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I INTRODUCT1ON

A forward Monte Carlo method has been developed to solve the time-dependent
heat conduction or diffusion equation. The general method has been implemented
so as to cover a variety of boundary conditions.

The method is based on a "floating volume" random walk, similar to the one
in an adjoint methodlv A novel problem has been posed, and successfully solved,
on the treatment of boundary conditions. The solution requires the introduction
of a biasing function, leading to a biased random walk. The first step of the
random walk is particular to the forward method. The succeeding steps can be
considered self-adjoint, as they are identical in the forward and adjoint case.

It is hoped that our study of biased random walks will also prove useful in any
future development of importance biased adjoint methods.

The detailed analysis and computer implementation are still under way. The
details of sampling algorithms have been completely worked out in the case of known
temperature boundary conditions. Sections VIII.2 through IX.2.2, as well as
Appendix B, are confined to this type of boundary condition. The remainder of the
report, including Appendix A, applies to general "radiation type" boundary con-

ditions.




II. DERIVATION OF AN INTEGRAL EQUATION

*
Let us consider the heat conduction equation

2 aT(x,t) _
DVx T(x,t) - ——"——-at 0 (1)

defined over a volume Ql enclosed on a surface Zl, with the initial conditions

T(x,0) given for xef

1 (2)
and the boundary condition
AT (x,t)
SIS -
a (x) an Tg(x,t) T(x,t) er1
(3)
Tg(x,t) given 0:;:;0

The problem is to estimate the temperature profile at a given time to.
that purpose, it will be useful to introduce three Green's functions Gi' i=0,

For
1,2 satisfying the following equation:

2 (] .g_ L - =
D Vx Gi(x,x .to t) + s Gi(x,x ,to t) 0, xeﬂi (4)

with the initial condition
Gi(x,x',O) = §(x-x") x',xeﬂi (5)
and the boundary condition
Gi(x,x',to-t) = « q(x) % Gi(x,x',to-t) x',xeﬂi

(6)
a(x) >0 Octet,

*
For simplicity of discussion, we assume that the diffusion coefficient D=K/pc
is constant. The method is readily generalized to the case of D=constant in

finite geometrical regions, with discontinuous variation of K, p, and ¢ across
boundaries.




Multiplying Equation (1) by Gl(x,x',to-t), Equation (4), written for

i=1l, by

T(x,t), subtracting and integrating over g, and over time, we obtain, after

applying Green's theorem

o —_
0 ' i 2
/;) dtﬁ [:Gl (x’x ,to-t) D on T(x,t) T(x,t) D n Gl (x'x',to t)-J
1

[t -
0 » ) 3 '
,/o df/g [;1(x,x ,to t) 7T T(x,t) + T(x,t) 3T Gl(x,x ,to-t)
T

ds

4av
X

Taking into account the boundary conditions (3) and (6) is the surface term,

and the initial conditions (2) and (5) in the volume term, we obtain:

tO -3
: dt 21 Tg(x,t) D T Gl(x,x',to-t)dsx

t/;lGl(x,x',to)T(x,O)de - T(x',to) =0

or, interchanging x and x':

T(x,t ) = V(x) + S(x) (7)
where
V(x) i/gl T(x',0) Gy (x'.x,to)dvxu (8)
%o -3
S (x) -L dt</}; 1D Tg(x',to-t) Ty g Gl(x',x,t)dsx, (9)

The object of forward Monte Carlo is to generate a population of weighted points

xenl with a density T(x,to) for given to.
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III. INTRODUCTORY MONTE CARLO ALGORITHM

A simple and correct Monte Carlo approach to this problem is to consider
Equation (7) as the sum of two terms to be sampled separately.

The volume terms Equation (8) presents no difficulty. One can sample x'
from a probability distribution function (pdf) proportional to T(x',0). Given

x' and to, one can sample x from G1

(x',x,to) using the self-adjoint method de-
veloped previously.
The surface term Equation (9) is not as straight forward to handle. The

kernel 5%7 Gl(x',x,t) cannot be reduced to a pdf because

=3

— G, (x',x,t) dVv, —>»=x ,
,/;1 0 3 X &0

Let us, however, define a function Gz(x,x',t) which satisfies Equations (4-6)

for i=2, and the function

Q(x',t) %2 2 G, (x*yx,t) Ay, (10)

It is shown in Appendix A that if the surfaces Zl and 22 has the same outward

normal at x' (see Figure 1), then

fe—z
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ﬁl' Ty Gy (x'ex,t)av / Q(x',t)  <® for all t20

which implies that the kernel

9

- BT Gl(x',X.t) / Q(x',t) (11)

can be reduced to a pdf in x.

The surface term can be rewritten in the form

- 3
to ] ot~ Gl(x',x,t)
S (x) =jo dt s E)Tg(x"to_t)Q(x It) Q(xﬂ't) dsx| (12)
k

To sample that term, one can first sample x'Ezl and t, 0<t<t0, from a

pdf proportional to
Tg(x',to-t)Q(x',t)

and, given x' and t, sample x from a pdf proportional to the kernel (11).
The function Q(x',t) can be considered as a biasing, or importance function,
It is defined (Equations 10 and 4) over a "floating importance volume® 92,

L}
which we define more precisely as 9;, the superscript x' expressing the fact

L] 9
that the surface L. is tangent to L. at x'. The shape of Q; is otherwise

2 !
arbitrary; it can be chosen simply enough such that Q be analytically known. In
practice, we will eventually restrict the surface E;. to be an infinite plane
tangent to 21 at x'.

As long as we have the necessity to introduce a biasing function for samp-
ling the surface term (9), we find it also desirable to introduce a biasing
function for the volume term (8). In order to define such a function, let us
first generalize the definition of "floating importance volume"., The floating

L]
volume ¥ has been defined for points x' on Let us now consider a point y

2 1

internal to the configuration. Let x' be the point on 21 closest to y (see

SR — e kb y —

——
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Figure 1), We define the "floating importance volume" associated with y as
any volume 92, its surface 22 being tangent to 31 at x'. We generalize our
definition of superscripts and denote that volume as Qg. The restricted de-
finition of the last paragraph is preserved as y and x' coincide if y approaches

the surface El. Let us now define the function

Ey(z,t) = Gz(z,x,t)dvx (13)
oY
2

where G,(z,x,t) satisfies Equations (4-6) for i=2 and 9,= ng
We propose to useEq.Ey(x,t) as a biasing function for internal points

y, and rewrite the volume term (8) in the form

G (x! ,x,t )
V(x) [%(x ,0) E ,(x o - {] T ) V (14)
' '




IV, A PRACTICAL MONTE CARLO ALGORITHM

Equation (14) can be rewritten as
V(x) = TvUv(x)
where

T, =ng T(x',0)E_(x',t )adv_,

and

G, (x',x,t )

0 1 0
U(x)'—:ﬂz p,, (x') ———————av_,
v T Ex,(x ,to) X

0 ' '
pv (x') = T(x 'O)EX' (x lto)/Tv

Similarly, Equation (12) can be rewritten as

S(x) = TSUs (x)

where

t
0
=,[o at XlD’rg(x',to-t)Q(x',t) as_,

9
- - G, (x',x,t)
0 Oy T i
Us(x) =-/; dt/;l Pg (x',t) o=, 6) dsx,

pg_ (x',) = DT_(x',£,~t)Q(x",£) /T

Substituting (15) and (19) into (7), we obtain

T(x.to) = TTUT(x)

where

T ¥
'I'T= T

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)




and

UT(x) = PvUv(x) + (1-Pv)us(x) (25)

pv = TV/TT (26)

As stated previously, the object of a forward Monte Carlo method is to gen-
erate a population of weighted points representing the density T(x,to) for given
to. We define a random member of such a population as a sample of T(x,to), and
the process of generation of such a member as sampling T(x,to).

According to Equation (23), in order to sample T(x,to), we can sample UT(x)
and multiply the weight by TTu To sample UT(x), consider Equation (25). With
probability Py sample Uv(x), else sample Us(x)g

We now turn to prescribe methods to sample Uv(x) and Us(x)a In the case of
Uv(x), consider its definition (Equation 17). To sample, we can first sample x'
from the pdf pvo(x') defined by Equation (18) and, given x' (and to), sample x

from the kernel
] - ’ ]
Kv(x ,x,to) Gl(x ,x,to)/Ex(x ,to) (27)

In the case of Us(x), consider its definition (Equation 21). To sample, we
can first sample x' and t from the pdf pso(x',t) defined by Equation (22) and,

given x' and t, sample x from the kernel

22, 6, ("X, ) /Q(x" ,t) (28)

Ks(x',x,t) = =
The sampling of the kernels (27) and (28) can be achieved by constructing
a random walk which we are about to describe. The walks for Kv and Ks are identi-

cal except for the first step.

s R AR PSR A N 7




V. THE BIASED FLOATING VOLUME RANDOM WALK

V.1l The Integral Equation

As defined previously, the configuration under investigation is bounded by
a surface Xl’ with a volume Ql“ We also defined a "simple" surface 22, with a
volume 92, tangent to Zl at a variable point x' (see Figure 2). 1In addition,
let us define another "simple" surface ZO with a volume ﬂo, which is wholly
contained in both Ql and 92, and a Green's function G0 defined over 90: which

satisfies Equations (4) and (6) for i=0., We rewrite these equations and write

the initial conditions in the form

2 " = 2_ ] =
D Vx Go(x,x ) 3t Go(x,x ,t) 0 xeﬂo (29)
Go(x,x",o) = §(x-x") xeﬂo (30)
3
Go(x,x",t) = = a(x) sg-co(x,x",t) ero (31)
\ &
¥ S
"1 1
Qo &

N
u \/ FIGURE 3.

Let ZO = s1 + 52’ where 82 is the common part, if any, of 20' 21, 22 and

s1 is the rest of EO which is internal to Zl and 22.
Let
ao(x) = ul(x) = uz(x) for x832 (32)
and
ao(x) = 0 for xes1 (33)




Multiplying Equation (4) by Go, Equation (29) by Gi' subtracting, and in-

| tegrating over R o’ we obtain, after applying Green's theorem:
) )
’/onso(x,x",t) e Gi(x,x;,to-f,) - Gi(x,x',to-t) n Go(x,x",t)J c:lSx

)
t/‘;o [Go(x.x",t) EYY Gi(x,x',to-t)

2
L] = — " =
+ Gi(x,x ,to t) 3t Go(x,x ) l dvx 0 (34)

The p " integral can be broken up into an Sl-integral and an sz-integral.

The sz-integral vanishes because of the boundary conditions (6), (31), and (32).

The first term of the Sl-integral vanishes because of the boundary conditions
(31) and (33). The integrand of the volume term can be rearranged. Equation (34)

can be rewritten as

v b ) 2R
Ll Gy (Xox* £ ~t) T2 Gy (X,x",£)dS,
. b i
+ 3¢ fnoci(x,x ,to t) G0 (x,x",t:)dvx 0 (35)
Integrating over time from O to to, and taking the initial conditions (5)

and (30) into account, we obtain:

Gi (x",x"' ,to) = Go(x' ,x",to)

t
0 o =i "
+‘A dt/;l Gi (x,x',to t) an Go(x,x ,1:)c'lsx (36)

10




or, dividing by Ex"(x“,to) defined by Equation (13):

Gi(x",x',to) - Go(x',x",to)
Ex"(x",to) Ex”(x”,to)
(37)
f:o f G, (X, X't =t) E, (x,t-t) n (Xotg=t) 3= c (x,x"t)
+ dt ds
o % Ex(x,to-t) x,,(x t -t) x,,(x ,to) x

Equation (37), written for i=1, can be considered as an integral equation for
Kv(x",x',to) defined by Equation (27).
Writing Equation (37) for i=2, integrating x' over ﬂz, and taking (13) into

account, we obtain

Gy (X" /X"t ) / o (Xeto=t) 5= Gy (x,x",t)
1= -~ ds_  (38)
no E (x ,t ) x"(x ’to) o

Similar manipulations on Equation (35) lead to the following equation which

will prove very useful:

)
P(t,ty,x") = = 3= F(t,t,,x") (39)
where
o (Xt ~t) G, (x,x",t)
p(t,t,x") -/ ° (xa"t;" as_ (40)
s Egn (X708
1
and
E_,(x,t. -t)G_(x,x",t)
- X 0 0
F(t,to,x ) -/[ E L") dvx (41)
Q x 0
0
Equation (32) shows that the kernel of Equation (37), except for the factor
Bx(x,to-t)/zx,(x,to-t) in the surface term, is a normalized kernel.

11




The factor Ex/Ex, is identically equal to unity if the ideal biasing
function is used. The ideal biasing function is achieved if the "floating im-
portance volume" Qg coincides with the volume of the configuration nl for all
points y. The factor is expected to deviate little from unity is 9; and ﬂ;"

closely match Q. in the neighborhood of both x and x".

1
An integral representation similar to Equation (37) can be derived for the

kernel Ks(x',x,to) defined by Equation (28). For that purpose, consider Equation

(36) with x" on the common part of L. and I and take the normal derivative

1 2’
3/9n" of that equation at point x". Dividing the result by -Q(x',to) (defined

by Equation 10), one obtains:

X 3%: bt oty 0 | R a—f;..— Gy (x* ,x",t )
Q(x",ty) Q(x",t,)
(42)
a2
“/‘to dtf G, (x,x",t,-t) E (x,t,~t) E u(X,t -t) T:TBn—" G (XsX", t) o
A Sl Ex(x,to-t) Ex,(x,to-t) Q(x ,to) X

Writing the above equation for 1=2, integrating x' over N, and taking

Equation (10) into account, one obtains an equation similar to Equation (38):

¥ "ox"
P an" G % X 'to) av
Q Q(x‘,to) x"
0

2
3 "
: fto dt/ E n (x,t,-t) 3nvon Gy (x,x",t) ”
L]
0 s1 Q(x ,to) x

Equation (42) is an expression for Ks(x',x',to) (Equation 28) involving an

(43)

integral over Kv(x,x',to-t) (Equation 27) which, in turn, satisfies the integral

Equation (27).

12




Finally, the equivalent of Equations (39-41) is:

9
q(t,to,x") - H(t,to,x") (44)
where a2
E ,(x,t -t) —— G_(x,x",t)
qlt,t_,x") = = R as (45)
0 Q(x",t ) X
S1 0
and -3
E_.(x,t -t) —+ G.(x,x",t)
o > 0 on" "0
H(t,tg,x") /Q- SRS av_ (46)
0 0

V.2 The Random Walk

V.2.1 Sampling Kv(x",x°,t0)

The sampling problem is the following. Given x" and to, sample x' from
Gl(x",x',to)/Ex"(x",to) which satisfies Equation (37). Considering the rhs of
that equation, one has to sample two terms. The first term (GO/E) can be sampled
directly. To sample the second term, one can first sample t and x from the
surface part of the kernel, and, given t and x, calculate the weight factor
Ex(x,to-t)/Ex“(x,to-t) and sample Gi(x,x',to-t)/Ex(x,to-t). The procedure just
described can be repeated for that sampling.

As shown in the previous section (Equation 38), the sum of the normalizations
of the density functions of the first and second term is unity: only one of the
two terms need to be sampled, with probability equal to the normalization of its
kernal.

The normalization of the surface kernel is equal to:
l - F(to,to,x")

where F is defined by Equation (39). With that probability, the time variable
has to be selected from the distribution p(t,to,x') given by Equation 39 or 40.

Once t has been selected, the distribution of xe¢S, is proportional to

1

13




-3
r(x) « Ex.. (x,to-t) 5o Go(x,x",t) (47)

with remaining probability F(t x"), the volume term of Equation (37) is to

0’0’
be sampled for x'. The distribution of x' is proportional to

r(x') « Go(x',x",to). (48)

once x' is sampled from the volume term, the random walk terminates.

V.2.2 Sampling Ks(x“,x',to)

The sampling problem is quite similar to that described for Kv: given x"
and tye sample x' from g;%-Gl(x“,x',to)/Q(x”,to) which satisfies Equation (39).
The first term can be sampled directly. To sample the second term, one samples
t and x from the surface part of the kernel, and given t and x, calculates the
weight factor Ex(x,to-t)/Ex,(x,to-t) and samples Kv(x,x',to-t) = Gi(x,x',to-t)/
Ex(x,to-t) by the procedure outlined in the preceding subsection.

Equation (40) shows that the sum of the normalization of the two density
functions is unity: only one of the two terms need to be sampled with appropriate
probability.

The probability to sample the surface kernel is equal to:

1- H(to,to,x")
where H is defined by Equation (46). With that probability the time variable has
to be sampled from the distribution q(t,to,x”) given by Equation (44) and (45).

Once t has been selected, the probability distribution function of xe€S, is pro-

1

portional to
2
]
S(x) = Ex,(x,to-t) Sn"n Go(x:x”'t) (49)

With remaining probability H(to,to,x"), the volume term of Equation (39) has to

be sampled for x', The distribution is proportional to
S(x') « - 3 0 "
3;:'G°(x X ,to) (50)

Once x' has been sampled in this way, the random walk terminates.

14




VI. SPECIALIZATION TO RECTANGULAR PARALLELEPIPEDS

The derivations up to now involved completely arbitrary volumes QO and Qz,

the only restrictions being that the surface I, surrounding (, must be tangent

2 2

at a given point to the surface §. of the configuration, and that the volume QO

1

must be internal to both Ql and Qzu In practice, the choice of these two volumes

is limited to such shapes for which the Green's functions G0 and 62 are known or
easily computable. Carlslaw and Jaeger give Green's functions for a variety of
shapes. The efficiency of the Monte Carlo technique would improve if the shapes
are chosen to match, as closely as possible, the boundaries of the configuration
under investigation. For simplicity, we limit the choice to rectangular parallele-

pipeds, the edges of (., and 92 being parallel. This restriction permits an exact

1
solution in the case of configurations with piece-wise planar boundaries, or
solutions to an arbitrary degree of accuracy if curved boundaries are involved.

VI.1l Separation of Variables

We are looking for the solutions Gi(;};',t), i=0,2, which satisfy Equations
(4-6). Let X'~x = (xl,xz,x3) in a coordinate system parallel to the axes of the
RPP. Dropping the subscript i, we are looking for the solution G(xl,xz,x3,t)
which satisfies

2 2 2
0[362+3G2+362]-%§=o 5
Wy

for a, < x, < a; , J=1,3 and t>0 with the boundary condition

J
t w(xl'x21x3't) :
G(xl,xz,xB,t) = - aj S ’ xj = aj v J=1,3 (52n)
3
+ +
where aj ’ qj are given constants:
-4 + %
aj =0 for j = 1,2, 03 = 0, a3 = 0 (52B)
15




and the boundary condition
G(x1'x2'x3ro) - 6(3(1) 6()(2) 6(3‘3) (53)
Let us assume that the solution can be written in the form:

1 2 3
G(xl,xz,x3,t) = X (xl,t) X (xz,t) X (x3,t) (54)

Substituting (54) into (51) we obtain:

3 2.3 3
3 9
xlxzx3 z —% [:D—-—)E-z---a-%:— =0 (55)
j=1 X axj

A solution of (51-53) is therefore (54) with

2

3 j St S i
D 3 X (xj,t) ot X (xj.t) 0 (56)

X

3
j
+ 3% (x,,t) +

3 i S 0 S 57
j - 58
X (xij) G(Xj) (58)
j=1, 2,3

The four-dimensional problem (51-54) has therefore been reduced to three two-
dimensional problems (56-58).
Let us now derive the appropriate expressions for the functions E and Q de-

fined by Equations (13) and (11), respectively.

A s A
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From the definition (13):

+ + +
e ) s B
B;(r (x',t) = # o dxl dx2 fx dx3 G (xi-xlyxé'xszg'xyt)
X

l_a

. ay l_-

il 3 g g0y
= El(xi,t) Ez(x',t) E3(x§,t) (59)

where
x'-a,.
3 o
BI(x,t) = > X" (x'=-x,t)dx (60)
X'-a

+
Let us consider X' on the surface of the configuration, the outer normal

poeinting in the negative X3-dircctionu From the definition (11) we get:

s L] - l v 2 L] 3 1]
Q(x',t) = E (xl,t) E (xz,t) Q (x3,t) (61)
where
i
X‘=a,
3 -9 3
QT (x',t) = -I’ = % (x'-x,t)dx (62)
X'-a,

VI.2 Sampling the PP Green's Functions

VI,2.k For Purposes of Sampling Kv

Substituting the results of the preceding subsection into Equation (41),

we obtain:

- 1 2 3 "
Flt,t,x") = F (t,tg,x]) FO(E,t,x5) F (t,tq,x}) (63)
where
x*-at i 1
i P71 BT Ot mt) X7 (x{=x,t)
Fo(t,ty) = . & ax (64)
- 1 "
xy-a ET(x],t)
17




Similarly, Equation (40) gives:

p(t,to,;“) = p'F%r® + Flp%pd + Flp?p? (65)
Yhaee i 9 Ji i + 9 i, +
i - - - i
- E (x"-a.,t.~t) — X (a.,t) + E (x"~a,,t.-t) — X (a.,t)
O ’ ’ ’
pl(t't Sow F g ax ¥ : i W Ix i (66)
" E-(x",t.)
£5°0
where
5 -1 -
Es(x,t) = E (x,t) if x# 0
(66a)
=0 if x=0
Both F* (Equation 64) and pl (Equation 66) are also functions of x;,
Substituting 63 and 65 into 40, we obtain
i(t t) = - 2—-Fi(t £.) (67)
¥ ety at o

Let us recall our aim: with probability l-F(to,to,;“) sample the surface

->
term, i.,e., first sample a time t from the distribution p(t,t ,x"). We will

0
prove that the following algorithm will produce such a time distribution.
Perform the following for i = 1, 2, 3:
Attempt to sample t,, 0<t.<t_, from - e Fl(t.,t ). This can be done by
i 0 Bti & x
sampling a random number ei and attempting to solve Fl(ti,to) = gi for ti<t0“
The attempt will fail with probability Fl(to,to), in which case set ti=to.
when all done (tl,tz,t3 sampled), set t-m;n(tl,tz,t3).

Proof: Given any time T<t , the probability that the algorithm produces a

0'
time t>T is equal to the product Fl(T,to)-Fz(T,to)“F3(T,t0), which, according to
Equation (63) is equal to F(T,to,;")u The probability that t<T is therefore

1-F (T, t_,x")

- v olx .

Setting T=t_, we prove that the probability of t<to is equal to

0
o s
l-F(to,t ,X"), as desired.
0
Setting T=t, we can calculate the probability distribution function of

samples t delivered by the algorithm

%’E’ [l-i‘(t,t.o,;")]

18




. . . . o
which, according to Equation (39), is equal to p(t,to,x"), as announced. The
proof is thus completed.
Once t<t0 has been sampled, the next step is to sample % from the distribu-

; - ; .
tion ts(x) given by Equation (47). Taking into account separability of variables,

this can be rewritten as:

rs(;) = ri(xl)ri(xz)rj(x3)
b 2 3
+ rv(xl)rs(xz)rv(x3) (68)
+ xf {x. )Yr (% )r3(x )
- e SO | USRI
where
i = i - i "_ A "
rv(x) = E (x,to t)X (xi x,t)/E (xi,to) (69)
and
i i a i ”
r:(x) = E;'(x,to-t) - xl(xi-x,t)v
" N —— 2 s R
. [a(x-xi + ai) §(x x{ + ai)]/ E (xi.to) (70)

Expression (68) consists of the sum of three terms. To sample (xl,xz,x3)
from that expression, we can sample a single one of the three terms, with a
probability proportional to that term's normalization.

Taking Equation (64) and (66) into account, we can calculate the normaliza-

tion of the first term of Equation (68). It is equal to:
1 2 3
P (t,to) F (t,to) 4 (t,to) (71)

The normalization of the second and third term of (68) can be obtained from that

expression by a circular permutation of the indices.
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Expression (71) is equal to the probability that t. sampled from pl(tl,to)

L
is smaller than ti sampled from pi(ti,to) for both i=2 and 3. This property
can be used to determine which of the terms of Equation (68) is to be sampled:
if the time selection t=min(tl,t2t3) produced t=tj then the jth term of Equation
(68) is to be sampled.

To sample the jth term, xi has to be sampled from ri(xi) (Equation 69),
for both values of i#j. Xj is to be sampled from ri(xj) (Equation 70): Xj is

RS
set equal to x;—a; with a probability proportional to

4
- +

: - s oo
rd = E)(x) - al,t5mt) (+1) = (alst) (72)
Finally, if the volume term of Equation (38) is to be sampled, t is set to
t . and all xi are to be sampled from ri(xi) (Equation 69), for i=1,2,3,
The sampling of RPP Green's functions has been reduced to the sampling of

one-dimensional Green's functions. This sampling will be discussed in Section VIII.

VI.2.2 For Purposes of Sampling Ks

Substituting the results of Section VI.l into Equation (46), we obtain an

equation similar to Equation (63):

1 2 3
H(t,to,x")= F (t,to) F (t,to) H (t,to) (73)

where Fl(t,to) is defined by Equation (64) and

3 -a 3 "_
3 x;-a; E (x,to-t) 5;3 X (x3 X,t)
L 3 (74)
nea, (xR, k)
B 370

Similarly, Equation (45) gives an equation similar to Equation (65)

q(t,to,x") = p1 F2 H3 + F1 p2 H3 + Fl F2 q3 (75)

20




where p1 is defined by Equation (66) and

% 2
e R 5 QU Sl 3 P, 2 s s
. Eg (x a; to-t) : 5 X (aj,t) + E” (x ajrty-t) axz X" (ag,t)
q (t,ty) = > 3 (76)
Q (x",to)

Substituting (73) and (75) and (67) into (40) we obtain an equation similar to

Equation (67)

3 o 2
q (t:to) = 7t H (t.to) (77)

As in the preceding subsection, the sampling of time can be achieved by
sampling three independent times: tl and tz from pl and p2, respectively, and

t. from q3(t3,t0)u t=tj=min(tl,t

3 t3) is retained. If t>t

U o’ the volume term is

to be sampled. Otherwise the ' term of the following distribution has to be

sampled:
i 2 3 1 2 3 1 2 3
r_(x)) r (x,) S_(x5) + r (x,) r_(x,) S_(x3) + r, (%) r (x,) S, (x3) (78)
where ri and r; are defined by Equations (69) and (70) respectively, and

3 3 TS S P 3 (yen
sv(x) « E (x,tO t) o X (x3 x,t)/Q (x3,to) (79)

2
3 Lot e "
E (x,t0 t) 3 X3(x3 x,t)
X

3 - +
— i -x" 4
Ss(x) « 3(x" a5y §(x x3 + a3) § (x: x3 ai{] (80)
Q" (x5t
If the term
j=3 (81)
is to be sampled, the sampling of Sz(xa) can be achieved by setting
-+
x3=x§-a; with a probability proportional to
s 3 : -az 3,2
= ". -
5 Es(x3 azetymt) (31) 5 X" (a,,t) (82)

9%
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Finally, if the volume term of Equation (42) is to be sampled, t is set to

to, x,. is sampled from ri(xi) (Equation 69) for i=1,2, and X, is sampled from
3 ;
Sv(x3) (Equation 79).

The sampling of RPP Green's functions has been reduced to the sampling of

one-dimensional Green's functions. This sampling will be discussed in Section VIII.
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VII. FURTHER SPECIALIZATION OF THE IMPORTANCE FUNCTION

-
As defined by Equations (10) and (13), the importance functions Q(x',t)

> >

and E_, (x',t) are defined in terms of a Green's function Gz(x,x',t), which, in
x

turn, is defined over an RPP {

tangent to the outer surface L, of the config-

2 1

uration at the point of closest approach to x'. We now specialize the RPP 22

to an infinite plane, as shown in Figure 4.

1
0
i
FIGURE 4

Equation {60) written for j=1,2 gives:
EN(xd,t) = B2 (x,t) = 1 (83)
Equations (59) and (60) become:
E,(%',t) = EC(x!,t) (84)
_" ’ 3’
x
Q") = 97 (x},t) (85)

In the followinc discussione, the superscript 3 of E3 and Q3 will be dropped.

23
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The importance function Q is defined only if the RPP ZO shares a common
piece of boundary 52 with the surface 21 of the configuration. The importance
function E does not have to be restricted to that case. We wish, however, to
impose that restriction, and set E3(x5,t) = 1 if the RPP Zo does not abut the
surface Zl. This implies that the importance biasing will be turned off in

that case.

24
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VIII. THE ONE-DIMENSIONAL GREEN'S FUNCTIONS

The sampling of RPP Green's functions has been reduced to the sampling of
one-dimensional functions defined over the solutions of one-dimensional differ-
ential equations (56). As spelled out in Section VI, the time variable has to
be sampled from the p.d.f. pi(t,to) (Equation 66) related to the cumulative distri-
bution Fi(t,to) (Equation 64), or from the p.d.f. q3(t,t0) (Equation 76) related
to the cumulative distribution Ha(t,to) (Equation 74). The spacial variables

x, have to be sampled from the p.d.f. ri(x) (Equation 69) or sz(x) (Equation 79),

- +
;- (Equation 72) or S:— (Equation 82). The

or from the discrete distribution r
analytical expression for all the distribution functions involved will be derived
in this section. Methods to sample these distributions will be discussed in
Section IX.

VIII.1 The xl, szgand Related Functions

+
xl and x2 satisfy Equations 56-58 with a; = 0, We consider the symmetric

case a; = —a; = a/2. In that case, the solutions X1 and x2 have been derived
previouslylu Summarizing the results, the solution can be expressed in terms of

reduced variables

£ = x/a (86)
t = Dt/a’ (87)
: xi(x,t)dx = G(E,1)& (88)

and given either in the eigenfunction expansion

G(§,T) = 2L cos [(Zn‘bl)ﬂ{l exp [—(2nﬁ1)21?21] (89)
0

n=

or in the image expansion

+o

z n 2
=] -
2/F Nt -0 ¢ ’ exp [ (E""ﬂ) /41] (90)

G(&,T) =




An excellent approximation to Equation (64) with El(x,t) = 1 is given

as follows:

F(t) = R(1) (91a)
4 1 -u?
R(t) = 1 - :;: e ¥ du for T<T, (91b)
" J1/4/7
4 2 2
R(T) = = [exp(—ﬂ 1) = (1/3)exp (=97 T)] T, (91c)
Te o L08 (914)

the relative error being less than one part in ten thousand,

In terms of the reduced variables (86) and (87), Equation (67) becomes

i d
P (T.To) T R(T) (9le)

Equation (69) becomes:
rs (dx = G(E,1)AE (92)

Adequate accuracy results from the use of the first two terms of Equation (89)
if 1<.05, and of the expansion (90) if t>.0S5.
Finally, expression (72) becomes:

A
rg - 1/2 (93)

meaning that xj is to be set to x; + a/2 with equal probability.
Reference 1 gives a detailed description of efficient Monte Carlo algorithms
to sample the distribution (91), the differential distribution (92) and the dis-

crete distribution (93). These descriptions will not be repeated here,
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VIII.2 The x3 and Related Functions in the Case a;=0

The constant 0; is defined by Equation (52b). It is equal to the value
a(x) appearing in Equation (6) and in Equation (3). The analysis up to now
was completely general, assuming any non-negative value of a, Further analysis
for @>0 is not completed yet. We restrict, therefore, further discussion to the
case =0, which applies to the case of known temperature boundary conditions as

shown by Equation 2.

Let us first calculate the importance functions E and Q. The solution of

+
s - s - -+ -
Equations 56=-57 for j=3, a3 = - xa, 33 = ®.q 3 = 0 is:

x3(x,t) = lim Eexp(-x-x')ZMDt) - exp(-(x+x')2/4Dt:l (94)
x'>0 2v7nDt
Substituting that expression into Equation (60) one obtains:

™ 2 l
Bl b)) = o e ¥ du = erf(x'/2/Dt) (95)

" x'/2/E

Substituting Equation (94) into (66a) we obtain

E_(x',t) = erf (x'/2/Dt) (95a)

The subscript s can therefore be dropped in that case,

Substituting (94) into (62) and letting x'*0 one obtains

G0, L) & weatse (96)
Dt

+
VIII.2.,1 The Functions p3(t,to,x"), rz(x), r:_

Let us consider the symmetric case a; = - a;. The function x3(x,t) then
satisfies the same set of equations as the function x1 and x2 discussed in |
Section VIII.l. In terms of the reduced variables (86) and (87) the solution

is given by either Equation (89) or (90).




In terms of reduced variables, the importance function E (Equation (95)
becomes:

E(z,1) = erf(r/2/7) (97)

where ¢ = 1/2 + £ measures distances from the boundary. Let us substitute (97)

and (88) into (64)., For 1 = TO we obtain

R(TO)

Fh(1507) = (98)
erf(1/4/r'o')

Making the same substitutions in Equation (66) we obtain:

£a
X

- 1 1
erf (0/2/7=1) 5—3 Gl 5,1) + erf (1/2/7-1) 3z GGy

3
P (TUTO) -
erf(l/4Jro)

The first term vanishes as erf(0) = 0, Taking (93), (91a) and (67) into account,

the above equation can be written as:

14
2 dt

erf (1/4/@

erf(l/ZVTO-T) R(T)

(99)

Ps(t.rc) =

when R(t) is defined by Equations 91b, 9lc.

Algorithms to sample the time distribution (99) are discussed in Section IX.l.

Substituting (97) and (88) into Equation (69) we obtain:
ro (D) « erf(y/2/0) 6 (£-1/2,0) (100)

where G(£,t) is given by Equation (89) or by Equation (90).

Algorithms to sample the spacial distribution (100) are discussed in
Section IX.2.

Finally, Equation (72) becomes

The sampling of that discrete distribution is trivial,
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+
VIII.2.2 The Functions q3(t,to) Si(x). s:'

The Green's function x3(x3,t) satisfies Equations (56)-(58) written for
+
. : - - +
j=3, with 03 =0, a3 = 0 and a3 = a.

Let us introduce the reduced variables

r = x3/a : (102)
T = Dt/a2 (103)
)(3(x3,t:)dx3 = X(g,1)dg (104)

In terms of these variab! =, Equations (56-58) become:

2
—% X(z,1) - 2. X(z,t) =0 (105)
oT
9z
X(z,7) =0 for g =0, g =1 (106)
X(z,0) = &(g) (o7

The solution of (105)-(107) can be given in the form of an eigenfunction

expansion:
L 2.2
. ~Mm T T
X(z=¢',1) = 1lim 2 I sin(mwg')sin(mng) d
z'»0 m=1
giving the expressicn
L _m2 2
lim g-c—,- X(z=g',7)= 2 I mr sin(mrgle & " T (108)
z'0 m=1

which converges rapidly for large .

29




O —— —

The solution can also be given in the form of an image expansion

Xlg=g'rv) ™ [exp (-(c-c')2/4r) -exp(-c+c')2/4t)

2/t

e -exp(-(;+c'-2n)2/41) + exp(-(c-c'-2n)2/4r)
n=1

+ exp(=-(z=-¢' + 2n)2/41) -exp (= (g+r"' + 2n)2/4t) :]

giving the expression

lim X(z=g',t) = [} exp(-C2/4r)

t'»0 O 2t/nt (109)
+ t S-(2n-r) exp(-(2n-7)2/47) + (2n +7) exp(~(2n + 7)2/a7) 1

n=1
which converges rapidly for small .
In terms of the reduced variables (102), (103), the expression of the im-

portance functions are:

E(z,1) = erf(c/2¢q}
(110)

Q(0,1) » =—
mT

Substituting (110) and either (108) or (109) into Equation (74), we obtain
the late and early time expansion of H3(t,to). The expressions are given in

Appendix B. For t = to, an excellent approximation gives:

3 -1/41o -1/T
H (to,ro) =1 - 2e + 2e for <1, (111a)
2
- To
= 4/nty e for ™1 (111b)
0.225 (111c)

corresponding to a relative error of less than one part in ten thousand.
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Let us now rewrite Equation (76) in terms of the reduced variables (102),

(103), taking expressions (110) into account.

2
q3(1,10) = /;;;.erf(l/z/ro'r) :ai X(1,1) (112)
ag

In order to evaluate expression (112), let us start from the late time ex-

pression of %E- X(z,t) (Equation 108) and calculate the derivative at ¢ = 1:

2 2 2
=9 © =
X =-2 & (D" atgt g WY (112a)
a9 n=1
or
.
=3 _=d
S5 ] X(g,1) = 3t R(T) (113)
9g
where
2 n -nznzr
Ri{t) ==2 § (=1) e (114)
n=1

If, instead of the expansion (ll2a), we start from the early time expansion, we

obtain:
ay? i 1
— X(g.,T) = [(1- =) exp(-1/4t1)
ar> 2t/nt =
s (2 —1)2 2
P (1 = —12-—) exp (- (2n-1) “/41)
T
n=1
(2n+1) 2 2
+ (1- -—3?———-) exp (- (2n+1) " /471)
oy @ (2n-1)°§ 2
= Sl s g E ooy g exp (- (2n-1) “/471)
t/;? n=1 =

an expression which can be brought into the form (113) with:

R(r) = 1 - =— T exp(-(2n-1)°/41) (115)
mt n=1
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Expressions (114) and (115) are defined within addition of an arbitrary
(and irrelevant) constant. The constants have been chosen so that expressions
(114) and (115) are different expansions of the same function of t, so that
R(t) = 0 at t = ®, It also happens that R(0) = 1, R(t) (see Equation 113) can
therefore be treated as a cumulative probability distribution function.

Substituting Equation (113) into (112) we obtain:
qJ(T'To) = Vwro erf(1/2/ro-r) é% R(t) (116)

where R(t) is given by either Equation (114) or Equation (115). An excellent

approximation is suggested:

R(t) =1 - ol e'-]'/“'r for t<7t (117a)
/mT -
L
R(g) =2e " T for >1 (117b)
1y = 0.225 (117¢)

The approximation provides at least four place accuracy for 0<t<« ,
Methods to sample q3(1,10) of “quation (116) are discussed in Section IX.l.

Writing Equation (79) in terms of the reduced variables (102), (103), we

obtain:
3 3
Sv(;) « erf(;/Z/ro-t) oL X(z,7) (118)

where %E X(z,t) is given by Equation (108) or (109). We suggest that only the

first two terms of Equation (108) be kept if T>Tge

Methods to sample qz(c) are discussed in Section IX.2.
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Finally, Equation (82) reduces to:

Sampling of that discrete distribution

33

is trivial.
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IX. SAMPLING ALGORITHMS

f IX.l Sampling p3(r,ro) and q3(1,ro)

Let us define the general function
p(r,tgldr = Niry)-W-erf (1/2/7 71) T R(1)dt (121)

with a normalization

T
[ op(nro)dr =] - N(TO)R(TO) (122)
0

The function p(T.TO) can be made equal to pB(T,TO) (Equation 99), by setting

N(t,) = 1/erf(1/4/§2§ (123)
We=1/2 (124)

and defining R(t) by Equations (91b-d).
Alternatively, the function p(r,ro) can be made equal to q3(1,ro)

(Equation 116) by setting

N(t,) = B (15,1,)/R(1y) (125)
W= /ﬂro R(ro)/ﬂ3(to.ro) (126)

and defining R(t) by Equations (1l7a-c).

The general sampling problem we discuss here is the following. With proba-
bility F(ro) set 140 else sample t from a renormalized p(r,ro).

Two different sampling algorithms are suggested, each having a different

range of efficiency:
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a. Small and Intermediate Values of TO

The following rejection technique is efficient:
Step 1 - Sample 1, O<t<= from é% R(T).

N ) 4 2Tq0 accept the sample.

If <1, do the following:

Step 2 - With probability (l-w) reject the sample and repeat
from Step 1. With remaining probability w do the
following:

Step 3 - With probability erf(1/2/;;:?) accept the sample,
With remaining probability reject the sample and
repeat from Step 1.

The probability of the algorithm producing an accepted time <1, with dt at the

first step is equal to

w erf(l/2/10-r) é% R(t)dr

which is indeed proportional to the distribution (122).

The probability of rejecting the first sample is equal to

T
/ v I:l—w~erf(l/2/ro-'r)] ;—i R(7)dr
0

&
l - R(To) - ;;F;;T [} - N(TO)R(TO{]

I

]
(-
|

The efficiency of the algorithm is therefore equal to l/N(TO), The proba-

bility of sampling t<t, within dt is not only proportional, but equal to the

distribution (122).
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The efficiency l/N(To) is 100% for To*ou In both cases of Equations (125)
and (126), it is assymptotically w//;;; for large Toe It becomes unacceptable
for large values of T

Step No. 3 involves a game of chance with probability erf(l/zf?;:?), with
both T and t given. The following algorithm can be used:

2

. dx, 0<x<=), Set T, = 10-1/4x2.

Sample a Gaussian variable X (p(x) = 1

™ ]

The probability that t>T1, is erf(1/2¢10-r .

1
The details of sampling in the case of Equation (125) and (126) will be

given in Section IX.1l.1l and .2, respectively.

b. Large and Intermediate Values of T

The algorithm just described involved a rejection technique based on the in-
equality erf(x) <1, which becomes assymptctically an equality as x7®. We now
propose to take advantage of another inequality, erf (x) :_—1 x, which becomes

™

assymptotically an equality as x-»0. Having that in mind, we rewrite Equation

(121) in the form:

p(t,to) = N1 » fl(r) - fz(r) (127)
where
fl(r) = /w(TO-T) erf(1/2V10~t) (128)
fz(r) = f3(r)/M (129)
£,(0) = — 5% R(1) <1, (130a)
Jw(ro-t)
s = R(T) ™T (130b)
drt -0
M= f3(T)dT (131)
0
N = N(to)/M. (132)
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Similarly, Equation (128) can be rewritten as:

i @
f Op (x et 1= N f £, ()dr . (133)
0 T

0
To sample Equation (127), we propose the following rejection technique:
Step 1 - Sample t, O<t<e, from f2(1)0 18 t:po, accept the

sample. If t<t do the following:

o’
Step 2 - With probability fl(T) accept the sample. Else reject

the sample and repeat from Step 1.
The efficiency of the technique is 100% for Té*”, but deteriorates for small

values of To.

Step No. 2 involves a game of chance with probability fl(T) defined by

Equation (128). In order to construct an appropriate algorithm, let
X = 1/4(10-1)
In terms of x, the probability (128) becomes

1 fr
£, - "2'J§ erf (Vx) (134)

Equation (134) can be expanded in Taylor series:

X x2 x3 (-x)n
o Tttty aits | St T el < 7~ e i

for x<3 the absolute value of each term of the expansion (135) is smaller than
that of the preceding term. This property permits the use of a particularly
simple algorithm:
Set n=1, set u = a random number
Step 1 - Set u=u - xn/(nl(2n+1))u Accept the sample if
u >0, If u0, perform the next step.
Step 2 - Set u = u + xn+1/((n+1)!(2n+2)). Reject the sample

if uw0. If w0, set n=n+2 and perform Step 1.
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If x,3 (which is a rave event), we take advantage of the semi convergent

expansion
-X
£, = A o R e R (136)
2Vx (2x) (=2x)

The expansion has the property that, if truncated, the remainder is less than
the absolute value of the first term neglected, and of the same sign. This
property permits the following algorithms:
Set u, = a random number
Step 1 - Set u = u0
Step 2 - Set u = %-jg - u. Reject the sample if u<O0. If u>0, perform
the next step.
Step 3 - Set u = uexee: - 1, Accept the sample if u>0. If u<o,
set u = u.Z/J?, set n = 1 and perform the next step.

Step 4 - Set u =u + (1.3, === (2n—1))/(2X)no Reject the sample

if u<0. If n>0, perform the next step.
Step 5 - Setu=u- (1.3, =-- (2n+1))/(2x)n+1. Accept the sample
if u>0. If u<0, set n = n+2 and perform Step 6.

Step 6 = If n<X + 1/2 repeat Step 4. If not, perform Step 7.

Step 7 - Calculate erf (V/x) by other means. Accept the sample if

u°<%:j§ erf (/x). Reject the sample otherwise.

The test on n performed in Step 6 corresponds to truncation of expansion
(136) corresponding to a minimum remainder. Given x>3, the probability of exe-
cuting Step 7 (and therefore of having to calculate erf (v¥x)) is less than
exp(-3) +3+5/6" < 0.0006.

The details of sampling in the case of Equations (123,124) and (125,126)

will be given in Section IX.l.l and .2, respectively.

38




IX.1l.1 Dpetails for Sampling p3(T,T0)

a. Small and Intermediate Values of To

The general method is described in Section IX.l.a. Detailed algorithms

for sampling é% R(t) are given in Section III.4 of Reference 1.

b. Large and Intermediate Values of TO

The general method is described in Section IX.l.b. We now will work out
a detailed sampling technique in the particular case of R(T) as given by
Equation (91b-c). As defined in these equations, R(t) has different functional
forms for T<Te and T>Te (Te is defined to be equal to 0.05 by Equation 91d). We
will assume that Te<Tge and derive the expression of f3(r) (Equation 130) in the

three cases O<r<1e, Te<T<To, T.<T.

0

- a. The Case 0<1<-re

Substituting Equation (124) and (91b) into (130a) we obtain

w 2
£,(n)dr = S oI -39 l:l . e ¥ aqu ] dt (137)
2/ﬂ(10-1) ¥ e
1/4/7

Let us perform the change of variables
v=1/4/k - v, (138)
where = 1/4/;;
Equation (137) becomes
2
2 —(vwe)

f3(v)dv = ——— e dv (139)
wWT 5T
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which we rewrite in the form

fa(v)dv “a, 9 he(v)dv (140a)
with
-1/16¢
a -y L . . (140b)
e To-Te
-T 2
T 4 P (140c)
e T.~T
0
-2vev
h (v)dv = e 2v_dv (1404)
e e
v, = 4/, it = 1/(4v - 4ve)2 (140e)

he(v) is properly normalized in its range O<v<w corresponding to re>r>

Osgei}o

- RB. The Case re<1<1°

Substituting Equation (126) and (91c) into (130a) we obtain

2 2
f3(t)=—-1—-—-%;3-('"‘-%eq‘”) (141)
le(ro-r) x

cip A
™ 7T (1-3e m T)

e

TO T

Let us perform the change of variables u = "“EO- .

Equation (l41) becomes

2 2
2 -1t°t. + U
plu)du = 7—'1 Ganadh, P du (142)

b
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Performing the change of variable u = UV, where ww "“&O-Te i

Equation (142) becomes

2 2
2 -7 t +(u -v)
BVl » o (1 ~ 379N 6y o 0 e

/r

which we rewrite in the form

dv = d
p(v)dv a, g2 hz(v) v (143a)
where 5 2
e 2 =T T,
a, = 4(e -e )/ /n u) (143b)
2 -v(u_=-v)
g, = (1 - 3e 8r 1y o o (143c)
-u v
e uedv
hz(v)dv W (1434)
l-e
u_ = qa/T.~T ] t= % e (g -v)2/ " (143e)
e 0'e 0 e R

hl(V) is properly normalized in its range 0<v<ue corresponding to TPT>T or and

0%g <1.

- > >
Y The Case t>ro Te

Substituting (91c) into (130b) we obtain

2 2
o S BN B R WG
f3(t) . & (e 3 e ) (144)

Making the change of variables v = t-to, we obtain an equation which we

write as
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f3(v)dv ag 99 ho(v)dv (145a)
where
4 "'zto
ao "= (145b)
2
gy =1-3 e ° (145¢)
-ﬂzv 2
ho(v)dv = e m“dv (1454)

ho(v) is properly normalized in its range, and 0:90:},
Let us now compute the results of subsection &, B, and Y:

fs(t) is given by an expression
A[Beqehe(v) + Bzglhl(v) + Bogoho(v)] dv (146)

where

A=a_ +a +a and Br-: a /A for r=e,%, O.

To sample expression (146), one samples range "r" with probability Bt
(r=e,%, 0). Given the range r, one samples hr(v)dv, performs the proper change
of variable to obtain a time T, and calculates 9. With probability 9, the
sample T is accepted as a valid sample of fz(T) defined by Equation (129). In
case of rejection, a new attempt to sample is made, starting from sampling the
range "r".

It happens that all the distributions hr(v)dv are exponential which can

be sampled by standard methods.
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IX,1.2 Details for Sampling q3(r,ro)

a. Small and Intermediate Values of T,

The general method is described in Section IX.l.a. We will now work out

b, |

detailed schemes to sample I

R(T) with R(T) given by Equations (117). Two
cases are to be considered depending on T<Tm or T>Tm, where Tr = min(re,To).

- a, The Case 0<T<'tm

p(t)dt = - %; R(T)dT = = %; [} g e-1/4€]d1 (147)
T

Let u = 1/2V/7 ; e - 1/2¢rm

2
p(u)du = - —5-%: v e™ Yau'w 2 (2u1)e ™ du
e Vr
Let u = ue + w
2 2
& B B RN
pw)dw = — (2u” = 1 + 4u_w + 2w ) e dw
b e e
Let v = 2uew
p(v)dv = o, 9 he(v)dv (148a)
where 1
4t
a, = S EON BT 2+ armz) (148b)
vrT
m
2
Ly
g = © (148c)
3
he(v) I piqi(v)dv (1484)
v=1
) =e "’ = (1-2¢_)/ (1427 _+81°)
ql(v » $ p1 Tm Tm 'm
-v 2
q,(v) = ve P 4'rm/(1+2-rm + 8t ) (148e)
v2
AQa(v) = = o~V 2 2
3 € ; = 8T T
2 Py o/ (1+2 m + aTm)
=1 /(1 + 2¢ v)2
7 e m
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To sample he(v) defined by Equation (148d), we set v = ~ log(y) where y
is the product of 1, 2, or 3 random numbers with probability pl, pz, p3, re-
spectively.

- B. The case T <t

iy

d d -
p(t)dt = - = R(t)dt = - y = 2e d (149)
Let v = T-71
m
p(v)dv = azgzhg(v)vz (150a)
where 2
-1 T
m
SN 2 e (150b)
%" 1 (150c)
-nzv 2
hz(v)dv = e n dv (1504)
TwYT +% (150e)

Recapitulating the reswits, the time distribution is written in the form

A [Be g, he(v) + By 9 hl(v)]

where

A=a_+a, , Be = ue/A ¥ Bl = al/A

To sample, one first samples a range (e or f) with probability Be and 32,
respectively. Once the range r is given, one samples v from the appropriate dis-
tribution hr(V)' Given v, one accepts the sample with probability 9, In case of
rejection, the complete sampling is repeated.

In practice, it was found efficient to slightly modify the general technique
described in Section IX.l.a. e, is multiplied by w (defined by Equation 126b).
The game of chance based on w described in Step 2 of that section can then be by-

p...“ .
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- 2. Large and Intermediate Values of To

The general method is described in Section IX.l.b. In the case under con-
sideration R(T) is defined by Equations (l1l7a-c); it has different functional

forms for T<Te and T>Teu We will assume Te<TO“ Three cases are to be considered.

- &, The Case 0<T<Te

Substituting (126b) and (1l7a) into (130a) we obtain:

i 1 ~d 2 =1/47
£ (T)AT = = e — = [1 -t a ]dr (151)
3 . /n(ro_r) g% /T

Performing the same operations as in subsection b, we can rewrite (Equation 151)

in the form

f3(T)dT = ae ge he(v)dv (152a)
w* ere
-1/41
1 2 e
o N [1 i B ]e (152b)
m/t_(t.=1_)
e 0 e
2
_-tev
ge - e (152c)
he(v)dv = q(r)dv (1524)
v = : (152e)

[_1___;_
a/s Lt A
e e

where q(v) is given by Equations (149-150).
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- B. e <
8 The Case To r<10

Substituting (126b) and (117b) into (130a), we obtain:
1 1 ~d -
£,in)dy » & ==t am [2e ® . (153)

Equation (153) is quite similar to Equation (141) of Section IX.l.l.b 8.
Performing the same operations as in that section, Equation (153) is rewritten

in the form:

f3(t)dt = GE 99 ht(v)dv {154a)
where
-nzr -nzr
a -2 [e ® - OJ (154b)
£ u
e
-v{u =-v)
v (154c)
L
-u v
e u dv
hl(v)dv = (1544)
-u;
l-e
u_ = g/t~ § EwE. - (9 -v)2/1;2 (154e)
e v i 0 e

- y. The Case ™1,

Substituting (117b) into (130b) we obtain:
-d -nzr
f3(-r)dr % [Ze ] (155)
which we write in the form

P3(‘t) = a4 9, ho(v)dv (156a)
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s TO
a. = 2e (156b)
0
. 1 (156¢)
- 2v 2
hy(v)dv = e ¥V atav (156d)
ve e, (156e)

Recapitulating the results of subsections a,8, and Y, the distribution
f3(t) is given by expression (146). The sampling scheme given at the end of

Section IX.1l.1 applies.

IX.2 Sampling ri(c) and 53(5)

ri(c) is defined by Equation (100). 53(C) is defined by Equation (118).

Let us define the general distribution function
p(z)dg merf(c/ZJrO-T) r(g)dg (157)

p(t) becomes equal to rg(c) if r(Z) becomes equal to G(Z-1/2,T) as defined by
Equation (89) or (90). p(t) becomes equal to Si(c) if r(Z) becomes equal to
%%(c,r) as defined by Equation (108) or (109).

Two different sampling algorithms are suggested, each having a different

efficiency in different ranges.

- a. Small and Intermediate Values of ro—r

Step 1. Sample 7, 0<z<l, from r(g)
Step 2. With probability erf(;/ero-t)/erf(l/zvro-r) accept the
sample. With remaining probability reject the sample and

start from Step 1.

The efficiency of the rejection technique is 100% for =Ty but becomes poor

for large values of T1.-T.

0
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The game of chance in Step #2 can be implemented as follows. Sample X,

2
r 0<x<1/2/10-t from a truncated Gaussian (e-x dx/erf(l/Z/ro-T)“ Accept the sample
c A -2 Tyt X
- b. Large and Intermediate Values of Ty~ T

In this range of To™T + We rewrite Equation (157) in the form

p(g) =« £,(¢) £,(z)dg (158)
where

£, ) = erf(;/Z/}O-T) /#(TO-T)/C (159)
and

fz(c) & . rExr{r)ar (160)

As in Section IX.l.b, we propose to sample g from fz(;) and accept the
’ sample with probability fl(c)g An efficient algorithm to implement the latter is
described at the end of Section IX.l.b.
The efficiency of the rejection technique is 100% as To~Toe. It becomes

poor for small values of Ty Te

IX.2.1 Details for Sampling rz(g)

- a. Small and Intermediate Values of To™T

The general technique is described in Section IX.2.a. The technique in-
volves sampling r(z) which is equal to G(z-1/2,t). Algorithms to perform that
sampling are described in Section III.4 of reference 1.

- b, Large and Intermediate Values of To~T

The general technique is described in Section IX.2.b. It involves sampling

fz(c) « ;G(g=1/2,t).
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As G( ,t) is an even function of £, the sampling of fz(C) can be performed
as follows:

1. Sample §, -1/%&<1/2, from G( ,T)

2. Setr s 1/2 &

3. Accept the sample [ with probability Z. Else, set L = 1/2 - &,

Methods to sample G are given in Section III.4 of reference 1.

IX.2.2 Details for Sampling Si(C)

- a., Small and Intermediate Values of TO-T

The general technique is described in Section IX.2.a. It involves sampling

r(zg) = %% (z,t) as defined by Equation (108) or (109).

- a. Case of Early Times (T<Te, Te=00225)

At early times we propose to use Equation (109). In terms of the variables

u = g/2/t ; ug = 1/2vt (161)

Equation (109) becomes:

qf i -Qnuauﬂ
r(z)dz = p(u)du = 2ue du+ I =2(2n uo—u)e
n=1
-(2n uo+u)2
+ 2(2n u0 + uje du (162)
or:
—2 -~ -
p(wdu =22 Su=- £ (u -u)} du (163)
n=1
where
+ -4n uo(n uotu)
a, - (2n ug +u) e (164)

§ ¢ - +
If uo>1/2 (i.e., t<1, which is true in our case of small T), un =R, 2 0 for

all n. This implies

2
p(u)du < 2ue du,

which suggests the following rejection technique:
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Y du. This can be done by sampling a

2yy3/2

1. Sample u, 0<u<uo, from 2ue
random number & and setting u = [Mod(-log(f), u,

2, letv=auu

3. Sample a random number £ and set w = £-u

4, Set n=1

5. Calculate u;“ ir u; >v jump to Step #8. Else:

< TRERL © u W the sample u is accepted (the sampling is completed). Else:

7. Calculate u:u It u: < w the sample is rejected. Repeat from Step #1.
Else jump to Step #9.

8. Calculate u: and set v = v - u; - u;, If v<w the sample is rejected.
Repeat from Step #l. Else:

9. Set n = n+l and rereat from Step #5.

Step #1 involves the sampling of 2ue-u2 du. It remains to be shown that

L -
Steps #2-9 correspond to an acceptance probability of 1 - %- z (un - u;),
n=1

Let us consider the rejection probability for each value of n, If Steps
6 and 7 are executed, rejection occurs if a random variable w, uniformly distri-
buted between O and u satisfies u; < w<u (cu). This has probability
(u; - u;)/u. If Step No. 8 is executed, rejection occurs if the random variable
w satisfies v-u; + u; < w < v(<u). This has also probability (u; - u;)/u.

Summed over all n, the rejection probability is indeed % ;1 (u; - u;). As
the acceptance probability is‘equal to unity minus the rejectiZn probability, the
proof can be considered as completed.

An instructive though lengthy proof consists in examining the acceptance
probability for each value of n. The acceptance probability for n = 1 is either
zero (if Step #8 is executed), or (u-u;)/u if Step #6 is executed (as u; < W< u
has that probability). If it is zero for n=1, it remains as zero for the succeed-

ing n's, up to and including the smallest value of n, n=n, for which
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For n = no + 1, the acceptance probability is

1
o (vo il l)

(as uno 4y SW<y, has that probability).

For all n>n, + 1, the acceptance probability is

1 +
u (un-l % un)

(as u; <w < u:_l has that probability).

Summed over all n's, the acceptance probability is

I -
= v u B e (u -u))
0 0 + 1 u S -1
0
1 e QED.
8 [: Sle i | T u+)
n"l n n

- B. Case of Late Times (r>te)

At late times, r(r) is given by Equation (108). Keeping only the first

two terms, we obtain:
LR ok 2
r(pdg « 27 [e T"Tginpg+4e " 7T sinch]d;

o [éin(n;) + ¢ cos(n;)sin(p;):] mdg (165)

2
where ¢ =8¢ 37 T
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Let cos(nZ) = 2x~1. Equation (165) becomes
r(x)dx = (l=-g)dx + € 2xdx (166)

To sample (166) one can do the following.
With probability (l-e), x is set to a random number., With remaining

probability, x is set to the largest of two random numbers. Once x is sampled:
-1
g = cos  (2x=1)/m (167)

- b. Large and Intermediate Values of t_.-T

0

The general technique is described in Section IX.2.b. pz(c) is proportional
to rr(g), where r(z) has been discussed above.

- a. Case of Early Times (T<Te)

The early time behavior of r(g) has been discussed in Section IX.2.2.a.a.

Performing the change of variable u = ;/2/; we obtain:
r(z)dg « u p(u)du

where p(u) is given by Equation (163).
The technique described to sample p(u) can be easily modified to sample
u p(u)du. Only the first step of the rejection techniques needs to be modified.
2

Instead of sampling « ue_u du, one samples « uz')e-u du, which can be achieved by

setting

u = j:iog(gl) sinz(ncz)-log(iz)

and accepting the sample of u_<__u°w

The remainder of the rejection technique applies without modification.

- B. Case of Late Times (t>re)

At late times, we propose a simple rejection technique:
1. Sample r(z) as discussed in Section IX.2.2.a.B, 0<g<l.

2. Accept with probability r. Else reject and repeat Step 1.
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APPENDIX A

A Crucial Inequality

Let Ql be a volume surrounded by surface

Xl. Let x" be a point on Zl. (See
Figure 6). Let 93 be a volume surrounded

by surface ., such that £ 6 and £3 are

3 1

tangent at x", with the same outer normal.

Let 52 be the surface common to 21 and 23

(S2 can degenerate to the single point x"),

And let sli = Zl 52 for i=1 and i=3,

Let Gl and G3 be Green's functions satisfying Equations (4,5,6) for i=1 and 3,

respectively.

We are going to prove the following inequality:

e "
J/; e Gl(x ,x,t)dvx
1 < ™ (Al)

7y N 5
'/;3 an" G3 (x !xrt)dvx for Oitf_to<

Let us introduce a surface Eo = sl,O + 82

surrounding a volume QO’ is com=-

S1,0
pletely internal to both 21 and 230 Let us

+ S

also introduce a surface 22 = 51'2 2

surrounding a volume 92, S1 2 is completely
’

external to both Zl and 22,

FIGURE 6
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Equation (42) of Section IV has been derived without assuming (Al). Let
us consider that equation for i=1l and 3, and integrate both sides over the

volume Qi“ We obtain:

Q, (x",t,) / a 30w Gg (x',x“,t )
ety T Jg Ty L S
(A2)
32
E, (x,t ot E (Xt =t) 50— Go(x,x",t) o
o (%, t -t) Q(x",to) x
where
Ei(x,t) =v/;1 Gi(x,x',t)dvx, (A3)
" 2 Bty '
Qi(x ,to) _];i TG G (x",x ,to)dvx, (A4)
As the solutions of the set of equations (4-6) are positive, we have
Gi(x,x“,to) >0 for x,x'eﬂi.
This implies
Ei(x,t) >0. (A3a)
From the boundary condition (6) we derive
2 G, (x,x',t) g (x,x',t ) >0
T a(x) 17" ol ~
which implies
Qi(x,t) >0 (Ada)
Furthermore, we can show that for t<e
(Adb)

Qi(x,t) >0 for t<=,
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According to Equation (10) and (A3) we also have

Q(x",to) = Qz(x",to) (A5)
and, according to Equation (13) and (A4):

Ex" (xpt) - E2 (x't) (A6)

From (A2) we can derive the upper bound

Ql(X“.to)

g Ol by i (a7)

and the lower bound

Q3(x”lto)
W T B'L(E_;/Ez) (AB)
where
)
- == G_(x',x",t.)
an" 0 0
A= - av (A9)
fﬂo Q(x",t ) x'
32
t E_,(x,t -t) 7;—7-G (x,x",t)
B = [ 0 at fs X oQ(x"Bt ')‘ g ds_ (A10)
0 1,0 i

Equation (43) giving
A+B=1 (aAll)

U(Ei/Eu) and L(Ei/E ) are respectively the upper bound and the lower bound

3

of the ratio

Ei(x,t)/Ej(x,t) for x on Sl,o and Octct,.




We now proceed to show that both A and B are non-negative, a result necess-
ary for the assertion (A7).

Using the symmetry property of Green's functions
Gi (x,x",t) = Gi (x*',x,t)

we can rewrite A in the form

v S
- Gy (X", x', £ ) av i
fﬂo b glt LS o tee,e s

Q2 (x"lto) QZ (x"oto)

A=

Taking (A4a) into account, we obtain
A>0 (aA9a)
or, taking (A4b) into account:

A>0 for t0<w (A%b)

Now consider the expression (AlQ0) of B. Both Ex" (x,to-t) and Q(x",to)
are non-negative (Equztion A3a and Ada).
The remaining term will be shown to be also non-negative.

Indeed, it can be rewritten as

2
-3
W—G (x,x",t) = a—n'.T [an Go(x'x 't)]

or, using the boundary condition (6)

-3 1 » 5 1 =3 "
Bl = w | se G(x,x ,t)] —_G(x) WG(x,x o t)

Using the property of svmmetry

VR Tt
Bl = -a—(-;i-m G(x 'x't) |

Involving Equation (6) again, we obtain: |
1 1

51 = a-“——)-mG(x'px,t) 20

All terms of the integrand of B (Equation 10) being non-negative, we have E |

B>0 (Al0a)
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In order to determine the bounds of Ei/Ej, we turn to consider Equation (36)

which we rewrite in the form

Gj (x",x' ,to) = Gi (x' ,x",to)

t
0 [ -3 "
+ /0 dt fsl ; Gy (X, X"t ~t) 2= G, (x,x (t)ds_ (A12)
’

where Q.8 (Al13)
el

Integrating Equation (Al2) over x'er, we obtain

Ej (x",to) = Ei(x",to)

.
%o -
+ dt o Ej (x,to-t) a_nGi(x'x ’t)dsx (Al4)
0 1,i
which leads to the inequality
Ei(x,t) = Ej (x,t) (A15)
provided (Al3) is true.
Let i=1 and j=2., As lez' (Al5) gives
El(x,t) £ Ez(x,t)
or
U(El/Ez) = 1. (Al6)
Substituting the above expressions into (A7) and taking (All) into account,
we obtain
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Let us write the inequality (A4a) for i=3:

E3(x,t) >0
giving
L(E3/EZ) =0 (Al18)

Substituting that equation into (A8) we obtain

" >
Q3 (x"'to)/Q(x rto) __A (A19)
Finally, Equation (Al7) and (Al9) imply

Ql(x",to)

e e — (A20)

|-

As A>0 for to<m (see Equation A9b), Equation (A20) implies:

Ql(x",to)

— <> (A21)
Q4 (x",ty)

Substituting Equation (A3) for i=1 and 3 into (A2l) we obtain (Al) Q.E.D.

The current proof required only tangency of surfaces El and 23. The

introduction of a very special surface 52, such that QICQZ and 93C92, was for

construction of the proof only. In the rest of the text, the restrictions on

I, are only those imposed here on L.
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APPENDIX B

Expressions for H3(t.to)

H3(t,t0) is defined by Equation (74) of Section VI.2.2, Starting from the

*
early time expansion Equation (109), we derive

» - _ (2m-1)2
H3(t,t0) = -erf(u) + I {2 - ertiul e ¢
t
m=1
i Ei (B1)
to :]
- e [?rf(u1+u2) —erf(ul-uz)
where

1 f

u=f‘"'.u=3/_i__ e

i ) ;- to 2 2 \‘t(to-t) 2/;;:;

Starting from the eigenvalue expansion Equation (108):

2. 2

3 = m -m2ﬂ2t W
H (t,to) = 2Vnto z [}rf(u)(-l) e -e R :] (B2)
m
m=1
where
u = 1/2/t0-t
and
1 . mm . mm
Rm 3 [erf(u + % u) + erf (u-i u)] (B3)
or
s m
Rm = erf(u) + i [}-(-1)
2
2 & "nie
- e B 1= (=1)® Cosh 2RI (B4)
n 2 2u
n=1 u +4n

*
The derivations are given in MAGI's internal memorandum P-7133, Sept. 13, 1976,
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