H) &; | 151/TM-77-5

Ve (PR | October 1977

e\ L \@ | | ARPA ORDER NO. 2223

QD

<H

gow ,

Lo

a

<
PRIM System:
m AN/UYK-20 User Guide

B User Reference Manual

| T ; : i
1 - . e
: $ 3,
-‘ i
Lovis Gallenson

Alvin Cooperband
Joel Goldberg

| DISTRILUION I A

Approved for pulldiz ielease; .
‘ Distribution Uuliaiied

INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way[Marina del Rey[California 90291
UNIVERSITY OF SOUTHERN CALIFORNIA (213) 8221511

J.
0DG FILE copy.

e e S

- Best
Available
Copy

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

ORT NUMBER v, 2. GOVT ACCESSION WO,

3. RECIPIENT'S CATALOG NUMBER

ﬁrﬁsu/m-n-s /
Tieet

PRIM System: Aﬁ?ﬁ?ﬁfio User Guide and /
User Reference Manual, Jf
1

L--""-_

p

fesy

e

S, TYPE OF REPORT AP
PR ;nuuLc;rsneo

'} Technical manua[)

"PERFORMING ORG. REPORT NUMBER

aF

®. CONTRACT OR GRANT NUMBER(s)
Louig/GallensoQ, ”:\\ i‘{ \
Alvin Looperband - DAHC\)5-72-C-¢3p%/ﬁkF¥%<3vAey-414:
Joel fGoldberg / A T

Ehonces P Fs PR s
L4676 Admiralty Way
Marina del Rey, CA 90291

/

q

10, PROGRAM ELEMENT. PROJELT, TASK

AREA & WORK UNIT NUMBERS
ARPA Order #2223
Program Code 3030 & 3P10

. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

~ MONITORING AGENCY NAME & ADDRESS(1! different from Controlling Olfice)

Unclassified

18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

 DISTRIBUTION STATEMENT (of thia Report)

This document approved for public re
unlimited.

lease and sale; distribution

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If dilterent from Report)

SUPPLEMENTARY NOTES

_ KEY WORDS (Continue on reverae side if necessary and iden:ily by block number)
debugging tool, emulated 1/0, emulation
emulators, microprogramming

\

-based programming tools,

gde/V

/(»*

G 5 Sl

3
20&BSTRACT (Continue on reverse side if necessary and identity by block number)

This is a two-part manual for users of t
emulator. The manual demonstrates as we
of PRIM, running and debugging of object code,
computer system.

he PRIM-based UYK-20
11 as describes the capabilities
and the emulated

FORM
JAN 73

1473

EDITION OF 1 NOV 68 1S OBSOLETE
S/N 0102-014-6601

DD ,

UNCLASSIFIED

— e
SECURITY CLASSIFICATION OF THIS P AGE (When Data Entered)

October 1977

[g, | 151/ TM-77-5
!
|

L | ARPA, ORDER NO. 2223

PRIM System:

m AN/UYK-20 User Guide
B User Reference Manual

Lovis Gallenson
Alvin Cooperband
Joel Goldberg

INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way[Marina del Rey[California 90291

UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1511 .

it

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO. DAHCI15 72 C 0308, ARPA ORDER
NO. 2223, PROGRAM CODE NO. 3D30 AND 3P10.

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S AND SHOULD NOT BE INTERPRETED AS RCPRESENTING THE
OFFICIAL OPINION OR POLICY OF ARPA, THE U S GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM.

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS UNLIMITED.

¢ = oo e

T Beczdive Fgge Toank -y

il

CONTENTS

AN/UYK-20 User Guide

Introduction 1

Enter and debug & smail program 3

Bootstrap a program from paper tape 8
Find which instructions modify a location 10
Find which instruction sets a location to a value 11
Determine how many times a code sequence is entered 11
Count references prior to a designated condition 12
Trace a loop only once 12
Determine which instructions were NOT executed 13
Determine when data change over a code sequence 13
Search a buffer for a given value 14
Appendix: UYK-20 Reference Listing 1§

Debugger numbers and operators 15

UYK-20 parameters and devices 1§

UYK-20 symbols and cells 16
Breakpoints 19

: -]
- H
S e]
‘ i
Mie -
i A% i e

06 .
N2 HACUNLED .

JUSTIFICATION

] .
DIf TAIBNTIOR /AVAILABILITY COBES

— it~ AVAIL aat/m SPECIAL
_dat MR- e

il
K
il

i = =

e

*K‘

e TR e e

CONTENTS

User Reference Manual

Introduction 1
General input conventions 1

PRIM Exec 3

PRIM Debugger 14
Arguments 14
Values 14
Expressions 14
Expression ranges 15
Lists of expressions or ranges 15
Specas 15
Syntactic units 15
Literals ié6
Symbois 16
Punctuation 16
Error detection and editing 17
Commands 17
Debugger control 17
Execution control 20
Display 22
Storage 24

Target Execution State 25
Target 1/0 25
170 error messages 26

PRIM SYSTEM: AN/UYK-20 USER GUIDE

INTROL JCTION

The PRIM system supporls UYK-20 program development and lesting by providing
an emulated UYK-20 tool embedded in an interactive time-sharing environment. This
cmulated UYK-20 provides powerful debugging aids nol possible on an actual UYK 20
computer system.

This guide consists of two sections, serving distinct purposes. This first seclion is
an extended introduction to the PRIM UYK-20 tool and its capabilities; it is addressed to
the UYK-20 user with no prior exposure to PRIM. It consists of an overview of the tool,
followed by a detailed discussion of a number of common or representalive programming,
problems with solutions illustrated by means of actual session transcripls with the PRIM
UYK-20 emulation tool. The second section is an appendix to a separate document, The
PRIM System: User Roforence Manual; that manual and the appendix together constitute
the complete reference document for the PRIM UYK-20 tool. (The PRIM system supporls a
family of emulation tools; the User ReJerence Manual covers the capabilities of the PRIM
system as they apply to all the tools in general.)

PRIM is available through both the NSW (National Software Works) and the USC-ISIC
TENCX system, which is a server system on the ARPANET. The user of PRIM is assumed o
have access to one or the other system and somc rudimentary familiarity with its use.
Once the user enters PRIM, its behavior is identical in the two environments.

PRIM consists of the emulated UYK-20 plus two scparate command interpreters
known as the exec and the debugger. Al any lime, PRIM is either running the UYK-20
cmulator or processing user exec or debugger commands; the transition between states is
al the control of the user.

fxcc commands are concerned primarily with the manipulation of UYK-20
environments and configurations. The elements of cxcc commands are keywords, file
namcs, and (decimal) numbers. Keywords include such items as command names, device
names, options, and parameters. Thcy need not be entered in their entirety; any
unambiguous lecading substring of the desired word suffices for recognition. (When a
keyword is terminated with an escapn characler, the word is completed by the exec.) File
names refer to files in the user’s file space (in either NSW or 1ENEX), and follow the
appropriale file name syntax. Each file specification requircs the name, as appropriate, of
cither an existing file (lo be read or modified) or a new file (to be created and written).

Dcbugger commands are concerned with the detailed control of the emulated
UYK-20. The debugper includes the functions available on the front panel of the UYK-20
as a small subset of ils capabilities. Debugger commands cach consist of a single
character; the arguments to those commands are symbolic cxpressions which name the
clements of the UYK-20 (e.g., memory localions, registers, F'C, channel control memory).

Within PRIM, certain ASCIl characters have been assigned special funclions when
input by the user. These functions, which are described complefely in the User Reference
Manual, concern command editing and PRIM (command and UYK-2G) control. The command
cditing functions are backspace (either hackspace or entl-/1), backup (emii-W), delete (del

UYK-20 User Guide Page 2

editing functions are backspace (either backspace or entl-/1), backup (eml-W’), delete (dol
or ruhout), retype (entl-R), and question (question-mark); the control funclions are sltatus
(entl-S) and abort (emtl-X). Backspace backs up over one character within the
current field of a command; it is acknowledged by a backslash (\) followed by the erased
character. Backup backs up over the current command ficld; it is acknowledged by a
backslash (\) followed by the first character of the erased ficld. Dclete backs out of the
current subcommand entirely (or out of the current command if not in a subcommand); it is
acknowledged by "XXX", followed by a new prompt. Retype re-displays the current
command or subcommand line. Question, when entered as the first character of a tield,
generates a summary of the input currently expected, followed by a retype >f the line.

Status causes PRIM to respond with the current status of the emulated UYK-20.
Abort causes any operation in progress to be cleanly terminated and returns control to
the top level of PRIM (either exec or debugger, depending on which one last had control).
The abort function is used both to abort a command that is partially entered or in process
and to stop the running UYK-20.

With this background we can now illustrate how PRIM can be used. Two examples
will be explored in detail; these examples will show how to:

1. key in a small program, run it, discover a bug, fix the bug, trace it to observe its
operation, and save the results,

2. load a propram into memory from a paper tape.
Several (urther examples will be presented with considerably less detail to illustrate a
number of ways in which the interactive PRIM debugger can be used. These examples will

show how to:

I find which instructions are modifying a location and which ones are setting it to a
designated value,

2. determine how many times a code sequence is executed and how many times a data
location is reterenced prior to the occurrence of a known condition,

3. trace a loop only once,

4, find which instructions in a program were not executed,

5. test if a data location has changed over a code sequence, and
6. search a buffer for a given value.

In the following examples, drawn from actual PRIM session transcripts, user input is
italicized to dislinguish it from machine output. Input control characters appear as
their abbreviations superscripted (e.g., #4€).

- " -

A R - -
ST BN o L e e e

o e

UYK-20 User Guide Page 3

ENTER AND DEBUG A SMALL PROGRAM

To start, let us follow a complete step-by-slep sequence of interactions with PRIM.
We shall enter a small program, debug it, then save the resulting memory image on a disk
file for later use.

Our session begins with a command which requests the PRIM UYK-20 tool. From
TENEX, we begin at the exec, whose prompt character is "6

e<PRIM>UY K20°cr
AN/UYK-20 (20/84/77)
Latest NEWS Is 28-JUNE-77

>

From NSW, we begin at the front end with the equivalent command.

NSH: uCACSSE (too! named): uyk2005€s (confirm): CF|

you will nou be taiking to 1UYK2@

AN/UYK-208 (28/04/77)
Latest NEWS Is 28-JUNL-77
>

In either case, the UYK-20 tool is loaded, publishes it greeting message, and enters the
PRIM exec, whose prompt character is ">". The greeting includes two dates. The first is
the release date of the current version of the UYK-20. The second is the date of the
most recent item of on-line news (these on-line items may be accessed via the exec NEWS
command, which is not demonstrated here); news items cover both new releases of the
UYK-20 and changes to PRIM commands. The remainder of the session -- until we leave
the UYK-20 tool at the end of the session -- is the same for both systems.

We direct the exec to keep a transcript of this session on a file, and then switch to
the PRIM debugger, whose prompt character is “#7, for the bulk of this sample session.

>T RCSCANSCRIPY (1o fi1e) KXAMPLESY
>D°SCEBUG
’

The exec creates and opens a new file named EXAMPLE and records the remainder of the
PRIM scssion on that file for subsequent reference by the uscr. Note that the
TRANSCRIPT command itself is not actually found in the file since transcription begins only
after the command is completed; it has been edited into this example.

UYK-20 User Guide Page 4

For the transcribed record, we enler several lines of comments, precedirg each with
the PRIM comment character semicolon.

#; Routine to search a sorted table €7

#; by successive halving then selocting the half that®r

#; should contain the given number.C”

. cr

#; Nccopus:®r

'z reg 2 the address of the first element in tha table®”
's reg 3 the addross of the lass element ir the talloCr
IE reg 4 the number to find in the table€r

' rog 15 the return addresst’

', er

2; Rewurns:cr

FA reg | the address of the element in the table matching ©7
s the contents of reg 4 or 0 if not found®"

#Mode Expanded-1ines €7

#Type 01000°5¢

010081 @0 = LK 1,3\
e1e01: 00 = SUR 1,2\
01002: 88 = LLRS 1,1\
01803: 00 = /IR 1,2\
81004: 80 = CI 4,1\
e1005: @0 = JER 15\
01006: 00 =« LJCE $+3\
e1007: 00 « LR 2,1\
el1eie: 80 « LJ $+2\
e1011: 80 = LR 3,1\
g1812: 80 « CR 2,3\
o1e13: @0 « LJNE 01000\
ole1d: 00 « SUR 1,1\
e1e15: 00 = JR 15¢7

2; 1 asmall program to call the routine:C"
#Type 0120008¢

81200: 80 = I.K 2,01300\

81202: @0 « LK 3,01307\

e1284: 00 « JLK 15,0100C)\

01206: 080 - j§ 01200¢"

#; The ordered list of numbers:C”

#Type 013000%¢

e13e88: @0 « 0,2,4,7,9,20,80,100¢"

Prior to entering the subroutine, we instruct the debugger to produce its output on
scparate lines using the Mode Expanded-lines command. (In the other choice, known as
Dense-lines, the debugger compacts several lines of output into one.)

We begin building our tbroutine at location 01000 (leading zeroes indicate octal
numbers) by entering a type command with the desired address and terminating with an
escape. In response, the debugger displays the contents of location 01000 followed
by an equal sign to allow replacement. At this point we enter the first instruction of the

_ subroutine followed by backslash. The debugger assembles and deposits the instruction
! at location 01000. It then displays the next available location, 01001, for replacement. In

UYK-20 U=er Guide Page 5

this manner, successive instructions are deposited into successive locations. We type a
return after the last instruction to terminate the type command.

Following the subroutine, we enler a small main program and a data table for testing
the subroutine. The list of numbers, "0,2,4,..", each go into separate consecutive cells.

To begin the test, we load register 4 with a number the subroutine is to search for
-~ In this case 80 - then begin UYK-20 execution at localion 01200.

#8et R4S . QoCr

2Go (1) @ 1200°7

--> Halted from 012061 JS 01200

- > AN/UYK-28 halted at 81200, Used 0:006.0

#Type RI:RICT

Rl 80

R?: 81300

R3: 01300

T'ype PRICT

81300 00
Within a shor! time, the emulator halls after executing the JS instruction at location 01206
and control returns to the debugper. We inspect registers Rl through R3. Register 1
contains a O indicatirg the subroutine’s failure to find the value 80 in the table. Closer
inspection reveals ‘hal, while register 3 should point to a value in the table greater than
80, it does not. “hr "@" is a unary operator meaning contents-of; the last type command
above uses the € opcralor to inspect the location addressed by R3 without having to
enter the actual i.dd-css.

Armed with this information, we place a breakpoint al the LIGE at 0006 to gain a
closer view. We then restart the main program.

#lreak (at) 0100675C ‘atter doing) Xecuts €7
#Go (10) 7

--> Break after execuling O81€fE. LJGE 01011
'y

--> Step from 81087: R 02,061

#lype MR2,&RICT

01300: 00
01303: 07
The break command instructs the UYK-20 to break -- suspend execution and return

control to the debupper -- afler everv subsequent execution of an instruction at 01006.
So, when the emulator finishes executing the conditional branch (whether it branches or
nol) control passes back to the debugger. At this point in the subroutine the location
addressed by the contents of register 1 should have been compared and fcund to be less
than 80 (register 4). Conscquently, the subroutire should now scarch the interval
between the address in R2 and that in Rl. In other words, the address in k!l should
replace R3 and the scarch repeated. We single-step the UYK-20 using the line-feed
command and find that as the routine has been written, Rl’s contents replace R2 which, ir
effect, choos~s to search the other half of the interval.

UYK-20 User Guide Page 6

The solution is clear; we replace the insiruction LIJGE at 01006 viih an LJS
instruction. We reset register 2 to the correct value and restart the subroutine at the
comparison.

#Mode Instiruction ®5€ #1T'ype 0100604
01006: L.JGE o181l = LJIS OlO)ICr

#Type R20%C

R2: 081300 « PRI\

R 81303 = 01307¢r

#Go (10 €7

- > Break alter executing 01886: LJLS 81611
of

-.> Step from 8106087: LR 02,81

#Type PR2,ORICT

81305: 824
013071 8144
#Debreak (trom) 010067 r

#Go (t0) €7

~-> Halted from 01286: JS 01200

~-> AN/UYK-20 halted at 81200, Used 0:00.8

#Type ®RICT

01306: 0120
Again the breakpoint is reached and the program suspended. We single-step another
instruction and observe the expected behavior of our subroutine. 1he breakpoint is
removed and thec routine is continued, eventually halting at the end of the main program.
Inspection of register 1 reveals that the routine was successful in finding the desired
value.

For the secon. test, we prepare the subroutine to search the table for a value
known nol to exist. After execulion, several seconds elapse without any response from
the program. We request and receive the status of our program by typing 1§ (which is
not echoed). Suspecting the program to be looping infinitely, we type 1X to suspend its
execution.

#Set R405C . |er

#Go (10) €7

--> AN/UYK-20 running at 081810, Used 8:08.9

TX

- > AN/UYX-20 interrupted from running at 0)0088, Used 0:81.0
#Type RI:RICT

Ril: 81301
R2: 01360
R3: 01301

Our inspection reveals that registers 2 and 3 correctly point to values in the table less
than and greater than 1; the state of this program seems correct. So we must dig a bit
vurther.

=T =S i gy e = e = il

UYK-20 User Guide Page 7

We build a break program to print registers 1 through 3 atter the execution of each
UYK-20 instruction. This allows us to observe the changes in the registers after each
instruction execution,

#lireax (at) STEPCSC

#4Mode Dense-tines ©4C g44Type RI:RICT
acr

<Program number Is (11> #Co (10) CF
--> Rl 81 R2: 01308 R3: 0138}
~--> Step from 018011 SUR 01,82

#Go (10) €F

--> Rl:t 08 R2: 91300 R3: 081301
~--> Sleop from 81082: LLRS 01,01

#Co (to0) ©r

~--> Rl: 01300 R2: 81308 R3: 01301
--> Step from 81883: RAK 01,02

#Go (to) €r

--> Rli 81300 R2: 81308 R3: 81381
--> Step from 01004: CI 04,01

The name .STEP is associated with the single-step event, instructinrg the UYK-20 to break
afler every instruction. The escape following .STEP indicales that we wish to associate a
break-time program with the occurrence of s breakpoint. In response to the "#s#"
prompt, we enter successive debugger commands which are not executed now, but rather
saved by the debugger to be executed when the breakpoint occurs; the break program is
terminated by an empty input line. Each subsequent Go then executes exaclly one more
instruction, followed by the break program.

After executing a few more instructions, we are able to determine the problem.
The addresses in register 2 and 3 differ by 1. When the routine computes the address
halfway between them, truncation occurs resulling in an address identical to that in
register 2. The value in the lable at this address is compared with 1, found to be less
causing ils address to be placed in register 2. Since the old address in register 2 is
identical to the new one, no progress is made; the comparison for .equality between the
contents of registers 2 and 3 fail and the routine jumps back to 01000 to continue --
causing the infinite loop.

To correct this condition, we replace the section of code in the subroutine which
updales register 2 or 3 to decrease the distance between the values by one. We restart
the: program.

#Mode Instruction €7

#Typa 0100605

010056: LJLS e1011 = LJIS $+4\
e1007: Lk 82,01 = LK 21,1\
e1811: LR 03,81 = I.J $+3\
01012, CR 82,83 = LK J,-1,1\
81014: SUR 81,81 = CR 3,2\
810815: JR 617 = LJLS 01000\
o1016: 80 « SUR 1,1\

e1e17: 88 = JR [5¢r

#Dehreak (trom) O5C a1 (contirm)CF
#Go (10) 01200°r

When the program again terminates, we examine register 1 and find that the routine has
correctly failed to find a nonexistent value in the table.

UYK-20 User Guide Page 8

Satisifed with our program, we savo the core image on the file BINSRCH.MEM and
terminate sur PRIM sessicn.

--> Halted from 01286: JS 01288

--> AN/UYK-20 haited at 01208, Usad 0:81.0

#Typa RICT

R1: o8

#Return \te EXEC) ©F

>8/1CACVE P One o' the following:

ALL

CONF IGURRTION

MEMORY

SYMBOLS

>SAVE MCACEMORY (on t11e) BINSRCH.MEM;lcr

sQescurr

Quitting AN/UYK-2@ (Confirm) €7

e
The file BINCRCHMEM now contains a UYK-20 memory im ge that can be retrieved for
subsequent use with the exec RLSTORE cominand.

OOTLTRAP A PROGRAM FROM PAPER TAPE

This exainple will demonstrate the process of loading a program from paper tape
using the bootstrap foader.

The bootstrap program we need is the STANDARD NDRO, which is one cf the NDRO’s
available in PRIM. This bootstrup assumes the existence of the 1532 input/ouiput console
on channel 1. Since the initisi machine configuration contains no 1/O devices, we must
somehow install the consc'e.)

There are two methods available for attaching devices to the emulated UYK-20.
The lirst is to retrieve the device assigments from a previously saved PRIM sescion using,
the RESTORE command. The second, which we v.ill use, specifies each device inaividually.
In either case, the iictallation cf 1/O devices must be done before the e ecution of any
UYK-20 program in that session.

>SETer :

>>NOR0O®5% ? STh.0APD or SSIXS-A

>>NORO ST'¢4CANDARD €7

»>Cr

>INST/LLOR (dovice) 153208C (CHANNEL) JCr

For the RERDER-1532,

»>SPEESCD (characters per second) 1000€¢F

>>"r

For the PUNCH-1532,
>>0r

For the TTY-1532,
»>Or

We set NDRO to STANDARD and install a 1532 on channel 1. During the installation of the
1532, we are prompted for parameters for each device connected to the controlier.

These parameters allow the user to specify device-dependent information. For simple
devices, as in this case, the only user-alterable attribute is the speed at which the devices

UYK-20 User Guide Page 9

operate. (A question from the user in response to the prompt ">>" will elicit the

paramelers the user may alter.)

We specify the SPEED of the paper lape reader to be 1000 characlers per second.
In this manner, we are able to significanily shorten the time needed to read the paper tape
but only with the knowledge that in this application the bootstrap program’s operalion is
indepencent of the specd of the paper tape reader. If we do nol sct the speed, PRIM will
automatically select the actual value for each device. Though installation may only be
done prior to execution, device paramelers may be aliered at any time via the SEIT
commmand.

After installing the 1532, we must attach a source of input to the paper tape reader.
This is accomplished by *he PRIM MOUNT command. (The punch and 1TY need not be
mounted until necded.)

>MOCACUNT (R, 1,N,0L,0U,T,?) ? One of the following:

APPEND

INPUT

NEM

oLD

ouTPUY

THIS-TERHINAL

>HOUNT (R, 1,N,0L,0U, 7,7 JORCNPUT (from f11e) TEST./IBS;205¢ (on device)
RCACEQDER- 1532 €©F

>>7 BINARY or ASCII

>>H°SCINARY (uith byte size) 5C3p
,>('r

The second word 2f the command (in this case INPUT) determines the direction of 10 and
whe ther an existing or new file name is being specified (in this case, we wish to read from
#n existing filc; for the paper tape reader, only INPUT and THIS-TERMINAL are meaningful).
Following the file type, we supply the file name, TEST.ABS, followed by the name of the
device on which to mount the file -- READER-1532,

Next we are prompted with ">>" for more information, in this case the format of the
data on the file allached to the device. BINARY N implies the data file is to be trealed as
a slrcam of characters in which all eight bits of data are significant. The bytesize, N,
describes the packing of the intormation in the file. For disk files written by EMLOAD, the
UYK-20 loader, each byte of data occupies the low order eight of thirty-six bits -- hence
the bytesize is specified as 36. ASCIl specifies a siandard 7-level text file; the bit
corresponding to the eighth column (parity) will always be zero. |If neither BINARY nor
ASCIl is entered, the default (BINARY 36) will be used.

- = e

UYK-20 User Guide Page 10

Once we have installed ‘F2 1532 and mounted a file on the reader, we may begin
the bootstrap.

>Jesegpug

#Set STOP1L,STOP2,B00T2,L.0ADCT

#Go (10) €F

~-> Hatted from 066: 00

--> AN/UYK-208 halted at 879, Used 0:90.4

#Roturn (10 EXEC) ©F

>S/1°5¢vE M OSCENORY (on 111e) TEST.MEM;lcsc ¢r

>DEeSCERUG

#Go (10) 01000€r
After we have installed the device and mounted a file on it, we enter the debugger and set
switches BOOT2, STOP1, STOP2, and LOAD, which correspond to similar switches on the
UYK-20. (The momentary action of LOAD is accomplished by having the emulator clear the
switch after responding to it, but note that the load does not begin until a8 Go command is
entered.)

cventually the emulator halts after reading the paper tape. Since the program is
large, and we intend to re-execute it in {uture sessions, we save the core image -after
loading on a new file, TEST.MEM, where it can subsequently be retrieved via the RESTORE
command. :

The remaining examp'es will be much briefer than those presented above. Instead
of complete sequences of interaction with an actual program, just those commands that are
necessary to solve particular problems will be shown. In a few cases intervening
interactions have been editea out of the transcript to emphasize the essential commands.
In general, results will not be shown.

FIND WHICH INSTRUCTIONS MODIFY A LOCATION

A typical debugging problem is finding which instructions are changing a location
(e.g.. some module is clobbering a cell). This can be solved very easily with a simple
break-time debugper program which traces all modifications of that cell. f the contents of
location 012345 are being changed improperly, the following breakpoint command will
identify all subsequent modifications of the cell, allowing the user to verify their validity.

#eax (a1) 01234508C (after doing) Write OKC

#¢Mode Instruction 0°¢ saaType ®PCOLDCY

#¢Type 01234567

#4Go (10) €T

qycr

<Program number is [2]> #
The debugger commands following the "#u4" prompt are saved as the break program
a~sociated with the writing of 012345, After every write reference to that location,
UYK-20 exccution will be suspended and control will be passed to the debugger, which will

exccute the break-time commands. When the UYK-20 breaks, PC has already been.

advanced to the next instruction; PCOLD still addresses the previous instruction. Again,
the contents-of operator is used to access the instruction location in memory. Since there
is a Go command in the program, UYK-20 execution continues automatically after earh
break, thus generating a trace of the writes. If only the first breakpoint subcommand had
been entered (eliminating the type-out of 012345 and the go commands on the third and

UYK-20 User Guide Page 11

fourth lines), then after displaying the instruction, the debugger would display location
012345 and stop the UYK-20 (thereby returning to user command level).

FIND WHICH INSTRUCTION SETS A LOCATION TO A VALUE

A related, and perhaps even more common, problem is to find which instruction is
sctting a known (probably improper) value into some location. This can be accomplished
with a variant of the break-time debugger program presented above.

reak (at) 01234508¢ (atter doing) Write 05C
02l @012345 <> 06703¢ cthen> #24Go (o) ©F
#4Mode Instruction 5¢ 22yType ®PCOLDCY
qacr

<Program nurber Is [3)> £

The first command in this break program is a conditional command, stating "If the contents
(@) of 012345 are not equal (<>) to the value 067, then continue UYK-20 execution (Go)."
When the Go is execuled, the remainder of the break program is ignored and UYK-20
execution resumes immediately. When the given value is found, the Go is not executed,
thc break program is completed, and control returns to the debugger. Unlike the program
above, this program produces no output until the tested value is found in the cell. (Should
we forget the contents-of operator, then the value 012345 would be compared to ihe
value 067 at each reference, and we would always resume execution.)

DETERMINE HOW MANY TIMES A CODE SEQUENCE IS ENTERED

Occasionally the operation of a program system is degraded by unnecessary and
uncxpected calls on subroutines that do initialization or other operations whose repetition
do not cause errors but do affect performance. The PRIM Debugger can be used to count
the number of times a code sequence is entered.

In the following example the code sequence is assumed to start at location 01234,
and location 0100 (which is assumed to be unused) is used as a counter.

#Crear 0109cr

#llreax tat) D12347°5C (atter doing) Xecute 05C

24Set 0100C5C = ®0100+]CT

#4¢Type 01000

#5Go (1o) €F

syer

<Program number Is [4)> &4
Every time locatior 01234 is entered, the count will be incremented and displayed. If only
a final count is desired, rather than a running count of each execution, the following
command could be used:

#Crear 010077

#Breax (at) 0123405C (atter doing) Xecute 05C

#4Set 010005 « 0100+1¢7

#4Go (10) ©F

yycr

<P ogram number is (5)> #

#T'ype 010067

UYK-20 User Guide Page 12

COUNT REFERENCES PRIOR TO A DESIGNATED CONDITION

The efficlency of a process can sometimes be evaluated by the number of times a
data location Is referenced priar to the occurrence of a given condition of interest. A
variant of the previous example can be used where the automatic continuation is
conditional on the designated condition not yet having occurred. ‘

#Crear 010007

#lreax (at) 01234505C (atter doing) Kead Write 05€

24Set 010005¢ o ©0100+)6

2011 05432 <> 0047 cthen> #44Ge (10) CF

yacr

<Program number s (61> ¥

#T'ype 0100CT
When the condition that location 05432 contains a zero occurs, the program executicn will
break and the counter can be examined.

TRACE A LOOP ONLY ONCE

With the PRIM Dcbugger, a program trace is accomplishcd by sectting an execute
brcak on all instructions of interest and supplying a break-time debugger program that
displays the most recent instruction executed (see the detailed example on entering and
dcbugging a small program). 1o trace a loop only once, the continuation can be made
conditional on PC not being equal to the starting location of the trace.

2lreak (at) 01234:02345¢5¢ (after doing) Xecute C5C
#4Mode Instruction €5¢ g24Type ®@PCOLDCT

el OPC <> 0127405¢ <cthen> #44Go (10) ©F

rycr

<Program number Is (7}> #

The difference between this example and a single-stepped trace (using the .STEP
breakpoint) Is that here any called routines are not traced. To trace the loop n times, the
continue could bc made conc ' onal on a counter that is incremented whenever the starting
location is reentered.

UYK-20 User Guide Page 13

DETERMINE WHICH INSTRUCTIONS WERE NOT EXECUTED

An interesting use of the PRIM debugger is in the isolation of those instructions
within some region which were never executed while running some program. This can be
accomplished by setling breakpoints throughout the area of interest, and then having each
execute-break remove its own breakpoint.

#liebreak (from) ©5C ai) lcontirm€r

#Breax (at) 01234:05670C5C (afier doing) Xecute O4C

44 Debreax (trom) RPCOLD:+(IR+%200X P0x%(1R--0F000X)<>0C000 X e7
2#4Go (to)

r7ida

<Program nunber .s [8]>

#lreak (at) 0567208C (after doing) Xecutae CF

#Go (10) 01234

--> Break after executing 85672: J 810880 #llrear (at) €F

03457-04557 <X>(8) 85672 <X> ¥
As each instruction breaks, its own breakpoint is cleared by the Debreak command. IR is
the instruction register, containing a copy of the (first word of) the most recent instruction
cxccuted; ®PCOLD is the address of that instruction. The long expression following :+
cvaluates to 0 or | according to whether the instruction is short or long, thus clearing the
breakpoint at both words of a long instruction (the second term is required only if RL
instructions are used). At the end of the program, a display of the remaining breakpoints
shows those locations that were never executed.

DETERMINE WHEN DATA CHANGCE OVER A CODE SEQUENCE

It is occasionally necessary to determine whether a code sequence has changed the
value in some location. This can be done by setling a breakpoint at the beginning of the
sequence, where the break-time commands copy the data value into an unused location,
and sctling another breakpoint at the end of the sequence, where the break-time
commands coripare the copied value with the current value.

In the following example, the code sequence starts at 012345 and ends at 023456,
the critical localion is at 05432, and 0100 (assumed here to be unused) is used ior
temporary storage.

#Break (at) (11234508¢ (after doing) Xacute 05€
25Set 010008¢ = @05432¢T

#5Go (10) €

qycr

<Program number Is [9]>

#Break (at) 02345605 (atter doing) Xecute 04€
a1l ©05432=@010003€ <then> ##4Go (10) CF
qycr

<Program number is [(18)> &

Tiie first breakpoint, at the entry to our routine, saves a copy of the contents of 05432,
the second breakpoint, at its exit, compares the current contents with that saved in 0100.
Each time the value in 0%432 changes over the designated code sequence, program
cxecution wili break. Should we be skeptical about the availability of location 0100, we
could establish a breakpoint there which would break on any reference.

UYK-20 User Guide Page 14

SEARCH A BUFFER FOR A GIVEN VALUE

The final example will show how to search a buffer (or any arbitrary set of
locations) for the accurrence (or non-occurrence) of a designated value. In this example,
all words containing 4 in the left half are located.

#locate 400X05¢ (uith mask) QK F00XOSC (in) 013500:4307
L4

The general form of the locate command requires a comparison value, a mask, and a set of
addresses tu examine. The comparison value and mask can each be any arbitrary
cxpression. The set of addresses can be a list of discrete locations or address ranges.
By entering NON before the comparison value, the test is inverted. The comparison value
defaults to "NON 0" and the mask defaults to "NOT 0" (i.c,, all 1 bits). The test is identical
to a masked compare (CM) instruction with the normal form being a test for equality and
the NON form a test for inequality. Each location in the list is then displayed or not
according to whcther a match or non-match was specified. The locate command is
analogous to the type command in that if it is terminated by an escape a replacement value
can be entered for each displayed location. The same rules for the replacement value
apply for locate-with-replacement as for type-with-replacement.

e iy ST ey

e T

UYK-20 User Guide Page 15

APPENDIX: UYK-20 REFERENCE LISTING

DEBUGGER NUMBERS AND OPERATORS

The debugger evaluates user input expressions in 16 bit twos complement
arithmetic identical to that of the UYK-20. The operands of expressions include symbols,
numbers, and character constants; the operalors are listed below, and include all those
found in the ULTRA assembler. Expressions may be parenthesized to an arbitrary depth.

Input numbers may be octal (leading 0), decimal (leading non-0), or hexadecimal
(Icading digit and trailing X). Output is identical, except that when hexadecimal output is
requested, a leading A thru F is not prefixed with a 0. A charac'er constant consists of
one or two characters included in single quotes; the ASCIl character set is used, allowing 8
bils per character.

The integer arithrotic operators are 4, -, %, /, MOD, and ABS. (MOD is the
remainder afler division, while ABS is a unary operator returning lhe absolute value of the
following term.)

The relational operators are =, <, > <=, >= and <> Their value is 1 when the
relationship is true and O otherwise.

The Boolean operators are ++ (OR), -- (XOR) and #+ (AND).

The fetch operalor is ®. @ is a unary operator whose value is the contents of the
ccll addressed by the next term. @ is invaluable when building conditionar expressions in
break-time programs. It also provides a good shorthand at other times, e.g., "1(ype) &#PC"
displays the next instruction to be executed

UYK-20 PARAMETERS AND DEVICES

Various UYK-20 options are selectable as parameters of the emulated UYK-20. The
scttings of these parameters may be inspected and changed by the user at any time via
the SE1 and SHOW commands.

CLOCK sets the clock source frequency, expressed in ticks per second (Ho). The
default value is the internal source frequency of 1000 Ha.

MEMORY scls the size of memory, expressed in 8K modules. The default is a half
memory of 4 modules.

NDRO sclects the particular NDRO program, by name. The selections available are
listed in response to ihe Set subcommand NDR() ?. The default is the Standard
NDRO.

RECGISTER-SETS controls the installation of the optional register set. The parameter
value is either one or two sets; the default is onc. When only one set is installed,
the general-register-set selector bit in status register 1 is ignored.

UYK-20 User Guide Page 16
Appendixs Parameters and Devices

Devices are installed on UYK-20 channels via the INSTALL command. Installation of
a dcvice implies the simultaneous installation of the appropriate type of channel.
Therefore the user need never be concerned with the installation of channels.
Furthermore, all channels are available for the installation of any type of device, without
restrictions concerning channel groups; also, 32-bit channels do not require the use of a
sccond channel (al n+] or n44) lo carry half the data. |t is therefore possitle, though not
necessarily useful, to specify configurations wnich cannot be built on an actual UYK-20.
The list of implemented devices that may be installed is listed in responsa to the command
INSTALL ?.

One optional parameter which is specifiable for every installed device is the device
spced, expressed in some units appropriate to the device (characters per second, cards
per minute, inches per second, ...). The default is either the actual specd or a typical
speed of that device. Allering the parameter lincarly alters all the timing associated with
that dcvice.

Temporary specd increases can be useful in speeding up lengthy processes for
which timing is not critical. The principal example is a bootstrap load; a factor of two or
four increase in the emulated speed of ‘he bootstrap device results in a substantially
faster bootstrap. Speed changes may also be used to experiment with the effect of
variations in data ratc on program performance or throughtput.

For the device T1Y-1532 (the T1Y on the 1532 operator console), interrupt
transmission of the next character is indicated by entering the two-character sequence
control-shift 0, where controi-shift is the PRIM control-shift input control code (not
the control-shitt key on the terminal.)

UYK-20 SYMBOLS AND CELLS

In addition to memory, the following cells are known to the debupger and are
accessible by the indicated names. Except as indicated, modification of any cell affects
future behavior of the UYK-20 in the obvious manner. For example, changing the state of
an 1/Q chain from idle to chaining will cause that chain to resume execution (at its chain
address pointer location) when execution is next resumed. 1he only note of caution

concerns the device-to-channel bits in the 1/0 interface; thcy may nct be altered with
confidence since they are inextricably tied to (inaccessible) device status information.

R0 thru R15 (decimal). the primary register set.
RRO thru RRi5 (decimal): the secondary register sct.
PG.0 thru PG.77 (octal): the page registers.

N.O thru N.77, N300 thru N.477 (octul): NDRO memory. Any altempt to store into
NDRO generates a break, and the write is ignored.

TRIG.0 thru TRIG.17 (octal): The trigonometric CORDIC constants.

HYPER.O thru HY PER.17 (octal): The hyperbolic CORDIC constants,

s, R e

UYK-20 User Guide Pape 17
Appendix: Symbols and Cells

The following are one-bit cclls which correspond to control panel switchos and clock
enable functions.

MCLEAR: auto-start switch. When sel by the user, causes the UYK-20 to execute
a master clcar scquence and then begin execuling. MCLFAR is always clcared by
the emulator at the end of the master clear. The master clear scquence includes a
resel of all the emulated devices as well as the regular CPU and I0C resel.

LOAD: load swilch. Causes the UYK-20 to execute a masler clear sequence, set
the PC to 2, and begin execuling. LOAD is cleared by the emulalor at the end of

the master clear,

BOOT2: Bootslrap 1/2 selector. Sel is bootstrap 2; clear is bootstrap 1. Never
modified by the emulalor.

STOPI, STOP2: Set is ON; clear is OFF. Never modified by the emulator.

RTCE: Real lime clock enable, allows the clock to be advanced al each tick
interval.

MCRE: Monitor clock enable, allows the clock to be decremented at each tick
interval.

RTCIE: Real time clock interrupt enable, allows the real time clock overflow
interrupt request to be penerated.

The following are the miscellaneous other registers accessible (v the user.
PC: the current program counter (containing address of the next instruction).
SR1, SR2: the status registers.
RTCU, RTCL: the real time clock, upper and lower.
MCR: monitor clock repister.
The following cells contain bit-encoded status informalion; in each case a set (1) bit
indicates either a pending inlerrupt or an enabled condition. For all but the first, one bit
is used for each channel, with bit O for channel O, ..., and bit 15 for channel 15.
INT1.2: pending class | and Il interrupts.
Bit 15: Power fault (never generated internally).
Bit 14: Memory resume. (Generated internally only when a
reference is made to nonexistent memory.)
Hit 13-8: Class |, priority 3 thru 8.
Bit 7: CP Instruction fault.
Rit 6: 10C Instruction faull.
Bit 5: Floating point overflow/underflow.

Bit 4: Execculive return.
Bit 3: R1C overflow.

T T D ST TN gl P

UYK-20 User Guide Page 18
Appendix: Symbols and Cells

fit 2: Monitor clock ovet flow.
Bits 1-0: Class I, priority 7 thru 8.
INT3IC: Class lll intercomputer timeout interrupts pending.

INT3X: Class lil external interrupts pending. (This bit is sct at the time that the
status word is stored in memory.)

INTJ30: Class Il cutput chain interrupts pending.
INT3I: Class lil input chain interrupts pending.
ElIE: Channcl exiernal interrupt enable flags.
CHIE: Channel interrupt enable flags.

The next five ilcms are merely informative; altering them does not affect the future
behavior of the UYK-20.

IR: Instruclion register containing the last instruction executed (the first word for
a long instruction).

N Effective address of the instruction in IR. For RK, it is the effective constant.
(Displaying IR in instruction mode will display both IR and EA for long instructions.)

CAP’: Channel address pointer, incicating the type of the last instruclion cycle
cxeculed. Zero indicales CPU (DPS) execution; a value of 8&n+2 indicales 10C
execution by the inpul chain on channel n; a value of 8n46 indicales the output
chain on channel n.

MAR: Mcmory address register, giving the last relalive memory location
referenced. If the last reference was an instruction fetch, MAR addresses the
location following the instruction. MAR is sel by channel transfer cycles and
interrupt cycles as well as by execution tycles.

I'CoLD: the program counter at the start of the last CPU instruction cycle.

The remaining ilems are all concerned with the UYK-20 channcls and channel-device
interfaces. Hexadecimal notation is used to designate the channel number with a single
digit of O thru F.

CM.0 thru CM.KF (hexadecimal): channel control memory. The two -digit number
designates the channel in the first digit and the word-within-channet in the second
digil.

1C11.0 thru ICH.F: the input ¢nain state for each channel.

OCH.0 thru OCH.F: the output chain state for each channel. For both input and
output chains, the state values are:

0: Idle.
1: Chaining.

UYK-20 User Guide Page 19
Appendix: Symbols and Cells

Search for first sync (synchronous communication channel only).
Scarch for second sync.

Inpul data transfer.

Output data transfer.

Function transfer (parallel and NTDS channe! only).

Forced function transter (parallel and NTD3 channel only).

SR LD

All channel-device data transfers take place identically in the emulator, repardless of the
actual channel type. Transfers occur one byte (8, 16, or 32 bits) at a time, following the
mode! defined for a paraliel 1/O channei, but with a buffer to hold each dztum in turn.
tach transfer uses the appropriate buffer = for the channel and two interface bits, a
request hit and an acknowledpe bit. For paraliel and N1DS scrial channels, functions are
transferred the same way, while status uses EIE and EIR.

1.0 thru IR.F: the input (device to channel) buffers.
OR.0 thru OR.F: the output (channel to device) buifers.

IDR.0 thru IDR.F: input data request (device to channel) flap.

INAN0 thru IDAEF: Input data acknowledge (channel to device) flag.

ODR.0O thru ODR.F: Qutput data request (device to channcl) flag.

0ODAN0 thru ONAKF: Output data acknowledge (channel to device) flag.
EFR.O0 thru EFR.F: Function request flag (parallei and NTDS scrial).

EFA0 thru EFAK: Function acknowledge flag (paralicl and N1DS serial).
EIR0 thru EIK.F: Exicrnal inlerrupt request flag (paraltel and NI1DS serial).

The static lines tor ~ommunication channels are given their MIL-S1D-188 names (A thru L),
A, D, F, G, H, and J are the outbound lines, while B, C, E, |, K, and L are the inbound lines.
These flags are not valid for parallel or NTDS serial channels. The eight RS-232C control
lincs are mapped into these lines as noted in the list below; the mapping is taken from the
channcl cable pin assighments.

10N1.0 thru 10AN.F: Loop test.

1018.0 thru fORB.F: Ring indicator (CE).
10C.0 thru J1OC.F: Carrier detect (CF).
10D.0 \hru 10D.F: Dala terminal ready (CD).
1OE.0 thru 10kE.F: Clear to send (CB).
1010 thru 10K ;. New sync.

10G.0 thru 10G.F: Request to send (CA).
1011.0 thru 1011.F:

101.0 thru 1011

10J.0 thru 10].F:

10K.0 thru JOK.F: Data set ready (CC).
101..0 thru 10L.):

BREAKPOINTS

The UYK-20 emulator is continually monitoring the execution of the UYK-20 to
detect the occurrence of any break conditions which may be set, (Breaks are neither set
nor cleared by the emulator; only the user, via the debugger brepkpoint commands, can set
or clear breaks.) When a break condition is detected, the break occurs after the event, at

UYK-20 User Guide Page 20
Appendix: Breakpoinls

the end of the current cycle of execution. It is therefore possible for multiple breaks to
be reported al one time. Fach UYK-20 cycle consists of the execution of one of the
following items:

1. A CPU instruction, including indirect addressing (for the IOCR or REX instruction,
execution of the I0C command or remote instruction takes place in the same cycle).

2. An iOC chain instruction.

3. A CPU inlerrupt sequence due to a pending interrupt request. This cycle includes
the storing of PC, status and clock, and the fetching of new PC and status. The
crealion of a pending interrupt is a side effect of a previous cycle (or a manual
operation by the user).

4. A single channel data transfer under control of a buffer control word.

B. A clock cycle, which occurs at each clock tick interval whether or not the real-time
and monitor clocks are enabled.

6. A device execution cycle.

7. An external interrupt cycle, in which a channel stores a status word and generates
an external inlerrupt request.

There is an event associaled ~ith each of the first five types of cycles, allowing the
user to break execution after any cycle of the given type. Dcvices cannol be directly
monitored; onc must monitor the channels instead. The external interrupt cycle can be
monitored via a write break set at any or all of the El Storage locations ir memory.

The following event flags are defined for the UYK-20:

STEP: Break after any CPU execution cycle.

LCHAIN: Break after any chain or command execution.

ANT: Break after any inlerrupt cycle.

XFR: Break afler any I0C transfer cycle.

JICK: Break after any clock tick interval.

JUMDP: Break afler any transfer of CPU control to other than the next instruction.

Includes inlerrupts as well as (successful) conditional jumps, but does not include

NOP (LJ 811).

STOKE: Break afler any memory store, including those peneraied by 1/0 and
interrupts.

NJMP: Break after any CPU conditional jump instructicn which doesn’t jump.

ANOM: Break after any of a number of switchable anomalies, including:

UYK-20 User Guide Page 21
Appendix: Breakpoints

llegal Instruction. An illegal CPU or I0C instruction is executed. The
instruction has set an interrupt request in INT1.2, which will cause an
interrupt when execution next resumes - unlcss it is cleared.

External interrupt while not enabled. A device (on a parallel channel)
generated an external Interrupt request when EIE was not set on that channel.

Improper Indirect Address Word. The J value is one of the unassigned values.

An 10 transfer specifying EF or EFF is executed on a communications type (not
NTDS) serial channel (the EF JEFF is turned into a NOP).

A communications channel operation (such as CSIR or CSST) is executed on a
parallel channel (the operation is turned into a NOP).

In addition, the following anomalies always generate a break, regardless of the setting of
ANOM:

Device error. Usually occurs when an unconfigured channel executes an EFF.

0dd mcmory address (in a double word reference). The addressed word has
been used twice.

Odd register number (in a double register reference). The addressed register
has been used twice.

Store into NDRO. The store is not performed.
In addition to the above events, breaks can be set at specific locations, to occur only
when the location is referenced in the indicated manner. The three forms of refefence

are:

X: Execute includes the fetzh of a short instruction, or the fetch of the first word
of a long instruction. Applies to CPU and I0C execution equally.

R: Read includes any other fetch. (Neither break includes the second word of a
fong instruction.)

W: Write includes any store into the given cell for any reason.

These reference breaks may be applied to the following ceils:
Memory: all three forms, in any combination, by absolute (not relative) address.
NDRO: Read and Execute breaks.
Registers: Write break, in each set separately.
Channel control memory: Write break, on each pair of words. (A brezk applies to
both words of an even-odd pair regardless of the cell actually specified.) A break on

a channel address pointer can be used to single step a particular chain, while a
break on a buffer control word can be used to single step a particular transfer.

UYK-20 User Guide bag2 22
Appendix: Breakpoints

Inp. .d Output (Interface) Buffers: Write brouk, for each separately. The break
is aiways taken after the cycle which wrote the word, but before the cycle which
will read ' . word. Therefore, any alteration of the data is effective. The break
on the inpu: buffer is the only break triggered by a device cycle (other than a
device error anomaly).

e e

PRIM SYSTEM: USER REFERENCE MANUAL

INTRODUCTION

This document is the common reference manual for all users of the PRIM system,
both those using one of the existing emulation toois and those writing new emulators. | or
the former, this manual is supplemented by the appropriate tool-specific puide (e.p., PRIM
System: (J1050 User Guide); for the emulator writer, the supplecment is PRIM System: 100l
Builder Manual.

The PRIM system is always in one of three states, known a- the ey, the debupgper,
and the target execution states. 1he transition between states 11 controlled by the user.
[oth of the first two states are PRIMm command proccssors that talie commands from the
u.or and execute them, The excc, whose command prompt characier is ">" i used
principally for setting up a target environment; the debugper, whose command prompt i
"#", is used for the detailed examination and control of the executing tarpet
machine. Target exccution includes the emulation ¢’ not only the CPL, but also clocks and
aswsorted peripheral 10 devices. The three sections following the introduction describe

cach of the states in turn,

The PRIM exec and decbupger commands are illust <d with examples taken from
actual scssion transcripls, In all the examples, us.r input is dtalicized to distinpuish it
from PRIM output. Input control characters appear as their abbreviations superscripted
(e.p., €5C),

GENERAL INPUT CONVENTIONS

User input to PRIM, both exec and debugper, is penerally free-format and
casc-independent. Leading spaces and tabs are ignored, and lower case is treated as its
upper case equivalent (except in quoted strings, where casc 1< polentially sipmificant).
U-~cr input to the target machine during target execution state i« in the formal required by
the target system.

Cerlain characters have becn assigned editing and intervention funclion. when input
by {he user. The editing characters apply only to the PRIM excc and debugper, while the
intervention characters apply to the target execution statc as well. The specific
characters assipned to most of the funclions may bc altered (via the exec Change
command) to suit one’s needs. The editing functions are valid at any time during PRIM
command input; commands are not execuled unlil after the final character has becn
accepted.

Back-space (cntl-H) erases a character from the current word or term of input. The
back-space is echoed as a backslash (\) followed by the erased character. When
there are no erasable ch iracters, a bell (cntl-G) is echoed instead.

Mternate back-space (initially cnti-A) performs a function identical to back-space; it is
provided as a convenience.

R e o e A S Fi T ey e s T

PRIM System: U.er Relerence Manual Yape 2

Backup (initially ¢ntl-W) erases the current word or term of mput. It is echoed a-
backslash (\) followed by the first character of the erased word.

Retype (initially ontl-R) retypes the current input line; it is ueeful after a confusing
amount of ediling has occurred.

Delete (initially DEL or RUBOUT) aborts the current input command or subcommand,
allowing the user to re-enter it. It is echoed as " XXX".

Question (?), when entered at the beginning of a cor .nand ficld, elicits a description of
the expected inpul, followed by a retype of the line. When the expected input ic a
selection from a list (or menu), the entire list is shown.

The intervention characters are valid al any time, including command input, command
interpretation, and target execution.

Ahort (initially cntl-X) interrupts the current activity and returns confrol to the
command level of either exec or debugger. When used to cancel an exec or debugper
command, contral rcturns to the top level of the same state; abort is the only means of
canccling a command when the user is in subcommand mode. When used to interrupt
target execution, control returns to the state from which execution was initiated; abort
is the only means of stoppinp a looping target machine.

Statvus (initially cntl-S) produces a one-line summary of target machine status, including
program countcr, emulaled elapsed time, and active 10 devices. The command is valid
at any time, but useful primarily in execution state.

The following character is active only during target execution.

Control-shift (initially cntl-1) permits the user to enter (during execution) a control
code that cannol be entered directly because it is intercepted by cither PRIM or the
operaling system; the PRIM characters inolved are statns, abort, and control-shift itself.
The next ASCIl character following the eontrol-shift (other than the chigits O thru 9) has
ite two leading bits cleared, thus converting it to an ASCIl control code (/1 or a to
entl-/1, elc). Control-shift followed by a digit results in an input that is outside
the normal target character set and is used for particular target-machine-dependent
functions. Thc control-shift character itsclf is not echoed, and not passed to the
target machine. If execution terminates before that next character is input to the
target device, the conlrol-shift is canceled; it is not retained for the next resumption of
execution.

PRIM System: User Reference Manual Pape 3

PRIM EXEC

The PRIM exec is the initial stale of a PRIM session. Exec commands are concerned
primarily with building targel configurations, saving PRIM scasion resulls, restoring
prcviously saved sessions, and accessing or crealing files (within the file space of the host
operaling system).

The exec prompt characler is ">", indicaling that PRIM is in exec stale and that the
excc is awailing a new command; it is always shown on a ncw linc. Individual input ficlds
consist of keywords (a word selected from a menu), decimal numbers, and file names.
L xec commands are composed of fixed sequences of fields, cach terminated by a delimiter
character; a final confirmation consisting of a return 1s oflen required.

Keywords are selected by any unambiguous leading subslring. Ofen, a winple
character suffices; three characters are alweys sulficient. Numbers are specified in their
cntircty. File names are specified according 1o the conventions of the operating system.
All commands that will use a file for output require the name of a new file (except the
Mount-Append and Mount-Old commands, which mochfy existing files); all other file
cammands require the name of an existing file. In TENIX, an exisling, file name - and a
new file that is a new version of an exisling file name -- is recopnized (and compleled) in
response Lo an input escape.

The normal delimilers that terminale command ficlds are retnen, escape, and space.
Liscape and space funchion identically except that the former gencrates fecdback to the
u~cr while the latler generates none; the feedback produced by escape indudes both field
completion and next-field prompling (which is given in parenthes2s). Return is used o
complele a command immediately, bypassing any remaming ficlds and confirmation; if
further inpul is required, the return is treated as an escape. (In the examples that follow,
escape lerminalion is used o show the prompls.)

Keywords that involve either devices or paramclers are machine-dependent; the
~clections shown in the examples are meant to be illusirative rather than definitive.
Device specification is further complicated when two (or more) of the same generic device
are installed. Therefore, for device names, two further delimiters are utihized, at ("é") and
colon (":"). A fully qualificd device name consisls of peneric-name @ channel-munher :
nnit-number; \he numbers are required only to the extent necessary to specify a
particular device. When a device name is terminated by onc of the standard terminators,
and when further disambiguation is required, the exec prompts explicitly repardless of the
tcrminator.

Thie remainder of this scction consists of the descriptions of the excc commands in
alphabetical order. Etach command description begins with a transcript showing onc or
more examples of the command and ils various options. T1hose commands thal require a
sccond keyword show that list via an input question. The exec commands are:

i o I i A

PRIM System: Uscr Reference Manual Page 4
Lxec

>7 One of the follouing:
CANCEL
CHNANGF
CLost
CONINANDS
Dt BUG
FILESTATUS
GO

INSTALI
MOUNT

NEHS
PERIPHERALS
auly
REASSIGN
RI STORE
REHIND
SNVE

SET

SHOH
SYHDOLS
TINE
TRNNSCRIPT
UNINSTALL
UNHOUNT

Comment.

>; this line is a commen®r

>

Any linc beain}\ing with a semicolon is treated as a comment. Commenls are recorded in
the transcript if one is open (see Transcript command).

>eaCSCNCEL (10 for device) ta®™SCPE-UNIT €F
>

This command is inlended for use when, after an 10 error halt (described in the section on
target execution), the user wishes to abandon the device operation rather than mount a
file and retry the operation. The list of outstanding IO operations, by device, is part of
the Peripherals command output.

T ———

PRIM System: U-er Reference Manual Page 5
I xec

Change reassipns the PRIM control functions.

>eiCSCANGE (Input cods for) 7 One of the following:

ARORT

ALT-BACKSPACE

RACKUP

DELETE

RETYPE

Sip's

CONTROL-SHIFT

>CHANGE (input code for) ah®5CORT (from tX to) 7 R Control Coda.
>CHANGE (input code for) RABORT (from 1X ta) 1F° or

>chCSCANGE (Input code for) dPSCELETE (from tor €FC [not changad)

>

This command allows the uscr to change the ASCIl control code assigned fo any of the
listed PRIM control functions from its current assignment to another (currently unassipined)
control character. The function name is the second word of thc command; when it is
terminated with an eseape, the current assignment is noled in the noisc. The entire set of
ASCIl control codes (including delete) is available excepling null, hack-space, line-feed,
return, escape, and unit-separator (TENEX end-of-line) which have fixed funclions in
PRIM. For abort and status the set is limited to entl-/1 thra entl-7.

Close terminates the current transcript file if one is open.

>clSCOSE (transcript tlle.) €F

>

A transcript file is opened using the Transcript command; it is automatically closed at the
end of a session.

Commands redirects suhsequent input from a file.

>caCSCHIHANDS (trom tile) command.filatsC €

>

This command causes PRIM to read its subsequent command input from the named file
instead of the uscr terminal (or current command file). The file input is treated exactly as
terminal input except that intervention functions (ahort and status) are valid only from the
terminal. Should a command in the file cause execution 1o be resumed, input that normally
would come from the user terminal is taken instead from the filce. Input reverts to the
previous source at the end of the file; an abort terminates all command files and reverts
input to the user terminal. Command files may be nested. Cor .. - files are very useful
for common session-inilialization scquences.

Debup transfers control to the PRIM debugger.

>d*SCERUG
freturn (1o EXEC) ©F

>

The PRIM debugger is described in the next section; control is returned te th 2¢ via the
debug Return command.

P T RR TLTNY SO ¢ T R e R TP TRT] T

TR T

PRIM System: LUser Reference Manual Page 6
I xec

Filestatus returns information about mounted files for all or designated devices.

>JCSCLLFSINIUS (for device) @4 pLL

Record File Name Device

1?2 CNRD.DECK CARD-RERDER

1?2 Uner Tty PRINTER

82% TERIINAL . INPUT TERHINAL (In)
17345 TLRN.OUTY TERMINAL (Out)
246 ARCD.EFG TAPE-UNIT: 8

>fCSCILESINTUS (for dev ce) €a®SCRD-RERDER

Record Tuype RByte/Last File Name

12 Rinl2 960/1280 CARD.DECK

>
When the device field is empty (return or escape) all mounted files are listed; otherwise
just the file(s) on the named device are listed. The latter case gives morc complete status
than docs the former. 1he output fields are:

Record tells the current position of the device or the number of records which have
been processed. for disks, it is a sector number; for card readers and punches, a
card count; for ccmmunication lines, the total number of bytes transterred; for mag
tape units, the position from beginning of tape expressed as files + records.

File Name is the name of the file; the name "User Tly" is displayed when
THIS-TERMINAL is the file.

Device is the emulated device on which the file is mounted.

lype describes the type of file, either Ascii or Binxx, where xx is the file byte size.
The type may have been explicitly specified at mount time, or it may bhave been
ansumed by PRIM.

Byle/Last is, for a mounted disk file, the current byte position in the file and the total
number of bytes in the file.

The marginal notation "[not opened]" indicates that the named filc could not be found (this
occurs only to a restored file) and that the device must be reassigned to another file (or
to the same file via a new path name).

Go transfers control to the tarpet execution state.

>80 (from 1234) €F
--> HACHINE running at 5678, Used 0:00.4
- > NACHINE halted at 6543, Used 8:01.0

>

This command transfers control from the PRIM exec to the emulator or target machine, in
its current state. Control returns to the exec when the tarpet machine halts or a
breakpoint is encountered (sce the debugger Break command) or the user interrupts
execution with an abort.

In the example, the user followed the command with a status request (the stan.s character
itself is not echocd) resulting in the first reply line (MACHINE running at ..); the target
machine is still running. Eventually the target machine halted, producing the second status
line and returning control to the exec as evidenced by the exec prompt.

e i, B ST s i i s e e R i

PRIM System: Uscr Reference Manual Page 7
[xec

Install adds a desipnated type of device to the machire configuration.

>ICSONSIALL (davice) 7 One of the following:
CARD-READER

PRINTER

TAPL-CONTROLLER

TERMINNL

>INSIALL (davice) pPSCRINIER (CHANNEL) JOS5C
>>7 SPLFD

>>SCSCPEED (characters per second) ©5€308
55Cr

>ICSCNSTALL (device) ¢aCSCPE-CONTROLLER (CHRANNEL) J0sc cr
Hou many TAPE-UNIV's do you want? 2€T

For the first 1NPC-UNIY, (UNIT) QfSc €r

>»Cr

for tho sercond THPE-U¥IT, (UNIT) J€F

>y Cr

>

The device type is sclected from among those implemented. the user is prompted for
cach necessary item of information, typically including an address for the device in the
target 10 address space and the number of units to install. After the required information
is pathcred, sub-command mode (">>" prompt) is entered to gathcr optional paramcters;
any optional paramcter not supplied takes on its default value. Subcommands are
terminated by an empty command, return only. An installed device is initially unmounted
-- there is no file associated with the devize for purposcs of actual 10.

When the device being installed is a multi-unit controller, the dialopuc procecds through
each of the individual units to gather their parameters. After the command is completed,
the controller is no longer visible; only the individual units are. An ahort aborts the entire
command, not just the current unit.

Installation is permitied only. before any execution has taken place. Tlypically, a user or
user group installs a standard configuration and then saves it for usc in all subsequent
scssions (sece the Save-Configuration and Restore commands). The optional parameters of
an installed device may be changed at any time using the Set command.

e

PRIM System: Usecr Reference Manual Page 8
Exec

Mount associates a file with an installed device.

smSCOUNT (R, 1,N,0L,0U,T,?) P One of the following:

APPEND

INCUT

NL U

op

ouTPUTY

THIS-TERHINNL
>MOUNT (A, 1,N,0L,00,1,?) 1PSCHIS-TERMINAL (on device) pPSCRINTER €F

>mOSCOUNT (A, 1,N,0L,00,T,?) nOSCEH (In 8 out f11e) ANCD.EFCG;10%¢ (on device)
taCACPE_UNTY €F

>

>t iCSCNPUT Cirom f11e) card.deck®5C (on device) ca®SCRD-READER €F
>>7 BINARY or ASCII

>>hCSCINARY (With byte slze) 207

>>er

>

Associating a file with an installed device causes subsequent emulated 10 for that device to
be directed to the file. The second keyword following Mount determines the direction of
data flow and the choice of an oid (existing) or new file. A file must be mounted on a
device before any actual IO can take place.

APPEND mounts an old file for output only, with the subsequent oulpul being appended
to the previous conlents of the file.

INPUT mounts an old fiie for input only.
NFW mounts a new file for both input wnd outpul (the file is initially empty).

OL1) mounts an old file for bolh input and output (subsequent oulput overwrites any
existing file data).

OUT mounts a new file for output only. For a disk or tape device, OU1 is trealed as
NEW.

THIS-TERMINAL associates the user terminal -- instead of a named file -- with the
named device. The mounting is for both input and output unless a filc has already
been mounted for one, in which case the terminal is mounted only for the other. The
terminal is known to be an ASCIl "file”. The terminal may be mounted only once for
input; it may be mounted for output (or on an output-only device) any number of
times, but the output is not labeled as to source.

Only some of the forms above are applicable to any given device. For a disk- or tape-like
device, an INPUT, OtLD, or NEW file is expected; an OLD filn is one that was NEW in a
previous PRIM scssion, and is being re-used, while an INPUT file is an old read-only file.
For a bidirectional communication device (n.g., a terminal), two files are required: an INPUT
file and either an OUTPUT or APPEND file. Alternatively, a real terminal may be used for
both (or either one). Ffor an input-only device, INPUT and OLD are identical; for an
output-only device, QUT and NEW are identical.

PIUM System: U-er Reference Manual rape 9
t xec

For those devices that deal exclusively with character data, the mounted tile is always
laken as an ASCI text file; character translation is performed as part of the 10 process.
(This aliows the file lo be created and/for processed by any operating system utility that
deals with text files)) for tape and disk devices, the file format is internal to PRIM (and
therefore not requested from the user); the data i1s recorded directly. tor other devices
the user is asked, via subcommand modc (">>" prompt), whether the mounted file (NOT the
device) is an ASCHl text file or a binary file containing a stream of pure data in bytes of
some fixed size. The defaull is a binary file of a device dependenl byte size.

Once a file has been mounted on a device, all exec commands that refer to the file require
the device name as the specifier; for communication devices, where two files are normally
mounted, the device name is followed by a direction sclector. The file name itself is not
u«cd as the internal identifier.

News recads the PRIM on-linc news file.

>nCSCEUs
Do you want to sno 4-APR-77 Changes In PRIN ?: CSCYES
{ Here comrs the message regarding changes of 4-APR-77 ...]

Do you want to see 24-NAR-77 Preliminary Documentation ?: del yyx

>
The date of the most recent news message is shown automatically al the start of each
scssion. In response lo the command, each messape’s date and subject is shown,
bepinning, with the most recent message. For cach messape, the body may be seen (Y ES)
or skipped (N()), or the command may be terminated (delete or abort).

Peripherals returns information about the installed devices.

>pCSCERIPHERAL S

Chan Unit Mounted Device

1 0 No PRINTLR

2 0 Yes TERIINAL
3 0 Yoo TAPE-UNIT
3 1 Yo TAPE - UNTT

active devices: TLRIINAL

>
This command produces a listing of all the installed devices, topether with their 10
addresses and a nolalion concerning whether they have files mounted. It also lists all
devices which have suspended 10 operations. Ordinarily, suspended operations are limited
to (1) 10 error conditions and (2) inpul operations where the inpul file is a real terminal
and no inpul was available when target execution stopped.

Quit terminates a PRIM session.

>q"SeulT
OQultting HACHINE [Confirm) €F
e
Terminaling the PRIM session involves closing all open files and returning control to the
process that initialed the PRIM session. The session cannot be continucd.

PRIM System: Uscr Reference Manual Page 10
txec

Reassign specities a new file for a mounted device.

>reaCSCLSIGN (device) 1aC*CPE-UNIT (1o file) new.filefSC €T

>

This command is used to substitute a new file specification when, afl.r a prior Restore
command, a previously mounted file cannot be found. In particular, a restore done from a
different direclory than the onc in force al save time has trouble finding ary of the
mounted files. Recassipn may only be used for devices/files that are marked "[not
opened]” in a filc status display. The new file is assumed to have the same
characteristics as the old one and is positioned at the same file position.

Restore recovers the state information saved in a file.

>resCSCTORE (from SAVE t11e) ABCD.CONFIG;105c cr
restored CONF IGURATION from TUESDAY, MAY 3, 1977 12:3%:08 PDT

>

The current context is updated with the complete or partial environment previously saved
in the designated file by the Save command. For the addressal.ie repions -- machine
memory, registers, etc. - the saved data replaces the current data only for those cells
that were actually saved: cells not saved are not clcared. (ihus, nonoverlapping memory
images are merged.) For nonaddressable regions -- symbol, configuration, and breakpoint
-- each one is completely replaced if present in the file. The date and region(s) saved are
shown, followed by a list oi any mcunted files that canriot be found.

Rewind returns a device’s mounted file(s) to the beginning.

>retn®SCIND (device) (aCSCPE-UNIT €F

>retw ter®SCHINAL (B,1,0,?) 2 One of the following:
BOTH

INPUT

ouIpPuUT

>RIH TERMINAL JCSCNPYT €F

>

This command is uscful for retrying a program without unmounting and remounting files.
(Files are always rewound when mounted, except for Append files, which cannot be
rewound.) For a terminal-like device that requires separate input and output files, the user
optionally specifics which file is to be rewound; the default is BOTH.

Save copies selected stale information into a file.

>$aCSCYE P One of the followling:

nLL

CONF IGURATION

FORNATS

NiMORY

SYNROLS

>SAVE eTSCON! IGURHTION (on tile) aBCD.CONIIG;ler

>
This command saves on the (new) file an image of the region(s) sclected for saving. The
contents of the file can laler be restored for use in this or another session, The second
word of the command selects one of the save options.

-

e

AN

PRIM System: Uker Reference Manual Page 11
Exec

ALl saves everything -- a complete checkpoint of the tarpet machine and debupging
state. "tverything” includes memory, all addressable repusters, installed devices,
mounted files topether with their positions, debug breakpoints and their proprams,
debug formals and modes, defined symbols, and the internal state of the emulaled
machinc.

CONFIGURATION saves all the machine configuration data, including inslalled devices,
mounted files (if any), machine paramelers, and debug formats and modes. This
command is allowed only before any execution takes place. Uscful for crealing a
standard machine configuration (possibly with some standard files mounted) for use in
subscquent scssions,

FORMATS saves all the formats thal have been defined (using the debupper Format
conimand).

Mt MORY saves those regions of the machine memory that are not clear. (At the start
of a PRIM scasion, memory is already clcared.)

SYMBOLS savces all the user-defined symbols, both those loaded via the exec Symbols
command and those defined direct'v via the debupper New-symbols cominand. The file
that results is a SAVL/RESTORE file, not a SYMBOLS file!

Set changes the values of user-settable parameters.

>SeCACT (compty> or dovice) €F

>>7 One of the following:

CLock

Mt HORY

SIEED

>>¢CACLACK (ticks per second) €5C1a00 €F

>>ICSCENORY (&) modules) 4€7
,)rr

>$eCSCT ((empty> or device) pCSCRINTER
>>sCSCPEED (characters per second) J5H0CT
»>>0r

>

following thc command word, the user selects the group of paramcters he wishes to alter.
An immediate remirn sclects the global machine parameters; a device name selects the
paramelers of thal particular installed device (thc paramcters of multiple installed
instances of the same device type need nol have identical setlings).

Any number of paramclers from the sclected group may be chanped. In response lo the
subcommand prompt (">>"), the name of a parameler and its ncw value are entered; each
change is made immcdialely and a new subcommand prompt appears. The command is
terminaled by an cmply input, returr only, or by an ahort {(which docs nol undo any
parameters previcusly changed). The list of possible paramelers is highly machine and
device-dependent; it typically includes the size of memory and lhe specd of each device.

The value of a parameter is either a (decimal) number or a keyword from a
parameter-specific list; a question in the value ficld reveals which is expected. An escape
scls the parameter to its defauit value.

PRIM System: U-«cr Rcference Manual Page 12
Exec

Show displays the values of all the parameters in a group.

>shA00n (cempiy> or dovice) T

CtOCK 1s 1000 ticts por sncond

NEHORY 1s 4 8k modules

SPLED 18 750 nanosaconds per momory cycle

>sHCSCON (<ompiy> or device) pCACRINTER

SPLED 1s 200 characlers poer socond

>
Following the command word, the user selecls either the plobal machine param~lers
(return) or the parameters of an installed device. The names and current varues
of all the paramclers are displayed.

Symbols reads an ASCHl symbol-table file.
>SYCSCHRoLS (trom ti1e) SYMBOLS.EXAMPLECSC

>

This command catises PRIM to build a user-defined symbol table from the data in the
named file, which is a structured ASCil text file. The file may define values for both global
symbols and piopram-local symbols thal arc organized into programs. In the PRIM
debupper, the plobal symbols pius the local symbols of the currently open propgram are
accessible at any time. Symbol values in the file are octal. The form "name =- value"
defincs a global symbol; the form "name = value" defines a local symbol; the form "name:"
cstablishes a program name to which subsequent local symbols are assinned. The file is
free-formal in thal spaces, tabs, commas, and new-lincs may occur anywhere -- except in
the middle of names or values. The following is a samplc symbols file.

ALPHA- 4Y

BEIA=-=12345

'R A-2000, B-2132, C = 224]
XY7:

A-37212 AA=3245, AAA=3261,AAAA=7/77

Symbol files are intended to support the moving of symbolic label data from an assembler
or linking loader into PRIM for use in symbolic dcbugging.

Time displays time- of-day and time-used information.

>IICSCHE (is) TUCSOAY, MAY 3, 1977 12:34:33-PDV

Ueed 0:14.6 PRIM time; Usod 0:82.7 NLP time.

>
This command displays the date, limc of day, the amoun! of PIIM time uscd and the amount
of MIP-900 time used in this PRIM session. (Elapsed target machine time is displayed in
response to statns.)

Transcript transcribes the subsequent PRIM session on a new file.

>IrCSCANSCRIPT (to file) new.fila®sC €r

>
All transactions with the user terminal, including exccution-time 10 to THIS-TERMINAL, is
transcribed until cither the user terminates the session (with a Quit command) or closes
the transcript. Qnly one transcript may be open at a time. A header line containing the
date and time is placed at the head of the file.

R it A e A, 536 vaFE =

PRIM System: Uscr Reference Manual Page 13
fxec

Uninstall removes an instalied device.

SUNICSONSIALL (devien) 7 PRINTER or TAPE- NIY
SUNINSTALL (device) taTSCPE-UNIT (unit)s JOSC €
>

This command is the inverse of the Install command, it removes an insfalicd device from the
configuration, first unmounting its files if necessary.

Unmount unmounts the file(s) from a device.

>sURMCSCOUNT (dovien) pUSCRINTER €F

st terCSCHINAL (R, 1,0,?) 7 One of the following:
QT

INPUT

auryl
>UNH TERHINAL €S5S¢ ROTH €F

>

The unmounted file(s) are closed. For a terminal-like device that requires scparate input

and outpul files, the user optionally specifies which file is to be unmcounted; the default is
BOTH.

PRIM System: Uscr Reference Manual Pape 14

PRIM DEBUGGER -

The PRIM debugger is a table-driven, target-machine-independent, interactive
program for debugging a PPIM emulator or a target program running on such an emulator.
It is tailored o a specific target machine by tables prepared as part of an emulation tool.
Hasically, it permits a user to set and clear breakpoints and to examine, modify, and
monitor target system locations. Target system assembly language and symbolic names
arc rccognized, and arithmetic is performed according to the conventions of the tarpet
machine. The debugger command prempt character is "#" cach level of subcommand adds
another "#" 1o the p-ompt.

APR.GUMENTS

Most rlcbugper commands take arpuments in the form of vall 's, expressions,
cxpression-ranges, lists of expressions, or lists of expression-ranges as defincd below.

Values

A value is an assembly-language instruction, a form, text, or an cxpression-list.
Asacmbly language instruclions are parsed by a table-driven assembler /disassembier thal
accepts the same syntax as the assembler for the iarpet machine. U-<er symbols will be
rccopnized if they have becn supplied in user symbol-table files (sce the exec Symhols
command) or have been declared individually (see the debugper New-symbol command).

A form requires that the user previously definc a corresponding format (sce the
de bugper Format command). A form is represented by the format name followed by an
expression-list, as in the following example.

F10,7,3

Text is represented as a double-quote ("), followed by an arbitrary delimiter
character, followed by a sequence of other (non-delimiter) characters, followed by another
occurrence of the delimiter ch: acter, as in the following example.

"[This is text./

Expressions

An expression is any well-formed scquence of constants and symbols that are
defined for the tarpet maching; the symbols (which arc machine-specific) may represent
cither locations or operators whose rules of combination determine what is a weli-formed
cxpression, A location symbo! may represent a named hardware eicment or a globally or
locally defined uecr location. An operator may cither be unary (preceding its operand) or
binary (coming between its operands in infix notation). The precedence of aperators is a
funclion of the target machine, except that all unary operators are a~sumecd to have the
name precedence value, which is higher (more sirongly binding) than that for any binary
opcrator. If brackets are permitied (e.g., parentheses), their precedence value is higher
than that of unary opcrators. For example, A-B ard -B+A will evaluate the same, but will
differ from ~(B3<A), which will evaluate the same as -B-A. A bracketed subexpression may
iv-elf attain the full complexity of an expression. The behavior of opcrators is
machinc-specific.

A ok it e Ui SRR e

PRIM System: U-er Recference Manuai Page 15
Debugper

Expression ranges

An expression-range cunsists of the triple: expression (lower bound), colon,
expression (upper bound). It represents a sequence of locations slarting al the lower
vound and continuing throuph sticcessive locations to include ihe upper bound. The upper
bound may not be css than the lower bound. Wherever an cxpression-range is allowed, a
single expression is accepted and treated as if it had been entered as both the lower and
upper bounds of a range. If the two bounds in a range address different spaces (see the
discussion of Spaces below) within the target machine, the sequence of locations is
resiricted to that space addressed by the lower bound. Two special forms of expression
ranges are recopnized. If the second expression in a range is "-1", it is treated as being
the largest address in the space referenced by the first expression. I the sccond
expression in a range is of the form "+ expression”, it is treated as if it were "(lower
houid) + evprassion”

Lists of expressions or ranges

A list of expressions consists of at least onc expression, followed, optionally, by any
number of occurrences of a comma followed by an expression. A list of
expression-ranges has the corresponding structure of a! !east one range, followed,
optionally, by any number of occurrences of a comma followed by a ranpe. An example of
a list of ranges is

0:10, 20, 30:50
Nole that the second element of the list (20) is an example of a ranpe with a defaulted
upner bound.

SPACES

Addressable localions in a target system are organized info constructs called spaces.
A space consists of a sot of addressable locations that is closed under a successor
functlion and ils inverse (a predecessor function). For examplc, main memory constitutes a
space, typically slarting at location zero and continuing through an arbitrary number of
locations. The successor to the last element of a space is the first element in that space;
and the predecessor of the first element is the last one. In some cases, machine locations
are groupe inlo a space for convenience, even when the concept of a successor function
for clemenls of that space has no correspondence in the actual tarpet system. Such a
space might consist of testable indicators. The machine symbols are identified in the
tool-specific user guide.

for purpcses of the debugger, every addressable location in a target system is
represenled by a pair: (space, element). When a range is specified, two such pairs
(a,h)le,d) arc implied. To avoid ambiguitics where a and e differ, the
debugper ignores ¢ and treats such a range as 1 sequence of locations, al! in space a,
starting with element b and continuing through element d.

SYNTACTIC UNITS

The basic syntactic unils the debugger deals with are
1. Lliterals
2. Symbols

3. Puncluation

R e e O S

T a—

PRIM System: LUser Keference Manu Page 16
Debugper

Litcrals

Lilerals arc character constants, numeric constants, or single characters that have
some encoded meaning (which may be context-dependent). A character ronstant s
supplied to the debugger as a machine-specific character-constant prefix string followed
by a string of data characters of arbitrary iength, followed by a machine-specific
characler-constant suffix slring of the general form:

prefiv-siring character-data-stiring suffixv-siring.

If the first character of the suffix string is to be included in the data string, it must appear
doubled. Character constants are converted to binary (right justified) and are truncated
to fit the element in question. As the form of a character constant is machine-spcuific, it
it described in the tonl-specific user guide.

A numeric canslant is supplied to the debugger as a machine-specific (and optioral)
radix-prefix string followed by a string of digit characlers followed by a machine-specific
(and optional) radix-suffix string of the general form:

prefiv-string digit-string suffic-string
The prefix and suffix strings cstablish the radix within which the digit characters are

cvaluated. The digit characters for any radix.r are the first r characlers of the set
{0, 90,2}

Coded characlers have independent meaning only within cerfain contexts: al
appropriatle points in the dialogue they designate a particular debupgper command, a mode,
a breakpoint type, ete.

Symbols

There are five lypes of symbols: machine symbols that are as<ipned to hardware
clements in Ihe farget machine, predefined opcodes for symbolic instructions,
vecr-supplied names of formats, operators for expressions, and user symbols that can be
ansipned to arbitrary memory lacations. Machine symbols are given in the tool-specific
user guide; other symbols are assumed to be familiar {o the user.

Uscr symbols are either loaded from a file using the excc Symbols command or
individually defined using the debupger new-symbol command. The symbols include both
rlobal symbols and program-local symbols that belong to specific named proprams. The
global symbols are available at all times; the program-local ones only when theirs is the
opcn local symbol table.

Punctuation

Punctuation marks are characters with a predefined syntactic (and usually semantic)
role. The puncluation characters are the separators (comma and, in format definilions,
space), the terminators (return, escape, and, in replacement opcrators, back-slash and
up arrow), and a scmantics-free delimiter (space). FEscape is uscd as a terminator
instcad of return to invoke a subcommand or an additional fcature of a command (e.q., in

‘ode or Breakpoint commands described below).

PRIM System: User Reference Manual Page 17
Debugper

ERROR DETECTION AND EDITING

Debugeer commands are examined for errors as they are entered, characler by
character. As soon as an error has been detected, a bell (becp) is echoed and further
input is rejected, except for the generic editing characlers back-space, retype, backup,
delete, or abort.

COMMANDS

Debugper commands are all single characters; they can be orpanized into scveral
rroups: debupper control, execution control, display, and storage. [ach is lisied below.
Unless otherwise indicated, the command character is the first character of the command
name.

Debugger Control

Dcbugper Control commands provide for user conlrol over scveral aspects of the
behavior of the debugper. They permit the user to execule commands indirectly or
conditionally, to return from the debugger to the PRIM cxec, and to control the debupger’s
representation of data. The Debugger Control commands are:

lle. Calls a desipnaled break-time program as if some brcakpoint associated wilh thal
prorram had just occurred. A program number must be designated that corresponds to an
oxisting hreak-time program. Program numbers are shown when the breakpoint data base
i displayed (sce the break command); the program itscll can be scen using the
program-edit command.

#lso program 7 (number of an ex|sting break program)
4Urn-program 207

If the use command is itself in a break-time program, then a po command exccuted in the
called program causcs termination of the calling program as well as of the called propram.

If. Tesls the supplied expre .sion and, if it is true, executes the following subcommand. A
lruc expression is onc whose value is odd; relational operators yield a value of one when
true and zero when false. The tested expression must be terminated by an escape.

#11 7 (axprousion)

16 3C5C cAhen> #8Type OCF

00: 60 #

#lt 205¢ cthans #4T'ype 0T
’

Return, Relurns control to the PRIM exec; confirmation is required.
#Raturn (10 EXEC) €T

> !

PRIM System: User Relerence Manual Page 18
Debugger

Mode. Inlerrogates defaull and current modes and changes modes. A question after the
command characler M will elicit the default and current mode setting; another question will
list all mode sellings and associated mode-code-characters.

#Mode ?
Current and (Default) mode rettings:

Feodback Verbose (Verbose)
Output Bits (Bits)
Rddrecces Symbol ic (Symbolic)
Lina-farmat Derse (Danse)
Rad i x 8 8)

Type ? for more

Node ?

Fordhack
C Concise
v Verbose

Outputs
B Rits
F Formatted (format-name)
I Instruction

‘ N Numer Ic

1 Text

fiddressaes:
n Ahsolute
S Symbolic

Line-format:

D Denseo
£, Expanded
Radix:
Rn Radix-basa n (1 < n < 37 decimal)

o

A list of mode scttings is expected following the Mode command; if none is supplied, the
default settings are reestablished. If the list is terminated by a retnrn, the current modes
are changed. If the list is terminated by an escape, a lemporary change is made that
applics only to the following subcommand, as in the following example.

#Moda Inutruction #5€ 24Type 0123407

012341 JUnp 0567

’
Modes are estahlished for feedback (verbose or concise); output (bils, formatied,
instruction, numeric, or lext); addresses (absolute or symbolic); output line format (dense
or cxpanded); and output radix (any base from 2 through 36).

The fecdback modes control how debugper commands are reflected to the uscr:
concise suppresses all "noise" feedback (such as command complelion); verbose enables
it. The output modes control the general representation of dala: bits trcats a datum as an
unsipned magnitude; formanted treats il as a patiern of bits partitioncd into contipuous
ficlds according to a designa‘ed format (see Format command); instruction treats il as a
machine instruction and disassembles it; numeric treals it as a sipned value, if that is
appropriate for thc machinc; and text treats il as a represenlation of a siring of
characlers. The address modes control whelher numeric-mode values are to be converted
to symbols (if possible): ahsolute suppresses the symbol look-up; symbolic enables it. The
linc-formal modcs control the density of displays: dense suppresses most

PRIM System: User Reference Manual Page 19
Debugger

debugger-generaled line-fecds so as o show more infcrmation per line, expanded enables
them.

When formatted outpul is selected, the name of the output formal must be specified,
as in:

#Mode Formatted K| €r,

Output radix scls the number basc for the represenlation of numeric data (note that
numeric input data scif-idenlify the number base). For example,

#Modo Radix 16 €
causes current output radix to become hexadecimal.

Formal. Permits the user to rame and define a format as a list of ficlds, each of which is
a designated number of bits wide. The field widths are supplied as a list of numeric
constants (separaled by commas or spaces).

#lormat F105C 2 4 6 §¢r
’

#Mode Formatted K1 €5C gaType 0CF

00: 00,00,00,00 #
If the format command is terminated without having defined a format, all defined formats
are displayed, as in

#l ormat €V

f12,4,6,8 #

Comment. Following an inilial semicolon, ignores all subsequent inputs up to and including
a line terminator.

£ THIS IS A COMMENT--1T DOES NOT GET INTERPRETED.cr

’

NMew-symbol. Adds a list of new user symbols to the (possibly emply) global symbol
table. Each new symbol in the list is supplied as a name followed by a space or an escape
followed by an expression giving its location.

#Neu-symbols 7 (({nen-symbol) <ESC> (expression))-11st)

WMew-symbols PPATCHCSC cars> 07000007

#lype PATCHPATCH-1LPATCH + 1ET

PATCH: 08 0G?7777: 00 PATCH+011 68 &

Kill-symbol. Removes a list of user symbols from the open local or global symbol table.
#K i1 1-symbots 7(11st-of-user-symbols?
s symbols PATCIHICT
¥lype 067777:4207
067777: o0 870000: 60 870001: 80 #

Open-symbol-table. Opens a local (program-specific) symbol table if one is specified; the
currently open local symbol table, if any, is closcd in any case. Afler this command is
executed, the available symbols include the global symbols plus the local symbols of the
specified program; if no program is specificd, only the global symbols are available.

#()pon-program-symbols 7(program-name) or not <close the open local symbol table>
#0pen-program-symhols €F
’

PRIM System: U<er Reference Manual Pape 20
Debupper

Execution Control

t xccution control commands provide for user control over execution of the target
propram. They permil the user to conlinue execulion, transfer lo a desipnaled location,
«ct and clear breakpoints or edit break-time programs, and single-step the target program.
The execution control commands are

(in. Passcs control to the target machine in its current state. If an arpument is supplicd,
it value is first stored inte the program counter. The argument can be an arbilrary
cxpression, so long as it evaluates to a legal memory address.

#(o (to) 7loxpression) or empty

#0 (to) 0100077

IMeak, Displays or scts breakpoints in the target machine. The two classes of
hreakpoints are known as event breakpoints and reference breakpoints, There is a fixed
wct of cvent breakpoints defined for any given targel machine; cach deacribes a type of
cvenlt whose occurrence causes the emulator 1o break if the correwponding cvent
breakpoint is sct. The sel of event breakpoints always includes (1) cvery
i fruchion-execution (single slep), (2) every branch of control, and (3) cvery memory
write; olher evenls are defined for cach machine as appropriate. Reference breakpoints
cause the emulator lo break when a specific type {rcad, write, and/or cxecule) of
reference to a specific tocation occurs. Reference breakpoints may always be sct on
memary localions; ather spaces in which reference breakpoints may be set are detailed in
the tool-specific user guide. Any number of reference breakpoints may be sct al any
time.

The break command followed immedialely by a returr causcs all existing breakpoints
(i.e, those in the breakpoint data basc) to be displayed; if a break-time program is
awnocialed with a breakpoint, its number is also displayed. Otherwise, a list of either
cvenls or ranges (reference locations) for the setling of breakpoints is supplicd. 1t a list
of ranges has been enlered and terminated with an escape, then a licl of rcad, write, or
cxecute reference-break conditions is specified next (as permiticd at thow.e locations); the
default is all three types. Whenever a breakpoint is sel for an cvenl or a location, any
carher breakpoint for that same event or location is supcracded.

If the lisl of evenls or break types is terminaled by an escape, a< in the sccond
cxample below, a break-time "propram” may be supplicd 1o be exccuted by the debupger
when the break is encountered. The following commands are permilicd within such a
break program: Cicar, Comment, Dcbreak, Lvaluate, Go, If, Jump-history, Locate, Mode,
Open, Set, Type, and Use. Replacement within a locale or type command is not permitied
in o breaok-time program. Any number of commands can be incduded in a break propram;
the program is terminated by an empty command (terminalor only).

PRIM Syslem: User Reference Manual Page 21
Debupper

#Break (at) ?(avont-1int) or ({expression-ranga)-1ist) or <Rt IURN>
<? for list of events>

Mrear (a) 0123:0456, 671204¢ (afier doing) ©F

<R, H,X> &

#llreax (at) 01000C5C (atter doing) Xecute 05€
#4Type OCT

#4Go (t0) €F

Y71us

<«Program numher Is (11> &

#Break (at) TICKCr

’

#lreak (at) OF

0123-0456 <R, U, X> 0712 <R,H,X> 018080 <X>[1] TICK <event> ¥

During propram exccution, if an event break is delected, or if a rcference break
(read, write, or cxecule) is delected at a location for which the corresponding break type
has becen specified, then execution is terminated before beginning the next target machine
cycle and conlrol passes to the debupger to process the break. |If a break-time propram
has been supplied for that break event or location, the program’s commands are executed
in order by the debugper until either a go command or the end of the program is
encounlered. If scveral breaks occur on the same cycle, the program as«<cciated with each
of lkem is cxecuted; the order of break-program execulion corresponds to the order in
which the breaks are reporied by the emulator. If every break causes execulion of a Go
command, then the larget program is automatically resumed, provided there is no
ambiguity as to where execution is to resume. Olherwise (i.e, if any break had no
program or failed to execute a Go command), a message describing each of the breaks is
displayed and the normal command level of the debugger is entered.

Debreak. Clears event breakpoints or reference breakpoints at locations in the target

machine. The defaull is lo clcar all breakpoints. Examples of debreak commands are

#Devreak (trom) 0234:440T

#Brear (at) €

0123-0233 <R, H, X> 0241-0456 <R, H,X> 08712 <R,H,X> 01000 <«X>{1)
TICK <event> &

#Debrear (from) ©5€ all [eonfirm] €T
#raar (at) €7
¥

Propram-cdit. [isplays a designated break-lime program or permits it to be edited. A
program number must be designated thal corresponds 1o an existing brecak-time program.
Program numbers are shown when the breakpoint dala base is displayed (sce the break
command). If thc command is terminated by a return, the entire program is displayed; if
by an esecape, the program is displayed line by line for editing.

PRIM System: User Reference Manual Pape 22
Dcbugger

e at) STEPCse
H’Tt”m () LNCCer
24Go (t0) €7
PO
<Program numher is (2)> #Break fat) €r
0123-07233 <«R,H,X> 0741-0456 <R,H,X> 8712 <R,H,X> DJ000 <X>(1)
TICk <event> S51P <ovent>(2]
#Program- edit 7 (program-number) (<ESC>-to-edit or <RETURN>-to-vien)
#vogram edit 207
Type €01 DCC
Go (10)
¥

When editing a tinc of a break-time program, the uscr can specify that the next (\) or
prior (1) line be displayed or thal a replacement (R) of the current line or an insertion (1)
in front of the current line be made. Editing is terminated by an empty editing
specificalion. Replacement or insertion is identical to the specification of a break-time
program within the brcak command in that a subcommand mode is entered where
successive break-lime commands can be entered until an empty command is supplied; then
editing continucs with the nex! line of the program. An extra (dummy) last line is added
when editing a propram so that new commands can be inserted at the end; the dummy line
is discarded when the command is terminated.

#Proqgram-adrt 205€

Tupe €0L0CC 71 <prior>) or (\ <next>) or ((Insert>) or (Receplace>)
(commands))

Type €0l NCC :’fop!oce

suMode Instruction €5¢ #44Type &OIDCCEY

pu0cr
Go (to) €7

#Pvogram-edit 207
Hode Instruction ##41ype €0LDCC
Ge (to)

Sinple-step. lTransfers control to the target program through the program counter for
execution of onc instruction. The single coded character line- feed effects this command.

Display

The display commands permit the user to search or examine the contents of
designated locations (and, in two cases, oplionally permit their replacement) or to evaluate
cxpressions. The ¢« 'mands are:

lype. Displays location and contents of a list of cxpression-ranges, pcrmitting the
contents of each location to be replaced if the list is terminated by an escape, as in the
following, example.

#Typa 7 ((evprezsion-rango)-11s1) optional-<escape>-1o-modity

Hlype 0:2¢50 80: 00 JOF

fl: go = 20

02: 00 = 37

14

The replacement value can actually be a list of expressions, the values of the expression

PRIM System: U-<ecr Reference Manual Page 23
Debugper

in the list going into successive locations starting with the one last displayed. If no new
value is supplied before the terminator, the existing value is nol modified.

#l'ype (:205¢ 00: 01 = 205 g1y 92 = OFC 9: 03 ¢ |USC 2

In Display-with-replacement only, the coded characters back-slash and up-arrow can
also secrve as terminators and perform special funcltions: back-slash causes the next
localion to be displayed for replacement and up-arroiv causcs the prior location to be
displayed for replacement; both of these terminator characters permit the user to step
beyond the limils of the ranges entered as arguments to the Type command.

#lype 010°SC 10y 00« IT 87: 00« 2\ 010: 01 « 3\ 011: 00 = 1
010: 03 = 11 07: 02« 5T 061 80 =\ 87: 05\ 010: 04 ¢ \
0111 00 « 0\ 012: 80 « 7€r

’

The last location displayed by a type command becomes the "open" location, and the
location following the last one displayed or replaced becomes the "next” location (see the
next four commands).

Samec. Redisplays the "open" location (sec the Type command). Thc single coded
character ":" cffects this command. The commands Same, Prior, and Next are all shown in
the following example.

#: 02001 #1 o1 082 #\ ©2: 81 4\ 83:00 4

Prior. Displays the location at one less than the "open” location (sce the 1ype command).
The single coded character up-arrow effects this command. Sec the examples under 1ype,
Same, and Equals.

Next, Displays the "next” location (See the Type command; the mode in which the open
focation was last displayed determined how far it was advanced o the "next” locations.)
The single coded character hack-slash effecls this command. Sce the examples under
Type, Same, and t quals.

Equals. Displays the “"open" location (see the Type command) as bits or as a number if
the current output mode is already bits. The single coded characler "-" effects this
command. In the following example format K2 has been declared consisting of four
half-word ficlds.

#Mode Formatied I2CT
#: 010: 80,01,02,03 #: @18: 81 4\ e11: 02,083,04,05 #\ 013: 06,67,00,01
#1 812: 04,05,06,07

Locale. Finds cells in a list of expression-ranges that contain (or do not conlain) a
specified value, examining only those bits designated by an optional mask, and displays
their locations and contents, permitling each displayed value to be replaced if the list is
terminaled by an escape. The comparison value and mask are expressions terminated by
an escape; the comparison value defaults to "NON 0" and the mask defaulls to all 1’s. The
search is performed over a list of ranges, as for the Type command.

#locate 7 ((cvprension) or NON (oxpression)) <match value defaults to NON 8>
#locate NON 075 (4ith mask) 7(optional-expression) <mask valuex

#locate NON 8 (With mask) ©SCcnot zero> (in) 7((expression-rangn)-list)
optional-<tSC> to-modify

#locate NON 0 Guith mask) <not zero> (in) 0:020€7

00: 81 01: 02 82: 63 . 07« 85 010: 84 01]1: 06 az2: 07

’RIM System: U-er Reference Manual Pape 24
Debugger

It is important that the comparison value, the mask, and the data be properly aligned. For
cxample,

#l.ocate 07005C (uith mask) 0700%¢ (1n) Q:31CT
displays all cells from O through 31 whose second octal digit from the right contains all 1’s.

When the command is lerminated by an escape the debupgper slops after each
divplay to permit replacement, as for the Type command.

#l.ocate ®5Ccnon-zero> (ulth mask) 0708C (1n) 0:02005¢ 00: 0) = 7
0121 07 =« €F
')

Jump-history. Displays the most recent target-program jumps in the order they occurred.
The number of such jumps to display (taken modulo the default value) may be supplied.
#Jump-history 7 ((expression) or (empty <ali>))
#lump-history J07
01000--0200(2 times) ©300--0100 #

[valuate. Prints the value of a single expression. It has no effect on the open location
and docs not permit reolacement.

#Nou-symbots PATCHC*C <cat> 070000°7
#hivatuate PATCHO%C . p70000 #

Storage

Storage commands change the conlents of desipnaled locations without displaying
them and without changing the "open” location. The =torape commands are

Clear, Clears the contents of a list of ex; ‘ession-ranges to all zero bils. Clearing an
cvent for which a breakpoint has becn established causes the event o be deactivated; it
may be reactivated with a Set command. This may be of benefit when a break-time
program has been associated with the event as the breakpoint data-base emry for that
cvent is not affected.

£Croar QJ°SC g

Get. Sets the contents of a list of exprescion-ranges to the value of an expression or (on
defauit) to all one-bits. If the list is terminated by an escape, a single replacement
cxpression is accepted; if it is terminated by a return, the default value of all '« is used.
The replacement expression is truncated to fit im0 the desipnaled localions, if nccenssary.
Setling an event for which a breakpoint has not been established (i.e., for which there is
no entry in the breakpoint dala base) causes the event to be aclivated for a sinple
occurrence of that event (with no break program associated), afler which the event is
automatically cleared.

#S8et ?((expression-range)-list)

#5et 0307

#8e1 0304c o 201
¥

PRIM System: User Reference Manual Pape 249

TARGET EXECUTION STATE

Tarpel exccution is initiated, or resumed, through explicit commands (exec Go,
debupger Go or Single-step). Execulion proceeds until a terminaling event occurs, causing
control to return to the appropriale PRIM command level. When exccution terminates, the
cntire emulated context -- including clocks and outstanding 10 operations -- is cleanly
frozen until the next time execution is resumed. Exccpt for explicil modifications to the
context made by the user al the command level, the termination and subsequent
resumplion of execution is transparent to the target machine. The terminaling events are

The target machine halts normally or is interrupted (by the emulator) due to the
occurrence of some anomaly condition. A message 1o that effecl is generated. The
anomalies being monilored are listed in the tool-specific uscr puide.

The user enlers an abort. The aborl character is echoed and, after execution is
stopped, a status message is output indicating the poinl of interruption.

The emulator detecls the occurrence of a break condilion eslablished by the uscr via
the debupger breakpoint command. The establishment of breakpoinls and the
subscquent interruption of execulion at the time of their occurrence is the primary
program debugging tool in PRIM,

An 10 crror occurs. A message delailing the particular device involved and the nature
of the error is outpul. 10 errors always return control to the exec staie; the error
messages and their meanings are listed at the end of this section,

When one of these conditions occurs, it is logged and execution continucs unlil the end of
the current cycle of the targel emyator. It is therefore possible for multiple conditions to
rc-ull in a single stop. Wren this is the cdse, the action and messape appropriate to cach
of the condilions is produced.

When a breakpoint is detecled, the debug program, if any, associaled with each
breakpoint is executed by the debugger before control returns to the command level
Should some break propram terminate without a Go -- or should there be some break with
no break program -- a messape describing the breat. 's output and the command level is
enlered. Otherwise, execution is automatically resumed; the user receives no indicalion
that a breakpoint occurred unless the break program itsclf produced oulput.

TARGET 1/0

The target machine that runs in PRIM consists of a processor (GiPU) in <ome
particular configuration built by the user to resemble the aclual confipuration required by
his programs. A confipuration is built -- before exccution is bepun by installing
pcripheral devices and establishing values for various machine options (sce the exec Install
and Scl commands). After an emulated device has been installed, and before 10 operations
can proceed on that device, a (TENEX) file or assipnable device must be ascociated with
that emulated device (see the exec Mount command). Subseguent |0 operations addressed
to that device are then performed on the mounted file.

A mounted file may conlain either direct device data (binary) or ASCI text; in the
lalter case, characters are lranslated between ASCII and the actual device character set as

¥

IPRIM System: U-er Keference Manual Pape 26
Tarpet Execution

they are proacessed. (If the device character set does nol include lower case, input lower
ca.e lelters are converted lo upper case before translation.) When the tarpet device is a
1ccord-oriented device (o.q., card reader or punch) and the file is ASCI, then each record
opcration is performed on a line of the ASCH text file, including truncation and/or blank
padding on input.

The mount option THIS-TERMINAI associates the user terminal (the one being
vuscd to communicale with PRIM) with a given device. When the terminal has been
mounted on some device, then input from the terminal is switched between PRIM and the
tarpet machine every time execution is resumed and terminated. The intervention
characters, however, retain their intervention meanings. 1o allow the full ASCIt characler
sct to be input to the target device from the terminal, there is a control-shift cscape
characler defined during target execution. To help distinpuish PRIM output from tarpel
output directed to TIHIS-TERMINAL, all PRIM-generated oulput is prefixed with the
herald “--> " at the beginning of a new tline. This applics in particular fo both stopping
messapes and typeoul resulting from break-time debugper programs.

1/0 ERROR MESSAGES

Varius 1/O errors may occur. When any onc occurs, exccution - including the
crror-peneraling operation -- is suspended, and control refurns {o the PRIM exec. When
execulion ts nexl resumed, the suspended operatic » is retried unless it has been explicitly
canceled by the user using the exec Cancel commanc

"File not mounted.”
The indicaled device has no file mounted. If a file is mounled before execution is next
resumed, the operalion will be performed 1_’hcn. (An installed device to which no 10 is
direcled necd notl have a mounted file in order to run.) The operalion may instcad be
¢ anceled.

This message is also produced when an output operation occurs on a device which has
been mounted for input only, and vice versa. Again, a second file must be mounted on
the appropriale side of the device in order to procecd normaily with the program.

"tile not open.”
The indicated device has an inaccessible file mounted on it. The device must cither be
rcassipned or unmounted and then mounted. lhe siluation is similar fo the case
above, excepl for the possibility of reassigning.

"lm; roper tape formal detecled.”
TENEX files which are mounted on target magnetic tape devices are cncoded in a
unique infernal format that requires such files to be used only for PRIM mapnctic tape
devices. The mounied file is inconsistent with that formal. The device must be
unmounted and replaced with a proper tape file.

"Device nol installed.”
A device that is referenced by the program is not installed. Should the missing dévice
be required, there is no way lo continue this session, since device Installation is no
langer allowed. Should the reference be a mistake, oxecution may be continued down
a different path (the operation will be automatically canceled when execution resumes).

PRIM System: Uecr Reference Manual Pape 27
Tarpet Execution

"ASCH input characier nol recognized -- ignored.”
The last character read from the ASCI input file on the designated device was nol
translatable into the characler set of the device. The character has been skipped
wver; resuming oxeculion causes the read operation to continue with the next
characler in the file. The position of the offending character in the file may be
determined via the exec Filestatus command, specifying the indicated device.

Any olher error indicales a bug either in the emulator or in PRIM. - Suck errers should be
reported.

