
to

00

ISI/TM-77-5
October 1977

ARPA ORDER NO. 2223

Q.
CD

rT> ü:

PRIM System:

AN/UYK-20 User Guide
User Reference Manual

iflV-
i ,
"i

Louis Gallenson
Alvin Cooperband

Joel Goldberg

> I ^

V:- DEC ^

>;•-

Approved foi pu1^- lelaasaj
Distiibutiou U-uliJÜted

INFORMATION SCIENCES INSTITUTE

DIVERSITY OF SOUTHERN CALIFORNIA JMT 4676 Admiralty WayIMarinadel Rey/California 90291
(213)822-nn

L. _ .. .^^ ■■' "- ■- -' '■ ' fT-mlr ■-i-r'^i^-^-r-^,/,^ SH^.,^

Best
Available

Copy

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE fM?i«n Dar« Enured;

REPORT DOCUMENTATION PAGJE"
fT RfPORT NUMBER ,J

il/TM-77-5

READ INSTRUCTIONS
BEFORE COMPLETING FORM

12, GOVT ACCESSION Ha 3 RECIPIENT'S CAT ALOG NUMBER

E555iü
PRIM System: AN/UYK-20 User Guide and 7 fC\
User Reference Manual. ,— /

/c| Louis/Gal lenson; /
Alvin/fcooperband /

! Joel/tSoldberg /

4676 Admlralty Way
Marina del Rey, CA 90291

5. TvPF QF RFPHRT ft PFPinn rnwFaFn

Technical manual-

PERFORMING ORG. REPORT NUMBER

9 CONTRACT OR GRANT NUMBERf«;

DAHCv !5-72-C-^jft8^RW Qfv.^-aa^

It. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency

1400 Wilson Blvd.
Arlington, VA 22209

10. PROGRAM ELEMENT. PROJEv-.T, TASK
AREA & WORK UNIT NUMBERS

ARPA Order #2223
Program Code 3D30 & 3P10

mil I.^J vw. , ... ^^ ^

U. MONITORING AGENCY NAME ft ADORESSf^ dHt»t*\t trom Controlling OtHc») 18. SECURITY CLA

Unclassified

15«. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol thla Rmport)

This document approved for public release and sale; distribution

unlimi ted.

17. DISTRIBUTION STATEMENT (of (ha mbttr»ct •nfrmd In Block 20, U dl!t»r»nt from Rmport)

18- SUPPLEMENTARY NOTES

19. KEY WORDS fContinu« on r«v«ra« aid» It n«c«a««ry and Itlmntlly by block numbmr)

debugging tool, emulated 1/0, emulation-based pro-jramming tools,

emulators, microprogramming

\
/

20\ ABSTRACT (Continue on ravaraa aid« 1/ nacaaaafy and IdmntUy by block rtumbmr)

-i £^- ..o^^c r.f thp PRIM-

M/ ysA /
ÄUV

This is a two-part manual for users of the PRIM-based UYK-20
emulator. The manual demonstrates as well as describes the capabilities
of PRIM, running and debugging of object code, and the emulated

computer system.

DO , ^N
RM7, 1473 EDITION OF 1 NOV 88 IS OBSOLETE

S/N 0102-014-6601
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE flWtan Oaf« BnJarad)

ffrffrTi rr ._ —.as-^aa^

ISI/TM-77-5
October 1977

ARPA ORDER NO. 2223

PRIM System:

AN/UYK.20 User Guide
User Reference Manual

Louis Gallenson
Alvin Cooperband

Joel Goldberg

UNIVERSITY OF SOUTHERN CALIFORNIA JMI
INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way[Marina del KeyjCalifornia 90291

(213)822-1511

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHC15 72 C 0308. ARPA ORDER

NO. 2223. PROGRAM CODE NO 3D30 AND SPIO.

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT BE INTERPRETED AS RCPRESENTING THE

OFFICIAL OPINION OR POLICY OF ARPA. THE U S GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS UNLIMITED.

ii 1 . i Ji iJU.i . . ,±.-. - 1 . ^ ..^■'jB

ÄÄÖ^ %?^ »W^f "&/#&/

HI

CONTENTS

AN/UYK-20 User Guide
Introduction I

Enter and debug a small program 3

Bootstrap a program from paper tape 8

Find which instructions modify a location JO

Find which Instruction sets a location to a value \\

Determine how many times a code sequence is entered ii

Count references prior to a designated condition \2

Trace a loop only once \2

Determine which instructions were NOT executed i3

Determine when data change over a code sequence i3

Search a buffer for a given value H

Appendix: UYK-20 Reference Listing iS
Debugger numbers and operators J5
UYK-20 parameters and devices i5
UYK~20 symbols and cells i6
Breakpoints i9

»

- - -^üH^Emmt

CONTENTS |V

User Reference Manual
Introduction I

General input conventions i

PRIM Exec 3

PRIM Debugger 14
Arguments 14

Values 14
Expressions 14
Expression ranges IS
Lists of expressions or ranges J5

Spaces i5
Syntactic units i5

Literals 16
Symbols 16
Punctuation 16

Error detection and editing 17
Commands 17

Debugger control 17
Execution control 20
Display 22
Storage 24

Target Execution State 25
Target I/O 25
I/O error messages 26

- , ■

PRIM SYSTEM: AN/UYK-20 USER GUIDE

INTRODUCTION
The PkIM system supports UYK-20 program development and testing by providinp

an emulated UYK-?0 tool embedded in an interactive timc-sharinp environment. This
emulated UYK-20 provides powerful debugging aids not possible on an actual UYK ?0
computer system.

Ihis guide consists of two sections, serving distinct purposes. This first section Is
an extended introduction to the PRIM UYK-20 tool and its capabilities; it is addressed to
the UYK-20 user with no prior exposure to PRIM. It consists of an overview of the tool,
followed by a detailed discussion of a number of common or representative programming
problems with solutions illustrated by means of actual session transcripts with the PRIM
UYK-20 emulation tool. Ihc second section is an appendix to a separate document, 17»«
l%l{IM System: IJtrr Hüfonmr.« Mnmmi, that manual and the appendix together constitute
the complete reference document for the PRIM UYK-20 tool. (The PRIM system supports a
family of emulation tools; the Uwr Hrjcrtmrt Manual covers the capabilities of the PRIM
system as they apply to all the tools in general.)

PRIM is available through both the NSW (National Software Works) and the USC-ISIC
11 NCX system, which is a server system on the ARPANET. The user of PRIM is assumed to
have access to one or the other system and some rudimentary familiarity with its use.
Once the user enters PRIM, its behavior is identical in the two environments

PRIM consists of the emulated UYK-20 plus two separate command interpreters
Known as the exec and the debugger. At any time, PRIM is either running the UYK-20
emulator or processing user exec or debugger commands; the transition between states is
at the control of the user.

Fxcc commands are concerned primarily with the manipulation of UYK-20
environments and configurations. Ihe elements of exec commands are krywords, file
names, and (decimal) numbers. Keywords include such iicms as command names, device
names, options, and parameters. Ihcy need not be entered in their entirety; any
unambiguous leading substring of the desired word suffices for recognition. (When a
keyword is terminated with an esrnpa character, the word is completed by the exec.) File
names refer to files in the user's file space (in either NSW or UNtX), and follow the
appropriate file name syntax. Each file specification requires the name, as appropriate, of
either an existing file (to be read or modified) or a new file (to be created and written).

Debugger commands are concerned with the detailed control of the emulated
UYK-20. The debugger includes the functions available on the front panel of the UYK-20
as a small subset of its capabi'ities. Debugger commands each consist of a single
character; the arguments to those commands are symbolic expressions which name the
elements of the UYK-20 (e.g., memory locations, registers, PC, channel control memory).

Within PRIM, certain ASCII characters have been assigned special functions when
input by the user. These functions, which are described completely in the Utor Hrfcrrnro
Motmnl, concern command editing and PRIM (command and UYK-20) control. Ihe command
editing functions are backspace (either hackupacn or rm/-/l), backup (rniMI), delete {drl

iv ■^-rfff^iT-T •—r—-r»«r.ftfr^

UYK-?0 User Guido Page ?

editing functions are backspace (either hnrktpnco or cnil-A), backup (rniMI), delete {dot
or ruhont), retype (rMl/-K), and question (qii^iion-mnrfc); the control functions are status
(rntl-S) and abort (rnif-X). Oackspace backs up over one character within the
current field of a command; it is acknowledged by a backslash (\) followed by the erased
character. Backup backs up over the current command field; it is acknowledged by a
backslash (\) followed by the first character of the erased field. Delete backs out of the
current subcommand entirely (or out of the current command if not in a subcommand); it Is
acknowledged by "XXX", followed by a new prompt. Retype re-displays the current
command or subcommand line. Question, when entered as the first character of a field,
generates a summary of the Input currently expected, followed by a retype 3f the line.

Status causes WIM to respond with the current status of the emulated UYK-20.
Abort causes any operation In progress to be cleanly terminated and returns control to
the top level of PRIM (either exec or debugger, depending on which one last had control).
The abort function is used both to abort a command that is partially entered or in process
and to stop the running UYK-20.

With this background we can now illustrate how PRIM can be used. Two examples
will be explored in detail; these examples will show how to:

1. key in a small program, run it, discover a bug, fix the bug, trace it to observe Its
operation, and save the results,

?. load a program into memory from a paper tape.

Several mrther examples will be presented with considerably less detail to illustrate a
number of ways In which the interactive PRIM debugger can be used. These examples will
show how to:

1. find which instructions are modifying a location and which ones are setting it to a
designated value,

2. determine how many times a code sequence is executed and how many times a data
location Is referenced prior to the occurrence of a known condition,

3. trace a loop only once,

^. find which instructions In a program were nor executed,

5. test if a data location has changed over a code sequence, and

6. search a buffer for a given value.

In the following examples, drawn from actual PRIM session transcripts, user input is
italiritftd to distinguish it from machine output. Input control characters appear as
their abbreviations superscripted (e.g., flwJ).

~;--^ "" ii iiaiiMiiiiiiriiill>ilml..rir^^-^r--TiriTnNrrlEliiMii '"

UYK-20 User Guide Page 3

ENTER AND DEBUG A SMALL PROGRAM

To start, let us follow a complete step-by-step sequence of interactions with PRIM.
Wc shall enter a small program, debug it, then save the resulting memory image on a disk
file for later use.

Our session begins with a command which requests the PRIM UYK-20 tool. Prom
1ENEX, we begin at the exec, whose prompt character is "fö".

e<PHIM>UYK20rr
nN/UYK-2e (20/04/77)
latest NtUS is 28-JUNe-77
>

From NSW, we begin at the front end with the equivalent command.

NSUi ufl*rfSE (tool nam«d)i uyk20<t*t* (conflr»)i crl

you Mill now bo talking to 1UYK28

RN/ÜYIC-20 (20/04/77)

Utost NEUS It 28-JUNL-77

>

In either case, the UYK-20 tool is loaded, publishes its greeting message, and enters the
PRIM exec, whose prompt character Is %". The greeting includes two dates. The first is
the release date of the current version of the UYK-20. The second is the date of the
most recent item of on-line news (these on-line items may be accessed via the exec NEWS
command, which is not demonstrated here); news items cover both new releases of the
ÜYK-20 and changes to PRIM commands. The remainder of the session — until we leave
the UYK-20 tool at the end of the session — Is the same for both systems.

We direct the exec to keep a transcript of this session on a file, and then switch to
the PRIM debugger, whose prompt character is V, for the bulk of this sample session.

yTWMnnscnm (to ma) KXnMPlW*
>/;™rEBUG

The exec creates and opens a new file named EXAMPLE and records the remainder of the
PRIM session on that file for subsequent reference by the user. Note that the
TRANSCRIPT command itself is not actually found in the file since transcription begins only
after the command is completed; it has been edited into this example.

UYK'20 User Guide Page ^1

For the transcribed record, we enter several lines of comments, precedir g each with
the PRIM comment character icmicolon.

#, Houtinr to march a torttd tahle cr

i; by »ucrrnxivfi halving then »chcting the half that01

f; thould contain the given number.cr

g.er
i; Accept *:rr

i; reg 2 the addrex» of the fint element in the tohlerr

i; reg 3 the addren» of the la»t element in the tal>lecr

#; reg i the number to find in the tablecr

i; reg //» the return *ddr€$tcr

§; rr
*; Heturn*Sr

i; reg I the addren» of the element in the table matching r'r

i; the content» of reg 4 or 0 if not foundcr

I Moot ftxpandad-l Ints cr

#7yp« 0/000««*
010001 00 • I.H l,.1\
01001: 00 - SVH i,2\
oleozt oo - U.HS IJ\
01003« 00 . /I« l,2\
01004: 00 - Cl ij\
01005: 00 « JF.K IS\
01006: 00 ■ IJCK $*3\
01007: 00 * I.K 2J\
01010: 00 « l,J $*2\
01011: 00 - I.K 3fl\
01012: 00 * (,K 2,.?\
01013: 00 • IJNK 01000\
010U: 00 • SUH |,l\
OIOIS: 00 . JK l!i('r

t; I »mall program to call the routinef
fType 01200W

01200: 00 * IK 2.0/.100\
01202: 00 - IK 3,0I307\
01204: 00 . JIM I5>0WQC\
01206: 00 ■ JS 01200er

0; The ordered lint of nnmber»:cr

#7yp. 01300^
01300: 00 . 0,2,4,7JJOJOJOO™

Prior to entering the subroutine, we instruct the debugger to produce its output on
separate lines using the Mode Expanded-lines command. (In the other choice, known as
Dense-lines, the debugger compacts several lines of output into one.)

We begin building out broutine at location 01000 (leading zeroes indicate octal
numbers) by entering a type command with the desired address and terminating with an
excape. In response, the debugger displays the contents of location 01OOO followed
by an equal sign to allow replacement. At this point we enter the first instruction of the
subroutine followed by back»la»h. The debugger assembles and deposits the instruction
at location 01000. It then displays the next available location, 01001, for replacement. In

^4^^^^^ -^-^^W^-^^^^- ,^^^^^TO.^^;^fe;-||-||||-||-||^| ^ -^--^p^^yi^^ ,

UYK-?0 Lhcr Guidr Page 5

this manner, successive instructions are deposited into successive locations, We type a
mum after the last instruction to terminate the type command.

Following the subroutine, we enter a small main program and a data table for testing
the subroutine. Ihe list of numbers, "O^,...", each go into separate consecutive cells.

lo bcpin the test, we load register 4 with a number the subroutine Is to search for
- In this case 80 - then begin UYK-20 execution at location 01200.

lSm% Hi™ * R0rr

iCo (lo) 01200™
- > HAM«d from 8i;'86i JS 81?00

- > PN/im ?fl halted «l 61708, Us«d 8(88.0

#7,ype HhHV
Rli 80
R?t anno
R.l: 81300

t'/yp» #öK.1rr

81100: 00

Within a short time, the emulator halts after executing the JS Instruction at location 01206
and control returns to the debugger. We inspect registers Rl through R3. Register 1
contains a 0 indicating the subroutine's failure to find the value 80 in the table. Closer
inspection reveals hat, while register 3 should point to a value In the table greater than
80, it does not. ho "fa" is a unary operator meaning contents-of; the last type command
above uses the fa operator to inspect the location addressed by R3 without having to
enter the actual address.

Armed with this information, we place a breakpoint at the LJGE at 01006 to gain a
closer view. Wo then e-Uart the main program.

tltritk («D 0WQ6*** 'after doing) X'ecul« cr

fCo (lo) rr

- > BraAk aller •xeciillng OIBPF LJGE 81811

iff
- > Step from 81087t IR 82,81

f'/ype f*H2,<nllVr

81300: 00

8)303: 07

Ihe break command instructs the UYK-20 to break -- suspend execution and return
control to the debugger - after every subsequent execution of an instruction at 01006.
So, when the emulator finishes executing the conditional branch (whether it branches or
not) control par.scs back to the debugger. At this point in the subroutine the location
addressed by the contents of register 1 should have been compared and found to be less
than 80 (register 1). Consequently, the subroutine should now search the interval
between the address In R2 and that in Rl. In other words, the address in Rl should
replace R3 and the search repeated. We single-step the UYK-20 using the liiw-fncd
command and find that as the routine has been written, RTs contents replace H2 which, In
effect, chooses to search the other half of the interval.

.... r^^.]1^mTT^^^^^^^^^^!riä^

UYK-?0 User Guide PaRe 6

The solution is clear; Wü replace the instruction UGE at 01006 vii i an LJLS
instruction. We reset register 2 to the correct value and restart the subroutine at the
comparison.

#A/od« Instruction W ffV'yp« 0i006ftW:

eieoGt i ICE eien - UIS 01011er

#7\,p« H2W
R?t eiseo • ^K.1\
R3i 01103 - 01307^

fO'o (to) rr

■ > Br««k «I tor OKOcutlng 010001 LJIS 01011

iff
- > Stop from 010071 LR 02,01

f'/ypo fi>K2t™K.Vr

013051 0?4

013071 0144

f^ebroAk (from) 0*006r»"

#Co (to) "

> > Hflltod from 01706! JS 01700

- > nN/UYK-70 halted at 01200, Usod 0100.0

fTypo (K>K/"

01306: 0170

Again the breakpoint is reached and the program suspended. We single-step another
instruction and observe the expected behavior of our subroutine. The breakpoint is
removed and the routine is continued, evsntually halting at the end of the main program.
Inspection of register 1 reveals that the routine was successful in finding the desired
value.

For the srconJ test, we prepare the subroutine to search the table for a value
known not to exist. After execution, several seconds elapse without any response from
the program. Wc request and receive the status of our program by typing tS (which Is
not echoed). Suspecting the program to be looping infinitely, we type 1 X to suspend its
execution.

#<?ot Hi™ - ;rr

*Go (to) rr

~-> nN/UYK-70 running «t 01010, Usod 0:00.9

u
- > RN/im ?0 Interrupted from running at 01000, Used 0:01.0

#7'ypo HhR.V
Rlt 01301

R7i 01300

R3: 01301

Our inspection reveals that registers 2 and 3 correctly point to values in the table less
than and greater than t; the state of this program seems correct. So we must dig a bit
vurther.

TfTTiiii i[¥f TrÜfMifiii" ^iivlir-'|-r^ ''"-^^^^^"-^''"--■■ ■-■--i^a^ift^M^---rw-l -^■!^^^-=—--^^^^^^^^^^fe;

UYK-20 User Guide Pap,e 7

Wc build a break program to print registers 1 throup,h 3 after the execution of each
UYK-?0 instruction. This allows us to observe the changes In the registers after each
instruction execution.

0ih1o6* /Joni.-Mniis ««« Wflypt Hl:H.Vr

g0rr

<Program number Is lll> iCo (to) cr

> > Rlt 81 R2i 61318 R3i 81381

--> Step from 8I68I1 SUR 81,82

#Co (to) cr

- > Rlt 88 R2i 81388 R3i 81381

- > Slop from 818821 URS 81,81

#Co (to) rr

.-> Rlt 81388 R2i 81388 R3t 81381

—> Step from 81883i RH 81,82

fGo (to) •*

- > Rlt 81388 R2i 81388 R3i 81381

- > Step from 61004: CI 84,81

The name .S1EP is associated with the single-step event, instructing the UYK-20 to break
after every instruction. The ctcapc following .STEP indicates that wc wish to associate a
break-time program with the occurrence of iiiit breakpoint. In response to the "**"
prompt, we enter successive debugger commands which are not executed now, but rather
saved by the debugger to be executed when the breakpoint occurs; the break program is
terminated by an empty input line. Each subsequent Go then executes exactly one more
instruction, followed by the break program.

After executing a few more Instructions, we are able to determine the problem.
The addresses In register 2 and 3 differ by I. When the routine computes the address
halfway between them, truncation occurs resulting In an address identical to that In
register 2. The value in the table at this address Is compared with 1, found to be less
causing its address to be placed In register 2. Since the old address In register 2 Is
identical to the new one, no progress Is made; the comparison for equality between the
contents of registers 2 and 3 fail and the routine jumps back to 01000 to continue --
causing the Infinite loop.

To correct this condition, we replace the section of code In the subroutine which
updates register 2 or 3 to decrease the distance between the values by one. We restart
the program.

fAfode /nstruction ('r

fV'yp* 01006«««
81806: LJLS 81811 . LJLS $*i\
81007t LK 82,81 = I.K 2,1,J\
818111 LR 83,81 r I.J $*3\
81812t CR 82,83 r I.K .1,-IJ\
eieut suR 81,81 - CK ,1,2\
81815» JR 817 . I.JLS 0I000\
01816t 80 r SUH M\
81817t 00 « JH W

fDehreak (from) *"« all (confirm)C»"

0Go (to) 0l200rr

When the program again terminates, we examine register 1 and find that the routine has
correctly failed to find a nonexistent value In the table.

„^^-^ .^^_^, ■-±i¥~=. '^^,-^^^^^_^.^^
■ii.iiTnr-7Tr-nni

UYK-20 User Guide Pago 8

SatJslfed with our program, we savo the core Image on the file BINSRCH.MEM and
terminate t-ur PKIM session.

- > Halted from 61286} JS 61266

>-> fiN/im-28 halttd at 61266, Üs«d 6i61.6

#7^« HI"
nil 6e

fKeturn »to EXEC) cr

tS/fiMyt f On« o* th« folloMingi

mi

CONMCURRTION
mriORY

SYMBOLS
>SRVE Äf^EflORY (on file) HINSKCII.MKM;l<*

Quitting flN/UYK-26 CConllrml cr

e
The file BINtRCKMEM now contains a UYK-20 memory Im .ge that c^n be retrieved for
subsequent use with the exec RtSTORE command.

.OOTi.rRAP A PROGRAM FROM PAPEI TAPE

This example will demonstrate the process of loading a program from paper tape
using the bootstrap 'oader.

The bootstrap program we need is the STANDARD NDRO, which is one of the NDRO's
available In PRIM. This bootstrap assumes the existence of the 1532 input/output console
on channel 1. Since the initii»; machine configuration contains no I/O devices, we must
somehow Install the conso'e.

There are two methods available for attaching devices to the emulated UYK-20.
The .first is to retrieve the device assigments from a previously saved PRIM sesc«on using
the RESTORE command. The second, which we v.ill use, specifies each device inoividu^lly.
In either case, the ii dallation of I/O devices muft be done before the e ecutlon of any
UVK- 20 program in that session.

»NDROeB,: ? STh.iOROO or SSIXS-R

»NORO S7,ßÄr,fiNDRR0 cr

>>rr

>INSrAUt*** (device) I5,W« (CHRNNEl) i«*

For the RERDER-1532,

»SPKW*** (character! per tecond) W0Qrr

»rr

For the PUNCH-;532,

»<*
For the TTY-1532,
»cr

We set NDRO to STANDARD and install a 1532 on channel 1. During the installation of the
1532, we are prompted for parameters for each device connected to the controller.
These parameters allow the user to specify device-dependent information. For simple
devices, as in this case, the only user-alterable attribute is the speed at which the devices

^lllrffifflrlfflila^^ ' tl --^'r^wmfkfm^^TrY'^rr^'-n j^ajtoa^aw^ifim-r^^y^E.^r. nTir n-.i.ri

UYK-?0 User Guide Page 9

operate. (A question from the user In response to the prompt "»* will elicit the

parameters the user may alter.)

Wr specif/ the SPtED of the paper tape reader to be 1000 characters per second.
In tf is manner, wo are able to significantly shorten Jhe time needed to read the paper tape

but only with the Knowledge that in this application the bootstrap program's operation is

independent of the speed of the paper tape reader. If we do not set the speed, PRIM will

automatically select the actual value for each device. 1 hough installation may only be

done prior to rxecution, device parameters may be altered at any time via the SEI

commmand.

After Installing the 1532, we must attach a source of Input to the paper tape reader.

This is accomplished by »he PRIM MOUNT command. (The punch and 11Y need not be

mounted until needed.)

>AfO™HJNT <n,l,N,0L,0u,Tf?) ? On« ol th« following:
APPEND
INPUT
NIU

OLD
OUTPUT

THIS-nRniNflL
>nOUNT (R,I,N,0L,0U,T,?J /"^NPUT (from III«) TKST.flHStf***' (on devlc«)
Kr*rEnnEfMS32 rr

»? BINflRY or RSCII

»/^rlNnRV (Hllh bytn siz«) «"^b

»™
Ihe second word of the command (in this case INPUT) determines the direction of 10 and
wh'Jher an existing or new file name is being specified (in this case, we wish to read from
«n existing file; for the paper tape reader, only INPU1 and IHIS-lFRMINAl arc meaningful).
Following the file type, we supply the füe name, ItST.ADS, followed hy the name of the
devire on which to mount the file -- READER-1532.

Next we are prompted with "»" for more information, in this case the format of the
data on the file allached to the device. BINARY N implies the data file is to be treated as
a stream of characters in wh'ch all eight bits of data are significant. Ihr bytesize, N,
describes the packing of the information In the file. For disk files written by EMLOAD, the
UYK-20 loader, each byte of data occupies the low order eight of thirty-six bits — hence
the bytesize Is specified as 36. ASCII specifies a standard 7-lcvel text file; the bit
corresponding to the eighth column (parity) will always be zero. If neither BINARY nor
ASCII is entered, the default (BINARY 36) will be used.

ä^^^a^asiäfl

UYK'20 User Guide Page 10

Once we have Installed ^Q 1532 and mounted a file on the reader, we may begin
the bootstrap.

>/)™rEBUC

#s.! sroPi>swP2jioor2,io/iD<*
tCo (to) rr

—> HatUd froM 6661 08

- > PN/UYK-28 halted at 870, Usad 0i8e.4

fWoturn (to EXEC) "*
>S/l^rVE iM«««E«0RY (on flit) TKST.HKM;^^ er
>0escEBUC

fGo (to) 0/000^r

After we have installed the device and mounted a file on It, we enter the dehußger and set
switches BOOT2, ST0P1, ST0P2, and LOAD, which correspond to similar switches on the
UYK-20. (The momentary action of LOAD is accomplished by having the emulator clear the
switch after responding to It, but note that the load does not begin until a Go command Is
entered.)

eventually the emulator halts after reading the paper tape. Since the program is
large, and we intend to re-execute it in future sessions, we save the core image after
loading on a new file, ItST.MEM, where it can subsequently be retrieved via the RESTORE
command.

The remaining cxamp'es will be much briefer than those presented above. Instead
of complete sequences of interaction with an actual program, just those commands th5»t are
necessary to solve particular problems will be shown. In a few cases intervening
interactions have been edited out of the transcript to emphasize the essential commands.
In general, results will not be shown.

FIND WHICH INSTRUCTIONS MODIFY A LOCATION

A typical debugging problem is finding which instructions are changing a location
(e.g., some module is clobbering a cell). This can be solved very easily with a simple
break-time debugger program which traces all modifications of that cell. If the contents of
location 01234b are being changed Improperly, the following breakpoint command will
identify all subsequent modifications of the cell, allowing the user to verify their validity.

#Hra.U (at) 0I2.MS«*6 (after doing) H7rlte ««c

wMode Instruct Ion OÄC ###7\)p« fiPCOIW

W/ype 012.945^

##Co (to) cr

Mr*
<Proqram number IE 12) > #

The debugger commands following the Mt»u" prompt are saved as the break program
a'.sociated with the writing of 0123^15. After every write reference to that location,
UYK-20 execution will be suspended and control will be passed to the debugger, which will
execute the break-time commands. When the UYK-20 breaks, PC has already been
advanced to the next instruction; PC0LD still addresses the previous instruction. Again,
the contents-of operator is used to access the instruction location in memory. Since there
is a Go command in the program, UYK-20 execution continues automatically after earh
break, thus generating a trace of the writes. If only the first breakpoint subcommand had
been entered (eliminating the type-out of 012345. and the go commands on the third and

UYK-20 User Guide P«Be H

fourth lines), then after displaying the Instruction, the debugger would display location
0123^b and stop the UYK-20 (thereby returning to user command level).

FIND WHICH INSTRUCTION SETS A LOCATION TO A VALUE

A related, and perhaps even more common, problem is to find which Instruction Is
setting a known (probably Improper) value Into some location. This can be accomplished
with a variant of the breaK-time debugger program presented above.

#/*r«ak (at) 012.11^^ «alter doing) M7rltt «««

##/l f90f2.1l5 <> 067*** <then> ###Co (to) rr

ilhtodB Instruction ««? WTypo fiPCOIW
gffrr

<Program number I« 13)> 0

The first command In this break program is a conditional command, stating "If the contents
((*>) of 0123^15 are not equal (<>) to the value 067, then continue UYK-20 execution (Go)."
When the Go Is executed, the remainder of the break program Is ignored and UYK-20
execution resumes immediately. When the given value is found, the Go is not executed,
the break program is completed, and control returns to the debugger. Unlike the program
above, this program produces no output until the tested value is found In the cell. (Should
wc forget the contents-of operator, then the value 012345 would be compared to the
value 067 at each reference, and we would always resume execution.)

DETERMINE HOW MANY TIMES A CODE SEQUENCE IS ENTERED

Occasionally the operation of a program system is degraded by unnecessary and
unexpected calls on subroutines that do initialization or other operations whose repetition
do not cause errors but do affect performance. The PRIM Debugger can be u^ed to count
the number of times a code sequence is entered.

In the following example the code sequence Is assumed to start at location 0123A,
and location 0100 (which is assumed to be unused) is used as a counter.

fClear 0/00"*
Wlreak (at) 0I2.U**C (alter doing) XecuU fl*c

f^Set OlOCW = nOIOO+irr
ilfTw OIOOC

tudo (to) rr

Ml™
<Program number Is [41 > f

Lvery time location 01234 is entered, the count will be incremented and displayed. If only
a final count is desired, rather than a running count of each execution, the following
command could be used:

#Clear OiOO^
#/*realc (at) 0/2.?irÄr (alter doing) Aecute "^

WCo (to) ™

<P. ogram number Is IS1> f

#7'ype Om™

^^^.jfe^^^:-- ^^y ^.^^^y-^^^ ^ {^ | ..,-. --^^^JS^^^J^^^ _,.:.. .

UYK-20 User Guido Page 12

COUNT REFERENCES PRIOR TO A UESfGNATED CONDITION

Ihc efficiency of a process can sometimes be evaluated by the number of ti.-nes a
data location is referenced prior to the occurrence of a given condition of interest. A
variant of the previous example can be used where the automatic continuation is
conditional on the designated condition not yet having occurred.

fCl.ar 0/00^
f/lrcftk UX) 0/2.WW (after doing) fhad M7rMt r*r

»ah foOSi32 <> O"^ <than> ###CP (to) cr
ggrr

<Program number ic [61> #

fType OWOrr

When the condition that location 0b^32 contains a zero occurs, the program exerutlcn will
break and the counter can be examined.

TRACE A LOOP ONLY ONCE

With the PRIM Debugger, a program trace is accomplished by setting an execute
break on all instructions of interest and supplying a break-time debugger program that
displays the most recent instruction executed (see the detailed example on entering and
debugging a small program), lo trace a loop only once, the continuation can br» made
conditional on f'C not being equal to the starting location of the trace.

#Hre.ik (at) 0l23i:Q23i5o*<' (altar doing) Xecuta «"r

f^/ode /nstructlon ^r mT'ypa fi>PC()IMcr

if if 11 &PC <> 0I2M**C <th8n> ###Co (to) cr

ig™
<Program number Ic 171 > t

Ihe difference between this example and a single-stepped trace (using the .STEP
breakpoint) Is that here any called routines are not traced. To trace the loop n times, the
continue could be made cone onal on a counter that Is incremented whenever the starting
location is reentered.

— — --^i-nflTiffMl mumsmmm ms^^Määatamäm i i iimiiFiii i ■iliiliiiiiiMäasi

UYK 20 User Guide Paße 13

DETERMINE WHICH INSTRUCTIONS WERE NOT EXECUTED

An interesting use of the PRIM debugger is in the isolation of those instructions
within some region which were never executed while running some program. Ihis can be
accomplished by setting breakpoints throughout the area of interest, and then having each
execute-break remove its own breakpoint.

#/)ebreJk (from) ^ill tconf lri«ilcr

f/lreak (at) 0/2.:H:0,';670™r (after doing) Xecute c*r

f^/Jebr.ak (from) f*PCOIM:*(IHt.*mXM**(IH--0F000X><>0C000Xr.r

teCo do) cr

ggcr

<Program number is (8)>

ilivB^ (at) 05672W (alltr doing) Xecuta cr

*Co (to) 0123V

— > Break after executing 8b672i J 816880 tilreat (at) cr

83457-0ASS7 <X>(8] 8b672 <X> f

As each instruction breaks, its own breakpoint is cleared by the Debreak command. /K is
the instruction register, containing a copy of the (first word of) the most recent instruction
executed; fvPCOIJ) is the address of that instruction. The long expression following M

evaluates to 0 or 1 according to whether the instruction is short or long, thus clearing the
breakpoint at both words of a long instruction (the second term is required only if RL
instructions are used). At the end of the program, a display of the remaining breakpoints
shows those locations that were never executed.

DETERMINE WHEN DATA CHANCE OVER A CODE SEQUENCE

It is occasionally necessary to determine whether a code sequence has changed the
value in some location. This can be done by setting a breakpoint at the beginning of the
sequence, where the break-time commands copy the data value into an unused location,
and setting another breakpoint at the end of the sequence, where the break-time
commands conpare the copied value with the current value.

In the following example, the code sequence starts at 01234^ and ends at 023^156,
the critical location Is at 05^32, and 0100 (assumed here to be unused) is used i'or
temporary storage.

fflrtak (at) 0/2.145<,«! (after doing) Aecute csc

MS«i o/oo™^ = mr>i32rr

äUGo (to) cr

<Program number Is 19]>

W^reak (at) f^-H.^™^ (after doing) Aecute ^

jM/f froO/m^^O/rtfl^ <then> ###Co (to) cr
Iget

<Program number le 1181> f

Ihe first breakpoint, at the entry to our routine, saves a copy of the contents of 05432;
the second breakpoint, at its exit, compares the current contents with that saved In 0100.
Each time the value in 0b432 changes over the designated code sequence, program
execution will break. Should we be skeptical about the availability of location 0100, we
could establish a breakpoint there which would break on any reference.

fr^ifiT#ilMf ^^^smBm^wmr--^ ~mmr^m^m^^

UYK-20 User Guide Page 1A

SEARCH A BUFFER FOR A GIVEN VALUE

The final example will show how to search e buffer (or any arbitrary set of
locations) for the occurrence (or non-occurrence) of a designated value. In this example,
all words containing 4 in the left half are located.

frocat« iOOW CHith mask) 0FF00X*** (In) OI.V,00:*,Vr

Ths general form of the locate command requires a comparison value, a mask, and a set of
addresses to examine. The comparison value and mask can each be any arbitrary
expression. Ihe set of addresses can be a list of discrete locations or address ranges.
By entering NON before the comparison value, the test is inverted. The comparison value
defaults to "NON 0" and the mask defaults to "NOT 0" (i.e., all 1 bits). The test is identical
to a masked compare (CM) instruction with the normal form being a test for equality and
the NON form a test for Inequality. Each location In the list is then displayed or not
according to whether a match or non-match was specified. The locate command is
analogous to the type command In that if it Is terminated by an fitenpe a replacement value
can be entered for each displayed location. The same rules for the replacement value
apply for locate-with-replacement as for type-with-replacement.

UYK-20 User Guide Page 15

APPENDIX: UYK.20 REFERENCE LISTING

DEBUCCEU NUMBERS AND OPERATORS

The debuRRer evaluates user input expressions in 16 bit twos complement
arithmetic Identical to that of the UYK-20. The operands of expressions include symbols,
numbers, and character constants; the operators are listed below, and include all those
found in the ULTRA assembler. Expressions may be parenthesized to an arbitrary depth.

Input numbers may be octal (leading 0), decimal (leading non-0), or hexadecimal
(leading digit and trailing X). Output is identical, except that when hexadecimal output Is
requested, a leading A thru F is not prefixed with a 0. A character constant consists of
one or two characters included in single quotes; the ASCII character set is uced, allowing 8
bits per character.

The Integer arithrrjtic operators are 4, -, *, /, MOD, and ABS. (MOD is the
remainder af»er division, while ABS is a unary operator returning the absolute value of the
following term.)

The relational operators are ■*, <f >, <», >•, and <>. Their value is 1 when the
relationship Is true and 0 otherwise.

The Boolean operators are 4+ (OR), — (XOR) and ** (AND).

The fetch operator is {ro. P> is a unary operator whose value is the contents of the
cell addressed by the next term. & is Invaluable when building conditional expressions in
brcaMlme programs. It also provides a good shorthand at other times, e.g., "T(ype) flaPC"
displays the next instruction to be executed

UYK-W PARAMETERS AND DEVICES

Various UYK-20 options are selectable as parameters of the emulated UYK-PO. The
settings of these parameters may be inspected and changed by the user at any time via
the StT and SHOW commands.

CLOCK sets the clock source frequency, expressed in ticks per second (Mr). The
default value is the internal source frequency of 1000 Hz.

MEMORY sets the size of memory, expressed in 8K modules. The default is a half
memory of ^ modules.

NDRO selects the particular NDRO program, by name. The selections available are
listed in response to the Set subcommand NDHO ?. The default is the Standard
NDRO.

RCGISTER-SETS controls the installation of the optional register set The parameter
value is either one or two sets; the default is one. When only one set is installed,
the general-register-set selector bit in status register «tl is ignored.

^^^-■■¥%rntiiifiTriirrfnTtirr'" .

UYK-20 User Guide Page 16
Appendix: Parameters and Devices

Devices are installed on UYK-20 channels via the INS! Al I command. Installation of
a device implies the simultaneous installation of the appropriate type of channel.
Ihcreforo the user need never be concerned with the installation of channels.
Furthermore, all channels are available for the installation of any type of device, without
restrictions concerning channel groups; also, 32-bit channels do not require the use of a
second channel (at n+1 or n-«0) to carry half thj data. It is therefore possible, though not
neccosarily useful, to specify configurations which cannot be built on an actual UYK-20.
The list of implemented devices that may be Installed is listed in response to the command
INSTALL ?.

One optional parameter which is specifiable for every installed device is the device
speed, expressed in some units appropriate to the device (characters per second, cards
per minute, inches per second, ...). The default is either the actual speed or a typical
speed of that device. Altering the parameter linearly alters all the timing associated with
that device.

lempo^ary speed increases can be useful in speeding up lengthy processes for
which timing is not critical. The principal example is a bootstrap load; a factor of two or
four increase in the emulated speed of '.he bootstrap device results in a substantially
faster bootstrap. Speed changes may also be used to experiment with the effect of
variations in data rate on program performance or throughtput.

For the device TlY-lf)32 (the IIY on the 1532 operator console), interrupt
transmission of the next character is indicated by entering the two-character sequence
control-%hift 0, where roniroi-ji/ii/i is the PRIM control-shift input control code (not
the control-shift key on the terminal.)

UVK-W SYMBOLS AND CELLS

In addition to memory, the following cells are Known to the debugger and are
accessible by the indicated names. Except as indicated, modification of any cell affects
future behavior of the UYK-20 in the obvious manner. For example, changing the state of
an I/O chain from idle to chaining will cause that chain to resume execution (at its chain
address pointer location) when execution is next resumed. The only note of caution
concerns the dcvice-to-channel bits In the I/O interface; they may not be altered with
confidence since they are inextricably tied to (inaccessible) device status information.

)\0 thru HiZ (decimal): the primary register set.

HHb thru HHi!> (decimal): the secondary register set.

TCO thru Vii.n (octal): the page registers.

/V.f) thru /V.77, JV..10Ö thru NAH (ocU): NDRO memory. Any attempt to store into
NDRO generates a break, and the write is ignored.

VK/CO thru THIGM (octal): The trigonometric CORDIC constants.

IIYPKH.O thru IIYPEH.17 (octal): The hyperbolic CORDIC constants.

ÜYK ?0 Uf.cr Guide Pap,o 17

Appendix: Symbols and Cells

The following are one bit cells which correspond to control panel switches and clock

enable functions.

MCiEAH: auto-start switch. When set by the user, causes the UYK-20 to execute
a master clear sequence and then begin executing. MCLFAR is always cleared by
the emulator at the end of the master clear. Ihe master clear sequence includes a
rer.et of all the emulated devices as well as the regular CPU and IOC reset.

7,0/1/): load switch. Causes the UYK-20 to execute a master clear sequence, set
Ihe PC to 2, and begin executing. LOAD is cleared by the emulator at the end of

the master clear.

HOOTS: Hootstrap 1/2 selector. Set is bootstrap 2; clear is bootstrap 1. Never

modified by the emulator.

STOPI, SWP2\ Set is ON; clear Is OFK Never mooificd by the emulator.

HTCKi Real time clock enable, allows the clock to be advanced at each tick

interval.

MCHKi Monitor clock enable, allows the clock to be decremented at each tick

interval.

HTCIK: Real time clock interrupt enable, allows the real time clock overflow

interrupt request to be generated.

The following are the miscellaneous other registers accessible <o the user.

PC: the current program counter (containing address of the next instruction).

SKI, SH2: the status registers.

l<TCUt HTCI.'. the real time clock, upper and lower.

MCH'. monitor clock register.

Ihe following cells contain bit-encoded status information; in each case a set (I) bit
indicates either a pending interrupt or an enabled condition. For all but the first, one bit
is used for each channel, with bit 0 for channel 0,..., and bit lb for channel lb.

INTI.2: pending class I and II interrupts.

Hit 15: Power fault (never generated internally).
Hit 14: Memory resume. (Generated internally only when a

reference is made to nonexistent memory.)
Hit 13-8: Class I, priority 3 thru 8.

m 7: CP Instruction fault
Pit 6: IOC Instruction fault.
Rit 5: Floating point overflow/underflow.

Hit 4: Executive return.
Bit 3: R1C overflow.

rn^^t^j^^*^^ ' -- - ----- 7^^^- -.. .. ^---i^^fmtrrw^^]^r_,. .^ ..-- ^--.^gy^^^^^

UYK'?0 User Guide Page 18
Appendix: Symbols and Cells

Hi! ?: Monitor clock ovoflow.
Hits 1-0: Class II, priority 7 thru 8.

INT3IC: Class III intercomputer timeout interrupts pending.

INT3X'. Clacs ill external interrupts pending. (This bit is set at the time that the
status word is stored in memory.)

INT.Wi Class 111 output chain interrupts pending.

INT3I: Class III input chain interrupts pending.

KIKi Channrl external interrupt enable flags.

CIIIK: Channel interrupt enable flags.

The next five items are merely informative; altering them does not affect the future
behavior of the UYK ?0.

IH: Instruction register containing the last instruction executed (the first word for
a long instruction).

/';/): Effective address of the instruction in IR. For UK, it is the effective constant.
(Displaying IK in instruction mode will display both IR and fcA for long instructions.)

C/lPi Channel address pointer, inaicating the type of the last instruction cycle
executed. Zero indicates CPU (DPS) execution; a value of 8n+2 indicates IOC
execution by the input chain on channel n; a value of 8n^6 indicates the output
chain on channel n.

M/1K: Memory address register, giving the last relative memory location
referenced. If the last reference was an instruction fetch, MAR addresses the
location following the instruction. MAR is set by channel transfer cycles and
interrupt cycles as well as by execution cycles.

rCOIJh the program counter at the start of the last CPU instruction cycle.

The remaining items are all concerned with the UYK-20 channels and channel-device
interfaces. Hexadecimal notation is used to designate the channel number with a single
digit of 0 thru F.

CM.O thru CM.hl' (hexadecimal): channel control memory. The two-digit number
designates the channel in the first digit and the word-within-channel in the second
digit.

ICII.O thru ICII.F: the Input ciiain state for each channel.

OCII.O thru OC11,¥\ the output chain state for each channel. For both input and
output chains, the state values are:

0: Idle.
1: Chaining.

UYK ?0 User Guide P^e 19
Appendix: Symbols and Cells

?; Search for first sync (synchronous communication channel only).
3: Search for second sync.
0: Input data transfer.
b: Output data transfer.
6: function transfer (parallel and N1DS channel only).
7: Forced function transfer (parallel and N1D3 channel only).

All channel-device data transfers take place identically in the emulator, regardless of the
actual channel type. Transfers occur one byte (8, 16, or 3? bits) at a time, following the
model defined for a parallel I/O channei, but with a buffer to hold each datum in turn,
f ach transfer uses the appropriate buffer ^ for the channel and two interface bits, a
request bit and an acknowledge bit. For parallel and Ml OS serial channels, functions are
transferred the same way, while status uses EIE and EIR.

llt.O thru //(.F: the input (device to channel) buffers.
Oli.O thru OII.Fi the output (channel to device) buffers

IDIi.O thru IDR.Pi input data request (device to channel) flap,.
//)/).0 thru //)/!./<': Input data acknowledge (channel to device) flag.
ODHO thru (WH.Fi Output data request (device to channel) flag.
OhA.O thru ()i)/l.F: Output data acknowledge (channel to device) flag.
HI H.O thru KIH.F. Function request flag (parallel and NT US serial).
KF/1.0 thru KFA.h: Function acknowledge flag (parallel and NT OS serial).
HIK.O thru KIH.Fi txterna! interrupt request flag (parallel and Ml OS serial).

Ihe static lines for rommunication channels are given their MIL-SID-188 names (A thru L);
A, I), F, G, II, and J are the outbound lines, while B, C, t, I, K, and L are the inbound lines.
These flags are not valid for parallel or NT US serial channels. The eight RS-232C control
lines are mapped into these lines as noted in the list below; the mapping is taken from the
channel cable pin assignments.

lOn.O thru l()/),h: Loop test.
lOH.O thru lOHF: Ring indicator (CF).
IOC.n thru lOC.Ii Carrier detect (CF).
lOD.O thru lOlhVi Data terminal ready (CD).
lOK.O thru lOH.h. Clear to send (CB).
101.0 thru 101.I*. New sync.
lOG.O thru lOG.h. Request to send (CA).
IOII.0 thru IOII.Fi
IOI.0 thru lOI.F.
IOJ.0 thru lOJ.Fi
IOK.0 thru lOK.hi Data set ready (CC).
IOL0 thru IOLF:

BREAKPOINTS

The UVK-70 emulator is continually monitoring the execution of the UYK-20 to
detect the occurrence of any break conditions which may be set, (Breaks are neither set
nor cleared by the emulator; only the user, via the debugger breakpoint commands, can set
or clear breaks) When a break condition is detected, the break occurs after the event, at

llYK-?0 User Guide Page 20
Appendix: BreaKpoinls

the end of the current cycle of execution. It is therefore possible for multiple breaks to
bo reported at one time, fach UYK-20 cycle consists of the execution of one of the
following Items:

1. A CPU Instruction, including ind'rect addressing (for the I0CR or R€X instruction,
execution of the IOC command or remote instruction takes place in the same cycle).

?. An iOC chain Instruction.

3. A CPU interrupt sequence due to a pending interrupt request. Ihis cycle includes
the storing of PC, status and clock, and the fetching of new PC and status. The
creation of a pending Interrupt is a side effect of a previous cycle (or a manua}
operation by the user).

1. A single channel data transfer under control of a buffer control word.

b. A clock cycle, which occurs at each clock tick Interval whether or not the real-time
and monitor clocks are enabled.

6. A device execution cycle.

7. An external interrupt cycle, in which a channel stores a status word and generates
an external interrupt request.

There is an event associated with each of the first five types of cycles, allowing the
user to break execution after any cycle of the given type. Devices cannot be directly
monitored; one must monitor the channels instead. The external interrupt cycle can be
monitored via a write break set at any or all of the El Storage locations In memory.

The following event flags arc defined for the UYK-20:

.STr.P: RreaK after any CPU execution cycle.

.C///J//V: Hreak after any chain or command execution.

.INT: flreak after any interrupt cycle.

.WK: Drcak after any IOC transfer cycle.

.'I'ICK: Hreak after any clock tick interval.

JUMP: Break after any transfer of CPU control to other than the next instruction.
Includes interrupts as well as (successful) conditional jumps, but does not Include
NOP (UM).

.STOhK: Break after any memory store, including those generr/ied by I/O and
interrupts.

.NJMP: Break after any CPU conditional jump instruction which doesn't jump.

.ANOMx Break after any of a number of switchable anomalies, Including:

^ "^ '"' 'r~^^'tm^rT'*T^7^^^"''^lM^ -rr [i

UYK-20 User Guide Page 21
Appendix: Breakpoints

Illegal Instruction. An illegal CPU or IOC instruction is executed. The
instruction has set an interrupt request in l/VTIJt, which will cause an
interrupt when execution next resumes - unless it is cleared.

Fxternal Interrupt while not enabled. A device (on a parallel channel)
generated an external interrupt request when EIE was not set on that channel.

Improper Indirect Address Word. The J value is one of the unassigned values.

An 10 transfer specifying EF or EFF is executed on a communications type (not
NTDS) serial channel (the EF/EFF is turned into a NOP).

A communications channel operation (such as CSIR or CSST) is executed on a
parallel channel (the operation is turned into a NOP).

In addition, the following anomalies always generate a break, regardless of the setting of
.ANOM:

Device error. Usually occurs when an unconfigured channel executes an EFF.

Odd memory address (in a double word reference). The addressed word has
been used twice.

Odd register number (in a double register reference). The addrer^ed register
has been used twice.

Store into NDRO. The store is not performed.

In addition to the above events, breaks can be set at specific locations, to occur only
when the location is referenced in the Indicated manner. The three forms of reference
are;

X: Execute includes the fetch of a short instruction, or the fetch of the first word
of a long instruction. Applies to CPU and IOC execution equally.

R: Read includes any other fetch. (Neither break includes the second word of a
long instruction.)

W: Write includes any store into the given cell for any reason.

These reference breaks may be applied to the following ceils:

Memory: all three forms, in any combination, by absolute (not relative) address.

NDRO: Read and Execute breaks.

Registers: Write break, in each set separately.

Channel control memory: Write break, on each pair of words. (A breck applies to
both words of an even-odd pair regardless of the cell actually specified.) A break on
a channel address pointer can be used to single step a particular chain, while a
break on a buffer control word can be used to single step a particular transfer.

trmanBiifimgTtfr

UYK-20 User Guide f ^ 22
Appendix: Breakpoints

Inp'. ..d Output (Interface) Buffers: Write brock, for each separately. The break
is always taken after the cycle which wrote the word, but before the cycle which
will read yo . word. Therefore, any alteration of the data is effective. The break
on the Inpu buffer is the only break triggered by a device cycle (other than a
device error anomaly).

...r.,^l.,.,-.-^^iidii^5ria^rl.^.„..,.....■,.-,....,.,.,-4.^^^^^^^.Vt.^_r^r..^^.it_inM1Tr.. 1r^)iW^r,.lTLt.,f.7

PRIM SYSTEM: USER REFERENCE MANUAL

INTRODUCTION

This document IG the common reference manual for all users of Ihn PRIM system,
hoth those using one of the existing emulation loois and those writing new emulators. I or
the former, this manual is supplemented by the appropriate tool-specific guide (e.g., f'KIM
System: U10S0 User Guide); for the emulator writer, the supplement is riilM System: 1 ool
Ihuldcr Manual

The PKIM system is always in one of three slates, Known as the cvec, Hie debugger,
iind the target execution states. Ihe transition between states is tnnlrolled by thr user.
Hoth of the first two states are PWIfvi command processors that take commands from the
user and execute them. The exec, whose command prompt rharaclei is ">", i' used
principally for setting up a target environment; the debugger, wher-r command prompt is
V, is used for the detailed examination and control of tin executing target
machine, larget execution includes the emulation c' not only the CPU, but also clocks nod
assorted peripheral 10 devices, ihe three sections following the introduction describe
each of the states in turn.

Ihe PRIM exec and debugger commands are Jllust ^d with examples taken from
actual session transcripts. In all the examples, USJf input is iialiriztd to distinguish it
from PRIM output. Input control characters appear as their abbrevialions superscripted
(e./r., **r).

GENERAL INPUT CONVENTIONS

User input to PRIM, both exec and debugger, is generally free-format and
case-independent, leading spaces and tabs are ignored, and lower case is treated as its
upper case equivalent (except in quoted strings, where case is potentially significant).
User input to the target machine during target execution state is in the format required by
the target system.

Certain characters have been assigned editing and intervention function' when input
by the user. Ihe editing characters apply only to the PRIM exec and debugger, while the
intervention characters apply to the target execution state as welt. The specific
characters assigned to most of the functions may be altered (via the exec Change
command) to suit one's needs. The editing functions are valid at any time during PRIM
command input; commands are not executed until after the final character has been
accepted.

Itnck-tpnt.e (cnthH) erases a character from the current word or term of input. The
back-space is echoed as a backslash (\) followed by the erased character. When
there are no erasable ch iracters, a bell (cntl-G) is echoed instead.

flltentate hnrk~*pnr(* (initially cntl-A) performs a function identical to hnrk-*pnrv\ it is
provided as a convenience.

""|-rr--v™.-^ ^nr^^^w.^».^.- -•-^-^.■. ,^-.l.-: - Tr ■^^'wiämrt'iki iir,*■* Jlhr^W^

PRIM Systrm: U'.cr Reference Manual fyH[\e ?

Itnrkiip (inili.illy cntl-W) erases the current word or term of input. It is echoed as

backslash (\) followed by the first character of the erased word.

fkVly/M» (initially cntl-R) retypes tfie current input line; it is ireful after a confusing

amount of edilmp, has occurred.

Dclcir (initially DtL or RUBOU1) aborts the current input command or subcommand,

allowinp. the user to re-enter it. It is echoed as " XXX".

Qvfstion (?), wlien entered at the beginning of a cor nand field, elicits a description of

the expected input, followed by a retype of the line. When the expected input is a

selection from a list (or menu), the entire list is shown.

The intervention characters are valid at any time, including command input, command

Interpretation, and target execution.

Alton (initially cntl-X) interrupts the current activity and returns control to the

command level of either exec or debugger. When ir.ed to cancel an exec or debu^er

command, control returns to the top level of the same state; abort is the only means of

canceling n command when the user is in subcommand mode. When used to interrupt

target execution, control returns to the state from which execution was initiated; abort

is the only means of stopping a looping target machine.

Stallt* (initially cnthS) produces a one-line summary of target machine status, including

program counter, emulated elapsed time, and active 10 devices. The command is valid

at any time, but useful primarily in execution state.

The following character is active only during target execution.

Control *hift (initially cntM) permits the user to enler (during execution) a control

code that cannot be entered dnectly because it is intercepted by either PRIM or the

operating system; the PRIM characters inolved are ttotut, nhort, and control-»hifl itself.

The next ASCII character following the control-shift (other than the digits 0 thru 9) has

its two leading bits cleared, thus converting it to an ASCII control code (/I or a to

rntl /), etc.). Control-»hifi followed by a digit results in an input that is outside

the normal target character set and is used for particular tai pet-machine-dependent

functions. I he control-shift character itself is not echoed, and not passed to the

target machine. If execution terminates before that next character Is input to 'Ihe

target device, the control-shift is canceled; it is not retained for the next resumption of

execution.

^-s-^^^v.^,^-,^-. .„.■■.. ..,. .TH-^n^ST^.lfr,1(fi,Miitj.>.r.T. ■ '-■|iiiiirtiii[rrmntrihii,i "' ' II'i i nilriitiiiri

PRIM System: Ihcr Reference Manual \\n\c 3

PRIM EXEC

The PRIM exec is the initial state of a PRIM session. Lxcc commands are roncrrnrd
primarily with building target configurations, saving PRIM session results, restoring
previously saved sessions, and accessing or creating files (within the file space of the host
operating system).

The exec prompt character is ">", indicating that PRIM is in exec state and that the
exec is awaiting a new command; it is always shown on a new line. Individual input fields
consist of keywords (a word selected from a menu), decimal numbers, and file names.
lxcc commands are composed of fixed sequences of fields, each terminated by a delimiter
character; a final confirmation consisting of a return is oflen required.

Keywords are selected by any unambiguous leading substring. Often, a single
character suffices; three characters are alw</s sufficient. Numbers are specified in their
entirety. Hie names are specified according to the conventions of the operating system.
All commands that will use a file for output require the name of a new file (except the
Mmmt-Append and Mount-Old commands, which modify existing files); all other file
commands require the name of an existing file. In It NIX, an existing file name - and a
ntw file that is a new version of an existing file name • is recognized (and completed) in
response to an input ramiw.

The normal delimiters that terminate command fields are reirtrn, rsrnpr, and s/^rr.
I.scftpo and «/mrr function identically except that the former generates feedback to the
user while the latter generates none; the feedback produced by csrni>o includes both field
(omplction and next-field prompting (which is given in parentheses). Krliini is ur>ed to
complete a command immediately, bypassing any remaining fields and confirmation; if
further input is required, the return is treated as an rsmpr. (In the examples that follow,
caraitc termination is used to show the prompts.)

Keywords that involve either devices or parameters are machine-dependent; the
selections shown in the examples are meant to be illustrative rather th.in clr fmitive.
Uevicc specification is further complicated when two (or more) of the same generic cievir e
nie installed. Therefore, for device names, two further delimiters are utilized, m CV) and
rolnn (":"). A fully qualified device name consists of nctwric nnwc ffo rlmnnrl-mimlirr :
unii nnmher, the numbers are required only to the extent necessary to specify a
particular device. When a device name is terminated by one of the standard terminators,
and when further disambiguation is required, the exec prompts explicitly regardless of the
|r rminator.

The remainder of this section consists of the descriptions of the exec commands in
alphabetical order, tach command description begins with a transcript showing one or
more examples of the command and its various options. I hose commands that require a
second keyword show that list via an input quv%tinn. The exec commands are:

r^r--riifl"T- --^f--r' iiMa

PRIM System: l>,cr Rrference Manual Paße ^
txec

>'/ One of the follouingt

CnNCEl

CHnNHF

CLOSE

connnNDs
m OUG

FIlCSTnTUS

GO

INSTflU

MOUNT

NEUS

PERIPMEROIS

QUIT

REnSSIGN

Rl STORE

REMIND

SflVE

sn
SIIOU

SYMOOLS

TIME

THflNSCRIPT

UNINSTRLL

UNftOUNI

>

Comment.

>; thi» litw i» n comm<iMcr

>

Any line bepjnninp with a Momicohn is treated as a comment. Comments are recorded In
the transcript if one is open (see Iranscript command).

CancH abandons all outstanding 10 operations for a designated device.

>rfi™rNCFL (10 (or davlco) la^PE-UNIT rr

>

This command is intended for use when, after an 10 error halt (described in the section on
target execution), the user wishes to abandon the device operation rather than mount a
file and retry the operation. The list of outstanding 10 operations, by device, is part of
the Peripherals command output.

PRIM System: Ihcr Rcfrrrnco Manual Page b
I vrc

Change rea^sipns the PRIM control functions.

>r/,f^rnNGf (input cods for) /* On« ol the follOMinqi

nnoRT
nn-RncKSPRff
Bnr^up
DIIEU

RfTYPf

sink's

CONTROL-SHIFT

>CMnNGE (Input codo for) ah**r0RJ (from tX to) ? fl Control Code.

>CHnNr,F (input code for) RBORT (from TX to) ^ ^r

>r/ir^rflNGE (Input codo for) rfnÄf,ELETE (from to; ^r (not ch.mqndl

>

Ihis command allows the user to change the ASCII control codo assigned to any of the
lir.led PRIM control functions from its current assignment to another (currently unassigned)
control character. The function name is the second word of the command; whrn it is
terminated with an rsrnpr, the current assignment is noted in the noise. Ihe entire set of
ASCII control codes (including dolvic) is available excepting MM/J, hnrk-tpnev, line-feed,
return, escape, and nnit-seporntor OtNEX end-of-Une.) which have fixed functions in
PKIM. For nhnri and tintu* the set is limited to cntl-/) thru mil-/..

Close terminates the current transcript file if one is open.

>r/™r0Sf (transcript fllo.) rr

>

A transcript file is opened using the Transcript command; it is automatically closed et the
end of a session.

Commands redirects subsequent input from a file.

>ror.srminNns (from n|p) r.ommand.fih***'' rr

>

Ihk command causes PRIM to read its subsequent command input from the named file
instead of the user terminal (or current command file). Ihe hie input is treated exactly as
terminal input except that intervention functions (o/»ori and stntns) are valid only from the
trrminal. Should a command in the file cause execution to be resumed, input that normally
would come from the user terminal is taken instead from the fife. Input reverts to the
previous source at the end of the fi'e; an nhon terminates all command files and reverts
input to the user terminal. Command files may be nested. Co» . r* files are very useful
for common session initialization sequences,

PcbuB transfers control to the PRIM debugger.

x/^EBUG

^return (to EXfC) r'

>

The PRIM debugger is described in the next section; control is returned to thu P.C via the
debug Return command.

PKIM System: User Reference Manual FV.e 6
i xcc

Filrstatus returns information about mounted files for all or dosißnatecJ devices.

^«niFSimilS (for dfwlce) <7Är Rl I

Record Mir- Njm«. tlrvice

1? rni<n.nrcK CnRD-RtROER

1? U-rr "My PRINTER

8?S iiKiUNm . INPUT TLRttlNnL (In)

l?3*5 IMUI.OIIT TlRHINnt (Out)

24G nnrn.EFC TflPE-UNITie

>/r*r|irSTmUS (»or dev c«) rn^^RO-REROER

Record Tgpe Byte/L«sl File Name

12 Pinl? 9B0/17B0 CORD.DECK

>
When the device field is empty (rolurn or etenpe) all mounted files are listed; otherwise
just the file(s) on the named device are listed. Ihe latter case Rive-, more complete status
than does the former. Ihr output fields are:

Record tells the current position of the device or the number of records which have
been processed, for disks, it is a sector number; for card readers and punches, a
card count; for communication lines, the total number of bytes transferred; for mag
tape units, the position from beginning of tape expressed as files ■♦ records.

Tile Name is the name of the file; the name "Ikcr Tty" ir. displayed when
TlilSTKHMIN/IL is the file.

Device is the emulated device on which the file is mounted.

Type describes the type of file, either Ascil or Binxx, where xx is the file byte size.
The type may have been explicitly specified at mount time, or it may have been
assumed by PRIM.

Byte/Last is, for a mounted disk file, the current byte position in the file and the total
number of bytes in the file.

The marginal notation "[not opened]" indicates that the named file could not be found (this
occurs only to a rcctored file) and that the device must be reassigned to another file (or
to the same file via a new path name).

Go transfers control to the target execution state.

>Ä™r0 (from 1734) rr

- > nnCHINE running at b67fl, Used 8180.4

- > nnr.HINE halted at 6043, Used 8:81.8

>

Thir, command transfers control from the PRIM exec to the emulator or target machine, in
its current state. Control returns to the exec when the target machine halts or a
breakpoint is encountered (see the debugger Break command) or the ur.er interrupts
execution with an nlwrt.

In the example, the user followed the command with a «mm.« request (the *mm* character
itself is not echoed) resulting in the first reply line (MACHINE running at ...); the target
machine is still running. Lventually the target machine halted, producing the second status
line and returning control to the exec as evidenced by the exec prompt.

mtimsss,.^*-^^^^ '■-■- irr^wai,^^^^^!^^^^^^^

PNIM Syr.tom: Ihrr Reference Manual Page 7
fvee

Install adds a dcsif,n,Med type of device to the machine configuration.

>lr*rNSlftU (rlnvice) f One ol the lol lowing:

cnRO-RtnorR

PRINUR

innt-coNiRourR

ItRniNRL

>IN;.IRLl (dovirw) /^-^RINtER (CHRNNEL) /r*c

»? smo
>><r.<rplfO (characters per second) ™r3e8

>l*?*«*NSTBLl (device) lor*rPE-C0NTR0LLE^ (CHANNEL) .F-,r rr

Mow many TRIM-UNIT'S do you want? 2er

For the (irM inPE-UNIT, (UNIT) 0r^ rr

»<*
for tho sneond THPE-INIT, (UNIT) Ier

The device type is selected from among those implemented. I he ur>er is prompted for
each necessary item of information, typically including an address for the device in the
target 10 address space and the number of units to install. After the required information
is gathered, sub-command mode ("»" prompt) is entered to gather optional parameters;
any optional parameter not supplied takes on its default value. Subcommands are
terminated by an empty command, return only. An installed device is initially unmounted
-- there is no file a^.ociated with the device for purposes of actual 10.

When the device being installed is a multi-unit controller, the dialogue proceeds through
each of the individual units to gather their parameters. After the command Is completed,
the controller is no longer visible; only the individual units are. An nhon aborts the entire
command, not just the current unit.

Installation is permitted only before any execution has taken place. Typically, a user or
user group installs a standard configuration and then saves It for ure In all subsequent
sessions (see the Save-Configuration and Restore commands). Ihe optional parameters of
an installed device may be changed at any time using the Set command.

-...■■^■..-v^^,.,.^^^^^^-,,^^^, ^-^t^ v^^-w-.^^^^^^^,.,,,^..^^^^^ ||..,.;,..„.|¥|!|T.iW^l|mrt..|...1..1-|r.|

PRIM System: User Reference Manual Page 8
txec

Mount essociates a fjle with an installed device.

>m,,«*'0UNT («,I,Nf0Lt0U,T,?) P On« of th« following!

nPPEND

INPUT

01 n
OUTPUT

IHlS-TERniNOL
>nOUNl (P,I,N,0L,0U,T,?) lft*rHIS-TERn!NOL (on dovlco) ^rRIN7ER rr

>mr-,r0UNT (n,I,N,0L,0UtT,?) n**ciU (In ft out file) /IHCD.KPC;!*** (on dtvlco)

|o^rPE-UNIT rr

>

>m i^^'NPUT (from file) rfird.drckc$c (on dovlco) rnrÄrRD-RERnER rr

»? BINORY or RSCII

»/)™rINnRY (with byte slie) 12er

»rr
>

Associating a file with an installed device causes subsequent emulated 10 for thai device to
be directed to the file. The second Keyword following Mount determines the direction of
data flow and the choice of an oid (existing) or new file. A file mir-t be mounted on a
device before any actual 10 can take place.

APPLND mounts an old file for ot'tput only, with the subsequent output being appended
to the previous contents of the file.

INPUT mounts an old fiic for input only.

NFW mounts a new file for both input t.nd output (the file is initially empty).

010 mounts an old file for both input and output (subsequent output overwrites any
existing file data).

01H mounts a new file for output only, for a disk or tape device, 0U1 is treated as
NFW.

THIS-TERMINAL associates the user terminal -- instead of a named file -- with the
named device. The mounting is for both input and output unless a file has already
been mounted for one, in which case the terminal is mounted only for the other. The
terminal is known to be an ASCII "file". The terminal may be mounted only once for
input; it may be mounted for output (or on an output only device) any number of
times, but the output is not labeled as to source.

Only some of the forms above are applicable to any given devke. For a disk- or tape-like
device, an INPUT, OID, or NtW file is expected; an OID file is one that was NEW in a
previous PRIM session, and is being re-used, while an INPUT file is an old read-only file.
For a bidirectional communication device («.#., a terminal), two files are required: an INPUT
file and either an OUIPUT or APPEND file Alternatively, a real terminal may be used for
both (or either one). For an input-only device, INPUT and OLD are identical; for an
output-only device, OUT and NEW are identical.

^w-nrfTTmimt.

PUIM System:
[vec

IKrr Rrfrrence Manual i' -.^0

for thor,o drvicr"-. that dral exclusively with character data, the mounted >;lr is always
taken a*, an ASCII text file; character translation is performed as part of the 10 process.
(This allows the file to be created and/or processed by any operatmp, system utility that
deals with text files.) for tape and disk devices, the file format is internal to PRIM (and
therefore not requested from the user); the data is recorded directly, for other devices
the user is asked, via subcommand mode C»n prompt), whether the mounted file (NOI the
drvicc) is an ASCII text file or a binary file containing a stream of pure dat3 in bytes of
some fixed size. The default is a binary file of a device dependent byte size.

Once a file has been mounted on a device, all exec commands that refer to the file require
the device name as the specifier; for communication devices, where two files are normally
mounted, the device name is followed by a dircc^on selector. The file name Itself is not
used as the internal identifier.

News reads the f'UlM on-line news file.

00 you M,vit to sno 4-nPR-77 Changes In PRIH ?t r*rYrS

(llrre comos the mossaqe reqarding changes ol i-flfR-?/ ... 1

Do you «ant to see 24-nnR-77 Preliminary Documentation ?t "^ XXX

>

The date of the most recent news message is shown automatically at the start of each
session. In response to the command, each message's date and subject is shown,
beginning with the most recent message, f-or each message, the body may be seen (VKS)
or skipped (NO), or the command may be terminated {Hrhin or nhori).

Peripherals returns information about the installed devices.

>/)f,-,rERIPMfRniS

Chan Unit flour» ted Device

1 0 No PR1N7LR

? 0 YCR URIIlNflL

3 0 Yc% inPC-UNIT

3 1 Ycr, inPF-UNIl

active devices: URfUNflL

This command produces a listing of all the installed devices, together with their 10
addresses and a notation concerning whether they have files mounted. It also lists all
devices which have suspended 10 operations. Ordinarily, suspended operations are limited
to (1) 10 error conditions and (2) input operations where the input file is a real terminal
and no input was available when target execution stopped.

Qint_ terminates a PRIM session.

Quilting rilirHINE [Confirml vr

lerminating the PRIM session involves closing all open files and returning control to the
process that initiated the PRIM session. The session cannot be continued.

PWM Syslom: LMcr R(fcrrncr Manual Pap.e 10
txrc

PeassiRO specifies a new file for a mounted device.

>r™r*^SlGN (drvlce) lnr*rPt UNIT (Jo fits) nfiW.filfi**r rr

>

1 hir, command is U'.cd io substitute a new file specification when, afK r a prior Restore
command, a previously mounted file cannot be found. In particular, a restore done from a
different directory than the one In force at save time has trouble finding any of the
mounted files. Reassign may only be used for devices/files that are marked "[not
opened]" in a file status display. Ihe new file is assumed »o have the same
characteristics as the old one and is positioned at the same file position.

Restore recovers the state information saved in a file.

>re.s«-^iOR[(from SflVC ftli) /IHCO.CONFIC;!*** rr

restored CONMCURRTION (rom TUESOOY, tlfW 3, 1977 l?:3^:0fi POT

>

The current context is updated with the complete or partial environment previously saved
in the drsip.nated file by the Save command, l-or the addressable regions ■ - machine
memory, registers, etc. the saved data replaces the current data only for those cells
that were actually saved; cells not saved are not cleared. (Ibus, nonoverlapping memory
images are merprd.) l-or nonaddressable regions -- symbol, configuration, and breakpoint
- each one is completely replaced If present in the file. The date and repjon(s) saved are
shown, followed by a list of any mounted files that cannot be found.

Rewind returns a device's mounted file{s) to the beginning.

>rcwf*C.\W (dr-vice) in^'PE-UNIT rr

>rrw trrrsrn\H1M (B,I,0,?) ? One of the following:

Bnui
INPUT

OUTPUT

>m w TtRniNni K^'NPUT r.r
>

Ibis command is useful for retryinp, a program without unmounting and remounting flics.
(Filer, are always rewound when mounted, except for Append files, which cannot be
rewound.) For a IcrminaMike device that requires separate Input and output flics, the user
optionally specifies which file is to be rewound; the default is HOTII.

Save copier, selected state information into a file.

>ÄOr':rVF Y Onr of the followinqi

mi
CONriGUROTION
roRnoTs
Ml riORY
SYIIROLS

>SnVt r^rONt 1CURMTI0N (on flln) nllCD.CON! lC;lrr

>

This command saves on the (new) file an image of the reglon(s) selected for saving. Ihe
contents of the file can later be restored for use in this or another session, the second
word of the command selects one of the save options.

PRIM Systrm: IKcr Rrfrrence Manual Pspe l l

Fxec

All saver, cvcrylhmp, -- a complete checkpoint of the target nuuhine and debiip,p,inß

state. "t vi rythmp." includes memory, all addressable rep.istrrs, installed devices,

mounted files toprther with their positions, debug breakpoints and their proprams,

debug formats and modes, defined symbols, and the internal state ol the emulated

mac hine.

CONFIGURATION saves all the machine configuration data, including installed devices,

mounted files (if any), machine parameters, and debug formats and modes. This

command is allowed only before any execution takes place. Useful for creating a

standard machine configuration (possibly with some standard files mounted) for use in

subsequent sessions.

FORMATS saves all the formats that have been defined (using the debugger f-ormat

command).

Mt MORY saves those regions of the machine memory that arc not clear. (At the start

of a PRiM session, memory is already cleared.)

SYMHOLS saves all the user-defined symbols, both those loaded via the exec Symbols
command and those defined direct'y via the debugger New symbols command. The file

that results is a SAVL/RESTORE file, not a SYMROLS file!

Set changes the values of usor-settable parameters.

>srf>s,'l (<ptnptg> or riovlep) rr

>>y Oitn of tl>p folioMlnq:

ci na.
m noRY

sn f o

»rfsrinCK (liclR per Becond) ^IflOO rr

>*f'r*rT (.Ph-pti^ or drvlce) p^^RlNTLR

»*e.<rpErn (ch.ir.ictorB por second) IW

>

following the command word, the user selects the group of parameters he wishes to alter.

An immediate return selects the global machine parameters; a device name selects the
parameters of that particular installed device (the parameters of multiple installed

instances of the same device type need not have identical settings).

Any number of parameters from the selected group may be changed. In response to the

subcommand prompt ("»"), the name of a parameter and its new value are entered; each

change is made immediately and a new subcommand prompt appears. The command is

terminated by an empty input, rcinrn only, or by an o/»ori (which does not undo any

parameters previously changed). The list of possible parameters is highly machine and

device-dependent; it typically includes the size of memory and the speed of each device.

The value of a parameter is either a (decimal) number or a keyword from a

parameter-specific list; a quvmion in the value field reveals which is expected. An rtcnpo

sets the parameter to its default value.

^^MmM^iiiii.MH'ihiiM!!/! ' ' - '",:7ii7^iawHiiitf iimriiTO^

PHIM System: ikcr Uciorcncv Manual Page 12
I xcc

Show dir.plays thr valurr. of all tho parameters in a group.

>s/if>*r0W (<cmptg> or dcwlce) cr

Cl (ID. U 1000 tic^B per sneond

H! nORY U A 8^ iBodulefi

SflfO is 7b0 n^no?.oconds per »omory cycl«

>,^ir<r0M (<rtnpty> or drvJc«) pr*rRINTER

SPt Fd IK ?no chataclnrt per sreond

>

FollowlnR the commnnd word, the user selects cither the pjobal machine parameters
{return) or the parameters of an installed device. The names and current vaiues
of ail the parameters are displayed.

Symbols reads an ASCII symbol-table file.

>5y^nnnis (from fin.) SYMHOI&KX/IMPI.KW
>

This command causes PUIM to build a user-defined symbol table from the data in the
named file, which is a structured ASCil text file. The file may define values for both rJobal
symbols and program-local symbols that are orpamzed into program?;. In the PRIM
drhup,ncr, the pjobal symbols plus the local symbols of the currently open program are
accessible at any time. Symbol values in the file are octal. I he form "name *- value"
defines a pjobal symbol; the form "name «= value" defines a local symbol; the form "name:"
establishes a program name to which subsequent local symbols are assipned. The file is
free format in that spaces, tabs, commas, and new-lir.rs may occur anywhere - except In
the middle of names or values. Ihe followinp, is a sample symbols file.

AlPMA- lb
HI IA-=1?345
V\i\: A-2000, B-P132, C « ??41
XY/:
A 3?12 AA=3?4-j, AAA=3?61,AAAA=7/77

Symbol files are intended to support the movinp of symbolic label data from an assembler
or linking loader into PRIM for use in symbolic debuppinp.

Time displays time of-day and time-used information.

>tir*rni (it.) nirsony, nny 3, 1977 I?!34:33-PDT

ÜM.d 0:14.6 PRin timo; U^od 0:82.7 MIP time.

>

This command displays the date, time of day, the amount of PKIM time used and the amount
of Ml P-900 time used in this PRIM session. (Elapsed target machine time is displayed in
response to »lalm.)

Iranscript transcribes the subsequent PRIM session on a new file.

>frr<rnNSCRIPT (to file) HPW.fih*™ rr

>

All transactions with the user terminal, including execution-time 10 to 1IIIS-1 tRMINAL, is
transcribed until either the user terminates the session (with a Quit command) or closes
the transcript. Only one transcript may be open at a time. A header line containing the
date and time is placed at the head of the file.

PmM System: Lhcr Rrfcrentf Manual ''^^ 13
[vec

Uninstall rcmovrr. an installed device.

>rinir*rHS1WI (dreien) ? PRINltR or TRPF NH

sUNINSimi (drv.ce) lO^-^PE-UNIT (unH)llMrrr

>
This command Is the inverse of the Install commandj it removes an installed device from the

configuration, first unmounting its files if necessary.

Unmount unmounts the file(s) from a device.

>l»Mml**<'0UN1 (Hrwicp) ^^RINUR rr

>rfltril lrfrwniNnL (R.I.O,?) ? One ol »he «olloMinq:

INPUT

mninn
>UNn TERrilNflL rsr noTH cr

>
The unmounted file(s) are closed. For a terminal-like device that requires separate input
and output files, the user optionally specifies which file is to be unmounted; the default is

nOTM.

.. ^^^. ^ .^^ -^..- ^^^.^^^^.i,^i^sx^^^A!S iSäsg

PRIM Systrm: User Reference Manual PaRP ^

PRIM DEBUGGER

Ihc PRIM drbURger is a table-driven, tarpel-marhinc indrpendont, interactive
program for debuppjng a PHIM tmulator or a target program running on such :m emulator.
It is tailored to a specific target machine by tables prepared as part of an emulation tool.
Macically, it permits a user to set and clear breakpoints and to examine, modify, and
monitor target system locations. Target system assembly language and symbolic names
arc recognized, and arithmetic is performed according to the Conventions of the target
mnchinc. The debugger command prompt character is "#"; each level of subcommand adds
another V to the p.ompt.

ARGUMENTS

Most debugger commands take arguments in U)e form of vak s, expressions,
r xpression-ranges, lists of expressions, or lists of expression ranges as defined below.

Values

A value is an assembly-language instruction, a form, text, or an expression list.
Assembly language instructions are parsed by a table-driven assembler/disassembler that
accepts tho same syntax ar the assembler for the iarget machine. User symbols will be
recognized if they have been supplied in user symbol-table files (sec the exec Symbols
command) or have been declared individually (see the debugger New-symbol command).

A form requires that the user previously define a corresponding format (sec the
cli bugger Format command). A form is represented by the format name followed by an
expression-list, as In the following example.

Fl 0, 7,3

Text is represented as a double-quote ("), followed by an arbitrary delimiter
character, followed by a sequence of other (non-delimiter) characters, followed by another
occurrence of the delimiter civ acler, as in the following example.

"/This is text./

Expressions

An expression is any well-formed sequence of constants and symbols that are
defined for the target machine; the symbols (which are machine-specific) may represent
cither locations or operators whose rules of combination determine what is a well-formed
expression, A location symbol may reoresent a named hardware element or a globally or
locally defined user location. An operator may either be unary (preceding its operand) or
binary (coming between its operands in infix notation). The precedence of operators is a
function of the target machine, except that all unary operators are assumed to have the
same precedence value, which Is higher (more strongly binding) than that for any binary
operator. If brackets are permitted (CR., paiontheses), their precedence value is higher
than that of unary operators. For example, AB and AUh will evaluate the same, but will
differ from -(t^A), which will evaluate the same as -U-A A bracketed subexpression may
h elf attain the full complexity of an expression. The behavior of operators is
machine-specific.

 ■.■ ^

PRIM System: User Reference Manual Pap,e 15
t)rbup,p,cr

Expression ranges

An exprcr.^ion-ranp,e consists of the triple: expression (lower bound), colon,
expression (upper bound). It represents a sequence of locations sUrtinj; at the lower
hound and continuing through successive locations to include ihe upper bound. The upper
bound may not be ess than the lower bound. Wherever an expression-ranpe »s allowed, a
single expression is accepted and treated as if It had been entered as both the lower and
upper bounds of a ranp,e. If the two bounds in a ranpe address different spaces (see the
discussion of Spaces below) within the target machine, the sequence of locations is
restricted to that space addressed by the lower bound. Iwo special forms of expression
ranges are recopniird. If the second expression in a range is "-/", it is treated as being
the largest address in the space referenced by the first expression. If the second
expression in a range is of the form "♦ crpre»nion\ it is treated as if it were "{lowrr
hom.d) * crprossiint"

Lists of expressions or ranges

A list of expressions consists of at least one expression, followed, optionally, by any
number of occurrences of a comma followed by an expression. A list of
expression-rangef has the corresponding structure of a! least one range, followed,
optionally, by any number of occurrences of a comma followed by a range. An example of
a list of ranges is

0:10,20,30:50
Note that the second element of the list (?0) is an example of a range with a defaulted

upper bound.

SPACES

Addressable locations in a target system are organized into constructs called spaces.
A space consists of a set of addressable locations that is closed under a successor
function and its inverse (a predecessor function). For example, main memory constitutes a
space, typically starting at location zero and continuing through an arbitrary number of
locations. Ihe successor to the last clement of a space is the first element in that space;
and the predecessor of the first element Is the last one. In some cases, machine locations
are groupci into a space for convenience, even when the concept of a successor function
for elements of that space has no correspondence in the actual target system. Such a
space might consist of testable Indicators. The machine symbols are identified in the
tool-specific user guide.

for purposes of the debugger, every addressable location in a target system is
represented by a pair: (spnee, ehmem). When a range is specified, two such pairs
(nth):(r.,d) are implied. lo avoid ambiguities where o and r differ, the
debugger Ignores r and treats such a range as ^ sequence of locations, all in space n,
starting with element h and continuing through element d.

SYNTACTIC UNITS

Ihe basic syntactic units the debugger deals with are
1. literals
?. Symbols
3. Punctuation

"^^^^^■^ "' "" " " " £i£Aiji-^^^¥rfffrnirrr■"• j-nTffr "^tri

f'KIM Syslrm: U-.cr Reference Manu ' f'^e 16
Dt biip,p,cr

Literals

Literals arc character constants, numeric constants, or sinpje characters that have
some encoded meaning (which may be context-dependent). A character constant is
Mipplied to the debugger as a machine-specific character constant prefix string followed
by a string of data characters of arbitrary length, followed by a machine-specific
char icter-constant suffix siring of the general form:

prefir-Mring chnravlcr-data-Hiring mffiv-ttrinff.

If the first character of the suffix string is to be included in the dnta string, it must appear
doubled. Character constants are converted to binary (right justified) and are truncated
to fit the element in question. As the form of a character constant Is machine-specific, it
is dc scribed in the tool-specific user guide.

A numeric constant is supplied to the debugger as a mach-ne-specific (and optiornl)
r.idix-prefix string followed by a string of digit characters followed by a machine-specific
(.ind optional) radix-suffix string of the general form:

fucfii xtring digil-ttring uiffir-strinfr

I he prefix and suffix strings establish the radix within which the digit characters are
evaluated. The digit characters for any radix r are the first r characters of the set
{0,-.9,A,...,Z}.

Coded characters have independent meaning only within certain contexts: at
appropriate points in the dialogue they designate a particular debugger command, a mode,
n breakpoint typr, etc.

Symbols

There are five types of symbols: machine symbols that are assigned to hardware
elements in the target machine, predefined opcodes for symbolic instructions,
ii'.er-Gupplied names of formats, operators for expressions, and user symbols that can be
a-.signed to arbitrary memory locations. Machine symbols are given in the tool-specific
user guide; other symbols are assumed to be familiar to the user.

LKcr symbols are either loaded from a file using the exec Symbols command or
individually defined using the debugger new-symbol command. 1he symbols include both
global symbols and program-local symbols that belong to specific named programs. 1 he
global symbols are available at all times; the program-local ones only when theirs is the
open local symbol table.

Punctuation

F'unctuation marks are characters with a predefined syntactic (and usually semantic)
role. The punctuation characters are the separators (rornmn and, in format definitions,
space), the terminators (return, rsrnpr, and, in replacement operators, hnrh slash and
tip arrow), and a semantics-free delimiter {space). I.scape is used as a terminator
instead of return to invoke a subcommand or an additional feature of a command (e./r., in
Mode or Breakpoint commands described below).

PWM Syclcm: User Reference Manual Pap.c 17
Deb up, per

ERROR DETECTION AND EDITING

Ocbu^F.cr commands are examined for errors as they are entered, character by
character. As soon as an error has been detected, a bell (beep) is echoed and further
input is rejected, except for the generic editing characters hnrk-tfmrr. rriypo, backup,
tlclotc, or ohort.

COMMANDS

Drbugger commands are all single characters; they can be organized into several
p.roups; dcbup.per control, execution control, display, and storage. Each is listed below.
Unless otherwise indicated, the command character is the first character of the command
n.ime.

Debugger Control

Debugger Control commands provide for user control over several aspects of the
behavior of the debugger. Ihey permit the user to execute commands indirectly or
conditionally, to return from the debugger to the PKIM exec, and to control the debugger's
representation of data, the Debugger Control commands are:

[I.e. Calls a designated break-time program as if some breakpoint associated with that
program had just occurred. A program number must be designated that corresponds to an
existing '^eak-time program. Program numbers are shown when the breakpoint data base
is displayed (see the break command); the program itself can be seen using the
program-edit command.

^(/BO program /■'(mtmhcir of «n axlEtlng break program)

lltan- pr oqram 2(Xr

If the use command is itself in a break-time program, then a go command executed in the
e.illcd program causes termination of the calling program as well as ol the cnlled program.

[f. 1esls the supplied expr(sion and, if it is true, executes the following subcommand. A
fruc expression is one whose value is odd; relational operators yield a value of one when
true and zero when false. The tested expression must be terminated by an oscnpr.

ffl{ /'(nxpt o'^r. Ion)

If .F*^ <thrn> W'/'ypo 0er

00: 00 #

ffli 20*r <thnn> JUTypa 0er

0

fvVtiirrK Returns control to the PHIM exec; confirmation is reqeired.

fKolurn (to fXEC) cr

PKIM System:
Debugger

U^er Reference Manual Pace 18

Modo. Interroßates default and current modes and changes modes. A qucntiou after the
command character M will elicit the default and current mode setting; another qnrttion will
list all mode settings and associated mode-code-charactcrs.

tMode ?
Current and (Default) mode Mttlnqsi

feedback Verbose (Verbose)

Output Bits (Bits)

RddrecEfls Symbolic (Symbolic)

LIno-format Dense (Dense)

Radix 6 (8)

Type ? lor mor«

WodB ?

Fopdhacki

C Cone lee

V Verbose

Outputl

B BltR

F Formatted (format-n«ms)

I In'.tructl r>n

N Numeric

1 Text

nddre&sesi

n ni)',oiute

S Symbol 1c

I ine-format:

D Dense

t Fxpanded

R.idixt

Rn Radix-base n (1 < n < 37 decimal)

A lir.l of mode settings Is expected following the Mode command; if none is supplied, the
default settings arc reestablished. If the list is terminated by a miirn, the current modes
.ire changed. If the list is terminated by an etcapc, a temporary chanpe is made that
applies only to the following subcommand, as in the following example.

ffModn /nr. «ruction "** ##7ype 01234^

01734 J JUIIP 0[,67

0

Modes are established for feedback (verbose or concise); output (bits, formatted,
instruction, numeric, or text); addresses (absolute or symbolic); output line format (dense
or expanded); and output radix (any base from 2 through 36).

Ihe feedback modes control how debugger commands are reflected to the user:
ronrisn suppresses all "noise" feedback (such as command completion); vrrhow enables
it. Ihe output modes control the general representation of data: him treats a datum as an
unsigned magnitude; formatted treats it as a pattern of bits partitioned into contiguous
fir Ids according to a dcsigna*ed format (see Format command); inxtnirlion treats it as a
machine instruction and disassembles it; imrnrrir treats it as a signed value, if that Is
appropriate for the machine; and inxi treats It as a representation of a string of
characters. Ihe address modes control whether numeric-mode values are to be converted
to symbols (if possible): ahtolum suppresses the symbol look-up; tymholic enables it. The
line-format modes control the density of displays: deme suppresses most

PKIM Syslem: Ikcr Reference Manual Page 19
Debugger

debugger-generated line-feeds so as to show more infermation per line, cxvnndod enables
them.

When formatted output is selected, the name of the output format muM be specified,
as in:

»Mod* f'oritMned f'J rr.

Output radix sets the number bas^ for the representation of numeric data (note that
numeric input data stlf-identify the number base). For example,

causes current output radix to become hexadecimal.

Format. Permits thr user to rame and define a format as a list of fields, each of which is
a designated number of bits wide. The field widths are supplied as a list of numeric
constants (separated by commas or spaces).

(TforiMt l-'K« 2 46 «^

tMoöe /«'oim.iUed f i "^ f/Zype 0rr

OOt 00,00.00,80 t

If the format command is terminated without having defined a format, all defined formats
are displayed, as in

Worm-it r'

f I 2,Af6,fi #

Comment. Following an initial semicolon, ignores all subsequent inputs up to and including
a line terminator.

A, nns is /) tmiMKNT'-ir ims NOT GET iNrimuwrniysr
a

New-symbol. Adds a list of new user symbols to the (possibly empty) global symbol
table. Fach new symbol in the list is supplied as a name followed by a .«porn or an rscnpn
followed by an expression giving its location.

^/Vfu-symbols fM nnGW-SMmhol) <ESC> (oxpresclon))-l IBO

Wrw-Riimbols l'/lTCII**r <a!> 070000™
iTw PATCII.PflTCIhWmXilhier

PRTCH: 00 0(,7777: 00 PnTCH<01t 00 #

Kill-symbol. Removes a list of user symbol« from the open local or global symbol tab!e.

#K' H Ustjinbols ?(I JBt-of-UB8r-BymbolB>
in m-r.-imhois vmCUrr

#7ype 067777:*2**
0G7777: 00 070000: 00 070001: 00 i

Open-symbol-tablc. Opens a local (program-specific) symbol tnble if one is specified; the
currently open local symbol table, if any, is closed in any case. Aflcr this command is
executed, the available symbols include the global symbols plus the local symbols of the
specified program; if no program is specified, only the global symbols are available.

^Opon-program-symbol» /'(program-name) or not <clos6 the open local symbol table>

AOpon-program symbols f)r

i

rUIM System: Llr.cr Reference Manual '^l'0 ?0

Execution Control

Ixcculion control commands provide for user control over ryrcution of the larp.ot
pro^rnm. Ilic^y permit the user to continue execution, transfer to a drr.ip,nated location,
• (t and clear breakpoints or edit breaK-time programs, and sinp.le step the target program.
Hie execution control commands arc

(•n. PaGSCS control to the target machine in its current state. If at) argument is supplied,
it-, value is first stored into !hc program counter. The argument can be an arbitrary
expression, so long as it evaluates to a legal memory address.

^(»n (to) /',(n*prn'-.s ion) or etnpiu

fGo (to) 01000«»"

Mieak. Displays or sets breakpoints in the target machine. Ihr two clas'.es of
breakpoints are known as event breakpoints and reference breakpoints. There is a fixed
'.rl of event breakpoints defined for any given target machine; each describes a type of
event whose occurrence causes the emulator to break if the cot re.ponding event
breakpoint is set. "I he set of event breakpoints always includes (1) every
in Iruction execulion (single step), (?) every branch of control, and (3) every memory
v/ritr; other events arc defined for each machine as appropriate. Reference breakpoints
(tUisc the emulator to break when a specific type (read, write, and/or execute) of
reference to a specific, location occurs. Reference breakpoints may always be set on
mrmory location'-.: other spaces In which reference breakpoints may be set are detailed in
Ihr tool specific iir.rr gHjcie. Any number of reference breakpoints may be set at any

time.

The break command followed immediately by a relnr« causes all existing breakpoints
(i.e., those in Ihr breakpoint data base) to be displayed; if a break-time program is
.r ■..ocialrd with a breakpoint, its number is also displayed. Otherwise, a list of either
events or ranges (reference locations) for the setting of breakpoints is supplied. If a list
of ranges has been entered and terminated with an r.srn/jr, liven a list of read, write, or
execute reference-break conditions is specified next (as permitted at those locations); the
default is all three types. Whenever a breakpoint is set for an event or a location, any
earlier breakpoint for that same event or location is superseded.

If the list of events or break types is terminated by an csmpr, as in the second
example below, a break-time "program" may be supplied to be executed by the debugger
when the break is encountered. Ihc following commands are permilted within such a
break program: Clear, Comment, Debrcak, Lvaluatc, Go, If, Jump-history, locate. Mode,
Open, Set, lypc, and Use. Replacement within a locate or type command is not permitted
in i« urcciK-timc program. Any number of commands can be included in a break program;
the program is terminated by an empty command (terminator only).

;

PRIM Syr.lrm: User Reference Manual Pap.e 21
nrbup,p,cr

iltroak («I) /■'(nvrnt-I i*|) or ((express ion ranga)-list) or <RMIIRN>

<7 lor list of evf»»i1s>

#nrefll((at) 012,1:0^6,071^^' (after doing) <""

<R,M,X> #

#/<reak (at) 0 UHW™ (after doing) Xecut« flÄr

f^G'o (to) r'

a"
«Program numhnr Is (1)> #

l/freflk (at) l/CK^»"

f/^reak (at) r'

0I73-04S6 <R,U,X> 071? «R,U,K> 01098 <X>[1) TICK <ovfmt> #

During prop.ram execution, if an event break is detected, or if a reference break
(read, write, or execute) is detected at a location for which the correr.pondinp, break type
han been specified, then execution is terminated before bepinninp. the next target machine
cycle and control par.ses to the debupper to process the break. If a break-time program
has been supplied for that break event or location, the program's commands are executed
in order by the dehupper until either a go command or the end of the program is
encountered. If several breaks occur on the same cycle, the program associated with each
of them is executed; the order of break-program execution corresponds to the order in
which the breaks are reported by the emulator. If every break causer, execution of a Go
command, then the target program is automatically resumed, provided there is no
ambiguity as to where execution is to resume. Otherwise (i.o., if any break had no
program or failed to execute a Go command), a messapt describing each of the breaks is
displayed and the normal command level of the debugger is entered.

[lrbreak. Clears event breakpoints or reference breakpoints at locations in the target
machine. The default is to clear all breakpoints. Examples of debreak commands are

W)?>break (from) 02.1i:*4rr

*/freak (at) rr

0173-0233 <R,W,X> 0741-0456 <R,U,X> 071? <R,U,X> 01000 <X>m

TICK <Pvent> #

#/)obrQAfc (from) ™r all lronflrmlrr

A/<re.U (at) r'

Program-edit. Displays a designated break-time program or permits it to be edited. A
program number must be desipnated that corresponds to an existing break-time program.
Program numbers are shown when the breakpoint data base is displayed (see the break
command). If the command is terminated by a return, the entire program is displayed; if
by an rsrnpc, the program is displayed line by line for editing.

PRIM System: Ikcr Reference Manual Paf,e 22
Debugger

IffGo (to) r'

<Proqr am numhnr Is (?)> */(rea»t («t) c,'

ei?3-0?33 <R,UtK> 0.'4i-0<iSB <R,M> S?]? <R,U,X> 01000 <X>(11
1ir> «Pvent> SUP <sv«nt>121

#/Voqram rdH /'(proqram-number) (<E:SC>-tO'8dH or <RE 1URN>-to-vlew)

fl'roqrAin Pfli t 2rr

lyi>e tOinCC
Go (to)

When edilinp, a line of a break-time program, the user can specify that the next (\) or
prior (?) line he displayed or that a replacement (R) of the current line or an insertion (I)
in front of the current line be made. Editing is terminated by an empty editing
specification. Replacement or insertion is identical to the specification of a break-time
program within the break command in that a subcommand mode is entered where
successive break time commands can be entered until an empty command is supplied; then
editing continues with the next line of the program. An extra (dummy) last line is added
when editing a program so that new commands can be inserted at the endj the dummy line
is discarded when the command is terminated.

jf/Vorjratn-oriit 20sr

Type fOLOCC l?{X <prlor>) or (\ <next>) or ((l<nsort>) or (R<rplare>)

(rnimiMndr,))

Type rül nCC :KrplÄce

4WÄ/ode /n&tructlon «™ fjf#7\|p« fi\()I.DCCrr

r.o do) ^
#1*1 oqram ndi t 2C''

Moclr Instruction #^1ype FOLDCC

Cr (to)

Single step. Iransfers control to the target program through the program counter for
execution of one instruction. The single coded character lino ford effects this command.

Display

the display commands permit the user to search or examine the contents of
designated locations (and, in two cases, optionally permit their replacement) or to evaluate
expressions. Thee >mands are:

IVP.^i Displays location and contents of a list of expression-ranges, permitting the
contents of each location to be replaced if the list is terminated by an rtr.npr, as in the
following example.

tf'/'gpo f ((cvpror*. lon-ranqo)-! Ist) opt)onal-<escapB>- to-modi fy

#lqpe 0.2™- 80: 80 r /^f

81: 00 = 2rr

0?J 00 - /I""

The replacement value can actually be a list of expressions, the values of the expression

PRIM System: LKcr Kcfrrcncc Manual Pap,e 23
tVbiif»f,er

in the lir.t poinp into successive locations starting with the one last displayed. If no new
value is supplied before the terminator, the existing value is not modified.

l/ypo 0:2r*r 00: 01 = 2r*r 01J 82 c OM 6?. 03 r |f'«r g

In Display-wilh-replacemcnt only, the coded characters hnrk tlnsh and ii/»-orrouj can
also serve as terminators and perform special functions: hnrk slash causes the next
location to be displayed for replacement and u/)-orroii) causes the prior location to be
displayed for replacement; both of these terminator characters permit the user to step
beyond the limits of the ranges entered as arguments to the Type command.

#7\jpw 0Jfl*,sr 010: 00 r /T 87t 00 r 2\ 010: 01 r ;i\ 01 It 00 ^ t

010: 03 = i] 0/: 0? - 5t 06: 00 » \ 87« 05 r \ 010: OH r \

ont eo « 6\ oipi 80 . 7er

i

The last location displayed by a type command becomes the "open" location, and the
location following the last one displayed or replaced becomes the "next" location (see the
next four commands).

Samq Redisplays the "open" location (sec the Type command). Ihc single coded
character V effects this command. The commands Same, Prior, and Next are all shown in
the following example.

f: 0?! 01 *] Oh 0? #\ 0?t 81 #\ 83: 80 t

Prior Displays the location at one less than the "open" location (srr the I ype command).
The single coded character u/i-arroio effects this command. Sec the examples under Type,
Same, and Equals.

Nrxt. Displays the "next" location (Sec the Typo command; the mode in which the open
location was last displayed determined how far It was advanced to the "next" locations.)
The single coded character hnrk-xln*h effects this command. See thr examples under
type, Same, and t quals.

Equals^ Displays the "open" location (sec the Type command) as bits or as a number if
the current output mode is already bits. The single coded character "r" effects this
command. In the following example format h'2 has been declared consisting of four
half-word fields.

Alfodo /'orm.iUPd l'^™

0: 010: 80,01,02,03 0 010: 81 #\ 811: 8?,83,04,05 ^\ 013: OR,07,00,01

#1 01?: 04,05,06,07

Locate^ Finds cells in a list of expression-ranges that contain (or do not contain) a
specified value, examining only those bits designated by an optional mask, and displays
their locations and contents, permitting each displayed value to be replaced if the list is
terminated by an cscnpt*. The comparison value and mask are expressions terminated by
an rtrnw the comparibon value defaults to "NGN 0" and the mask defaults to all I's. The
search is performed over a list of ranges, as for the type command.

fl.rtcaXo /*((rvprr'.r. ion) or NUN (oxprer.s ion)) <fnfltch valun dMmills to NUN 8>

locate N()N 0rsr (wjthm.isk) /'(optional-expression) <m.i5lc valuo

^Locate N0N 8 («Hh mask) fl**!<no1 zoro> (In) /,((©*pret.slon-ranqn)-l iM)

optional-<fSC> to-mndlfy

locate N0N 0 (with in.ir.k) <not z©ro> (In) 0:020er

00: 81 01: 0? 0?t 83 87« 85 818: 84 011: 0B 0!?: 07

PN1M Syr.trm: IKcr Reference Manual Pape 21
He bumper

It is important that the comparison value, the mask, and the data be properly alipncd. For
example,

W,oca<e 070'»«" («llh mcisic) 070^r ((n) 0:3Ier

displays all cells from 0 through 31 whose second octal digit from the npht contains all Vs.

When the command is terminated by an vtrniw the debup.p,er stops after each
display to permit replacement, as for the Type command.

f/.ocat« «,*c<non-zoro> CNlth iMsk) 07"^ (In) 0:020^^ 00: 0) . 3r'

01?i 07 » rr

if

.lump-history. Displays the most recent target-propram jumps In the order they occurred.
The number of such jumps to display (taken modulo the default value) may be supplied.

^iump-historg ^((expreESIon) or (empty <all>))

dUump-history ,1er

01000-0200(2 IIIMR) 0300—8100 0

I vnluatc. fVints the value of a single expression. It has no effect on the open location
nnd docs not permit reolacement.

#/VoM-BMmbolS ymCUW <at> 070000"-
/T/waluate P/H'CII*** « 078008 f

Storage

Slorane commands change the contents of designated locations without displaying
tlu m and without changing the "open" location. The storage commands are

CIcMf, Clears the contents of a list of exj ession-ranges lo all zero bits. Clearing an
event for which a breakpoint has been established causes the event to be dractivnlnd; it
m.iy be reactivated with a Set command. This may be of benefit when a break-time
program has been associated with the event as the breakpoint data-base entry for that
event is not affected.

tCUear 0;i™r 0

r»rl. Sets the contents of a list of expresron-ranges to the value of an expression or (on
(If fault) to all one-bits. If the list is terminated by an rsmfw, a single replacement
expression Is accepted; if it is terminated by a return, the default value of all Ts is used.
I ho replacement expression is truncated to fit imo the designated localions, if necessary.
Setting an event for which a breakpoint has not been established (i.r., for which there is
no entry in the breakpoint data base) causes the event to be activated for a single
occurrence of that event (with no break program associated), after which the event is
automatically cleared.

0Se\ (*((oKproKsion-ranqe)-! Ist)

#3Gt O.'K»'

#Sel 0.1™r - 2rr

0

riNM System: Lhcr Reference Manual '''M'0 ^

TARGET EXECUTION STATE

"Irir^rt execution is initiated, or resumed, through explicit commands (evrc Go,
debütier Go or Single-step). Execution proceeds until a terminating event occurs, causinp,
control to return to the appropriate PRIM command level. When execution terminotes, the
entire emulated context -- includmp clocks and outstanding 10 operation'. - is cleanly
frozen until the next time execution is resumed. Except for explicit modifications to the
context made by the user at the command level, the termination and subsequent
resumption of execution is transparent to the target machine. The terminating events are

The target machine halts normally or is interrupted (by the emulator) due to the
occurrence of some anomaly condition. A message to that effect is generated. Hie
anomalies beinp, monitored are listed In the tool-specific user p.uide.

The user enters an <W»ori. The abort character is echoed and, after execution is
stopped, a status message is output Indicating the point of interruption.

The emulator detects the occurrence of a break condition established by the user via
the debupRer breakpoint command. The establishment of breakpoints and the
subsequent interruption of execution at the time of their occurrence is the primary
program debugging tool In FWM.

An 10 error occurs. A message detailing the particular device involved and the nature
of the error is output. 10 errors always return control to the exec state; the error
messages and their meanings are listed at the end of this section,

When one of these conditions occurs, it is logged and execution continues until the end of
the current cycle of the target emujator. It is therefore possible for multiple conditions to
result in a single stop. When this is the Ccfse, the action and message appropriate to cadi
of the conditions is produced.

When a breakpoint is detected, the debug program, if any, associated with each
hienkpoint is executed by the debugger before control returns to the command level.
Should some break program terminate without a Go -- or should there be some.' break with
no break program — a message describing the break ;s output and the command level is
entered. Otherwise, execution is automatically resumed; the user receives no Indication
that a breakpoint occurred unless the break program itself produced output.

TARGET I/O

"I he target machine that runs In PRIM consists of a processor (CPU) in some
particular configuration built by the user to resemble the actual configuration required by
his programs. A configuration is built -- before execution is begun by installing
peripheral devices and establishing values for various machine options (see the exec Install
and Set commands). After an emulated device has been installed, and before 10 operations
can proceed on that device, a (ItNEX) file or assignable device must be associated with
that emulated device (sec the exec Mount command). Subsequent 10 operations addressed
to that device arc then performed on the mounted file.

A mounted file may contain either direct device data (binary) or ASCII text; In the
latter case, characters are translated between ASCII and the actual device character set as

rivIM System: IKcr Reference Manual Pane ?6
l.ifj'.rt txrcution

Miry i»rc proccof.rd. (K the device character set doco not include lower case, input lower
c.».e Idlers arc converted to upper caoe before translation.) When thr target device is a
r(cord oriented device («./r., card reader or punch) and the file is ASCII, then e.ich record
operation is per formed on a line of the ASCII text file, including truncation and/or bhinK
p.uldinp on input.

The mount option 'I IIIS TF.KMINAI. associates the ur.er terminal (the one bemp,
iir.ed to communicate with PWM) with a given device. When the terminal has been
mounted on some device, then input from the terminal is switched between PRIM and the
t.irget machine every time execution Is resumed and terminated. I he intervention
characters, however, retain their intervention meanings, lo allow the full ASCII character
set to be input to the target device from the terminal, there is a rontrol shift escape
character defined during target execution, lo help distinguish PRIM output from target
output directed to WIS-TKHMINAI* all PWIM-generated output is prefixed with the
herald "--> " at the beginning of a new line. This applies in particular to both stopping
messages and typeout resulting from break-time debugger program:..

I/O ERROR MESSAGES

Vanms I/O errors may occur. When any one occurs, execution - including the
ei ror-generating operation -- is suspended, and control returns to the PRIM exec. When
execution Is next resumed, the suspended operatic 4 is retried unless it has been explicitly
canceled by the user using the exec Cancel commanu

"I ile not mounted."
The indicated device has no file mounted. If a file Is mounted before execution is next
resumed, the operation will be performed then (An installed device to which no 10 is
directed need not have a mounted flic in order to run.) The operation may instead he
c anceled.

"Ihis message is also produced when an output operation occurs on a device which has
been mounted for Input only, and vice versa. Again, a second file must be mounted on
the appropriate side of the device in order to proceed normally with the program.

"I ile not open."
The Indicated device has an Inaccessible file mounted on it. Ihe device must either be
reassigned or unmounted and then mounted. The situation is similar to the case
above, except for the possibility of reassigning.

"Intj roper tape format detected."
UNIX files which are mounted on target magnetic tape devices are encoded in a
unique internal format that requires such files to be used only for PRIM magnetic tape
devices. The mounted file is inconsistent with that format. The device must be
unmounted and replaced with a proper tape file.

"Device not installed."
A device that is referenced by the program Is not installed. Should the missing device
be required, there is no way to continue this session, since device Installation is no
longer allowed. Should the reference be a mistake, execution may be continued down
a different path (the operation will be automatically canceled when execution resumes).

ntIM Syr.lrm: IKcr Rrfrrrncc Manual ^V,* ?7

)i)r\\r\ Ivrrution

"ASCII Inpul character nol r(>cop.ni7rd -- ic.norrd."
The last cliarartcr read from the ASCII input file on the drsipnntcd device wao not
translatable inlo the character set of the device. The character luv. been skipped
«..vcr; resuming, execution cause? the read operation to continue with the next
character in the file. The position of the offendmp, character in the file may be
determined via the exec hlestatus command, specifying the indicated device.

Any other error indicates a bup, either in the emulator or in PRIM Such, errors should bo

reported.

