
AD 048 297 TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES FIG 9/2
A FUNDAMENTAL COMPUTER—EASED PLANNING TOO— —ET C(U)
JUN 77 F. GLUVER, J HULTZ, B. KL INGMAN N0014—75—C—0616

UNCLASSIFIED CCS— 307 tilt.

I C I
046297 p - ! I

p _______

I~~~~~~~~~~~~

CENTER FOR
CYBERNETIC

STUDIES
The University of Texas

Austin ,Texas 78712

[~~;~~i
_ _ _ _ _ _ _ _ _ _ _ _ ~~~ ~~~~~~~~~~~~~~~~~~~


~~~~~~~ - —~~~ -~~~~~~~ -.- - “ -- -. , - . . - - .

Research Repo rt CCS 307
GENERALIZED NETWORKS :

A FUNDAMENTAL COMPUTER-BASED

PLANNING TOOL

by

F. Clover *

J. Hultz **
D. Klingman ***
J. Stutz ****

June 1977

* Professor of Management Science, University of Colorado, Boulder , CO 80302.

** Senior Analyst, Analysis, Research, and Computation, Inc., P.O. Box 4067 ,
Austin, Texas 78765.

*** Professor of Operations Research and Computer Sciences, BEB 608, University
of Texas, Austin, Texas 78712

**** Associate Professor of Operations Research and Computer’ Sciences , BEB 613,
University of Texas, Austin, Texas 78712.

This research was partly supported by ONR Contract N000l4—76—C—0383
with Decision Analysis and Research Institute and by Project NR047—021,
ONR Contracts N00014—75—C—0616 and N000I4—75—C—0569 with the Center for
Cybernetic Studies, The University of Texas. Reproduction in whole or
in part is permitted for any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Business—Economics Building, 203E

The University of Texas
Austin, TX 78712
(512) 471—3322

~~ pebftc vs~sc~~
~k~1bv~om UnUmIt.d

L _ _ _ _  _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- *

ABSTRACT

This paper documents the recent emergence of generalized networks as a

fundamental computer—based planning tool and demonstrates the power of the

associated modeling and solution techniques when used together to solve

real—world problems.

Part I of the paper is a non—technical account of how generalized net-

works are used to model a diversity of significant practical problems. First

we discuss the model structure of a generalized network (GN) and provide a

brief survey of applications which have been modeled as GN problems. Next

we explain a somewhat newer modeling technique based on NETFORM (network

formulation) principles in which generalized networks form a major, but not

the only, component of the model.

Part II is a technical exposition oi ..~~. iesign and analysis of computer

solution techniques for large—scale GN problems. It contains a study of GN

solution strategies within the framework of specializations of the primal

simplex method. Here we identify an efficient solution procedure that de-

rives from an integrated system of start, pivot and degeneracy rules. The

resulting computer code is shown on large problems to be at least 50 times

more eff icient than the LP system, APEX III. The computer memory require—

ments of our method, as well as the solution times, are sufficiently small to

warrant its use as a computer based planning tool not only in a batch pro—

cessing environment but also in an interactive setting.

L



INTRODUCTION

A generalized network (GN) problem is simply a type of LP problem and

can thus be solved using any standard LP solution technique. However, none

of the current LP systems is capable of fully exploiting the structure of

generalized network problems. With the recent development of GN computer

codes, Bradley’s 1975 prediction that GN problems “in the near future

could come to be regarded as a fundamental model” [1O~ is coming true.

Modelers have begun to devote attention to determining if an LP model is a

GN problem and, more importantly , to devising formulations in which generalized

networks play the role of critical components.

There are two powerful incentives for adopting a GN formulation whenever

possible. The major advantage is the ability to solve GN problems——and by

extension a variety of problems with GN components——with a remarkable degree

of efficiency. The second motivation for using GN models is that they can be

conceptualized graphically as well as algebraically. The pictorial presenta-

tion of a generalized network is a useful device for communicating mathematical

models to non-scientific users and for teaching others how to formulate problems.

The purpose of this paper is to document the recent emergence of generalized

networks as a fundamental computer—based planning tool and to demonstrate the

power of the associated modeling and solution technologies when used in concert

to solve real—world applications. Part I of the paper is a non—technical

account of how generalized networks are used to model a diversity of signif i—

1 

---~~~-



r 

- _ _ __ _ _  

__ _
cant practical problems. Using a graphic representation, we f irst def ine the

model structure of a generalized network. Next we provide a brief survey of

applications which have been modeled as GN problems. We then explain some-

what newer modeling techniques, based on NETFORM (network formulation) prin-

ciples, in which generalized networks form a major , but not the only, com—

ponent of the model. The NETFORM concept yields a formulation that enables

one to solve the problem as a sequence of GN problems resulting in dramatic

gains in efficiency over alternative approaches. To provide an understa.~ding

of the NETFORM approach and the role of generalized networks within it, we

describe two real—world problems which have been solved by its use.

Part II of the paper is a technical exposition of the design and analysis

of computer solution techniques for large—scale GN problems. It contains an

in—depth computational study of GN solution strategies within the framework of

specializations of the primal simplex method. Here we identify an efficient

solution procedure that derives from an integrated system of start, pivot, and

degeneracy rules. The resulting method is shown on large problems to be at

least 50 times more efficient than the sophisticated state of the art 1.2

system, APEX—Ill. In other words, our method can solve a problem every week

for a year and consume the same amount of computer time required to solve the

problem only once with the LP system. The memory requirements of our method,

as well as the solution times, are sufficiently small to warrant its use as a

computer—based planning tool not only in a batch processing environment, but

also in an interactive setting.

L



3

PART I — GENERALIZED NETWORK MODEL

1.0 PROBLEM DEFINITION

The generalized network problem represents a large class of LP problems.

This class includes any LP problem whose coefficient matrix, ignoring simple

upper bound constraints, contains at most two non—zero entries in each column.

A large portion of the literature on LP problems has been devoted to the

special cases of the GN problem in which the non—zero elements of a column con-

sist of a 1 and a —l (either initially or by linear transformation). This

condition identifies the problem as a pure network, whose instances include I 
-

shortest path, maximum flow, assignment, transportation, and transshipment

problems. The GN problem, by allowing other non-zero doubletons (and single—

tons) in a column, is actually the broadest classification of linear network

related problems. Practical settings in which GN problems arise include

problems of resource allocation, production, distribution, scheduling, capital

budgeting, and so on.

A generalized network, like a pure network, is best represented as a t 
-

directed graph. Under the assumed existence of a finite optimum, it is possible

to transform the coefficient matrix (by scaling or by complementing a variable

relative to its upper bound) , so that if a column has two non—zero entries,

at least one of these is —1. In this way, a directed arc is “formed” from the

node associated with the —l to the node associated with the other non—zero

entry. If both entries are —1, the arc may be directed either way. Columns

with single non—zero entries give rise to arcs incident on only one nod..

There is an important distinction b.twe.n arcs in pure network problems and

arcs in ON problems. In generalized networks, each arc ’s multiplier is the non—

L -



~ -

4

zero coefficient associated with the node at the head of the arc (i.e., the

node to which the arc is directed). In pure networks, the multiplier is

always +1.

Consider the following GN problem:

Mimimize lx12 + 5x13 + 3x23 + 1x24 
— 4x32 

— 9x34

Subject to:
—lx12 

— lx13 
= —5

2x12 
— lx23 

— lx24 + l/3x32 0

l/2x 23 + 1x23 
— lx32 

— lx34 — 0

— l/5x24 + 3x34 10

3, O~~~x~3~~ 4 , O~~~x
23~~~6 ,

O~~~x24~~ 5, O~~~x32~~ 3, O~~~x34~~ 7

The network associated with this problem is shown in Figure 1. As with pure

network problems, each row of the coefficient matrix is associated with a node

and each column with an arc. In other words, a node corresponds to a problem

equation and an arc corresponds to a problem variable. The arc is directed

from the node associated with the —l entry toward the node associated with the

other non—zero entry. Likewise, each arc has a cost, a lower bound, and an

upper bound. In Figure 1. the cost is shown within the square and the lover

bound and upper bound respectively are shown in parentheses. The non—zero mul—

tiplier associated with each arc is shown in Figure 1 within a triangle on the

arc. The constant terms (right hand sides) of the problem equations identify

supply and demand requirements attached to the corresponding nodes. A negative

constant term identifies a supply (which by convention equals the absolute value

~~~~~~~ ~

.—..-- - - - - - -—~-~*~-*

‘~~~~ ~~~~~~~~~~~~~

— i

5

Figure 1

Generalized Network

of this term), a positive constant term identifies a demand , and a 0 con-

stant term identifies a “conservation condition” in which the amount of flow

entering the node must be exactly matched by the amount of flow leaving the

node .

The flow passing across an arc in a generalized network problem is acted

upon by the non—zero multiplier. It indicates that the flow entering the arc

is multiplied by the value of the multiplier as the flow leaves the arc . Thus ,

the amount starting out on an arc will not necessarily be the amount arriving

at the opposite end . For example , if 2 units start on the arc from node 1 to

node 2 in Figure 1, 4 units will arrive at node 2 since the multiplier is 2.

Likewise, 10 units starting on the arc from node 2 to node 4 will result in

—2 units arriving at node 4 since the multiplier in this case is —1/5. It

should be noted that the cost, lower bound , and upper bound of each arc apply

only to the units of flow entering that arc.

_ _ _ _ _ _ _ _

6

Another important feature of GN problems is that total supply may not be

the same as total demand. In pure network problems, total supply always

equals total demand. However, the effect of multipliers is such that total

supply and total demand may, in fact, be entirely different. This can result

in odd structural consequences, such as absorbing and generating cycles.

(See [3 , 29, 30].)

2.0 APPLICATIONS OF GENERALIZED NETWORKS

Generalized networks can be used to model numerous problems for which there

rio pure network equivalent. There are essentially two ways in which the

riuiers on the arcs of generalized networks can function. They can act

imply to modify the amount of flow of particular goods or they can transform

the flow from one type of good to another. In the former case generalized net-

works can be used to represent situations involving evaporation, seepage, deter-

ioration, breeding, interest rates, sewage treatment, purification processes of

varying efficiencies, machine efficiencies and structural strength design. In

the latter capacity, generalized networks can model processes of manufacturing,

production, conversions of fuel to energy, blending, crew scheduling, allocating

manpower to job requirements, and currency exchanges. The following appli-

cations lend insight into the possible uses of generalized networks.

A complete water distribution system with losses has been modeled by

Bhaumik (7] as a generalized network problem. This model was primarily con—

cerned with the movement of water through canals to various reservoirs. How-

ever, the model also had to consider the retention of water over several time

periods. The multiplier8 in this case represented the loss due to both evapora—

tion and seepage.

Turner and Gilliam [16] have proposed a file reduction model which has the

form of a generalized transportation model (a special type of ON) with a

single extra constraint. This model was designed to facilitate the reduction

of extremely large microdata files to smaller, statistically representative

files. The objective , in this case , was to minimize the amount of information

lost in the reduction process. The arcs represented paths from the original

records to the reduced records . A non—zero flow on an arc implied that the

originating record was to be represented by the terminal record . The multi-

pliers on the arcs were used to insure that the reduced file was truly repre-

sentative of all of the original records.

Kim (35] has utilized generalized networks to represent copper refining

processes. The electrolytic refining procedure, in this case, was modeled by a

large d—c electrical network. The arcs were current paths with the multipliers

representing the appropriate resistances. In this way, Kim analyzed the effect

of short circuits in the refining process.

Charnes and Cooper [11] have identified applications of generalized net—

works for both plastic—limit analysis and warehouse funds—flow models. In

plastic—limit analysis, the network was generated by forming the equations for

horizontal and vertical equilibrium and by employing a coupling technique.

The warehouse funds—flow model was actually a multi—time period model. The

arcs were used to represent sales , production , and the inventory holding of

both products and cash. The multipliers were introduced to facilitate the con-

versions between cash and products.

A cash management problem has been modeled as a generalized network by

Crum [121. This model for a multi—national firm incorporated transfer pricing,

receivables and payables, collections, dividend payments, interest payments,

royalties , and management fees. The arcs represented possible cash flow patterns

- ~~~~~- _--~ ~- - -- - - -_—~~~~~~~~~~ --—-- --_ - --

- --
~

-
~~~~~~~~~~ 

.—*_--~~

8

and the multipliers represented costs, savings, liquidity changes, and ex-

change rates.

Other applications of generalized networks include machine loading

problems [11, 13, 43] , blending problems [11, 43], the caterer problem [13,

43] , and scheduling problems dealing with production and distribution, crew -
scheduling, aircraft scheduling, and manpower training [11, 13, 43].

3.0 INTEGER GENERALIZED NETWORKS

The uses of arc multipliers are not limited to the examples just discussed.

In fact, upon adding the requirement of discreteness, which forces the flows on

particular arcs to occur in integer quantities, the GN problem is capable of

modeling an unexpected diversity of problems [11, Chapter 17]. For example,

introducing discreteness into the GN model produces a framework for problems

such as scheduling variable length television commercials into time slots,

assigning jobs to computers in computer networks, scheduling payments on

accounts where contractual agreements specify “lump sum” payments, and de-

signing conununication networks with capacity constraints. While these are

“direct” applications, the use of special modeling principles, sometimes called

NETFORM principles, enable even more complex applications to be modeled and

solved as integer GN problems. In fact, the NETFORM principles and techniques

make it possible to model any 0—1 LP problem as an integer GN problem (23, 27].

These procedures extend quite naturally to accommodate mixed integer 0—1 LP

problems where the continuous part of the problem is a transportation, trans-

shipment or generalized network problem itself. Reference [42] illustrates a

NETFORM extension and shows how contemporary financial capital allocation pro-

blems can be modeled as integer GN problems. Many other important real—world

applications have a similar “mixed” structure, including a variety of energy

I

- - - - -  - -_ -- --- --_ -- —-rn -- -_------ 



~ _~ --- -

9

models, plant location models, and physical distribution models.

The NETFORM representation is mathematically equivalent to any of the

algebraic representations that can be arrived at by customary mathematical

programming formulation techniques. However, by the creation of the network—

related structures, which may or may not be implicit in any customary formu-

lation, the NETFOR1I representation permits the application of specialized

solution methods, tailored to employ algorithmic advances discussed in

Part II, for exploiting the graphical relationships of network components.

The remainder of this section briefly describes the basic i rinciples of the

NETFORM approach and discusses two applications which have profited by its use.

Figure 2 illustrates one of the useful modeling devices of the NETFORN

approach that finds application in a variety of settings. The costs, bounds,

and multipliers are represented in the same fashion as earlier. In addition,

the asterisk on the arc from node 0 to node A indicates that its flow must be

an integer amount. Consequently, in view of the upper and lower bounds on

this arc, the only acceptable flow value~, are exactly 0 and 1, and the multi-

plier thus ensures that either 0 or 3 units of flow are transmitted to node A.

Further, the only possible way to distribute 3 units of flow into node A is to

send exactly one unit to each of the nodes 1, 2, and 3 since each of the three

arcs leaving A has an upper bound of 1. Thus, in sum, the following effect

has been achieved: when the flow on the arc f:oin node 0 to node A is 0, the

flow on each of the three arcs out of node A is 0; when the flow on the arc

from node 0 to A is 1, the flow on each of the three arcs out of node A is 1.

It should be noted that multipliers may also be attached to the arcs

leaving node A, so that their flows may be further transformed. For example,

the flow on the arc from node 0 to node A can represent an investment decision

- --

~

-- - ~--~ --— -- -~_ _, _ - - - .  - _ rn-- -~~~ - - ---- - -—- —-----_--- - -~~~



- ~~~~~~~~~~~~~~~~~~ . --- . ~~~~~~~~~~~~~~~~~~~- — ~~~~ - ~~~~~~~ - -_ - -~~~~

10

(0,1) * /~~\ ____________________

Figure 2

Generalized Network with Integer Flow Restrictions

(invest if flow = 1, do not invest if flow — 0), and the flows on the arcs

out of A can represent components of the investment (e.g., particular stocks

in a portfolio, tracts of land in a real estate venture, items of equipment in

a manufacturing operation, etc.). Multipliers on the latter arcs would then

represent the number of items of each of these investment components that are

obtained by selecting the main investment. (For example, a particular equip-

ment investment may be composed of six machines of type 1, eight machines of

type 2, and so forth.) The combination of arc multipliers and the 0-1 integer

restriction gives rise to what is called an integer generalized network or a

0—1 generalized network. This NETFORN modeling tool has a variety of important

uses, as demonstrated more concretely by the following two real—world applica-

tions.

Air Force Course Scheduling

The Air Force requires Undergraduate Flight Training (UFT) graduates to

take advanced flight training before their first operational assignment. In

addition, UFT graduates must take from one to four survival training courses. 

- - - __ - _
~~. --_



11

Since the men come from different backgrounds , a different course schedule

is required for each. Furthermore, both the flight and the survival training

courses are offered only at certain t imes and at various locations around the

country. They are subject to enrollment limits and have prerequisites. A

set of feasible course schedules must be identified for each UFT graduate and

given a “cost rating.” Feasibility and cost considerations depend on factors

such as attendance requirements at Combat Crew Training courses, various modes

of transporting the students to the course locations, the number of dead days

in the pipeline, the opportunity for the UFT graduates to take leave as desired ,

etc.

The objective is to select a particular course schedule for each UFT

graduate so that the complete set of schedules selected will satisfy all class

enrollment limits and result in the smallest total cost. To solve this problem,

the personnel manager in the Training Pipeline Management Division previously

assigned each graduate to a feasible schedule by hand, trying to assure that

all enrollment limits were satisfied. Clearly, this was a difficult and time—

consuming task to do by hand ; further, the total cost of training these men

was probably far from optimal when the assignments were made manually.

In search of a better approach, the Air Force developed an integer pro-

gramming formulation for this problem. However, the IP formulation turned out

to be almost totally resistant to solution. Consequently, we reformulated this

integer programming problem as a 0—1 GN problem which is shown in Figure 3.

The elements of this diagram may be explained as follows. The node

represents the i
th 

man and has a supply of exactly 1. Each man node is connected

by arcs to its set of man/schedule nodes. These connecting man/schedule arcs

have a multiplier ajj equal to the number of classes in the schedule and a cost

_ _  _ _  --



12

Figure 3

UFT NETFORM Formulation

ManjScpiedule 
C’assNodes Nodes

(0,1)Mi,,

*
Man
Nodes

C,~ a,2 
~ Mi’1- M, 

‘
C 

-,.1) 

£

*

Mi

(b~ e3 )
3 Sink 

~~

*

~• 
C22 a2~ * M2 ,2 

(0.1)

C

•a
•

- 

* 
•

C

5

C

2 
~::L.,



13

cjj equal to the cost of assigning man i to his ~th schedule. The asterisk

again indicates that flow must be integer—valued.

The arcs emanating from a man/schedule node in Figure 3 lead to the

individual classes making up the schedule . Each of these arcs has an upper

bound of one. Thus , if a particular schedule is “selected,” then every class

in the schedule is also automatically selected. The objective is to pick a

sc)~edule for each man that will minimize the value of the assignments on the

overall program, subject to the upper and lower attendance limits for each class,

expressed as bounds on the arcs from class nodes to the sink node of Figure 3.

Al]. a rc costs , except for those attached to the man/schedule arcs, are thus

equal to 0.

The UFT problem typically involves 120 men , 200 classes , and 460 schedules ,

resulting in a 0—1 LP formulation with 520 constraints and 460 0—1 variables.

The 0—1 ON formulation involves the same number of 0—1 variables, and introduces

an additional 2,200 continuous variables (arcs) and 780 nodes. Viewed from an

LP problem context , this might seem to represent a fair increase in size.

However , it actually represents a relatively small GN problem. This 0—1 GN

problem was solved using a specialized branch and bound procedure with ON sub—

problems. The optimal solution was often found and verified after only 30

seconds and in some cases required a total solution time of only 10 seconds on

a CDC 6600. The problem was thus transformed from one that had been extremely

difficult to solve as an integer program to one that was solved easily as a

NETFORM.



—-—
~~~~~~~~~

-

14

Refueling Nuclear Reactors

A mixed integer programming problem for determining the minimum cost re-

fueling scheduling for nuclear reactors has been modeled by Kazmersky [34]. -

The solution to the problem was facilitated by the use of the NETFORM con— -
cept. Although the mixed integer programming formulation bore no apparent

connection to networks, we discovered a way to express the problem by a con-

venient NETFOR}f representation after interacting closely with Dr. Kazmersky.

The NETFORM representation was not only equivalent to the original formulation

but also succeeded in reducing its size. We will forego the details of the

transformation of the original problem to a 0—1 GN problem because the steps

were somewhat intricate and the original formulation by itself consumed more

than twenty pages of [34]. However, we were able to exploit the 0—1 GN formu-

lation by developing a branch and bound solution procedure which employed the

ON optimization procedures discussed in Part II of this paper. Four versions

of the refueling problem were solved using data supplied by the TVA. Solution

times for the first three versions, using MPSX on an IBM 370/168, were half an

hour to two hours. By contrast, the same problems were easily solved in 10 to

20 minutes using the 0—1 ON formulation and the specialized branch and bound

solution approach. The fourth version, which Involved 173 constraints, 126

zero—one variables, and 511 continuous variables, was by far the most difficu ’.t.

The original mixed integer formulation was run for seven hours on an IBM 370/168,

again using MPSX, and was then taken off the machine to avoid further computer

run costs. The best (minimum cost) solution obtained had an objective function

value of $136,173,440. With a 30 minute time limit imposed on the 0—1 ON solu-

tion effort, a solution was obtained that was more than $10,000,000 cheaper ,

_ _ _ _ _

LJ ~~ L -~~~i~~~ ~~~~ -J_ ~~~~~~~~~ -~-- -. ~~~~~~~~~~~ _________________

15

with an objective function value of $125 ,174,727. This application demonstrates

that by using the NETFORM approach one may obtain solutions to problems that

are too complex to be solved optimally (within practical time limits) by

standard approaches .

4.0 MOTIVATIONS FOR USING ON MODELS

The two important advantages to adopting a ON formulation where appropriate

have been outlined in Part I. Unlike LP problems, a ON can be represented in

graph form. The ability to represent a generalized network graphically as well

as algebraically facilitates the modeling procedure and is a useful device for

communicating mathematical problems to non—scientific users . The major incen-

tive for using ON models is that they , and a variety of problems with ON com-

ponents, can be solved with a remarkable degree of efficiency. The computer

software described in Part II of this paper is capable of solving large scale

ON problems up to fifty times faster than state of the art 12 codes.

PART II - DESIGN MD ANALYSIS OF LARGE-SCALE

GENERALIZED NETWORK COMPUTER PROCEDURES

1.0 OVERVIEW

Part II presents an abridged computational analysis of algorithmic rules and

computer implementation procedures for ON problems. The unabridged version (17]

may be obtained by writing the authors. Computational studies of pure network

solution procedures have done much to advance the state of the art. Excellent

testing has been performed on transportation (18, 20, 28, 36, 39, 43] and trans—

shipment (1, 4, 5, 10, 19, 26, 33, 37, 41] computer codes. These studies have

provided critical insights into the best methods for solving such problems as

well as providing benchmark data for future solution procedures.

~ -_ _ _ - --- -

_ — -=
~~~~ 

-_---—
~~~
-

~~~
— --  !

16

To date there have been no in—depth studies concerning the much broader

class of ON problems , although computer codes do exist for solving such pro-

blems. Code development has been reported by Eisemann [14], Maurras [40] ,

Glover , Klingman , and Stutz [25], Bhaumik and Jensen [81, Langley (381, and

Balachandran [2], among others. Most of these papers report findings for only

certain classes of ON problems and all of them are limited in the scope of

the computational analysis. Thus, an important body of empirical research

has heretofore been lacking in the network literature.

The code NETG reported by Clover, Klingman, and Stutz [25] was selected to

form the basis for the computational testing of this study. This code is an

implementation of the extended augmented predecessor index (EAPI) procedure

[18, 24], and embodies many of the latest advances in solution methodology for

generalized network problems.

In any computer implementation, there are numerous steps that can be per—

formed in alternative ways. Experience from previous studies of pure network

problems has shown that the determination of an effective set of decision rules

to handle such alternatives can have an enormous impact on the efficiency of the

implemented solution method. Consequently, one of our primary objectives in this

study was to investigate decision rules for the GN problem and establish their

relative merits. We determined the best rules and integrated them to produce a

code which has been tested against the highly efficient linear prograusing system,

APEX—Ill.

- —.-- - ~~~~~~~~~~~~~~~~~~~~~~~~~



17

2.0 PRC~LEM STATEMENT

Minimize T (1)

Subject to:
Gx~~~b (2)

0~~~x~~~u , (3)

where each column of the coefficient matrix C contains at most two non—zero

entries. It will be assumed that u is f ini te  (e.g. , using “regularization” [11]

if necessary). The problem as stated may be conceptualized as a graph con-

taining vertices and non—directed edges. However, we will further assume that

if a column of C has two non—zero entries, then at least one of these is nega-

tive and by appropriate scaling has a value of —1. This allows the problem to -

be presented in a directed graph (digraph) setting, as noted in Part I.

Each column of C is associated with a directed edge (arc) of the digraph

and each row is associated with a vertex (node). An arc runs from the tail

node, associated with the —l coefficient, to the head node, associated with the

other non—zero entry. In the case of a single non—zero entry in the column of

0, the associated arc is called a self—loop and is incident on a single node.

The flow on the arc is defined to be the value assigned to the corresponding

component of x (i.e., to the variable whose column of G gives rise to the arc).

Thus, by this association between arcs and variables, each arc has an associated

cost per unit flow (component of c) and an upper bound on the ~low (component of

u). The coefficient in the column of C associated with the head of the arc is

the arc multiplier.

The right—hand side value (component of b) associated with a particular

node determines whether flow will be inserted or removed from the network at

that node. If the right—hand side value is negative, flow is inserted and the

node is called a source node. Likewise, if the right—hand side value is positive,

the node is called a sink node and flow is removed at that point. If a parti— 

~~~~~~~~~~~~ - - .- - - .
~~~~~~~~~~ -~~~~~~~~-



--  - - --- -- 

18

cular node has both arcs heading into it as well as out of it, then it is

called a transshipment node. All other nodes will be either pure sources or

pure sinks.

Since the computer code NETG , on which this study is based , employs a

specialization of the prima]. simplex method , a brief discussion of this

specialization is in order. We begin by examining the basis structure for

this specialization.

It may be assumed without loss of generality that C has rank in, where in

is the number of rows in C. Otherwise, the problem is equivalent to a set of

disjoint minimum cost flow networks (see [21]). Any basis for the problem,

then, will be composed of m linearly independent column vectors selected from

C. Graphically this corresponds to a set of in arcs incident on the in nodes

of the problem. It has been shown [15, 24, 38, 40] that this graph will be

composed of a set of disjoint quasi-trees. Each quasi—tree is a simple tree

to which a single arc is added. The additional arc forms exactly one cycle,

which is a unique series of arcs leading from a node back to that node. By

convention, to allow this characterization to apply to the case in which the

additional arc is a self—loop, a self—loop is regarded as a cycle.

The EM’I method, on which NETG is based , is specifically designed to

store the bases of generalized network problems in the graphical quasi—tree

form. All of the primal simplex operations are carried out by working with

the basis graphs which are stored using linked list procedures. The inherent

advantages of this method will be fully described subsequently.

3.0 DATA STRUCTURES IN THE EAPI METHOD

Since a generalized network problem is simply a type of LP problem, it 

—--- --



-- -- -~~-

19

can be solved using any standard 12 solution technique. Improvements in

inversion and reinversion processes, data compactification , and pivot selection

strategies have provided dramatic increases in the efficiency of primal sim-

plex computer codes in recent years. In many cases, the special structure Of

a generalized network problem can be detected by a primal simplex 12 code; this

information is then used to reduce storage requirements and to simplify opera-

tions. However, none of the current 12 systems is capable of fully exploiting

the structure of generalized network problems.

One of the conspicuously exploitable features of generalized network

problems is the sparsity of the coefficient matrix, and current 12 codes are

of àourse designed to take advantage of sparsity to store data economically.

When the problem is transformed to digraph form , storage may be reduced even

further. By the use of simple ordered lists to capture the digraph structure,

NETG is designed to store only the head node identif ier, the cost coeff icient,

the non—zero multiplier, and the upper bound for each column of the coeff icient

matrix. In this way , problem data can of ten be resident in fast main memory for

extremely large problems.

As noted in section 2 , bases for generalized network prob lems have a

special structure. With possible reordering of the rows and columns, the basis

matrix forms a block diagonal matrix. Each of the blocks is either triangular

or near—triangular and can be represented as a quasi—tree. Johnson [31, 32]

originally proposed a linked list procedure for storing simple trees and sug-

gested its use for the more complex quasi—trees. The EAPI method developed by

Glover , Klingisan and Stutz [24] provides effective labeling procedures for re-

structuring (updating) quasi—trees by reference to such lists. 

-~~~ -- - --- - - - ~~~~-- - - - - ---- -- -— -



20

The original problem data, compactly stored, and the basis matrix,

stored via linked lists, are the only data elements that need to be kept by

a specialized code such as NETG. The advantage here is that a basis inverse

need not be maintained. Inverses generally require considerable amounts of

storage and involve numerous arithmetic operations to utilize and maintain

them. These arithmetic operations additionally require considerable computer

time and also introduce numerical inaccuracies. Instead , the specialized label-

ing rules of the EAPI method operate on the basis graph in a manner that obviates

the use of a basis inverse.

The EAPI method [24] orients each quasi—tree so that the cycle is concep-

tually located at the top, with attached trees hanging downward. This orien-

tation is called a rooted cycle. The linked lists and labeling procedures

provide the means of traversing the tree in both upward and downward direc—

t ions.

Without detailing minutely the rules and processes of these procedures, it

is useful to sketch their main functions. In particular, the two types of

quasi—tree traversals accommodated by the procedures are used to carry out basis

exchange steps. Upward traversal is associated with operations normally re-

quiring pre—multiplication by the inverse, such as determining the representation

of an entering vector (arc). This operation is performed by traversing the

unique paths from selected vertices up to their associated cycle(s). Simul-

taneously, the associated triangular system of equations is solved , in effect ,

by back substitution. A directed trace of the cycle(s) completes the operation.

The process of determining the representation of a vector requires traversing

at most two quasi—trees and generates only the non—zero entries of this represen—

tation.

A



—

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

21

Downward quasi—tree traversal is analogous to post—multiplication by

the inverse. This operation is used to calculate updated dual variable values.

In a network interpretation, there is a dual variable associated with each of -

the nodes in the problem. These are often referred to in the literature as

node potentials. At each iteration, new dual values associated with a subset

of the nodes in a single quasi—tree must be determined. A single dual value

associated with a node on the cycle may be determined [22, 24]. The resulting

system of equations is triangular, and may be solved by traversing downward

through the quasi—tree, again employing back substitution . This process automati-

cally restricts attention to only those dual values that change during a basis ex-

change.

4.0 COMPUTATIONAL TESTING

The computer code NETG is coded entirely in standard FORTRAN IV. We

avoided the use of machine dependent operations in order to ease the transition

to various computers. The program was initially coded , debugged , and tested ,

using the RUN compiler on a CDC 6600 computer with a maximum main memory allo-

cation of 130,000 words. The complete capacitated algorithm occupied 8N + 4A +

8500 words of central memory , where N is the number of nodes and A is the number

of arcs in the specific problem being solved.

Since most of the testing performed would be of a comparative nature, it

was desirable to obtain a set of problems that met certain specifications and

that could be made available on a repeated basis. For this reason, a general-

ized network problem generator (NETGENG) was developed. This code was a logical

extension of the NETGEN [37] problem generator for pure network problems. All

parameters in NETGEN were retained with the added feature that the user can

specify a range of values from which the arc multiplier values are chosen. The

- - --

-~~-~~~~~

22

problems were specifically chosen so that the effects of problem structure on

solution time could be noted . The problems varied in size from 200 nodes and

1500 arcs up to 1000 nodes and 7000 arcs. Complete problem specifications

and test results can be found in [17].

Based upon earlier research with pure network problems [19, 20, 33], it

has been established that certain factors play a critical role in determining

solution speed. These are: start procedures, pivot selection techniques, de-

generacy , tolerance levels, Big—M value, and pivot tie—breaking rules. The

computational testing involved varying these factors within NETG , solving

generated t~est problems, and comparing solution times and pivots performed .

The testing was performed on a CDC 6600 computer located at the University

of Texas at Austin. In each of the comparative tests, an attempt was made to

execute the codes involved during comparable time periods. The code uses a

real—time clock routine supplied by CDCI and is generally accurate to two

decimal places.

Start Procedures

The first phase of testing involved a comparison of three different start

procedures. All of the starts tested were based on techniques that have proved

effective for pure network problems. The first of these was the artificial

start procedure. It attached an artificial arc (self—loop) to every node in

the problem. The artificial arcs were then assigned extremely large (Big—M)

cost coefficients. The artificial method was the fastest start procedure to

execute, but it did not yield an advanced initial basis.

The second method tested was the sequential source minimum (SSM) procedure.

This method made a specified number of passes each time sequentially examining

23

every node in the problem. If the node had associated supply, flow was as-

signed to the arc having the least cost that led to a node with positive de-

mand, or, if there was no node with positive demand, to a node with zero

demand. The flow was set equal to the minimum of the supply, the upper bound

on the arc , or the demand (if non—zero) . If the flow on an arc was set equal

to the supply or the demand , the associated node was eliminated from further

consideration. If the process was terminated before supply and demand were

exhausted, then artificial arcs were appended. For the purposes of testing,

the number of passes was set to 1, 2, 3, 5, and exhaustive.

The exhaustive node supply procedure was the last start method tested. This

method was similar to the sequential source minimum in the way it assigned flow to I

arcs. However, the procedure continued to assign flow out of a particular

node until the supply at that node was exhausted or until no further arcs

existed. At that point, the next node with supply was considered. Upon com-

pletion, remaining supply and demand were met by appending artificial arcs.

Each of the start methods described above was tested using two distinct

pivot selection criteria. These were the node first negative and the node most

negative criteria. Both methods were based on examining the non—basic arcs

leading out of a given node. The node first negative method selected the first

encountered pivot eligible arc for the basis exchange. The node most negative

method, on the other hand, selected the best pivot eligible arc (in terms of the

magnitude of the updated cost coefficient) from the arcs out of the node. All

other code parameters were held constan t in all of the start procedure tests.

Regardless of pivot criteria, the exhaustive pass SSN procedure proved to

be the best start method in terms of resulting total solution time. It provided

24

a reasonable trade—off between the time spent selecting an initial basis and

the time recovered from using a reduced number of pivots. In some cases the

exhaustive pass SSM method reduced total pivots by as much as 61% and total

solution time by as much as 55% over the artificial start procedure.

Pivot Selection Criteria

It was noted during start procedure testing that the node most negative

pivot strategy strictly dominated the node first negative strategy . The

indication was that it would be worthwhile to spend time searching for the

“best” pivot eligible arc. Selecting the “best” arc out of a single node, as

the most negative method did , reduced total solution time by as much as 48%.

For this reason we conducted additional testing to try to find the best pivot

selection criteria.

Past experience has shown that pivot selection methods involving a

candidate list can greatly decrease solution time. An S—R candidate list

procedure employs an array of length R. The list contains the pointers to

pivot eligible arcs selected by using the node most negative procedure R

successive times. After each pivot , the best arc that is still pivot eligible~

in the list is selected to enter the basis. If there are no eligible arcs on

the list or if the list has been used S times , the list is refilled by calling

the node most negative procedure R more times. A number of variations of this

method were tested . Each involved differing initial values of S and R or

differing methods for dynamically adjusting these values.

Testing showed that pivot selection involving a candidate list was far

superior to methods that did not. It was found that an initial list size of

approximately 5—10 was the best. In addition , if the candidate 1 s t ~ cannot be -
~.1

25

totally filled (i.e., k candidates are found , where k < R) then setting

R = k and S = ½k proved to be the most effective dynamic reduction method .

Flow I~p4~te Procedures

The initial version of NETG often performed wasted operations in the pro-

cess of updating the flows on basic arcs. Since it had no check routines for

identifying a degenerate pivot during the calculation of a representation,

unnecessary representation components were found and flows were modified by a

zero amount. NETG was modified to exploit degenerate pivots. It identified a

degenerate pivot and totally skipped the flow update procedures whenever pos-

sible. Both of these recalculated the representation during flow updates.

Another version was created to allow for storing the representation vector.

It proved advantageous to check for degenerate pivots. Although the total

number of pivots was not necessarily reduced , the total solution time was re-

duced by up to 25%. However, the tests also indicated that it was not advan-

tageous to go one step further and keep a representation array. The overhead

of maintaining this extra information was apparently not offset by a reduction

in other calculations.

Pivot Tolerance

Tolerance levels are used in computer programming to avoid the problems

caused by round—off error. These tolerances define ranges within which values

are assumed to be zero. Such tolerances must be used in the testing of updated

cost coefficients. Negative coefficients indicate pivot eligible arcs; however,

very small negative numbers may actually be equivalent to zero.

_ _ _ _ _ _ _ _ _ _ _ _ -~--~ -- - - ----~-

-~

26

In order to examine the effect of tolerance values, values of 0.000001, 0.01,

0.5, and 1.0 were tested. Varying the tolerance levels had extremely inter-

esting effects upon solution times. All levels produced solutions with the

same optimum objective function value. The value of the tolerance dramatically

changed the choices of pivot eligible arcs. Extremely small values forced the

code to perform a series of disadvantageous pivots. On the other hand, large

tolerances allowed the code initially to overlook advantageous pivot selections.

The best strategy was to select a moderate tolerance value of 0.01.

Big—M Value

The final parameter value tested was the Big—M value. NETG did not employ

a Phase I—Phase II procedure , therefore an exact value of Big—N had to be

selected. All of the test problems had cost ranges of 1—100. Experience

with pure network computer codes indicated that Big—M should be set as small as

possible while still insuring feasibility. Big—M values of 10000, 2000, 1000,

500, 250, 150, and 100 were all tested . When 100 was eliminated because of

resultant infeasibilities , a value of 150 was clearly the best in terms of

total solution time. In one case, the total solution time was reduced by over

42% simply by changing the Big—N value from 10000 to 150.

Breakin& Pivot ii!~~

The last decision rule tested was one for resolving ties in the test for

a minimum ratio. NETG simply selected the most convenient (often the first

encountered) minimum ratio. A new version was developed to test a heuristic

rule for breaking pivot ties. The rule specified that the ratio with the

largest denominator be seiected from among the set of tied ratios.

_ _ _ - —--
--

27

In the majority of cases , this rule reduced the total number of pivots

performed. However , the reduction was not enough to offset the increased

number of operations involved with breaking the tie.

Code Comparisons

In order to assess the efficiency of the solution procedure described

above, we compared NETG, enhanced with the newly determined decision rules,

with the well—known linear programsing computer code APEX—I ll.

APEX—Il l is maintained by CDC and 1. operational on all CDC 6600 series

and CYBER— 70 series computers. The purpose of this test was to determine the

advantages that specialized procedures have over standard LP approaches.

The two codes were tested using seven problems generated by NETCENG. The

specifications of these problems are given in Table I. They ranged in size

from a 50 origin by 50 destination generalized transportation problem to a

1000 node generalized transshipment problem.

To perform the comparison between NETG and APEX-Ill , a CDC CThER—74 computer

was used and NETG was compiled using the CDC FTN compiler. The results are

documented in Table II. The basis of comparison for these tests was a quantity

called a System Billing Unit (SBU) . Each procedure incurs SBU’s based on the

amount of CPU second. used , I/ O operations performed , and central memory used.

In this way , SBU’ s may be used to compute the total cost for a job . Cost

figures have been included , based on the lowest CX price per SBU, $0.18.

The results were quite remarkable , especially when the dollar charges were

compared. NETG was in some cases more than 50 t imes more efficient than APEX—lU.

In fact , prob1~~~ 6 and 7 had to be pramaturely terminated on APEX—UI after

10,000 iteration. due to the exhorbitant proc.ssing costs involved.

-- “--a

_ _ _ _ _ _ _ _ _ - — - - - - -

28
0 0 0 0 0 0 0

S ~-4 ‘~~ ~.O ~O ‘.0 “.0 ‘.0 ‘.0o C) 0 •* ‘~~ .* -~ .-t -~ ‘
.4

~0 . 0 4) ~~ C~ C”.l ~~
~~~E 4 )  0 0 0 0 0 0 0

5 ~I) in in in in in in in
~ Z

— -4 1-4 1-4 i-I ,-4 .-4
4J

o .~~~ ~ 0 0 0 0 0 0 0

~~‘. 0 0 0 0 00 0
~~4 0 0 0 0 0 ~~ 0

4J o
~ 

0 0 0 0 0 0 0
~., O. 0 0 0 0 0 0 0

- ~.4 5 0 0 0 0 0 0 0
CI~ -~ — .-4 -4 -4 -4 -4

9 ~ o 0 0 0 in 0 in
. 4  r.4 r.4 in r-.

0.
-4

~~~~~~~~~~~~

1.-i 0 N N 0 in 0 ~~
Ii

.-.I N
14

•0
~~

S .E 00 4) 0
0 I 1 4 I I I I

1 1 1
4) 0

-~
p-I -4 0.

4.4
4) ‘r4

—4 C)
.0 4) 0 0 0 0 0 0 0
14 0. C J _ 0 0 0 0 0 0 0

,-4 _4 -.4 .-I .—4 ~-4

I
in in in ‘n in r—. .~

‘ -~ -~I I I I I I I
ill Lfl ~ in m N

5
Sz z

m 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
I..’ 0 0 0 0 0 0 0

.4’ -~~ in ‘.~

S
~~ 0 Q 0 in in 0 0o in 1 in C~4 r— 0 0

-4 N in

S
4)o 0 in in in in o o
Ii in N i-I in 0

1-4 N

9 0 0 0 0 0 0-o ~~ 0 0 in in 0 0
o .-I i-I -4 N e’.i in 0Z i-I

I-I
‘~~ in ‘.0 N.

IIa.

_ _ _ _ _ _ _ _ _ _ _ —~~~-—~ -~~~~ — — - - -—--
— - —--~~~~~~~~

29

Table II

NETG vs. APEX-Ill

NETG APEX- Ill
Prob l em SB! ?5a1 Cost~ SBU ’s Cos

7.51 $1.35 62.65 $ 11 .28

2 7 .2w $ 1 . 3 1 80.93 $ 14.57
I

9.70 $1.75 94.72 $ 17.05

4 16.65 $3.00 453.02 $ 8 1.54

5 4.74 $2.65 742.61 $133.57

6 22.55 $4.06 1044.34 $l87.9B~

7 50.22 $9.04 1 633.64 $294.06d

5CYBER..74 System B i l l i n g Unit.

bComputed at $0.18 per SBU.

CStopped after 10 ,000 iterations.
Objective Fun ct ion Value = 25,337 ,282.
Optima l Objective Function Vefte = 3,354,927.

~~topped e~ter 10 ,000 ?terations.
0bj~ ctive Funct T or, Va l ue = l ,340 ,958,Y9.
Optima l Objecf ve Fu ~t T on Va ’ ue = 3,9(4,499.

-— - —- - — - - —--- —-— ——-—,- -

~
T•

L - -——— -—-—.-- —-—- — ~~~~~~~~~~~~~~~

r~~~
- -
~~~

30

The comparison of NETG with APEX—Ill succeeded in proving that generalized

network problems can be efficiently solved by using codes specially adapted for

that purpose. The ability to solve large scale generalized network problems

with such a high degree of eff iciency allows management scientists to begin

using this important class of prob lems as a f undamental computer based plan-

ning tool.

- - -

--- - --- —

~ 

— --- - - - - - ~~~~~ --~~ - ---- - -



31

REFERENCES

1. H. Aashtiani and T. Magnanti, “Implementing Primal—Dual Network Flow
Algorithms ,” Work ing Paper OR 055—76, Massachus -~tts Institute of Technology ,
1976.

2. V. Balachandran, “An Integer Generalized Transportation Model for Optimal
Job Assignment in Computer Networks,” Operatic-is Research, 24 , 4 (1976) ,
742—759.

3. E. Balas and P. Ivanescu (Hammer), “On the Generalized Transportation Problem,”
Management Science, 1 (1964), 188—202.

4. R. Barr , F. Glover , and D. Klingina n , “An Improve d Version of the Out— of—Kil ter
Meth~~ and a Comparative Study of Computer Codes , ” Mathematical Programming ,
7, 1 (1974), 60—87.

5. R. Barr , F. Clover , and D. Kl ingman , “Enhancements of Spanning Tree Labeling
Pi ’.cedures for Network Optimization ,” Research Report CCS 262, Center for
Cybernetic Studies, University of Texas at Austin , 1976.

6. R. Barr, F. Clover, and D. Klingman , “The Alternating Basis Algorithm for
Assignment Problems , ” Resea rch Repo r t CCS 263 , Center for Cybernetic
Studies, University of Texas at Austin , 1977.

7. C. Bhaumik, Optimum Operating Policies of a Wate r Distribution S~stam with
Losses, Unpublished Dissertation , University of Texas at Austin, August, 1973.

8. C. Bhaumik and P. Jeneon , “A Computationally Eff ic ient  Algorithm for the
Ne twork with Gains Problem ,” Wo rking Paper , Department of Mechanical En-
gineering, University of Texas at Auetin, 1974.

9. C. Bradley , “Survey of Deterministic Networks,” AIlS Transactions , 7, 3 (1975) ,
222—234 .

10. C. Bradley , G. Brown , and G. Graves , “Design and Implementation of Large Scale
Primal Transshipment Algorithms,” Technical Report NPS55BZBW76O91, Naval Post-
gradua te School, Monterey, California, 1976.

11. A. Charnes and W. Cooper, Managemen t Models and Industrial Applications of
Linear Programming, Vols. I and II, Wiley , New York , 1961.

12. R. Crum, “C sh Management in the Multinational Firm: A Constrained Gener~1iz-:’L
Network Approach ,” Working Paper, Tie University of Florida, Gainesvilj.c,
Flor ida, 1916.

13. C. Dantzig, Linear Programing and Fxtens ions , Princeton University Pr’- - -

Princeton , New Jersey, 1963.

14. K. Eisemann , “The Generalized Stepp i ng Stone Method for the Machine Loading

Model ,” Manag ement Scien~.e , 11, ~L964 ) ,  154—177.

_ _ _ _ __ _ _ _ _  _ _ _ _ _  ---4



~~~~~---- - - —

32

15. J. Elam, F. Clover , and D. Klingman, “A Strongly Convergent Primal
Algorithm for Generalized Networks ,” Research Report CCS 288 , Center
for Cybernetic Studies, University of Texas at Austin, 1977.

16. C. Gilliam and J. Turner, “A Profile Analysis Network Model to Reduce the
Size of Microdata Files,” Working Paper , Office of Tax Analysis, Off ice of
the Secretary of the Treasury, Washington , D.C., 1974.

11. F. Clover, J. Ilultz , D. Klingman , and J. Stutz , “A New Computer—Based -
Planning Tool,” Research Repor t CCS 289 , Center for Cybernetic Studies,
University of Texas at Austin, 1977.

18. P. Clover, D. Karney, and D. Klfngman, “The Augtr~nted Pred ecessor Index
Method for Locatl’ig Stepping Stone Paths and Assigning Dual Prices in
Distribution Problems ,” Transportation Science, 6, 2 (1972), 171—179 .

19. F. Glover, D. Karney, and D. Klingman, “Implementation and Computational
Study on Start Procedures and Basis Change Criteria for a Primal Network
Code ,” Networks, 4, 3 (1974), 191—212.

20. F. Clover, 0. Karney, D. Klingman, and A. Napier, “A Computational Study on
Star t Procedures , Basis Change Criteria, and Solution Algorithms for Trans-
portation Problems,” Management Science, 20, 5 (1974), 793—819.

21. F. Clover and D. Kl ingman, “On the Equivalence of Some Generalized Network
Problems to Pure Network Problems,” Mathematica l Programming, 4, 3 (1973),
351—361.

22. 7. Clover and D. Klingman , “A Note on Computationa l Simplifications in
Solving Generalized Transportation Problems,” Transpor tation Science, 7,
4 (1973), 351—361.

23. F. Clover , D.)Clin~man , and C. McMili.an , “The NETFORZ4 Concept, ” Research
Report CCS 281, Center for Cybernetic Studies, University of Texas at
Austin , 1977.

24. 1. Clover , D. Klingman, and 3. Stutz , “Extensions of the Augmented Pre—
dec.~isor Index Method to Generalized Network Problems ,” Transportation
Scienc•, 7 , 4 (1973), 377—384 .

25. 7. Clover, D. Klingm*n, and 3. Stutz, “Implementation and Computational Study
of a Generalized Network Code,” Presented at the 44th National ORSA Con—
ferenc., San Diego, California , 1973.

26. 7. Clover, D. Kl lngmsn, and J. Stutz , “The Augmented Threaded Index Method
for Network Optimization,” INFOR , 12 , 3 (1974), 293—298.

27. 7. Clover and 3. Mulvsy, “Equivalence of the 0—1 Integer Programeing Problem
to Disct•ts Gsneraliz d and Pure Networks,” MSRS 75—19, University of
Colorado, loulder, Colorado, 1975.

~~øii~ 4~~a,su. ‘j .

33

28. B. Harris, “A Code for the Transportation Problem of Linear Programming,”
JAcK , 23 , 1 (1976), 155—157.

29. J. Hultz, Algorithms and Applications for Generalized Networks, Unpublished
Dissertation, University of Texas at Austin, 1976.

30. W. Jewell, “Optimal Flow Through Networks with Gains,” Operations Research,
10, 4 (1962), 476—499.

31. E. Johnson, “Programming in Networks and Graphs,” ORC Report 65—1, University
of California at Berkeley , 1965.

32. E. Johnson, “Networks and Basic Solutions,” Operations Research , 14, 4
(1966), 619—623 .

33. D. Karney and D. Klingma n , “Implementation and Computational Study on an
In—Core Out—of—Core Primal Network Code,” Operation s Resea .~ -

~~~, 24 , (1976). -

34. P. Kazemersky, A Computer Code fo r  Refueling and Energy Schedutinq Containing -

an Evc2 1-uato r of Nuclear Decisions for  Oper ation , Unpublished Dissertation,
Ohio State University, 1974.

35. Y. Kim, “An Optimal Computational Approach to the Analysis of a Generalized
Network of Copper Refining Process,” Presented at the Joint 0RSA/TIMS/~\ilEConference, Atlantic City, New Jersey, 1972.

36. D. Klingman , A. Napier , and C. Ross, “A Computational Study of the Effects of
Problem Dimensions on Solution Times for Transportation Problems,” JACM , 22 ,
3 ( 1975), 4 13— 424 .

37. D. Klingman, A. Napier , and J. Stutz , “NETGEN — A Program for Generatln~ LargeScale (Un)Capacit~ited Assignment , Transportation , and Minimum Cost Flow
Network Problems, Management Science, 20, 5 (1974), 814—821.

38. R. Langley, Continuous and Integer Generali zed - low Problems , Unpublished
Dissertation, Georgia Institute of Technology , 1973.

39. R. Langley , J. Kennington , and C. She’ty , “Computational Devices for the
Capacitated Transportation Problem ,” Naval Research Logistics Quarterly,
21, 4 (1974),  637—647.

40. 3. Maurras, “Optimization of the Flow Through Networks with Gains,” Mathematical
Programming, 3, (1972) , 135—144.

41. V. Srinivasan and G. Thompson, “Accelerated Algorithms for Labeling and
Relabeling of Trees with Applications for Distribution Problems,” JACM ,
19. 4 (1972), 712—726.



34

42. L. Tavis, R. Crum, and D. Klinoman , “Implementation of Large—Scale Financial
Planning Models: Solution Efficient Transformations,” Research Report
CCS 267 , Center for Cybernetic Studies, University of Texas at Austin, 1976.

43. H. Wagner , Principles of Operations Research, Prentice-14a11, Engle~;.od Cliffs,New Jersey , 1969.

L _ _ _- -



-w

Unclassified
S.t~, n t y  CIa,~ i f , ca t i on

DOCUMENT CONTROL DATA . R & D 
-

~ecur,ty classilkag jon of titto, body of ab. trot- t a l  ~~~~~~~~ .,, noU,tion m u . 1  (,e entered when the ovot~ U rep.,rt I, ~7U..ili e l)
OR G P-4A ~~ NG A C  T IV I T ’ v  (Co,porat. autho r) la REt ’ ( - , C ..L C U R I T Y  CLa .ss FI c* n o N

Center for Cybernetic Studies Unclassified
The University of Texas at Austin lb. GROUP

.1 ~ IPORT T I T L E

Generalized Networks : A Fundamental Computer-Based Planning Tool

4 DI $ C R ( P TS v E  NOTES (np . of report .nd.inCfu.~,v,~ dates)

I A U THO R S  (Pin t name. middle initial, last ‘lame)

Fred Glover J. Stutz
J. Hultz
D._Klin~man ____________________________________

A REPORT D A C E  7~~. T O T A L  NO. OF PA G E S  lb. NO. OF REFE

June 1977 34 43
Id. C O N T R A C T  OR GRANT NO. es O R I G I N A T O R ’ S  R E P O R T  N U M B E R ( S )

N00014-75-C-0569;0616 Center for Cybernetic Studies
P R O J E C T  NO. Research Report CCS 307

NR047-021 --
Sb. OI lER REPORT NO(S) (Any other numbers that may be a.ai~’l.d 

-

this r.port)

d.

( 0 .  O ( S T R ’ B UT( ON ST A T E M E N T

This document has been approved for public release and sale; its
distribution is unlimited.

•UP PL E ME NT * Q Y  HOTEl tL  SPONSORING MILl T A RV  A C T  V I T ’

Office of Naval Research (Code 434)
Washington, DC

- _____________________________________________________________

This paper documents the recent emergence of generalized networks as a
fundamental computer-based planning tool and demonstrates the power of the
associated modeling and solution technique s when used together to solve real-world
problems.

Part I of the pape r is a non-technical account of how generalized networks are
used to model a diversity of significant practical problems. First we discuss the
model structure of a generalized network (GN) and’provide a brief survey of appli-
cations which have been modeled as GN problems. Next we explain a somewhat
newer modeling techniques based on NETFORM (network formulation) princ iples in
which generalized networks form a major, but not the only , component of the model.

Part II is a technical exposition of the design and analysis of computer solution
techniques for large-scale GN problems. It contains a study of GN solution strate-
gies within the framework of specializations of the primal simplex method. Here we
identify an efficient solution procedure that derive s from an integrated system of
start , .pivot and degeneracy rules. The resulting computer code is shown on large
problems to be at least 50 times more efficient than the LP system, APEX III. The
computer memory requirements of our method , as well as the solution times, are
sufficiently small to warrant its use as a computer-based planning tool not only in
a batch processing environment , but also in an interactive setting.

DD ‘°~~ 1473 (PAGE I)
Unclass ift ed

srn 0101 ~807.6II t Secu rity Ciassificaflon
A- 3) 401



~ 
_

Unclassified
- Security ~ Lasslf1 cat ~on 

_______________ _______________

L I N K  A L I N K  B L I N K  C
K E Y  W O R D S

R O L E  W I  R O L E  W Y  R O L E  W Y

Networks

Generalized Networks

Networks with Gains

Network domputation

Graphs 
-

DD .‘~?..1473 ( BAC~ ) Unclassified
im Ot O I.014.$ IOO Security Classificat ion A - 3 1 4 0 1  

- - -- -~-~~~~~.~~~~- - - -


