 3803* 3585 inf

7 1100 457 5879 0

8 12301 23162 15105 .34

9 7021 13263 7167* j~~f

10 315 23478* 9963 inf

11 1694 3363 1600 2.17

12 14918 15106 15228 0

13 23293 29603* 22083 inf

14 5778 9625* 7254 inf

15 2846 1357 1691* inf

inf — no feasible integer solution was found

* — extra constraint corresponding to this objective was violated

_ _  _ _  
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from the optimal dual weights might produce good integer trial solutions.

Accordingly , all surrogates of the form c*f + (1 — cL)g, where a = 0, 0.05, 0.10,

1.0, were examined with integer trial solutions generated using the slack

pivot technique.

This approach, whose results are shown in Table 8, succeeded in obtaining

feasible integer solutions to fourteen of the fifteen problems. Furthermore,

the quality of the results was very good , with eleven of the solutions being as

good as the best found by any methods. The only drawback to this approach is

the fact that no feasible solution at all could be found for one of the problems.

4—11 Surrogate—Lagrangean Relaxation Using Simple Partitioning and

Interval Weights

The combined surrogate—Lagrangean relaxation, in which the side constraints

are both transformed into a surrogate constraint and absorbed into the objective

function , was tested in two ways . Both of these ways used a highly simplified

determination of the weights for the constraints as they were parameterized in

the surrogate constraint and objective function. In view of this, it may seem

surprising that this strategy worked so effectively. However, in retrospect ,

we believe this is due to the fact that the two side constraints were “equally

important” in constraining the feasible region in the vicinity of integer optima.

The first and simplest application of the surrogate—Lagrangean strategy

merely assigned one of the two constraints to be the surrogate constraint

(giving its companion a weight of 0) and took the remaining constraint into the

objective function. This accords with the partitioning strategy proposed in [14],

whereby the constraints are divided into groups in creating a surrogate—Lagrangean

relaxat ion.

I
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• 
- Table 8

Surrogate Relaxation Using Interval Weights

% From
Problem cx dx ux Best

1 2870 5342 3688 0

2 256 8259 863 0
3 1925 1368 3139 .10

4 175 1254 2253 0

5 138 9365 4890 0

6 3085 3246 3763 0
7 1100 457 6231 0

8 12281 23997 14485 .18

9 7024 13338 6919 0

10 313 22985 10125 0

11 1658 3363 1730 0

12 14918 15106 15228 0

13 23496 28704 22083 .37

14 5607 8726 7419 0
15 2846 2223* 958 inf

r ~
inf — no feasible integer solution was found

* — extra constraint corresponding to this objective was violated

~~~
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To further simplify the approach, drawing on earlier findings that the

- • 
best integer trial solutions could arise from parameterizations that bore no

apparent relationship to the optimal dual parameterization, we varied the weight

on the constraint in the objective function over an interval, ignoring the

dual functional, and generating a trial solution by the slack pivot technique

at each point. The results are summarized in Table 9. Note that this approach

proved demonstrably superior to all those previously tested, including both the

• Lagrangean and the surrogate approaches used in isolation. Feasible integer

solutions were found for all of the problems, and the quality of these solutions

equals or dominates that of the other procedures for all except four of the

problems solved in common. In these latter cases, the solutions were only

slightly poorer than those obtained by the surrogate approach with interval

weights. One of the findings of the combined surrogate—Lagrangean approach,

which disclosed the “equally important” influence of the constraints alluded to

earlier, was that no significant difference resulted when the identities of the

constraints incorporated into the objective function and the surrogate con-

straint were switched.

4—12 Surrogate—Lagrangean Relaxation Using Strong Surrogates and

Interval Weights

The second form of surrogate—Lagrangean relaxation that we tested made use

of a more complex determination of the surrogate constraint but retained the

simplified Lagrangean strategy of taking only one of the two constraints into

the objective function. Retrospective analysis suggests that this type of

strategy is subject to a shortcoming. By first giving one of the constraints

a weight in the surrogate constraint, and then taking the same constraint into

the objective function (without allowing either subsequent adjustment of the

- _
~~~~~
_

~~
_

~~~~~_: •- -
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Table 9

Surrogate—Lagrangean Using Simple Partitioning

7. From
Problem cx dx ux Best

1 2870 5342 3539 0

2 256 8259 863 0

3 1925 1368 3139 .10

4 175 1254 2253 0

5 138 9365 4890 0

6 3085 3246 3763 0
7 1100 457 

- 

6231 0

8 12259 23009 15414 0
9 7024 13338 6945 0

10 320 22492 10203 2.24

11 1658 3363 1730 0

12 14918 15106 15228 0
13 23496 28704 22083 .37

14 5623 8726 7419 .29

15 380 2044 1251 0

inf — no feasible integer solution was found

* — extra constraint corresponding to this objective was violated

I.
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parameters of the surrogate constraint or a “balancing” inclusion of the

alternative constraint in the objective function) ,  the single constraint incor-

porated into the Lagrangean has a lopsided influence . (This was avoided in

the simple partitioning scheme which pitted the two constraints directly

against each other in their Lagrangean and surrogate roles.) Nevertheless, this

strategy worked better than all of the other strategies except for the simple

surrogate—Lagrangean partitioning strategy and the surrogate relaxation using

interval weights. The results given in Table 10 show that this method obtained

feasible solutions for thirteen of the problems and that eleven of these

matched the best found by any method. 

- -_~~~~~~ - • - -  J
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Table 10

Surrogate—Lagrangean Using Strong Surrogates

% From
Problem cx dx ux Best

1 2870 5342 3539 0

2 256 8259 863 0

3 1923 1368 3139 0

4 175 1254 2253 0
5 138 9365 4890 0

6 3085 3246 3763 0

7 1100 457 5879 0
8 12290 23997 14486 .25

9 7891 13298 7872* m l
10 336 21506 10666 7.35

11 1658 3363 1730 0
12 14918 15106 15228 0

13 23410 28704 22253 0

14 5607 8726 7419 0
15 2846 2223* 958 inf

inf — no feasible integer soluton was found

* — extra constraint corresponding to this objective was violated

_________________ • - •~~~~~~~~~~~~~~~~~ - . ____
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Conclusion

Our experience with fifteen test problems from a real—world setting ,

containing up to 2,683 zero—one variables, indicates that good feasible

solutions can be obtained by surrogate and especially by combined surrogate—

Lagrangean relaxation. A simple partitioning strategy for the combined

surrogate—Lagrangean relaxation succeeded in obtaining feasible solutions

for all test prob lems , which was not accomplished by any other approach

(though the surrogate relaxation succeeded in obtaining feasible solutions to

all but one problem). By contrast, other strategies not only failed to obtain

as many feasible solutions, but failed to obtain solutions of comparable

quality. (For example, generalized Lagrangean relaxation obtained only four

solutions whose quality matched that of solutions obtained by the better

approaches , yet generalized Lagrangean relaxation proved superior to all but

the two front running strategies.) Other “non—relaxation” strategies, such as

vertex ranking and restricted basis entry , proved utterly useless for the

problems examined, further emphasizing the merits of the successful strategies.
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?~~‘his pape r examines a variety of relaxation strategie s for zero-one
integer programming problems, containing from 54 to 2 , 683 variable s, that arise
in manpower planning applications. These strateg.ies ar~ compared by a primal
criterion, which emphasizes the ability to obtain high quality feasible solutions.
This contrasts with the usual dual cri terion for comparing relaxations, which
emphasizes objective function bounds obtained from solutions that are

• generally not feasible. The changed emphasis requires a change in the use of
relaxations, which may be viewed from the standpoint of generating t r ia l  solutions
for heuristic programming or as a fundamental component of branch and bound.

Computer tests show that a combined surrogate-Lagrangean strategy is the most
effective for the problems examined followed by a pure surrogate relaxation
strategy. All other approaches, includ ing generalized Lagrangean relaxation,

fared substantially worse , particularly in terms of solution quality. -
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