AD=A048 290 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/2
SIMULATION OF PACKET COMMUNICATION ARCHITECTURE COMPUTER SYSTEM==ETC (V).
NOV 77 R E BRYANT NOODI‘G-?S-C-IMGI
UNCLASSIFIED MIT/LCS/TR=-188

| or 2

COMPUTER SCIENCE

i : MASSACHUSETTS
LABORATORY FOR @% INSTITUTE. OF

(formerly Project MAC)

ADA048250

MIT/LCS/TR-188

SIMULATION OF
PACKET COMMUNICATION
ARCHITECTURE

COMPUTER SYSTEMS
DDC

mi

Randal E. Bryant

{1 i Tt]
A UL W Q‘ll »
U
This research was conducted under a graduate fellowship
from the National Science Foundation. Additional
funding was supplied by the National Science Foundation
under grant DCR75-04060 and by the Advanced
Research Projects Agency of the Department of Defense,
monitored by the Office of Naval Research undgr

contract no. N00014-75-C-0661

dD0 FILE copy

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

g et oy e s povaaty . 0 |
DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

TECHNOLOGY

Z

>

ard i

ISimulation of Packet Communication

J'!: CONTROLLING OFFICE NAME AND ADDRESS H 2. REPORT DATE

A L SN SR i S e e

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

- 7. GOV ACCESSION NO
IT/LCS/TR-188 v

o) 8. TYPE OF REPORT & PERIOD COVERED

chitecture Computer Systems e S.M. Thesis, May 1977

6. PERPORMING ORG. REPORT NUMBER
— IT/LCS/TR-188
UTHOR(S : U. CONTRACT OR GRANT NUMBER(s) |
andal Bryant N00014-75-C-066F -

DCR75-04060

MIT/Laboratory for Computer Science /
545 Technology Square

Cambri.dgei Ma. 02139

Office of Naval Research /Asso. Program Director

a. DECL IFICATION/ DOWNGRADING
SCHEDULE

'!- 5‘!' EIBU ”5“ !” ' Eﬂ!ﬂ !,?o’ 151. !oporl)

Approved for public release; distribution unlimited.

T DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, If different from Report)

£-DCR 7524848 ||

FRT———

PPLEMENTARY NOTES

N

19. KEY WORDS (Continue on reverse aide If necessary and identify by block number)

simulation
concurrent systems

W (Continue on reverse oTnﬁﬂmecoody and Wm
Simulations of computer systems have traditionally been performed on a
single, sequential computer, even if the system to be simulated contains a
number of components which operate concurrently. An alternative would be to
simulate these systems on a network of processors. With this approach, each
processor would simulate one component of the system, hence the component sim-
ulations could proceed concurrently. By exploiting the modularity and concur-
rency in the system to be simulated, the simulation would itself be modular and

Department of the Navy Office (fomputing Activ. f—
Info. Systems Program Nationa oScience ound. fo2) r g D
lerent from Controlling Office) | 18. SECURITY . (of thi 4
nclassified

distributed computati ' Y ~
asynchronous sy!s):e:m fiz Lf ¢ 7 Cc ‘/'?/)&l 1\

Lconcurrent, -—

DD ,"5%%, 1473\ eoiTion oF 1 NOV 88 1s OBSOLETE
S/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TS il a ot

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20.,L/

An accurate simulation must model the time behavior of the system as well
as its input-output behavior. In order to avoid real-time constraints on the
processors and communication network in the simulation facility, the simulation
of the timing.-must use a time-independent algorithm. That is, the simulated
behavior of each component should not depend on the speed at which the simula-
tion is performed.

With this time-independent approach, additional coordination operations
are required to prevent a deadlock of the simulation. This coordination can be
provided without any centralized control. Instead, the program for the simula-
tion of each component is modified, so that each component simulation will
communicate status information to other component simulations. Additional ter-
mination operations are also required to assure that the simulation will ter-
minate under the exact same conditions that the system being simulated would
terminate. These operations can also be provided without any centralization of
control or real-time constraints. Furthermore, a simulation which uses these
coordination and termination operations i¥ provably correct. That is, the sim-
ulation will accurately model both the time behavior and the input-output be-
havior of the ayst.lv

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ks | MIT/LCS/TR-188
|
|

SIMULATION OF PACKET COMMUNICATION ARCHITECTURE
COMPUTER SYSTEMS

Randal Everitt Bryant

November, 1977

This research was conducted under a graduate fellowship from the National
i Science Foundation. Additional funding was supplied by the National Science
F Foundation under grant DCR75-04060, and by the Advanced Research Projects
) Agency of the Department of Defense, monitored by the Office of Naval Research
under contract no. N00014-75-C-0661.

P |
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)
CAMBRIDG: MASSACHUSETTS

DISTRIBUTION STATEMEN
Approved for public release;
Distribution Unlimited

SIMULATION OF PACKET COMMUNICATION ARCHITECTURE
: Ms®

by
Randal Everitt Bryant

ABSTRACT

Simulations of computer systems have traditionally been performed on a
single, sequential computer, even if the system to be simulated contains a
number of components which operate concurrently. An alternative would be to
simulate thess systems on a network of processors. With this approach, each
processor would simulate one component of the system, hence the component
simulations could proceed concurrently. By exploiting the modularity and
concurrency in the system to be simulated, the simulation would itself be
modular and concurrent.

An accurate simulation must model the time behavior of the system as
well as its input-output behavior. In order to avoid real-time constraints on
the processors and communication network in the simulation facility, the
simulation of the timing must use a time-independent algorithm. That is, the
simulated behavior of each component should not depend on the speed at which
the simulation is performed.

With this time-independent approach, additional coordination operations are
required to prevent a deadlock of the simulation. This coordination can be
provided without any centralized control. Instead, the program for the
simulation of each component is modified, so that each component simulation
will communicate status information to other component simulations. Additional
terminastion operations are also required to assure that the simulation will
terminate under the exact same conditions that the system being simulated
would terminate. These operations can also bde provided without any
centralization of control or real-time constraints. Furthermore a simulation
which uses these coordination and termination operations is provably correct.
That is, the simulation will accurately model both the time behavior and the
input-output behavior of the system.

THESIS SUPERVISOR: Jack B. Dennis
TITLE: Professor of Electrical Engineering and Computer Science

"rhurmnubnndumcthomotthcumomlombmtudtotho
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology on May 30, 1877 in partial fulfillment of the
requirements for the degree of Master of Science.

e

| | : Al

Acknowledgements

T T T TR T R e

TTTTe—

- d -

Table of Contents

1. Int“dm 0000000 P00 0000000000000000000000000000000C0CNIOONOOROIOOIPOTOTS 5
Packet Communication Architecture /ess saTeTe s ale sls s e e e cee B
The Need for Simulation......c.ccccooceeneee We'eso's A Y T R eee 12
Requirements for Simulation........... O o e s sl aiaaleTe e 4te 14

Methods of Simulation............... Teleste slotatelare otelatelalnla alels alalale wieTe aTs 6% 14
Purpose of Thesiscccovvvenennes T e e VR e i a e s 6 9 6 18
Outline of Thesis........ alereTesteletels s roareis el wreleteréTete atels'elerulels o nlaleta s @ 0 s nls o e 20
2. Shnullﬂdn 0’ th. Wﬂ“uu.......unu-............... 24
Introduction...... o I o e e STareTe e oo SO e sl s o e e s s Tete s s o 24
Module Operation..........ccccceveeeeccccccccss Feieteratere o ole R 24
Channel Operationc.ccccevveecescnccccces T e eTe eThle o sle s e s aisTe s 30
Time Independent Simulation of @ MOAUIe.............cceneeeeeennnns 32
3. s‘mul‘tio‘ Of a "m.oooooooooooaoooooooo.oooooooooooo-ooooooo 88
Introduction........... R R e o I I T T O O T 38
Coordination Algorithm.......... SeTetieli's S T ST T el ey ST b Te s 40
Conclusion..... CerareteTa e o e Ta TSI WreeTee e ateTele s b &eTeee oTs oatele sVs oie s wratalele e sl el 52
4. Termination of the Bimulation..cccccccccvveveccccccccccccccces 53
Introduction.............. Tile srelerete v slalotoleTel st elete arore ol 4 et o ate w 6o e o otale ere e 53
Connectivity Classescccccveeceeeccecccoscccncsscsccsscssscns §5
Termination Algorithm for Conmectivity Classes.........ccoccceeencnee 60
Conclusion............ TR SRS e o e SVele s o sTeTs setitele ale e ole e ol vones OF
5. Improving the Efficiency of the Simulation.........cc..... 68
Modules which Compute Monotone Functions...........ceovvennnnnss . 69
Strengthening the Calculation of the Minimum Output Time 72
COBEIIBION . o vatvre s savrsseants s cosaees e6 s ssess s T S e 82

e. conolnd“ P00 PPNV D0000000000000000000000000COOOOOOIOOOOOOOCRTS 88

Insights and Afterthoughts..... R L T e oasieise s s ediaie o e 83
B!bl’o‘m’.......‘.....'..'...'......'............O....'.‘............ 91
Appendix 1. Cerrectuness of the SBystem Simulation....ccccc.. 93
Appendix 3. Oorrectness of the Termination Operations... 107

) TN

e &

e A e AR RO L v e L kot e U AN NN RTINS o o L g '

Chapter 1

Introduction

Computer Systems have traditionally been simulated on a single, sequential
computer, even if the system to be simulated contains a number of components
which operate in parallel. One of the primary purposes of simulation languages,
such as GPSS and Simscript II [13], is to order the simulation of the events
occuring in the different components in such a way that the simulation will
correctly model the operation of the system to be simulated. An alternative
approach would be to slmulato parallel systems on a network of computers, such
as a network of microprocessors [2,14,21] or the Arpanet [15], where each
-processor would simulate the operations of one component of the system. This
would allow the simulation to exploit the modularity and concurrency of the
system to be simulated and thereby itself achieve a high level of modularity
and concurrency. The simulation of packet communication architecture systems
[6] seems particularly suited for this approach, since these systems are highly
modular - the components of the system operate independently and communicate
with each other only by sending message packets. Hence these systems can be

simulated by a network of processors which communicate by message passing.

Packet Communication Architecture

A packet communication architecture system consists of a number of
independent processor modules which communicate by sending packets of
information to one another. A single program is implemented as a number of

separate processes, such that each process runs on one of the modules, hence the

S A R L e 0 N A SR o oy s

-l
mmu'dmmmhmummm

The modules in a packet communication architecture system can
communlcaﬁonlylnanmlmtuhlom All communication with a module is in
thofmotpnmmthemtmmuofmomodulo,whmhmhgﬁm
to the module in noapecket form. Thus, a module could be initialized with a
program and initial data, but thereafter it can receive information only in
packets. Furthermore, a module can communicate with only a limited number

of other modules. Each module receives and sends out packets through its

'inpntandontpnthmucummputpontoamodulemreceivopackcu

only from a particular output port of some module, or from a particular source
outside the system. Input ports of the latter type are called system input ports,
nneethcymthoonlymformextemalmmtounddauwthesystem.
Similarly, from a particular output port of a module, packets can be sent only
to a particular input port of some module or to a particular external destination.

Ontmtmuﬁmwhlchmhhmmttoemﬂdnﬁuﬁoumuﬂd

system output ports.

Packets are carried along ome-way data channels from the output port of
one module to the input port of another. These channels cannot alter the values
of the packets, and they must preserve the sequential ordering of the packets.
Thns.achannolcubvhwnduaﬂl’Oquenobetwaentwopoﬂs. The

interconnections between modules cannot be changed dynamically.

mmmuammmmmmmwmmmomm

autonomously. There is no central control in the system, and any monitoring of

the system operation must be passive. That is, only an external observer is
allowed to monitor the modules or channels in the system, and the monitoring
is not vital to the system's correct operation. As a result of this autonimity, a
module can operate 'u soon as the necessary data packets have arrived regardless

of the status of other modules in the system.

A packet mmuﬁu%n architecture system is designed so no component
of the system will be required to fulfill any timing constraints. Instead, the
system must be designed to operate correctly regardless of the delay times or
throughputs of the modules and channels. For example, one module cannot
require another module to have a minimum response time. As a result, modules
must use asynchronous communication protocols, so that a module cannot send a
data value to another module which lacks sufficient buffer space. This
eommﬁnlcauon protocol, however, must be implemented as packets sent back and
forth between two modules for each data transfer. Otherwise, an
acknowledgement signal received from a module to which data has been sent

would constitute a form of nonpacket input information.

As a consequence of this time-independent design, the speed of the system
or any of its components is a performance issue and not a necessary requirement
for correct operation. If one module or channmel is particularly slow, it might

slow down the entire system, but it will not cause any malfunctions.

Examples of packet communication architecture systems include the data

T

flow processors of Dennis and Misunas [7,8,9] and the data flow processor of

. Rumbaugh [ao].. ‘While not precisely a packet communication architecture

system (due to dynamically changeable interconnections) the Distributed
Computing System at the University of California, Irvine, when running with

the DCOS operating system [19], embodies many of the same design philosophies.

Advantages of Packet Communication Architecture Systems
These systems have several major advantages over both traditional computer
systems and other designs for parallel systems. First, the modules in the system
can operate concurrently, thereby achieving a high rate of computation. Since
there is no central control, there is no component which will inherently cause
a bottleneck in the system, or which must have an extremely high throughput

in order to keep the rest of the system operating at a reasonable rate.

Second, the system can be designed modularly, by first specifying the
functional requirement for each module as well as some connection standards
and then designing the modules individually. Since modules can interact only in
limited and well-defined ways, as opposed to systems which contain shared
memories or allow interrupts, for example, a module has a very clean interface
with the rest of the system. Furthermore, since there are no timing restrictions
on a module, the specifications for its operation need contain only its functional

operation, i.e. the output packets produced in response to a set of input packets.

Once a system has been designed, we can try to maximize its performance.

This involves identifying the modules and channels in the system which are

" < g n 't seduga ol e o e A Lo Reroon
ERET AR O ERRE S e

consistently heavily loaded and hence form bottlenecks in the system. A
bottleneck can be eliminated by redesigning the module or channel to operate
faster or by splitting one module into several modules. Because the system is
designed to be speed independent, the speed of ome module can be varied

without cauélng malfunctions.

One further result of this modularity of design is that these systems can
be proved correct much more easily than other computer systems. To prove the
correctness of a packef communication architecture system, one can specify the
2 required properties of each module, prove that each module satisfies these
3 properties, and then prove that the system will operate correctly if all modules
| satisfy their requirements. In other words, the correctness of the system can be
proved modularly. General methods of proving the correctness of packet
communication architecture systems are currently being investigated by Ellis

[10].

Examples of Pa.ok_et Communication Architecture Modules

; Three basic module types: functional operators, switches, and arbiters

illustrate some of the operations which can be performed by packet
communication architecture modules. Examples of their operation are shown in
Figure 1.1. In the diagrams the lines represent the channels connected to the
input and output ports of the modules, and the dots on these lines represent

data packets being transmitted over the channels.

A functional operator computes several functions (one for each output port)

TN 72107, « AP IR 08T N+ 1SRN R o .

-10-

A. Functional Operator

(x) (%pod U’
; — @ rem. b——ou—o, —_— rem.. _@—>
: divide > divide
(y) (x/y)
: el quo. > e quo.[—@—>
B. Suitch
+ +—
(-5)
g > i e
(-5)
B — =iy
C. Arbiter

(x)
—9—>1
: (x)
—_—12

Figure 1.1 - Examples of Operation for Three Simple Module Types.

£ B i 43" ooy o

> S

with input packets as arguments. It can fire as soon as one packet is received
at each input port, meaning that it absorbs these input packets, computes the
output values, and sends one output packet from each output port. For

example, the DIVIDE module of Figure 1.1a computes two functions: the

quotient and the remainder of the input values.

A switch module provides a means of routing data to different modules in
the system. It can fire as soon as a packet is received on its input port. In
firing, it absorbs the input packet and then sends an identical output packet
from one of several output ports, depending on the packet's value. In the
example of Figure 1.1b, the output port selected depends on whether the packet

value is positive, zero, or negative.

As a final example, the arbiter module serves to merge together the
streams of output packets from several modules., It can fire as soon as a packet
is received on either input port. In firing, it absorbs a packet from one of the
input ports and sends an identical packet from its output port. If packets are
received at two input ports simultaneously, the module will first fire, absord
one of these packets, and send it out. By the rules of operation, any packet :
which is not absorbed will remain at the input port. Hence, the module will

fire a second time, absorb the remaining packet, and send this one out.

Other packet communication architecture modules can have behaviors
which depend on other factors, such as past activities of the module, the arrival

times of the input packets, and stochastic processes within the module. The

. R i s A gt A e P

- 12 -
general rules of operation for the modules will be discussed in Chapter 2.

The Need for Simulation

Once the functional behavior of all components have been developed and
proved correct, there 'm other issues to be settled before the system can be
implemented. ‘l'pe implementation must meet other requirements on the overall
speed of operations or the total cost of the system. Thus, for a particular
implementation, a designer will want to measure the performance of the system
for different sets of input data. Thase measurements can include such factors
as the' overall speed of the system, the load on particular components, and the
buffering requirements at the input ports. Once measurements for a particular
implementation have bun made, the designer will want to make measurements
when such parameters as throughput or delay time for particular components
have been varied, or modifications have been made to the original design. By
this method, the designer can maximize the speed and minimize the cost of the

system.

Measurements of a system's performance are required not only to find an
optimum implementation, but also to compare the system to other system
designs, or to conventional computer systems. While packet communication
architecture systems are potentially very fast due to the high level of
parallelism, a method of comparison with traditional computer systems is

desired.

Developing mathematical methods of predicting the performance of

2 (> A o RN o " “ W iy s b
i . L i s R S A R RN ; Nt haig o -

-13-

particular systems seems to be very difficult. One cannot simply count the
number of instruction cycles required for a particular program with a particular
set of input data. While the modules interact with each other in a very
limited and well-defined way from a functionality viewpoint, the performance '
of a module can have very subtle effects on the performance of the overall
system. For example, increasing the throughput of one module can cause
another module to become a bottleneck in the system. Thus, a "modular”
approach to ﬁertormance analysis will not work. Furthermore, the system
designer wants to know more than just the average or worst case performance
of some system. He wanfs to know the detailed performance measurements for
each component of the system. This amount of detail could never be provided

accurately by a mathematical analysis of performance,

An accurate simulation of a system would provide the desired
measurements for a particular set of input data. While it might be hard to
Judge the general performance of a system based on simulations for a few sets

of .tnput data, this approach seems to provide a great deal more information than

analytic methods,

To avoid confusion between the system to be simulated and the system
which performs the simulation, the former will be called the actual system, and
the latter will be called the simulation systeri.. Even though the "actual”
system might in fact only exist on paper, this seems like a reasonadble way to

distinguish the two. Furthermore, the modules and channels of the actual

system will be called the actual modules and actual channels.

- 14i=

Requirements for the S8imulation

To provide the type of measurements required to evaluate an
implementation of a system, the simulation must accurately model all aspects of
the system's operations. This includes modelling the detailed timing aspects of
the system as mll as the functional behavior. If only the functional aspects
_were modelled, the simulation would accurately model some implementation of

the system, but most likely not the implementation we are interested in.

An accurate modelling of the system cannot rely on any stochastic methods
of simulation, unless the modules themselves behave stochastically. For one
thing, like analytic methods, methods of stochastically modelling packet
communication architecture systems have not yet been developed. Thus, unless
the system is affected by stochastic processes within the modules, a simulation
of a system shbuld provide all information about the activities of each module
for a given set of initial states (i.e. module programs and initial data), and a
particular sequence of input packets ‘presexited to each system input port. If the
modules behave stochastically, the stochuuc processes must be modelled, so that
any random variables will be chosen with the same probability in the
simulation as they are in the actual system. A single simulation will only
model the system's activity for one choice of random variables, but a number of

simulations can give an idea of the distribution of the system's performance.

Methods of lmulitlon
One approach to the simulation of a packet communication architecture

system is with a sequential computer system. With this approach, a single

g ; " Lo " R o i o e AR

et at, g s i

g

A SV A RN ey

- 15 -

computer would simulate the activities of every module and every
communication channel in the system. While this approach would be rather
slow, it is not difficult to lmpioment. For every packet on an input port of
some module in the system, the simulation keeps a packet descriptor of the
form (M,p,v,t), where

M = the module number

¢ = the input port number

v = the value contained in the packet

t = the time at which the packet arrived at the input port.
These packet ducrlptorﬁ are stored as a sequential list called a time line, in
which the descriptors are ordered by their time values. The simulation looks at
the time line and decides which module in the system would fire the soomest.
It then simulates the firing of this module by removing the absorbed imput
packets from the time line, computing the output values and delay time for the
module, and then inserting new packet descriptors for each output packet into
the time line. Each new packet descriptor contains the module and input port
number of the input port which receives the packet, the value of this packet,
and the time at which the input port would receive the packet. This process is
repeated for the new time line, and so on, until no module in the system is
able to fire. .As long as the simulation always simulates the earliest firing in
the system for a given state of the time line, it can be certain that all input
packets which would have been received by this module at firing time are

present on the time line. Since a module cannot be affected by new input

packets arriving while it is firing, the entire firing of the module can be

simulated without looking at other modules in the system. Simulation

P iR TGN B o AN NS s e s el

languages, such as GPSS and Simscript II (13], use a variant of this time line in
mmuumvéﬁﬂuudlmmammtwmam

computer.

A large fraction of the simulation time will be spent looking at the time
line to decide which module would fire earliest. Whereas it is not difficult to
determine whether simple modules, such as functional operators, switches, or
aﬂmersmm'wmmnmtﬁm.thmmmuumeomdmmuch
longer for modules with more complex behavior. Moreover, as the size of the
system increases, there will be more modules to check, and more descriptors on
the time line. Hence, the time spent on overhead in the simulation can, in the
worst case, increase as the square of the system size: there will be a linear
increase in the total number of firings to be simulated, and for each firing a
unwtmhtﬁetmmuMMdMe which module would fire earliest.
The time spent to actually simulate the activities of the modules, on the other
hand, will increase only linearly with the system size. As the size of the
system is increased, the proportion of simulation time spent on overhead will

increase.

An alternative to simulation on a sequential computer is to simulate the
system on a computer system consisting of a number of interconnected
simulation processors, such as the Packet Architecture Simulation Facility of
Leung, et al [14], shown in Figure 1.2. In this facility microprocessors serve

as simulation processors. Each simulation processor simulates one or, for a large

system, several of the moduies in the system. The processors send packets to

-17-

one another, just as the modules in the actual system would. The packets are
sent over a communication network, which provides connections among all pairs
of simulation processors. During a simulation, however, a processor would send
: packets to another processor only if the first is simulating a module which can
: send packets to a module being simulated by the second. The communication
network is provided to allow the simulation of any system configuration. In
1 addition, a host computer can load programs into the modules, initiate the

simulation, and monitor its progress.

S Ll Ll L LI L AL L L L L L D T D L T A Y Y Y T Y S T T YT YT YTy

-E Communication Network
é" J Processor qProceuor ° P ‘0 Processor
| 1 2 K

ks o

HOST

Figure 1.2 - Structure of Simulation Facility

Ll ol L Ll L L LI L LT T T LT L LT LT T T L L A T Y Y o A Y Y

This approach seems very natural, since the structure of the simulation is

-

T

much like that of the system being simulated. It should also be faster, since
the simulation processors can operate in parallel. Hopefully, the amount of
overhead will not be too great, either, so that a large fraction of processor time

can be spent simulating the activities of the modules.

Purpose of Thesis
In this thesis, methods of simulating packet communication architecture
systems on a distributed computer system will be developed. The design goals

for these simulation methods include:

1.) Generality of Simulating System. The simulation should not
require a highly specialized computer system on. which to perform
the simulaton. It should work on any system which supports
communicating processes, such as the Packet Architecture Simulation
Facility [14], a network of microprocessors [2,21], the Distributed
Computing System [11,19], or even more traditional systems such as

the Burroughs B68700 [16].

2.) Generality of Simulation. The methods should enable the
accurate simulation of any packet communication architecture
system. A system designer should not be limited in the types of
systems which he can simulate.

3). Simplicity of Software. The programs for each simulation
processor should be reasonably simple to write, and short enough to
be executed by small processors such as microprocessors.

4). Reasonable Efficiency: The simulation should make use of the
potential parallelism in the simulation system. Furthermore, the
amount of communication between processors to keep their efforts
coordinated should be reasonably small.

One way to satisfy the first goal would be for the simulation itself to have the

properties of a packet communication architecture system. First, the simulation

-19 -

processors should act autonomously, with no central control. This will simplify
the computer system required to perform the simulation by removing the need
for a highly specialized, high speed central controller. Of course, passive
monitoring might be allowed to observe the simulation activities. Second, all
communication between simulation processors should be in the form of packets.
As a result, the processors will havg a uniform form of input-output. Perhaps
most importantly, the simulation will be time-independent. That is, the
accuracy and correctness of the simulation will not depend on the speed of the
simulation processors or the communication network. This will eliminate any
real time constraints on the simulation hardware and software, which will
greatly simplify the design. This will also enable the simulation to be
performed on any computer system which supports communicating . processes.
The simulation of each component of a system could be handled by a different
process. Several of these processes could be assigned to onme processor, which

could execute them without any time constraints.

While the simulation might be faster on a highly specialized simulation
facility equipped with a high speed controller or processors designed for real
time applications, the amount of time and money required to comstruct such a
facility would be justified only if a very large number of simulations were to

be performed.

The problem then becomes developing simulation methods ‘based on packet
communication architecture principles, which will satisfy the other three goals:

generality, simplicity of software, and reasonable efficiency. One means of

{
i
——-—m——h““

AR SRS e g R A i et oS chiea G o b i

-zo-

-simplifying the task of software design is to take a modular approach to the
design of simulation programs. The simulation program for a module must not
only simulate the attivities of ‘the module, it must also communicate with other
module programs to Kesp the simulation activities coordinated. Thus, the
specifications for each simulation program will include not anly specifications of
the module to be simulated, but also specifications of the coordination activities.
To keep the duign modular, the coordination activities must be simple and
uniform enough to be easily and accurately specified. Moreover, these
coordination activities must be both general and reasomably efficient. The major
task of this thesis is to develop coordination methods which fulfill the
requirements of simplicity, generality, and efficiency for a simulation which is

itself a packet communication architecture system.

Outline of Thesis

In Chapter 2 methods of simulating the components of a packet
communication architecture system, i{.e. the modules and communication
channels, will be discussed. First, rules of operation for packet communication
architecture modules will be presented. Then, methods of simulating both the
functional and timing aspects of the module will be developed. The emphasis
will be on specifying what a correct simulation of a module would do, rather
than on the more difficult problem of translating these requirements into actual
programs. The problem of\woducln(programs which will accurately simulate a

module, based on some specification of the module, is left as an area for further

research.

L

In Chapter 3 the ideas developed in Chapter 2 will be extended to allow
the simulation of entire systems. As will be seen, if the simulation processors
are simply loaded with programs which simulate the activities of the system
components, the simulation might not accurately model the system but instead
reach a deadlocked state. Besides simulating the activities of the modules, the
simulation processors must communicate with each other to keep their efforts
coordinated. The main purpose of this chapter is to develop methods of
incorporating the coordination activities into the simulation processor programs.
In this chapter a proof will be described which shows that the simulation will
accurately model the actual system. The full proof is contained in Appendix 1.
This proof demonstrates the benefits of the modular approach to the design of
the simulation. First, the important requirements for the modules in the system
and for the simulation programs of these modules will be specified. Second, it
will be proved that the simulation and coordination methods of Chapters 2 and
3 satisfy these requirements. Finally, it will be proved that any simulation

which satisfies the requirements will accurately model the actual system.

In Chapter 4 methods of terminating the coordination activities, once the
modules in the system have ceased activity will presented. Without this
termination, the simulation might run indefinitely, even though no module
activities are being simulated. The last part of the chapter describes a proof of
the correctness of the termination operations. The full proof is contained in
Appendix 2. First, it is proved that these operations will not terminate the

simulation too soon or in any other way interfere with the simulation

.zz.

operations. Hence, the requirements for the correctness of simulation proof will
still apply. Then, it will be proved that the simulation will eventually

terminate, if the actual system would terminate under the same circumstances.

In Chapter 5§, the coordination methods of Chapter 3 will be further
refined to increase the etflciencybf the simulation. The coordination methods
of Chapter 3 are designed to be very simple and uniform over all modules. As
a result, the amount of coordination information passed between processors is
high, and the concurrency of the processors' activities can be unnecessarily
restricted. In some cases, the processor program for a module can be modified
slightly to take advantage of specific properties of the moduile. Two examples
of such modifications are presented. These two modifications will not increase
the complexity or modularity of the simulation programs significantly but can
greatly increase the efficiency of the simulation. Moreover, these modifications
will not cause the simulation programs to violate any of the requirements for
the correctness proof of Appendix 1 to apply. This further demonstrates the

benefits of a modular approach to correctness proofs.

Finally, Chapter 6 contains conclusions, suggestions for other applications,
and suggestions for further research, Some of the other applications include
simulation of other types of systems, and application of the coordination and

termination methods to other forms of distributed computation.

By working within the concepts of packet communication architecture, this

thesis develops simulation techriques which fulfill the four design goals:

- 23 -

simplicity of hardware, generality, simplicity of software, and reasonable
efficiency. Moreover, these techniques are provably correct. This is
particularly comforting considering the sulitle nature of parallel, asynchronous
computations, which can often have unexpected deadlocks, races, nontermination

problems, or other malfunctions.

For any computation which is designed to be executed by a parallel,
asynchronous system such as a packet communication architecture system, a
proof of eorrectnes? is essential. The traditional approach of implementing an
initial version of a system and then debugging it will not work for
computations. which must be time-independent. Even if the computation is
tested on a large number of test cases, one cannot be certain that it will be
correct for all cases. A slight change in the timing of one part of the
computation might lead to a deadlock, critical race, or other malfunction. Even
in trying to prove the correctness, ome can easily overlook some of the
subtleties of the computation. However, by carefully developing a formal
mathematical description of the computation and then proving that a
computation which fulfills this description will operate correctly, these

subtieties can be uncovered.

i

Chapter 2
T Simulating the Components of a «.
; Packet Communication Architecture S8ystem |

Introduction
Each processor in the simulation must simulate the operations of one or

more of the modules or communication channels in the actual sysiem. This

R R e e

includes simulating the timing details of the module as well as the module's
data operations. If the simulation is to itself be a packet communication

architecture system, there can be no timing constraints on the simulation

R s

processors or on the communication links between processors. Hence, a method
of simulating the timing must be developed which is independent of the speed

of simulation.

Module Operation
Before methods of simulating modules can be developed, the behavior

which will be expected of thess modules must be presented. In the interest of

Dol Bl o i daad ol E A s Sl s

generality, these rules will be as unrestrictive as possible. As a result, some
E forms of behavior are allowed which are not quite in keeping with the
philosophies of packet communication architecture design. However, as

mentioned before, the designer of a system should not be restricted in the types

T T e G

of systems he can simulate. Furthermore, these allowances do not cause any

T

i added difficulties for the simulation.

At any time, a module is in one of two modes: the wait mode or the firing

- 25 -

mode. While in the wait mode, the module cannot produce any output packets.
Once the necessary conditions for firing are met, the module fires, meaning that |
it absorbs some of the input packets from its input ports, performs

computations, and some time later sends packets from its output ports. Then it

changes its internal state and reenters the wait mode. In general, an input port i
can be a buffer which can hold a number of packets simultaneously. A packet
i remains at an input port until it is absorbed by the module. An output port, on

the other hand, is more like a door through which output packets pass,

The module must make the following decisions: when to fire, which input

T ———

packets to absord, what computations to perform, the values of the output
packets and the times at which they are sent, and the new state of the module.

These decisions can depend on the following factors: |

1.) The values of all packets at the input ports.
2.) The time at which each of the input packets arrived.

3.) The current time.

Rt s

4.) The current state of the module.
§.) Stochastic processes within the module.
However, while a module is in the firing mode, it cannot be affected by input

1 packets which have arrived since the module entered the firing mode.

These rules of operation allow for modules whose behavior depends heavily
on time: the current time of the module, and the time at which each input

E packet arrives. While this does mot fit in well with the philosophy of

aa

e . ® b i G i Rl i SAall s o by
RN B Eopjiohe s <riglidia -

time-independent design, it will not cause any particular difficulties for the

simulation.

A packet communication architecture module has only three forms of input

information:

1.) The initial state Sy of the module.

2.) The values of the packets received at each input port.

3.) The time at which esch input packet arrived.
Similarly, it produces only three types of output information:

1.) The final state S, of the module.

2.) The values of the output packets sent from each output port.

3.) The time at which each output packet is sent.
The output information produced by a module can depend only on the input
information and the stochastic processes within the module. If the module
contains no stochastic processes, . then the simulation of the module should
produce the correct output information based on the input information. If the
module contains stochastic processes, then the simulation should produce the
correct output information based on the input information and one set of
choices for the random variables. Furthermore, the stochastic processes should
be simulated in such a way that the values of the random variables are chosen
with the same m"obabluty in the simulation as they would be in the actual

module.

Module History

The input and output information received and sent by a module while it
is operating can be formally described in terms of histories. The history of a
single port is a sequence of ordered pairs:

hoe (g tg), (xputp)seens lxputydyees

where x] is the data value contained in the fth data packet arriving at or being
sent from the port, and ¢ i is tl;o time at which it is received or sent. Since
packets are sent or received one at a time, we have ‘l > t,_,, for all y 2 1.
We also require ¢ 1 > 8. This implies that no output port can produce a packet
at time 8. This restriction is part of the finite delay restriction which will be
discussed in Chapter 3. Furthermore, no input port can receive a packet at time
8. Any packets present at an input port initially are considered part of the

module's initjal state, and not part of the input port's history.

While similar in {dea, this definition of history differs from the
definitions used by Patil [18] and Kahn [12] in their work with determinate
systems. Their histories are sequences of data values only and contain no time
values. Histories without time values were useful for them, since determinate
systems have time-independent behavior. For simulation purposes, however, the
simulation of the timing is as important as the simulation of the data
operations. Moreover, the time values are part of the input and output
information of the module. Hence, the time values are an important part of the

history.

Since an infinite number of data packets could eventually pass through a

T

port, a history can be an infinite sequence. However, for any physical system,

there must be some minimum separation time § between any two packets,
Hence, no more than t/§ packets can pass through the port before time ¢. This

implies that a history must be a countable sequence.

The history of an input port i, is demoted hi,, and the history of an
output port o) is denoted ho,. The input history of a module M with input
ports 4,65, ...,i, i3 the n-tuple of the histories of the input ports:

HI = <highi,, . . . ,hip.
Similarly the output history of a module M with output ports 04402,+¢+.,04 is an
m-tuple:

HO - <h°1.h02. ¢ o o .h°'>.

Just as the histories of the input ports to a module can be combined
together, the histories of the system input ports (those input ports which
receive packets from an external source rather than from other modules in the
system) can be combined into a system input history

I=c<highiy ... hip,
where lgelpeeeesi, are the system input ports. Similarly, the histories of the
system output ports can be combined intc a system output history

0 = <ho, hoy, . . . ,hop,

where 0,4,0p,...,0, are the system output ports.

It will be useful to define the ﬁhtlon "is an initial segment of" between

two histories. First, a history h; is a proper initial segment of a history h,,

denoted h; c hy, if

hy - (zl.tll.(xz.tz).....(x,tl).
and either
hy - (x‘.tl).(:z.tz).....(xl.t,).(tj“.t”,).....(:..t.h
or
hy = (egatg), (xputg)seeey xjuty)y (gpgitipgdeces .
Then h; is an initial segment of hy, denoted hy € hy, if hy c hy or hy = h,.

These relations can be extended to module input and module output
histories as follows:
If
HI « <hig, hiy,...,hip
HI' « <hi}, hi),...,hip
then HI C HI' if and only if:
hi; € hij, for all 1sfsn.
The definitions for module output, system input, and system output histories are
similar. Similarly, we can define the relation C over module and system

histories.

A final notation is to define the history up to some time ¢. For a single
port, h(t) is a history, h’, where h’' contains all elements in h with time
values < ¢, Hence h(t) € h. This idea can be extended to module histories, as
well: '

HI® = <hi (0, hig), . . . ,hi (0> .

Thus HI(?) € HI « HI(w).

-

T At e e e

-ao-

Using the ‘nmotion of histories, the operation of a packet communication
architecture module can be stated precisely. If q;e nﬁdu.lo contains no
stochastic processes, then the output history H0 and the final state S, are
functions of the input history HI and the initial state Syp. For modules

containing stochastic processes, H0 and S, are functions of HI, S, and the
values of the random variables.

Note that a module which computes a function over histories as they are
defined here may not compute a function over the histories defined by Patil
(18] and Kahn [12]). Since our histories include time values, modules such as
arbiters and time clocks compute functions over these histories, whereas they

are not functional over histories without time values.

Channel Operation
In a packet communication architecture system, a communication channel

serves only to carry the output packets from an output port of one module to
an input port of another module. Furthermore, the channel preserves the
ordering of packets. Packets will be received at the input port in the same
order in which they sent from the output port. A channel's operations can be
stated formally in terms of histories. If output port op of module My is
connected to input port /, of module .2- and 0p has output history

ho, = (xgutg), txptgdsuens txptdoene
then {, will have an input history

hi, - (zl.t").(xz.t’z).....(xj.l’j).... -

Due to the order preservation, t’l > t’,,,. Furthermore, since values cannot be

- 31 -

received "before" they are sent, t’l 2ty

m a communication channel cannot change the values of data packets
or their ordering, it can introduce a delay between the time at which they are
nntmdtho}lm.atwhlchthcymmlvd. This delay must be simulated,
since it will affect the input history of the module to which it is connected.
The communication channel can be simulated by one of several means. First,
we can simply ignore the delay and consider hi, - ho,. This would be
appropriate in cases where the delay time of the channel is much smaller than
the delay time of the modules. For example, if the modules are close together
and directly wired to one another, the channel delay time will be very small.
Second, we can simulate a module and the channels connected to its output
ports as a single unit. Conceptually we can view this as extending the
boundaries of a module M to include its output channels, as shown in Figure
2.1. The output ports of this extended module M’ are wired directly to the
input ports of other modules. This solution is appropriate if the channels
connected to a module operate independently of other channels in the system,
such as channels which are implemented as FIFO buffer units. Finally, the
most general approach would be to simulate the channels as if they were packet
communication architecture modules. This approach would be required if the
channels do not operate independently of one another. For example, if packets
are sent from:- one module to another over a mnetwork, such as the ARPA
network [15], the delay time could depend on the total number of packets being

sent over the network. In this case we would simulate the ARPA network as a

S CCrererttttbotbbtttttta P PP PPN PP

packet communication architecture module.

For the remainder of this thesis, it will be assumed that the system to be
simulated consists of a number of modules which are interconnected by
zero-delay channels. Some of these "modules, however, might actually be
extended modules or communication channels which are to be simulated. Thus,

if output port o of one module is connected to input port {, of another module,
then ho, - hi,.

Time Independent S8imulation of a Module

The idea of a history leads quite naturally to a means of representing time
in the simulation. The time at which a packet is sent from an output port can
b§ considered part of its value, rather than an implicit property. Thus, the
value of a packet is a pair (x,f), where x is its data value, and ¢ is its time

value. By explicitly providing this time information in each packet, a

simulation processor can simulate the operation of a module without any
real-time constraints.

For example, suppose we wish to simulate a DIVIDE module as shown in
Figure 2.2. If the simulation processor receives the packets, (x,10) and (y,20),
on its input ports, then it will simulate the firing of the module at time 29,
m.mmuwumdmmmus.pmetpnt packets
(X¢mod y)*25) and (x/9,25). The simulation is not required to operate at a
particular speed, since the actual time at which the output packets are sent
during the simulation is not important.

o &bt b bttt b & Ppepp PP

(x,10) mod g.ZS)
—_— > rem. —> —_— rem. | —@—»
divide ::::::> divide
(y,20) (x/y,25)
—.—-i QUO . [y . quo. f—=g—>
- | delay=5 delay=5

Figure 2.2 - Example of Simulation Module Operation.

CEECECEEEEtr bttt bttt bttt tetttttttt bttt ttttttbttttttbbtttrbrhttttbttttttss

With this means of simulating the timing, the output of the simulstion of
a module is the entire output history of the actual module. This can be
described tmﬁy by defining simulation histories. For any port in the
simulation, the simulation history is the sequence of packets passing through
the port:

h‘ - (:‘.“,.(xz.‘z’.ooo.(:l.'l’.ooo ’

whm0<t1<tz~<...<t,<.... If the simulation correctly simulates a

.port, then hs = h, where h is the history of the corresponding port in the

actual system.

Simulation histories can be defined for modules, too. The input simulation

history of a module is an n-tuple

HSI = <hsig hsi,,...,hsip ,
and the output simulation history is an m-tuple

HSO - <hsog, hsoy,,...,hsop.
The system input sinmlatlon. history SI and the system output simulation
history SO are defined in a similar fashion. Furthermore, the relations C and C
are defined over simulation histories in the same manner as they are over actual

histories.

The requirements for the correct simulation of a module can be precisely

defined in terms of histories for modules with non-stochastic behavior:

Suppose an actual module produces an output history HO and
finishes in a final state S, when it is started in some initial state

Sy and receives an input history HI. Then the simulation of this
module must produce a simulation history HSO, such that HSO - HO,

and it must finish in Sf, when it is started in state S,, presented
with a simulation history HSI = HI and then notified that no more
input packets will be received.
The requirement that the simulation be notified when the last packet has
been received is needed to prevent the simulation from hanging up, waiting for

packets which will never arrive. This will be discussed later in this chapter.

Without any constraints on the times at which input packets arrive at the

S § St S L e e A N A s e e ol i i "

.35-

input ports of the modules in the simulation, there is no guarantee that the
relative orderings of packets on different input ports will be preserved. This
can lead {0 a problem of premature firing, in which the firing of a module at
s Al Wie 14 Sianlatit Netors. all TRERt padian Witk ks < ffiry have
arrived. For example, if an arbditer in the simulation receives a packet (x,18)
on one input port, it might simulate the firing at time tfire = 18, and (assuming
it has a delay time of 2) send the packet (x,12) from its output port. Suppose
now, though, that a packet (9,5) is received on its other input port. The

arbiter has fired prematurely and the simulation cannot proceed properly.

To prevent this problem of premature firing, the firing of a module at
time (firr must not be simulated until the entire input simulation history
HSI(tfire) has been received. The only way the simulation can know it has
received hsi,(tfire) on input port i, is if it receives a packet with time value 2
tfire on that input port. Thus if the simulation stores the time value of the
most recently received packet on each imput port {,, denoted tlast,, then the

firing of a module at time tfir¢ can be simulated if tfire s 3% (tlasty).
The simulation of a module proceeds as follows:

1.) Determine whether the module can fire at some time (fire <
Loxs, (tlasty) based on the data and time values of those packets at
the input ports with time values < ifire, the current state of the
module S,, and the outcome of simulations of any stochastic

2.) If the module can fire, then simulate the firing of the module
as follows:

a). Remove the proper input packets from each imput port.

- 38 -

Only packets with time value < {fire can be removed.

b). Calculate the output data values and the output times.
These calculations can depend only on input packets with
time values s ffire. Furthermore, all output times must be
greater than (fire.

c). Send the output packets from the proper output ports.

d). Calculate the new state S, ;.

3.) Go to step 1.

Assuming the simulation will produce the proper output packets each time
it simulates the firing of a module, the output of the simulation will always be
an initial segment of . the output history of the actual module, that is HSO © HO.
However, due to the requirement that ffire < %% (tlasty), it is possible for the
simulation of a module to hang up by waiting for packets which will never
arrive. Suppose, for exampie, that an arbiter in the simulation receives a packet
(x,10) on input port 1 but has received no packets with time greater than S on
input port 2. Then tlasty = 5 < tffire = 18, hence the firing of the module
cannot be simulated. If no more packets are ever received on input port 2, the
firing of the module at time 18 will never be simulated, even though the
module is enabled. The simulation must be notified somehow, when the last
packet has been sent to each input port, so that any remaining input packets

can be processed correctly. With this notification, the output of the simulation

will be the output history of the actual module, in other words HSO « HO.

il tos L AP AT e e S e

- 37 -

Conclusion

Ey including the simulation time in each data packet, the operation of a
module can be properly simulated without any real-time constraints. Although
this requires each simulation processor to compute time values as well as data
values, it enables us to simulate a wide variety of packet communication

architecture systems with complete accuracy.

e a o s o o Jo aaiie sigh Seotoce . cae ok o L e i et

i i e St e A Bl g
e e PRy AT)

- 38 -

Chapter 3
Simulation of a System

Introduction

In the previous chapter, methods of simulating the components of a packet
communication architecture system were discussed. If, in an attempt to
simulate the entlre system, these module simulations were connected together,
the simulation would most likely deadlock. This deadiock results when the
modules in the simulation are waiting for packets from each other, but none
can be fired until one of them produces more output packets, Unlike deadlocks
which might occur in the actual system, which should be simulated, this form
of deadlock, calied hanging up, prevents the simulation from fully simulating

the activities of the actual system.

For example, the simulation program for the arbiter in Figure 3.1 has
received a packet with time 3 on input port 2, but nothing on input port 1.
Hence tlast; = 8 < tfire = 3, and the firing of the arbiter cannot be simulated.
However, no packet will ever be received on the other input port until the
adder module fires, but this will not happen until the arbiter fires. The
simulation has hung up. The actual system would not have deadlocked under
these circumstances, though. The arbiter would have fired and sent the packet
(9) at time S to the adder, which would have fired at time 18, and so on.
The simulation has ceased operation at an earlier time than the actual system
would have. A proper simulation would reach the same state that the actual

system would. Additional coordination between the processors is needed to

Bl Y ek g Sl

e AR TS

-39 -

prevent the simulation from hanging up.

CEEEE ettt et bttt tbttttttt bttt bbbttt ttttttttrtttttrtttbtbttttttttbtttttss

+
(x,10) | delay=2
2

delay=2

Figure 3.1 - Simulation which has "Hung Up."

Ll L LI LT LT X L T L T Y T Y Y A Y Y A Y A Y Y S A Y Y S o Y Y

In this chapter, a means of providing this coordination will be presented
which preserves the principles of packet communication architecture, including:
autonomy of modules, communication by packets, and ume-indepeuﬁencc. One
further feature of this coordination method is that all coordination information
is sent along the same paths as the data packets are. There is no need for

additional communication links between processors.

For each module to be simulated, a simulation processor must perform two
types of operations: module activity simulation, and coordination. These
operations together comprise the activities of a process called the simulation
module. If the simulation is itself to be a packet communication architecture
system, each simulation module must be a packet communication architecture
module. This means that the simulation modules can be viewed as autonomous

processes, even .if several of these processess are executed by one simulation

processor.

Coordination Algorithm

The simulation hangs up when the simulation modules fai! to communicate
their status to each other but instead wait passively for other simulation
modules to take action. Instead, the simulation modules could send status
information to each other in the form of time packets of the form (f), where ¢
is a time value. Time packets are sent along the normal communication links
between simulation modules. When a simulation module sends a time packet
() from an output port, this indicates that no packets with time values less

than or equal to ¢ will be sent from this output port in the future.

At any point in the simulation that a module is in the wait mode, if there
is no value of tfire < tmin = |7 (tlast)) for which the module can fire, then
the module cannot possibly fire before or at time tmin. If the module has a
minimum delay time delay between firing and producing the first output
packets, then the minimum output time is given by the formula:

tout = tmin + delay
= ot (tlasty) + delay.
The simulation module cannot produce more output data packets with time
values less than or equal to tout, hence time packets (tout) can be sent from all
output ports which have not already produced packets with time values greater
than or equal to fout. Furthermore, if the firing of a module at some time tfire

is simulated, but no data packets are sent from an output port o i then a time

packet (tfiresdelay) can be sent from o I since any future data packets from this

G

i

-41 -
output port will have time values greater than tfire + delay.

As long as all time and data packets are sent from each output port of a
simulation module with strictly iacreasing time values, and the communication
links between the simulation modules preserve the ordering of the packets, the
value of tlasty for an input port is still the last time value received on that
input port, either as part of a daﬁ packet or as a time packet. No new packets
can be received at an lnput_port with time values less than or equal! to tla:tk.
If the values of delay are greater than zero for all simulation modules, then as a
result of these coordination activities, the simulation modules will send
increasingly larger time values to one another, until one of the simulation

modules is able to simulate the firing of its module, thereby avoiding deadlocks.

In the example shown in Figure 3.1, The simulation module for the arbiter
has received a data packet with time value 3 on input port 2 and has received
nothing on input port 1. The arbiter cannot possibly fire before time tmin =
min(tlast g, tlasty) = min(@,3) = 8, Hence it cannot produce any output packets
with time value less than or equal to tmin + delay = 8+2 = 2. Therefore it can
send a time packet (2) to input port 1 of the adder's simulation module which
in turn would 'update tlast; to 2. The adder cannot possibly fire before time
tmin = min(2,18) and therefore cannot produce any output data packets with
time values less than or equal to tmin + delay = 242 = 4, Therefore a time
packet (4) can be sent back to the arbiter's simulation module which would
then set tlast; = 4, and, since ifire =« 3 < uln(tlm,.!lwz) = min(4,3), the firing

of the arbiter module would be simulated.

The operation of a simulation module can be stated as follows:

1.) Each time a time or data packet is received on input port {,,
update tlmk.

2.) Determine whether the module can be safely fired. That is,
whether the conditions are sufficient for the module to fire at
some time (fire, where

thre s 9% (tlasty).

a.) If the module can be safely fired, then simulate the
operation of the module on those input packets with time
values s ffire and produce the output data packets. For each
output port o j from which data packets are sent, update the
value of tlast-out i which is the time value of the most
recently sent output packet from o Iz For each output port o
for which tlast-out; < tfire + delay, send a time packet (tfire +
delay) from o i and update tlast-out j
b.) If the module cannot be safely fired then compute foutf,
where

tout = tmin + delay,
and send a time packet (rout) from each output port o J for
which tout > tlast-out J Then update the value of tlast-out i for
each of these output ports. The value of de/ay must bde
greater than zero but cannot be greater than the minimum
time required for the module to produce an output packet
after firing.

3.) Return to step 1.

These coordination operations are quite simple, especially since time packets
are produced primarily when the simulation module is otherwise inactive.: The
simulation module must store the value of tlast, for each input port, and
tlast-outy for oich output port. However, no storage for time packets is required,

since they are not needed once the values of tlast, have been updated.

Furthermore, the simulation requires some means of determining when the

system input ports have received their final data packets. For instance, in the

i o AL e e | PR N B AL DR A

- 43 -

example shown in Figure 3.1, the firing of the arbiter at time 3 would be
simulated and the packet (9,5) would be sent to the addet's simulation module,

as shown in Figure 3.2.

Ll gl Ll L Ll L L L L L L L L L L L L LY o T L Y B S S S S Y oY Y ST Y A Y Y Y Y Y Y

\

(y,5)
b 1
+ 7
(x,10) | delay=2 1
S0
delay=2

—_—2

Figure 3.2 - Simulation Requiring Packets on System Input Ports.
The numbers alongside the input ports represent the values of tlast for the
ports,

CEECEEErtrt ettt bttt bttt tt ettt bttt ttttttttbtttbbttttttttttttttbblhtbettbts

Suppose that no more packets are received at input port 2 of the arbiter (this is
a system input port.) Then the adder module will be enabled to fire at time tfire
= max(5,10) « 18, but the simulation module cannot simulate this firing, since
tlasty = 5 < tfire = 18, Instead, a time packet with value min(5,18) + 2 will be
sent to the arbiter's simulation module. This simulation module will compute
tout = min(7,3) + 2 « 5, hence no time packet will be sent. Once again, the
simulation has hung up. The simulation module for the arbiter is still
expecting data packets on input port 2, but none will ever arrive. In order for
a simulation to complete all operations up to some time {fina! time packets with
value 2 ffinal must be sent to all system input ports after the last data packets

have been sent. If we want to simulate the entire operation of the system,

time packets with value ® must be sent to all system input ports, where o is
greater than any other time value., This can lead to a nonterminating
simulation in which the simulation modules keep sending time packets to one
another mmw. even though no modules will ever be enabled to fire again.

A means of terminating the simulation will be presented in Chapter 4.

In our example, we want to complete all operations with time < 18. If a
time packet (18) is sent to the arbiter's simulation module, it would compute
tout = min(7,180) + 2 = 9 and send this value to the arbiter. The adder still
cannot be fired safely, but a time packet with value min(39,18) + 2 = 11 would
be sent back to the arbiter's simulation module which in turn would send back
a time packet with value min(11,18) + 2 = 12, Finally, tfire = 10 <
min(tlasty,tlasty) = min(12,10), and the firing of the adder at time 18 could be

simulated.

With the addition of time packets, the simulation histories contain more
than just data packets. When comparing simulation histories to actual histories,
however, only the data packets are of interest. The function data is applied to
simulation histories to give the sequence of data packets (mcludlng their time
values) eonulnod' in a simulation history. For example, if

hs = (x,1),(3), (y,30), (2,35), (180),

dataths) = (x,1),(y,30), (2,35).
The function data can be applied to module simulation histories and system

simulation histories as well.

-

L R N A TR i S

-‘5-

Features of the Coordination Algorithm

This coordination algorithm preserves the philosophies of packet
communication architecture design. All coordination information is passed
between simulation modules in the form of time packets. There are no time
constraints on the simulation modules, and the simulation modules can operate
independently. Furthermore, the coordination operations for each module are
very simple. Each simulation module performs identical coordination operations,

which _allows uniformity in the simulation programs.

One further feature is that a simulation module sends time packets only to
those simulation modules to which it also sends data packets, and these time
packets are sent over the normal data paths. This not only keeps the number
of input and output ports to a simulation module limited, it eliminates the need
to synchronize the coordination information with the data information. If, on
the other hand, time packets were sent along some other communication links,
special measures would be required to prevent a time packet from arriving at an
input port before a data packet having an earlier time value does. By sending
time packets along the normal communication links, we use the first-in,
first-out property of these links to ensure the proper sequencing of time and

data packets.

Efficiency of Coordination
This coordination algorithm is rather inefficient in two respects. First, a
large number of time packets must be sent to keep the simulation coordinated.

In the example of Figures 3.1 and 3.2, a total of seven time packets were

N—

:
-
!
:

S S e R RIS R 5 e e S B

- 46 -

transmitted so that the arbiter and the adder could each fire once. This causes
both a delay in the simulation and a heavy load on the communication channels
between simulation modules. For larger simulations, the number of time
packets would be overwhelming. Second, this method does not allow all
possible concurrency in the simulation. For example, the two modules shown
in Figure 3.3 could potentially be simulated at the same time. The adder will
not fire until time 18 and hence cannot produce a packet with time < 12.
Therefore, the firing of the arbiter at time 11 could be simulated at the same
time as the firing of the adder. With the coordination algorithm described,
however, the simulation module for the arbiter would receive a time packet
with value min(5,18) + 2 = 7 and hence the arbiter would not be simulated
uatil after the adder has been simulated. This lack of concurrency compromises
the efficiency of the simulation, since it causes th; simulation processors to

wait unnecessarily.

Ll gl d LI LT DL T T LT LT L LT YU Y A A Y Y L T A Y Sy o Y Y

(y,5)

+
(x,18) [delay=2

Figure 3.3 - Modules which can be Simulated Concurrently.

COL LD D oy ey oy e ey e e e e e o o o o S T ST S Y S o A S S S S T S S A A S Y ST Y P

This inefficiency could be reduced if more use were made of the specific

propertiec of the modules being simulated. With the coordination algorithm

described only two properties are assumed about the modules to be simulated:
they will not produce any output packets while in the wait mode, and for each
module there is some minimum delay time delay between when it fires and
when it produces the first output packets. This, of course, makes the
coordination procedures very simple, but it creates the two inefficiencies
mentioned above. If, on the other hand, we. make use of the fact that an ADD
module cannot fire without first receiving data packets on both input ports,
then for the example in Figure 3.1, the earliest possible time for it to produce
an output packet could be calculated as
tout = max(tlasty,tlasty) + 2
= max(8,18) + 2 = 12,

The time packet (12) could be sent to the arbiter's simulation module which
would then fire the arbiter at time 3 and send the packet (y,5) to the adder's
simulation module. Furthermore, an ADD module can only absorb one data
packet at a time from each input port, hence the firing of the module at time
10 could be simulated even though tlasty = S < {fire = 16, By making use of
these two particular properties of ADD modules, only one time packet would be

transmitted in the simulation, as opposed to the original seven.

Of course, there is a trade-off between the complexity of the coordination
procedures within each simulation module, and the efficlency of the
coordination. In the most extreme case, each simulation module could simulate
the entire systém internally to determine whether a particular module can be

safely fired. This would certainly minimize the amount of coordination

information sent between simulation modules, but it would be overwhelmingly
complex. In Chapter 5, several refinements to the proposed coordination method
will be described. The emphasis will be on refinements which do not increase

the complexity much but do increase the efficiency significantly.

Correctness of the System Simulation

The combination of the module activity simulation and the coordination
operations for each module will guarantee that when the simulation modules are
interconnected, they will accurately model the activities of the actual system.

A proof of this is presented in Appendix 1 and will be described briefly here.

The proof applies only to modules whose output history and final state are
functions of the input history and initial state. The module cannot contain any
stochastic processes. However, for a particular set of choices of random
variables, the output history and final state of a module will always be
functions of its initial state and input history, in which case the proof will
apply. If the stochastic processes are simulated in such a way that the random
variables are chosen with the same probability as they would be in the actual

system, the simulation will stochastically model the actual system.

To formally describe the operations of the actual modules and the
simulations of these modules, six requirements are specified: three for the actual

modules and three for the simulations of these modules.

For the actual modules, the requirements are:

1.) Functionality of Output: The output history and final state of a

- 49 -

module depends only on the initial state of the module and the input
history.

2.) Monotonicity of Output: The output of a module at time ¢ cannot be
affected by input received after time ¢.

3.) Finite Delay: The output of a module at time ¢ cannot be affected by
input received at time ¢. In other words, there must be a finite delay
between the receipt of an input packet and the production of an output
packet which depends on this input packet.
If a module satisfies all three of these requirements, then the output history of
the module up to and including time ¢ i3 a function of the initial state and the

input history up to but not including time ¢.

These three requirements for the modules to be simulated are not very
restrictive. The monotonicity of output requirement simply implies that a
module cannot look into the future and predict what input will arrive, nor can
it retract or alter any output packets once they have been sent out. The f[inite
delay requirement states that a module cannot react instantaneously to an input
packet. This is true for any physically realizable module. The functionality of
output requirement implies that the module cannot receive any input
information other than the initial state and packets arriving at the input ports.
Furthermore, the module cannot contain any stochastic processes, unless we

consider the operation of the module for a particular choice of random variables.

For the simulation of each module the requirements are:

1. Correct Module Simulation: The simulation of a module must produce
the same data packets with the same time values as the actual module
would for the same input conditions. That is, suppose the simulation of
a module produces a simulation history HSO when it starts in initial state
S, and receives an input simulation history HSI where all of the data
and time packets arriving at each input port have strictly increasing time

- 50 -

values. Let
tfinal = 2% (tlasty)
after the input simulation history HSI has been received. That is, final

is the smallest of all the final time values received by the input ports of
the simulation module. Then

data(HSO(tfinal)) = HO(tfinal),

where HO is the output history of the actual module when it starts in
the same initial state S, and receives the input history HI = data(HSI).

Furthermore, if tfinal = © (all input ports to the module receive time
packets with value), then the final state S, of the simulation of the
module will be the same as the final state of the actual module.

2.) Correct Ordering of Output Packets: If the packets arriving at each
input port of a module in the simulation have strictly increasing time
values, then the output packets sent from each output port of the module
in the simulation will have strictly increasing time values.

3.) Correct Coordination: If a simulation module receives an input

simulation history HSI then if tfina! = 317 (tlast)), eventually a time or

data packet with time value greater than tfina! will be sent from each
output port of the simulation module, unless tfinal = ©, in which case
time packets with value ® will be sent from all output ports if the
corresponding actual module ever terminates.

; The first step in' the correctness proof is to show that the simulation and

t coordination operations which have been developed will fulfill the three
requirements for the simulation modules. Then, it is proved that for any
simulation in which the actual modules satisfy their three requirements and the
simulation modules satisfy their three requirements, the simulation will

accurately model the actual system. This is stated in the following theorem:

Theorem 1. Correctness of Simulation.
Suppose a simulation has the following properties:

e 1.) The modules to be simuiated satisfly the monoticity of output, finite
delay, and functionality of output requirements.

2.) The simulation of each module satisfies the correct module simulation,
correct ordering of output packets, and correct coordination requirements,

3.) All communication links between simulation modules operate properly,
So that if input port ¢, is connected to output port o, then hsi, = hso,.

4.) The simulation receives a system input simulation history SI, and
the sequence of time values received at each system input port is strictly

increasing.
Let tfinal = min(tlasty, tlasty, ... tast,),

after the system input simulation history SI has been received, where
{gripr+»+4l, are the system input ports. Then the simulation module for any

module M, in the system will produce a module output simulation history HSO,
such that

data(HS0(tfinal)) = HO; (¢final)

where HO i would be the .iput history of the corresponding module in the
actual system under the following conditions:

1) All modules in the actual system are started in the same initial state
as the corresponding simulation modules. .

2.) The actual system receives the system input history I where
I = data(SI).

Furthermore, if tfina! = ®, the final state of each simulation module which

terminates will equal the final state of the corresponding module in the actual
system.

The theorem is proved by induction on the sequence of time values
‘0.‘1.'2.0..‘!,00. »
where t, = 0, and
‘0<'1<-.. <‘l<o.o Sw,
and each time value ¢ {» ! > 8, is contained in some actual or simulation history
for the system. That is, ¢; is contained in one of the following histories: I

the system input history to the actual system, HO j» the output history of some

gt B o e

module M Jr SI, the system input simulation history, or HSO j» the output
simulation history of some module M It

The induction hypothesis is as follows: For any tp € toitgseeenlyy... such
that 1, < tfinal, ’

a.) data(HSOl(tl)) = Ho,u,). for all modules lj, and -

b.) Either ¢ { = @, or for any output port 0y
hso.(t;) c hso,.

In other words, not only will the simulation accurately model the actual system
up to and including time ¢ {» but in addition the coordination operations will
cause each simulation module to send packets with time values greater than ¢,
from all of its output ports. Thus the simulation cannot hang up due to a
simulation module waiting for an input packet with time value < ¢ i+ as long as
t; s tfinal. Therefore, by induction, the simulation will accurately model the

actual system up through time tfinal.

Conclusion

By incorporating some relatively simple coordination operations in the
simulation modules, the simulation will accurately modei the actual syster),
while preserving the properties of a packet communication architecture system.
As a result, however, the simulation might fail to terminate even if the actual
system terminates, and the simulation will be rather inefficient. These two

difficulties will be dealt with in the next two chapters.

- 5§53 -

Chapter 4

Termination of the Simulation

Introduction

Due to the decentralized and time-independent nature of the simulation and
coordination operations, there are conditions for which the actual system will
eventually cease all operation, but the simulation will continue indefinitely.
The simulation modules can keep sending time packets with increasingly lerger
time values to each other long after all module activity simulations have been

completed.

For example, in system of Figure 4.1 the system input port (input port 2
of the arbiter) has received a time packet with value ® and the simulation
module for the switch has produced a data packet (x,97). As can clearly be
seen, all data operations by modules in the system have been completed. The
simulation, however, will keep going. The arbiter will send a2 time packet
with value min(108,o)+1 = 181 to the functional operator. This operator will
send a time packet with value 10142 « 183 to the switch, which will send a
time packet with value 183+] = 184 to the next operator. This operator, in
turn, will send a time packet with value 184+3 = 107 to the arbiter. Then the
arbiter's simulation module will start this cycle over again, even though

nothing is really being simulated.

In this chapter, termination operations which can be incorporated in the

simulation modules will be developed. These terminations operations guarantee

"'."-'.H‘v'r

Tt

T

T

01 94
delay = 2
97 02 (180)
delay = 3 ©
9% S1 Al
delay=1 delay=l
(x097) ((!))
> ——

Figure 4.1 - Nonterminating Simulation.
The circles represent time packets; the dots represent data packets; and the
numbers alongside input ports represent the values of tlast for the input
ports.

PP e S e ey T YA UL LT DL L L L Ll h ol ol ol ol ol hd

that the simulation will eventually terminate if the actual system does, while
preserving both the correctness of the simulation and the principles of packet
communication architecture. Furthermore, as with the coordination, all control
information is sent between simulation modules along the normal data paths.
No special hardware is required for termination, only additions to the simulation
programs. The last part of this chapter describes a proof of correctness for the

termination operations. The full proof is included in Appendix 2.

If there were some means of simultaneously observirg all simulation
modules and all communication links between them, then it could be determined
when the simulation has completed all data operations. The simulation has
completed all data operations and can be safely terminated once it reaches a
point where: all system input ports have received time packets with value o,

no modules have sufficient data packets to fire, and there are no data packets in

- 55 -

transit between the simulation modules. This omniscient observer, however,
would not be in keeping with the philosophies of packet communication
architecture design. For our simulation, the simulation modules must send
control information to each other to determine whether the termination
conditions are satisfied. Furthermore, these termination operations must be

time-independent.

Most of the standard methods of determining whether a system is active,
such as time-outs, or waiting for a maximum count on the number of time
packets will not work for this simulation. There are, however, special features

of packet communication architecture modules which can be taken advantage of.

Connectivity Classes

A module lz can only receive input information in the form of packets
arriving at its input ports. Hence if there is no path from module M, to M,,
then the activities of M; cannot affect those of M,. To make use of this idea,
the meaning of path must be defined more formally. First, a module M, "is
connected to" a module M, denoted M; — M,, if an output port of module M, is
connected to an input port of M,. There is a path from a module M; to a
module M,, denoted M; Ié, if there exists a sequence

My Mo My, .o M N,
such that
LT PRl NE Pl PR PY

All communication with a module is in the form of data packets travelling

along data channels. Hence if there is no path from M; to M,, then there is no

e

- 56 -

way for My to send information to M,, either directly or indirectly.

The difficulties in terminating the simulation arise when the system
contains cycles. A module is contained within a cycle if there is a path from
one of its output ports to ome of its input ports, that is M] 5 M ;- For
example the system of Figure 4.1 has a cycle O1 — S1 — 02 — Al - O1.
The simulation modules contained in cycles will not normally terminate - they
cannot send time packets (o) until time packets (o) have been received on all
input ports, but the simulation modules will not receive these time packets
unless they send them out. Instead, the simulation modules will keep sending

time packets with values less than ® around the cycles indefinitely,

The cycles in the system can be identified by looking at the equivalence
classes formed by the relation ¢ where M; & N, if and only if either M 1"
M, (they are the same module), or N; % Ny and M, = M,. This relation is
indeed an equivalence relation [17): it is reflexive, symmetric, and transitive.
Hence it defines a set of equivalence classes which are called connectivity
classes and are denoted c,.cz.....c,. For any connectivity class containing
more than one module, aﬁy two modules in the class must have paths to each
other. That is, if N, My« CI, then

N; 5 M, and N 5 M.
An example of a system divided into its connectivity classes is shown in Figure
4.2,

The relation -9 can be extended to connectivity classes. C, -5 C j if and

e O T et e

Figure 4.8 - System Divided into Connectivity Classes.

- 58 -

only if M; 5 lj for every M;cC,, I,:C,. In fact if N, 5 Ij for any M <C,,
ljecl. then C; B Cl. Moreover, if C; 5 C;. then C, +# Cy, or else they
would not be separate equivalence classes. Thus, if C; % C j» then the modules
in C; are not affected in any way by the modules in C j We can terminate

the modules in C; without worrying about the modules ir C I

Using the properties of connectivity classes, the conditions for terminating
a connectivity class C j can be stated, When all of these conditions are satisfied,
the simulation modules in the class can safely terminate.

1a.) All system input ports which are input ports to modules in C]
‘have received time packets with value o,

1b.) All classes C; such that C; % C j have been terminated.
2.) No module M je C j has sufficient data packets to fire.

3.) None of the channels connected to input ports of the
simulation modules in C i contain data packets.

If there were some means of detecting when a connectivity class could
be terminated, then all simulation modules in the class could send out time
packets (o) from all of their output ports. In this case, termination conditions
1a.) and 1b.) would be identical, from a connectivity class' point of view. That
is, an input port {; to a module M; ¢ C; receives packets from one of three
sources: a source external to the system, a module M; ¢ C; where C; 5 C o or
a module M; ¢« C j- In the first case, {) is a system input port and hence would
receive a time packet with value . In the second case, the input port i
would receive a time packet with value © once the connectivity class C; has

been terminated. Conditions 1a.) and 1b.) can therefore be restated as:

TR

g

- 59 -

1.) Time packets with value ® have been received on all those
input ports of modules in the class C j which are not connected to
output ports of other modules in the class.
No special communication other than time packets is needed between
connectivity classes or with the external world for termination. All that is
needed to terminate the simulation of a system is some means of detecting

when the modules in each class can be terminated.

If a class CI' contains only a single module Ij then this module either is
not contained in any cycle in the system, i.e. I, 3 Ij, or it is part of a
self-loop, in which there is a channel connecting an output port of the module
to an input port of the module, so that M gy~ M;. In the first case, the normal
coordination operations of the simulation module are sufficient for termination.
Since no input ports to the module are connected to output ports of modules in
the class, time packets with value ® will eventually be received on all input
ports of the module. The firing of the module at any time < o will then be
simulated. Then, since fout = o, time packets (o) will be sent from all output
ports, and the simulation processor can terminate the simulation of this module.
Thus, no special termination procedures are required for modules which are not

part of a cycle in the system.

For modules which are part of a self-loop and for connectivity classes
with more than one module, however, the normal coordination operations are
not sufficient for terminating the module simulations. For example, the
modules in Figure 4.1 are all in the same connectivity class and therefore

would not termimsate. Those input ports which are connected to output ports of

T TRy -

modules in the class will never receive time packets with value o without

special termination procedures.

Termination Algorithm for Connectivity Classes Containing
Cyoles

A means of incorporating termination operations into the simulation module
for each module in a connectivity class C i will now be given. This
termination algorithm requires no changes in the topology of the system. There
is no need to add more modules or communication links to the system. Unlike
the coordination operations, the termination operations are not identical for each
simulation module, First, one of the modules in the class is designated as the
termination control module, denoted T, for the class. Any of the modules in
the class can be chosen for this role. The simulation module for this module
must initiate and validate the tests for completion of all operations by the
modules in the class. Next, for each module in the class other than T, one of
the output ports of the module must be selected as the signal output port of the
module. These signal output ports must be selected in such a way that if we
look only at the modules in the class, there is a path from every module to T
following only channels connected to the signal output ports of the modules.
Finally, for each module in the class, we must determine which input and
output ports are connected to output and input ports of other modules in the
class. The set of all input ports of M; which receive packets from modules in
the class is denoted from_class;. Similarly, the set of output ports of M; which

send packets to other modules in the class is denoted to_class Iz

i AR i AT O ARSI s el

- 81 -

The termination operations for the simulation module of the termination
control module T are as follows:

1.) Perform normal simulation and coordination activities until
every input port which is not in from_class; has received a time
packet with value o,

2.) When there is no way for the module to fire without
receiving more data packets, send fest packets (test.+) from all
output ports in to_classy.

3.) Wait until K test packets have been received on the input
ports, where
K=14+ z (Ito_classtl -1).
Ittcl

In. this equation, ito_classtl. is the number of output ports of

module M; which are connected to input ports of other modules in
the class.

4.) If any data or time packets are received while waiting for the
test ‘packets, continue with the simulation and coordination
operations for the module.

§.) Determine the validity of the test as follows:

a.) If all K test packets have value test.+, and no data
packets were received while waiting for the test packets,
then send time packets (o) from all output ports of the
module.

b.) If at least one of the returning test packets has value
test.- or a data packet was received while waiting for the
test packets, then send packets (reset) from all output ports
in to_classy, wait for K (reset) packets to return, and go to
step 1.

6.) Once time packets (o) have been received on all input ports of
the simulation module, terminate the simulation of the module.

For every other module M j in the class, the termination operations for the

simulation module are as follows:

1.) Perform normal simulation and coordination operations until a

test packet is received on some input port.

2.) When the first test packet is received, continue simulating the
module until all input ports which are not in irom_class j have
received time packets with value », and the data packets present at
the input ports are not sufficient for the module to fire. Then, if
the test packet has value test.+, and no data packets have been
received since the test packet arrived, send (test.+) packets from
all output ports in to_class 2 Otherwise send (test.-) packets from
all output ports in to_class J

3.) If the module receives any more time or data packets, then
continue the simulation and coordination operations as before.

4.) Any time another test packet arrives, if the packet has value
test.+, and no data packets have been received since the previous
test packet was sent, then send a (test.+) packet on the signal

output port. Otherwise send a (test.-) packet on the signal output
port.

5.) When the first (reset) packet is received on an input port,
send a packet (reset) from each output port in to_class i and
prepare for a new test. If any further (reset) packets are received
before the next test, send them from the signal output port. When
new test packets arrive, return to step 2.
6.) When a time packet (o) is received on ary input port in
from_class * send packets (o) from all output ports, unliess this has
already been done.
7.) Once time packets with value ® have been received on all
input ports to the module, terminate the simulation of the module.
During the course of a test, unless some simulation module cen never be
terminated, a test packet will travel through every communication link between
the simulation modules in the class,. Hence, every simulation module will
receive at least one test packet. Imitially, T sends out lto_classrl test vackets.
On receipt of its first test packet, a simulation module M; will send out
lto_classtl test packets, thereby "creating" |to_clns¢| - 1 new test packets.

Thereafter, it will simply pass a test packet from an input port to an output

- 83 -

port. Hence, a total of K test packets will be created. The values of these test
packets will be test.+ only if no form of data activity is found anywhere in
the class. Because of the way in which the signal output ports are chosen, all

K test packets will be funneled back to T which can .then check the test

results,

Features of the Termination Operations

This termination algorithm preserves most of the desirable properties of the
coordination algorithm. In particular, the simulation modules still fulfill the
requirements for a packet communication architecture system. Although one
module in each class is denoted as a termination control module, its only
function is to initiate and collect information about each test. This module has
no ability to monitor other modules or exercise any active control. Hence, the
simulation modules are still autonomous. Furthermore, all communication is by

p.ckets.‘ and the operations do not depend on any timing restrictions.

As with the coordination algorithm, all termination control information is
sent over the normal data channels. This avoids the problem of monitoring the
communication links between simulation modules. Instead, the first-in, first-out
property of these links ensures that no data packets will be overlooked while
they are travelling between simulation modules. No special hardware is

required for termination operations, only additions to the simulation modules.

One undesirable feature of these termination operations is their dependence

on the overall structure of the system to be simulated. Whereas the simulation

and coordination operations of a module depend only on the module itself, the
termination operations depend on how the module is incorporated in the system.
This compromises the modularity of the design somewhat. However, the
termination operations of a module can be fully determined based on a very
limited amount of knowledge about the system, namely how modules in the
system are interconnected. No details about the operations of other modules in
the system are required. Thus, while the incorporation of the termination
operations mio the simulation modules will decrease the modularity of design,

this decrease will be rather small.

Efficiency of the Termination Operations

The termination opertations for the modules in a connectivity class are
designed to be both simple and efficient. That is, they will not increase the
complexity of the simulation modules greatly, nor will the speed of the
simulation be decreased greatly. The efficiency is a result of several important
features. First, the simulation and coordination operations need not be
interrupted while the termination operations are taking place. Thus, if a test is
initiated while modules in the class are still active, the simulation can Kkeep
going, although at a slightly decreased speed. Second, the operations are
designed to keep the number of tests initiated reasomably low. The first test
can be initiated as soon as the termination control module has received packets
(o) on all input ports which are not in from_classr. However, all K returning
test packets will not be received until a// modules in the class have received

packets (®) on all of their input ports which receive packets from outside the

class, and all modules at some time have ceased data operations. Thus the
second test cannot be initiated until the first termination requirement for the
class is satisfied. Each successive test cannot be initiated until the previous one
has completed.' This not only simplifies the termination operations, it limits the

frequency with which tests can be initiated.

Correctness of the Termination Operations

The addition of the termination operations to the simulation modules will
not interfere with the simulation of the system, but they will cause the
simulation to terminate if the actual system does. This is stated in the

following theorem.

Theorem 2. Correctness of Termination

a.) Suppose a simulation is performed in which the modules to be simulated
obey the three requirements: functionality of output, monotonicity of output, and
finite delay, and the simulation and coordination operations of each simulation
module obey the three requirements: correct module simulation, correct ordering
of output packets, and correct coordination, and furthermore the coordination
operations of a simulation module cannot cause time packets (o) to be sent out
by the simulation module unless
1;:20 (ﬂastk) = 00,

Then the addition of termination operations to the simulation modules as
described in Chcpter 3 will not cause any of these requirements to be violated.

b.) If the actual system ever reaches a state in which no modules in the
system will ever enter the firing mode unless more packets are received on the
system input ports, then every simulation module in the simulation of this
system will eventually produce time packets with value o on all output ports,
if all system input ports in the simulation receive time packets with value o,

The proof of this theorem is included in Appendix 2 and will be described

here briefly. The termination operations for different connectivity classees are

separate, hence we need only prove that the operations are correct for each
class. Moreover, since the termination operations are designed not to interfere
with the normal simulation and coordination operations, the only possible
adverse effect of the termination operations is to terminate the simulation too
soon. Thus,. proving the first part of the theorem involves proving that the
simulation modules in a class will not terminate until a test of the class
suceeds, and that a test will suceed only if the termination corditions for the
class are satisfied. In other words, if the termination control module T sends
out (test.+) packets, then all K returning test packets will have value test.+
only if the termination conditions are satisfied. Proving that a test of a class
will not overlook some simulation module which is not yet ready to terminate

constitutes the most difficult part of the entire proof of correctness.

To prove the second part of the theorem, it must first be shown that a
test of the class and a subsequent reset will eventually be completed, unless the
termination conditions for the class are never satisfied. In other words, any
time the termination control module sends out test or reset packets, it will
eventually receive K test or reset packets, unless some simulation module My
never receives a time packet (@) on some input port which is not in
from_class;, or some actual module runs indefinitely. Thus, once the
termination conditions for the class are satisfied, any previous test or reset
operations will be completed, and a new test will be initiated. Furthermore,
the reset operations must cause all modiles in the class to receive at least one

(reset) packet before the new test packets are received. Finally, it must be

7 %“&%‘%&% 3

- 87 -

shown that a test will suceed, once the termination conditions are satisfied.

Conclusion

The relatively simple coordination operations of Chapter 3, which are
designed to keep the simulation from deadlocking, created a much more difficult
problem of terminating the simulation. The solution of this problem requires
both compromising the modularity of design of the simulation modules to some
degree and also adding termination operations which are more complex than the
original coordination operations. This lack of modularity and greater complexity
makes the correctness of the termination operations more difficult to prove than

the correctness of the simulation and coordination operations.

However, the termination operations do satisfy the design goals for the
simulation. The simulation remains a packet communication architecture system
in which all communication is in the form of packets, the simulation modules
are autonomous, and the design is time-independent. Furthermore, while the
termination operations are more complex than the coordination operations, their
implementation should not be particularly difficult, and they are efficient

enough to have little effect on the speed of the simulation.

Loaliaa

Chapter b

Improving the Efficiency of the Simulation

Introduction

The coordination algorithm of Chapter 3 is rather primitive in that the
coordination operations of a simulation module make little uss of the properties
of the actual module, other than its minimum delay time delay. This leads to a
simulation which requires a great deal of coordination information to be passed
between simulation modules and which unnecessarily restricts the concurrency

of the simulation.

Any modification to the coordination methods must preserve their desirable
properties. The coordination operations should be simple enough to be easily
incorporated in the simulation program for a module. The simulation should
still be a packet communication architecture system, hence there should be no
centralization of control or timing restrictions on the simulaticn modules or the
communication links between them. Finally, the design should be modular -
the coordination operatiocns for a module should depend ornly or that module and

not on the structure of the rest of the system.

In this chapter, two methods which can increase the efficiency under some
conditions will be presented. These two particular modifications were chosen,
because they are easy to implement and apply to many packet communication

architecture systems. It will be shown that with either of these two

modifications, the Correctness of Simulation Theorem, described in Chapter 3,

i BN O ks Sl

- 69 -
vhll still apply.

Modules which Compute Monotone Functions
Many of the packet communication architecture modules which have been

designed to date compute monotone functions over their histories. That is, if
the module produces an output history H0; when given the input history HI,,
and an output history H0, when started in the same initial state and presented
with an input history HI,, where

HI; € HI,,
then

HO, € HO,.
Modules which compute monotone functions over their histories are
characterized by the property that the decision about which input packets are
absorbed from each input port and used in a particular firing is independent of

the arrival times of any input packets.

In particular, any determinate module computes a monotone function,
where a determinate module [12,18] is a module for which the sequences of
output packets sent ‘trom the output ports depend only on the sequences of
input packets arriving at the input ports, and not on their arrival times. For
example, the functional operator and switch modules of Chapter 1 are

determinate modules.

One would expect many packet communication architecture modules to be

determinate, since they embody the ultimate form of time-independent operation.

b Rl

- T »

For example, all of the data flow actors of Dennis [5] have determinate
behavior, so by the Closure Theorem of Determinate Systems of Patil [18], any
module which implements a data flow program must be determinate. One
important module which does not compute a monotone function over histories
and therefore is mnot determinate is the arbiter module. The order in which
packets are absorbed and subsequently sent out depends on the relative arrival

times of the packets on each input port.

Other modules are nondeterminate, but do compute a monotone function
over histories. For example, a system clock module which, when it receives a
packet ‘Aof the form (request_time), sends out a packet conta‘ning the time at
which the request packet arrived, computes a monotone function qver histories,
but its output values depend on the times at which the input values were

received.

Simulation of Modules which Compute Monotene Functions

If a module computes a monotone function, then it can be safely fired in
the simulation as soon as the necessary data packets have arrived at the input
ports. There is no need to make sure that tfire s 3% (tlasty). Thus, the

simulation module can use any of the input data packets, and not just those

with timea values less than or equal to 57 (tast)).

For example, if the simulation module for an ADD module has received a
packet (x,18) on input port 1, and a packet (y,28) on input port 2, then there

is no need to wait until a packet with time > 20 has been received on input

- 71 =

port 1. Instead, the firing of the module at time 20 can be simulated right

away, since any‘ data packet received on input port 1 would not affect this

firing.

As long as this revised firing rule does not cause any of the three
requirements for the simulation module to be violated: correct module simulation,
correct ordering of output packets, and correct coordination, the Correctness of
Simulation Theorem presented in Appendix 1 will still hold. To show that this
modification yvill not violate the correct module simulation requirement, suppose
a@ some time a simulation module for a module which computes a monotone
function has received an input history HSI', where HSI' & HSI, the input
simulation history which will ultimately be received. Then if all possible
firings of the module on the data packets are simulated, and an output
simulation history HSO' is produced, the effect of these activities will be to
simulate the operation of the actual module as if it had recelived an input
history HI', where

HI' = data(HSI').
We know that
HI' € HI,
where HI « data(HSI). Hence, since the module computes a monotone function,
HO* <€ HO,
where HO’ is the actual module's output history in response to HI', and HO is
the actual module's response to HI, vrhen started in the same initial state. In

simulating the actual module's operations on the history HI', a simulation

-T2 =

history HSO' has been produced where

’ data(HS0') = HO® HO.
The revised firing rules will not cause the module to fire prematurely. Thus,
the first requirement, correct module simulation, will not be violated.
Furthermore, this modification will not affect the rules for producing time
P;leets. Thus, the other two requirements will still be valid: correct ordering
of output packets and correct coordination. The Correctness of Simulation

Theorem still applies.

This modification will improve the efficiency of the simulation by
increasing the concurrency of module simulations, There is no need for a
module which computes a monotone function to wait for time or data packets
when sufficient data packets are already present. Furthermore, it actually
simplifies coordination operations, since there is no longer any need to determine

whether a module can be safely fired.

Strengthening the Calculation of the Minimum Output Time
In the coordination algorithm of Chapter 3, fouf, the earliest possidble time
at which the simulation could next send out a data packet, is dalculated as
tout = 3% (tlasty) + delay,
where (last) is the time value of the last packet received on input port {,. In
other words, it was assumed that the firing of a module might be simulated as
soon as any packet arrives on whichever input port {, currently has the lowest

value of tlasth. In many cases, however, the module would not be enabled to

fire, even if such a packet were received. For example, if the simulation

module for an ADD module has not received any data packets, and tlast; - 108,
and tlasty = 18, then the firing of the module for any time less than or equal to
108 will never be simulated, even if a packet with time value 11 is received on
input port 2. The coordination operations are overly cautious. They assume
only something which is true for any module - if there are not sufficient
packets for the module to fire, then the module cannot fire before the arrival
of the next packet. If the coordination operations could take advantage of the
firing requirements for a module, then it could often calculate values of fout

which are higher than those obtained by the method of Chapter 3.

Any change in the method of calculating fout, will inevitably be more

complex than the calculation

tout = §% (tlasty) + delay.
Hence, the strength of the calculation, that is the closeness to the maximum
possible value, must be balanced with the simplicity of the calcnlation. The
following method of calculating fout represents a particular compromise between
strength and simplicity. It is very simple yet seems to be reasonably strong for

many modules.

Expressing the Firing Requirements
First, a method of specifying under what conditions a module might fire is
required. For any module, a boolean-valued function F can be given which

takes as arguments the values of p;, lsfsn, where p, is the number of packets

present at input port { Iz If
F‘P[’PZ”"’PI) - !PUQ,

then the module might fire when p j Packets are present at each input port {;.
If the value of the function is false, however, then regardless of the internal
state of the module, th.e time, or any stochastic processes within the module, if
each input port i; contains exactly p j input packets for all j, 1sfsn, and the
module is in the wait mode, then the module cannot possibly enter the firing
mode. Thus, as long as the value of the function is false, the module cannot

produce any packets until more packets are received.

For example, an ADD module has a function

Fm(’l'f’z’ - (PIZI) A (Pz!l).
It cannot fire unless each each of the input ports contains at least one packet.
The arbiter has a function

FM(PI’PZ, = (plzl) v (PzZl).
It can fire if there is a packet on either input port. As a final example, if the
behavior of the module is totally unpredictable, a function

FirvePgrP20ecerpy) ® true,

can always be used. This will apply even for modules which can sometimes
fire without receiving any packets, since there are no conditions for which the

value of the function is faise, but the module can fire.

An equation for tout can be derived for a simulation module, if the

equation for F of the corresponding actual module is expressed in the following

.
provm— R S il R P o0 ST AR 1 Lo PSR TR 70)

4 - 75 -

1 form:

F(’l.’z.....’.) =

[(plzc“) A (’22621) A see A (p.ZC")]
b v [(pgacya) A (pgrcgg) A voo A (pr2c,0)]
v Upgcge) A (po2cae) A woe A (praepl)],
; in which each c, i is some constant greater than or equal to zero. This form of
the equation is called the sum of products form. ﬁote that if c, g @, then the
predicate (py2c);) must have value true, thus these factors can be omitted from
the equation. Equations with all factors of the form (pp208) removed are in

reduced sum of products form. In the preceding examples, the functions Fg,,,

Fap» @nd F.__ are expressed in reduced sum of products form.

Many functions cannot be expressed in this sum of products form. In

fact, only those functions for which

Fipgopge-pp) = true
implies that for any values, kl.kz.....hn 28,

Fpgthgopotho, ooy ppthy) = trus,

can be expressed in this form. However, for any function F we can always
find a "weaker" function F’, such that if

Flpgipaieseipy) = true
then '

F'(pgepaeeeerpy) = true,

and an equation for F°' can be expressed in sum of products form.

A sum of products equation for F can be translated into an equation for

tout as follows:

tout = MAX[5% (ttasty) + delay ; 3in (mex (r,c”)) + delay-c],

where
tpy = the earliest possible time value of the /th packet on imput port iy

= the time value of the /th packet on I, if ! s Pp» OF
= tlasty, if | > p,,
delay = the minimum delay time of the module, and

€ = any number greater than zero.

The second term of the equation

1?12« Foeos “kc”’) + delay - ¢,

represents the calulation of the minimum output time based on the function F.
As will be proved shortly, for any value ¢’ such that

i
< fo - l:j:q l:xSn “kc”,)'

if p; is the number of packets on input port {y with time values less than or

equal to ¢, then 1

FUp gt aneee,p’y) = false,

s

Hence, the module cannot possibly fire again before time tp, and no data packets
with time values less than or equal to tg + delay can be produced by the
simulation module. Since all packets in the simulation must be sent from each

output port in strictly increasing order, the term ¢ is required for fout to be

strictly less than the time value of the next data packet. !

If the calculation of fout were based only on the function F, it might be
overly cautious. It is possible for the function F to have value true even when
the module cannot possibly fire. In this case, a calculation of the minimum

output time based on the equation for F would give a value which is too low.

i et e s

-T7 =

Even if the function F has value true at some point in the simulation, if the
data packets with time values less than or equal to 1;";'(114.“*)' are not
sufficient for the module to fire, then no data packets can be produced with
time values less than or equal to 3% (flast)) + delay. Thus; the calculation of
tout must take the maximum of the two predictions of the minimum output

time - that based on the function F, and that based on the values of tlasty.

For example, for the ADD module the equation is
tout = MAX] min(tlast 4, tlasty) +delay ; max(tyq,t5,) +delay-¢ 1
For the arbiter, the eqﬁatlon is
tout = MAXL win(tlasty, tlast,) +delay 3 minityg,tp0) +delay-c],
= min(tlasty,tlasty) + delay.
This equation degenerates to the original equation for tout. Fimally, for the
function F . the equation is
tout = MAXL 2" (tlasty) +delay ; Bedelay-c |

= e, (tlasty) + delay.

This equation also degenerates to the original equation for tout,

Correctness of the Caloulation

this modified method of calculating fout will not cause the simulation to
violate any of the three requirements: correct module simulation, correct ordering
of output packets, or correct coordination. Hence, the Correctness of Simulation
Theorem given in Appendix 2 will still apply. Clearly the correct module
simulation requirement will still hold, since this modification wiil not affect the

data packets produced by the module in the simulation.

N G v Tt et

As for the correct ordering of output packets requirement, a time packet
will not be sent out from output port o i with time value less than or equal to
tlast-out Ig since this is checked for by the simulation module. The only danger
is that a time packet with value tout might be sent out, and later a data packet
with time less than or equal to tout is sent out. The original proof shows this
cannot happen for tout = 3% (tlasty) + delay, hence the problem can only occur 1
if

tout = 1%\ en “kc”)) + delay - «.

The claim, however, is that for any value ¢’ such that

] min na
U <ty)= 15icq 15K5n “kc”’)'

if pp is the number of packets on input port i{, with time values less than or

equal to ', then
F(picpéOOOva;) = false, :
Hence the module cannot fire again in the simulation at any time, ¢’ < t,. To

show this, look at any t,.c” for which

t = max(t ot s o aaslh).
kc” X 1c“ 2c2j *“ne,,

By our assumption about ¢, and from the equation for to
' <tyst
%00 the, y
and ‘kc” by definition is the earliest possible time value of the Ca jth data
packet on input port {,. Thus, p) < c, j» Which implies that the predicate
(pp2cy;) = false, for any j, 1sfsq.

This means that for any j, the product term

(pgaegy) A (paaca)) A wuo A (pp2c,) = talse.

Therefore, F, which is the sum of these product terms must have value false.

e ——————

e

No firing of the module before time

10 * 15)sq ‘tsxsn “kc”))'
can be simulated, hence no data packets can be produced with time values s to

+ delay can be produced. If
tout = ty + delay - ¢,
and ¢ > 0, the correct ordering of output packets requirement will not be

violated.

Finally, the correct coordination requirement will nat be violated, since
tout 2 90 (tlasty) + delay > 5% (tlasty),

unless 1;";. (tlasty) = o, Thus, the Correctness of Simulation Theorem of

Appendix 1 will still hold for this revised calculation of tous.

Compatibility with the Termination Operations

One difficulty caused by this revised calculation of fout is that the
calculation might cause a simulation module to produce time packets with value
o before time packets with value o have arrived on all input ports. This could
interfere with the termination operations for the connectivity class. If some
other simulation module receives one of these time packets, it will assume that
the most recent test succeeded and will send out time packets (o) from all

output ports, which might not be valid.

One way to prevent this problem would be to require that no simulation

module send out (o) packets, until all input ports have received () packets.

Instead, when fout = o, it would send out time packets (¢) where ¢ is some

"large" number. This seems rather awkward, but it will prevent the fout

calculations from interfering with the termination operations.

Features of the Calculation

This calculation of the minimum output time wuses information which is
already available to the simulation module, namely the time values of each data
packet at the input ports and the values of tlasty. No attempt is made to
predict the time value of the /th packet if pr < !, except that it is greater than
tlasty. This avoids passing more coordination information between simulation
modules, or requiring knowledge of the timing details of the other simulation

modules.

This calculation of tout is reasonably simple, in fact hardly more complex
than the original calculation. One reason for this simplicity is that it ignores
much of the information which is available to the simulaticn module. For
example, the data values o the input packets are not considered, nor is the
state or time of the module. Under some circumstances this will lead to a
weaker calculation of fout than might be possible. If the conditions under
which a particular module can fire depend heavily on these factors, it would be

worthwhile to take these factors into account when calculating tour.

This method of -calculating tout will increase the efficiency of the
simulation in two ways. First, it will decrease the number of time packets
sent between simulation modules, Not only will the difference between

successive time values tend to be greater, the need to send time values around

- Bl =

loops a number of times just to fire a module once can be reduced. For
example, suppose the module M, of Figure 5.1 obeys the function
Flpgpg) = (pg2l) A (pp21).
Using the original method of calculating tout, tout = min(18,1808) + 2 = 12. Thus
a time packet (12) would be sent to M,, which would send back a time packet
(13) and so on, until after M 2 has sent 30 time packets, it would finally
receive the packet (188) and the firing at time 188 could be simulated. If
instead we use the calculation
tout = MAX[min(10,1008)42 ; max(18,100)+2-8.801] . 101.999,

the time packet (181.999) could be sent to M, which would send back

(182.999), and the firing of the module could be simulated. Thus, the

reduction in the number of packets sent during the simulation can be very

% large.
B
i P N T A T P L L CEESFEEEEEE LGS
| nz
delay = 1
(x,10)
M
(y,100)
——@—> delay = Z
!

£ (x,58)

;
j
E
i Figure 6.1 - System which can be Simulated More Efficlently with Stronger i
t tout Calculations.

—

- 82 -

The second improvement in the efficliency comes in the form of increased
concurrency of the simulation. In the previous example, M; would not need to
wait for time packets to cycle through the loop 30 times before firing.
Furthermore, if there were some module My connected to output port o, of M,
which is waiting for a time packet with time greater than or equal to 58 from
M;, it would receive this packet much sooner. By reducing the time spent
sending and waiting for time packets, the simulation modules car spend a
proportionately larger amount of time simulating the data operations of the

modules. This would increase the concurrency of the module simulations.

Conclusion

. These two modifications were chosen, because they can be easily
implemented and make use of properties which are expected to be common in
packet communication architecture systems. Other modifications could improve
tha eofficiency of thc slmulatica ia ollier cases wiiloui compromising the

de=tzable properties of the original method.

RS 5 R ————_—_———e i T G o g Ll

- 83 -

Chapter 6

Conoclusion

Insights and Afterthoughts

As has been demonstrated here, it is indeed possible for the simulation of a
packet communication architecture system to itself fulfill the design
philosophies of packet communication architecture. The modularity and
time-independence of the simulation allows it to be performed by virtually any
computer system which supports intercommunicating processes. Furthermore,
the operations which must be performed for each module in the system are
reasonably simple and therefore can be executed by small processors such as

microprocessors. }

The methods which have been developed here are very general as well. i
Few restrictions are placed on either the characteristics of the modules in the i
system or on how these modules are interconnected. Moreover, the methods are
provably correct, which is an important feature for any asynchronous, parallel
computation, due to the numerous and often subtle difficulties which are

encountered in the design of such systems.

The coordination and termination operations are simple enough to use only
a small fraction of the simulation module's processing time. However, it is
difficult to estimate what fraction of the processing time will be spent waiting
for the necessary time or data packets. This will depend a great deal on the

structure of the simulation facility and on the system to be simulated. Thus, it

is difficult to estimate the efficiency of the simulation, that is what fraction of
the processing time will be spent simulating the activities of the modules.
However, considering the low efficlency of a simulation on a sequential
computer system, the efficiency of the parallel simulation seems quite reasonable

by comparison.

Perhaps the fundamental philosophy which is expressed in this work 1is
that a certain amount of overhead, that is computation whose only purpose is
to maintain proper operation of the system, is needed for all but a limited class
of computer systems. This fact was accepted long ago by designers of
traditional computer systems. For example, many of the functions performed by
an operating system are overhead. Such operations as memory paging and
resource scheduling are incidental to the execution of & user's program.
Similarly, the coordination and termination operations of the simulation modules
are incidental to the simulation of the activities of the actual system. In a
distributed computation, the increase in the system load caused by the overhead
operations appears in two forms: as added computations for the components of

the system, and as special control information sent between the components,

These overhead operations are acceptable if they are kept to a minimum
and are designed in such a way that they both preserve the design goals of the
system and remain invisible to the user of the system. For example, the
amount of overhead in the simulation is reasonably small, the principles of

packet communication architecture are preserved, and the overhead operations

are invisible to people performing simulations.

e

-85 «

The design of overhead computations for parallel systems is still in a
rather primitive state. Other parallel computer systems, such as Ilac IV [3],
are structured in such a way that the amount of overhead operartions is
minimized. These systems contain central controllers which tightly control the
operations of the components, thereby avoiding the need for the processors to
communicate their status with one another. Because of the rigid control
structure, however, it is difficult for the user to program such a system to run
efficiently. These systems are suitable only for applications in which the

structure of the algorithm closely matches the structure of the system.

Packet communication architecture systems, with their decentralized control
and time-independent operation are potentially much more flexible and general
purpose than other parallel systems. However, along with this increased
capability comes a need for the components of the system to Kkeep their
activities courdinaied piopeily. 7The dcsign of coverhead omerations for these
systems requires an approach which is totally different from those used im
designing traditional systems. The overhead computations incorporated im each
component of the system can utilize only a limited amount of information about
the rest of the system. For example, the only information about the status of
the rest of the system available to the coordination and termination operations
of each simulation module is in the form of time and test packets received at
the input ports. Overhead operations which can be "modularized” in this

fashion seem rather foreign, partly because they have no locus of control.

Instead, the operations take place in many locations simultaneously.

T — . g‘

- 86 -

Furthermore, while one component of the system is performing operations, the
state of the rest of the system can be changing. The overhead operations must
be designed to operate correctly, despite a continuously changing system state,
As a result, one cannot fully understand how the operations work by focusing
on one component at a time. The system must be viewed as a whole to see
how the operations work. For example, the termination operations performed
by each simulation module make little sense when viewed individually, but
they fit together into a computation which will detect when the simulation can

be terminated.

To date, no general techniques for designing the overhead operations in
packet communication architecture systems have been developed. Instead, they
have been designed on a case-by-case basis, taking advantages of special
properties of the system. For example, the design here takes advantage of the
fact that the sole purpose of a simulation is to modsl the behavior of some
other system. If the actual system contains deadlocks or other malfunctions, the
simulation should model these deadlocks and malfunctions. The burden of
designing a system free of errors is left up to the system designer. In the
future, however, general techniques should evolve which make the overhead

operations both easier to design and understand.

Suggestions for Further Research
There are two directions in which further research can build upon the
work which has been presented here. First, more work is required before

packet communication architecture systems can be simulated. In particular, a

TR

- 87 -

means of programming the simulation modules is needed. Ideally, the user of a
simulat;on facility should be able to specify the operations of the components of
the actual system in a high-level language, such as the Architecture Description
Language of Leung, et al [14]. These specifications would then be translated
into programs for the simulation modules by an ADL compiler. The user should
not be concerned with the coordination and termination operations, nor with the
details of the module activity simulation. Fortunately, the coordination and
termination operations are simple and uniform enough that they will not
increase the complexity of this translation greatly. The major difficulty is the
design of a language which allows the specification of a wide variety of
systems in a concise and understandable form, but can be translated into
programs for the simulation modules. With the increasing interest in parallel,
asynchronous computing systems, a convenient and efficient means of simulating

them will be required to determine the best designs.

The other potential direction for further research is to apply some of the
techniques and insights which have been developed here to other areas. One
direct application would be to the simulation of systems which are not strictly
packet communication architecture systems. Some systems which are commonly
simulated, such as air traffic control models, have the essential properties of
packet communication architecture design. That is, the system. can be
subdivided into a number of components which operate independently and
communicate with each other only in a limited and well-defined manner. For

example, an air traffic control model can be subdivided into geographic regions.

The aqtlviues withln each region occur simultaneously and independently. The
only communication is between neighboring regions, and the only way they
communicate is by changing the boundary conditions. The simulation
techniques which have been developed here can be applied directly to such
systems. This will lead to a highly parallel simulation which can be executed
by a relatively simple network of computers. For the air traffic control model,
one can envision a "grid" of processors, in which each processor simulates the
activities within one geographic region. The simulation of an air traffic control
model on a network of processors has been studied in some detail by Thomeas
and Henderson [22]. In their system, different geographical regions of a
hypothetical airspace are simulated on different Arpanet processors. The
simulator for one region sends a message to the simulator for an adjacent region
when a plane crosses from the first region into the second. Toc maintain proper
time synchronization. one of the simulators maintaine a global time clock and
broadcasts the simulation time to the other simulators at regular intervals. In
their description of the system, the authors note that a distributed approach to
time synchronization would be preferable, since this centralized approach tightly
binds the simulators to the global clock. It seems that coordination operations
along the lines of those presented in Chapter 3 could provide the necessary
synchronization. Each simulator would send a time packet to the simulator for
each adjacent region indicating the earliest possible simulation time at which a
plane could possibly cross from the first region into the next. In this way, the
simulation can proceed without any centralized control or real-time constraints

on the simulators.

AP T A A 0 AT ST "‘M:W'ﬂ‘_“ N e R ORI RPNV LR T3 a8 TS oo T ol G

Moving beyond the field of simulation, there are other areas to which
these techniques and insights can be applied. The problems of deadlock and
nontermination -whléh were dealt with here occur frequently in parallel,
asynchronous systems. The concept of adding overhead operations to a system to
prevent these problems can be applied to other systems. For example, the
author [4] has identified a deadlock which can occur when the data flow
language of Weng [23] is extended to include both cycles and nondeterminacy.
This deadlock occurs after all computation by the program is completed, but the
program fails to recognize that it is able to terminate. This deadlock can be
avoided by adding more data flow actors to the program to perform the
necessary overhead operations and terminate the program. In fact, these
overhead computations are very similar to the termination operations of the

simulation modules.

To design the overhead operations for a wider class of parallel,
asynchronous systems, however, more general techniques will be required.
Ideally, a programmer should be able to specify a program in a high-level
language whic_h will then be compiled into a number of separate module
programs which include all of the needed overhead operations. These programs
could then be loaded into the modules of a packet communication architecture
system, and the system would then execute the program in a highly parallel
fashion. Translating high-level languages which include such features as data

structures and recursive procedure calls into individual module programs will

pose many difficulties.

S ¥ 5 S RS e KR e B AN K s i S A A i et LRt b B

- 90 -

Thus, while the focus of this work was on simulating a particular type of
computer system in a particular manner, some of the techniques and concepts

which were developed here have much broader areas of application.

T

-91 -

Bibliography

[1]1 Aho, A. V,, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass. (1974).

[2] Anderson, G. A, and E. D. Jensen, "Computer Interconnection Structures:
Taxonomy, Characteristics, and Examples", Computing Surveys, Volume 7,
Number 4, (December 1975), pp. 197-212.

(3] Barnes, G. H.,, et al, "The Illlac IV Computer,” IEEE Transactions on
Computers, C-17, Vol. 8, IEEE, New York (August 1968), pp. 746-757.

[4] Bryant, R. E, "Nondeterminate Stream-Oriented Computations by Cyclic Data
Flow Systems," Unpublished paper, Laboratory for Computer Science, MIT,
Cambridge, Mass. (December 19786).

[5] Dennis, J. B, First Version of a Data Flow Procedure Language, Technical

Memorandum TM-61, Laboratory for Computer Science, MIT, Cambridge, Mass.
(May 1975).

[6] Dennis, J. B., "Packet Communication Architecture," Proceedings of the 1975
Sagamore Computer Conference on Parallel Processing, IEEE, New York (August
1975), pp. 224-229.

[?] Dennis, J. B, and D. P. Misunas, "A Computer Architecture for Highly

— — — a—— —————
sae Ao s

ACM, New York {Novembver, iS74), pp. 402-40S.
(8] Dennis, J. B, and D. P. Misunas, "A Preliminary Architecture for a Basic

Data-Flow Processor,” Proceedings of the Second Annual Symposium on Computer
Architecture, IEEE, New York (January 1975), pp. 128-132.

[9] Dennis, J. B, D. P. Misunas, and C, K. Leung, A Highly Parallel Processor
Using a Data Flow Machine Language, Computation Structures Group Memo 134,
Laboratory for Computer Science, MIT, Cambridge, Mass, (January 1977).

[10] Ellis, D., private communication.

[11] Farber, D. J.,, et al, "The Distributed Computing System,” Proceedings
Seventh Annual IEEE Computer Society International Conference, IEEE, New York
(February 1973), pp. 31-34,

[(12] Kahn, G., "A Preliminary Theory for Parallel Programs," Internal Memo,
Institut de Rech. d'Informatique et d'Automatique, Rocquencourt, France (1973).

[13] Kay, 1. M,, T. M. Kisko, and D. E. Van Houweleng, "GPSS/Simscript - The

i i

Dominant Simulation Languages," Proceedings of the Eighth Annual Simulation
Symposium, IEEE, New York (1975) pp. 141-154.

[14] Leung, C. K., U. P. Misunas, A. Neczwid, and J. B. Dennis, "A Computer
Simulation Facility for Packet Communication Architecture," Proceedings of tha

Third Annual Symposium on Computer Architecture, IEEE, New York (1876), pp.
58-83.

[15] Metcalfe, R. M., Packet Communication, Technical Report TR-114,
Laboratory for Computer Science, MIT, Cambridge, Mass. (December, 1973).

{16] Organick, E. I, Computer System Organization: the B5700, B6700 Series,
Academic Press, New York (1973).

Rinehart, and Winston, Inc., New York (1966).

[18] Patil, S. S., "Closure Property of Interconnected Systems,” Record of the
Project MAC Conference on Concurrent Systems and Parallel Computation, ACM,
New York (1970), pp. 107-1186.

[19] Rowe, L. A., The Distributed Computing Operating System, Technical Report
Number 66, Department of Information and Computer Science, University of
California at Irvine, Irvine, Calif. (June, 1975).

[20] Rumbaugh, J. E., A Parallel, Asynchronous Computer Architecture for Data
Flow Programs, Technical Report TR-1850, Loboralory for Computsi Sciemce, MiT,

Cambridge, Mass. (May 1975).

[21] Swan, R. J., S. H. Fuller, and D. P. Sieworek, "Cm®: A Modular,
Multi-Microprocessor,” A Collection of Papers on Cm* ' A Modular,
Multi-Microprocessor, Department of Computer Science, Carnegie-Melion
University, Pittsburgh, PA. (February 1977).

[22] Thomas, R. H, and D. A. Henderson, "McRoss - A Multi-Computer
Programming System," 1972 Spring Joint Computer Conference, AFIPS, Montvale,
N. J. (1972), pp. 282-293.

[23] Weng, K. S, Stream-Oriented Computations in Recursive Data Flow
Schemas, Technical Memo, TM-68, Laboratory for Computer Science, MIT,
Cambridge, Mass. (October 1975).

- 93 -

Appendix 1

Correctness of the System Simulation

The following proof shows that the simulation operations of Chai)ter 2,
combined with the coordination operations of Chapter 3 will give a simulation

which accurately models the actual system.

Before proceeding with the proof, some additional notation is needed. For
an input port {p of a simulation module, the value of tlasty is the last time
value received on that input port. Thus, for an input port s‘mulation history,
we can define a function Tlast where Tlaet(hsik) equals the minimum value
of t, Bstseo, such that hsi,(1) = hsi,. Similarly, for an output port o, of a
module, tlast-oﬁt,. equals the last time value sent from the port. Thus, a
function Tiast-out can be defined for output port simulation histories, where
Tlast-out(hso,) equals the minimum value of ¢, 8sts, such that hso,(t) =

‘-na
HOV L.

Finally, for a module input simulation history HSI the function Tfinal is
defined as:
Ttinal (HSI) = %7 (Tiast(hsi,)),
where

HSI = <hsi, hsiy, . . . ,hsip.

This function can be applied to system input simulation histories as well.

—

-

iD=A048 290

UNCLASSIFIED
2 oF e

ADAO4B280

END

DATE
FILMED

2=78

ppc

MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/2
SIMULATION OF PACKET COMMUNICATION ARCHITECTURE COMPUTER SYSTEM=-ETC(V)

NOV 77 R E BRYANT
MIT/LCS/TR=-188

NO0014=75-C-0661
NL

5

-

Requirements of the S8imulation
The correctness proof will apply to simulations which fulfill the following
six conditions. First, there are three conditions on the modules to be simulated:

1.) Functionality of Output: The output history and final state of a
module depend only on the initial state of the module and the input
history.

2.) Monotonicity of Output: The output of a module at time { cannot be
affected by input received after time ¢.

3.) Finite Delay: The output of a module at time ¢ cannot be affected by
input received at time ¢. In other words, there must be a finite delay
between the receipt of an input packet and the production of am output
packet which depends on this input packet.

- If a module satisfies all three of these requirements, then its output history up

to' and including time ¢ must be a function of its initial state and its input
history up to but not including time ¢. This can be specified more formally in
terms of histories. Suppose for two operations of a module, the module
produces an output history H0O when it starts in initial state S, and receives the
input history HI, and it produces an output history H0’ when started in the
same {initial m Sy and given the input history HI'. Then for any value of ¢
such that
HI(¢-8) « HI® (¢-8), for all 5>8,
the two output histories must be identical through time ¢, that is

HO() = HO' ().

The following conditions will be required for each simulation module in

the system:

1.) Correct Module Simulation: The simulation of a module must produce
the same values as the actual module would under the same

circumstances. That is, suppose the simulation of a module produces a
. simulation history HSO when it starts in initial state Sy and receives
input simulation history HSI, where all of the data and time packets
arriving at each input port have strictly increasing time values. Let
tfinal = Tfinal (HSI),
That is, {final is the smallest of all the final time values received by the
input ports of the simulation module. Then

data(HSO(tfina)) = HO(tfinal),

where HO is the output history of the actual module when it starts in !
the same initial state S, and receives the input history HI = data(HSI). :
Furthermore, if tfina! = o (all input ports to the module receive time
packets with value ®), then the final state of the simulation of the ;
module Sf will be the same as the final state of the actual module. i

2.) Correct Ordering of Output Packets: If the packets arriving at each '
input port of a module in the simulation have strictly increasing time 1
values, then the output packets sent from each output port of the module
in the simulation will have strictly increasing time values.

3.) Correct Coordination: Each output port of a module in the simulation
will eventually produce a time or data packet with time value 8reater
than the minimum time value of the final packets received at the input
ports, or else the output port will produce a time packet (o). In other
words, suppose a module in the simulation receives an input simulation
history HSI and produces an output simulation history HSO. Then for
any output port o, of the module either |
Tiast-out(hso,) > Tfinal (HSI), ;

or
Tlast-out(hso,) = o,

The simulation and coordination operations (without the termination

operations) presented in Chapters 2 and 3, satisfy all six of these requirements,

as long as the modules to be simulated satisfy the first three requirements.
First, the simulation operations developed in Chapter 2 will guarantee that the
correct module simulation requirement is satisfied. To see this, suppose at some
point in the simulation, a simulation module has received a simulation history
HSI' where HSI' € HSI (the ultimate simulation history which will be

received by the simulation module.) Assuming packets arrive at each input port

i
= - s M

with strictly increasing time values, then if
tmin = Ttinal (HSI') = 2% (tlasty),
no new packets with time less than or equal to tmin will be received on any
input port. By the firing rules for the simulation, the firing of the module at
time tfire cann_bt be simulated, unless tfire s tmin. Thus, when the firing of the
module at tie ffire is simulated the simulation history HSI(ifire) has been
received. Assuming the simulation correctly simulates the firing of the module,
the proper output p.ckets will be produced. Furthermore, once the simulation
module has received the entire input simulation history HSI with
tfinal = Tfinal (HSI),
the firing of the module for all values of {fire s tfinal will be simulated.
Hence, all output packets with time values less than or equal to ffinal will be
produced in response to this input simulation history, thereby guaranteeing that
data(HSO(tfinal)) = HO(tfinal).

Thus the simulation will satisfy the correct module simulation requirement.

The second requirement, correct ordering of output packets, is met as long
as the input packets to the simulation module are correctly -ordered. That is, if
an output port o, of the stmulation module first produces a packet p; and then

a packet py then ¢4, the time value in p;, must be less than ¢y, the time value

in py. To show this, four cases must be considered:

1. pyg and p, are both time packets.
Then p, would be sent out only if ¢, > tlw-outl -ty

2. Py is a data packet and p, is a time packet.
As in case 1, pp would be sent only if ¢ > tlastout; = ¢4.

L

-97 -

3. Py and p, are both data packets.
Assuming the simulation module satisfies the correct module simulation
requirement, data packets will always be produced in the proper order.
4. P; is a time packet and p, is a data packet.
Py was produced with a time value t; = tmin + delsy only if the module
could not possibly fire defore or at time tmin. The actual module always
has.dehyumemmthanoreqmtoddc’htmtmund
productng output packets, hence the simulation module could not send out
adaumhtpzwlmumtzsttnomthomtxmtpondmp‘ has
been sent.

For each of these four cases, the simulation will satisfy the correct ordering of

output packets requirements.

The coordination operations also nﬂ;fy the correct coordination
requirement. If the simulation module receives an input simulation history HSI
with | |

gﬂnal = Tfinal (HSD),
thenafuranoutputdaumhuhavehenprodueed.uwmmdom time
packets with value

tout = tfinal + delay,
from all output ports for which tout > tla_rt-out Iz Since delay is greater than
um.umutM>mm,mtm-mw-w. Hence, after the last time and data
packets have been sent from each output port 04, either

uﬂ"ﬂl‘l 2 tout > tfinal,

tlast-out ; = tout = tfinal = o,

Th Ye correct coordination requirement will be satisfied.

A yroof can now be given which shows that if the modules to be

w

e

simulated satisfy their three requirements, and the simulations of these modules

_ satisfy their three requirements, then when these simulation modules are

interconnected, the simulation will accurately model the eatire system.

Theorem 1. Correctness of Simulation.
Suppose a simulation has the following properties:

1.) The modules to be simulated satisfy the monoticity of output, finite
delay, and functionality of output requirements.

2.) The sunnhtloa of each module satisfies the correct module simulation,
correct ordering of output packets, and correct coordination requirements.

3.) All communication links between simulation modules operate properly.
In other words, if input port {, is connected to output port o, then hsi,
= hso,.

4.) The simulation receives a system input simulation history SI and the
sequence of time values received at each system input port is strictly
increasing. ;

Let tfinal = Tfinal(SI), that is (fina! equals the smallest final time value
received by any of the system input ports during the simulation. Then the
simulation module for any module M i will produce a module output simulation

history uso, such that
am(llso,uﬂum - l'loj(gﬂul),

where HO; would be the output history of the corresponding module in the
actual system under following conditions:

1.) All modules in the actual system are started in the same initial state
as the corresponding simulation modules.

2.) The actual system receives the system input history I, where
I « data(SI).

Furthermore, if {final « ®, the final state of each simulation module which
terminates will equal the final state of the corresponding module in the actual
m.

YT

PO

P E———

e

Before the major part of the theorem can be proved, two lemmas are
needed.

lLemma 1.1. Correct Ordering of All Packets

If the simulation of each module satisfies the correct ordering of output packets
requirement, the communication links between the simulation modules operate
correctly, and the packets arrive at each system input port with strictly
increasing time values, then every output port of every simulation module will
produce packets with strictly increasing time values.

Proof of Lemma 1.1

The proof will follow by induction on the sequence of packets which an
observer would see if he were to simultanecusly observe the output ports of
every simulation module. This sequence would be of the form
p,.pz.....pl.... where Py is the fth packet observed. In any physical system,
no two packets could appear at the exsct same time, so the packets will be
totally ordered in time. The sequence of packets sent from each output port is
countable, and there are a finite number of output ports in the system, hence

the sequence p,,p,,... must be countable. This allows us to perform induction

on the sequence.

Basis: Initially, no output ports have produced any packets, thus no ordering

constraints have been violated.

Induction: Assume the observer has seen the sequence Pg:P2eeeeyP; and up to
this point, all output ports have produced packets with strictly increasing time

values. Then, by the first-in, first-out property of the communication links, all

L el

_ R— ,,,_______._‘. - ”

Mo aceiiead ey

input ports connected to these output ports have received packets with strictly

increasing time values. Wn,anmmautmluwmlm
packets with strictly increasing time values. Hence, whichever module produces

packet p;,, must have received input packets at each input port with strictly

increasing time values up to this point. Since this simulation module satisfies
the correct ordering of output packets requirement, the time value of p;,, must
be greater than the time values of all packets which have been sent from this

output port previously.

Thus, by induction, no packet in the sequence Py,pPy,... can violate the

ordering requirements for each output port.

Lemma 1.2, Monotonicity of Simulation Output.

If a module satisfies the monoticity of output, finite delay, and functionality of
output requirements, and the. corresponding simulation module satisfies the
correct module simulation requirement, then the output data packets produced by
a module in the simulation with time values less than or equal to ¢ will depend
only on the initial state and the input data packets received with time less than
t. More precisely, suppose

data(HSI(¢-8)) « HI(¢-8), for all 850,
and
¢ s Ttinal (HSI).
Then, if the actual module and the simulation module both start in the same
initial state S,
data(HSO()) = HO(n),
where HSO is the output simulation history of the simulation module after
receiving HSI, and HO is the output simulation history of the actual module
after receiving HI.

The idea behind this lemma is that the simulation can and will produce

the output simulation history HSO(¢), once the input simulation history HSI (¢-)

s

NTRARE i ki o -

- 101 -

7

has been received. That it can produce the output simulation history up to
time ¢ is guaranteed by the three requirements on the module. That it will is
guaranteed by ;he correct module simulation requirement. In order for the
um;xhtlon module to realize it has received the eamtire input simulation history
up to time ¢ ltmmmnmmmmumovdwmtetthmorequd'wt.
as is stated in the condition ¢ < Tfinal (HSI). The simulation, however, will

'onlyuuthopackcﬁmmumevalnulmmntlnwculaungthooutput

valuuwith umeva;ueslmthanoroqnaltot.

Proof of Lemma 1,2
Let HI' - data(HSI), and let HO’ equal the output history of the actual

module when it starts in state S, and receives the input history HI'. Then by

the mmnt of the lemma,
HI(t-8) = data(HSI(t-8)) = HI’ (¢-5), for all 5>8.
Hence, by the three requirements for the actual module
HO’ (¢) = HO(2).

Furthermore, by the correct module simulation requirement, if ¢(fina! =
Ttinal (HSO), then

data(HSO(tfina)) = HO’ (¢final).
By the statement of the lomma,‘t S tfinal, therefore

data(HSO0(¢)) = HO' (0).

data(HSO0(2)) « HO' (r) « HO(2).

This lemma will allow us to look only at the input data peckets with

- 102 -

time values less than ¢, whea trying to prove the correctness of the simulation

up to and including time ¢.

 Proof of Theorem 1.

| me,mthmmnumwmmonmommofume
valu.es

Lgelgolareeeslisece
where ¢, = 8, and
t’<t1<... <l <ees S O,

and each time value f;, / > @, is contained in some actual or simulation history
for the system. That is, t; is contained in one of the following histories: I,
the system input history to the actual system; HO;, the output history of some
module in the system .I' SI, the system input simulation history; or HSO j» the
output simulation hisiory for some module M;. As mentioned in Chapter 2, the
history and simulation history for any port must be a countable sequence.
Since there are only finitely many input and output ports in the system, only
countably many time values can appear in all of the histories. Thus, the
sequence {g,fg,...,¢;,«.« must be countable, which allows us to perform

induction on it.

Induction Hypothesis
FOI' llly ‘! € ‘0111.000.‘1.000. S\lch th.t tl S !ﬂnd’

a.) ummso,u,n - no,u,). for all modules .l' and

b.) Either t; = ®, or for any output port o,
hso,(z;) c hso,.

A N A TR G AR A R T e s

- 103 -

That is, the simulation will be correct through time ¢,, and all ou}yut ports in
the simulation will produce some packet with time value greater thanm ¢;, unless

ll.O.

Basis: ! = O.
a.) Initially, HSO J(O) = HO 1(0) « the empty history, for any module M j
b.) Initially, HSI;(8) = HI;(@) = the empty history. Hence, Tfinal (HSI (@) =
@ for any module M 5 By the correct coordination requirement, for any output
port o, of module M,

tlast-out, > Tfinal (HSI;(@)) - 8.

Thus, hso,(8) c hso,, for any output port in the system.

Induction: Assume true for /, where {; < (final, prove true for 41,
a.) The Monoticity of Simulation Output Lemma which has just been proved
will be applied to show that data(HSO;(t;,,)) = HO,(r;,). By the induction
assumption

data(HS0,(¢))) = HO,(e)).
for all modules M ; in the system. Furthermore, by the statement of the
theorem,

data(SI) =« I.

Therefore, since all communication channels in the simulation operate properly,

data(HSI (¢))} = HI(rp),
for all simulation modules M j- Since no packets are produced with time ¢ such

that ¢; < < t},,

dlto(HSI](ll,,-s))] “11(31‘1-5). for all §>8.

T R DR —

- 104 -

Next, by part b). of the induction assumption hso.(z;) c hso,, for any
output port o0, in the slmuhuon. Then, if input port i{p is connected to output
port o,

hsi,(¢)) - hso,(t;) c hso, = hsi,.
Furthermore, since any system input port will receive a packet with time
gmterthanorequnltotﬁml,andtﬂnd>t,,
hsi,(¢)) c hsi,,
for any system input port iy Combining these two facts,
hsi,(¢;) c hsi,,
for any input port, {p, in the system, whether it is connected to another
module, or it is a system input port. No packets are produced in the simulation
with time ¢ such that t; <t <144 hence
hsi,(t;,,) € hsi,,
for any input port iy in the system. Therefore
Tfinal(HSIj) 2 lpap
for any module Ij. Lemma 1.2 can therefore be applied to show that
data(HS0,(r;,.)) = HO;lty,),

for any module M 5

b.) As has just been shown, if ¢’ = Tfinal(HSIl) for the module Ij. then ¢ 2
f141- By the correct coordination requirement, for any output port o, of module

[} I either

tlast-out, > ¢ 2 ty,q

i S i Ty i sl a A e ot bl St e
o R s e B S LR G NS IR i e g e § ' —

- 106 -

tlastout, = © 2 ' 2 t),4.
That is, some packet with time value greater than 143 Will be produced on
each output port, unless tis+g = ®. Thus, for any output port o, in the
simulation, either
hso,(t;,y c hso,,

or

tl'! = 00,

" Therefore, by induction
data(HSO,(tﬂM(H - Ho,(mnan,

for any module M j in the system.

Finally, to show that the module M; would have the same final state Sy in
both the simulation and the actual system, if tfinal = ®, we have just shown
that data(HSO,(tfinal)) = HO(tfinal), for any module M,. Furthermore, for the
system- input ports, the statement of the theorem requires that data(SI) = I.
Thus, if the communication links between simulation modules operate correctly,
and {final =

data(HSI) -'HIJ.
for any module M;. By the statement of the theorem, M j is started in the same
lnitlal state Sy in both the simulation and the actual system, therefore by the
correct module simulation requirement, if tfinal = © and the simulation module
terminates, then both the simulation module and the actual module must have

the same final state.

b
;
:
P 1
E &
3
.

- 108 -

This completes the proof of the correctness of the simulation operations of
Chapter 2 combined with the coordination operations of Chapter 3.

e 1 e

- 107 -

Appendix 2

Correctness of the Termination Operations

The following proof shows that the addition of the termination operations
of Chapter 4 to the simulation modules will maintain the correctness of the
simulation, with the added feature that the simulation will terminate once the

termination conditions are satisfied.

Theorem 2. Correctness of Termination

a.) Suppose a simulation is performed in which the modules to be simulated
obey the three requirements: functionality of output, monotonicity of output, and
finite delay, and the simulation and coordination operations of each simulation
module obey the three requirements: correct module simulation, correct ordering
of output packets, and correct coordination, and furthermore the coordination
operations of a simulation module cannot cause time packets () to be sent out
by the simulation module unless
1oe, (tlasty) = o,

Then the addition of termination operations to the simulation modules as
described in Chapter 3 will not cause any of these requirements to be violated.

b.) If the actual system ever reaches a state in which no modules in the
system will ever enter the firing mode unless more packets are received - on the
system input ports, then every simulation module in the simulation of this
system will eventually produce time packets with value © on all output ports,
if all system input ports in the simulation receive time packets with value .

Proof of First Part

The termination operations will not affect the actual modules, hence the
first three requirements for the Correctness of Simulation Theorem will hold.
As for the correct module simulation requirement, the termination operations are

designed not to interrupt the simulation of the modules. The only way they

could potentially cause this requirement to be violated would be by terminating

e

- 108 -

the simulation before the termination conditions are satisfied. Furthermore,
since test packets contain no time values, their presence will not affect the
correct ordering of output packets, or the correct coordination requirements. As
long as the termination operations do not cause the simulation modules to send
out time packets () before the termination conditions are satisfied, neither of

these last two requirements will be violated either.

Since modules can communicate with each other only in the form of
packets sent along the data channels, the conditions for termination for the
modulesinaeonnocuvltychsscjcanbemtedw

1.)' For each simulation module M; ¢ CI all input ports i, such
that iy ¢ from_class; have received time packets (w).

2.) No simulation module M, ¢ Cl can simulate the firing of a
module without receiving more data packets.

3.) No simulation module in C 5 will ever receive further data
packets.

For a connectivity class which contains only one module and has no
self-loop, there are no termination operations. Thus, as long as the termination
operations for connectivity classes containing cycles do not cause the simulation
modules in the class to terminate too soon, the correctness of the simulation

will be maintained.

Termination operations might cause the simulation modules in a class to
terminate prematurely in one of two ways. First, a test of the class might

succeed, even though the termination conditions are not satisfied. Second, some

simulation module M; might receive a time packet () on an imput port i, ¢

- 109 -

from_class;, before any test has succeeded, and then proceed to send out time
Packets () from all output ports, even though the termination conditions for
the class are not satisfied. This second case can be ruled out rather easily. By
the further restriction which has been pPlaced on the coordination operations in
the statement of the theorem, the coordination operations cannot cause a
simulation module M; ¢ C j to send ﬁut time packets () from its output ports,

unless time packets (®) have been received on all input ports, including those

in from_class;. However, no simulation module MyeC j will receive a time

packet (o) on an input port in from_class; unless some simulation module
M ¢C j sends a time packet (w) from an output port in to_class;. Without
any termination operations, this would happen only if M, had already received a
time packet () on all input ports including those in from_class;. Thus, no
simulation module can be the first simulation module in the class to send time
packets (w). Therefore the coordination operations alone cannot cause any
simulation modules in a cla;s to terminate if the class contains cycles.
Furthermore, the termination operations cannot cause any simulation module in

a class to send out time packets (o) until after a test has succeeded.

Thus, the proof of the first part of the theorem reduces to:

Lemma 2.1. No Premature Termination

Suppose the termination control module T for a connectivity class C J has
received time packets (w) on all input ports {, ¢ (rom_classy, and no firing of
the module can be simulated unless more data packets are received. If T sends
out test packets (test.+) from all output ports o) ¢ to_classy; receives K packets
with value, test.+, in return, where
Kel+ Y (1toclassg| - 1)
.‘(cl

- 110 -

and it receives no further data packets while waiting for the returning test
packets, this means that

i.) All simulation modules .t € Cl have received time packets (o)
on all input ports i) ¢ from_c!m‘.

2.) No simulation module M; ¢ Cl can simulate the firing of a
module without receiving more data packets..

3.) No simulation module in C, will ever receive further data
packets.

The following sequence of assertions proves Lemma 2.1:

1.) If every simulation module M; ¢ C; is terminastable, meaning that it
receives a time packet (w) on every input port which is not in from_class;, and
it eventually stops simulating the firing of the module, then during a test (or
reset) of the class CJ
a) Each simulation module My in C; will receive at least one test
(or reset) packet.

b.) Exactly K test (or reset) packets will be created, where
Kela+ Z (lto_clautl -1).
.tlc'l

c.) At least one test (or reset) packet will be received on each
input port in from_class; for every My ¢ C;.

Assertion 1a) can be shown by induction on the length of the shortest
path from T to M; (there must be a path from T to any other module in a
connectivity class.) As a basis, if / =« 1, then T — M;. M; will receive a test
(or reset) packet shortly after T sends out test (or reset) packets from each

output port o) ¢ to_class;. Now assume the assertion is true for all simulation

e e e G L A O

e et e ——

- 111 -

modules in the class with a path from T of length less than or equal to /.
Then if there is a path of length l/+1 from T to a simulation module M;, there
nmtb.aomemodulel,c cj.mchthatlh-)lt,ndthofnuapathot
length [from T to M, Hence the induction assumption applies to M, meaning
that it will receive at least one test packet. As long as M, is terminatadle, it

will send test (or reset) packets on every output port oy ¢ to_class,. Therefore,

r
M; will eventually receive a test (or reset) packet.

Rasartion 15) Tellowi ety troe 130, TR T cheatas 550 A0S owt
Ito_classy| test (orv reset) packets. The first time some other simulation module
M; ¢ C; receives a test (or reset) packet, it will send out ito_class;| test (or
reset) packets, thereby creating |to_class;| - 1 new omes. On receiving any
further test (or reset) packet, a simulation module will send one test (or reset)
packet, hence no new test packets will be created, nor will any be destroyed.
By assertion 1a), eventually all simulation modules wmlrecelv' at least one test
(or reset) packet, therefore exactly K test (or reset) packets will be created,

where
Kels Z (Ito.clmtl -1).
.t(cl

Assertion 1c) also follows from 1a). Every input port i, in from_class; of
a simulation module M; ¢ C j is connected to an output port o, of some module
M « C,. and o, is in to_class;. By assertion 1a), M; will receive at least one
test (or reset) packet. If M; is terminatable, it will eventually send a test (or
reset) packet on every output port in the set (rom_class;. Therefore, M; will

eventually receive a test (or reset) packet on {),. This is true for any input

e ol

- 112 -
ml.u(un.dm,otnydnnhuoamoduhltccl.

: 2.) If some simulation module M; is not terminatable, then less than K test

; packets will be created during a test, and therefore the test cannot succeed.

ul,ummmmuo,mmnmnmmomuymmnuom
if it receives any. Thus it will not create |to_class;| - 1 test packets, which

mumMfow‘mukmmmnhmmamuaustofmeclm

The test cannot succeed unless T receives K test packets, hence the test cannot
succeed if some simulation module M; does not receive time packets (w) on all
input ports which are not in from_class;, or it does not stop simulating the

firing of the module.

3.) For a test to succeed, no simulation module can receive any data packets
between the time it receives its first test packet and the time it sends its last f

test packet.

If a simulation module did receive a data packet during this time, it would

send out at least one packet (test.-). Once a (test.-) packet has been sent,

"the test must fail, because any terminatable simulation module which receives a

(test.-) must send out a (test.-) packet. If all modules are terminatable, T

will receive at least one (test.-) packet, and the test will fail. If some

simulation module is not terminatable, the test will fail in any case.

4,) u.mwmunmuonmml,cc,mnMwuydm

packets after it has received its last test pecket.

!

- 113 -

E This will be shown by contradiction. Suppose a test of a class succeeds,
but one or more simulation modules receive data packets after receiving their
final test packets. MI‘ booneqftheﬂrstdmuhtiunmodnlutor which this
3 happens. That is, during the test, 't received all of its test packets and later
neoivuadaumkotponnmemputmt.,bntthumwhamnodto
any simulation module in the class before this point. If { is not in
from_class;, then M; could not have sent any test packets before receiving this
data packet, because it cannot send any test packets before receiving a time

packet () on). Thus if a data packet is received on an input port {, which

is pot in from_class; after any test packet has been received by M;, either the
simulation module would not be terminatable, or M; would send out a packet
(test.-). In either case, the test would fail. Thus, {, must be in from_class,,

which, by assertion 1ic), implies that a test packet was received on input port 7Y

before data packet p was received. By the first-in, first-out property of the
communication links between simulation modules, some module M; must have
sent data packet p to M, after it had sent a test packet to M;. This possibility

mhcllmtuubyloonuatwom

Case 1. N; - T

The termination control module T did not send out any test pesckets umless it !
could not simulate any more firings without receiving more data packets. Thus,
in order for T to send data packet p after sending test packets, it must receive i
at least ome dnu'. packet P’ after the test has been initiated. Suppose data

packet P° was received before the test has been completed. Thon the test must

- 115 -

§.) If a test succeeds, then no simulation module in the class can ever simulate
a firing without receiving more data packets, nor will it ever receive more data
packets.

If a test succeeds, then at the time a simulation module sent its first test
packet, it could not simulate any more firings without receiving more data
packets. By assertion 3), the simulation module did not receive any data
packets between this time and the time at which it received fts last test packst.
By assertion 4), the simulation module did not, nor will it receive any data
packets after the last test packet was received. Therefors, the test will succeed

oaly if all simulation modules in the class are ready to be terminated.

This compietes the proof that the addition of termination operations to the
simulation modules cannot cause them to terminate too soon. Hence, none of
the six requirements for the Correctness of Simulation Theorem of Appendix 1

can be violated. The correctness of the simulation will be maintained.

Proof of the Second Part

Proving the second part of the theorem requires showing that the
termination operations for each connectivity class will cause the simulation
modules in the class to terminate, once the termination conditions for the class
are satisfied. uacmclwmaam.modulollwmchm-o
self-loop, then the correct coordination requirement will guarantee that time
packets (o) will be sent out once time packets with value ® have been

received oa all input ports, and no more firings of the module can de simulated.

SR

- 116 -

Thus, this class will terminate once the termination conditions are satisfied.
Mmgocuﬂtychumwmumlu.nmust be .shawn that once the
connectivity class reaches the conditions for termination, any previous test or
reset will be completed, a new test of the class will be initiated, and this test

will succeed. These requirements are stated in the following lemma:

Lemma 2.2. Eventual Te-mination

A.) Completion of a Test or Reset

Suppose the termination control module T for a class Cl sends a test (or
reset) packet from each output port o, in to_classy. If every simulation module
N in Cj is terminatable, meaning it eventually receives time packets () om
every input port i, which is not in from_class;,, and it eventually stops
simulating the firing of - the module, then all simulation modules in the class
will receive at least one test (or reset) packet, and T will eventually receive K
test (or reset) packets, where

Kel+ ¥ (itoclasyl - 1).
.‘(c!

B.) Eventual Success of Test

Suppose every simulation module M; in C, reaches a state in which time
packets () have been received on all input ports which are not in from_classy,
no firings can be simulated without receiving more data packets, and no more
data packets will ever be received by M;. Then T will send out test packets
(test.+) from all output ports in to_classy, and it will eventually receive K
(test.+) packets in return without receiving any further data packets.

C.) Termination after Successful Test

If T sends out time packets (o) on all of its output ports, then every
simulation module M; in the class will eventually receive time packets (o) om
all input ports and hence will terminate.

The following sequence of assertions proves each part of Lemma 2.2

A) Completion of & Test or Beeet

el

- 117 -

1.) ummmmmmummc,uwmm,m
a) Each simulation module M; will receive at least one test (or
reset) packet.
b.) Exactly K test (or reset) packets will be created.
These assertions are identical to assertions 1a) and 1b) in the proof of

Lemma 2.1.

2.) If every simulation module in the class Cj is terminatable, T will receive K

test (or reset) packets.

This follows from the way in which the signal output ports were chosen.
Every simulation module except for T has a single signal output port. T has no
signal output port. These ports are chosen in such a way that if we look only
at the simulation modules in the class and the channels connected to their
output ports, there is a path from every simulation module to T. Thus, the
simulation modules and the channels connected to the signal output ports fulfill
the necessary requirements for a directed tree [1), with each arc pointing from
a son to its father. That is

:;om'r::ro is a unique root node (namely T) with no arcs leaving

2. Every other node (K; 4 T) has a single arc leaving from f{t
(namely the channel connected to the signal output port); and

3. There is a path from every node to the root node.

One important property of trees is that they are acyclic, hence there is no path,

My -5 N, which follows only signal output links. During the test (or reset)

- 118 -

operations, K test (or resst) packets will be created, and once all simulation
modules have received at least one test (or reset) packet, all test (or reset)
packets will sent only from signal output ports. These packets will not be
destroyed, nor can any terminatable simulation module hold onto them
indefinitely, hence the packets can only be propogated toward the root node T.
Therefore T will eventually receive all K test (or reset) packets, and the test (or

reset) operations will be completed.

B.) Eventual Success of Test.
Snpmomydnnuuonmoduhlilnaclmclruchu‘amuwhlch

time packets (o) have been received on all input ports which are not ia

from_class,, no firings can be simulated without receiving more data packets,

and no more data packets will ever be received by M.
1.) A new test of the class will be initiated.

If the simulation modules reach the above-mentioned state, they are all
terminatable. Hence, by part A) of the lemma, any previous test or reset
operations will be completed. Furthermore, during the reset operations every
simulation module will receive a resst packet. Hence, any new test will take
place as if no previous tests had occurred. Furthermore, once the reset

operations are completed, a new test will be initiated.
8.) The test will succeed.

As long & 0 simulation module receives a data packet between the time it

4,9.-‘,‘...L\:’/}J'}b':“hﬁ"ywdbvqgmﬁwﬁyaﬁa%qwVZ&W&‘« A AR

- 119 -

receives its first test packet and the time it receives its last test packet, it will
send out (test.+) packets as long as it receives (test.+) packets. By our
assumption, no simulation modules will receive data packets once the test has
started. Therefora, since T starts the test by sending (test.+) packets, by part
A) of the lemma, K (test.+) will be created, and T will eventually receive K
(test.+) nchu. Thus, the test will succeed once the termination conditions

for the class are satisfied.

C.) Termination after a Successful Test.
mpmdeadmmMdemum-,m {0) from all

output ports.

1.) Every simulation module M; in C; will receive at least one time packet (w)

on some input port {, in from_class,.

This can be shown by induction on the length of the shortest path from T
to M;. In fact, the proof is virtually identical to the proof of assertion 1a) in

the proof of Lemma 2.1.

2.) zmymmummmoltec,mnmuwummcw) on every

input port.

In order for the test to succeed, M; must have received time packets (o)
on every input port which is not in from_cla:st. Furthermore, by assertion 1)
any module I, ‘€ C, connected to M; must receive at least one time packet ()

on some input port {, ¢ from_class;. Hence, it will send out time packets (o)

SRR A e B e Mt g i

- 120 -

ummtmtmwmmbhntmudmmlt. Therefore, all
] mmuonmmumc,mnmunummm(o)mmmcmm

the test has succeeded.

This completes the proof that the addition of the termination operations to

mmmummmmnm-.mummmwmmm

termination conditions for the system are satisfied.

Official Distribution List

Defense Documentation Center New York Area Office

Cameron Station

715 Broadway - 5th floor

Alexandria, Va 22314 copies New York, N. Y. 10003 1 copy
Office of Naval Research Naval Research Laboratory
Information Systems Program Technical Information Division
Code 437 Code 2627
Arlington, Va 22217 copies Washington, D. C. 20375 6 copies
Office of Naval Research Dr. A. L. Slafkosky
Code 102IP Scientific Advisor
Arlington, Va 22217 copies Commandant of the Marine Corps
(Code RD-1)
Washington, D. C. 20380 1 copy
Office of Naval Research
Code 200
Arlington, Va 22217 copy Naval Electronics Laboratory Center
Advanced Software Technology Division
Code 5200
Office of Naval Research San Diego, Ca 92152 1 copy
Code 455
Arlington, Va 22217 copy
: Mr. E. H. Gleissner
Naval Ship Research & Development Center
Office of Naval Research Computation & Mathematics Department
Code 458 Bethesda, Md 20084 1 copy
Arlington, Va 22217 copy
Captain Grace M. Hopper
Office of Naval Research NAICOM/MIS Planning Branch (OP-916D)
Branch Office, Boston Office of Chief of Naval Operations
495 Summer Street Washington, D. C. 20350 1 copy
Boston, Ma 02210 copy
Mr. Kin B. Thompson
Office of Naval Research Technical Director
Branch Office, Chicago Information Systems Division (OP-91T)
536 South Clark Street Office of Chief of Naval Operations
Chicago, I1 60605 copy Washington, D. C. 20350 1 copy
Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, Ca 91106 copy

