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An accurate simulation must model the time behavior of the system as well
as its input-output behavior. In order to avoid real-time constraints on the
processors and coilmEinication network in the simulation facility, the simulation
of the eiming.nzust use a time-independent algorithm. That is, the simulated

— - behavior of each component should not depend on the speed at which the simula-
- - tion is performed. 

-

- 
With this time-independent approach, additional coordination operations

are required to prevent a deadlock of the simulation. This coordination can be
- 

provided without any centralized control. Instead, the program for the simula-
-
• tion of each component is modified, so that each component simulation will
- cOninunicate status information to other component simulations. Additional ter-

mination operations are also required to assure that the simulation will ter-
minate under the exact same conditions that the system being simulated would
terminate. These operations can also be provided without any centralization of
control or real-time constraints. Furthei~nore, a simulation which uses these
coordination and termination operations LI provably correct. That is, the sim-
ulation will accurately model both the time behavior and the input-output be-
havior of the system.

SECURITY CLAUIFICATION OP THIS PAGI(Phen D.. Znt.t.d ) 

~~~~~~~~~~~~~~~~~



~~
.
~~~~~~~~~~~~~~~~~~~~~~~~

-
~~

- -
~~~~

——---•-.-— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— ~~~~~~~~~~~~~~~

It:
i: . 0 : ,

• • 
- 

MIT/LCS/TR—188

— - - 
- • SIMULATION OF PACKET COMMUNICATION ARCHITE~~ URE

• • - COMPUTER SYSTEMS

by 
-

Randal Everitt Bryant

November, 1977

This research was conducted under a graduate fellowship from the National
Science Foundation. Additional funding was supplied by the National Science
Foundation under grant DCR75-04060, and by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of Naval Research
under contract no. N00014-75-C-0861.

- - -

U L. ) ~~~~~~~

Th T
I 

_
1 I

~
MASSACHUSETTS INSTITUTE OF TECHNOLOGY - 

~t~ J
LABORATORY FOR COMPUTER SCIENCE 

- -

~ 

• -

(formerly Project MAC)
CAMBIU1X MASSACHUSETTS

D -]T!?~~TiON ~: : : T ~~r A
Approv€d fox I..L:i•~ 

-

Diztributj .3u ~~~~

- ---• -~~~~~~~~~~~~~~~~~~~~~~~

- ,-~~-- -— —-•—- -~~~~~ ---—— - -
~
-
~~
——••• -

~~
—

~~.—
- __ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ .— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

—.
~~
--—

~~~~—-



~~~~~~~~~~~~~~~~~~~~~~~~~~
‘-

~~
- -

~~~~ ~~~~~~~~~~ —.-. - -- • •‘~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~ —

H - 2 -

- SiMULATION OF PA~~zr COMMUNICATION ARCHITECTURE
• COMPUTER SYSTEM?

• 

by
- 

BaaaS.1 Everitt Bryant

~- 
I

Simulations of computer systems hays traditionally been performed on a
single, sequential computer, even If the system to be simulated contains a
number of components which operate concurrently. An alternative would be to
simulate these systems on a n twork of processors. With this approach, each
processor would simulate one component of the system, hence the component
simulations could proceed concurrently. By exploiting the modularity and

• concurrency In th. system to be simulated, the simulation would itself be
modular and concurrent.

An accurate simulation must model th. time behavior of the system as
well as its input-output behavior. In order - to avoid real-time constraints on
the processors and communication network In the simulation facility, the
simulation of the timing must use a time-Independent algorithm. That is, the
simulated behavior of each component should not depend on the speed at which

- 

• 

th. simulation Is performed.

With this time-Independent approach, additional coordination operations are
required to prevent a deadlock of the simulation. This coordination can be
provided without any centralized control. Instead, the program for the : 

-

• simulation of each component Is modified, so that each component simulation
• 

- will communlcat status information to other component simulations. Additional
termination operations are also required to assure that the simulation will
terminate under th. exact same conditions that the system being simulated
would terminate. These operations can also be provided without any
centralization of control or real-time constraints. Furthermore a simulation
which uses these coordination and termination operations Is provably correct.
That Is, the simulation will accurately model both the time bshavlor and the
Input-output behavior of the system.
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- Chapter l

- Introduction

• 

• Computer Systems have traditionally been simulated on a single, sequential

computer, even if the system to be simulated contains a number of components

which operate in parallel. One of the primary purposes of simulation languages,

such as GPSS and Slmscrtpt 11 (13], Is to order the simulation of the events

occuring in. the different components in such a way that the simulation will

• correctly model the operation of the system to be stmnlate& An alternative

approach would be to simulate parallel systems on a network of computers, such

as a network of microprocessors (2,14,21] or the Arpanet (15], where each

-processor would simulate the operations of one component of th. system. This

would allow the simulation to exploit the modularity and concurrency of the

system to be simulated and thereby itself achieve a high level of modularity

and concurrency. The simulation of packet communication architecture systems

[6] seems particularly suited for this approach, since these systems are highly

modular - the components of the system operate independently and communicate

with each other only by sending message packets. Hence these systems can be

simulated by a network of processors which communicate by m~ s.ge passing.

Packet Communication Architecture

A packet communication architecture system consists of a number of

Independent processor modules which communicate by sending packets of

Information to one another. A singl. program Is implemented as a number of

• separate processes, such that ach process runs on one of the modules, hence the

L A  - - •- •~ - •~~~~~~~~~~ -- -  
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components of the program can be executed In parallel.

Th. modules Ii a packet communication architscture system can

communicate only In a limited fashion. All communication with a module Is In

the form of packets, except the initial state of the module, which can be given

to the module In noepacket form. Thus, a module could be Initialized with a

program and initial data, but thereafter it can receive Infor mation only in

packets. Furthermore, a module can communicate with only a limited number

of other modules. Each module receives and sends out packets through its

input and output parts. A particular Input port to a module can receive packets

only from a particular output port of some module, or from a particular source

outside th. system. Input ports of the latter type are called system input ports,

since they are th. only means for an external source to send. data to the system.

Similarly, from a particular output port of a module, packets can be sent only

to a particular Input port of some module or to a particular external destination.

Output ports from which packets are sent to external destinations are called

system output ports.

Packets are carried along one-way data channels from the output port of

one module to the input port of another. These channels cannot alter the values

of th. packets, and they muM preserve the sequential ordering of the packets.

Thus, a channel can be viewed as a TWO queue between two ports. The

Interconnections bet~~ sa modules cannot be changed dynamically.

The modules in a p ck.t communicatIon architecture system operate

________________________________ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• - : T ~1~ ~~~~~~~~~~~:: T r~~~ ~~~~~~~~~~~~~

- 7 -

autonomously. There is no central control In the system, and any monitoring of

the system operation must be passive. That is, only an external observer is

allowed to monitor the modules or channels In the system, and the monitoring

is not vital to the system’s correct operation. As a result of this autontmtty, a

module can operate as soon as the necessary data packets have arrived regardless

of the status of other modules in the system.

A packet communication architecture system is designed so no component

of the system will be required to fulfill any thnlng constraints. Instead, the

system must be designed to operate correctly regardless of the delay times or

throughputs of the modules and channels. For example, one module cannot

require another module to have a m inimum response time. As a result, modules

must use asynchronous communication protocols, so that a module cannot send a

data value to another module which lacks sufficient buffer space. This

communication protocol, however, must be implemented as packets sent back end

forth between two modules for each data transfer. Otherwise, an

acknowledgement signal received from a module to which data has been sent

would constitute a form of nonpacket input Information.

As a consequence of this time-Independent design, the speed of the system

or any of its components Is a performance issue and not a necessary requirement

for correct operation. If one module or r~h*nnel is particularly slow, it m ight

slow down the entire system, but it will not cause any malfunctions.

Examples of packet communication architecture systems include the data

_______________ - -

-
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flow processors of Dennis and Mlsunes (7,8,9] and the data flow processor of

Rumbaugh (20]. While not precisely a packet communication architecture

system (due to dynamically ~4’sngeable interconnections) the Distributed

Computing System at the University of California, IrvIne, when rn-nning with

the ECOS operating system (19], embodies many of the same design philosophies.

Adva~ntag s of Packet Communloation Architecture Systems

These systems have several major advantages over both traditional computer

systems end other designs for parallel systems. First, the modules in the system

can operate concurrently, thereby achieving a high rate of computation. Since

there Is no central control, there Is no component which will inherently cause

a bottleneck In the system, or which must have an extremely high throughput

In order to k..p the rest of the system operating at a reasonable rate .

Second, the system can be designed modularly, by first specifying the

functional requirement for each module as well as some connection standards

and then designing the modules Individually. Since modules can Interact only in

limited and wall-defined ways, as opposed to systems which contain shared

memories or allow inta~i kpts, for example, a module has a very clean interface

with the rest of the system. Furthermore, since there are no timing restrictions

on a module, the specifications for its operation need contain only its functional

operation , i.e. the output packets produced in response to a set of Input packets.

Once a system has been designed, we can try to maximize its performance.

This Involves Identifying the modules and channe ls In the system which are

__ —~ -~~~~~~~~~~~~~~~~~~~~~~~~ _ _
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consistently heavily loaded and hence form bottlenecks In the system. A

bottleneck can be eliminated by redesigning the module or channel to operate

faster or by splitting one module into several modules. Because the system Is

designed to be speed independent , the speed of one module can be varied

without causing malfunctions.

One further result of this modularity of design is that these systems can

be proved correct much more easily than other computer systems. To prove the

correctness of a packet commun ication architecture system, one can specify the

required properties of each module, prove that each module satisfies these

properties, and then prove that the system will operate correctly If all modules

satisfy their requirements. In other words, the correctness of the system can be

proved modularly. General methods of proving the correctness of packet

communication architecture systems are currently being investigated by Ellis

(10].

Examples of Pac ket Communication Architecture Module s

Three basic module types: functional operators, switches, and arbiters

illustrate some of the operatio ns which can be performed by packet

communication architecture modules. Examples of their oper ation are shown in

FIgure 1.1. In the diagrams the lines represent the channels connected to the

Input and output ports of the modules, and the dots on these lines represent

data packets being transmitted over the channels.

A functional operator computes several functions (one for each output port )

A — ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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C. Arbiter

Figure 1.1 - Examples of Operation for Three Simple Moduis Types.
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with input packets as arguments. It can f ir .  as soon as one packet is received

at each input port, meaning that it absorbs these Input packets , computes the

output values, and sends one output packet from each output port. For

example , the DIVIDE module of Figure 1.la computes two functions: the

quotient and the remainder of the Inp ut values.

A switch module provides a means of routing data to different modules in

the system. It can flze as soonasap acket ls received on its Input port . In

firing, it absorbs the input packet and then sends an Identical output packet

from one of several output ports, depend ing on the packet’s value. In the

example of Figure 1.lb , the output port selected depends on whether the packet

value is positive , zero , or negative.

As a final example , the arbiter module serves to merge together the

streams of output packets from several modules. It can ~‘dre as soon as a packet

Is received on either Input port. In firing, it absorbs a packet from one of the

Input ports and sends an identical packet from its output port. If packets are

received at two Input ports simultaneously, the module will first fire, absorb

one of these packets , and send it out. By the rules of operation , any packet

which Is not absorbed will remain at the Input port. Hence, the module will

fire a second time, absorb the remaining packet, and send this one out.

Other packet communication architecture modules can have behaviors

which depend on other factors, such as past activities of the module, the arrival

times of ige input packets , and stochastic processes within the module. The

~~~ IL1 - - ~~~~~~~~~~~~~~~~ — — 
~~~~~~~~~~~~~
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general rules of operation for th. modules will be discussed In Chapter 2.

The Need for Simulation

Once the functional behavior of all components have been developed and

proved correct, there are other Issues to be settled before the system can be

implemented. The Implementation must meet other requirements on the overall

speed of operations or the total cast of the system. Thus , for a particular

Implementation , a designer will want to measure the performance of the system

for different sets of input data. These measurements can Include such factors

as the overall speed of the system, the load on particular components, and the

buffering requirements at the input ports. Once measurements for a particular

Implementation have been made, the designer will want to make measurements

when such parameters as throughput or delay time for particular components

have been varied, or modifications have been made to the original de-’Ign. By

this method, the designer can maximize the speed and minthd ~~ the cost of the

system.

Measurements of a system’s performance are required not only to find an

optimum implementation, but also to compare the system to other system

designs, or to conventional computer systems. While packet communication

architecture systems are potentially very fast due to the high level of

parallelism, a method of comparison with traditional computer systems Is

desired.

Developing mathematical methods of predicting the performance of

________ ~~~~~~~~~~~~~~~~~~~~~



__________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ w _~~~~~~~~~~~ -~~~~~~~~ — -

— 1 3 —

particular systems seems to be very difficult. One cannot simply count the

number of Instruction cycles required for a particular program with a particular

set of Input data. While the modules Interact with each other In a very

limited and well-defined way from a functionality viewpoint, the performance

of a module can have very subtle effects on the performance of the overall

system. For example , increa sing the throughput of one module can cause

another module to become a bottlene ck In the system. Thus, a “modular”

approach to performance analysis will not work. Furthermore, the system

designer wants to know more than just the average or worst case performance

of some system. He wants to know the detailed performance measurements for

each component of the system. This amount of detail could never be provided

accurately by a mathematical analysis of performance.

An accurate simulation of a system would provide the desired

measurements for a particular set of Input data. While it might be hard to

judge the general performance of a system based on simulations for a few sets

of Input data , this approach seems to provide a great deal more Information than

analytic methods .

To avoid confusion between the system to be sImulated and the system

which performs the simulation, the former will be called the actual system, and

the latter will be called the simulation systeLt. Even though the “actual”

system might In fact only exist on paper, this seems like a reasonable way to

distinguish the two. Furthermore, the modules and channels of th. actual

system win be celled the actual modules and actual channels.

-

- 

- -  

~~~~~~~~~~~~~~ 
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R.qulrem.nta for the Simulation

To provide the type of measurements required to evaluate an

implementation of a system, the simulation must accurately model all aspects of

the system’s operations. This Includes modelling the detailed timing aspects of

the system as well as the functional behavior. If only the functional aspects r - ~
were modelled, the simulation would accurately model some implementation of

the system, but most likely not the implementation we are Interested in.

An accurate modelling of the system cannot rely on any stochastic methods

of simulation, unless the modules themselves behave stochaatlcally. For one

thing, like analytic methods, methods of stochastically modelling packet

communication architecture systems have not yet been developed. Thus, unless

the system Is affected by stochastic processes within the modules, a simulation

of a system should provide all Information about the activities of each module

for a given set of Initial states (i.e. module programs and Initial data), and a

parti cular sequence of Input packets preseited to each system input port. If the

modules behave stochastically, the stochastic processes must be modelled, so that

any random var iables will be chosen with the same probability In the

simulation as they are In the actual system. A single simulation will only

model the system’s activity for one choice of random var iables, but a number of

simulations can give an idea of the distribution of the system’s performance.

Method a of Simulation

One approach to the simulation of a packet communication architecture

system Is with a sequential computer system. With this appro ach, a single

~ 
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computer would simulate the activities of every module and every

communication channel in the system. While this approach would be rather

slow, it Is not difficult to implement. For every packet on an Input port of

some module In the system, the simulation keeps a p ocket descriptor of the

form (M,p.v,t) , where

M u the module number
p ~~the Input port number
v ~ the value contained In the packet
t ~ the time at which the packet arrived at the Input port.

These packet descriptors are stored as a sequential list called a time line, In

which the descriptors are ordered by their time values. The simulation looks at

the time line and decides which module In the system would fire the soonest .

It then simulates the firing of this module by removing the absorbed input

packets from the time line, computing the outp ut values and delay time for the

module , and then inserting new packet descriptors for each output packet Into

the time line. Each new packet descriptor contains the module and input port

number of the Input port which receives the packet, the value of this packet ,

- 
- and the time at which the Input port would receive the pocket. This process Is

repeated for the new time line, and so on, until no module In the systOm is

able to fire. As long as the simulation always simulates the earliest firing in

the system for a glven state of the time line, it can be certajn that all lnput

packets which would have been received by this module at firing time are

present on the time line. Since a module cannot be affected by flew Input

packets arriving while It Is firing, the entire filing of the module can be

simulated without looking at other modules in th. system. Simulation

~IlIIIIIIIIriiL~ __ -__-_- .___--_~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~—~---—-- — - -~~~~ -— ‘~~~— 
-
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- languages, such as GPSS and Simrrtpt II (13], us. a variant of this time line in

simulating the -activities of a number of concurrent processes on a single

computer.

A large fraction of the simulation time will be spent looking at the time

line to decide which module would fire earliest. Whereas it Is not difficult to

determine whether ~~~ple modnle~, such as functional operators, switches, or

arbiters are ready to fire and at what time, these computations could take much

longer for ao4nles with more complex behavior. Moreover, as the size of the

system Increases , there will be more modules to check, and more descriptors on

the time line. Hence, the time spent on overhead in the simulation can, in the

worst case, inceesse as the square of the system siam there will be a linear

Increase in the total number of firings to be simulated, and for each firing a

linear Increase In the time required to decide which module would fire earliest.

The time spent to actually simulate the activities of the modules, on the other

- 
- hand , will Increase only linearly with the system size. As the size of the

system is increas ed, the 1~~,~,ition of simulation time spent on overhead will

Increase.

An alternative to simulation on a sequential computer Is to simulate the

system on a computer syotem consisting of a number of Interconnected

simulation prooas.w, suck the Packet Architecture Simulation Facility of

L.ung, .t al (14), shown In FIgure 1.2. In this facility mIcroprocessors serve

as simulation proe.mora. Each simulation processor sImulates one or, for a large

system, several of the modules In the system. The proceasors send packets to

— - ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - - -~~~~—— ~~~~~~~~~~~~
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one another, Just as the modules In the actual system would. The packets are

sent over a communication network , which provides connections among all pairs

of simulation processors. During a simulation, however, a processor would send

packets to another processor only If the first Is simulating a module which can

send packets to a module being simulated by the second. The communication

network Is provided to allow the simulation of any system configuration. In

addition, a host computer can load programs into the modules Initiate the

simulation, and monitor its progress.

Communication Network —

~I,
dp 

_ _ _ _  ~JLt
roceesoi Processor • • • Processor

1 2 k

- Jj Host Inte rf ace Bus

- 

[

~~~~~~~~~~ T~~~~~~~~

FIgure 1.2 - Structure of Simulation Facility

This approach seems very natural, sluce the structure of th. simulation Is 
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much Ilk, that of th. system being simulated. It should also be faster, since

the simulation processors can operate in parallel. Hopefully, the amount of

overhead will not be too great, either, so that a larg. fraction of processor time

can be spent simulating the activities of the modules.

Purpo.. of The.!.

In this thesis, methods of simulating packet communication architecture

systems on a distributed computer system will be d.vslopsd. The design goals

for these simulation methods Includet

1.) Generality of Simulating System. The simulation should not
require a highly specialized computer system on - which to perform
the slmulaton. it should work on any system which supports
communicating processes, such as the Packet Architecture Simulation
Facility (14], a network of mIcroprocessors (2,21], the Distributed
Computing System (11 ,19], or even more traditional systems such as
the Burroughs B6700 (18].

a.) Generality of Simulation. Th. methods should enable the
accurate simulation of any packet communication architecture
system. A system designer should not be limited In the types of
systems which he can simulate.

3). Simplicity of Sof tware. The programs for each simulation
processor should be reasonably simple to write, and short enough to
be executed by small processors such as microprocessors.

4). Reasonable Effici.ncyi The simulation should make use of the
potential parallelIsm In the simulation system. Furthermore , the
amount of communication between processors to keep their efforts
coordinated should be reasonably small.

One way to satisfy the first goal would be for the simulation itself to have the

properties of a packet communication architecture system. First, the simulation

- _~~~~~~~~~ —
-
~~

-
--;~._____ 
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processors should act autonomously, with no central control. This will simplify

the computer system required to perform the simulation by removing the need

for a hIghly specialized, high speed central controller. Of course, passive

monitoring might be allowed to observe the simulation activities. Second, all

communication between simulation processors should be In the form of packets.

As a result, the processors will have a uniform form of Input-output. Perhaps

most importantly, the simulation will be time-Independent. That Is, the

accuracy and correctness of the simulation will not depend on the speed of the

simulation processors or the communication network. This will elim Inate any

real time constraints on the simulation hardware and software, which will

grea tly simplify the design. This will also enable the simulation to be

performed on any computer system which supports communicating . processes.

The simulation of each component of a system could be handled by a different

process. Several of these processes cou1d be asssgned to one p~~~ .~~r, wMch

could execute them without any time constraints.

While the simulat ion inIgM be faster on a highly specialized simulation

facility equipped with a high speed controller or processo rs designed for real

time app lications , the amount of time and money required to construct such a

facility would be Justified only If a very large number of simulations were to

be performed.

The problem then becomes developing simulation method s bued on packet

communication architecture principl es, which will satisfy the other three goals:

generality, simplicity of software, and reasonable efficiency. One means of
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simplifying the task of software design -Is to take a modular approach to the

design of simulation programs. The simulation program for a module must not

only simulate the sotIvItise of the module, It must also communicate with other

module programs to keep the simulation activities coordinated. Thus, the

specIfications for each simulation program will include not only specifications of

the module to be simulated , but also specifications of the coordination activitIes.

To keep the design modular, the coordination activities must be simple and

uniform enough to be easily and accurately specified. Moreover, these

coordination activities must be both general and reasonably efficient. The major

task of this thesis Is to develop coordination methods which fulfill the

requirements of simplicity, generality, and efficiency for a simulation which Is

I tself a p acket communication architecture system.

Outlin, of The .!.

In Chapter 2 methods of simulating the components of a packet

communication architecture system, i.e. the ~uodules and communication

channels, will be discussed. First, rules of operation for packet communication

architecture modules will be presented. Then, methods of simulating both the

functional and timing aspects of the module will be developed. The emphasis

will be on specifying what a correct simulation of a module would do, rather

than on the more difficult problem of translating these requirements Into actual

programs. Th. problem of producing programs which will accurately simulate a

module, based en sos. specification of the module, Is left as an area for further

_
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In Chapter 3 the Ideas developed In Chapter 2 wIll be e~tended to allow

the simulation of entire systems. As will be seen, If the simulation processors

are simply loaded with pra~rams which simulate the activities of the system

components, the simulation might not accurately -model the system but instead

reach a deadlocked stat e. Besides simulating the activities of the modules, the

simulation processors must communicate with each other to keep their efforts

coordinated. The main purpose of this chapter is to develop methods of

Incorporating the coordination activities Into the simulation processor prog rams.

In this chapter a proof will be described which shows that the simulation will

accurately model the actual system. The full proof Is contained in Appendix 1..

This proof demonstrates the benefits of the modular approach to the design of

the simulation. First, the important requirements for the modules In the system

and for the simulation programs of these modules will be specified. Second, it

will be proved that the simulation and coordination methods of Chapters 2 and

3 satisfy these requirements. FInally, It will be proved that any simulation

which satisfies the requi rements will accurately model the actual system.

In Chapter 4 methods of terminating the coordination activities , once the

modules In the system have ceased activity will presented. Without this

termination , the simulat ion might run indefinitely, even though no module

activities are being simulated. The last part of the chapter describes a proof of

the correctness of the termination operations. The full proof is contained in

Appendix 2. First , It is proved that these operations will not terminate the

simulation too soon or in any other way interfere with the simulation

_ _  
- --~~~~~ ~~~~
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operations. Hence, the requirements for the corre ctness of simulation proof will

still apply. Then , it will be proved that the simulation will eventually

terminate , If the actual system would terminate under the same circumstances.

In Chapter 6, the coordination method s of Chapter 3 will be fur ther

refined to Increase the efficiency of the simulation. The coordination methods

of Chapter 3 are designed to be very simple and uniform over all modules. As

a result, the amount of coordination information passed between processors is

high, and the concurrency of the processors’ activities can be unnecessartly

restricted. In some cases, the processor program for a module can be modified

slightly to take advantage of specific properties of the module. Two examples

of such modifications are presented. These two modifications will not increase

the complexity or modularity of the simulation programs significantly but can

greatly Increase -the efficiency of the simulation. Moreover , these modifications

will not cause the simulation programs to violate any of the requirement s for

the correctness proof of Appendix I to apply. This further demonstrates the

benefits of a modular approach to correctness proofs.

Finally, Chapter 6 contaIns conclusions , suggestions for other applications ,

and suggestions for further research . Some of the other applications include

simulation of o t h r  types of systems, and application of the coordination and

t rmination methods to other forms of distributed computation .

By working within the concepts of packet communication architecture, this

thesis develop, simulation techniques which fulfill the four design goals: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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simplicity of hardware, generality, simplicity of software , and reasonable

efficiency. Moreover, these techniques are provably correct. This Is

particularly comforting considering the sut tle nature of parallel , asynchronous

computations , which can often have unexpected deadlocks , races , nontermi natlon

problems , or other malfunctions.

For any computation which is designed to be executed by a para llel,

asynchronous system such as a packet communication architecture system, a

proof of correctness is essential. The tr aditional approach of Implementing an

Initial version of a system and then debugging it will not work for

computations which must be time-Independent. Even If the computation is

tested on a large number of test cases, one cannot be cert ain that it will be

correct for all cases. A slight change in the timing of one part of the

computation might lead to a deadlock, critical race , or other malfunction. Even

In trying to prove the correctness, one can easIly overlook some of the

subtleties of the computation. However , by carefully developing a formal

mathematical description of the computation and then proving that a

computation which fulfills this descri ption will operate correctly, these

subtistles can be uncovered.

111.1 - 
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Introduct ion

Each processor in the simulation must simulate the operations of one or

more of the modulee or communication channels In the actual system. This

includes simulating the tIinh~g details of the module as well as the module’s

data operations. If the simulation Is to itself be a packet communication

architecture system, - there can be no timti %g constraInts on the simulation

processors or on the communication links between processors. Hence , a method

of simulating the tI~~tng must be developed which Is independent of the speed

of simulation.

Module Oper*tion

Before method s of simulating modules can be developed, the behavior

which will be expected of these modules must be presented. In the interest of

generality, these rules will be as unrestrictive as possible. As a result, some

forms of behavior are allowed which are not quite In keeping with the

philosophies of packet communication architecture design. However , as

mentioned before, the designer of a system should not be restricted in the types

of systems he can simulate. Furthermore, these allowances do not cause any

added difficulties for the simulation.

At any time, a module is ln one of two modesi the wait mode or the firifls

— — - .~~ s.._ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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mode. While in the wait mode, the module cannot produce any outp ut packets.

Once the necessary conditions for firing are met, the module fires, meaning that

It absorbs some of the input packets from its input ports , performs

computati ons, and some time later sends packets from its output ports . Then It

changes its internal state and reenters the wait mode. In general , an input port

can be a buffer which can hold a number of packets simultaneously. A packet

remains at an input port until It is absorbed by the module. An output port , on

the other hand, is more like a door through which output packets pass.

The module must make the following decisions: when to fire , which input

packets to absorb , what computations to perform , the values of the output

packets and the times at which they are sent , and the new state of the module.

These decisions can depend on the following factorsi

1..) The values of all packets at the Input ports.

2.) The time at which each of the Input packets arrived.

3.) The current time.

4.) The current state of the module.

5.) StochastIc processes within the module.

However , while a module Is in the Iirin~ mode, It cannot be affected by Input

packets which have arrived since the module entered the flri n mode.

These rules of operation allow for modules whose behavior depends heavily

on tlme~ the cur rent time of the module, and the time at which óach Input

packet arrives . While this does not fit In well with the philosophy of 
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time-independent dasign, It will not cause any particular difficulties for the

simulation.

A packet communication architecture module has only three forms of Input

information:

1.) The initial state S0 of th. module.

2.) The values of the packets received at each input port.

3.) The time at which each Input packet arrived.

Similarly, it produces only three types of output Information :

1.) Th. final state S~ of the module.

2.) The values of the output packets sent from each output port.

- 
- 

3.) The time at which each output packet is sent.

The output Information produced by a module can depend only on the input

Infor mation and the stochastic processes within the module. If the module

contains no stochastic processes , ,  then the simulation of the module should

prod uce the correct output information based on the input information . If the

module contains stochastic processes , then the simulation should produce the

correct output information based on the input Information and one set of

choices for the random variables. Furthermore , the stochastic processes should

be simulated In such a way that the values of the random variables are chosen

with the same probability In the simulation as they would be in the actu al

module.

_ _ _ _  
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Modul . History

The Input and output Information received and sent by a module while It

Is operating can be formally described In terms of histories. The history of a

single port Is a sequence of ordered pairs;

h .

where Is the data value contained in the Jth data packet arriving at or being

sent from the port , and is the time at which it is received or sent. Since

packets are sent or received one atat lme, we have lj  f j ..~ for all ) ~ 1.

We also require t1 > 8. ThIs implies that no output port can produce a packet

at time 0. This restriction is part of the finit , delay restriction which will be

discussed in Chapter & Furthermore , no Input port can receive a packet at time

8. Any packets present at an input port initially are considered part of the

module s Initial state , and not part of the input port’s histor y.

While similar in idea, this definition of history differs from the

definitions used by Pat tI (18] and ~~abn (12] In their work with determinate

systems. Their histories are sequences of data values only and contain no time

values. Histories without time values were useful for them , since determinate

systems have time-indep endent behavior. For simulation purposes, however , the

simulation of the timing is as important as the simulation of the data

operations. Moreover, the time values are part of the thput and output

Information of the module . Hence, the time values are an important part- of the

history.

Since an Infinite number of data packets could eventually pass through a

L - 
~~~

_ 
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port, a history can be an Infinite sequence. However, for any physical system,

there must be some mi~1mum separation time 5 between any two packets.

Hence, no more than tis packets can pw through the port before time t. This

implies that a history must be a countable sequence.

The history of an input port 1~ Is denoted hik, and the history of an

output port o
~ 

Is denoted hOk. The input history of a module N with Input

ports t1,12,...,t isthen-tnp leoftheh istort esoftheInputporin

HI — chi j ,hj2, . . . , hi 11 .

Similar ly the output history of a module N with output ports 01,02,... ,o
~ 

is an

m-tupl. - 

-

HO - cho1,ho2, . . . ,ho11,.

Just as the histories of the input ports to a module can be combined

together , the histories of the system Input ports (those input ports which

receive packets’ from an external source rather than from oth.r modules In the

system) can be combined Into a system Input history

I • chi1,hi~, • •hi g>,

where 
~~~~ 

. . , ,l
~ 

are the system Input ports. Siinil*rly, the histories of the

system output ports can be combined Into a system output history

0 — chOl,hob, . . .
wh~~ 0a’0b’• . o~ are the system output ports.

It will be useful to define the relation “is an Initial segment or between

two histories. First, a history h1 is a pr op.r Initial segment of a history h2,

- - - ~~~~~~~~~~~~~~~~ —~~~~~~ .—~--~ --~~~~. 
- -  - - — - - -  - 
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denoted h1 c h 2, If

h1 a

and .lth.r

h2 a

or ‘ 

h2 .  (xj.tj),(x2J2)....,(xj.tj),(tj,j,tj,j)....

Then h1 is an Initial segment of h2, denoted h1 h2 If h1 c h2 or h1 - h2.

These relations can be extended to module Input and mcdiii. output

histories as follows*

If

HI . chi j ,hi2 , . . . ,hi~~

HI’ — ~~~~~~~~~~~~~
then HI H1’ If and only . if:

hi~ ~ hi’,, for all lsJ~n.

The definitions for module output, system input , and system output hIstories are

iinil~ r~ Similarly, we can define the relation c over module and system

histories.

A f i nal notat ion lstodef ine the history up to some tIme t. Foras uu g).

port , h(s) is a history, h’ , where h’ contains all elements in . h with time

values �t.  Hence hit) h. Thls ldea can be extended to module bistartss, -as

wells

HI lt) — .chi 1W , hi2it) , . , ,

Thus HI (S) HI • HI (co) .

L ~~~~~~~ -- - -- -- -- 
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Using the lotion of histories, the operation of a packet communication

architecture modul, can be stated precisely. If the module contains no

stochastic processes, then the output history HO and the final state are

f unctions of the input history HI and the Initial state S0. For modules

cont*inIiig stochastic processes, HO and S, are functions of HI , 5o and the

values of the random variables. -

Note that a module which computes a functi on over histories as they are

defined here may not compute a function over the histories defined by Pat ti

[18] and Kah n (12]. Since our histories Include time values, modules such as

arbiters and time clocks compute functions over these histories, whereas they

are not functional over histories without time values.

Chann el Op.ration

In a packet communication architecture system, a communication channel

serves only to carry the output packets from an output port of one module to

an Input port of another module. Furthermore, the channel preserves the

ordering of packets. Packets will be received at the input port in the same

order In which they sent from the output port. A ehannel’s operations can be

stated formally In terms of histories. If output port o~ of module is

connected to input port t~. of module 12, and o~ has output history

ho~ • (x j ,tj) ,(x2,t2) , ...,( x,,11),...

then t r will have an Input history

hir —

Due to the order preservation, 5’, > t’~...,. Furthermore , since values cannot be 

— -  — _
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received “before” they are sent, t’, � lj .

While a communication channel cannot change the values of data p ckets

or their ordering, It can introduce a delay between the time at which they are

sent and the time at which they are received. This delay must be simulated,

since It will affect the input history of th. module to which It is connected.

The communication channel can be simulated by one of several means. First,

we can simply Ignore the delay and consider hi ,. a ho~ This would be

appropriate in cases where the delay time of the channel Is much smaller than

the delay time of the modules. For example, If the modules are close together

and directly wired to one another, the channel delay time will be very small.

Second, we can simulate a module and the channels connected to its output

ports as a single unit. Conceptually we can view this as extending the

boundaries of a module N to Include its output channels, as shown In Figure

2.1. The output ports of this extended module N’ are wired directly to the

Input ports of other modules. This solution Is appropriate If the channels

connected to a module operate independently of other channels in the system,

such as channels which are implemented as FIFO buffer units. Finally, the

most general approach would be to simulate the channels as if they were packet

communication architecture modules. This approach would be requited If the

channels do not operate independently of one another. For example, If packets

are sent from one module to another over a network , such as the ARPA

network (15], the delay time could depend on the total number of packets being

sent over th. network. In this case we would simulate the ABPA network as a

- - -
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Figure Z i  - Extending Module Bounda ry to Include Its Output ClIah nels.
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packet communication architecture module .

For the remainder of this thesis, It will be assumed that the system to be

simulated consists of a number of modules which are interconnected by

zero-delay ~hannels. Some of these “modules”, however , wig!t actually be

extended modules or communication channels which are to be simulated. Thus,

If output port o~ of one module is - connected to input port 1~ of another module,

then ho,.h i ,..

Tim. Ind.p.nd.nt Simulation of a Module

The idea of a history leads quite naturally to a means of representing time

in the simulation. The time at which a packet Is sent from an output port can

be considered part of Its value, rather than an Implicit property. Thus, the

value of a packet Is a pair (xj), where r Is its data value, and t is Its time

value. By explicitly providing this time Information In each packet , a

JI~IT~T~ ~~~~~~~-~---- ‘L~~
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simulation processor can simulate the operation of a module without any

real-tIme constraints. —

Tar example, suppose we wish to simulate a DIVIDE module shown In

Figure 2.2. If the simulation processor receives the packets, (r , 18) and (,,28) ,

on its Input ports, then it will simulate the firing of the module at time 28,

and, since the delay time of the module Is 5, produce output packets

(X(~~~~ ~p2S) and (r/,,25). The simulation Is not required to operate at a - 

-

particular speed, since the actual time at which the output packets are nt

during the simulation is not important.

(x , 18) j 1 1 (x mod y.25)
- -  S ~~ renv .~ - rem.

: :::~ 
>[______del ay-5 de l ay-S

FIgure 22 - Example of Simulation Module Operation.

With this means of simulating th. timing, the output of the simulation of

a module is the entire output history of the actual module. This can be

described formally by defining simulation histori•s. For any port In the

simulation, the simulation history Is the sequence of pack ts passing through

th. ports

ha . 
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where 8 c t1 c t2. c • ..  c < ,.. . If the simulation correctly simulates a

- 
- port, then hs • h, where h Is the history of the corresponding port in the

actual - system.

Simulation histories can be defined for modules, too. Th~ input simulation

history of a module Is an n-tuple

HSI — chsi1,hsi2,...,hsi5>

and the output simulation history Is an ns-tuple

HSO - chsoj ,hso2 , . . . , hso , .

The system Input simulation history SI and the system output simulation

history SO are defined in a similar fashion. Furthermore, the relations and c

are defined over simulation histories in the same mann er as they are over actual

hlstori s.

The requirements for the correct simulation of a module can be precisely

defined in terms of histories for modules with non-stochastic behaviort

Suppose an actual module produces an output histor y HO and
finishes in a final state when It is started in some initial state

~o and receives an input history HI. Then the simulation of this
module must produce a simulation history HSO , such that HSO - HO ,
and It must finish in S1, when It is started in state S0, presented
with a simulation history HSI • HI and then notified that no more
input packets will be received.

The requirement that the simulation be notified when the last packet has

been received Is needed to prevent the simulation from hanging up, waiting for

packets which will never arrive. This will be discussed later In this chapter.

Without any constraints on the times at which input packets arrive at the

~~~~~~~ ~~r ç
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Input ports of the modules In the simulation, there is no guarantee that the

relative orderings of - packets on different input ports will be preserved. This

can lead to a problem of prematu re f iring, in which the firing of a module at

some time ~ftr. is simulated before all Input packets with time s tflr. have

arrived. For example, If an arbiter in the simulation receives a packet tr , 10)

on one Input port , It might simulate the firing at time tflrs . 18, and (assuming

it has a delay time of 2) send the- packet (x, 12) from Its output port. Suppose

now, thoug h, that a packet (,,5) Is received on Its other input port. The

arbiter has fired prematurely and the simulation cannot proceed properly.

To prevent this problem of premature firing, the firing of a module at

time ~ftrs must not be simulated until the entire Input simulation history

HSI (~/h .) has been received. The only way the simulation can know It has

received hsik(tftre) on input port ‘i Is If it receives a packet with time value ~

(fir. on that input port. Thus If the simulation stores the time value of the

most recently received packet on each Input port tk’ denoted tlast&, then the

firing of a module at time ifire can be simulated If tflre � ~~~ (tlcstk).

The simulation of a module proceeds as follows:

1.) Determine whether the module can fire at some time tfZr. ~
~~~ 

(tMzt~) based on the data and time values of those packets at
the input ports with time values ~ ~ftTI, the current state of the
module Si,, and the outcome of simulations of any stochastic
processes.

2.) If the module can fire, then simulate the firing of the module
as foUows~

a). Remove the proper Input packets from each input port.

- - . - r ~~~~ ~~~ M -~ - All
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Only packets with time value s (fir. can be removed.

b). Calculate the output data valuE s and the output times .
These calculations can depend only on Input packets with
tIme values � ~ftre. Furthermore, all output times must be
greater than tf lre.

c). Send the output packets from the prop er output ports.

d). Calculate the new state

3.) Gotostep l.

Assuming the sImulation will produce the proper output packets each tIme

it simulates the firing of a module , the output of the simulation will always be

an Initial segment of - the output history of the actual module , that Is HSO HO.

However , due to the requirement that tfire 
~ ~~~ 

(t IaStk) , it is possible for the

simulation of a module to hang up by waiting for packets which will never

arrive. Suppose, for example, that an arbiter In the simulation receives a packet

Cx , 18) on Input port 1 but has received no packets with time greater than S on

Input port 2. Then tIast~ - 5 c tflre - 18, hence the firing of the module

can~uot be simulated. If no more packets are ever received on Input port 2, the

firing of the module at time 18 will never be simulated, even though the

module Is enabled. The simulation must be notified somehow , when the last

packet has been sent to each input port , so that any remaining input packets

can be processed correctly. With this notification, the output of the simulation

will be the output history of the actual module, In other words HSO - HO.

~ 
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Conoluaion

By including the simulation time In each data packet, the operation of a

module can be properly simulated without any real-time constraints. Althoug h

this r quires each simulation processor to compute time values as well as data

values, It enables us to simulate a wide variety of packet communication

architectu re systems with complete accuracy.
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Chapter 3

Simulation of a System

Introdu ction

In the prevIous chapter , methods of simulating the components of a packet

communication architecture system were discussed. If , In an attem pt to

simulate the entire system, these module simulations were conn~cted together ,

the simulation would most likely deadlock. This deadlock resul ts when the

modules in the simulation are waiting for packets from each other , but none

can be fIred until one of them produces more output packets. Ufllike deadlocks

which might occur In the actual system, which should be simulated, this form

of deadlock, called hanging up, prevents the simulation from fully simulating

the activities of the actual system.

For example , the simulation program for the arbiter In FIgure 3.1 has

received a packet with tIme 3 on Input port 2, but nothing on input port 1.

Hence tlast1 - 8 c tflre - 3, and the firing of the arbiter cannot be simulated .

However , no packet will ever be received on the other input port until the

adder module fires , but this will not happen until the arbiter fires. The

simulation has hung up. The actual system would not have deadlocked under

these circumstances, though. The arbiter would have fIred and sent the packe t

I,) at time 5 to the adder, which would have fIred at time 18, and so on.

The simulation has ceased operation at an earlier time than the actual system

would have. A proper simulation would reach the same state that the actual

system would. Additional coordination betweefl the processors Is needed to

- - 
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prevent the simulation from hanging up.

- c 1

+ 
_ _  

_

(~< ,18) delay—2 1
• 2

FLgure 3.1 - Simulation which has “Hung Up.”

In this chapter , a means of providing this coordination will be presented

which preserves the principles of packet communication architecture, Including:

autonomy of modules, communication by packets, and time-independence. One

further feature of this coordination method Is that all coordination Information

Is sent along the same paths as the data packets are There Is no need for

additional communication links between processors.

For each module to be simulated, a simulation processor must perform two

types of operations: module activity simulation, and coordination. These

operations together comprise the activities of a process called th~ simulation

module. If the simulation Is itself to be a packet communication architecture

system, each sImulation module must be a packet communication architecture

module. This means that the simulation modules can be viewed as autonomous

processes, even If several of these processess are executed by one simulation

k~ 
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processor.

Coordinati on Algorithm

The simulation hangs up when the simulation modules fall to communicate

their status to each other but Instead wait passively for other simulation

modules to take action. Instead , the simulation modules could send status

Information to each other In the form of time packets of the form (1) , where I

is a time value. Time packets are sent along the normal communication links

between simulatIon modules. When a simulation module sends a time packet

(1) from an output port , this Indicates that no packets with time values less

than or equal to t will be sent from this output port In the future .

At any point in the simulation that a module Is In the wait mode, if there

is no value of tflre ~ 1mm - 
~~~ 

(I last~) for which the module can fire , then

the module cannot possibly fire before or at time 1mm . If the module has a

minimum delay time deli~ between firing and producing the first output

packets, then the minimum output time Is gIven by the formula:

tout • 1mm + dola,

•In i t  ~ 2 1— 
~~~~~ ~~~~~ +

The simulation module cannot produce more output data packets with time

values less than or equal to tout, hence time packets (tout) can be sent from all

output ports which have not already produced packets with time value s greater

than or equal to tout. Furthermore, If the firing of a module at some time tflTe

Is simulated, but no data packets are sent from an output port o~ then a time

packet (çf tre+deia,) can be sent from o ,, since any future data packets from this

- -- - - ~~——~ - - - — - — ~~~~~ fla_~k.. — - -~-~ —,nr-~~~~~ - -
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output port will have time values greater than gfire + delay.

As long as all time and data packets are sent from each output port of a

simulation module with strictly tacreasing time values, and the communication

links between -the simulatIon modules preserve the ordering of the packets , the

value of tlast1 for an input port Is still the last time value received on that

input port , either as part of a data packet or as a time packet. No new packets

can be received at an input port with time values less than or equa l to tlast1.

If the values of delay are greater than zero for all sImulatIon modules , -then as a

result of these coord ination activities , the simulation modules will send

— increasi ngly larger time values to one another , until one of the simulatIon

modules Is able to simulate the firing of Its module, thereby avoiding deadlocks.

In the example shown in FIgure 3 1 , The simulation module for the arbiter

has received a 
- 
data packet with time value 3 on input port 2 and has receIved

nothing on Input port 1. The arbiter cannot possibly fire before time 1mm -

mIn(tlast 1,tlast2) • ml n(9 ,3) • 0. Hence It cannot produce any output packets

with time value less than or equal to tmin + delay • 9+2 • 2. Therefore It can

send a time packet (2) to Input port 1 of the adder ’s simulation module which

In turn would update tlast1 to 2. The adder cannot possibly fire before time

1mm — ein (2 , lB) and therefore cannot produce any output data packets with

time values less than or equal to tr im + delay • 2+2 • 4. Therefore a time

- packet (4) can be sent back to the arbiter ’s simulatIon module which would

then set ilast 1 • 4, and , since tflre • 3 ~ ml n (h ail1, tlasr2) • a In (4 ,3) , the firing

of the arbiter module would be simulated.

_______ ~~~~~~~~~~~ ~~~a-~~~~~--- s~s-. -,-t --sa.r - - -., 
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The operation of a simulation module can be stated as follows:

1.) Each time a time or data packet Is received on Input port ‘*‘
update tlast~.

2.) DetermIne whether the module can be saf ely fired. That Is,
whether the conditions are sufficient for the module to fire at
some time tflre, where

(fire ~ ~~~ ((last k) .

a.) If the module can be safely fired, then simulate the
operation of the module on those Input packets with time
values s 1)1,. and produce the output data packets. For each
output port oj  from which data packets are sent, update the
value of tlast-out j ,  which Is the time value of the most
recently sent output packet from oj. For each output port 0,

- for which hiast out, ~ tflre + delay, send a time packet (tftre +

delay) from 0, and update tlast-outj .

b.) If the module cannot be safely fired then compute tout,
where

tout — tni4n + delay,
and send a time packet (tout ) from each output port oj  for
which tout > tlast out1. Then update the value of tlast-out 1 for
each of these output ports. The value of delay must be
greater than zero but cannot be greater than the minimum
time required for the module to produce an output packet
after firing.

3.) B t Urn to step 1.

These coordinatIon operations are quite simple, especially since time packets

are produced primarily when the simulation module Is otherwise Inactive. The

simulation module must store the value of tlast k for each Input port, and

tlast-out~ for each output port . However, no storage for time packets is required ,

since they are not needed once the values of tlastk have been updated.

Furthermore, the simulation requires some means of determining when the

system input ports have received their final data packets. For Instance, In the

— - - - -. - -~~- - -‘ -.
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example shown In FIgure 3.1, the firing of the arbIter at time 3 would be

simulated and the packet (,,5) would be sent to the adder ’s simulation mOdule

as shown in FIgure 3.2.

H

(y, 5)

(x~iO)~ ~ela~-2 :: ~~~~~~~~~~~~~~~~
FIgure 3.2 - Simulation Requiring Packets on System Input Port s.

- 
- - The numbers alongside the input ports represent the values of tlatt for the

- ports.

Suppose that no more packets are received at Input port 2 of the arbiter (this is

a system input port. ) Then the adder module will be enabled to fire at time tflre

— max (5, 10) • 10, but the simulation module cannot simulate this firing, since

tlast1 • S t f l r e • l O .  Instead , a time packet with value m ln (5,~0 ) + 2 w i U be

sent to the arbiter ’s simulation module. This simulation module will compute

tout • m in (7 , 3) + 2 • 5, hence no time packet will be sent. Once again , the

simulation has hung up. The simulation module for the arbiter is still

expecting data packets on Input port 2, but none will ever arrive. In order for

a simulation to complete all operations up to some time tflnal time packets with

value � tfinal must be sent to all system input ports after the last data packets

have been sent. If we want to simulate the entire operation of the system, 

- . 
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time packets with value ~ must be sent to all system Input ports , where ~ is

L greater than any other time value. This can lead tO a nontermin.tlng

simulation In which the simulation modules keep sending time packets 
- 
to one

another lndeflnitel~, even though no modules will ever be enabled to fire again.

A means of terminating the simulation will be presented in Chapter 4.

In our example, we want to complete all operations with time � 10. If a

time packet (10) Is sent to the arbiter ’s simulatIon module, It would compute

tout • mln (7 , 10) + 2 • 9 and send this value to the arbiter. The adder still

cannot be fIred safely, but a time packet with value mln (9 , 10) + 2 • 11 would

be sent back to the arbiter ’s simulation module which in turn would send back

a time packet with value aln (11,1B) + 2 s 12. Finally, tflre — 18 ~

m ln (t last1,tlast2) • mln(12, 10) , and the firing of the adder at tIme 18 could be

simulated.

With the addition of time packets , the sImulatIon histories conta in more

than just data packets. When comparing simulation histories to actual histories ,

however , only the data packets are of Interest. The function data is applied to

simulation histories to give the sequence of data packets (Includ ing their time

values) contained in a simulation history. For example , If

ha • (x ,1) , (3) , (,, 30) , (z , 35) , (108) ,

then

data ( hS) — (x,1) , (,, 38) , (z ,35) .

The function data can be applied to module simulation histor ies and system

F simulation histories as well.

_____________________________ _________________________________ ~~—-
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F.atur. e of th. Coordination Algorithm
This coordination algorithm preserves the philosophies of packet - 

-communication architecture desIgn. All coordination Information Is passed

between simulation modules in the form of time packets. There are no time

constraints on the simulation modules, and the simulation modules can operate

independently. Furthermore, the coordination operations for each module are

very simple. Each simulation module performs Identical coordination operations ,

which allows uniformity In the simulation programs .

One further feature Is that a simulation module sends time packets only to

those simulation modules to which It also sends data packets, and these time

packets are sent over the normal data paths. This not only kieps -the number

of input and output ports to a simulation module limited , it eliminates the need

to synchronize the coordination Information with the data Information. If , on

the other hand, time packets were sent along some other communication links,

special measures would be required to prevent a time packet from arrivi ng at an

Input port before a data packet having an earlier time value does. By sending

time packets along the normal communication linki , we use the first-In,

first-out prop erty of these links to ensure the proper sequencing of time and

data packets.

Efficiency of Coordination

This coordination algorithm Is rather Inefficient In two respects . First , a

lar ge number of time packets must be sent to keep the simulation coordinated .

In the example of FIgures 3.1 and 3.2, a total of seven time packets were

- -
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1~
tran~unitted so that the arbiter and the adder could each fire once. This causes

both a delay in the simulation and a heavy load on the communication channel s

between simulation modules. For larger simulatIons, the number of time

packets would be overwhelming. Second, this method does not allow all

possible concurrency In the simulation. For example , the two modules shown

In FIgure 3.3 could potentially be simulated at the same time. The adder will

not fire until time ie and hence cannot produce a packet with time c 12.

Therefore, the firing of the arbiter at time 11 could be simulated at the same

time as the firing of the adder . With the coordinatIon algorithm described,

however , the simulation module for the arbiter would receive a time packet

with value mln ( 5 ,1B) + 2 • 7 and hence the arbiter would not be simulated

until after the adder has been simulated. This lack of concurrency compromises

the efficiency of the simulation , since it causes the simulation processors to

wait unnecessarily .

(
i

s)

(x , 1ø) de l ay-2

P1gw. 3.3 - Modules which can be Simulated Concurrently.
~~ø.... .. .. I. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ .. .. .. .. .. .. .~ ~~~~ .., ~~ ..‘. ~~ ~~ .. 0.I.

This Inefficiency could be reduced If more use were made of the specifIc

properties of the modules being simulated. With the coordination algorithm
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described only two properties are assumed about the modules to be slmulateth

they will not produce any output packets while in the wait mode, and for each

module there Is some minimum delay time delay between when It fires and

when It produces the first output packets. This, of cour se, makes the

coordination procedures very simple, but it creates the two Inefficiencies

mentioned above. If , on the other hand , we. make use of the fact that an ADD

module canno t fire without first receiving data packets on bath input ports ,

then for the example in Figure - 3.1, the earliest possible time for it to produce

an output packet could be calculated as

tout • max (tlast j ,  tlast2) + 2

• eax(0 , 10) + 2 • 12.

The time packet (12) could be sent to the arbiter ’s simulation module which

would then fire the arbiter at tIme 3 and send the packet (,, 5) to the adder ’s

simulation module . Furthermore , an ADD module can only absorb one data

packet at a time from each Input port , hence the fIring of the module at time

10 could be simulate d even though f lag1 • S fflr. • 10. By makh ig use of

these two particular properties of ADD modules, only one time packet would be

transmitted In the simulation , as opposed to the original seven.

Of course , there is a trade -off between the complexity of the coordination

procedures withIn each simulation module , and the efficiency of the

coordination. In the most extre me case, each simulation module could simulate

the entire system Internally to deter mine whether a particular module can be

safely fired. This would 

ceii 
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information sent between simulation modules, but it would be overwhel mingly

complex. 1n Chapter 5, several refinements to the proposed coordination method

will be described. The emphasis will be on refinements which do not increase

the complexity much- but do increase the efficiency significantly.

Correct ness of the System Simulation

The combination of the module activit y simulation and the coordination

operation s for each module will guarantee that when the simulation modules are

Interconnected, they will accurately model the activities of the actual system.

A proof of this Is presented in Appendix I and will be described bri efly here.

The proof applies only to modules whose output histor y and final state are

functions of the Input hIstory and initial state. The module cannot contain any

stochastic processes. However , for a particular set of choices of random

variable S, the output history and final state of a module will always be

functions of its init ial state and input history, in which case the proof will

apply . If the stochastic processes are simulated in such a way that the random

variables are chosen with the same probability as they would be In the actual

system , the simulation will stochasticelly model the actual system.

To formally describe the operations of the actual modules and the

simulations of these modules , six requirements are specifieds three for the actual

modules and three for the simulations of these modules.

For the actual modules, the requirements ares

1.) Funct ionality of Output s The output history and final state of a

- ~~~~~~~~
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module depends only on the initial state of the module and the Input
history.

2.) Monoton icity of Output: The output of a module at time t cannot be
affected by input received after time t.

3.) Finite Delay: The output of a module at time - t cannot be affected by
Input received at time t. In other words , there must be a finite delay
between the receipt of an Input packet and the production of an output
packet which depends on this input packet.

If a module satIsfies all three of these requirements, then the output history of

the module up to and Including time t is a function of the Initial state and the

Input history up to but not including time t.

These three requirements for the modules to be simulated are not very

restrictive. The monotonicity of output requirement simply Implies that a

module cannot look into the future and predict what input will arri ve, nor can

it retract or alter any output packets once they have been sent out. The finite

delay requirement states that a module cannot react instantaneously to an Input

packet. This Is true for any physically realizable module. The functionalit y of

output requ irement Implies that the module cannot receive any input

Information other than the initial state and packets arriving at the input ports.

Furthermore, the module cannot contain any stochastic processes, unless we

consider the operation of the module for a particular choice of ran dom variables.

For the simulation of each module the requirements are:

I. Correct Module Simulation: The simulation of a module must produce
the same data packets with the same time values as the actual module
would for the same Input conditions. That Is, suppose the simulation of
a module produces a simulation history HSO when it starts In initial state

and receives an input simulation history HSI where all of the data
and time packets arriving at each input port have strict ly increasing time 

~ — -- —  - - - - -~~~- -- ~ ~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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values. Let

(f inal . 
~~~~~~ 

(elast~)
after the Input simulation history HSI has been received. That Is, (final
is the smallest of all the final time values received by the Input ports of
the -simulation module. Then

dat a(HS0 (~flnal) ) - H0(tflnafl ,

where HO is the output history of the actual module when it starts In
the same Initial state S0 and receives the Input history HI — dat a (HS I ) .
Furthermore, If  (f inal - ~ (all input ports to the module receive time
packets with value co), then the final state S of the simulation of the
module will be the same as the final state of the actual module.

2.) Correct Ordering of Output Packets: If the packets arriving at each
input port of a module In the simulation have stri ctly Increasi ng time
values, then the output packets sent from each output port of the module
In the simulation will have strictly increasing time values.

3.) Correct Coordinati on: If a simulatio n module receives an Input
simulation history HSI then If (f inal - U I a et k ) , eventually a time or
data packet with time value greater than tflnal will be sent from each
output port of the simulation module , unless if inal co, in which case
time packets with value co will be sent from all output ports if the
corresponding actual module ever terminates.

The first step in - the correctness proof Is to show that the simulation and

coord ination operation s which have been developed will f~lfffl the three

requirements for the simulation modules. Then , It Is proved that f or  any

simulation in which the actual modules satisfy their three requirements and the

simulation modules satisfy their three requirements, the simulation will

accurately model the actual system. This Is stated in the following theorem:

Theorem 1. Correctness of Simulation.

Suppose a simulation has the following properties:

I ,)  The modules to be simulated satIsfy the inonot icity of output , finite
delay, and functionality of output requirements. 
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2.) The simulation of each module satisfies the cor rect module simulati on ,
correc t orderi ng of output packets , and correct coordination requirements.

3.) All communic ation li nks between simulatio n module~ operate properly,
so that if input port 1* Is connected to output port 0,. then hsi k hSOr.
4.) The simulatio n receives a system input simulation history SI , andthe sequence of time values received at each system input port Is strictly
Increasing.

Let (f inal — mIn Wast Q, tlastb,... ,tlasr~
) ,

after the system Input simulation history SI has been received, where
• are the system input ports. Then the simulation module for any

module N1 in the system will produce a module output simulation history HSO 1such that

data (HS O j (tflnafl ) - HOj (flnal),

where HO~ would be the .~~put history of the corresponding module in the
actual system under the following conditio ns:

1.) All modules In the actual system are started In the same Initial state
as the corresponding simulation modules.

2.) The actual system receives the system Input history I where
I — data (SI ) .

Furthermore, If (final - co, the final state of each simulation module which
terminates will equal the final state of the corresponding module In the actual
system.

The theore m is proved by induction on the sequence of time values

where 10 . 8 , and

tD < t i < . • •  < ( 1 < ...  z o o ,

and each time value t~, I > 8, Is contained in some actual or simulat ion history

for the system. That Is, ~ is contained In one of the following histories: I ,

the system input history to the actual system, HO 1, the output history of some

L. -- ____ - 
--
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module U1, SI , the system input simulation history, or HSO 1, the output

simulation history of some module Nj .

The induction hypothesis Is as follows: For any t j £ ~~~~~~~~~~~~~~~~~ such
that � (f inal , -

a.) data (HSOj((1)) — HO,(t 1) , for all modules Nj , and -

b.) Eithe r - co, or for any output port Or:
hSO ,.(t 1) C hSOr.

In other words, not only will the simulation accurate ly model the actual system

up to and Including time t~, but In addition the coordination operations will

cause each simulation module to send packets with time values greater than

from all of its output ports. Thus the simulation cannot hang up due to a

simulation module waiting for an Inpu t packet with time value � (~ , as long as

~ (f inal . Therefore , by inductIon , the simulation will accurately model the

actual system up through time (f inal .

Conclusio n

By incorporating some relatively simple coordination operations In the

simulation modules, the simulation will accurately model the actual syster t ,

while preserving the prop erties of a packet communication architecture system.

As a result , however , the simulation might fail to termina te even if the actual

system terminates , and the simulation will be rather Inefficient. These two

difficultisi will be dealt with In the next two chapters .
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Chapter 4

Termination of the Simulation

Introduction

Due to the decentralized and time-Inde pendent nature of the simulation and

coordInatIon operations, there are conditions for which the actual system will

eventually cease all operation , but the simulation will continue indefInitely.

The simulation modules can keep sending time packets with Increasingly larger

time values to each other long after all module activity simulations have been

completed.

For example , In system of FIgure 4,1 the system Input port (Input port 2

of the arbiter) has received a time packet with value ~ and the simulation

module for the switch has produced a data packet (x ,97) . As can clearl y be

seen, all data operations by modules in the system have been completed . The

simulation, however , will keep going. The arbiter will send a time packet

with value mIn(l08 ,~~)+l - 101 to the functional operator. This operator will

send a time packet with value 101+2 • 183 to the switch , which will send a

time packet with value 183+1 - 104 to the next operator. This operator, in

turn, will send a time packet with value 184+3 - 107 to the arbiter. Then the

arbiter’s simulation module will start this cycle over again, even though

nothing Is really being simulated.

In this chapter , termination operations which can be incorporated In the

simulation modules will be developed. These terminations operations guarantee 
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FIgure 4.1 - Nonterminatlng Simulation.
The circles represent time packets; the dots represent data packets; and the
numbers alongside Input ports represent the values of (last for the Input
port s.

that the simulation will eventually terminate if the actual system does, while

preserving both the correctness of the simulation and the principles of packet

communication architecture. Furthermore, as with the coordination, all control

information Is sent between simulation modules along the normal data paths.

No special hardware Is required for term ination, only additions to the simulation

programs. The last part of this chapter describes a proof of correctness for the

termination operations. The full proof Is Included In Appendix Z.

If there wer e some means of simultaneously observlrg all simulation

modules and all communication links between them , then it could be determined

when the simulation has completed all data operations. The simulation has

completed all data operations and can be safely terminated once It reaches a

point where: all system Input ports have received time packets with value ~~,

no modules have sufficient data packets to fire, and there are no data packets In
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- 
- transit between the simulation modules. This omniscient observer, however,

would not be in keeping with the philosophies of packet communication

architecture design. For our simulation, the simulation m~dules must send.

control information to each other to determine whet her the termination

conditions are satisfied. Furthermore, these termination operations must be

time-Independent.

Most of the standard methods of determining whether a system Is active,

such as time-outs, or waiting for a maximum count on the number of time

packets will not work for this simulation. There are , however, special features

of packet communication architecture modules which can be taken advantage of.

Connectivity Classes

A module 12 can only receIve input Information In the form of packets

ar riving at its input ports. Hence if there is no path from module 11 to 12,

then the activities of I~ cannot affect those of 12. To make use of this Idea ,

the meaning of pat h must be defined more formally . First , a module N~ “Is

connected (0” a module 12 denoted Mi -9 12, if an output port of module M~ Is

connected to an lnput port of l2. There l s a p a t h fro mam odul e l1 t o a

module 12, denoted M~ -~* 12, If there exists a sequence

such that

All communication with a module Is in the form of data packets travelling

along data channels. Hence If there Is no path from M~ to 12, then there Is no 

~~~ - - - - _-;__~~ =~~~~~~~~~



_________________________________ -~~~~~~~ - ~~~~~~~~~~~~~ ~ - - -
--- - -~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 56 -

way for M~ to send Information to 12, either directly or Indirectly.

The difficulties in termina ting the simulation ar ise when the system
contains cycles. A module Is contained within a cycle If there Is a path from
one of its outp ut ports to one of its Input ports , that Is Nj -4 Nj . For
example the system of FIgure 4.1 has a cycle 01 -4 SI -4 0~ -9 Al —4 01.
The simulation modules contained In cycles will not normally terminate - they
cannot send time packets (o,) until time packets (co) have been received on all
Input ports , but the simulation modules will not receive these time packets
unless they send them out. Instead, the simulatio n modules will keep sending
time packets with values less than co around the cycles Indefinitely.

The cycles In the system can be identifie d by looking at the equivalence
classes formed by the relatio n 4* where N1 4* 12 If and only if either N1 -

12 (they are the same -module), or M~ -4 12 and 12 -
~~~~ N~. This relation Is

Indeed an equivalence relation (17]~ it Is reflexive, symmetric, and transitive .
Hence It defines a set of equivalence classes which are called connectivity
classes and are denoted C1, C2 .  .. C~. For any connectivity class containing
more than one module, any two modules in the class must have paths to each
other. That is, if M~, 12 C~, then

M~ -4 M~ and 12 -4 N~.
An examp le of a system divided Into Its connectivity classes is shown In Figure
4.2.

The relatIon -4 can be extend ed to connectivity classes. C1 -4 Cj If and

~ k ~
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only If M~ -4 Nj for every ~~~~~ NjcC j. In fact If I~ -4 Nj for any M~cC~.

N1cC 1, then Ct -4 C1. Moreover , if C~ -4 C ,, then Cj 4* Ct . or eLse they

would not be separate equivalence classes. Thus, If C~ -4 Cj , then the modules

i n C ~~are not affected in any way by the modules In C1. We ca~ terminate

the modules In C~ without worrying about the modules In Cj .

Using the properties of connectivity classes, the conditions for terminating

a connectivity class C , can be stated. When all of these conditions are satisfied,

the simulat ion modules in the class can safely terminate.

la.) All system input ports which are input ports to modules In Cj
have received time packets with value co•

lb.) All classes C~ such that Ct -4 C, have been terminated .

2.) No module e C , has sufficient data packets to fire.

3.) None of the channels connected to Input port , of the
simulation modules in C , contain data packets .

If there were some means of detecti ng when a connectivity class could

be terminated , then all simulation modules In the class could send out time

packet , (co ) from all of their output ports. In this case, termination conditIons

la.) and lb.) would be Identical , from a connectivity class’ point of view. That

is, an input port l
~ 

to a module Nj c C , receives packets from one of three

sources~ a source external to the system, a module c C~ where Ct -4 C1, or

a module N~ C1. In the first case, 
~1 

Is a system input port and hencø would

receive a time packet with value co. In the second case, the Input port 1~

would receive a time packet with value co once the connectivity class C~ has

been terminated. Conditions Ia.) and lb.) can therefore be ~estated ast

- - — - - - - - -~~~~- -----~———-. 
~~~~~~~~~~~~
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1.) Time packets with value co have been received on all those
Input ports of modules in the class C, which are not connected to
output ports of other modules In the class.

No special communication other than time packets Is needed between

connectivity classes or with the external world for termination. All that Is

needed to - terminate the simulation of a system Is some means of detecting - -

when the modules In each class can be terminated .

If a class Cf contains only a single module N~ then thiS module either is - 
-

not contained In any cycle in the system, I.e. Nj 4* Nj , or it Is part of a

self-loop, In which there is a channel connecting an output port of the module

to an input port of the module, so that N~ -4 Nj . In the first case, the normal

coordination operations of the simulation module are sufficient for termination.

Since no input ports to the module are connected to output poi’ts of modules In

the class, time packets with value co will eventuall y be received on all Input

ports of the module. The firing of the module at any time S co will then be

simulated. Then, since tout - co, time packets (cc) will be sent from all output

ports , and the simulation processor can terminate the simulation of this module. —

Thus, no special termination procedures are required for modules which are not

part of a cycle In the system.

For modules which are part of a self-loop and for connet tivity classes

with more than one module , however , the normal coordination operations are

not sufficient for terminati ng the module simulations. For example, the

modules In FIgure 4.1 are all in the same connectivity class and therefore

would not t.rmi*ate. Those Input ports which are connected to output ports of
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modules in the class will never receive time packets with value cc without

special termination procedures.

Termination Algorithm for Connect ivity Clanses Cont aining

Cycles

A means of incor porati ng termination operations Into the simulation module

for each module in a connectivity class Cj will now be given. This

termination algorithm requires no changes In the topology of the system. There

is no need to add more modules or communication links to the system. Unlike

the coordination operations , the termination operations are not identical for each

simulatIon module . FIrst, one of the modules In the class is designated as the

termination control module, denoted T, for the class. Any of the modules in

the class can be chosen for this role. The simulation module for this module

must Initiate and validate the tests for completion of all operations by the

modules In the class. Next, for each module in the class other than 1, one of

the output ports of the module must be selected as the signal output port of the

module. These signal output ports must be selected in such a way that If we

look only at the modules in the class, there Is a path from every module to I

following only channels connected to the signal output ports of the modules.

Finally, for each module In the class, we must determine which Input and

output ports are connected to output and Input ports of other modules In the

class. The set of all input ports of N1 which receive packets from modules in

th. class i~ denoted from ..clusj . Similarly, the set of output ports of N1 which

send packets to other modules in the class is denoted to..class j .
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The termination operations for the simulation module of the termination

control module I are as follows:

1.) Perform normal simulation and coordination activities until
every input port which Is not In Irom iclauT has received a time
packet with value co~

2.) When there Is no way for the module to fIre without
receiving more data packets , send test packets (test.+ ) from all
output ports In IO..JCISS $T.

3.) Wait until K test packets have been received on the input
ports,, where

K • 1 + ~~~~~ (it o .classj l — i).

In this equation, to clanj I , Is the number of output ports of
module N1 which are connected to input ports of other modules In
the class.

4.) If any data or time packets are received while waiting for the
test ‘packets , continue with the simulation and coordination
operatIons for the module.

6.) Determine the validity of the test as follows:

a.) If all K test packets have value teet. + , and no data
packets were received while waiting for the test packets,
then send time packets (cc) from all output ports of the
module.

b.) If at least one of the returning test packets has value
te st. - or a data packet was received while waiting for the
test packets, then send packets (reset ) from all output ports
In to_clau~, wait for K (reset ) packets to return, and go to
step 1.

6.) Once time packets (cc) have been received on all input ports of
the simulation module , terminate the simulation of the module.

For every other module N1 in the class, the termination operations for the

simulation module are as follows:

1.) Perform normal simulation and coordination operations untIl a

- ~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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test packet Is received on some input port.

2.) When the first test packet Is received, continue simulating the
module until all input ports which are not In from _dass~ have
received time packets with value cc, and the data packets present at
the Input ports are not sufficient for the module to fire. Then , if
the test packet has value test .+ , and no data packets have been
received since the test packet arrived , send (test .+) packets from
all output ports In to_class1. Otherwise send (test. -) packets from
all output ports in to_class1.

3.) If the module receives any more time or data packets , then
continue the simulation and coordination operations as before.

4.) Any time another test packet arrives, if the packet has value
test. +, and no data packets have been received since the previous
test packet was sent , then send a (te et . +) packet on the signal
output port . Otherwise send a (test. -) packet on the signal output
port.

5.) When the first (re set) packet Is received o~ an input port ,
send a packet (reset ) from each output port in to_class 1 and
prepare for a new test. If any further (reset ) packets are received
before the next test, send them from the signal output port . When
new test packets arrive , return to step 2.

6.) When a time packet (cc) Is received on &cy input port in
Irom_classj , send packets (cc) from all output ports , unless this has
already been done.

7.) Once time packets with value cc have been received on all
Input ports to the module , terminate the simulation of the module.

Dur ing the course of a test, unless some simulation module c,n never be

terminated a test packet will travel throug h every communication link between

the simulation modules In the class. Hence, every simulation module will

receive at least one test packet. Initially, I sends out to_claseT i test ,ackets .

On receipt of its first test packet , a simulation module M~ will send out

I to _class 1 ) test packets , thereby “creating ” I to ..class 1 I - 1 new test packets.

Thereafter , It will simply pass a test packet from an Input port to an output

- - - ~~~~~~~~~~~~~~~~ — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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port. Hence , a total of K test packets will be created. The values of these test

packets will be test .+ only If no form of data activity Is found anywhere in

the class. Because of the way in which the signal output ports are chosen, all

K test packets will be funneled back to T which can - then check the test

results.

F.atu r.e of the Termi nation Oper ation e

This termination algorIthm preserves most of the desirable properties of the

coordination algorithm. In particular, the sImulation modules still - fulfill the

requirements for a packet communIcation architecture system. Although one

module in each class Is denoted as a termination control module , its only

function Is to initiate and collect information about each test. This module has

no ability to monitor other modules or exercise any active control. Hence , the

simulation modules are still auto nomous. Furthermore , all communication is by

packets, and the operations do not depend on any timing restrictions.

As with the coordination algorithm, all termination control Information is

sent over the normal data channels. This avoIds the problem of monitoring the

communication links between simulati on modules. Instead, the first-in, first-out

property of these links ensures that no data packets will be overlooked while

they are travelling between simulat ion modules. No special hardware is

required for termination operations , only additions to the simulation modules.

One undesirable feature of these terminatio n operations Is their dependence

on the overall structure of th. system to be simulated. Whereas the simulation

L~. ITT: - :~~~~_ 
~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~
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and coordination operations of a module depend only on the module Itself , the

terminatIo n operations depend on how the module Is incorporated In the system.

This compromises - the modularity of the design somewhat. However, the

terminatio n operations of a module can be fully determined based on a very

limited amount of knowledge about the system, namely how modules in the

system are Interconnected. No details about the operations of other modul es in

the system are required. Thus, while the Incorporation -of the termination

operations Into the simulation modules will decrease the modularity of design,

this decrease will be rather small.

Efficiency of the Termination Operat ions

The termination opertations for the modules in a connectivity class are

designed to be both simple and efficient. That Is, they will not increase the

complexity of the simulation modules greatly, nor will the speed of the

simulation be decreased greatly. The efficiency Is a result of several Importan t

features. First , the simulation and coord ination operations need not be

Interrupted while the termination operatIons are tülng place. Thus, If a test is

initiated while modules in the class are still active , the simulation can keep

going, althoug h at a slightly decreased speed. Second, the operations are

designed to keep the number of tests Initiated reasonably low. The first test

can be Initi ated as soon as the termi nation control module has received packets

(cc) on all Input ports which are not in from4as:~. However , all K returning

test packets will not be received until &l modules in the class have received

packet s (cc) on all of their Input por ts which receive packets from outside the

-~~~~~ 
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class, and all modules at some time have ceased data operations. Thus the

second test cannot be initiated until the first termination requirement for the

class is satisfied. Each successive test cannot be Initiated until the previo us one

has completed. This not only simplifies the termination operations , it limits the

frequency with which tests can be initIated.

Correctness of the Terminatio n Operations

The addition of the termination operations to the simulation modules will

not interfere with the simulation of the system, but they will cause the

simulation to terminate if the actual system does. This Is stated In the

following theorem.

Theorem 2. Correctness of Termination

a.) Suppose a simulation is performed in which the ~ cdules to be simulated
obey the three requirements: functionality of output , monotonic ity of output , and
finite delay, and the simulation and coordination operations of each simulation
module obey the three requirements: correc t module simulation , correct orderin g
of output packets , and correc t coordination , and furthermore the coordination
operations of a simulation module cannot cause tUne packets (cc) to be sent out
by the simulation module unless

~~~ 
(t!asl~) —

Then the addition of termination operations to the simulation modules as
described In Chcpter 3 will not cause any of these requIrements to be violated.

b.) If the actual system ever reac hes a state In which no modules In the
system will ever enter the firing mode unless more packets are received on the
system input ports , then every simulation module In the simulation of this
system win eventually produce time packets with value cc on all outpu t ports ,
If all system Input ports In the - simulation receive time packets with value cc~

The proof of this theorem is included In Appendix 2 and will be descri bed

here briefly. The termination operations for different connectivity classees are

- -
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separate, hence we need only prove that the operations are correct for each

class. Moreover , since the termination operations are designed not to interfere

with the normal simulation and coordination operations , the only possible

adverse effect of the ter mination operations is to terminate the simulatIon too

soon. Thus, - provi ng the first part of the theorem involves proving that the

simulation modules in a class will not terminate until a test of the class

suceeds, and that a test will suceed only If the termination conditions for the

class are satisfIed. In other words, If the termination control module T sends

out (tee t • .i.) packets, then all K returning test packets will have value te st. +

only if the termination conditio ns are satisfied. Proving that a tes t of a class

will not overlook some simulation module which Is not yet- - ready to term inate

constitutes the most difficult part of the entire proof of correctness ,

To prove the second part of the theorem , it must first be shown that a

test of the class and a subsequent reset will eventually be completed, unless the

termination conditions for the class are never satisfied. In other words, any

time the termination control module sends out test or reset packets, it will

eventually receive K test or reset packets, unless some simulation module PJ~
never receives a time packet t~~) on some Input port which Is not in

from _class 1, or some actual module runs indef initely. Thus, once the

termination conditions for the class are satisfied, any previous test or reset

operations will be completed, and a new test will be initiated. Further more ,

the reset operations must cause all modules In the class to receive at least one

(re set) packet before the new test packets are received. Finally, ft must be
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shown that a test will suceed, once the termination conditions are satisfied .

Cono1uaL o~

The relatively simple coordination operations of Chapter 3, which are

designed to keep the simulatIon from deadlocking, created a much more difficult

problem of terminating the simulation. The solution of this problem requires

both compr omising the modular ity of design of the simulatIon modules to some

degree and also adding termination operatIons which are more complex than the

original coordination operat ions. This lack of modularity and greater complexity

makes the correctness of the termination operations more difficult to prove than

the correctness of the simulation and coordination operations.

However, the termination operations do satisfy the design goals for the

simulation. The simulation remains a packet comm unication arcMtect~ re system

In which -all communication Is In the form of packets, the simulation modules

are aut onomous , and the design Is time-Independent. Furthermore, while the

termination operations are more complex than the coordination operations , their

Implementation should not be particularly difficult, and they are efficient

enough to have little effect on the speed of the simulation. 

—---- ‘---- —~ 
-~
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Chapter 5

Improvin g the Efficiency of the Simulation

Introduction

The coordination algorithm of Chapter 3 is rather prlmittve In that the

coordination operations of a simulation module make little use of the pro perties

of the actual module , other than Its minimum delay time dela,. This leads to a

simulation which requires a great deal of coordination information to be passed

between simulation modules and which unnecessarily restricts the concurrency

of the simulation.

Any modification to the coordination methods must preserve their desirable

properties. The coordination operations should be simple enough to be easily

incorporated in the simulation program for a module. The simulation sho~ild

still be a packet communication architecture system , hence there should be no

centralization of control or timing restrictions on the simulation modules or the

communication links between them. Finally, the design should be modular -

the coordination operatIons for a module should depend only on that module and

not on the structure of the rest of the system.

In thjs chapter , two methods which can Increase the efflci9ncy under some

conditions will be presented. These two particular modifications were chosen,

because they are easy to implement and apply to many packet communication

architecture systems. It will be shown that with either of these two

modifications, the Correctness of Simulation Theorem , descrlbe4 in Cha pter 3, 

——-—- 
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will still apply.

F

Modules which Compute Monotone Functions

Many of the packet communication architecture modules which have been

designed to date compute monotone functions over their histor ies. That Is, if

the module - produces an output history HO1 when given the input history HI 1,

and an oótput history HO2 when started in the same initial ~date and presented

with an input history HI2, where

HI 1 HI2,

then

HO 1 c HO2.

Modules which compute monotone functions over their histories are

characterized by the prop erty that the decision about which Input packets are

absorbed from each input port and used in a particular firing is Independent of

the arrival times of any Input packets.

In particular, any determinate module computes a monotone function ,

where a determinate module (12,18] is a module for which the sequences of

output packets sent from the output ports depend only on the sequences of

Input packets arriving at the Input ports, and not on their arrival times. For

example, the functional operator and switch modules of Cha pter 1 are

determinate modules.

One would expect many packet communicatIon architecture modules to be

determinate , since they embody the ultimate form of time-inde pendent operation. 

_ _ _ _ ___
~
__ _ _s __ __ --

_ _ - -~ --- - - _---__-—___ - -—~~-- 
- - - — .



~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~

-

~~~~~
-:-

~~~~~~ T~~~~~~~~~~~~~
’
~~~ 

- - — V - -. -
~~~~~~~

- 7 0 -

For example , all of the data flow actors of Dennis (5] have determinate

behavior, so by the Closure Theorem of Determinate Systems of Pat ti (18], any

module which Implements a data flow program must be determinate . One

important module which does not compute a monotone functIon over histories

and therefore is not determinate Is the arbiter module . The order in which

packets are absorbed and subsequently sent out depends on the relative arrival

times of the packe t, on each input port.

• Other modules are nondeterminate, but do compute a monotone function

over histories. For example , a system clock module which, when it receives a

packe t of the form (reque et..t ice) , sends out a packet containing the time at

which the request packet arrived, computes a monotone function over histories,

but its output values depend on the times at which the input values were

received.

Simulation of Modules which Comput e Monotone Fànotions

If a module computes a monotone function , then It can be safely fired in

the simulation as soon as the necessary data packets have arrived at the input

ports. There Is no need to make sure that tflre ~ ~~~ 
(thzst~) .  Thus, the

simulation module can use any of the input data packets , and not Just those

with time values less than or equa l to 
~~~ 

(tlast~) .

For example , If the simulation module for an ADD module has received a

packet (x , 18) on input port 1, and a packet (~, 28) on input port 2, then there

Is no need to wait until a packet with time ~ 28 has been received on Input

- -- 
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port 1. Instead , the firing of the module at tIme 28 can be simulated right

away, since any data packet received on Input port I would not affect this

firing.

As long as this revised firing rule does not cause any of the three

requirements for the simulation module to be violated: correct module simulation ,

correct ordering of output packets , and correct coordination , the Correctness of

Simulation Theorem presented in Appendix I will still hold . To show that this

modification will not violate the correc t module simulation requirement, su ppose

at some time a simulation module for a module which computes ~ monotone

function has received an input history HSI ’ , where HS I ’ HSI, the input

simulation history which will ultimately be received. Then if all possible

firings of the module on the data packets are simulated, and an Out put

simulatIon history HSO’ Is produced, the effect of these activities will be to

simulate the operation of the actual module as if it had received an Input

history HI’ , where

HI’ • data (HSI’).

We know that

HI’~~~HI ,

where HI - data (HSI). Hence, since the module computes a monotone function ,

HO’~~~HO,

where HO’ Is the actual module’s output history In response to HI’ , and HO is

the actual module ’s response to HI , when started in the same Initial state. In

simulating the actual module’s operation s on the history HI’ , a simulation

- ~~~~~~~
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history HSO ’ has been produced where

data (HS O ’ ) • HO’ HO.

The revised firing rules will not cause the module to fIre prematurely. Thus,

the first requirement, correc t module simulation , will not be violated.

Furthermore, this modification will not affect the rules for producing time

packets. Thus, the other two requ irements will still be valid: correct ordering

of output packets and correct coordination. The Correctness of Simulation

Theorem still applies .

This modification will improve the efficiency of the simulatIon by

Increasi ng the concurrency of module simulations. There is no need for a

module which computes a monotone function to wait for time or data packets

when sufficient data packets are already present. Furthermore , it actually

simplifies coordinatIon operations , since there Is no longer any need to determine

whether a module can be safely fired.

Strengthening the Calculat ion of the Minimum Output Time

In the coordination algorithm of Chapter 3, tout , the earliest possible time

at which the simulation could next send out a data packet, Is dalculated as

tout — 
~~~ 

(tlastk) + de1tz~,

where tlast* is the time value of the last packet received on input port tk• In

other words, it was assumed that the fIring of a module might be simulated as

soon as any packet arrives on whichever input port ‘& currently has the lowest

value of llast*. In many cases, however, the module would not be enabled to

fire, even If such a packet were received. For example, If the simulation

• ~~~~~~~~~~~ 



~~~
— c- 

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•

— 7 3 -

module for an ADD module has not received any data packets, and tlast 1 • 188,

and tlast2 - 10, then the firing of the module for any tim. less than or equal to

108 will never be simulated, even If a packet with time value 11 Is received on

Input port 2. The coordination operations are overly cautio us. They assume

• only something which Is true for any module - If there are not sufficient

packets for the module to fire, then the module cannot fire before the arri val

of the next packet. If the coordination operations could take advantage of the

firing requirements for a module, then It could often calculate values of tout

which are higher than those obtained by the method of Chapter 3.

Any change in the method of calculat ing tout, will inevitabl y be more

complex than the calculation

tout • 
~~~~~,, (ttastk) + deta,.

Hence , the strength of the calculation, that Is the closeness to the maximum

possible value, must be balanced with the simplicity of - the calculatIon. The

following method of calculating tout represents a particular compromise between

strength and simplicity. It is very simple yet seems to be reasonably stro ng for

many modules.

Expressing the Firing Requirements

Fir st, a method of specifying under what conditions a module m ight fire is

required . For any module, a boolean-valued function F can be given which

takes as arguments the values of pj , 1~Jsn , where pj Is the number of pack.ts

present at input port Ij . If

F (p1,fr2,...,p1 ) •

• 
• - --~~

•-----. - - ‘ - — -  - ~~~~~~-- r- .~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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then the module might fire when pj  packets are present at each - input port Ij .

If the value of the function Is fa l se, however, then regardless of the Internal

state of the module, the time, or any stochastic processes within the module , If

each Input port i~ contains exactly pj input packets for all J, lsftn, and the

module Is in the wait mode, then the module cannot possibly eiiter thi flrin~

mode. Thus, as long as the value of the function Is fa I ca. the module cannot

produce any packets until more packets are received.

For example, an ADD module has a function

F~~(p1,p2) • (~j?1) A (p2~1).

It cannot fire unless each each of the input ports contains at least one packet.

Th. arbiter has a function

• (~j~1) V

It can fire if there Is a packet on either input port. As a final example, I~f the

behavior of the module is totally unpredictable, a function

•

can always be used. This will apply even for modules which can sometimes

fire without receiving any packets, since there are no conditions for which the

value of the function Is fa I cc, but the module can fire.

An equation for tout can be derived for a simulation module, if the

equation for F of the corresponding actual module Is expressed In the following

- - - - - - - 
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form:

F (p1,p2,...,p11) —

((p 1�c11) A (~~~ c2j
) A ... A

v t (p 1~c12) A (fr 2~c22) A .., A (p~�c,,2)]

v ((P 1�c 1~) A (P~�c2q) A ... A (p5~c5~)l ,

In which each ckj Is some constant greater than or equal to zero. This form of

the equation is called the sum of pro ducts form. Note that If ckJ - 8 then the

predicate (pk�ckJ ) must have value 
~~~ 

thus these factors can be omitted from

the equation. EquatIons with all factors of the form (pi�8) removed are In

reduced sum of products form. In the preceding examples, the functio ns F~~~,

F~~,, and F 1~~ are expressed In reduced sum of products form.

Many functions cannot be expressed In this sum of products form. In

fact, only those functions for which

• true

implies that for any values, kj ,k2,... ,k~ ~ 0,

F(p,+ki,p2+k2,..,,p~+k5) • 

~~~
can be expressed In this form. However, for any function F we can always

find a “weaker” function F’ , such that if

•

then

•

and an equation for F’ can be expressed in sum of products form.

A sum of products equation for F can be translated into an equation for
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-- 
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tout as follows:

tout a riAxi i~~~tlait1) + delay 
~~~~~ 

( 
~ 

(t~~ ) )  + delay—c I,
where

the earliest possible time value of the ith packet on input port tk
• the time value of the lth packet on tk’ If 1 ~ p~, or

tlaStk, i f l > / P k,

delay - the minimum delay -time of the module, and

C • any number greater than zero.

The second term of the equation

•In (
~ ~ )) d l

~~~~~~ ~~~~~ 
+ say —

represents the calulat lon of the minimu m output time based on the function F.

As will be prove d shortly, for any value t’ such that

< t • ~~ ( m•x (t 1)0 i~jSq l9Sn kc,~ ‘

11 Is the number of packets on input port ‘* with time values less than or

equal to t’, then

— false ,

Hence , the module cannot possibly fire again before time t0, and no data packets

with time values less than or equal to t0 + delay can be produced by the

sImulation module. Since all packets in the simulation must be sent from each

output port in str ictly Increasing order , the term c is required for tout to be

strictly less than the time value of the next data packet.

If the calculation of tout were based only on the function F , It might be

overly cautious. It Is possible for the function F to have value - lr.y ~ even when

the module cannot possibly fire. In this case, a calculation of the minimum

output time based on the equation for F would give a value which Is too low. 

—- j -

~

- ~---~— _ _ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Even if the function F has value ~~~~~j  at some point in the simulation, If the

data packets with time values less than or equal to 
~~~~~~~~ 

(tlastk) - 

are not

sufficient for the module to fire, then no data packets can be produced with

time values less than or equal to 
~~~~ 

(tlast
*

) + delay. Thus, the calculation of

tout must take the maximum of the two predictions of the mln1mum output

time - that based on the function F , and that based on the values of tla$tk.

For example , for the ADD module the equation Is

tout — tIAXE min(tlast 1,tlast2)+delay ; max (t 11,t21)+dela,—c 1.
For the arbiter , the equation is

tout • IIAXE eln(tlast 1,tlast 2) +delay ; m l n t t 11,t21)+delay—c I,

• mln(tlast1,tlast2) + delay.

This equation degenerates to the original equation for tout. Finally, for the

function ~~~~ the equatio n Is

tout • FIAXI ~~~ 
(tlast

*
) +delay ; 8+delay— I

- 
~~~~~~ 

(tlast~) + delay.

This equation also degenerates to the origInal equation for tout.

Correctness of the Calculation

this modified method of calculating tout will not cause the simulation to

violate any of the three requirements~ correct module simulation , correc t ordering

of output packets , or correct coordination. Hence, the Correctness of Simulation

Theorem given in Appendix 2 will still apply. Clearly the correct module

simulation requirement will still hold , since this modification wLl not affect the

data packets produced by the module in the simulation.

L -
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As for the correct ordering of output packets requirement , a time packet

will not be sent out from output port o~ with time value less than or equal to

tlast-out1, since this is checked for by the simulation module. The only danger

is that a time packet with value tout might be sent out , and later a data packet

with time less than or equal to tout is sent out. The original proof shows this

cannot happen for tout - 
~~~~ 

(tlastk) + delay, hence the problem can only occur

if

tout — ~~~ 
(
~~ (ta )) + delay —

The claim, however , Is that for any value t’ such that

s in l aax t~
‘ < ‘0 — isj~q ‘lSkSn “kc~ ‘

if is the number of packets on input port tk with time values less than or

equal to t’, then

~~~~~~~~~~~~~ a fa l s e .

Hence the module cannot fire again in the simulation at any time, t’ < t0. To

show this , look at any t~~ for which

t~~ — ma x(t 1~ , t2,~ ~~
• ‘• .

~~~~~ 
) .

By our assumption about t’, and from :~e equatIon for

t, ’t o ’t It c ,

and t~~ by definition is the earliest possible time value of the ckj th data
Ii

packet on Input port ‘&~ 
Thus , pj < ckj , which Implies that the predicate

(P~~ckj ) — fa l se ,  for any J, 1�Jsq.

This means that for any J, the product term

tp?ci,) ,~ (p~�c2j ) A ~~.. A (p ~~
c j) — f a l se .

Therefore , F , which Is the sum of these product terms must have value fa I se.
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No fixing of the module before time

s in ( .x  ,
i~~j s q  ~~~~~~~

can be simulated , hence no data packets can be produced with tIme values ~
+ delay can be produced . - If

tout — t0 + delay -

and c > 0, the corre t orderin g of output packets requirement win not be

violated.

Finally, the correct coordination requ irement will not be violated, since

tout � ~~~~ 
(tlast~) + delay > 

~~~~ 
(tlast

*
) ,

unless 
~~~~~~ 

(tlastk) - ~o• Thus, the Correctness of Simulation Theorem of

Appendix 1 wIll still hold for this revised calculation of tout.

Compatibility with the Ter mination Operation s

One difficulty caused by this revised calculation of tout is that the

calculation might cause a simulation module to produce time packets with value

~ before time packets with value ~ have arrived on all input ports. This couia

Interfere with the termination operat ions for the connectivity class. If some

other simulation module receives one of these time packets , it will assume that

the most recent test succeeded and will send out time packets (u )  from all

output ports , which might not be valid.

One way to prevent this problem would be to require that no simulation

module send out (~~) packets, until all Input ports have received (in ) packets.

Instead, when tout • ~~, It would send out time packets (t ) where C is some

~ 

_ _ _ _ _ _
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“large ’ number. This seems rather awkward , but it will prevent the tout

calculations from interfering with the termination operation s.

Features of the Calculation

This calculation of the minimum output time uses information which is

already available to the simulatIon module , namely the time values of each data

packet at the input ports and the values of tlastk. No atterj .tpt is made to

pred ict the time value of the lth packet if ..
~ 1, except that it is greater than

tla.u~. This avoids passing more coord ination Information between simulation

modules, or requiring knowledge of the timing details of the other simulation

modules.

This calculation of tout is reasonably simple, in fact hardly more complez

than the original calculation. One reason for th is slmpllclt7 is that It Ignores

much of the Information which Is available to the simulation module. For

example , the data values ~~~ the input packets are not conside’ed, nor is the

state or time of the ~~~~~~ Under some circumstances this will lead to a

weaker calculation of tout than might be possible. If the conditions under

which a particular module can fire depend heavily on these factors , it would be

worthwhile to take these factors into accoun t when calculating tout .

This method of calculati ng tout will increase the efficiency of the

simulation in two ways. First , It will decrease the number of time packets

sent between simulation modules. Not only will the difference between

successi ve time values tend to be greater , the need to send time values around
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loops a number of times Just to fire a module once can be reduced. For

example, suppose the module I~ of FIgure 5.1 obeys the function

F (p1,p2) — (
~ j�i) A (p~~1).

Using the original method of calculati ng tout , tout • m in (10,108) + 2 • 12. Thus

a time packet (12) would be sent to 112, which would send back a time packet

(13) and so on , until after M2 has sent 30 time packets, it would finally

receive the packet (108) and the firing at time 180 could be simulated. If

Instead we use the calculation

tout — iiAx[ m i n ( 10 , 188)+2 ; max(18 , 100)+2-0.OO l I — 181 .999,

the time packet (101.999) could be sent to 112, which would send back

(182.999) , and the firing of the module could be simulated. Thus, the

reduction in the number of packets sent during the simulation can be very

large.

(x , Sø)

Figure 5.1 - System which can be Simulated More Efficiently with Stronger
tout Calculations.

------—— - — — - -~~
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The second Improvement in the efficiency comes In the form of Increased

concurrency of the simulation . In the previous example , N~ would not need to

wait for time packets to cycle thr ough the loop 30 tImes before firing.

Furthermore, If there were some module M~ connected to output port 02 of II~

which Is waiting for a time packet with time greateT than or equal to 50 from

it would receive this packet much sooner. By reducing the tIme spent

sending and waiting for time packets , the simulation modules can spend a

propo rtionately larger amount of time simulating the data operations of the

modules. This would Increase the concurrency of the module simulations.

Conclusion

These two modificat ions were chosen , because they can be easily

implemented and make use of properties which are expected to be common in

packet communication arc hitecture systems. Other modifications could Improve

ft ~e e!f!ciency of thc simulation Ia ut ~~~~~~~~ wiuwui compromising thS

dcsi?able properties of the ortgt’~a1 method.

_ _ . _ _ _  - — ---------- - --~ -~~- -~ - --- - ---- —~-~~



- 83 -

Chapter 6

Conclusion

Insights and Afterthoug hts

As has been demonstrated here , it is indeed possible for the simulation of a

packet communication architecture system to Itself fulfill the design

philosophies of packet communication architecture. The modularit y and

time-Independence of the simulation allows It to be performed by virtually any

comput er system which supports intercommunicati ng processes. Furthermore ,

the operations which must be performed for each module in the system are

reasonably simple and therefore can be executed by small processors such as

microprocessors .

The methods which have been developed here are very general as well.

Few restrictions are placed on either the characteristics of the modules in the

system or on how these modules are Interconnected . Moreover , the methods are

provab ly correct, which is an important feature for any asynchronous , parallel

computation , due to the numerous and often subtle difficulties which are

encountered in the design of such systems.

The coordination and termination operations are simple enough to use only

a small fraction of the simulation module’s processing time. However , It is

difficult to estimate what fraction of the processing time will be spent waiti ng

for the necessary time or data packets. This will depend a great deal on the

structure of the simulation facility and on the system to be simulated. Thus , it

Ik _ _  

________________
_ _  

—~~~~~
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is difficult to estimate the efficiency of the simulation, that is what fraction of

the processing tIme will b spent simulating the activities of the modules.

However , considering the low efficiency of a simulation on a sequential

computer system, the efficiency of the parallel simulation seems quite reasonable

by comparison.

Perhaps the fundamental philosophy which Is expressed in this work is

that a certain amount of overhead , that Is computation whose only purpose is

to maintain prop er operation of the system, is needed for all but a limited class

of computer systems. This fact was accepted long ago by designers of

traditional computer systems. For example , many of the functions performed by

an operating system are overhead. Such operations as memory paging and

resource scheduling are incidental to the execution of a user ’s program .

Similarly, the coordinatIon and termination operations of the simulation modules

are incidental to the simulation of the activities of the actual system. In a

distributed computation, the Increase In the system load caused by the overhead

operations appears In two formsz as added computations for the components of

the system, and as special control information sent between the components.

These overhead operations are acceptable if they are kept to a minimum

and are designed in such a way that they both preserve the design goals of the

system and remain invisible to the user of the system. For example , the

amount of overhead in the simulation is reasonably small , the principles of

packet communication architecture are preserved, and the overhead operations

are Invisible to people performing simulations.

- - - — -----——-- — --~~-- -————— —~—— -S-- ~~~~~ 
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The design of overhead computations for parallel systems Is still in a

rather primitive state. Other parallel computer systems, such as Illiac IV (3],

are structured In such a way that the amount of overhead operartions Is

mInimized. These systems contain central controllers which tightly control the

operations of the components , thereby avoiding the need for the processors to

communicate their status with one another. Because of the rigid control

structure, however, It Is difficult for the user to program such ~ system to run

efficiently. These systems are suitable only for applications in which the

structure of the algorIthm closely matches the structure of the system.

Packet communication architecture systems, with their -decentralized control

and time-independent operation are potentially much more flexible and genera l

purpose than other parallel systems. However , along with this incr eased

capability comes a need for the components of the system to keep their

activities cuur~hiidt~d piope~Iy. The dc~ig~ of overhead oIw~~~tInn ~c for these

systems requ ires an approach which is totally different from. those used In

designing traditional systems. The overhead computations Incorporated In each

component of the system can utilIze only a limited amount of Informat ion about

the rest of the system. For example , the only Information about the status of

the rest of the system available to the coordination and termina tion operations

of each simulation module is in the form of time and test packets received at

the input ports. Overhead operations which can be “modularized” In this

fashion seem rather foreign , partly because they have no locus of control.

Instead , the operations take place In many locations simultaneously. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~ ~ a
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Furthermore, while one component of the system Is performing operations , the

state of the rest of the system can be changing. The overhead operations must

be designed to operate correctly, despite a continuously changing system state .

As a result, one cannot fully understand how the operations work by focusing

on one component at a time. The system must be viewed as a whole to see

how the operations work.. For example, the termination operations performed

by each simulation module make little sense when viewed individually, but

they fit together Into a computation which will detect when the simulation can

be terminated.

To date , no general techniques for designing the overhea d operations In

packet communication architecture systems have been developed. Instead, they

have been designed on a case-by-case basis, taking advantages of special

properties of the system. For example, the design here takes advantage of the

fact that the sole purpose of a simulation Is to modal the behavior of some

other system . If the actual system contains deadlocks or other malfunctions , the

simulation should model these deadlocks and malfunctions. The bur den of

designing a system free of errors is left up to the system designer. In the

future , however , general techniques should evolve which make the overhead

operations both easier to design and understand.

Suggestions for Further Research

There are two directions in which further research can build upon the

work. which has been presented here. First, more work Is required before

packet communication architecture systems can be simulated . In particular, a
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means of progr~n1m1ng the simulation modules Is needed. Ideally, the user of a

simulation facility should be able to specify the operations of the components of

the actual system in a high-level language, such as the Architecture Description

Language of Leung, at aI (14]. These specifications would then be translated

Into programs for the simulatio n modules by an ADL compiler. The user should

not be concerned with the coordination and termination operations , nor with the

details of the module activity simulation. Fortunately, the coordination and

termination operations are simple and uniform enough that they will not

Increase the complexity of this translation greatly. The maj or difficulty is the

design of a language which allows the specification of a wide variety of

systems In a concise and understandable form , but can be translated into

programs for the sImulation modules. With the increasing interest in parallel,

asynchronous computi ng systems, a convenient and efficient means of simulati ng

them will be required to determine the best designs.

The other potential direction for further research is to apply some of the

techniques and insights which have been developed here to other areas. One

direct application would be to the simulation of systems which are not strictly

packet communication architect ur e systems. Some systems which are commonly

simulated , such as air traffic control models, have the essential properties of

packet communication architecture design. That is, the system. can be

subdivided Into a number of components which operate independently and

communicate with each other only In a limited and well-defined manner. For

example, an air traffic control model can be subdivided into geographic regions. 

- ---~~~~-“ --- - ___________________
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The activities within each region occur simultaneously and independently. The

only communication Is between neighboring regions, and the only way they

communicate is by changing the boundary conditions. The simulation

techniques which have been developed here can be applied directly to such

syste!ns. This will lead to a hIghly parallel simulation which can be executed

by a relativel y simple network of computers. For the air traffic cont rol model ,

one can envision a “grid” of processors , in which each processor simulates the

activities within one geographic region. The simulation of an air traf tic control

model on a network of processors has been studied in some detail by Thomas

and Henderson (22]. In their system, different geographical regions of a

hypothetical airspace are simulated on different Arpanet processors. The

simulator for one regjon sends a message to the simulator for an adjacent region

when a plane crosses from the first region into the second. To maintain proper

tlenø qv,~r4irnii izatinn nnp r,f th~ ulath ,q maintains a global time clock and

broadcasts the simulation time to the other simulators at regular Intervals. In

their description of the system, the authors note that a distributed approach to

time synchronization would be preferable , since this centralized approach tightly

binds the simulators to the global clock. It seems that coordination operations

along the lines of those presented In Chapter 3 could provide the necessary

synchronization . Each simulator would send a time packet to the simulator for

each adjacent region Indicating the earliest possible simulation time at which a

plane could possibly cross from the first region into the next . In this way, the

simulation can proceed without any centralized control or real-time constraints

on the simulators.

~ 
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Moving beyond the field of simulation , there are other areas to which

these techniques and Insights can be applied. The problems of deadlock and

nonter mination - which were dealt with here occur frequently In parallel,

asynchronous systems. The concept of adding overhead operations to a system to

preve nt these problems can be applied to other systems. For example, the

author [4] has identified a deadlock which can occur when the data flow

language of Wang (23] is extended to include both cycles and nondetern iinacy.

This deadlock occurs after all computation by the program is completed, but the

program fails to recognize that it Is able to terminate. This deadlock can be

avoided by adding more data flow actors to the program to perform the

necessary overhead operations and terminate the program. In fact, these

overhead computations are very similar to the termination operations of the

simulation modules.

To design the overhead operations for a wider class of parallel,

asynchronous systems, however, more general techniques will be required.

Ideally, a programmer should be able to specify a program in a high-level

language which will then be compiled Into a number of separate module

prog ra ms which Include all of the needed overhead operations. These programs

could then be loaded Into the modules of a packet communication architecture

system, and the system would then execute the prog ram In a highly parallel

fashion. Translating high-level languages which include such features as data

structures and recursive procedure calls Into individual module programs wiU

pose many difficulties. 

— ~~ — --. --
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Thus, while the focus of this work was on simulating a particular type of

computer system in a particular manner, some of the techniques and concepts

which were developed here have much broader areas of application.

- ~~~~- - - - - -~~~~ - -
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Appendix 1

Correctness of the System Simulation

The following proo f shows that the simulation operations of Chapter 2,

combined with the coord ination operations of Chapter 3 will give a simulation

which accurately models the actual system.

Before proceeding with the proof , some additional notation is needed. For

an input port tk of a simulation module , the value of tlaStk Is the last time

value received on that input port . Thus, for an input port simulation history,

we can define a function Tlaet  where T laet (hsi k ) equals the minimum value

of C , 8~t~u , such that hsi k (t)  - hsi k. Similarly, for an output port 0r of a

module, tiast-out ,. equals the last time value sent from the port. Thus, a

function I last-out can be defined for output port simulation histories , where

T (a st—out (hs o ,.) equals the minimum value of C, 8�t~u , such that hso ,.(t ) —

I- -..

Finally, for a module input simulation history HSI the function If 1 na I is

defined as:

Tf l na l ( HSIJ — ~ (TIa stIhsik ),

where

HSI — ‘hsi 1,hsi 2, . . . ,hsi >.

This function can be applied to system input simulation histories as well.
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Requirement . .f the $i ulati on

The correctness proof will apply to simulations which fulfill the following

iiz conditions. Vlrst, there are three conditions on the modules to be simulated:

I.) FunctionaUly of Output: The output history and final state of a
module depend only on the Initial stats of th. modul. and the Input
history

2.) Mousotonicity of Output: The output of a module at time S cannot be
affected by Input received after time t.

3.) FInite Dslays The output of a module at time I cannot be affected by
Input received at time I. In other words, there must be a finite delay
between the receipt of an Input packet and the production of an output
packet which depends on this Input packet.

If a module satisfies all three of thea. requirements, then Its output history up

to and including time I must be a function of its Initial state and its input

history up to but not Including time I. This can be specified more formally in

terms of histories. Suppose for two operations of a module, the module

produces an output history HO when It starts in Initial state S0 and receives the

input history HI , and it produces an output history HO’ when started In the

same Initia l state and given the Input history HI’ . Then for any value of I

such that

HI U-s) • HI’ (c—e ) , for .11 s>S,

the two output histories must be Identical through time I, that Is

H0(fl — HO’ (I) .

The following conditions wlU be required for each simulation module in

the systems

1)  Correct Module Simulations The simulation of a module must produce
the sam. values es the actual module would u*d.r the same
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clrqumstances. That is, suppose the simulation of a module produces a
simulation history HSO when It starts in initial state S0 and receives
input simulation history HSI , where all of the data and time packets
arriving at each Input port have str ictly Increas ing tile values. Let

tflnal • Tf I na I (HS I ) ,
That is, tflnal is the smallest of all the final time values received by the
Input ports of the simulation module. Then

data (HSO (t fina fl) • HO (~flnafl ,

where HO Is the output histor y of the actual module when it starts in
the same initial state S0 and receives the input history HI - data (HSI ) .
Furthermore , if ~f inaI - ~ (all input ports to the module receive time
packets with value co), then the final state of the simulation of the
module S~ Will be the same as the final state of the actual module.

2.) Correct Ordering of Output Packets : If the packets arrivi ng at each
input port of a module In the simulation have strictly Increasing time
values , then the output packets sent from each output port of the module
in the simulation will have strictl y increas ing time values.

3.) Cor rec t Coordination: Each output port of a module in the simulation
will eventually produce a time or data packet with time value greater
than the minimum time value of the final packets received at the input
ports, or else the output port will produce a time packet (co) • In other
words, suppose a module in the simulation receives an input simulation
history HSI and produces an output simulation history HSO Then for
any output ~~~~ O

~
. of the module either

Ttae t ~out (bS O r) > Tf ina l (HSI ) ,
or

TIaet—out (hsOr) — CD.

The simulation and coordination operations (without the termination

operations) presented in Chapters 2 and 3, satisfy all six of these requirements,

as long as the modules to be simulated satisfy the first three requirements.

First, the simulation operations developed In Chapter 2 will guarantee that the

corr ect module simula tion requirement is satisfied. To see this, suppose at some

point in the simulation , a simulation module has received a simulation history

IlSI’ where HSI’ ~ HSI (the ultimate simulation history which will be

r celved by the simulation module.) Assuming packets arrive at each input port

-~~~~
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with strictly IncreasIng time vain.,, then if

tsutn • Tf InaI (HSI’) • 
~~~~~ 

ftIast~
) ,

no new packets with time less than or equal to 1mm wIn, be received on any

input port. By the firing rules for the simulation , the firing of the module at

time tf lr. cannot be simulated , unless tflrs � ts,in. Thus, when the firing of the

module at titie (firs is simulated the simulation history 1151 ((firs) has been

received. Assuming the simulation correctly simulates the firing of the module ,

the proper output packets win be produced. Furthermore, once the simulation

module has received the entire Input simulation history HSI with

VZnal — Tf InaI(HSI) ,

the firing of the module for .11 values of (fir. s (final will be simulated.

Henc., all output packets with time values less than or equal to (f inal will be

produced in response to this input simulation history, thereby guaranteeing that
-

~ 

. d.ta (HSO(tJ l,eafl) • HO (cflnal).

Thus the simulation will satisfy the correct modul. simulation requirement.

The second requirement , correct ordering of output packets, Is met as long

as the input packets to th. simulation module are correctly ordered. That Is, if

an output port a, of the simulation module first produces a -packet p1 and then

a packet p2 then 11, the time value in P1, must be less than 12, th. time value

I np ~. To ahow thts, fonr cues mut be conaidered:

1. p1 and P2 are both tim. packets.
Then p2 would be sent out only if 12 >  tlasrtnu , - Ii.

2. p1 ia a data pack.t and p2 lsatlm . pacbt.
As In Ca.. I , p2 would be seat only If 12 > tlast sit, - t~.

L  — 
—-. - 

~~~~~~
~—
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3. Pj an~~p2 are both ’üta packets. -

Assuming the simulation modul, satisfies the correct modul, simulation
requirement, data packets wIll always be produced In th. proper order.

4. Pj lsatlme packet and p2 ls a data packet.
p1 was produced with a time value t~ - h u m  + del., only If  the module
could not possibly fire before or at time tsiin. Th• actual module always
has a delay time greater than or equal to d.l~ between firing and
producing output packets, hence the simulation modul, could not send out
a data packet p2 with tIm. s t~ from the output port after p1 has
been sent. -

For each of these four cases, the simulation will satisfy the correct ordering of

output packets requirements.

The coordination operations also satisfy the correct coordination

requirement. If the simulation module receives an Input simulatIon history HSI

with

(f inal — Tf I n aI (HS I ) ,

then after all output data packets have been produced, it will sand out time

packets with value

tout - (f inal + del.,,

from all output ports for which tout > tiast out,. Since del., Is greater than

zero, either tout (f inal , or tout - (f inal - co. Hence, after the last tim. and data

packets have been sent from each output port 0,, eIther

- tlast out, ~~ tout , çflnal ,

or

h ash-out, • tout • (f inal .

Th ~ is correct coordination requirement will be satisfied.

* 1.roof can now be given which shows that If the modules to be

~ -
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simulated satisfy their thre, requirements, and the simulations of these modules

satisfy their this. requirements, then when these simulation modules are

Interconnected, the simulation will accurately model the entire system.

Theorem j. Cor rectness of Simulation.

Suppose a simulation has the following properties:

1.) The modules to be simulated satisfy the monot icity of output , rrn ite 
¶

delay, and funct ionality of output requirements.

2.) The simulation of each module satisfies the corr ect module simulation ,
correc t ordering of outp ut packets , and correct coordination requ irements.

3.) All communication tti~k~ between simulation modules operate pro perly.
In other *ocd., If Input port 

~& Is connected to output port o~. then hsi &
- hSOr.

4.) The simulation receives a system input simulation histor y SI and the
sequence of time values received at each system Input port Is strictly
increasing.

Let (f inal - If n& (SI) , that Is tflnal equals the smallest - final time value
received by any of the system Input ports during the simulation. Then the
simulation module for any module will produce a module output simulation
hiatpry 1130k such that

dat a(II SO 1((flnal) ) • NOj (tflnal) ,

where 1101 would be the output histor y of the corre sponding module in the
actual system under following conditions:

1.) All modules in the actual system ar, started In the same Initial state
as the corres ponding simulation modules.

2.) The actual system receives the system Input history I , where
- 

I • d.t.(SI).

Furthermore, - 
If (f inal - co, the final state of each sImulation module which

terminates will equal the final state of the corresponding module In the actual
system

L ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Before the ~ .Jor part of the theorem can be proved, two lemm as are

needed.

Lemma j J,. Correct Ordering of All Packets

If the simulation of each module satisfies the correct ordering of output packets
requirement , the communication links between the simulatj on modules operate
correctly, and the packets arrive at each system Input port with strictly
increasIng time values, then every output port of every simulation module will
produce packets with strictly increasing time values.

Proof ~~ Lemma j J

The proof will follow by Induction on the sequence of packets which an

observer would see If he were to simultaneously observe the output ports of

every simulation module. This sequence would be of the form

where p1 Ia the Jth packet observed. In any physIcal system,

no two packets could appear at the exact same time, so the packets wIll be

totally ordered In time. The sequence of packets sent from each output port Is

countable, and there are a finite number of outp ut ports in the system, hence

the sequence p1, p2,... must be countable. This allows us to perform induction

on the sequence.

Basis: InitIally, no output ports have produced any packets, thus no ordering

constraints have been violated .

Inducti on: Assume the observer ha. seen the sequence p1. p2, . . . , p1 and up to

this point, all output ports have produced pack ts with strictly increasing time

values. Then, by the first-In, first-out property of the communication links, all

-

~ 

~~~~~~~~~
- - -
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Ii
input ports connected to the., output ports have received packets with strictly

increasing time values. Furthermore, all system Input ports have received

packets with strictly Increasing time values. Hence, whichever module produces

packet p1,1 must hav, received Input packets at each Input port with strIctly~

increasing time values up to this point. Since this simulation modul. satisfies

the correct ordering of output packets requirement, the tlàe value of p1,1 must

be greater than the time values of all packets which have been sent from this

output port previously

Thus, by Induction, no packet In the sequence p1, p2,... can violate the -~ 

-

ordering requirements for each output part.

_____
Lemma j~~ Monotoniclty of Simulation Output.

If a module satisfies the munotlctty of output , finite delay, and functionalit y of
output requirements, and the. corresponding simulation module satisfies the
correct module simulation requirement, then the output data packets produced by
a module 1* the simulation with time values less than or equal to t will depend I -

only on the initial state and the input data packets received with time less than
t~ More precisely, suppose

dat . (H3I (1—8) ) . HI(t-8), for all 8~ø,
and

t ~ Tfl nal (HSI).
Then, If the actual module and the simulation module both start in the same
Initial stats

data (HS O (t ) ) a 110(t),
where 1430 Is the output simulation histor y of the simulation module after
receivIng 1431, and 110 Is the output simulation history of the actual module
after receivIng 11!.

The Idea behind this l,maa Is that the simulation can and will produc e

the output simulation history HSO(t) , once the input simulation history HSI Ct- )

Ii
~iiL~ ___ ~ — - -~~

--.-.--,
~- - - .-

~~~~~~
— - -  — 
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has been received. That it can produce the output simulation history up to

time t Is guaranteed by th. three requirements on the module. That it will Is

guaranteed by the correct module simulation requirement. In order for the

simulation module to realise it has received the entire input simulation history

up’ to time t it may require packets with time values greater than or equal to 1,

as is stated In the condition t s If Ins I (HSI ) . The simulation, however, will

only use the packets with time values less than C In calculating the output

• values with time values less than or equal to C.

&~~~~~~Lemma~~~ ,

Let HI’ a data (HSI) , and let HO ’ equal the output history of the actual

module when It starts In state and receives the input history HI’ . Then by

the statement of the lemma,

1II(t—s) — d a ta (HSI (t-a )) a HI’ (t—a) , for all sB.

Hence, by the three requirements for the actual module

H0’ (e) — 140(t) .

Furthermore , by the correct module simulation requirement , If (f inal -

Tf I r ia l (1150) , then

data(HSO((flnal) ) . HO’ (tf tnal) .

By the statement of the lemma, C S (final, therefore

dat a (HSO (t) ) a H0’ (t) .

Thus

data (HS O(t) ) • H0’ (t) • 110(t) .

This lemma will allow us to look only at the Input dat. packets with
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time values less than 1, when try ing to prove the correctness of the simulation

up to and lucluding time C

Proof of Theorem j .

The main theorem will be proved by induction on the sequenc. of time

values

wheie 9 - 8 , and

t, ( t j < ... < l ~~( ... S~~~,

and each tim. value t~, I > 0, Is contained In some actual or simulation history

for the system. That Is, t~ Is contained In one of the following histories: I .

the system InPut history to the actual system; HO 1, the output history of some j
module in the system N,; SI , the system input simulation history; or HSO~, the

output simulation hisWry for some module N,. As mentioned in Chapter 2, the

history and simulation history for any port must be a countable sequence.

Since there are only finitely many Input and output ports In the system, only

countably many time values can appear In all of the histories. Thus, the

sequence t~, tj ,... ,C
~
,. , .  must be countable, which allows us to perform

induction on It.

Induction Hypothesis

For any i C tO,ti,...,tt...., such that t 1 S tf lnai :

a.) dat a (HS O ,(t 1)) • HO,(:j ) , for all modules Nj, and

b.) Either C~ a co, or for any output port o~.
hSO,(t 1) C hSOr

—
~~~~

“
~~~~~ — ~

-. - -
~~~‘--—-- --—~-—-- ~~~~~~~~~~~~~~~~~~ — ~
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That is, the simulation will be correct through time C 1, and all output port s in

the simulation will produce some packet wIth time value greater than 1~ 
unless

— Co.

Basls : t— 0 .

a.) Initially, HSO~(8) - HO J (0) • the empty history, for any module N1.

b.) Initially, HSI ,(8 ) .  HI J (8) - the empty history. Hence, If in aI (H SI j (O ) )

8 for any module N~. By the correct coordination requirement , for any output

port o . of module I ,

(last-out. > Tf In a I -(HSI 1IO) ) a

Thus, hSOr(O) c hso,., for any output port In the system.

Induction: Assume true for 1, where 
~i 

c (f inal , prove true for 1+1.

a.) The Monot iclty of SImulatIon Output Lemma which has Just been proved

will be applied to show that deta (H SO 1(11,1)J  • HOj (C~,j ). By the Induction

assumption

data (HS O,(11))  —

for all modules Nj  In the system. Furthermore, by the statement of the

theorem,

da t a (SI) — I.

Therefore , since all communication channels in the simulation operate properly,

d.t .(H SI ,(t 1)) •

for all simulation modules N~. SInce no packets are produced with time C such

that C~ <

dat .(HSI ,(C 1,14)) — HI j (t~~g_ 8)~ for all 8,8.

~~~~~ —~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - . - -~~~~~~~~~~~~~~~~~~~~ --~~~~~~ - - ~~~~~~~~~ -- - ‘ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~~~~~~~~~
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Next, by part b). of the Induction assumption h$Or (t i) 
~ hSO p, for any

output port -os. In the simulation. Then, If Input port ‘* Is connected to output

port o1.,

hsik (C j ) • hso,( 1 c han1. - haiL.

Furthermore, since any system input port will receive a packet with time

greater than or equal to (f inal , and ~f tn &> t~,

hait i:1) C hsi~,

for any system Input port (
~~
. Combining these two facts,

hsit (t j ) C hsi~,

for any 
- 
Input port , 1~, In the system, whether it Is - connected to another

module, or it lsasystem lnput port. No packets are produced ln the slniulation

with time C such that C~ c C < (
~~‘j~ 

hence

hsi
*

(t i,1 ~ hsi~,

- 

- 

for any Input port 1
* In the system. Therefore

Tfin al (HS I 1) 
~ ~1,1~

for any module N1. Lemma 1.2 can therefore be applied to show that

data (HSO,111,1)) — HO~(t~,,), 
- 

-

for any module Nj . - :

b.) As has Just been shown, if t ’ . If lri al(HSI1) for the module U1, then t’ ~

t l,1. By the correc t coordination requirement , for any output port o .  of module

Nj, either

tlast-out , > C’ ~

or

~

-

~

- -

~ 

~ - - - - .
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tlast.ota~~a Co � C � t 1,j.

That Is, some packet with time value greater than 
~~~ 

will be produced on

each ot iput port , unless • 0. Thus, for any output port ö . In the

simulation, either

hao1.(:1,1) c han,.,

or

— Co.

Therefore, by induction

data (HSO1(çflnal) ) a H0~~/inal) ,

for afly module N1 In the system.

Finally, to show that the module K1 would have the same final state S1 In

both the simulation and the actual system, If Ifinal - co, we have Just shown

that data ( HSO~(q1nafl ) - HO (çfinal) , for any module Nt. Furthermore, for the

system Input ports, the state ment of the theorem requires that data lSl) - I.

Thus, If the communication links between simulation modules operate correct ly,

and (f inal a Co

data (HSI 1) a HI j ,

for an~r module N1. By the statement of the theorem , M~ Is started in the same

Initial state S0 In both the simulation and the actual system, therefore by the

correct module simulation requ irement , if çf tnal - co and the simulation module

terminates, then both the simulation module and the actual module must have

the same final state.

- -
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This completes the proof of the correctee. of the simulation operat4ona of -~

Chapter a coesbined with the ~~ MIaMIon o~sset$o s ci Chap er 3.

I

I

I

_________ ______ ~~~~~~~~~~~~~~~~~~~~ - ~~~~ —-
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Appendix 2

Cor rectness of the Termination Op.r ations

The following proof shows that the addition of the termination operations

of Chapter 4 to the simulation modules will maint ain the correctness of the

— 

- 
simulation, with the added feature that the simulation will term inate once the

termination conditions are satisfied .

Theorem 2. Correctness of Term ination

a.) Suppose a simulation Is performed In which the modules to be simulated
obey the three requirements~ functionalit y of output , monotonicity of output , and
finite delay, and the simulation and coord ination operations of each simulation
module obey the three requirements: correct module simulation , correc t orderin g
of output packets , and correct coordination , and -furthermore the coordination
operations of a simulation module cannot cause time packets (co) to be sent out
by the sImulation module unless

~~~~~ 
a CO~

Then the addition of termInation operations to the simulation modules as
described in Chapter 3 will not cause any of these requirements to be violated.

b.) If the actual system ever reaches a state in which no modules In the
system will ever enter the firin g mode unless more packets are received - on the
system Input ports , then every simulatIon module In the simulation of this
system will eventually produce time packets with value o on all output ports ,
If all system Input ports In the simulation receive time packets with value Co.

Proof of First Part

The termination operations will not affect the actual modules, hence the

fIrst three requirements for the Correctness of Simulation Theorem will hold.

As for the correct module simulation requirement, the termination operat ions are

designed not to interrupt the simulation of the modules. The only way they

could potentially cause this requirement to be violated would be by terminating

- ~ -—— ~~~~~~~~~~~~~~~~~~~~~ .- - - - - ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~
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the simulation before the termination conditions are satisfied. Furthermore,

since test packets contain no time values, theIr presence will not affect the

correc t .rdering of output packets, or the correct coordination requirements. As

long as the termination operations do not cause the simulation modules to send

out time packets (co) before the termination conditions are satisfied, neither of

these last two requirements will be violated either.

Since modules can communicate with each other only in the form of

packets sent along the data channels, the conditions for termination for the

modules In a connectivity class Cj can be stated an

1.) For each simulation module N1 c Cj all Input ports i
~ 

such
that I fromj lass1 have received time packets (oo) .

2.) No simulation module N1 c C1 can simulate the firing of a
module without receiving more data packets.

3.) No simulation module in C1 will ever receive further data
packets.

For a connectivity class which contains only one module and has no

self-loop, there are no termination operations. Thus, as long as the termination

operations for connectivity classes containing cycles do not cause the simulation

modules In the class to terminate too soon, the correctness of the simulation

will be maintained.

Term ination operations might cause the simulation modules in a class to

terminate prematurely in one of two ways. First, a test of tl~te class might

succeed, even though the termination conditions are not satisfied. Second, some

simulation module N~ mtg~it receive a time packet (co) on an input port ‘*

L
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from...class1, before any test has succeeded , and then proceed to send out time

packets (co) from all output ports , even though the termination conditions for

the class are not satisfied. This second case can be ruled out rather easily. By

the further restriction which has been placed on the coord ination operations In

the statement of the theorem, the coordination operations cannot cause a

simulation module N1 C, to send out time packets (co) from Its output ports ,

unless time packets (co) have been received on all Input ports, Includin g those

In froin .dau 1. However , no simulation module N1 £ C, will receive a time -

packet (co) on an Input port in from ...clau 1 unless some simulation module

N 1 c Cj- sends a time packet (co) from an output port in tO.. C1au1. Without

any termination operations , this would happen only If N1 had already received a

time packet lao) - on all Input ports includ ing those In from4ass1. Thus, no

simulation module can be the first simulation module in the class to send time

packets (co) . Therefore the coordination operations alone cannot cause any

simulation modules in a class to terminate If the class contains cycles.

Furthermore, the termination operations cannot cause any simulatIon module In

a class to send out time packets lao) until after a test has succeeded.

I
Thus, the proof of the first part of the theorem reduces to

1&~~~& &J.. No Premature Termination
Suppose the termination control module T for a connectivity class C , has
received time packets (co) on all input pc~rts i~ I from.classy , and no firing of
the module can be simulated unless more data packets are received. If T sends
out test packets ( test • +) from all output ports o

~ 
£ to4asspi receives K packets

with value, teet .+, In return, where
K • 1. E (Ito _cIus t I -

N1cC,
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and it receives no further data packets while waiting for- the returning test
packets , this means that

1.) All simulation modules N1 £ C1 have received time packets lao)
on all Input ports ‘t~~ 

frosuelau 1.

2.) No simulation module N1 c C, can simulate the firing of a
module without receiving more data packets.

3.) No simulation module In C, will ever receive further data
packets.

The following sequence of assertions proves Lemma 2.1:

1.) If every simulation module N1 £ C1 Is terminaf able, meening that it

receives a time packet (co) on every Input port which Ii not In from..class1, and

it eventually stops simulating the firing of the module, then during a test (or

reset) of the class C~

a.) Each simulation module N1 In Cj will receive at least one test
(or reset) packet.

b.) Exactly K test (or reset) packets will be created, where
K . l +  E (Ito_class t l - i).

- 

N1 C1
C.) At least one test (or reset) packet will be received on each
Input port In from4a ss1 for every N1 ~ C,,. 

-

Assertion Ia) can be shown by Induction on the length of the shortest

~ I pat h from T to N1 (there must be a path from 1’ to any other module in a

connectivity class.) As a bests, if I • 1, then T -4 I~. ~1 will receive a test

(or reset) packet shortly after T sends out test (or reset) packets from each

output port o~ Io4auT. Now assume the assertIon Is tr ue for all simulation

- I ~ - - — - - —~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~ ---- -~—-- -~~~~-— -~--— -~~~~~ —- —-,-. --~~~ - 
-
~———---~ -- ~-~--- — - -- -.

~--
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modules in the class with a path from T of length less than or equal to I.

Then If there is a path of length 1+1 from T to a simulation module N1, there

must be some module N~ £ C,, such that N~ -9 N1, and there is a path of

length I from T to N~. Hence the induction assumption applies to N1~, meaning

that It will receive at least one test packet. As long as N~ Is turminatable, It

will , send test (or reset) packets on every output port °k £ to ielus, Therefore,

N1 will eventually receive a test (or reset) packet.

Assertion ib) follows directly from Ia). Initially, T creates and sends out

1O_ cIau~.I test (or reset) packets. Th. first time some other simulation module

11 c C,, receives a test (or reset) packet, it will send out to_class1 I test (or

reset) packets, thereby creating I to_class1 - 1 new ones. On receiving any

further test (or reset) packet , a simulation module will send one test (or reset)

packet, - 

hence no new test packets will be created, nor will any be destroyed.

By assertion Ia), eventually all simulation modules will receive at least one test

(or reset) packet , therefore exactly K test (or reset) packets will be created,

where
K • 1. + E (ito..clautI — i).

Assertion ic) also follows from Ia). Every input port tk In from_class1 of

a simulation module N1 £ C, Is connected to an output port o~. of some module

Nj £ C ,, and 0,. is in to_class1. By assertion la) N1 will receive at least one

test (or reset) packet. If N1 Is term lnatable, it will eventually send a test (or

reset) packet on every output port In the set from_class1. Therefore , N1 will

eventually receive a test (or reset) packet on L
~
. This Is true for any input 

rn ~~~~~~~~~~~~~~ --
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sort I
~ 

In from4ass1 of any simulation module N1 £ C,.

& )  If some simulation module N j  Is not termlnatable, then less than K test

packetS will be created during a test, and therefore the t t  cannot succeed.

If N, Is not terminitable, then it will not send out any test packets even

if it receives any. Thus it will not create I to_clan1 I — 1 test packets, which

means that fewer than K test packets will be created during a test of the class.

The test cannot succeed unless I receives K test packets, hence the test cannot

succeed If some simulation module N, does not receive time packets (co) on all

Input ports which are not In from_class1, or it does not stop simulating the

firing of the module.

3.) For a test to succeed, no simulation module can receive any data packets

between the time It receives Its first test packet and the time it sends Its last

test packet.

If a simulation module did receive a data packet during this time, it would

send out at least one packet (test. -). Once a (test , -) packet has been sent,

the test must fall, because any ter minatable simulation module which receives a

(test. -) must send out a (test , -) packet. If all modules ire ter minstable, I

will receive at least one (test. -) packet, and the test will fail. If some

sImulation module Is not terminatable, the test will fall In any case.

4.) If a test succeeds, no simulation module N~ £ C, will receive any data

packets after it ha. received it. 1 t  test packet.

A  -
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This wIll be shown by contradiction. Suppose a test of a class succeeds,

but one or more simulation modules receIve data packets after receiving their

final test pickets. Let K~ be one of the first simulation modules for which this

happens. That Is, during the test, N~ received all of its test packets and later

receives a data packet p on some Input port j1~ 
but this had not happened to ! I

any simulatIo* m o du le i n t he clau before t~~~~poInt. If I1 Is not in

from_class1, then N1 could not have sent any test packets before receiving this

data packet, because It cannot and any test packets before receiving a time

packet (co) ou t 1. Thus lf a data packet ls received on an Input port t1 which

Is ~ot In from_class1 after any test packet has been received by N~, either the

simulation modul, would not be terminatable, or 11 would send out a packet

( test • -). In either case, - the test would fall. Thus, ‘* must be In from ..class1,

which, by assertion Ic), Implies that a test packet was received on Input port i~

before data packet p was received. By the first-In, first-out property of the

communication lInki between simulation modules, some module N1 must have

sent data packet p to N1 after It had sent a test packet to N1. This possibility

can be eliminated by lookIng at two casesz

Case l. Ne - I

The termination control module T did not send out any test packets unless it
I

could not simulate any more fIrings without receiving more, data packets. Thus,

In order for T to send data packet p after sending test packets, it must receive

at least one data packet p after the test has been initiated. Suppose data

pecket p’ was received before the test has been completed. Thou the test must
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6.) If a test succeeds, then no simulation n~odule In the class can ever simulate

a firing without receivIng more data packets, nor will It ever receive more data

packets.

If a tiit succeeds, then at the time a simulation module sent its first test

packet, it could not sthiulate any more firings without receiving more data

packets. By assertion 3), the simulation module did not receive any data

packets between this time and the tim. it which it received Its last test packet.

By assertion 4), the simulation module did not, nor will it receive any data

packets after the last test packet was received. Therefore , the test will succeed

only If all simulation modules In the class are ready to be terminated

This completes th , proof that the additbn of termination operations to the

simulation modules cannot cause them to terminate too - soon. Hence, none of

the six requirements for the Corr ectness of Simulation Theorem of Appendix I

can be violated. The correctness of the sImulation will be maIntaine d.

Proof of th. Second Part

Proving the second part of the theorem requires showing that the

termination operations for each connectivity class will cause the simulation

modules In the class to terminate, once the termination conditions for the class

‘e satisfied. If a class C~ consists of a single module N, which has no

self-loop, then the correct cooriknatlon requirement wIll guarantee that time

packets (co) will be sent out once time packets with value co have been

r&elvsd on aU Input ports, and no acre firings of the module can be simulated. -
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Thus, this class will terminate once the termination conditions are satisfied.

For connectivity clwss containing cycles, It must be shown that once the

connectivity c1 reaches the conditions for termination, any previous test or

reset will be completed, a new test of the class will be Initiated, and this test

will succeed. These requirements are stated In the following lemasi

Loin ma 
~~~~~~. Eventual Te mlnation

A.) Completion of a Test or Beast
Suppose the termination control module T for a class C, sends a test (or

reset) packet - from each output port 0
1 

in IOJIISS T. If every simulation module
In C1 Is terminatible, meaning It eventually receives time packets (co) on

every Input port 
~1 

which is not In from..iclassj , and it eventually stops
simulat ing the firing ot the module, then all simulation modules In the V!i~~~~~

will receive at least one test (or reset) packet, and T will eventually receive K
test (or reset) packets, where

K • 1 + E (ito_clust l — i).

B.) Eventual Success of Test
Supiose every simulation module Mt In C, reaches a state in which time

packets (co) have been received on ill input ports which are not In trom _claut
no firings can be simulated without receiving more data packets, and no more
data packets will ever be received by Nj . Then T will send out test packets
( test • +) from all output ports In to..C~uST, and it will eventuall y receIve K
( test • +) packets In return without receiving any further data packets.

C.) Term inatIon after Successful Test
If T sends out time packets (co) on all of its output ports , then every

simulation module Nj in th. class will eventually receive time packets (co) o*
all input ports and hence will terminate.

The following sequence of assertIons pruves each part of Lemma 2.2i

A.) Completion ~~ i ~~

~~~ A -~~~ - - 
-—

~~~
-
~ ~~~~~~~~~~~~~~~~ -~~~~~~ - - - - ,
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I.) If every simulation module ii the class C, Is terminatable, then

a.) Each simulation module N~ will receive at least one test (or
reset) picket.

b.) Exactly K teat (or reset) packets will be created.

These assertions are Identical to assertions Ia) and Ib) In the proof of

Lemma 2.1.

B.) If eurjr simulation module in the class Cj Is terminatable, T will receive K

test (or reset) packets.

This follows from the way in which the signal output ports were chosen.

Zvery simulation module except for T has a single signal output port. T has no

signal output port. These ports are chosen In sut~h a way that If we look only

at the simulation modules In the class and the channels connected to their

output ports, there Is a path from every simulation module to- T. Thus, the

simulation modules and the channels connected to the signal output ports fulfIll

the necessary requirements for a directed tree (1), with each arc pointing from

a aon to ita father. That is

1. There Is a unique root node (namely T) with no arcs leaving
from it

2. Every other node (M~ .~ T) has a single arc leaving from it
(namely the channel connected to the signal output port); and

3. There is a path from every node to the root node.

One Important property of trees Is that they are acydlic, hence there Is no path,

-
~~~ 

N~, which follows only signal output H~~~b1 Dur ing the test (or reset )

~~~~ - t _ _ _ _ _ _ —~~~~~ -— -— -
~~—- - - -
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operation,. K test (a reset) pickets will be created, and once .11 simulation

modules have received at least one test (or reset) packet, ill test (or reset)

packets will sent only from signal output ports. These packets will not be

destroyed, nor can any termlnatable simulation module hold onto them

Indefinitely, hence the packets can only be propogated toward the root node 1.

Therefore T will eventually receive all K test (or reset) packets, and the test (or

reset) operations will be completed.

B.) Eventual Success ci:

Suppose every simulation module M~ In a class C, reaches i state in which

time packets (up) have been received on all Input port s which are not in

fram..jclass1, no firings can be simulated without receiving more data packets ,

and no more data packets will ever be received by Nj . —

1.) A new test of the class will be Initiated.

If the sImulation modules reach the above-mentioned state, they are all

tsrmlnatable. Hence,- by pert A) of the lemma, any previous test or reset

operations will be completed. Furthermore, during the reset operations every

simulation module will receive a reist packet. Hence, any new test will take

place as If no previous tests had occurred. Furthermore, once the reset

operations are completed, a new test ~ 1ll be Initiated.

3.) The test will succeed.

As long no simulation module recetew a diii packet bitween the time It
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receives its first test packet and the time it receives its last test packet, It wlU

send out (test. +) packets as long as It receives ( teet .+) packets. By our

assumption, no simulation modules will receive data packets once the test has

started. Therefore, since T starts the test by sending (test. +) packets, by part

A) of the lemma, K (t .et.+) will be created, and T will eventually receive K

( test • +) packets. Thus, the test will succeed once the termination conditions

for the class are satisfied.

C.) Termination ~~~ ~~ Successful 
~~~~~~~

.

Suppose the test of a class succeeds and T sends time pickets (w) from all
a

output ports.

1.) Every simulation module N1 In Cj will receive at least one time picket (cx))

on ~~me Input port ‘t In Irom.jclass1.

This can be shown by Induction on the length of the shortest path from T

to N~. In fact , the proof is virtually Identical to the proof of assertion Ia) In

the proof of L*inm~a 2.1.

3.) Every simulation module N1 C, will receive time packets (co) on every

Input port.

In order for the test to su~~aed, N1 must have received time packets (~~)

on e~~~j Input port which Is not In from..jclass1. Furthermore, by assertion 1)

any module N1 C, connected to N1 must receive at least one time packet too)

on some Input port 1~. t  Irom..class 1. Hence, it win send out time packets too)

-.
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on all output ports, Including one to Input port i~ of module Nj. Therefore, all

I simulation modules In C1 will receive time packets too) on all Input ports once

the test has succeeded.

This completes the proof that the addition of the termination operations to

the simulatlofl modules wIn cause -the simulation to terminate, once the

I termination conditions for the qeii* are satisfied.

I
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