
FL AD-Afli 26* NATNCNATICAI. APPI.ICATIONS flOW INC (UISFQØD N y - 

- - 

~~~~~~~~ *0/13FORWARD NONTC CARLO PCTHOQ FOR ~~~ SOLUTION OF Tflc—oflrje~~y H—nc cwDCC 77 £ S TROIaTZIIOY DMSSS—76—c—ooflUNCLPAS$IFZSD P—tin ARO—13667.a—Nx 14.
J cc(

Ar .!-I

_ 
it:

- a



MAO! P ROJECT

F- 
P-7133

FORWARD MONTE CARLO METHOD

FOR THE SOLUTION OF

TIME-DEPENDENT HEAT CONDUCTION EQUATION

by

Eugene S. TroubetzkOy

— 

Final Report

U. S. Army Research Office

Contract No. DAAG29—76—C—0035

Mathematical Applications Group. Inc.
3 Westchester Plaza

Elmsford, New York 10523

C-, 4

STL~IL~~~ L~ :;rt~TEM~~~~&~~
APP~~~~

Ci t~ ’I ~~~~~~~ 
L491eO.IL~~~~



SECU T V C L A S S I F I ( A ~~~ON Ø~ THIS ~~~Gr7~~~~~~).~.FnI. ’.d) / 3 t~1o 1’ ~~ 
-

REPORT DOCUMENTATION PAGE

12 

3OV T A C C ES  

~~

. ) R E C I P I F N T S  C A T A L O G  NUMBE R

~r~ ’ ! . i ~~t ~i r n t  r~~h ’t. i ri ~q ~r~t ~r i ~~
j

r ~ ~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~DMT NUMUt~~

THOP(.) C O NT R A C T  OR GRANT NUMBER(.)

~~~~

S. PERFO RMING O R G A N I Z A T I O N  NAME AND ADDRESS 10 PROGRAM ELEMENT . PROJ ECT . T A SK
A R E A  & WOR K UNIT NUMB ERS

~ a ; ~ r~at1ca ~ ~~~~ .~~cat~ Group , i n c .  ~~

.e~~~ or  aza
ow r~c 10523

II. CONTROLLING OFFICE NAME AND ADDRESS EPORT D A T E
U. ~~~. . r~. v Besearch Of f ’ice r __________

~~~ o’~ ~~~ 12211 . q~~ 
j

~~ r e~~r c r .  ‘:r ~~~~~~~ Park , 6o~ ~~~~~ 
(
~ p

It MOMITORING AG ENCY NAME I AOORESS(II diff.rwI Ir on, Conlrollfnd OUIc.) IS. S E C U R I T Y  CLA  .

Ur ic  i~ .ss ifie~IS.. DECLASSIF ICAT ION /DOWNGRAD ING
SCHEDULE

IS. DISTRIeuTIOPI S TA T E M E N T  (of hI. R.pnrI)

Df l~rA~ pr  v.~. I for  ru~~i 1 ’  r c~i~~ t z e ;  I i s t r i bu t i o n  u n l i r nj t  ~~1. -fl2~
.

~~ ~~~ j
17 DI STRI B UTION S T A T E M E N T  (of A. ab.Ir cf .,f .r.d in 8Iock 20. II dIfl.r.mt from R.po rt )

F

I$ SUPPL C~~~~~~La.Mlu~ U~~~.I

‘
~~~~ v: - . ~~~~~~ i ~ . t i~ is r~ p .rt ar’~ no . to L.: c in s t .  rwoi as •

~~~~ o r r i c i al
ri~~~’ir t ’:~ r , t . Of * h . Arm:, por t ion , u n l e r z  so 1( i~~na’ ~~i by t h e r  au thor ized
i ..r~ ~m#c.

15. K E Y  W ORDS (C.,ntfno ~ a.’ v...•r,• •id. If n.c....ry id Id.nU?y by bIo~ k nomb.r)

~ ~~r .  rr~” . r i  ~ Boundary values
Di~~~ si n equations I~andnm walk  3
Thermal ‘oro l uc ti ’.’ i y

\;~9/ -~ :q
20. A B S T R A C T  (C.øISno. n,, ~•~ .v•• .I.~~ In.~ ..•ary id l d . n •f f y  by blocb nuni~~~~ A f r war d Monte earTh method
has L~ deve l p

~
i ~~‘ solve th~ t im e — d e p e r ient  heat conduct ion or di f fus i on equat ~n.

The ~er ~~ra ~ e t r i  ~ h~ z ~~~~ implemented so as to cover a variety Y’ boundary cond ~ions.
The rn c t~v 1  is L a s e l on a 7~~~• a t i r iv  v 1l L -~eT random walk , simt lar  to the one in an
a d j o ir . ’ ~~~~~~~ flOV~ l pr ob lem has been posed , m d  successful ly  solved , n the
r reatment ‘ boundary n I i t .i rs~~. The solut i on required the introduction o~ a bi sing
~~~~~~ o , ead 1 n~ ~. a biased random w a l k .  The f i rs t  step ‘V the random walk is
pI~rt~~cular to the forward method.  The succeeding steps can be considered se l f— ad oint ,

I DO ~~~ 1473 EDITION OF I NOV 05 IS O•SOLCTI Un c].assj 1 k
—

~ 
-S.-. 

a1  ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ .m ~~~~~~~~ ‘.—— p—-——... ._____.. .._._~~~~~~~~



.
~. ~~~~~~~~~~~~~

. 1,

SEC URITY CLASSI F IC ATION OF S M B P R ~~E(WP, w Dal. EnI.t.d) I ~~~~~~

,\o.~ ‘~~i )~4 ’ I N U E I

- 7 as ‘.he~ ar.~ i ‘ i c r I ~ i i  “ r w r i r  ris i o.L 1~~ i r i ~ ~~~~~ . t . I s  L ~~ ~
ii lv l ased ranJ r 1k. w i l l  r i l s o  p r . r~ u s e f ul  : r . ~ 

15 ut ire ~~vo~ ~~~~
u r ’~ ’ b iaz -~ a i ,~ o in ~ ‘.~ t h i c

Uri c ass j lied 
_________

-S 

S. -- 
_ _



* 
I

MACI PROJECT
P—7133

FORWARD MONTE CARLO METHOD

FOR THE SOLUTION OF

TIME-DEPENDENT HEAT CONDUCTION EQUATION

by

Eugene S. Troubetzkoy

Final Report

to

U. S. Army Research Office

Contract No. DAAG29-76-C-0035

Mathematical Applications Group, Inc.
3 Westchester Plaza

Elmaford, New York 10523

LI



TABLE OF CONTENTS

I. INT~~DUCTION. 0 • • • • . . . . , . . . . .  1

II, DERIVATION OF AN INTEGRAL EQUATION. . . 0 I • 0 • 0 • 2

III. INTRODUCTORY MONTE CARLO ALGORITHM.. . 4

IV.. A PRACTICAL MONTE CARLO ALGORITHM 0 . 7

V. THE BIASED FLOATING VOLUME RANDOM WALK • 0 9

v,]. The Integral Equation. • 9

V .2 The Random Walk...0 • 0 0 0 0 0 0 0  13

V .2,1 Sampling K
v

(x ”,x t ,to
) ..* 13

V .2.2 Sampling K
5
(x”,x’,t0) 0 .   14

VI. SPECIALIZATION TO RECTANGULAR PARALLELEPIPEDS . . . . 15

VI .l Separation of Variables • .  15

VI..2 Sampling the RPP Green’s Functions 0 17

VI,2..l For Purposes of Sampling K.~, . , . . . 17

VI.2.2 For Purposa~ of Sampling K , . . . .. 20

VII.  FUNTHER SPECIALI ZATICN OF THE I~~~~~~AN FUMCTION . . 23



VIII • THE ONE—DIMENSIONAL GREEN ’ S FUNCTIONS .. . . . 25

VIII. 1 The X1,X
2
, and Related Functions . .. . . . . .. • 25

VIII.2 The X3 and Related Functions in the Case u
3
—O . , 27

VIII.2..l The Functions p
3 (t,t0

,x”),r~ (x),r~ 27

VIII.2.2 The Functions q3(t,t0)S~ (x),S~. . • . . 29

IX. SAMPLING ALGORXTHMS .................. 34

IX.l Sampling p3 (r ,r0) and q3(r , r 0) • . . • . • • . 34

IX.l.,l Details for Sampling p3 (r,r0) . . . • 39

Ix.]..2 Details for Sampling q3(r , r0
) • . • - 43

IX.2 Sampling r~ (C) and S~ (l) . • • • 47

Ix.2.l Details for Sampling ~~~~~ • • . . • . . 48

IX.2.2 Details for Sampling S~ (C). • • • • • . . . 49

APPENDIX A. • • • . • • • • • • . . • . . . • . . . . • 53

APPENDIX B • • • . . . . . . . • • . • • . 59

x • REFERENcES. • • • • . . • • • • • • . • • • • . . • . . 60

/

_ _ _ _ _ _ _ _  - -



I.. INTI~)DUCTION

A forward Monte Carlo method has been developed to solve the time-dependent

heat conduction or diffusion equation. The general method has been implemented

so as to cover a variety of boundary conditions.

The method is based on a “floating volume” random walk , similar to the one

in an adjoint method1, A novel problem has been posed, and successfully solved ,

on the treatment of boundary conditions, The solution requires the introduction

of a biasing function, leading to a biased random walk. The first step of the

random walk is particular to the forward method . The succeeding steps can be

considered self-adjoint, as they are identical in the forward and adjoint case.

It is hoped that our study of biased random walks will also prove useful in any

future development of importance biased adjoint methods.

The detailed analysis and computer implementation are still under way. The

details of sampling algorithms have been completely worked out in the case of known

temperature boundary conditions, Sections VIII.2 through IX.2.2, as well as

Appendix B, are confined to this type of boundary condition, The remainder of the

report, including Appendix A, applies to general “radiation type” boundary con-

ditions.

P~~
, 
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II. DERIVATION OF AN INTEG RAL EQUATION

*
Let us consider the heat conduction equation

T(x ,t) ~T(x ~t) 
= o (1)

defined over a volume enclosed on a surface E1, 
with the initial conditions

T(x,O) given for xE121 
(2)

and the boundary condition

cdx) 
aT(x ,t) 

= Tg(*~t) 
— T(x,t) xcE1 1

1~ (3)
Tg(X~

t) given 0<t<t0 J

The problem is to estimate the temperature profile at a given time to. For

that purpose , it will be useful to introduce three Green’s functions G., i=O,

1,2 satisfying the following equation:

D V~
2 G(x,x’,t0—t) +4~~G~

(x.x’~ t0
_t) = 0, xcft~ (4)

with the initial condition

G~ (xx’1O) — ~(x—x ’) X ’ v X E9j 
(5)

and the boundary condition

G (x ,x’,t0—t) 
— — a(x) -~~~G~~(x~x’~~t0— t ) x ’ ,xc~~

(6)
ci(x) >O 0.ct<t0

*For simplicity of discussion, we assume that the diffusion coefficient D=K/pc
is constant. The method is readily generalized to the case of D~constant in
finite geometrical regions, with discontinuou, variation of K, p, and c across
boundaries.

2
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Multiplying Equation ( 1) by G1(x,x’,t0—t), Equation (4), written for i 1 , by

T(x,t), subtracting and integrating over ç
~
, and over time, we obtain, after

applying Green’s theorem

fOdtf[Gl
(X ,Xt~ t _t) D T(x,t) — T(X,t) D ~~ G1(xsx ’~ t0_t)] dS~

]Odtf [G1
(x,x ’,t0

_t) 
~~ T(x,t) + T(x,t) ~~ G1(x~x’~ t0_t)] dV

Taking into account the boundary conditions (3) and (6) is the surface term,

and the initial conditions (2) and (5) in the volume term, we obtain:

fodtf Tg
(X i t) D~~~~G1(x,x’,t0—t)dS

+~~~G1(x,x’,t0)T(x,O)dV 
— T(x’,t0

) = 0

or, interchanging x and X ’ :

T(x,t0
) = V ( x )  + S(x) (7)

where

V (x) 
=J

~~ 

T(x’,O) G1 (x’,x,t0)dv~~ (8)

S(x) =J 
0
dtJ~ D T

g
(X’i t0

_t) 
~~~T

Gl (X l
~~

X
~

t)dSx I (9)

The object of forward Monte Carlo is to generate a population of weighted points

with a density T(x,t0) for given t0,

3
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III. INTRODUCTORY MONTE CARLO ALGORITHM

A simple and correct Monte Carlo approach to this problem is to consider

Equation (7) as the sum of two terms to be sampled separately.

The volume terms Equation (8) presents no difficulty, One can sample x’

from a probability distribution function (pdf) proportional to T(x ’ ,0) . Given

x’ and t
0, 

one can sample x from G1 (x ’,x ,t0) using the self—adjoint method de-

veloped previously..

The surface term Equation ~~ is not as straight forward to handle. The

kernel 
~ç~

-- G1 (x ’,x,t) cannot be reduced to a pdf because

~ ~~jr G
1

(x ’~ x~t) dv —boo

J l

Let us, however, define a function G2(x,x’,t) which satisfies Equations (4—6)

for i=2, and the function

Q(x ’,t) 
J~2 

2 
dV (10)

It is shown in Appendix A that if the surfaces 1 and 2 
has the same outward

normal at x’ (see Figure 1), then

El 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r af ~ - (x’ ,x,t)dv / Q (x’ ,t) <
~~ for all t>0

J 1  x

wh~~ h implies that the kernel

a
— ‘

~
— - G1(x ’,x,t) I Q(x’,t) (11)

can be reduced to a pdf in x..

The surface term can be rewritten in the form

S(x) = ]Odtf [DTg
(xI v to

_t)Q (x’~~t~ [ ] dS~ 1 (12)

To sample that term , one can first sample x’c~1 and t, 0<t<t0, from a

pdf proportional to

T
g
(XJ i t0

_t)Q (X l
~~t)

and , given x ’ and t, sample x from a pdf proportional to the kernel (11).

The function Q(x’,t) can be considered as a biasing, or importance function,

It is def ined (Equations 10 and 4) over a “floating importance volume”

which we define more precisely as the superscript x’ expressing the fact

that the surface is tangent to at x’. The shape of is otherwise

arbitrary; it can be chosen simply enough such that Q be analytically known. In

practice, we will eventually restrict the surface to be an infinite plane

tangent to 
~ 

at ~~ ‘.

As long as we have the necessity to introduce a biasing function for salnp-

ling the surface term (9), we find it also desirable to introduce a biasing

function for the volume term (8). In order to define such a function, let us

first generalize the definition of “floating importance volume”. The floating

volume has been defined for points x ’ on 
~~ 

Let us now consider a point y

internal to the configuration, Let x’ be the point on closest to y (see

5
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Figure 1). We define the “floating importance volume” associated with y as

any volume 
~2’ 

its surface 
~2 

being tangent to at x ’. We generalize our

definition of superscripts and denote that volume as ~~~ The restricted de-

finition of the last paragraph is preserved as y and x’ coincide if y approaches

the surface 
~l

• Let us now define the function

E(z ,t) G
2
(z,x,t )dV

~ 
(13)

where G
2
(z,x,t) satisfies Equations (4—6) for i=2 and

We propose to useEq.Ey (x,t) as a biasing function for internal points

y, and rewrite the volume term (8) in the form

r G1
(X ’,x,t0

)
V(x) =j~ 

[T(x’,O) E , (X I ,to)] E
~
,(x’,t0

) dv~i (14)

6
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IV. A PRACTICAL MONTE CARLO ALOORITHM

Equation (14) can be rewritten as

V(x) = T
~
U
~
(x) (15)

where

r
T
v J~i 

T(x’,O)E (X’,t
0

)dV , (16)

and

r o G1(X ’,x,t0Uv (x ) 
=J

~~ 

p
~ 

(x’) E
~ ,

(x’,t0
) 

dV
~ , 

(17)

= T(x ’ ,0)E
~ , (x ’,to)/Tv (18)

Similarly, Equation (12) can be rewritten as

S(x) = T5U5
(x) (19)

where

T5 J

r
O

t0d~
J

r
E DT (x ’,t0~t)Q(x’,

t) dS
~
, (20)

Us
(x)  f o f  p5

0
(x’,t) 

- ~~~~G1(x ’,x,t) 
dS , (21)

p5
0(x ’,t) = DTg

(xI
~ to

_t)Q(xt
~ t)/Ts 

(22)

Substituting (15) and (19) into (7), we obtain

T(x,t
0
) = TTUT

(x) (23)

where

T
T
= T

V
+ T

S 
(24 )

7



and

UT
(x) P

vUv
(x) + (l_P

v
)U
s
(x) (25)

= Tv/T,~ 
(26)

As stated previously, the object of a forward Monte Carlo method is to gen-

erate a population of weighted points representing the density T(x ,t0
) for given

t0. We define a random member of such a population as a sample of T(x,t0), and

the process of generation of such a member as sampling T(x,t0
).

According to Equation (23), in order to sample T(x ,t0) ,  we can sample UT (x)

and multiply the weight by TT. To sample UT
(x), consider Equation (25). With

probability p7, sample U~
(x), else sample U5

(x),

We now turn to prescribe methods to sample U~
(x) and U5

(x) .  In the case of

U
~
(x), consider its definition (Equation 17). To sample, we can first sample x ’

frost the pdf p
~
°(x’) defined by Equation (18) and, given x’ (and t0), sample 

x

from the kernel

K
~
(x’,x,t

0
) = G

1
(x’,x,to

)/E
~
(x’,to

) (27)

In the case of U
5
(x ), consider its definition (Equation 21). To sample , we

can first sample x ’ and t from the pdf p5
0(x’,t) defined by Equation (22) and,

given x’ and t, sample x from the kernel

K5
(x’,x,t) ~ G1(x~ ,x ,t)/Q (x ’,t) (28)

The sampling of the kernels (27) and (28) can be achieved by constructing

a random walk which we are about to describe. The walks for K,~ and K5 are identi-

cal except for the first step.

_  

8 
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V. THE BIASED FLOATING VOLUME RANDOM WALK

V.1 The Integral Equation

As defined previously, the configuration under investigation is bounded by

a surface 
~~~~~
, with a volume We also defined a “simple” surface with a

volume ç~~, tangent to at a variable point x’ (see Figure 2) .  In addition ,

let us define another “simple” surface with a volume (~~, which is wholly

contained in both and ~
2 2, and a Green ’s function G0 defined over ~~ which

satisfies Equations (4) and (6) for i’O. We rewrite these equations and write

the initial conditions in the form

D V2 G0(x,x”,t) — 
~~~~~ G0

(x,x”,t) 0 xc% (29)

G0
(x ,x”,O) ~(x—x”) xc~0 

(30)

G0
(x ,x”,t) = — a(x) .

~~
— G0

(x ,x”,t) xE% (31)

/ ______________ 
E0=s 1+s2

~~1 i  S2

\_____,
,_

__ N\~_______,,~.~
/ FIGURE 3.

FIGURE 2,

Let E
0 

= S
1 

+ S
2, 

where S
2 is the coumion part, if any , of E~, E1, E2 and

S1 is the rest of 
E
0 which is internal to E1 

and E2.

Let
a
0
(x) cz

1
(x) — a

2(x) for xCS2 
(32)

and
ct0 (x) — 0 for xcS

1 
(33)

9
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Multiplying Equation (4) by G
~
, Equation (29) by G~1 subtracting , and in—

tegrating over %, we obtain, af ter applying Green ’s theorem:

~~~~[G0
(x ,x”.t) ~~~G.(x,x;,t0—t) — G~ (x,x’~ t0=t) ~~~G0

(X,X”,t)] ds~

+j
~ ~~~~~ }.~~G~ (x,x’,t0—t)

+ G~ (X~X ’~ t0—t) ~~~G0
(x ,x1’,t)] dV~

=O

The - integral can be broken up into an S1—integral and an S2—integral.

The S
2
—integral vanishes because of the boundary conditions (6), (31), and (32).

The first term of the S1
—integral vanishes because of the boundary conditions

(31) and (33). The integrand of the volume term can be rearranged. Equation (34)

can be rewritten as

IS1 G~ (x.~~.t0
—t) 

~~
.G

o
(x,x”,t)dS

~

+ k f~ Gi (x
,x h1 ,tO

_t) G0 (x,x
”,t)dV

~ 
— 0 (35)

Integrating over time from 0 to t0, and taking the initial conditions (5)

and (30) into account , we obtain:

Gi
(xM ,xt ,to

) — G
0
(x’,x ,t0

)

+j 0 dtJ~ G~(x~x’1t0
-t) 

~~~Go
(x ,x ”,t)dS

~ 
(36)

10



or , dividing by E ,, (x ” ,t0) defined by Equation ( 13) :

r
G .(x”,x ’,t0

) G
0
(x ’,x”,t0

)

E~~(x”,t0
) E~~(x”,t0

)

(37)

+ f to dt 
~~ 

[G
i
x
~
x’
~
t
o

t] 

[E
X
(x
~
tO-t)] ~~~ 

Cx , t~~:)~~~~:~ (x,x”t) 
ds
~

Equation (37), written for i=l, can be considered as an integral equation for

K
~
(x”,x’,t0

) defined by Equation (27).

Writing Equation (37) for i=2, integrating x’ over 
~2’ and taking (13) into

account, we obtain

1 =f E
0

( ” t )
0 dv , + J Ø  dt j

1 E~~(x,:0_t)~~~,.G 0(x ,x”,t) dS (38)

Similar manipulations on Equation (35) lead to the following equation which

will prove very useful:

p (t,t0,x
”) = — ~~ F(t,t0,x

”) (39)

where

f E~ ,, (x ,t~—t ) ~~~G0 (x ,x” ,t)
p (t,t0,x

”) E~~(x”,t0
) 

dS
~ 

(40)

and
f E ,, (x,t0—t)G0(x,x”,t)

F(t,t0,x
”) x 

E~~(x”,t0
) 

dV
~ 

(41)

Equation (32) shows that the kernel of Equation (37), except for the factor

E
~
(x,t0

_t)/E
~~

(x,t0
=t) in the surface term, is a normalized kernel.

11 

TI1~ _ _ _ _ _ _ _ _



The factor E/E~~ is identically equal to unity if the ideal biasing

function is used, The ideal biasing function is achieved if the “floating im-

portance volume” coincides with the volume of the configuration 
~l 

for all

points y . The factor is expected to deviate little from unity is and

closely match in the neighborhood of both x and x”.

An integral representation similar to Equation (37) can be derived for the

kernel K
5
(x’,x ,t0) defined by Equation (28). For that purpose, consider Equation

(36) with x” on the conm~on part of E
l and E

2, 
and take the normal derivative

a/an” of that equation at point x”. Dividing the result by —Q(x”,t0) (defined

by Equation 10), one obtains:

— 

~~
.
~~~~

(x”,x ’,to
) —

Q(x”,t0
) Q(x”,t0

)

(42)

+fo
to dtJ [ i ; ~~~~o] [~~)] 

E
~~

(x,to~
t)
~~~a . Go

(x,x ”,t) 
dS

Writing the above equation for 1—2, integrating x’ over and taking

Equation (10) into account, one obtains an equation similar to Equation (38):

I i , I,

I — 
an” 0’ ‘

1 — I dV
j
~ 

w~ X ,
0
, X

(43)

ft 0 f E
~u
(x,to

_t) 
3j~”art G0(x ,z”,t)

+ Jo 
dt
J5 Q(X’,t0) x

Equation (42) is an expression for K5(x ”,x’,t0) (Equation 28) involving an

integral over Iç~(x ,x’,t0—t) (Equation 27) which, in turn, satisfies the integral

Equation (27).

12
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Finally, the equivalent of Equations (39—41) is:

q(t ,t0,x”) = — •~~~~~ H(t,t0,x”) (44)

where 2

f E~~(X ,t0~
t) an~an 

G
0
(x,x”,t)

q(t ,t,~,x ” )  = I “ 
dS (45)Q~x ,t0, x

1

and r E ,, (x,t -t) —~~~GH (t ,t0,x ”) =j X 0 an 0 dv (46)Q(x ,t0) x
0

V ,.2 The Random Walk

v.2.1 Sampling I(~(xn,x~,t0)

The sampling problem is the following. Given x” and t0, sample x ’ from

G1
(x”,x’,t0)/E~~

(x”,t0) which satisfies Equation (37). Considering the rhs of

that equation , one has to sample two terms. The first term (G
0/E) can be sampled

directly. To sample the second term, one can first sample t and x from the

surface part of the kernel, and, given t and x, calculate the weight factor

E
~
(x,t0

_t)/E
~~

(x,t0—t) and sample G~
(x,x’,t0

_t)/E
~
(x,t0—t). The procedure just

described can be repeated for that sampling,

As shown in the previous section (Equation 38), the sum of the normalizations

of the density functions of the first and second term is unity: only one of the

two terms need to be sampled , with probability equal to the normalization of its

kernal.

The normalization of the surface kernel is equal to:

1 — F(t
0,t0,x

”)

where F is defined by Equation (39). With that probability, the time variable

has to be selected from the distribution p (t,t0,x”) given by Equation 39 or 40.

Once t has been selected, the distribution of x~S1 is proportional to

13



r (x) E
~~
(z,to

_ t) 
~~-G 0(x,x

”,t) (47)

with remaining probability F(t
0,t0,x

”), the volume term of Equation (37) is to

be sampled for x ’. The distribution of x ’ is proportional to

r(x’) G0(x’,x
”,t0

). (48)

once x ’ is sampled from the volume term, the random walk terminates,

v,2..2 Sampling K5(x”,x’,t0)

The sampling problem is quite similar to that described for K~,: given x”

and t
0, 

sample x’ from~~’4G1
(x”,x’,t0

)/Q(x”,t0
) which satisfies Equation (39).

The first term can be sampled directly. To sample the second term, one samples

t and x from the surface part of the kernel, and given t and x, calculates the

weight factor Ex (x,t0
_t)/E

x~
(x,t0

_t) and samples K.~(x,x’,t0—t) =

E
~

(x ,to
_t) by the procedure outlined in the preceding subsection,

Equation (40) shows that the sum of the normalization of the two density

functions is unity: only one of the two terms need to be sampled with appropriate

probability.

The probability to sample the surface kernel is equal to:

1 — H (t
0,t0,

x”)

where H is defined by Equation (46)~ With that probability the time variable has

to be sampled from the distribution q(t,t0,
x”) given by Equation (44) and (45).

Once t has been selected, the probability distribution function of xcS1 is pro-

portional to

a 2
S(x) E

~
,(x,to

_t) 
~n”an 

G0
(X,x”,t) (49)

With remaining probability H(t0,t0,x”), the volume term of Equation (39) has to

be sampled for x ’ . The distribution is proportional to

S(x ’) 
5~~~G0(x ’,x

”,t0) (50)

Once x’ has been sampled in this way, the random walk terminates..

14



VI , SPECIALIZATION TO RECTANGULAR PARALLELEPIPEDS

The derivations up to now involved completely arbitrary volumes and

the only restrictions being that the surface E2 surrounding ~
22 must be tangent

at a given point to the surface of the configuration, and that the volume

must be internal to both and 
~~ 

In practice, the choice of these two volumes

is limited to such shapes for which the Green’s functions and G2 are known or

easily computable, Carislaw arid Jaeger give Green’s functions for a variety of

shapes. The efficiency of the Monte Carlo technique would improve if the shapes

are chosen to match, as closely as possible, the boundaries of the configuration

under investigation, For simplicity, we limit the choice to rectangular parallele—

pipeds, the edges of and 
~2 

being parallel. This restriction permits an exact

solution in the case of configurations with piece—wise planar boundaries, or

solutions to an arbitrary degree of accuracy if curved boundaries are involved.

VI,l Separation of Variables

We are looking for the solutions G
1
(~,~~’,t), 10 ,2, which satisfy Equations

(4—6). Let ‘ —
~~~ = (x

1,x2,x3
) in a coordinate system parallel to the axes of the

RPP. Dropping the subscript i, we are looking for the solution G(x1,x2,x3,
t)

which satisfies

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (51)

~
‘l ~~2 ~~3

for a~ ~ a 1,3 and t~O with the boundary condition

+ 3G (x1,x2,x3,t) +
G (x1,x2,X 3

,t) — a
; 

— , x . = a. , j — 1,3 ( 52A)

where a~ 
, are given constants:

— 0 for j — 1,2, a~ — 0, = a (52B)
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and the boundary condition

G(x1,x2,x3.O) ~ (x 1) 
6(x2) 

IS (x 3
) (53)

Let us assume that the solution can be written in the torm :

G(x 1,x 2 ,x 3,t) = X 1 (x 1,t) X
2 (x 2,t) X

3 (x 3,t) (54)

Substituting (54) into (51) we obtain:

x1x2x3 
~ -! [D i~ 

— = 0 (55)
j—1 3x

A solution of (51—53) is therefore (54) with

D -
~~

-
~~

--- X~ (x~~t) — 
~~ X~ (x 3

,t) = 0 (56)

+ 3X~~(x ,t) +
X~~(x~~t) ax~ 

x~ = aj 
(57)

X~~(x~~O)  — 6(x~) (58)

j  — 1, 2, 3

The four—dimensional problem (51—54 ) has therefore been reduced to three two—

dimensional problems (56-58).

Let us now derive the appropriate expressions for the functions E and Q de-

fined by Equations (13) and (11) , respectively.

____________________ 
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From the definition (13):

r ~cj -4 

~ 
x~-a r

s*,(~’ ,t) 

~J - 
dx 1 J - 

dx2 J - dx3 G (xj-x~ ,x~-x2ix~3-x3st)
x 1-a 1 x~—a2 

x
3—a 3

= E1(X~~t) E
2(X~,t) E

3(x ,t) (59)

where +
,- x’—a.
I 3

E3 (x’,t) = — X3 (x’—x ,t)dX (60)
J X — ~~

Let us consider X’ on the surface of the configuration, the outer normal

pointing in the negative X3
—direction, From the def inition (11) we get:

1 2 3
Q(x’,t) = E (x1,t) E (x~,t) Q (x~,t)  (61)

where 
+

X - -a .r ~~~~~~~~~~~ j
Q (x’,t) = J X (x ’-x ,t)dX (62)

x ‘—aT
3

vI..2 Sampling the ~PP Green ’s Functions

VI..2..I For Purposes of Sampling

Substituting the results of the pv~eceding subsection into Equation (41),

we obtain:

-
~ 1 2 3

F(t,t0,x”) 
= F (t,t0,x~

) F (t,t0,x )  F 
(t,t0,x

’~) (63)

where

i fx~—a j E~ (x,t —t)X ’(x”-~ ,t)F (t,t0
) (64)

E (x ’~, t0
)

17 



Similarly , Equation (40) gives:

= p
1
F2P3 + F1p2F3 + F1F2p3 (6 5)

where

pi (t ,t ) = 

E’(x ’.’— a . , t0— t )  ~~- X’(a , t) + E’(x~’—a~,t0—t) }.— X’(a~ ,t) 
(66)0 

E~ (x~,t0
)

where
i iE (x ,t) = E (x,t) if x ~ 0

(66a )
= 0 if x = 0

Both F1 (Equation 64) and p’ (Equation 66) are also functions of

Substituting 63 and 65 into 40, we obtain

p’(t,t0
) = — 

fr 
F1 (t ,t~) (67)

Let us recall our aim: with probability l—F (t
0,

t
0
,x”) samp).e the surface

term, i.e., first sample a time t front the distribution p (t,t
0
,x”). We will

prove that the following algorithm will produce such a time distribution.

Perform the following for i = 1, 2, 3:

Attempt to sample t., O<t <t
0, 

from - 
fr 

F1(t.,t
0
). This can be done by

sampling a random number E . and attempting to solve F’(t1,t0
) = E .  for t.<t0.

The attempt will fail with probability F~ (t0,t0), in which case set t.=t0.

When all done (t1,t2,t3 sampled) , set t—tnin(t1,t2,t3).

Proof: Given any time T<t 0, the probability that the algorithm produces a

time t>T is equal to the product F1
(T,t0

).F
2(T,

t
0)’F3(T,

t0), which, according to

Equation (63) is equal to F(T,t0,~ ”). The probability that t<T is therefore

Setting T—t0, 
we prove that the probability of t<t0 is equal to

l—F(t0,t0,
x”), as desired,

Setting T—t, we can calculate the probability distribution function of

samples t delivered by the algorithm

~~ [1_F(t,t0~~”)]

18
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which , according to Equation ( 39), is equal to p(t,t0,x”), as announced. The

proo f is thus completed,

Once t<t
0 
has been sampled, the next step is to sample ~ from the distribu-

tion r (~ ) given by Equation (47). Taking into account separability of variables,

this can be rewritten as:

-+ 1 2 3
r (x) r (x )r (x )r (xs s i v 2  v 3

1 2 3
+ r (x )r (x )r (x ) (68)v 1 s 2 v 3

+ r ’( x  )r  (x )r 3 (x
v l v  2 s 3

where

r1(x) = E1(x,t0—t)X
’(x ”—x,t)/E1(x ”,t0) (69)

and

r1(x) = E(x ,t0—t) 
-
~~~ X’(x”—x ,t)’

[(5(x_x~ + a )  — S( x—x ~’ + a
4
)]/ E

1
(x”,t

0
) (70)

Expression (68) consists of the sum of three terms, To sample (x 1, x2 ,x3 )

from that expression, we can sample a single one of the three terms, with a

probability proportional to that term’s normalization.

Taking Equation (64 ) and (66) into account, we can calculate the norutaliza-

tion of the first term of Equation (68). It is equa l to:

p1(t ,t0
) F’2(t,t0) F

3(t,t0
) (71)

The normalization of the second and third term of (68) can be obtained from that

expression by a circular permutation of the indices.
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Expression (71) is equal to the probability that t
1 

sampled from p
1
(t
1
,t0

)

is smaller than t . sampled from P.(t
~
,to

) for both i=2 and 3. This property

can be used to determine which of the terms of Equation (68) is to be sampled :

if the time selection t=min (t1,
t2
t
3
) produced t at ,  then the ~th term of Equation

(68) is to be sampled.

To sample the ~th term , X . has to be sampled from r’(x
~
) (Equation 69),

for both values of 1#j. X. is to be sampled from r 3 (x
1
) (Equation 70): X~ is

set equal to x ’~-a. with a probability proportional to

r~~~’ E 3 (x ~ - aT,t0—t) (+1) }— X~ (aT,t) (72)

Finally , if the volume term of Equation (38) is to be sampled, t is set to

to and all x . are to be sampled from r
1(x.) (Equation 69), for i l ,2,3.

The sampling of RPP Green ’s functions has been reduced to the sampling of

one—dimensional Green ’s functions, This sampling will be discussed in Section VIII.

vI.2.2 For Purposes of Sampling K
~

Substituting the results of Section VI.l into Equation C46), we obtain an

equation similar to Equation (63) :

H(t,t
0
,x”)= F

1
(t,t

0
) F

2
(t,t0

) H3(t,t0
) (73)

where F1(t,t0
) is defined by Equ&tion (64) and

fx ’~—a~ 
E3(x,t3—t ) ~~

-
~~~~

- X 3 (x ’~—x ,t)

H3(t,t0) J — 3 
(74)

Jx’~—a.3 Q (X ’
~~, t 0

)

Similarly, Equation (45) gives an equation similar to Equation (65)

q(t,t0,
x”) p1 F2 H3 + F1 p

2 
ii3 + F

1 F
2 
q
3 (75)
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where p
~ is defined by Equation (66) and

E5
3(x”—a ,t0—t) 

—
~
-

~~ X 3 (a 3,t) + E3 (x”—a~,t0—t) ~~~ X
3 (a, t)

q
3
(t,t0) = 

ax ax (76)
Q (x”,t~)

Substituting (73) and (75) and (67) into (40) we obtain an equation similar to

Equation (67)

q
3(t,t

0
) = — }

~ 
T-i~~(t ,t0

) (77)

As in the preceding subsection, the sampling of time can be achieved by

sampling three independent times: t
1 

and t
2 

from p
1 

and p
2
, respectively , and

from q
3
(t
3
,t0

), t=t .=min(t
11t2,

t
3
) is retained. If t>t

0
, the volume term is

thto be sampled, Otherwise the 3 term of the following distribution has to be

sampled:

i 2 3 1 2 3 1 2 3
r(x

1
) r (x

2) 
S ( x

3
) + r ( x 1) r ( x 2) S(x 3) + r ( x1) r ( x 2) S(x 3 ) (78)

where r1 and r1 are defined by Equations (69) and (70) respectively,  and

S3 ( x) E 3 (x ,t0— t )  ~~— x3 (x ’~—x ,t)/Q
3 (x ’~,t0

) (79)

2
E3 (x,t — t) —a-— x (x”—x ,t)

S3 (x) 
[~

(x~x’~ + a) -~ (x— x + a
k
)] (80)

3’ O

If the term

j = 3  (81)

is to be sampled , the sampling of S3 (x
3

) can be achieved by setting

x
3
=x’~-a3 

with a probability proportional to

3+ + 2 +
S E3(x’~—a3,t0—t) (+1) —

~~~

. X3(a3,
t) (82)

21



Finally, if the volume term of Equation (42) is to be sampled, t is set to

t
0, 

x. is sampled from r~ (x~) (Equation 69) for 1—1,2, and x3 is sampled from

S3 (x
3
) (Equation 79)..

The sampling of RPP Green ’s functions has been reduced to the sampling of

one—dimensional Green’s functions, This sampling will be discussed in Section VIII.
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VII. FURTHER SPECIALIZATION OF THE IMPORTANCE FUNCTION

As defined by Equations (10) and ( 13), the importance functions Q(x’,t)

and E~ ,(x’,t) are defined in terms of a Green ’s function G
2

(x ,x’,t), which, in

turn, is defined over an RPP 02 tangent to the outer surface E
1 
of the config-

uration at the point of closest approach to x ’. We now specialize the RPP

to an infinite plane, as shown in Figure 4.

E
l

H 

~~~~~~

FIGURE 4

Equation ~60) written for j l ,2 gives:

E1 (x~~t) = E
2 (x~,t) = 1 (83)

Equations (59) and (60) become :

= E3(x~,t) (84)

Q(~~’,t) Q
3 (x~,t) (85)

In the followirir ~ iscussion~’, the superscript 3 of E
3 and Q3 

will be dropped.

23



The importance function Q is defined only if the RPP shares a coim~~n

~
e

piece of boundary 
~2 

with the surface E1 of the configuration. 
The importance

function E does not have to be restricted to that case. We wish, however, to

impose that restriction , and set E3(x~ ,t) — 1 if the RPP E~ does not abut the

surface E1. 
This implies that the importance biasing will be turned of f in

that case,

I-
S
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VIII, THE ONE-DIMENSIONAL GREEN ’S FUNCTIONS

The sampling of RPP Green’s functions has been reduced to the sampling of

one—dimensional function s defined over the solutions of one—dimensional differ-

ential equations (56). As spelled out in Section VI, the time variable has to

be sampled from the p,d..f. p’(t,t0) (Equation 66) related to the cumulative distri-

bution F.(t,t0
) (Equation 64), or from the p,d..f, q

3(t,t0
) (Equation 76) related

to the cumulative distribution H3(t,t0
) (Equation 74), The spacial variables

x . have to be sampled from the p,d.f.. r~ (x) (Equation 69) or S~ (x) (Equation 79),

or from the discrete distribution r~ (Equation 72) or S~~ (Equation 82).~ The

analytical expression for all the distribution functions involved will be derived

in this section, Methods to sample these distributions will be discussed in

Section IX,

VIII,1 The X
1, 

X
2, 

and Related Functions

x
1 and satisf y Equations 56—58 with 0. We consider the synmtetric

case a
+ 

~~~~~~ 

— a/2.. In that case , the solutions X’ and have been derived

previously1. Summarizing the results, the solution can be expressed in terms of

reduced variables

= x/a (86)

t = Dt/a2 (87)

x~ (x,t)dx = G(E , r ) c ~ (88)

and given either in the eigenfunction expansion

G(E ,T) — 2 E  cos [(2n+1)7r~] 
exp [_(2fl+1) 2

~r 2
t] (89)

or in the image expansion

G(~ ,T) L Z n r 2 1
2/~~ n=~w 

(—1) exp L~ ’~ 
/4tJ (90)

25

—~~~~ 
- 

~~~~~~~~~~~~~~ 

-



An excellent approximation to Equation (64) with E1(x,t) = 1 is given

as follows:

F (t) = R(t) (91a)

2
R(t) = 1 — ~~ f e ’

~ du for T<T (91b)

~ J 1/4/i

R(T) = ~~ [
exp (_112 r) — (1/3)exp (_9w 2T)] T>te

t = .05 , (91d)

the relative error being less than one part in ten thousand,

In terms of the reduced variables (86) and (87), Equation (67) becomes

— 
~~

— R ( T) (91e)

Equation (69) becomes:

r’(x)dx G(~ ,t)d~ (92)

Adequate accuracy results from the use of the first two terms of Equation (89)

if r<.05, and of the expansion (90) if r> .05.

Finally, expression (72) becomes:

= 1/2 (9 )

meaning that is to be set to x ± a/2 with equal probability.

Reference 1 gives a detailed description of efficient Monte Carlo algorithms

to sample the distribution (91), the differential distribution (92) and the dis—

crete distribution (93) .  These descriptions will not be repeated here,
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VIII.,2 The X 3 and Related Functions in the Case c1
3=0

The con stant C1
3 

is defined by Equation (52b) . It is equal to the value

cL (X) appearinq in Equation (6) and in Equation (3). The analysis up to now

was completely general , assuming any non—negative value of a • Further analysis

for CL>0 is not completed yet. We restrict, therefore, further discussion to the

case aao, which appl ies to the case of known temperature boundary conditions as

shown by Equation 2,

L.et us first calculate the importance functions E and Q. The solution of
+

Equations ~6—57 for j =3, a3 = — x~ , a~ = 
a,c = 0 is:

x3(x,t)  = lizn 1 
[exp(_x_x 1)2/4Dt ) — exp (_ (x+x~)

2
/4Dt] 

(94)
x’~ 0 2v’~~~

Substituti ng that expression into Equation (60) one obtains:

2
E(x ’,t) = ~~ / e~~ du = er f(x ’/2v~~~) (95)

~~~

Substituting Equation (94) into (66a) we obtain

E (x ’,t) = erf (x ’/2V’b~ ) (95~ )
S

The subscript E can therefore be dropped in that case,

Substituting (94) into (62) and letting x~-’O one obtains

Q(0 ,t) —i-— (96)

+

VIII .2.l The Functions p3(t,t0,x”), r
3(x), r3

Let us consider the symsetric case a — a~ . The function X3 (x ,t) then

satisfies the same set of equations as th. function and discussed in

Section VIII 1. In terms of the reduced variables (86) and (87 ) the solution

is given by either Equation (89) or (90) .
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In terms of reduced variables , the importance function E (Equation (95)

becomes:

erf (C/2vc) (97)

where r = 1/2 + £ measures distances from the boundary. Let us substitute (97)

and (88) into (64). For t = we obtain

F (t ,t ) =  (98)
erf (l/4v~~~)

Making the same substitutions in Equation (66) we obtain:

3 erf ( O/2/)~~~~ ~~ G ( —  5, r) + erf(l/2I)~~~~ ~~ G(.~,t)
p ( r , r  ) =

erf (1/4/~~)

The first term vanishes as erf(O) — 0.. Taking (93), (91a) and (67) into account,

the above equation can be written as:

3 er f ( l / 2 v ~~~~~) 4~~~~Rtt )
p ( r , r  ) (99)

C erf (l/41ç)

When R (r) is defined by Equations 91b, 9lc.

Algorithms to sample the time distribution (99) are discussed in Section IX.l.

Substituting (97) and (88) into Equation (69 ) we obtain:

~ erf(cJ2*
T
~) G 

(~ —l/2 , t) (100)

where G(E,t) is given by Equation (89) or by Equation (90),

Algorithms to sample the special distribution (100) are discussed in

Section IX.2.

Finally, Equation (72) becomes

3—r — 0

The sampling of that discrete distrthution is trivial.
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+
VIII , 2 2  The Functions q3(t,t0) 5

3(x), S~~

The Green ’s function X 3 (x 31t) satisfies Equations ( 56 )— (5 8)  written for
+

j 3 , with a
3
.’O , a

3
= 0 and a~~=a ,

Let us introduce the reduced variables

— x31’a (102)

= Dt/a~ (103)

x 3 (x 3,t)c.ix 3 X (~~,~r ) d~ ( 104)

In terms of these variab -
~~, Equations (56—58) become:

2
—

~
-
~~ X(~ ,~r) 

— X(~ ,t) 0 (105)

= 0 for ç — 0, ~ 1 (106 )

X(~~,0) = ~ (ç) (107)

The solution of (l05)-(l07) can be given in the form of an eigenfunction

expansion:

22
— his 2 E sin (mir~ ’)sin (mirr) ~~~~ 15 it it

‘-.O rn—i

giving the expression

a 2 2
• a ~~~~~~~~~h i s  — -  X ( ~~— z ’ ,t)= 2 E mit sin (mnC)e (108)

mel

which converges rapidly for large 
~~.
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The solution can also be given in the form of an image expansion

—~~——— [exp (_ (~
_
~~)

2/4it) —exp(—~+~’)
2/4t)

2/~~

+ E —exp (— (~ +ç ’— 2n) 2
/4 r )  + exp(—(~—C ’—2n)

2
/4it)

n—i

+ exp(-(~-~ ’ + 2n)
2/4t) —exp(-(~+~’ + 2n)

2
/4t)I]

giving the expression

him ~~
—

~
- X( C—r ’,it) = 

1 [~ exp(—~
2
/4t)

2it/~~ (109)

+ ~ ~~~(2n~~) exp (- (2n—~)
2/4t) + (2n +~ ) ~~~ (— (2n + C)2/41)}]

n—I.

which converges rapidly for small . -

In terms of the reduced variables (102), (103), the expression of the im-

portance functions are:

— erf (~/2/~) ) (110)

Q(O,-r) —

~~~~~ J
Substituting (110) and either (108) or (109) into Equation (74), we obtain

the late and early time expansion of H3(t,t0). The expressions are given in

Appendix B. For t — t0, an excellent approximation gives:

3 
_h/4•t

o 
—Vt 0

H (r 0,r 0) — 1 — 2e + 2e for (lila)

2

— 4/ ~~j  e for Clu b)

te 0.225 Ch ic)

corresponding to a relative errur of less than one pert in ten thousand.
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Let us now rewrite Equation (76) in terms of the reduced variables (102),

( 103) , taking expressions (110) into account,

q3 (1,10) = ,‘itt0 erf(h/2/t0-t) 
. X ( l , T )  (112)

In order to evaluate expression (112), let us start from the late time ex-

pression of X(t ,t) (Equation 108) and calculate the derivative at t = 1:

X(~,~ ) = — 2 (_ 1)
fl 

n
2
it2 e

11
2
~
2
T (ll2a)

or

2
X(~ ,t) = R(t) (113)

where
a fl —n

2 2
R(it) = —2 ~ (—1) e (114)

n=i

If, instead of the expansion (ll2a), we start from the early time expansion, we

obtain:

= [(l_ ~~~~~ exp(—h/4r)

+ ~ - 
(2n 1)2 e~~~(_ ( 2n_ l) 2

/4t)}]
n 1

+ (1— 
(2~~~~

2 
exp(—(2n+1)

2
/4t)

(1 — 
(2n—l)2~ exp(— (2n—l)2/4t)

n—l

an expression which can be brought into the form (113) with:

2 2
R(t) a 1 — — z exp (— (2n—l) /4r) (115)

,c~ 
n—h
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Expressions (114) and (115) are defined within addition of an arbitrary

(and irrelevant) constant, The constants have been chosen so that expressions

(114) and (115) are different expansions of the same function of t, so that

R(t) — 0 at t = a , it also happens that R(O) = 1. R(t) (see Equation 113) can

therefore be treated as a cumulative probability distribution function,

Substituting Equation (113) into (112) we obtain:

q
3
(t,t 0

) = ~~~~~~ erf(h/2/~~~~
) -

~~~~ R (r )  (116)

where R(t) is given by either Equation (114) or Equation (115). An excellent

approximation is suggested:

R(t) — 1 — 

•1~
: e~~/’4t for i t t  (ll7a)

R(t) = 2 e lt it for r>r (11Th)

te 0.225 (117c)

The approximation provides at least four place accuracy for O < r < o

Methods to sample q3(r,t0) of ~quation (116) are discussed in Section ILl.

Writing Equation (79) in terms of the reduced variables (102), (103), we

obtain:

S~ (ç) erf(~J2i~~~~) ~~
— X ( 1 , r) (118)

where X(t,t) is given by Equation (108) or (109), We suggest that only the

first two terms of Equation (108) be kept if r>re.

Methods to sample q3
(~) are discussed in Section IX.2.
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Finally , Equation (82) reduces to:

S~~ = (1 (119)

S~~= 1 (120)

Sampling of that discrete distribution is trivial.

—_____________________________________ _______ .  __________



IX. SAMPLING ALGORITHMS

3 3
IX.1 Sampling p (r,t 0) and q (t , r 0)

Let us define the general function

p(t,t0
)dr = N ( r 0 ).W .e rf (1/2/~~— t ) ’  ~~~~

- R (r)dit (121)

with a normalization

f0P(T T )dT = 1 — N(t
0
)R(t0

) (122)

The function p(t,-r0
) can be made equal to p

3(t ,t0
) (Equa tion 99), by setting

N(t0
) = l/erf (l/4~ç) (123)

w — 1/2 (124)

and defining Rh) by Equations (91b—d),

Alternatively, the function p(T,T0
) can be made equal to q

3 (r , r
0
)

(Equation 116) by setting

= H3
(t
0
,t
0
)/R(t

0
) (125)

W J~~~~~ R(t0
)/H 3

(t
0,it0

) (126)

and defining Rh) by Equations Cilia-c),

The general sampling problem we discuss here is the following. With proba-

bility F(t0) set T>r0
; else sample it from a renormalized p(r,r0).

Two different sampling algorithms are suggested, each having a different

range of efficiency:

34

- ~-



a. Small and Intermediate Values of ~

The following rejection technique is eff icient:

Step 1 — Sample it, O<-t<co from R(t),

If 
~>r0, accept the sample.

I f do the following:

Step 2 - With probability (1-w) reject the sample and repeat

from Step 1. With remaining probability w do the

following :

Step 3 - With probability erf (l/2/~~~~) accept the sample.

With remaining probability reject the sample and

repeat from Step 1,

The probability of the algorithm producing an accepted time r<t0 with d at the

fir5t step is equal to

w erf(l/2/~~—t) ~~

which is indeed proportional to the distribution (122).

The probability of rejecting the first sample is equal to

f t 0 
[l-w.erf (h/2vut0_t)] ~~

— 1 — RCr 0
) — 

N (10
) [i 

—

1
= 1 —

The efficiency of the algorithm is therefore equal to l/N(t
0
), The proba—

bility of sampling t < t
0 
within dit is not only proportional, but equal to the

distribution (122),
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The efficiency l/N(t0
) is 100% for it

0~
0, In both cases of Equations (125)

and (126), it is assymptotically wi~c~~ for large it0. it becomes unacceptable

for large valuec ~Jf

Step No, 3 involves a game of chance with probability erf(l/21r0
—it), with

both it
0 

and it given. The following algorithm can be used:

2 2
Sample a Gaussian variable X (p(x) = — e~~ dx, O<x<a). Set 11 — t0—h/4x

2
.

The probability that is erf(l/2/it
0
—t).

The details of sampling in the case of Equation (125) and (126) will be

given in Section IX.l.l and .2, respectively.

b. Large and Intermediate Values of it
0

The algorithm just described involved a rejection technique based on the in-

equality erf (x) <1, which becomes assymptoticaily an equality as x-~~. We now

propose to take advantage of another inequality, erf Cx ) > — ~- x , which becomes

assyinptotically an equality as x40, Having that in mind , we rewrite Equation

(121) in the form:

= N
1 

f1Ct) . f
2
(t) (127)

where

= /11(r
0

— T )  e r f(h/ ~ v’~~~~ ) (128)

= f 3 (it ) /M (129)

= 
_ _ _ _ _ _ _  

R(it) t<t
0 

(130a )

— 
~~

— Rh) (l3Ob )— o

M _ J f
3
(t)dr (131)

N a N(t0)/M. 
(132)
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Similarly , Equation (128) can be rewritten as:

fT
0 1 — N1 f  f

2
(r ) t h  (133)

To sample Equation ( 127) ,  we propose the following rejection technique:

Step 1 — Sample t , O< t< , from f
2
(t), If t>t

0, 
accept the

sample. If t<t
0, 

do the following:

Step 2 - With probability f
1
Cr) accept the sample. Else reject

the sample and repeat from Step 1,

The efficiency of the technique is 100% for ~~~~ but deteriorates for small

values of it
0
,

Step No. 2 involves a game of chance with probability f1
(t) defined by

Equation (128). In order to construct an appropriate algorithm, let

x = l/4(t
0
—t)

In terms of x, the probability (128) becomes

= erf(&)  (134)

Equation (134) can be expanded in Taylor series:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(135)

for x<3 the absolute value of each term of the expansion (135) is smaller than

that of the preceding term. This property permits the use of a particularly

simple algorithm:

Set n—h , set u = a random number

Step 1 - Set u = u — Xn/ ( nI (2n+ l) ) ,  Accept the sample if

u >0, if u<0, perform the next step.

Step 2 - Set u = u + X’~~ /((fl+l)I (2fl+2)). Reject the sample

if u<0. If tDO, set n—n+2 and perform Step 1,
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If x�~
3 (which is a rave event), we take advantage of the semi convergent

expansion

— 
e X 

1 
+ 

1,3 
+ ——— + 

1.3. —— (2n—i) (136)
1 ,— 2x 2x 2 n2,’x (2x) (—2x)

The expansion has the property that, if truncated, the remainder is less than

the absolute value of the first term neglected, and of the same sign. This

property permits the following algorithms:

Set u
0 

= a random n~~~ber

Step 1—  Set u = u 0

Step 2 — Set u — 4 J~ 
— u. Reject the sample if u<0. If u’O, perform

the next step.

Step 3 — Set U = u’x’e~ - 1, Accept the sample if u>0. If u<0 ,

set u = u,2/J~, set n = 1 and perform the next step ,

Step 4 - Set u = u + (1.3. ——- (2n..l))/(2x)
n
. Reject the sample

if u<0. If n>0, perform the next step.

Step 5 - set u = u - (1.3. --- (2n+1))/(2x)~~~. Accept the sample

if u>O, If u<0, set n — n+2 and perform Step 6.

Step 6 — If n<X + 1/2 repeat Step 4. If not, perform Step 7,

Step 7 - Calculate erf (1~) by other means. Accept the sample if

u04 ,J~ 
erf C ii). Reject the sample otherwise.

The test on a performed in Step 6 corresponds to truncation of expansion

(136) corresponding to a minimum remainder. Given x>3, the probability of exe-

cuting Step 7 (and therefore of having to calculate erf(&)) is less than

exp (—3)’3’5/6
4 < 0.0006.

The details of sampling in the case of Equations (123,124) and (125,126)

will be given in Section IX.l.l and .2, respectively.
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IX. l~ l Details for Sampling p3çr ,10)

a.~ Small and Intermediate Values of it
0

The general method is described in Section ILl.a. Detailed algorithms

for sampling R(t) are given in Section 111,4 of Reference l~,

b, Large and Intermediate Values of it
0

The general method is described in Section IX~.l.b, We now will work out

a detailed sampling technique in the particular case of R(t) as given by

Equation (91b—c). As defined in these equations, R(t) has different functional

forms for t<t  and t>T
e ~ e 

is defined to be equal to 0.05 by Equation 91d). We

will assume that t < t
o, and derive the expression of f3(t) (Equation 130) in the

three cases O<t<
~
te~ 

T~ <t<T0gp T
0
<t.

— c~. The Case t i t
e

Substituting Equation (124) and (9lb) into (l3Oa) we obtain

f Ct ) d i t  = 1 a [1 — _ ! r e~~

2 
du ] dit (137)

2/ir(it — i t )  
dit 

,ç j0 h/4/~

Let us perform the change of variables

v = h/4 v’~ — V
e 

(138)

where ye 
= 1/4,’

Equation (137) becomes

2 — (v+v ) 2

f3(v)dv — _____ e 
e dv (139)

1!l/
’
it 
0
—t
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which we rewrite in the form

f3(v)dv = g he(V)dV (l4Oa)

with

4 f T~
~~ 

—— e (l4Ob )
e 

•_Jt O’=te

a J T ~~e ”
2 

(l4Oc)

-2v V
h (v)dv = e e 2V dV (l4Od )

V — 1/41ç ; it = l/(4v — 4v)2 (140e)

h (v) is properly normalized in its range 0<v<a corresponding tO t~~>t>
0

l~ and

0cg <1,-e-

— B. The Case ite<t<T O

Substituting Equation (126) and (9lc) into (130a) we obtain

2 2
f (~•) = 

1 
~~~~ (e ’

~ ~ — ~~~~~ 
it ) (141)

3 n d’r 3
2i’~ (t0—r )

2 2
— 2 / ~ e~~ ~ (l~3e 

SW it )‘ito—it
Let us perform the change of variables u a

Equation (141) becomes

2 —w2t ~~u
2

4 =8w t 0 du (142)
p(u)dua-.— (l — 3e ) e

‘if
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Performing the change of variable u = u — v , where ue = WP’TO t~

Equation (142) becomes

2 2
2 —t t +(u —v)

p(v)dv = —~~ Cl — 3e Sit t
) e 

0 e dv

which we rewrite in the form

pCv)dv = r -z g~ h Cv)dv (l43a)

where 
2 2

= 4(e  
it
e 

— e ue) (143b)

-8 2 -v( u -v)
= (1 — 3e ~ it ) e e 

(l43c)

-uv
e e u d v

h~~Cv)dv = 

1 — e
”
~~ 

(l43d)

= 

~ o~~e 
; ~ = t

0 
— (U —v) 2

/~~ (143e)

h~, (v) is properly normalized in its range O V<Ue corresponding to T 0>t>t e~ 
and

0 Cg <1.
-e-

- y. The Case t> T O>te

Substituting (9lc) into C130b ) we obtain

f 3 (t) ~~- jj ~
. (e~~~ t~ 4 ~~~ W T ) (144)

Making the change of variables v t t0, we obtain an equation which we

write as
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f3
(v)dv = a0 

g0 h0
(v)dv (145a)

where

~ 
—w 2t0

= e (145b )

= 1—3 e~~ ~ (l4Sc )

2
h0
(v)dv = e~

11 V it2dv (145d)

h
0
(v) is properly normalized in its range, and 0<g~~l.

Let us now compute the results of subsection a, B, and Y:

f 3 (t )  is given by an expression

A [8~g~he (v) + B~g~h~,(v) + 80g0h0 (v)] dv (146)

where

A a a
e

+ U L + a
O 

and

To sample expression (146) , one samples range “r ” with probability B

(r= e, £, 0) . Given the range r , one sampl s h (v)dv , performs the proper change

of variable to obtain a time it , and calculates g .  With probability 9r the

sample it is accepted as a valid sample of f2
(t) defined by Equation (129). In

case of rejection , a new attempt to sample is made , starting from sampling the

range “r ”.

It happens that all the distributions hr CV)dV are exponential which can

be sampled by standard methods,
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IX ,l~.2 Details for Sampling q3 Cit ,-r 0)

a. Small and Intermediate Values of

The general method is described in Section IX.l,a. We will now work out

detailed schemes to sample R ( i t )  with R(T) given by Equations (117). Two

cases are to be considered depending on ‘Nit or t>it
m~ 

where = min(t ,r0).

— a, The Case 0< r< r
m

p ( i t )dt  = - R(t)dit = — ~~
—. [. — _-~~~_ e’*’~~]cit (147)

Let U = 1/2/p ; U = h/2p~~~

2 24d —u 4 2 —up ( u) du = - — —  Cu e )du = — C2u — l ) e  du,— d u
‘f ir

Let u u + we 2 2—u — 2 u w—w
- 

p ( w)dw = —± (2u 2 
— 1 + 4u w + ~ ,2) e e e

Let v = 2UeW

p(v)d v = a
e ~~ 

h
e

(v)dv Cl48a)

where 1
4it

a = 
m (1 + 2~ + 8t

2 ) ( 148b )

= e Cl48c)

3
h (V) — E p~ q~~(~1)d ~F (148d )

v—l

= e” ; p1 — (l=2tm)/(l+2tm+8~
t
~
) 1

q2 (”~) ve ” ; p — 4t /(l+2it + &r~~) (l48e)

a 
~ e” 8t~/(l+2it + 8it~~) J

it — t m/Cl  + 2tv )
2
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To sample h
e
(V) defined by Equation (148d), we set v = — log(y) where y

is the product of 1, 2 , or 3 random numbers with probability p1, p2, p3, re-

spectively.

— B. The case i t t

p (it)dit = — F R ( t ) d i t  — — F 2e~~~
td (149)

Let v = it— it
m

p(v)dv = a~g~ h~~(v)~~i (lSOa )

where 2
—iT it

m
= 2 e  (150b )

= 1 Cl5Oc)

2 2
h
~
(v)dv = e W v 

~ dv (lSOd )

i t — i t  + v  (lSOe)
m

Recapitulating the res’~1ts , the time distribution is written in the form

A [e~ ~~ 
he
(V) + g

~ 
h~~(v)]

where

A - ae + a t , Be — ae/A , a at
/A

To sample, one first samples a range (e or £) with probability Be and

respectively, Once the range r is given, one samples v from the appropriate dis-

tribution hr
(V)

~ 
Given v, one accepts the sample with probability ~~~~ 

In case of

rejection, the complete sampling is repeated,

In practice, it was found efficient to slightly modify the general technique

described in Section IX,l.a. ae 
is multiplied by w (defined by Equation 126b).

The game of chance based on w described in Step 2 of that section can then be by-

passed .
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— ?~ Large and Intermediate Values of

The general method is described in Section IX,1,b. In the case under con-

sideration R(t) is defined by Equations Cll7a—c); it has different functional

forms for t<it and T>it We will assume t <T Three cases are to be considered,e e 0

- ~~~. The Case 0<t<T
e

Substituting (l26b ) and (ll7a) into (130a ) we obtain:

f CT)dT = 
1 1 

~~ Li — —a—. e~~~4tldit (151)3 2 ViT (t _it) dit
0

Performing the same operations as in subsection b, we can rewrite (Equation 151)

in the form

f3 (it)d-r = a
e ~~ 

h Cv)dv (l52a)

wt ere

1 r 2 1 _l/4it
e

e 
= 

it/it Ct
~
— t )  

[1 + 2T + 8T
e J e (l52b)

g = ~~~~~~ e~
’
~~

2 

(lS2c)
e

h Cv)dv = q(r )dv  (152d)

- —i-- r—~ - (152e)
2I ~~ Lv~ ,‘~~~e e

where q(v) is given by Equations (149—150).
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- 8. The Case T~ <T <T0

Substituting (l26b) and (ll7b) into (130a), we obtain:

f 3 ( i t ) dt  = — 
i 

~~~~~ ~~~~~~~~~~ (153)

Equation (153) is quite similar to Equation (141) of Section IX. l,l,b ,8,

Performing the same operations as in that section, Equation (153) is rewritten

in the form:

f
3

( t )dt  = a
~ ~~ ht (v)d v (154a )

where

2~c 
[e~~

2
t
e _e

’”
~~~0] (l54b )

—v(u -v)
= e C (154c)

-u v
e 

e 
udv

h
~~
Cv )dv = 

l—e
”
~ 

(l54d)

U
e ir/

~j”te 
; t = to — (u e

_v) 2
/ir

2 (154e)

— ‘
~
• , The Case t>it0

Substituting (lllb) into (l3Ob ) we obtain:

f3
(t- )dr — ~~ [2e~~

2
t] (155)

which we write in the form

p3(t) a
0 
g0 

h
0
(v)dv (156a)

I
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where 
2

a0 
= 2e 

0 (l56b )

q0 = 1 C156C)

h
0
(v)dv = e~~~~

T 
,t
2
dv Cl56d)

v — 
~—~0 

(156e )

Recapitulating the results of subsections cz,~~, and y , the distribution

f
3
(t) is given by expression (146), The sampling scheme given at the end of

Section IX.l,i applies,

IX..2 Sampling r3R) and S3(c)

r
3(C) is defined by Equation (100), S3(c) is defined by Equation (118).

Let us define the general distribution function

p (!)d1 xerf (C/2v’~~~T) r(ç)dç (157)

p(ç) becomes equal to r~~(ç) if r(C) becomes equal to G(C—l/2,T) as defined by

Equation (89) or (90).. p(C) becomes equal to S
3
(~ ) if r (~~) becomes equal to

as defined by Equation (108) or (109).

Two different sampling algorithms are suggested, each having a different

efficiency in different ranges.

- a. Small and Intermediate Values of t
0
— it

Step 1.. Sample ‘., O<~ <l, from r (~ )

Step 2. With probability erfC~ /2v’ —it)/erf (l/2i/it ) accept the

sample . With remaining probability reject the sample and

start from Step 1,

The efficiency of the rejection technique is 100% for i—it
0
, but becomes poor

for large values of t
0

— it.
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The game of chance in Step #2 can be implemented as fo1lows~ Sample X,

______ 
2 

______

O<X~1/2/r 0—t from a truncated Gaussian (e
X dx/erfCl/2/-r

0
—it) ... Accept the sample

ç if ~> 2/~~~~ x.

— b, Large and Intermediate Values of

In this range of t (~~t , we rewrite Equation (157) in the form

1i
~~ 

f
2 C~~)d~ (158)

where

= erf (ç/2/r0—t
) /~~~~—r)/~ 

(159)

and

(160)

As in Section IX,1,b, we propose to sample ~ from f
2

( j )  and accept the

sample with probability f1C~
). An efficient algorithm to implement the latter is

described at the end of Section IX,l.b,

The efficiency of the rejection technique is 100% as t
~~

—t-
~~
. It becomes

poor for small values of

IX.2.l Details for Sampling

— a~ Small and Intermediate Values of it 0~~

The general technique is described in Section IX,2.a, The technique in-

volves sampling r(~ ) which is equal to G(t —l/2,t). 
Algorithms to perform that

sampling are described in Section 111,4 of reference 1,

- b. Large and Intermediate Values of

The general technique is described in Section IX.2,b, It involves sampling

~G (C—l/2 ,t).
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As G(ç ,t ) is an even function of ~~~, the sampling of f 2(~ ) can be performed

as follows:

1, Sample r,, —1/2.(~ ’C l/2, from GR ,t)

2, Set ~ = 1/ 2 + E~

3. Accept the sample t with probability ~~~, Else, set ~ = 1/2 —

Methods to sample G are given in Section lIlA of reference 1.

IX.2 . 2 Details for Sampling

— a, Small and Intermediate Values of T~~~T

The general technique is described in Section IX,2.a. It involves sampling

r(~~) = (r~,r) as defined by Equation (108) or (109),

— a, Case of Early Times (1<1, it
e
=0

~
225)

At early times we propose to use Equation (109), In terms of the variables

u = ç/2/E ; u~ = 1/2/E (161)

Equation (109) becomes :

— 
2 — (2n u

0
—u)

2

r(’id~ = p (u)du = 2ue 
U du + E —2C2n u

0
—u)e

n=1.

— (2n u
0
+u)

2

+ 2 (2n U0 
+ u)e du (162)

or:
2

p(u ) du  = 2e
_U 

— 

n~i 
(u~ 

- u~~)J 
du (163)

where
—4n u

0
(n u

0
+u)

u = (2ri u
0 

+ u ) e (164)

If u
0
>l/2 (i.e.,, -r <l, which is true in our case of small it), u — u’~ 

) 0 for

all n , This implies
2

p Cu ) du  < 2ue U du ,

which suggests the following rejection technique:
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2
1. Sample u, 0<u<u

0, 
from 2ue U du. This can be done by sampling a

random number E, and setting u = (Mod(—log(E~), u0
2)]1”2.

2, L e t v = u

3. Sample a random number ~ and set w —

4.. S e t n = l

5, Calculate u , If u >v jump to Step #8.. Else:

6. If u < w  the sample u is accepted (the sampling is completed). Else :

7 , Calculate u~ , If u’~
’ < w the sample is rejected , Repeat from Step #1.

Else j ump to Step #9.

8. Calculate u~ and set v — v - u~ + U’~. If v<w the sample is rejected.

Repeat from Step #1. Else:

9, Set n = n+l and reEeat from Step #5.
2

Step #1 involves the sampling of 2ue U du. It remains to be shown that

Steps #2—9 correspond to an acceptance probability of 1 - Z (u~ 
- u~).

n=l

Let us consider the rejection probability for each value of ZL If Steps

6 and 7 are executed, rejection occurs if a random variable w , uniformly distri-

buted between 0 and u satisfies u~ ‘z w < u~ (<u), This has probability

(u - u’4’)/u,. If Step No, 8 is executed, rejection occurs if the random variable

w satisfies v~u~ + u~ < w < v(<u). This has also probability (u~ - u~ )/u.

Suxmned over all n , the rejection probability is indeed ~ (u~ 
- U

n)•
~ 

As
n—i

the acceptance probability is equal to unity minus the rejection probability , the

proof can be considered as completed.

An instructive though lengthy proof consists in examining the acceptance

probability for each value of n, The acceptance probability for n = 1 is either

zero (if Step #8 is executed), or (u—u~ )/u if Step #6 is executed (as u~ < w < u

has that probability). If it is zero for n—i, it remains as zero for the succeed-

ing n ’s, up to and including the smallest value of n, n—n0, for which
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nr~ — + —E ( u - u ) > u  + 1
n=l 0

~~~ n n
0 

+ 1 , the acceptance probability is

(v
0 

- u~ +

(as u 
+ 1 < w < v~ has that probability).

For all n>n~ + 1, the acceptance probability is

1 + —

—(u -u )
u n— i n

(as u~ < w < u~_1 has that probability).

Suum%ed over all n’s, the acceptance probability is

— (V
0 

- U 
+ l~ 

+ (u~~ 1 
- u~)

0 n—n +2

- + QED.
E (U — u )

‘
~
“ n l  n n

— ~~. Case of Late Times ( i t > i t )

At late times, r(ç) is given by Equation (108), Keeping only the first

two terms , we obtain:

= 2~ [e~~
2
t sin,ri + 4e 4it I sin21~]dc

[sin(n~ + i cos(1TC)sin(P~~)] ird~ (165)

where c
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Let co s ( t t t )  = 2x—1, Equation (165) becomes

r (x) dx  a (l—c)dx + c 2xdx (166)

To sample (166) one can do the following.

With probability (1—c), x is set to a random number. With remaining

probability , x is set to the largest of two random numbers. Once x is sampled:

—l
= cos (2x—l)/iT (167)

- b . Large and Intermediate Values of it
0
-t

The general technique is described in Section IX,2.b, p2(e) is proportional

to r~r(ç), where r(~ ) has been discussed above.

— ci. Case of Early Times (t< i t )

The early time behavior of r(~ ) has been discussed in Section IX ..2 .2 .a .a.

Performing the change of variable u = ~/2/~ we obtain:

r(~ )d~ u p (u ) du

where p(u) is given by Equation (163),

The technique described to sample p Cu) can be easily modified to sample

u p (u)du . Only the first step of the rejection techniques needs to be modified.
_ 2 2_ 2

instead of sampling ue U du, one samples u e U du, which can be achieved by

setting

U — J—lo~~(F~~) sin
2
(wE

2
)—log(F

2
)

and accepting the sample of u<u
0
..

The remainder of the rejection technique applies without modification.

— 8. Case of Late Times (Vt )

At late times, We propose a simple rejection technique:

1. Sample r(~) as discussed in Section IX,2
,2,a.B, 0qcl.

2. Accept with probability ~. Else reject and repeat Step 1.
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APPENDIX A

A Crucial Inequality

Let 
~~l 

be a volume surrounded by surface

~~~~~~~~~~ Let x” be a point on Z1. (See

Figure 6) .  Let be a volume surrounded

by surface E
3, such that and are

tangent at x” , with the same outer normal,

Let S
2 be the surface coninon to and

(S 2 can degenerate to the single point x”),

And let S~~ = ~~ 
S
2 

for i=l and i 3.

Let G1 and G3 be Green’s functions satisfying Equations (4 ,5,6) for i=l and 3,

respectively.

We are going to prove the following inequality:

V- 

~~~r G1(x”,x,t)d ~
(Al)

J — 

~~~ 
G~ (x”,x,t)dV for 0<t<t

0
<co

x — —

Let us introduce a surface = S
10 + S

2~~~
. 

~~~ .,

surrounding a volume 
~~ 

S10 is corn—
/

pletely internal to both and Let us

0 also introduce a surface 
~ l,2 

+ S
2

0 
surrounding a ~~iume 

~2
’ S12  is completely

external to both and

E
2 
02

FIGURE 6
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Equation (42) of Section IV has been derived without assuming (Al). Let

us consider that equation for i l  and 3, and integrate both sides over the

volume 0,, We obtain:3,

Q1(x”,t0
) 1’ —

Q(x”,t0
) 

a J ~ 
— 

Q(x”,t0
)

C
(A2)

2

ft 0 
~ 

[ E(x ,t0
—t) E

~
,,(x,t0

_t) 
~n3n” 

G0
(x,x”,t) 

a~d 

~~ 10  
E
XM (x,tO

_t) Q(x”,t0
) x

where

E.(x,t) 101 G.(x,x’,t)dV~, 
(A3)

— }-;r G.(x”,X’,to
)dV

x, 
(A4)

. / 1

As the solutions of the set of equations (4—6) are positive, we have

G.(x,x~,t0
) 10 for

This implies

E~ (x~t) >0, 
(A3a)

From the boundary condition (6) we derive

~
1G.(x,x’,t) — oCx) 

G~ (x~x’~ t0
) >0

which implies

Q~ (x t) >0 
(A4a)

Furthermore, we can show that for t<oo

Q1(x ,t) >0 for t<a .. (A4b)

‘S
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According to Equation (10) and (A3 ) we also have

Q(x ” ,t0 ) = Q2 (x ” , t0 ) (J~5)

and, according to Equation (13) and (A4):

E ,, (x,t) = E2 (x,t) (A6)

From (A2) we can derive the upper bound

Q(xH,t0
) ~~, A + B’L1(E

1/E2
) (A7)

and the lower bound

(“ t

Q(x”,t
0
) ~ A + B-L(E

3
/E2) (A8 )

where

r -~~—~~G0
(x’,x”,t0)

A = 
Jo Q(x”,t0

) dV
~ s (A9)

S — dt 

~~~~~~~ 

E
r

,, (x,t0—t) G0
(x,x”,t) 

dS
~ 

(AlO)

Equation (43) giving

A + B a l  (All)

U (E 1/ E )  and L (E~/E~ ) are respectively the upper bound and the lower bound

of the ratio

Ei(x~
t)/Ej(x~

t) for x on S1,0 and

___________________________________________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —



we now proceed to show that both A and B are non—negative , a result necess-

ary for the assertion (A7) .

Using the syimnetry property of Green’s functions

G.(x x’,t) — G
~
(x ’,x ,t)

we can rewrite A in the form

A 
J Oo — 

~~~ 
G0

(x”,x’,t0
)dV, 

= 

Q0
(x”,t0)

Q2(x”,t0
) Q2

(x”,t0
)

Taking (A4a) into account, we obtain

A>0 (A9a)

or , taking (A4b ) into account :

A,’O for t
0
<w (A~b)

Now consider the expression CAb ) of S. Both E~~ (x,t0—t) 
and Q(x”,t0)

are non-negative (Equ~ tion A3a and A4a).

The remaining term will be shown to be also non-negative.

indeed, it can be rewritten as

a 

~ TL ” G0
(x,X”,t) 

5

!. [
~
. G
0
(x,x”,t)’]

or, using the boundary condition (6)

— a r l  “1 1 —
~~B1 

— 

~~~ ~~ 
G(x~x”~t),J 

= G(x,x ,t)

Using the property of F”uuetry

1 — a
— 0(x)  ~~~ G(x ,x ,t)

Involving Equation (6) again, we obtain:

— 
~~T T  a(x ”) G(x ”,x,t) >0

All terms of the integrand of B (Equation 10) being non-negative, we have

8>0 (AiOa )
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In order to determine the bounds of E ./E ., we turn to consider Equation (36)

which we rewrite in the form

G~ (x”.x’~ t0) = G1 (x’,x”,t0)

+ dt 
Js1~~ 

G.(x,x’,t0—t ) ~~~
Gi(x,x”,t)dS (Al2)

where O~~~ (Ai3)

Integrating Equation (A12) over x ’cO ., we obtain

E.(x”,t0) E
1(x”,to

)

+J0 0dt E~~(x~t0—t) ~~~
G
~~
(x,x”,t)ds

~ 
(Al4)

which leads to the inequality

E . (x ,t) < E~~(x ,t) (A 15)

provided (Al3) is true,

Let i—b arid j=2. As 0
1C~2, (A15) gives

E1(x,t) < E
2(x,t)

or

V (E1/E2
) — 1. (Al6)

Substituting the above expressions into (Al) and taking (All) into account ,

we obtain

Q1(x ” ,t0)/Q (x ” ,t0) < 1 (Al7)
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Let us write the inequality (A4a) for i=3:

E3(x,t) >0

giving

L(E
3/E2

) = 0 (Al8)

Substituting that equation into (A8) we obtain

Q3
(x ”,t0)/Q(x”,t0) 

> A  (A19)

Finally, Equation (All) and (Al9) imply

Q1
(x”,t0 

< — (A20)
Q3

(x”,t0
) — A

As A>0 for t0
< (see Equation A9b), Equation (A20) implies :

Q1(x”,t0) (A2l)
Q ( U I .

3’ 0

Substituting Equation (A3) for i l  and 3 into (A21) we obtain (Al) Q.E.D.

The current proof required only tangency of surfaces and The

introduction of a very special surface 
~2’ such that and 0

3C02, was for

construction of the proof only. In the rest of the text , the restrict’ofls on

are only those imposed here on E3.

*
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APPENDIX B

3Expressions for H (t ,t0
)

H3(t,t0) is def ined by Equation (74) of S:ction VI,.2.2, Starting from the

early time expansion Equation (109), we derive

— (2m—l)
2

H 3 (t ,t0 ) = —erf (u
2
) + E 

[2J~~ erf (u) e 4t

m 2 (Bl )

— e 
~0 [erf (u 1+u 2 ) —erf (u l_u 2)]~~

where

— 1 f~~o 
— 1U

1
— j-

~

—— ; U
2

_
~~~~~~~~t ( t t)  U — ’

Starting from the eigenvalue expansion Equation (108):

2 2 —m
2lT2t

H3(t,t
0
) = 2/~~j E  [erf (u) (_ l) me

_m ~ —e 0 
R] (B2)

where

= l/2V’ç~~~

and

R — 4 [,er f(u  + i ~~ ) + erf (u—i !.
~)1 (B3)

or 
2

R erf (u) + 
~~

—

~~

— [ l C b )m]

22 , -n /4 r
+ ±a e~~ ~ e 

l~~(—l)
’
~ Cosh !~~~ (B4)

n=l u2+4n 2 L 2u ,j

*
The derivations are given in MAGI’s internal memorandum P—7l33, Sept. 13, 1976,
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