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ABSTRACT 

Over the years modelers and practitioners have become so adept at design- 

ing large scale linear programming problems that in some cases the complexity 

is staggering. However, such problems place a tremendous burden on current 

standard linear programming systems and computer resources. This has led to a 

demand for alternative design and solution procedures. 

Noting that the vast majority of linear programming problems contain at 

least some embedded network, structure, researchers in the network area have 

made many advances in the past few years.  In fact, these advances have led to 

the important new area of nethror/c computer implementation technology. 

This paper provides insights as to why network techniques are having such 

a large impact on modelers and why network solution procedures are being selected 

over standard linear programming systems for use in many real world applications. 

As dramatic proof of the savings offered by network solution procedures, various 

network computer codes are compared with the standard linear programming system 

APEX-HI.  Results indicate that the network techniques are 200 times faster on 

highly structured problems and as much as 25 times faster on more complex em- 

bedded network problems. 
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INTRODUCTION 

The growth of the computer industry has had a profound influence on many 

areas, perhaps affecting none more dramatically than the area of mathematical 

optimization. 

The techniques for building, solving, refining, and analyzing mathemati- 

cal optimization models have undergone a steady evolutionary development as 

computer hardware has changed. This evolution has led to the important new 

area of network computer implementation technology. 

This technology has emerged from recent research on new solution algo- 

rithms and implementation techniques for solving network problems [1, 2, 3, 6, 

9, 10, 13, 15, 17]. The fruits of this research have dramatically reduced the 

cost of solving linear and mixed integer network type problems.  This cost re- 

duction, significantly, has been entirely above and beyond any reductions af- 

forded by changes in computer hardware or compilers.  For example, the cost of 

solving network problems with 2400 equations and 500,000 arcs on an IBM 360/65 

has been reduced from a conservative estimate of $10,000 in 1968 to $300 in 

1976 by these advances.  In addition these advances have stimulated the develop- 

ment of new modeling techniques for handling a multitude of problems that arise 

in applications of scheduling, routing, resource allocation, production, inven- 

tory management, facilities location, distribution planning, and other areas 

[8, 11, 12, 14]. 



Yet the full scope and significance of these developments remains to be 

fully appreciated by members of the mathematical and computer optimization 

community.  For example, although the producers of large LP systems have 

always recognized that specialized computer codes could be better than stan- 

dard codes they strongly believed that the specialized codes would be only 

5-10 times faster at best.  This belief stemmed in part from the fact that 

large sums of money and many hundreds of man years have been invested to pro- 

duce top notch LP systems.  In addition, LP has been an omnipresent and often 

dominant topic in management science textbooks, whereas networks are often 

barely touched upon. 

In light of the recent advances in network computer implementation tech- 

nology, we decided to compare the best network software against one of the best 

commercially available LP systems.  The results have completely overturned the 

traditional view of the relative efficiencies of LP and network systems.  In 

fact, some LP producers whom we have made aware of these results have come to 

recommend special purpose codes to users who have network type models.  The large 

numbers of practical applications in which network models play a role makes it 

important that the mathematical optimization community at large become ac- 

quainted with the solution power of advanced network computer codes, the theory 

behind network solution algorithms, and the implications of latest developments 

for the future of optimization software. 

To achieve these goals, this paper has been divided into three sections. 

The first presents a detailed comparison of current network codes with the 

state-of-the-art LP code APEX-III.  The second section briefly compares and con- 

trasts the implementation logic of network codes and LP codes to provide a 
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more complete understanding of the results in the first section. The final 

section discusses how the network and LP procedures can be merged to provide 

a new generation of LP codes. 

The discussion in each of these sections is devoted to sketching the 

concepts and innovations that represent the highlights of the field. A 

minutely detailed coverage of these topics would easily fill a book. Thus the 

intent of each section is to provide the reader with an executive summary 

rather than a microscopically focused account of these topics. 

2.  COMPARISON RESULTS 

In this Section we examine the consequences of advances in network computer im- 

plementation technology.  In particular we provide fuller insight into the practi- 

cal significance of these methods by presenting the results of empirical tests a- 

gainst a leading example of the state-of-the-art in solution systems that does 

not incorporate the network technology. In particular, we report computational 

comparisons of the new network codes against APEX-III on a wide array of net- 

work problems of varying structures. We follow the customary classifications 

of network problem types (e.g., assignment transportation, transshipment, gener- 

alized network) of the mathematical programming literature [4, 5, 7, 18, 19]. 

The test results are not biased by variations in computer hardware: all 

problems were solved on the same machine.  Further, an attempt was made to 

execute the codes when the computer had the same type of job load. Even with 

these safeguards, minor differences between two solution times should be statis- 

tically ignored and the focus should be on order of magnitude differences.  For 

this reason, the times reported are for large problems so that timing variations 

become less significant. 



Table I contains solution times on 15 network problems using APEX-III on 

a CDC CYBER-74. The first set of problems consists of assignment problems and 

the reported network solution times were obtained using the AP-AB code of [2]. 

The solution times indicate that the AP-AB code is roughly 200 times faster 

than APEX-III on assignment problems. 

The network code times reported on the transportation and transshipment 

problems were obtained using the ARC-1I code of [1].  Again the network solution 

times are substantially superior (on the order of 130 times faster than APEX-III). 

The fourth set of solution times are for generalized network (ON) problems.  The 

network code times refer to the NETG code [8]. 

The relative superiority of network code times to APEX-III is smaller for 

generalized networks than for pure networks.  The code NETG is on the order of 

50 times faster than APEX-III on generalized networks; nevertheless, this 

superiority is dramatic, especially in terms of computer costs for solving such 

problems. 

The final set of test results are for LP problems composed of a ON problem 

augmented by an arbitrary linear constraint.  This problem-type is called the 

singularly constrained generalized  network problem.  The network code times refer 

to the NETSG [16] code and the results even for this class of constrained gener- 

alized networks are more than an order of magnitude  faster than available with 

the advanced LP system. 

In addition to improving solution speed, the network processing techniques 

have the noteworthy advantage of requiring less computer memory to solve a problem. 

This allows larger problems to be solved without resorting to external storage 

devices, which can incur significant cost increases due to lengthened computer 

run times.  Further, the reduced memory requirements enable many computer-based 



TABLE 1 

(Limes are in billing units) 

I'ROBLEM 
TYPE 

no. of 
equations 

no. of 
variable ; 

APEX III 
solution times cost 

Network Cod 
solution times cost 

Assignment 400 
400 

1500 
2250 

231.85 
336.37 

$ 41.73 
$ 60.55 ! 

1.16 
1.34 

$ .21 
$ .24 

Transportation 200 
200 
200 

1300 
1500 
2000 

105.68 
124.53 
164.94 

$ 19.02 
$ 22.42 
$ 29.69 

.94 
1.07 
1.21 

$ .17 
$ .19 
$ .22 

Transshipment 400 
1000 

1306 
2900 

174.83 
833.63 

$ 31.47 
$150.05 

1.51 
5.28 

$ .27 
$  .95 

Generalized 
networks 

250 
250 
500 

1000 

4000 
4000 
5000 
6000 

453.02 
742.61 

1044.14* 
1633.64* 

$ 81.54 
$133.67 
$187.98 
$294.06 

16.65 
14.74 
22.55 
50.22 

$ 3.00 
$ 2.65 
$ 4.06 
$ 9.04 

Singularly 
constrained 
generalized 
networks 

200 
200 
500 

1000 

2000 
1000 
4000 
6000 

205.87 
i    130.18 

943.25 
1875.55* 

$ 37.06 
$ 23.43 
$169.79 
$337.60 

16.10 
11.38 
32.72 

1    83.13 

$ 2.90 
$ 2.05 
$ 5.89 
$14.96 

* Not optimal after 10,000 Iterations, 
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decision systems to be used in an interactive real-rime processing environ- 

ment. 

Yet another important advantage of the network codes is their portability- 

All of these codes are written in standard FORTRAN IV.  Several beneficial con- 

sequences result.  For example, this portability feature allows easy transfer 

of the network component of a computer-based decision system to a new computer. 

It also greatly facilitates imbedding the code as a subroutine within a larger 

system. 

A final computational advantage, which will be discussed in the next section, 

is reduced round-off error.  Taken together» the impressive array of advantages 

of the network solution codes makes it clear why their use in industry and 

government applications is rapidly increasing [11]. 

3.  IMPLEMENTATION APPROACHES 

Linear network problems, as previously pointed out, are special types of 

LP problems and can thus be solved using any standard LP solution technique. 

Improvements in LP inversion and reinversion processes, data compactification, 

and pivot strategies have materially improved the efficiency of primal simplex 

LP computer codes in recent years.  In many cases, special structures such as 

GUB constraints (which are embodied within network problems) are detected by 

current LP codes. This information is then used to reduce storage requirements 

and to simplify operations.  Despite these improvements, we saw in the preceding 

section that the special purpose network solution systems dwarf the LP systems in 

their efficiency.  In this section we examine some of the reasons for this, and 

undertake to trace their more significant implications. 



Undoubtedly, the primary reason for the superiority of network codes over 

LP codes is the fact th?t the latter, with the exception of the GUB feature, 

are based primarily on algebraic or arithmetic processing. That is, these 

codes maintain and update a basis inverse by manipulating numbers.  Further, 

the representation of a variable to enter the basis is computed by matrix 

multiplication. 

By contrast, the most efficient methods for solving network problems are 

based on replacing arithmetic operations with "logical" operations. More 

precisely, these solution procedures are based on viewing the problem in a 

graphical context (just as in the case of the network modeling ideas discussed 

previously).  In particular, the network codes AP-AB, ARC-II, NETG, and NETSG 

(for assignment, transshipment, generalized, and singularly constrained gener- 

alized networks, respectively) all store the coefficient matrix and basis matrix 

as graphs using computer list structures. 

The use of such computer list structures reduces both the amount of work 

needed to perform the algorithmic steps and the amount of computer memory re- 

quired to store essential data.  For example, network codes normally store only 

the cost coefficient, the upper bound, and tha "to" node for each column of 

the coefficient matrix.  (In the case of a GN problem, the multiplier is also 

stored.)  In this way, problem data can often be resident in central memory 

even for large-scale problems. 

To illustrate, a popular way of storing a network is to use linked-list 

structures.  In this method, all of the arcs that begin at the same node are 

stored "together" under the name of their "from" node and each is represented 

(distinguished from the others) by recording only its "to" node, cost, and 



—-!,i ■- ^ '"r liri:''ii  :!ir-'- 

upper bound.  A pointer is then kept for each node which indicates the block of 

computer memory locations for the arcs beginning at this node.  The set of arcs 

emanating from node u is called the forward star of node u [6].  If the nodes 

are numbered sequentially from 1 to the number of nodes, and the arcs are stored 

consecutively in memory such that the arcs in the forward star of node i appear 

immediately after the arcs in the forward star of node 1-1, then this method, 

called the forward star form, requires only |N| + 2|Ai units of memory for pure 

uncapacitated problems, |N| + 3|A| for pure capacitated problems, and |NJ + 4|A| 

for capacitated generalized network problems where |N| denotes the number of 

nodes and |A| the number of arcs.  Figure 1 illustrates the storage of a pure 

network in forward star form.  The number in the square attached to an arc of 

the network diagram is the cost.  It is not necessary to store the NODE POINTER 

array when random access of forward stars is not required; in fact, the AP-AB 

and ARC-II codes do not use this array. 

FIGURE 1 - FORWARD STAR FORM 

ENDING 
)DE POINTER                NODE 

COST 

m 

1 
! 

2 3 1 1 

2 3 3 4 
■ 

3 5 L*. 4 5 
4 7 3 7J 

4 | 2 

4 6 
2 8 ' 



Network basis matrices, like network coefficient matrices, have a graph 

structure. Moreover, the graph structure of a basis matrix is very special, 

consisting either of disjoint trees or of trees coupled with one additional 

arc (called guasi-trees [8]).  The basis of a pure network consists of a single 

tree and the basis of a generalized network problem consists of one or more 

trees and quasi-trees. These trees and quasi-trees can be stored and updated 

with remarkable efficiency by special linked list and labeling procedures that 

have been developed in the past few years [1,  2, 9, 13, 17]. 

A common way of representing a tree in a computer is to think of the root 

node r as the highest in the rooted tree with all other nodes hanging below it. 

If nodes i and j are endpoints of a common arc in the rooted tree such that node 

i is closest to the root, then i is called the predecessor of node j and node j 

is called an immediate successor of node i. The tree is then represented by 

keeping a pointer list which contains for each node w ^ r, its predecessor. 

This upward pointer is called the predecessor of node w and is denoted by p(w). 

For convenience, we will assume that the predecessor of the root, p(r), is zero. 

Figure 2 illustrates a tree rooted at node 1, the predecessors of the nodes, 

and other functions to be described subsequently. The predecessor of a node is 

identified in the p array.  For example, the predecessor of node 16 is node 5. 

It is important to note that the direction of the arcs in Figure 2 corres- 

pond to the orientation induced by the predecessor ordering and do not necessarily 

correspond to the direction of the basic arcs in the network.  Thus, it is neces- 

sary to keep track of each basic arc's true direction.  In performing the various 

tree traversals required by the simplex algorithm, we say that arc (i,j) is 

traversed in the forward direction if it is traversed from node i to node j 
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Predecessor p (x) 

Node potential · d (x) 

Thread t (x) 

Reverse thread rt(x) 

Depth dh{x) 

Card ina I i ty c ( x) 

Last node in subtree f (x) 

NODE p d t rt dh c f 
1 0 0 2 15 0 17 15 

'·2 1 1 4 1 1 9 6 
3 1 8 10 6 1 7 15 
4 2 4 5 2 2 6 17 
s 4 6 16 4 3 2 16 
6 2339216 
7 8 8 17 8 4 1 7 
8 4 s 7 16 3 3 17 

2 3 6 17 2 1 9 
3 12 13 3 2 3 14 
3 9 12 14 ~ 3 15 

11 11 15 11 3 1 12 
10 1 s 14 10 3 . 1 3 
1 0 18 11 13 3 1 14 
11 18 1 12 3 1 15 
s 10 8 5 4 1 16 
8 7 9 7 4 1 17 

F G. 2- TREE LABELING TECHNIQUES 
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(i.e., in accordance with its network direction) and is traversed in the 

reverse direction otherwise. 

Most primal simplex codes keep another list indexed by the node numbers 

associated with the tree. This list contains for each node v a label d(v), 

whose value is the current dual vari ble value of this node. Henceforth d(v) 

will be called the node potential of node v. The root r has a node potential 

of zero. 

In Figure 2 the number in the square on each arc indicates the cost of the 

arc. The entries in the d array identify dual variable values which satisfy 

complementary slackness for the basic variables. Representing the cost on arc 

(i,j) by cij and supply (demand) as a negative {positive) quantity, this condi­

tion for each basic arc (i,j) will be -d(i) + d(j) = cij. 

Figure 2 illustrates additional tree information expressed as node functions , 

which can be used in the computer implementation procedures. 

The first of these functions, the thread function [1, 13], is denoted by 

t(x). This function is a downward pointer through the tree in the sense that 

it is used to locate all nodes lying below a given node. As i llustrated in 

Figure 2 by the small dashed line, function t may be thought of as a connecting 

link (thread) which passes through each node exactly once in a top to bottom, 

left to right sequence, starting from the root node. For example, in Figure 2, 

t(l) ~ 2 , t(2) • 4, t(4) • 5, t(S) • 16, t(l6) = 8, etc. 

Letting n denote the number of nodes in the tree, the function t satisfies 

the following inductive characteristics: 

a) 
2 n-1 The set {r, t(r), t (r), •.• , t (r)} is precisely the set of nodes of 

2 3 2 
the rooted tree, where by convention t (r) • t(t(r)), t • t(t (r)), etc. The 
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k-1 k 
nodes r, t(r),..., t  (r) will be called the antecedents  of node t (r). 

b) For each node 1 other than node t  (r), t(i) is one of the nodes 

such that p(t(i)) = i, if such nodes exist. Otherwise, let x denote the 

first node in the predecessor path of i to the root which has an immediate 

successor y and y is not an antecedent of node i.  In this case, t(i) = y. 

c) t (r) - r; that is, the "last node" of the tree threads back to the 

root node. 

The reverse thread  function, rt(x), is simply a pointer which points in 

the reverse order of the thread.  That is, if t(x) = y, then rt(y) = x. 

Figure 2 also lists the reverse thread function values. 

The depth  function [17], dh(x), indicates the number of nodes in the pre- 

decessor path of node x to the root, not counting the root node itself.  If 

one visualizes the nodes in the tree as arranged in levels—where the root 

is at level zero, and all nodes "one node away from" the root are at level one, 

etc.—then the depth function simply indicates the level of a node in the tree. 

(See Figure 2.) 

The cardinality  function, c(x), specifies the number of nodes contained in 

the subtree associated with node x in the tree. By the nodes in the subtree 

associated with node x, we mean the set of all nodes w such that the predecessor 

path from w to the root contains x.  (See Figure 2.) 

The last node in a subtree function, f(x), specifies that last node in 

the subtree of x that is encountered when traversing the nodes of this subtree 

"in thread order." More precisely, f(x) = y where y is the unique node in the 

subtree of x such that t(y) is not also a node in the subtree of x.  (See Figure 

2.) 
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Note that both the domain and the range of each of the above discrete 

functions consist of the set of nodes and thus are independent of the number 

of arcs.  Since |N| is the maximum number of nodes that could be in the tree, 

a one dimensional array of size |N|, called a node length array,   is allocated 

to each function during computer implementation.  The procedures for updating 

the values of the functions when the tree is reconfigured are discussed in 

[1, 9, 13, 17].  Current network codes use only a subset of these functions. 

For example, the code that we developed for the U.S. Treasury to solve problems 

with 50,000 nodes and 62 million arcs on a UNIVAC 1108 uses only the predecessor, 

node potential, and thread functions because of central memory limitations. The 

most efficient code, ARC-II [1], whose times are reported in the previous section, 

uses the predecessor, thread, last node, node potential, and cardinality func- 

tions.  The previously fastest code PNET-I [10] uses the predecessor, thread, 

node potential, and depth functions.  The selection of which functions to use 

in developing a code largely depends on the developers trade-off utility between 

central processor times and available memory. 

The original problem data (compactly stored) and the basis matrix (stored 

via linked lists) are the only data elements kept by network codes.  No basis 

inverse is stored.  In LP systems, inverses generally require considerable 

amounts of storage and involve numerous (error-producing) arithmetic operations. 

In network systems, the specialized labeling rules (that are designed to exploit 

the linked list storage structures) operate on the basis graph in a manner that 

obviates the use of a basis inverse. 
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3.1 Fundamental Steps of Special Purpose Primal Simplex Codes for Networks 

The fundamental pivot, or basic exchange, step of the simplex method will 

now be briefly reviewed in the graphical setting.  Assume that a primal feasible 

starting basis (possibly containing artificial arcs) has been determined and is 

represented as a rooted tree.  To evaluate the nonbasic arcs to determine 

whether any of them "price out" profitably, and therefore are candidates to 

enter the basis, it is necessary to determine node potentials (values for the 

dual variables) d(i) which satisfy complementary slackness, i.e., which yield 

- d(i) + d(j) = c. for each basic arc.  Because of redundancy in the defining 

equation of pure network problems, one node potential may be specified arbitrarily. 

The root node is customarily selected for this purpose and assigned a potential 

of zero, whereupon the potentials of the other nodes are immediately determined 

in a cascading fashion by moving down the tree via the thread function and 

identifying the value for each node from its predecessor using the equation 

- d(i) + d(j) ■ c...  This highly efficient labeling procedure for traversing 

the tree to initialize and update these node potential values is fully described 

in [1, 3, 17]. 

A feasible basic solution is optimal if the updated cost coefficient 

IT.. (= - d(i) + d(j) = c, ,) is nonpositive for each of the nonbasic arcs with 

flow equal to the lower bound (without loss of generality we will henceforth 

assume that all lower bounds are 0) and nonnegative for each of the nonbasic arcs 

with flow equal to the upper bound U. ..  If the solution is not optimal, then a 

nonbasic arc which violates the nonnegativity (or nonpositivity) requirement for 

IT.. is selected to enter the basis.  If the flow on the selected arc is zero (or 

U..), then the simplex method attempts to increase (or decrease) this flow. 
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The arc to leave the basis is determined by:  (1) finding the unique path in 

the basis tree, called the basis equivalent path,  which connects the two nodes 

of the entering arc, and (2) isolating a blocking arc in this path whose flow 

goes to zero or its upper bound ahead of (or at least as soon as) any others 

as a result of increasing or decreasing the flow on the entering arc. 

An Increase (decrease) in the flow of the incoming arc causes a corres- 

ponding increase (decrease) in the flow of all basis equivalent path arcs 

traversed in the forward direction and a corresponding decrease (increase) of 

all basis equivalent path arcs traversed in the reverse direction.  Thus, if a 

forward direction arc already has a 0 flow or a reverse direction arc already 

has a U.. flow, then such an arc qualifies as a blocking arc and the incoming 

arc cannot be assigned a non-zero flow change.  By using the predecessor and 

cardinality function in combination, one can quickly and efficiently simul- 

taneously find the basis equivalent path and a blocking arc.  To illustrate, 

suppose arc (8,3) in Figure 2 is the entering arc.  Its basis equivalent path 

can be found by first examining the cardinality function of the nodes associated 

with the entering arc; namely, c(8) = 3 and c (3) ■ 7.  Since c(8) < c(3), 

find the predecessor of node 8.  Compare c(3) with c(p(8)) = c(4) ■ 6 and 

simultaneously determine the maximum flow change possible on the £>asis link 

between nodes 8 and 4.  Continue this process of traversing the predecessor path 

of the current node with the smaller cardinality value until the "two" current 

nodes have the same cardinality value.  If these "two" nodes are the same node, 

stop.  The basis equivalent path has been traversed and a blocking arc found. 

Otherwise, continue from either of the two current nodes until the stopping 

criterion is satisfied. 
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It is important to note that the above procedure can be substantially 

improved computationally by modifying the algorithm to also stop when a zero 

flow change arc is encountered.  Since computational testing has shown that 

90% of the pivots made in solving network problems are degenerate, this aug- 

mented rule yields improved solution times [2, 8]. 

Once the entering and leaving arcs are known, the basis exchange is com- 

pleted simply by updating the flow values on the basis equivalent path, deter- 

mining new node potentials for the new basis tree, and updating the other func- 

tions used to represent the tree.  Only a subset of the node potentials change 

during a pivot and these can be. updated rather than being determined from scratch. 

(In a capacitated problem, the entering and leaving arcs can be the same arc. 

In this case, the updating is very simple.) 

To update the node potentials, assume that the nonbasic arc (p,q) is to 

enter into the basis and the basic arc (r,s) is to leave the basis.  If arc 

(r,s) is deleted from the basis (before adding arc (p,q)), two subtrees, K and 

K, are formed, each containing one of the two nodes of the incoming arc (p,q). 

Let K denote the subtree which does not contain the root node of the full basis. 

The node potentials for the new basis may be obtained [1] by updating only those 

potentials of the nodes in K or K, as follows.  If p is in K, add 6 = - d(p) + 

d(q) - c  to the potentials of each node in K. Otherwise, q is in K and -6 is 

used in the above operations.  (Note that 6 > 0 if arc (p,q) is nonbasic with 

zero flow and 6 < 0 if arc (p,q) is nonbasic with U  flow.) 
pq 

The above procedure can be efficiently performed by using the thread 

function to simultaneously locate K and update the node potentials.  Further, 

since the node potentials in either subtree K or K can be updated, the above 
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procedure can be substantially enhanced by using the cardinality to select 

the smaller tree and updating its node potentials [1]. 

The procedures for updating the functions to represent the tree directly 

depend on which of the functions are being used.  [1] describes these procedures 

when the predecessor, thread, cardinality, and last node functions are used. 

[13] describes these procedures when the predecessor and thread are used. 

The discussion in [13] can be easily modified when the depth function is used 

in conjunction with the predecessor and thread functions. 

If the latter two combinations of functions are used, the updating pro- 

cedures basically involve rerooting subtree K at its associated node of the 

entering arc and attaching this rerooted subtree to K via the entering arc. As 

shown in [1], when the predecessor, thread, cardinality, and last node functions 

are used, either subtree can be efficiently rerooted and attached to the other 

subtree.  This has several important computational advantages when integrating 

the operations of finding the basis equivalent path, the leaving variable, up- 

dating the node potentials, and updating the functions used to represent the tree. 

3.2 Network Basis Traversal and Relations to Inverse Updating 

The network labeling and list procedures provide a means for traversing 

(and raodjfiying) relevant portions of the basis tree. The basis tree is given a 

"top-to-bottom" orientation by the predecessor and thread functions.  Accordingly, 

there are two major types of traversal required to execute the basis exchange 

steps, called "upward traversal" and "downward traversal." 

The first, upward traversal, is associated with operations normally re- 

quiring pre-multiplication by the inverse, such as determining the representation 
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of a variable to enter the basis. This operation is performed by traversing the 

unique paths from selected nodes up to their "junction" point.  Simultaneously, 

the equivalent triangular system of basis equations is solved, in effect, by 

back substitution.  This approach has two advantages.  First, original problem 

data are used to compute the representation; thus, roundoff error is minimized. 

Second, operations involving elements of the basis representation with weights 

of zero, or the execution of checks to identify such elements, are eliminated 

since the upward traversal of the basis graph isolates the elements that re- 

ceive non-zero weights. 

Downward traversal is analogous to post-multiplication by the inverse. 

This operation is used to calculate updated dual variable values (node poten- 

tials) associated with the problem nodes.  At each iteration, new dual values 

must be computed for the nodes in a particular subtree associated with the arc 

leaving the basis.  (The set of nodes whose potentials must be updated for GN 

problems has a slightly more complex characterization.) These nodes can all 

be encountered, and their new node potentials determined, by downward traversal 

using the thread function. For a pure network, it is only necessary to add a 

constant to the potential of each node in the subtree. In the case of a GN 

problem, each new value is computed by a simple operation which is equivalent 

to solving an equation in just one variable. An additional computational advan- 

tage of this procedure is that only the dual variables whose values change are 

examined at each iteration. Thus this operation again strictly eliminates 

checking or performing arithmetic operations on zero elements. 
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3.3 Integrated Operations 

In the better network, codes, the updating of the dual variables is inte- 

grated with the updating of the basis graph.  The complete basis exchange step 

involves finding the representation of the arc to enter the basis, determining 

the arc to leave the basis, updating the node potentials, and restructuring 

(and partly reorienting) the basis graph by removing the arc leaving the basis 

and inserting the arc entering the basis.  This last step, which is equivalent 

to updating the basis inverse, is accomplished simply by changing a few pointers 

in the list structures: no arithmetic operations are involved and, consequently, 

no round-off error introduced. The integration of this basis update with the 

dual update, by which both processes are carried out simultaneously, is made 

possible by the specialized labeling procedures [1]. 

These advantageous features of network systems have motivated researchers 

to develop extensions for solving LP problems with embedded networks.  The 

NETSG code is an instance of one such extension.  The next section briefly de- 

scribes the fundamental ideas underlying such extensions and indicates their 

potential value. 

A.  EXPLOITING EMBEDDED NETWORK STRUCTURE 

The procedures for exploiting embedded network structure are based upon 

partitioning the coefficient matrix of an LP problem into network and non-net- 

work components.  Such a partitioning scheme arranges the rows so that each 

column has at most two non-zero entries in the first m rows out of a total of 

m + q rows.  By reference to this partitioning, a basis compactification proce- 

dure is employed that induces an identical row partitioning on the basis matrix 
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B so that B can be expressed in the form 

G    E 
m    q 

A    A 
- m   q, 

The submatrix G is an m x m basis for the underlying network (or networks) 
m 

composing the first m row of the LP problem.  The basis inverse B  may be 

stated relative to this same partitioning as: 

-1 

r(G~1 + G"1E Q ^ G 1)   (-G"1E Q"1)' 
m    m q   m m       in q 

(-Q^A G"1) 
m m Q 

where Q = A - A G E . 
q   m m q 

The motivation for this partitioning is to factor out the matrix G .  By m 

its connection with the network,  G   may be stored as a graph and any operations 
m 

involving G  may be performed by the special labeling and basis traversal tech- 

niques discussed in the preceding section.  This means that G  need not be 

explicitly generated and the full basis inverse B  can be determined simply 

by referring to the partitioned components of the basis B and the q x q matrix 

-1        -1 
Q . Thus, Q  may be viewed as the working basis inverse  for such problems. 

Since the row (and column) dimension of Q " is equal to the number of non-net- 

work constraints of the LP problem, the algorithmic steps of the simplex method 

can be executed much more efficiently and with considerably less demand on 

computer memory by merging the network updating of G  with the standard up- 

dating of Q .  The benefits previously discussed for dealing with network basis 
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updating thereby carry over to the partitioned LP problem with only the 

residual portion of the basis associated with Q " being subject to the slower 

customary process with its greater attendant susceptibility to numerical in- 

accuracy.  In addition, since the ordering of the rows to achieve the partition 

need be done only once (and often will automatically be accomplished by the 

initial formulation) ,   the augmentation of commercial LP systems with such a 

"special order network" (SOU)   feature would constitute a noteworthy and bene- 

ficial enhancement. 

The development of the SON feature will, in our opinion, produce the 

next major computational advance in large-scale linear programming.  In fact, 

it should have a more profound effect than the development of generalized upper 

bounding (GUB).  This belief is based on the following: 

1) GUB is a specialization of these procedures. This can be seen simply 

by observing that the GUB constraints can be scaled and summed to form another 

constraint which, when appended to the GUB constraints, yields a network. 

2) SON extends GUB in several important ways.  For example, it eliminates 

the non-overlapping variable requirement of GUB in an efficient manner. Other 

attempts to accomplish this by "generalized GUB" procedures do not share the 

computational power of network techniques. 

3) Computational experience with the SON feature in prototype applications 

involving both a simple form of the problem, solved completely by SON, and a 

fully general form of the problem, solved partly by SON, already demonstrate 

that substantial computational savings are possible.  In particular, the NETSG 

code, previously reported to be 25 times faster than APEX-III (and with sub- 

stantially better memory requirements), is a direct application of SON to the 
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situation of a single linear constraint where the network portion is a 

generalized network with arbitrary multipliers. 

At the opposite end of the spectrum, we have implemented a "first pass" 

execution of the SON feature for a major automobile manufacturer engaged in 

solving more general LP problems with large imbedded network components. The 

firm was solving the LP problems of this application on an IBM 370/145 using 

MPSX, incurring computer run times in excess of 30 minutes per problem. We 

superimposed a network system on the MPSX system in a manner designed to operate 

on the network portion of the problem to produce an advanced starting basis for 

MPSX. This "first pass" application by itself reduced the total solution time 

from over 30 minutes to 10 minutes. 

There is another important application of the SON feature that extends 

beyond its use in solving LP problems. This application has to do with solving 

pure and mixed integer programming (IP) problems.  Current research has shown 

that the best solution approach is to use formulations which keep the number of 

integer variables as small as possible and which yield strong LP relaxations, 

rather than minimizing the number of constraints.  Fortunately the IP problem 

manipulation schemes for obtaining stronger LP relaxations often induce network 

structure. To illustrate this statement, consider the constraint 

x + x + x - 3x, < 0 

where x1, x , x , x, are 0-1 variables.  It is well known that replacing this 

constraint by the constraints: 
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81 + X1 - X4 

s2 + x2 = x4 

S3 + X3 = X4 

yields a stronger LP relaxation.  Note however that by performing elementary 

row operations this latter set of constraints is equivalent to: 

0 = x1 - x2 + Sl ' S2 

0 = 

0 = 

x2 - x3 + 82 - S3 

s3 ■ X4 

Subtracting these constraints produces 0 = - x - s + x .  Appending this 

equation to the others yields a network. 

By combining the IP problem manipulation approach with the SON feature 

the working basis inverse of the LP problem would be reduced by the number of 

constraints that would otherwise be added to accommodate relationships of the 

form indicated.  Thus the addition of the SON feature to commercial LP systems 

would allow practitioners to use stronger IF/LP formulations. 

The above example is only one of many important uses of the SON feature 

in integer programming.  Almost every practical IP application—fixed 

charge, location allocation, project selection; capacity expansion, and set- 

up scheduling problems have substantial network substructures.  In sum, it 

seems clear that the SON feature would constitute an important computational 

advance for large-scale LP and IP. 
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The concepts we have sketched in this paper demonstrate how the incor­

poration of the SON feature into optimization software can become a reality, 

following in the path of the remarkably efficient network computer codes now 

in existence. 
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