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ABSTRACT

This report describes the progress of an investigation concerning

the verification of COBOL programs. The report contains discussions

of program ve r i f i ca t ion, the COBOL language , and the role of structured
programming in COBOL verification. The report also contains a presen-

tation of a COBOL subset suitable for an experimental verification

system——Its syntax and semantics. The report also contains a discus-

sion of the assertion language and rules of inference to be used in a
COBOL verification system.

N’. .’

FORE WORD

This documen t was prepared under the au tho r i ty  of U. S. Army
Research Office Contract No. DAEC 04—75—C—0O1]. in accordance with

Part II , Article 4 of the contract , and was prepared by Stanford

Research Institute for the U.S. Army Computer Systems Command.

This report describes some preliminary results in an investigation

concerning the verification of COBOL programs.
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1. Introduction

This report describes the progress of a project Intended to study

the issues involved in the verification of COBOL programs , and to produce

some simple examples of verified programs in a selected subset of COBOL.

Given that program verification is useful in improving the relia-

bility of programs, and that it is of great importance that COBOL pro-

grams be reliable (the vast majority of all programming is done in

COBOL), it is certainly worthwhile to examine the feasibil i ty of applying

verification techniques to COBOL programs. One question is, “Why hasn’t

it been done sooner?” The answer lies in two factors:

(1) COBOL is a “real” language (i.e., designed for and used by

a large community of users). Verification has only recently

been applied to real languages, because of the relative new-

ness of verification and because of the great complexity o ’

real languages.

(2 )  Verification has , up to now , been practiced mainly by

academicians, and academicians have a known distaste for

COBOL.

This project is mainly a feasibility study , with some research and

proof of concept. Once the major issues in COBOL verification are deter-

mined , we intend to illustrate what it means to verify a COBOL program

(on a very small scale). The research involved is intended to extend

current verification technique s to make them applicable to COBOL. This

report is devoted mainly to a discussion of issues , and to a description

of the techniques that we are developing.

The body of the report contains general motivational material

describing the theory, observations, and general approach of the project.

The three appendices contain descriptions of the particular results of

the project so far—-the syntax and semantics of the COBOL subset for

verification.

2. Program Verification — Theo~~

The id•a of program verification goes back as far as programming

i tself :  it was first discussed by von Neumann and Goldstine (1). The

basic idea is that there is a state that models some external phenomenon
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(e.g. , dif fe ren tia l equat ions , ma trices , payroll records). The state

can be represented by core memory , the contents of files , or program

variables (at a more abstrac t level). There is also a set of elementary

operations that change the state. Examples of elementary operations

are machine instructions or statements in higher—level programming

languages. A program def ines a (possibly i n f i n i t e) set of sequences

of elementary operations.  When a program is executed , only one se-

quence of elementary operations is performed. The selec tion of one

sequence ou t of the set of sequences defined by the program is deter-

mined by the state just before the program is executed (i.e., the

initial state). Thus a program is a function from states to sequences

of operations. I f  the program termina tes , the state Jus t after termi-

na t ion  is called the final state.

The user of a program is interested in knowing , for a given

initial state of the program , what the final state will be. Often he

will have a specification, which is a mapping from initial states to

f inal sta tes. It is not immediately obvious whether a program (a mapping

from states to sequences of operations) and a specification (a mapping

from states to states) are consistent. Consistency between a specifica-

tion and a program is of ten  called program correctness. Program verifi-

cation is a set of techniques for proving this consistency. Floyd (2)

first described this method of verification. The specification consists

of a statement of the properties that the initial state must have (the

input assertion), and a statement of the relation between the initial

state and the final state (the output assertion). Both inpu t and output

assertions are stated as predicates.

The effects of each of the elementary operations on the state must

also be formally described (input and outpu t assert ions for these opera-

tions are useful as well). The control operations, which do not in

ttemse lves a f fec t the state , must  also be axiomatized. Since a program

may , in a small number of statements, describe a large (possibly

infinite) sequence of operations , inductive assertions must be associated

with each of the loops of the program.

Floyd ’s me thod is used for proving partial correctness of programs.

A partially correct program is consistent with i ts issertions only it
it terminates. Termination of a program can be proved separately.

Given input and output assertions, program text (with inductive assertions),

- _______________________



3

and the def i n i t i o n  of the elementary operations, a formula in first order

logic can be constructed whose validity is equivalent to the partial cor-

rectness of the program . This formula is called a verification condition.

A software system tha t accepts as input the program to be verified (with

inpu t , ou t pu t , and Inductive assertions) is called a verification condition

generator (3,4). Verification conditions can be proved by hand , or can

serve as input to a deductive system, or automatic theorem prover, which

attempts to generate a proof. Most deductive systems are inadequate for

proving verification conditions by completely automatic means, and many

systems are equipped with interactive facilities to allow users to guide the

proof. Deductive systems with interactive facilities are also called semi-

automatic ~
.
~rification systems.

The application of formal techniques to a particular programming language

environment is often a matter of style. The verification condition generator

incorporates most of the language—dependent features , because it  must  trans-

late statements in the pro gramming lan guage into expressions in predicate

calculus. Some verification condition generators are based on a particular

semantic description of a language. A verification condition generator for

PASCAL (London, Luckham, and Igarashi , 4) is based on the axiomatic des-

cription of PASCAL by Hoare and Worth (5).

A verification cond ition generator axiomatizes the control structures

of the language, bu t  properties of the data types of a language are often

too complex to be incorporated into the verification conditions themselves.

Verification conditions , especially in a high—level language, typically con-

tain references to functions that axiomatize the data types of the language.

The deductive system can prove formulae containing these functions either by

invoking their definitions (if supplied) or by applying axioms (or high—level

rules of inference) to make deductions. The first method works well for

primitive recursive functions (Boyer and Moore, 6) but is extremely ineffic-

ient for more complex domains. Mast verification systems , includ ing the SRI

system (Elspas et a l . ,  3; W aldin ger and LevIt t , 7) , use the second method.
Howe ver , in this method all proof. may not be trusted if the axiom s are wrong.

One approach to this problem is to use high—level  rules of inference to find

a proof , and to check its val idi ty  using def ini t ions and a proof checker

(Boyer et a] . ,  8) . The proof checker would be used to subs tantiate the

_ _ _ _ _ _ _  - ~~~~~~—-~~~~
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v a l i d i t y  of any i n s t a n t i a t i on of an axiom tha t  is ac tua l ly  used in a proof .

This  may be easier than proving the most general form of the ax i om from the

d e f i n i t i o n s .

There are several areas tha t  have not been addressed by the mainst ream

of program v e r i f i c a t i o n. The f i r s t  is t e rmina t ion . This issue has been

addressed by several researchers (3 , 9 , 10), and can be treated either together

w i t h  or separately f rom the  issue of pa r t i a l  correc tness. Two o ther  issues ,

r u n — t i m e  errors and v a l i d i t y  of input  data , are also importan t to formalize

if verification is to lead to software reliability . All three of these

issues have been grouped, to some exten t , into a property called clean

termination (Sites, 11). Al though these i ssues are Important , they will not

be considered during this contrac t , which must limit i tself to the basic

issues of pa r t i a l  correc tness fo r  COBOL programs .

3. Program Verification for Real Languages

COBOL is  a member of the set of “real ” programm in g lam guages , i.e.,

those that are widely used in many applications and for which standards

exist. Real languages are usually, but not always , commercially viable

products . Examples of real languages are COBOL, FORTRAN , PL/l, and (to a

lesser extent) Algol and LISP. The properties that make a programming lan-

guage a real language unfor t u n a te ly  also serve to d e t r a c t  from the ease of

verifying programs in that language. ~~st of these undesirable properties

can be sun ned up under the term “lack of semantic cleanliness.”

A language has a “clean ” semantics if the definition of the language is

elegantly expressible in some formal med ium. There are many good reasons

why real languages are not semantically clean . The first reason Is the size

of the language. A real language is the incorporation of the special interests

of many groups of users , whose interests are not always compatible. The result

is often that large numbers of features are added on. The addition of these

features not only complicates the semantics of the language , but often violates

the ‘~pirit that motivated the initial conception of the language. P1./i is a

good example of this tendency . In a desire to overcome some of the difficulties

of FORTRM , COBOL , and Algol , the dosiguers of PL/l created something larger
than any of its ancestors. Considered alon e , the size of real languages is a

major obstacle to verification . Second , most real languages must concede

~tJ~ - 
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syntactic generality in the interests of a fast implementation , either in

the compiler or the generated code. Examples of these dependencies are

limi tations in the number of nestings (COBOL ) or in the complex i ty of an

arithmetic expression in certain places (FORTRAN). Lack of syntactic gen-

erality makes the syntactic analysis phase of the verification system more

difficul t to implement. Third , most languages must have some features that

deal with the hardware or operating system. The environment division and

communication module of COBOL are examples of these features . Standardi-

za~ion has served to make a uniform in terface  between the language and the

environment. However, the fact that a variable is SYNCHR~~ IZED or tha t  there

are 100 logical records in a block will not affect the correctness of a COBOL

program , bu t may affect  the perf ormance of tha t program. Fourth , mos t real

languages are the products of an evolving development, as illustrated by the

fact that many real languages have numbers a f t e r  the i r  names to ind i cate the

par ticul ar dialec t in the sequence (FORTRAN IV , Algol 60, LISP 1.5). In

many cases, there is a desire for upward compatibility , so tha t bad fea tures

that could have been eliminated remain--”augumemted ” by the improvements.

Another aspect of this problem is tha t most of the currently importan t lan-

guages got thei r start before the aesthetics of programming were well estab-

lished. Thus, many real languages lack features such as stron g typing, block

struc ture , and flexible procedure and macro facilities. Sturctured programming

practices are motivated by a desire to infuse these new aesthetics into the

programming world . Perhaps verification will generate its own set of aesthetics

by which the design of fu ture programming languages wil l  be guided . Lastly

there Is the problem that even if the semantics of a real language is

clean , they are usually stated In natural  language in a standards manual (12).

A standards manual may be all right for programmers and language implernen ters,

but it is certainly difficult for verification. If the standards people had

some clean vision of a language in mind , they should have written down the

fo rmal semantics somewhere. The formal definition of PL/l is such an attempt.

The length of the forma l d e f i n i t i o n  of PL/l is a commentary on our tools for

specifying programming language semantics (e.g. , VDL) and on the inherent

semantic complexity of real languages.

Before solutions to these problems are considered , there is one major

constraint to these solutions : the solutions must have minimum effect on

the languages themselves. Manufacturers do not want to rewrite their compilers,

~, rurn. - — - -.
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and users do not w a n t  to rewr i t e  t h e i r  programs . Thus , the  solution to the

v er i f i c a t i o n  problem fo r  real langu ages must  be incrementa l .  Research in

new lan guages tha t  support v e r i f i c a t i o n  is ve ry impor tan t , but  the da ta  pro-

cessing conønun lt v  wi l l  I gnore t h i s  research unless v e r i f i c a t i on  can be shown

u s e f u l  on a more i m m e d i a t e  bas i s .

The problem of language size has two aspects , syn tac t i c , and semant ic .

When a language has syn t a c t ic  complex i ty ,  there are many d i f f e r e n t ways to

do th~ same t h i n g .  When a language has semantic complexity , there are many

t h i n g s  that can be done. In cases where there ex i s t s  more syn tac t i c  complex-

i t y  than semantic , v e r i f i c a t i o n  can be done on a program w r i t t e n  in an in ternal

form which i s  syntac t i ca l ly  simple , i . e . ,  there is only one way to do any g iven

t h i n g .  Au toma t i c  t r a n s l a t i o n  f rom the external form to the in ternal  form is

re la t ive ly  s t r a i g h t f o r w a r d . Semant ic  complexi ty  is handled p r imar i ly  by sub

se t t i n g,  which invo l ves choosing a sublan guage t ha t  pe rmi t s  only the des i red

semant ic  f ea tu re s . Real languages differ in the exten t to which subsets can

be generated for them. If a language construct is neccssaz v , but also seman-

tically messy, there will be trouble in doing subsetting. This is precisely

the trouble with the ~~ to. It is clearly necessary in languages like FORTRAN

and COBOL, but also permits the writ ing of programs with very messy control

structures . The solution to this type of problem takes several forms :

(I) Try to change the language.

(2) Establish managemen t techniques to preven t abuse of

the construct.

(3) Develop a preprecessor for the language, which permits

desirable constructs in place of harmful ones.

It is the goal of this projec t to propose a subset of COBOL such that pre-

processing need not take place. For more information , see Sec tion 4 , on
s t ruc tu red  programming  and COBOL .

In the case of sacrificing syntactic generality for the speed of the

compiler  or the generated code, it is desirable to allow the verification

system to process a language with more syntactic generality. To prevent the

successful verification of programs that will not even compile, one then

requires tha t. all programs be run through the syntactic analysis phase of

the compiler before verification . Thus the compiler can check the special

_ _ _ _ _ _ _ _ _ _  - -  — -— --__— - —~~~ - - —~~~~- ___
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cases of the language, allowing the verification system ’s parser to be simpler

(see Appendix I). Such a decision is made in this effort.

With regard to the features of a real language that are dependent on the

hardware or the operating system , there are two strateg ies : either to axiom-

atize them or ignore them . Statemen ts in COBOL’s ENVIRON MEN T DIVISION , and

i tems like SYNCHRONIZED or the number of logical records per block , can be

Ignored since they do not affect the outcome of the program . Special kinds

of file I/O and communication wi th the operating system can be axiomatized

as properties of the abstract machine on which a program runs. The formal

definition of a programming language involves specifying the instruction set

of an abstract machine that runs the program , and specifying the interpreter

tha t runs the program on the abstrac t machine.

The technoJogy of program verification has ign ored several issues that

are essential in the verification of programs written in real languages. One

reason for this phenomenon is that researchers in program verification are

still having difficulty in applying program verification to toy languages

(pa r t ly  because v e r i f i c a t i o n  is a comparat ively new technique and because it

Is an ext remely  d i f f i c u l t one).  These problems are also difficul t in them-

selves . Among the problems are :

(1) Finite machine arithmetic.

(2) Clean termination and run—time errors .

(3) Validity of inpu t data.

The issue of finite machine arithmetic is particularly acute in COBOL

because data items have no more digits than they need for internal storage,

while other languages have the (relatively large) word size of the machine .

Thus , overflow and truncation occur more often . Consideration of these

i tems will appear in the section dealing with the semantics of COBOL data

i tens.

Clean termination has been described In an earlier section . Because

of the limi ted scope of this projec t this issue will not be deal t with at

this time. Clean termination assumes the absence of run-time errors. However ,

such assumptions canno t always be made , as is the case in hardware and oper-

at ing system errors and in situations where Inpu t data is invalid (see below).

A t some point such possibilities should be considered in efforts to verify

programs In real language.

_ _ _ _ _ _ _ _ _ _ _ _  — —-
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In v e r i f i c a t i o n  the asuinption is made t h a t  inpu t da t a  i s  va l id  ( w i t h

respect to type , range of values , et c .) .  One of the  greates t d i f f i c u l t i e s

in assuming the rel~ ab i litv ol programs in real languages is t h a t  such

assumps~~ons cannot be made.  In o the r  words it is a Irequon t occurrence

tha t inpu t data are l a u l t y ,  and programs m u s t  be ~ r i t t e n  to accoun t fo r

such s i t u a t i o n s .  A real program w i l l  t y p i c a l l y  ha ve severa l degraded modes

of pe r fo rmance  ( w i t h o u t b l o w i n g  u p ) , depend ing  on t h e  s e v e r i ty  of the error .

Th us oven i i  a s i n g l e  record is messed up, all o t h e r  records may be pro —

ce~~~~ed c o r r e c t l y .  There is a need in program v e r i f i c a t i o n  to a n t i c i p a t e

such occurrences and to make the inpu t a sse r t i o n s  f o r  these prk r ams as

weak as possible.

structured Programming and COBOL

There i s  a g rowing  ir . er c st  in va r ious  tec hni ques for inc reasing the

“well—st ructuredness ” of COBOL programs.  T h i s  sec t ion d i scusses  t h e i r

impact on verification. The techniques fall into the categories of pre-

processors and restrictions on the  way in which ~OB0L programs are written.

The i n t en t of these t e chn i ques is to s i m u l a t e  a b l o c k — s t r u c t u r e d  lang-

uage , in whIch control is nested . This kind of structure within a program

makes the  p rogram eas i e r  to understand and debug.  The conclusions are less

certain [or proof.

Let us I i r s t  examine  the p reprocessors .  Ins tead  of the  ~~ to , thcy

o f f e r  a set ol con t rol p r i m i t i v e s  such as do ..  .whi le , i f . .  . then . ..elsc , case ,

and others. The inten t is that such wel l—b ehaved  c o n t r o l  s t r u c tures  are

easier to axiomatize than the ~~ to and thus it would be easier to prove

programs using only those constructs. This was the belief of Hoare (5), in

h i s  a x i o m a t iz a t i o n  of PASCAL . However , K n u t h  ( 1 3)  in h i s  paper on s t r uc tu r ed

programming with the j ~~~ to reports that £2 to ’s are surprisingly easy to

axiomatize (see the appendix on the semantics of the COBOL s u b s e t) .  I t is

only neces sa ry  to  p u t  a s s e r t i ons  a t  each label  (and at PERFO RM loops).  Thus ,

there is no decrease ~~~ so , in the complex i t y  of v e r i f i c a t i o n  when ~~ to ’s

arc removed from the language.

However , sturctured prog ramming  was in tended to l i m i t  the complexi ty

of the programs being written by reducing the average number of control paths

per line of code. Structured programming also reduces the number  of pa t terns

of control paths by forcing the paths to be nested . Since the complexity of

- —,--—--— —
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Floyd verification is roughly proportional to the number of paths , it seems

that (on the average) structured programs——whether written by preprocessor

or by managemen t fiat——are easier to verify than unstructured ones.

There is another sense in which the term “struc tured programm ing ” is

applicable. Structure can be gained by breaking large programs up into

small , loosely coupled pieces. This is the modularity concept of Parnas (4),

in which the change in a single design decision affects only one module.

Unfor tuna tely,  the COBOL language itself does not provide facilities (such

as flexible procedure calls or macros) for accomplishing this goal. In

many cases management techniques are used to break up a large programming

projec t into small , manageable pieces. One of the methods for  accomplishing

modularity is to hide the format of data structures within a single module.

Since data structures (i.e., shared files) are precisely the means by which

COBOL programs commun ica te , the format information for the data structures
tends to be scattered over many programs. Thus, a change in file formats

may require a lot of reprogramming, more than migh t be necessary if con-

cepts of modularity were more visible in COBOL .

Decomposing a program into hierarchical levels of abstraction has been

suggested (Dijkstra , 15) as a means for handling program complexity . Recently

Robinson and Levitt (16) have proposed a method for formalizing a level of

abstraction in a self—contained way , and for decomposing the proof of the

lar ge program In to many small independen t proofs , one for each level of abstrac-

tion . The applicability of this work to COBOL is perhaps a long way off , because

the hi erarch ical met hod depends stron gly on the notion of data abstraction .

COBOL program s do not seem to have data structures that can be abstracted very

easi ly .  In s p i t e  of the tree—structured data in COBOL programs , all data

structures seem to have one level of detail that is not hidden from parts of

the program. Abstraction would not in this case lead to simple programs at

higher levels. However , the problem bears further study.

5. Discussion of the COBOL Language

COBOL is a language of fairly simple control , but its data structures

and operations are rich. The area of mat immediate concern for verification

is the elemen tary data  Item. All computation in COBOL is character oriented .

Numeric data I tems have p ic tu res  and sizes . Arithmetic operations must con-

sider truncation and overflow with almost every operation . Even wi thout the

primitives STRING and UNSTRING , the manipulation of strings is inherent in

each operation.

_ _ _ _ _ _ _ _ _ _  - -.-
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The most  Impor t an t f e a t u re  of an e l emen ta ry  n u m e r i c  d a t a  i t e m  is i t s

PICTURE , a s p e c i f i c a t i o n  of how it would look if it were printed out.

For example , a picture specification of 999 would p r i n t  out  a t h r e e — d i g i t

integer. The si gn and decimal point information are also included in the

s p e c i f i c a t i o n . A l t h o u gh  the decimal  poin t  in n u m e r i c  I tems is i m p l i c i t

( remembered by the svs tern bu t  not  stored with the i t e m ) ,  the s ign (if present)

is encoded in one of the di gi t s  of the stored d a t a  i t em .  A great deal of

s t r i n g  process ing can be performed by a s imple  assigrunen t opera t ion , because

of the e d i t i n g  f e a t u r e . There is  a special type of d a t a  i tem called numeric

ed i ted, whose p i c tu r e  s p e c i f i c a t i o n  can contain a d d i t i o n a l  i n f o r m a t i o n  con—

c er u in g  in se r t ed  charac te rs , zero suppres i on , s ign  p r i n t i n g ,  and currency

symbols .  For example , a da ta  i tem w i t h  a p i c t u r e  spec i f i c a t i on  of $$$ ,$$$ .99

would p r i n t  out $10 ,000 .00 when i t s  con tents  are 10000 and S~~.63 when i t s

c o n t e n t s  are 5.63 . N ot i c e  t h a t  the comma disappears  and the dol lar  s ign moves

over when the value of the i t e m  decreases . These fea tures  can be used to

generate fancy reports , and can also create complexi t ies  w i t h  regard to veri-

f i c a t i o n . The editing mus t he axiomat ized , and f u n c t i o n s  must  be added to

the asser t ion langu age in order to s t a t e  proper t ies  of numer ic  ed i ted  da t a

i tems . There are man data  fea tures  t h a t  are not  ax iomat ized  by the subset

provided by t h i s  projec t , e . g . ,  s t r i n g  processing,  table h a n d l i n g ,  so r t ing ,

and overl ays .

cOBOL is a language of i n p u t — o u t p u t .  There is sequent ia l , random , ind exed ,

and conso1~ I ’O. Any verification system that deals with COBOL must handle

I/ O to some ex t en t .  T h i s  subset  will handle console I/O and some very simpli—

fled versions of sequential I/O , enough to verify some elementary programs.

We are us ing  a method s i m i l a r  to Hoare’s axiomatization of I/O in PASCAL (5) .

In i t , a f i l e  is a sequence of values for the set of variables that constitute

the input or outpu t record. Each file has a pointer that designates the cur—

cen t record .  Read ing the f i l e  simply moves the pointer , whi le  w r i t i n g  the

f i l e  adds to the  sequence and changes the pointer as well.

The record s In COBOL are tree—structured , am attribu te which presents

a naming problem . Several elementary i tems may have the same local name ,

w i t h  the ambiguity resolved by d i i  feren t q u a l i f i c a t i o n  statements.  The

CORRESt~~~L)ING option makes use of this feature. A COBOL verification system

must incorporate the same naming mechanism that COBOL uses.

—U- —-- — ~~~~~~~~~~ 
—.- -- -____
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Several data f eatures not incorporated in the subset are the REDEFINES

and RENAMES options. REDEFINES allows a data i tem , either group or elemen-

tary, to have a differen t name and a differen t definition (i.e., set of

picture specifications). It is like FORTRAN ’s COMMON statement , except tha t

the sharing is done within one program. REN AMES allows the renaming of a

sequence of elemen tary data items , but the same pictures are retained . It is

analogous to the FORTRAN EQUIVALENCE statement . The REDEFINES option is much

more difficult to handle , since it involves representation decisions in the

machine , e.g., the number of charac ters contained in a group or elementary

data i tem .  These decisions also involve alignment and word boundaries ,

factors which vary depending on the implementation machine.

6. cOBOL Su bset for  Ver if ica tion

We have carefully examined the syntax and semantics of the COBOL lang-

uage as defined by (12), and have arri ved at a subset suitable for verification

according to the criteria described in the previous sections of this report.

The results of this research are described in the Appendices I, II , and III.

Appendix I describes the syntax of the PROCEDU RE DIVISION for the COBOL subset,

the method (transduction grammars) for describing such syntax, the sof tware

system for man ipula ti ng these grammars , and the parsin g program that uses them.

Append ix II describes the syntax of the DATA DIVISION. Not au . of the decisions

have been made concerning the transductions for names and pictures of data items,

so that the tranaductions are left out. Append ix III contains a discussion of

the issues involved in the description of the semantics of COBOL statements

and data types. This is a difficult problem , perhaps the most difficul t of

the project; only preliminary results have been shown here.

If one were to examine a list of the primitive” that have been eliminated

from the COBOL subset for verification , they could have been eliminated for

one of two reasons :

(1) A primitive was considered to be undesirable for the
purposes of verification .

(2) ~ pr imitive was considered to be reasonable for veri-
fication . but was not deemed “essential.” Thus it was
eliminated from this subset, which had to be kept small.

_ _ _ _ _ _ _  - —~~ - - — 
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Ve ry few constructs have been eliminated from the lamguage for reason (1):

the  ALTER s t a t emen t , the “abbreviated combined condi t iona l ” re lat ional  expres-

sion , the  MOVE statement between group da ta  i tems , and the REDEFINES and

RE2~AMES s t a t emen ts . Even these fea tures could be axiomatized , but  with great

d i f f i c u l t y .

The method fo r  r ep resen t ing  the  COBOL granunar in the  v e r i f i c a t i o n  system

is de si gned to allow extensions to the language a t  any t ime . I t  is predic ted

t h a t  f u r t h e r  work in the project  w i l l  call for  the enlargement of the subset

of COBOL handled by the v e r i f i c a t i o n  system .

7 . Asser t ion  Language and Rules of In ference

The objec t of the assertion language is to allow a COBOL programmer to

s t a t e  any property  of a COBOL program in an elegan t way. This involves

experimentation w i i ’ ~ n ’any d i f f e r e n t  COBOL program s to see what must be said

and how to say it. At  t h i s  t ime the asser t ion language design is in i t s  very

pre l iminary  stages , and t h i s  section is a set of general guidelines that will

motivate the f i n a l  asser t ion langu a ge des ign .

Formulae in the asser t ion  language must be handled by a general theorem-

proving program , so that the syntactic basis for any asser t ion language must

be first—order logic. The assertion language must deal with numeric quantities,

so that arithmetic operators and relations are also included . Although set$

do no t occur in COBOL, they are useful in aggregating a multiplicity of items

in asser t ions .  Segueru3es appear In the axiomatizat lon of files and strings ,

and are an otherwise useful structure. These general features should occur

in any a s se r t ion  language.

Instead of augmenting the syntax of tbe assertion language by adding

language—dependent constructs , it is useful just to use functions and predicates

to define these constructs. In order to perform deductions, axioms and defi-

nition s are used to describe properties of the functions and predicates. Axioms

c o n s t i t u te  hi gh—level rules of infer ence and definitions can be viewed as sub-

stitution rules.

The particular functions used to describe the properties of COBOL are

interesting. They fall into one of four categories :

-
~~~~~~--~~~~~~~~~~ - .
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(1) ix~ 
information.  These funct ions tell whether an alphanumeric

data item contains alphabetic or numeric data at a given time.

(2) Values of data items. Each numeric data item has a numeric
value (real or integer) and a print value (character string).

(3) Naming information. The semantics of some COBOL operations
depend on the data names above and below a data item in the
tree—structured data definition .

(4) Operations on data items. Truncation , round ing, and editing
of data items require special functions.

The enumeration and definition of these pred icates and functions is

now in progress.

8. Structure o~ Proposed Ver if icat ion System

In our view of the problems of verification in real languages, we

ac tually require the assistance of the compiler in the verification process.

In add it ion , large parts of the verifier are table driven , so that certain

changes in the COBOL subset will have a minimal effec t on the programs com-

prising the verification system.

The proposed ver i f ica t ion  system is shown in Figure  1. In i t , systems

or processes (i.e., parts of the verification system) are denoted by ovals

or circles. Documents or programs (i.e., the data that is processed by the

verif icat ion system) are represen ted by rectan gles. Knowledge encoded in

system tables is represented by diamonds.

A program is first compiled by a standard COBOL compiler to check for

syntax errors. Then user—supplied assertions are added to the program text ,

and the combined argumen t is fed to the parser of the veri f ication system.

Using the syntactic specifications for the language (the transduction grammar),

the parser creates an internal form for the COBOL program. The verification

condition generator takes the program in internal form and (using its knowledge

of COBOL operations) produces the verification conditions. The verification

conditions are then fed to the interactive deductive system, which attempts

to produce a proof of the verification conditions (with the help of a huaan).

The scope of this project calls for the programming of the parser and

verif icat ion condition generator. However , the most d i f f i c u l t  issues are

involved in deciding formal representation media for the i tems in the three

diamonds, and for enco’!ing the COBOL syntax and semantics using the represen-

tation media.
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The sys tem is being implemented on the PDP—lO at the Artificial

Intelligence Center at Stanford Research Institute , using the INTERLISP

programming environment. The sy s t e m  provides sophis t ica ted  in te rac t ive

facilities for all phases of the programming process. The SRI facility

is accessible through the ARPAN ET (address SRI—Al). Much of the docu-

mentation for the project is on—line at the same facility.

9. Conclusion s

I t  is our f ee l i ng  t h a t  we have uncovered some very i n t e r e s t i n g  areas

of stud y , and that  COBOL v e r i f i c a t i o n  is feasible and challenging. The

level of e f f o r t  does not  pe rmi t  as deep an examinat ion of some of the

issues as we had hoped , but this research provides a basis for further work.

The current status of the project can be summed up as follows :

(1) We have a thorough knowledge of the general issues of
COBOL verification .

(2) We have decided on the syntax of the COBOL subset but
have not ye t  f i n i shed  a x i o m a t i z i n g  i t .  However , a
s u b s t a n t i a l  amoun t of work has already been done.

(3) The parser has been written , and the verification
condition generator has been sketched out.

(4) The documentation is adequate and up to date.

(5) Some sanpl c COBOL programs have been studied , and asser t ions
for  them have been w r i t t e n .

(6) Except f or the exact choice of auxiliary functions , the
assertion language has been design ed.

The following tasks remain to be done :

(1) Completion of semantic axiomatization , the choice of functions
of the assertion language, and the rules of inference for the
functions. These tasks are all related .

(2) Implementation of the verification condition generator.
Given the completion of task (1), this is a relatively
s trai ghtforward programming e f f o r t .

(3) More work on examples-—both in w r i t i n g  assertions and generating
hand—proofs.  We w i l l  devote our a t t e n t i o n  to programs containing
abou t 15-50 l ines of PROCEDURE DI V I SI ( 1 4.

- — - -- ——-—-— V V~_~•V * ~~~~~~~~~~~~~ 
—



15

(4) Completion of the study of structuring methods (including
hierarchical methods) as applied to COBOL verification .
At this time such efforts do not seem so fruitful as they
d id earlier. Perhaps we will have to devise slightly new
techniques for partitioning the proofs of COBOL programs.

Several observations may be made :

(1) COBOL is an interesting lan guage and is well designed .

(2) Structure and abstracUon are not as promising as
originally anticipated (see 4 above).

(3) We have been able to bring a surprising amoun t of tech-
nology to bear on the problems encountered.

The following problems either exist now or are anticipated :

(1) With the functions for editing and truncation , verifi-
cation conditions may be longer than originally anticipated.

(2) It is taking more tine than originally anticipated to arrive
at a formal statemen t of COBOL semantics.

The following issues , al though they w ill no t be covered in the curren t

effort, are important and deserve to be studied in future projects.

(1) Clean termination of COBOL programs.

(2) Graceful degradation in the presence of invalid data.

(3) The application of verification techniques to other
areas related to the reliability of COBOL programs——
e.g., testing, symbolic evaluation , and debugging.

It certathly seems as though the verification of COBOL programs is

possible, and eventually may become cost effective.

_ _ _ _ _  V ~~~~~~~~~~~~~~~~~~ —
--- -
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A P P E N D I X  I

COBOL Language , Parsing, and Abstract Form

Jay M. Spitzen

1. In t roduc t ion

We intend to use a table—driven language transducer for

initial processing of COBOL programs that are to be

verified . Syntax transduction is the process of translating

an input program fro. the standard form in which COBOL

programs are written by users of the language to an abstract

form with the same semantic import but with a uniform

structure easily manipulated by a verification condition

generator (the next phase of verification). Such a

procedure is especially helpful in dealing with COBOL : this

language has extensive syntactic cosplex1tie~ that often do

not correspond to comparable semantic complexities . The

point of the syntactic complexity of the languag. is to

permit programmers to write in an expressive and natural

format. While such a format is quite suitabi. for human

consumption , it is inappro priate for the sorts of machine

manipulation needed in verification , and it is consequently

beneficial to translate to the syntacticall y much simpler

abstract form that we have devised.

The corr.spond .nce between COBOL and Abstract COBOL is

specified by a transduction irammar. Such a gram mar

V 
V V - -________________ - _ _ _
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consists of a set of ~t~E Droductions to describe the COBOL

language , and a corresponding transduction for each

production . The transduction is a LISP program which

computes the abstract form of the language fragmen t

specified by the associated production . Thus we translate a

COBOL program to abstract form by using a parser to analyze

a valid program into a ‘parse tree according to the

pr oduc t ions  of the grammar , and then process the parse tree

from bottom to top using transductions to obtain the parts

of the desired Abs t rac t  COBOL program .

Our t r ansduc t ion  grammar for a su b stant ia l su b set of

the constructs allowed in the COBOL procedure d iv i s ion ,

together  w i t h  va r ious  pars ing  and grammar m a n i p u l a t i n g  tools

(descr ibed  in Section 2) ,  not  o n l y  speci f ies  the

correspondence between COBOL and A b s t r a c t  COB OL , bu t  also

cons t i tu t e s  an e f f i c i e n t  a l g o r i t h m  for t r a n s l a t i n g  between

the two l a n g u a g e s .  As a result of this translation , while a

user may submi t  to the COBOL Ve r i f i e r  a general  COBOL

program ( s u i t a b l y  annota ted  by logical  a s se r t i ons) ,  parts  of

t he system opera t ing  a f t e r  t r ansduc t ion  need to deal only

wi th  a very l imi ted  set of semant ic  pr imi t ives .  For

exam pl e , the  translation expresses all  ADD , SUBTR AC T ,

M ULTIPLY , DIVI D E , COM PUTE , and MOVE sentences (except for

the CORRESPONDING option , which  is handled separately) in

terms of two semantic primitives SET$ and SETROUND E D$ .

Similarly, GO TO ... DEPENDING ON . .. sentences are

_ _ _ _ _ _ _ _ _ _  
V - — - ---—--—-— — — - —~~~~~~ - 
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expressed in Abs t r ac t  COBOL by an equ iva l en t set of IF and

GO TO sentences. A detailed description of these

corres pon d ences , and of the  p r i m i t i v e s  of Abs t r ac t  COBOL , is

given in Section 3.

Finally, observe the advantage that derives from

employing a COBOL Iransduction grammar (CTG ) to drive the

transducer . Although we have made a number of simplifying

assum ptions for the purposes of the initial phase of the

project activity, it will be a simple matter to extend the

subset of COBOL that is accepted just by augmenting the CTG .

Such extensions require no modification of the transducer .

2. The COBOL Language

A. Amen dments to the Language

For the purpose of this project , we have des igned a CTG

for the COBOL procedure division which does not precisely

correspond to the language described in the 1974 ANSI

standard for COBOL (q.v. American National Standard

Programming Language COBOL , American National Standards

Institute , Standard Number X3.23—7~4). Our amendments ar. of

two sorts and we now proceed to describe them in turn .

The first sort of amendmen t moderately extends the

language. In the arithmetic sentences ADD , DIV IDE,

MULTIPLY , and SUBTRACT , our CTG permits the argum .nts to be

ar b itrary arithmetic expressions rather than Just

-_ _ _ _ _ _ _ _ _  - ____
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identifiers or 1iterals . In the  GO TO.. .DEPENDING ON...

sen tence , we similarly generalize the qualifying identifier

so as to allow any arithmetic expression. In the

PERFORM.. .AFTER ... construct , we allow arbitrary nesting

rather than a maximum of three levels as in X3.23. More

importantly, the CTG specifies a generalized (but fully

compatible) PERFORM statemen t which , for example , permits

the construction

P E R F O R M  p r o c e d u r e — n a m e l  V A R Y I N G  I FROM 1 BY 1 UNTIL 1:10
5 TIMES

This construction is not a l l o w e d  in X 3 . 2 3  but  is

semantically consistent with it when given the meaning

PERFORM procedure—narne l VARYING I FROM 1 BY 1 UNTIL 1:10
VARYIN G J FHOM 1 BY 1 UNTIL J=5

where J is some new identifier not otherwise used in the

program .

These extensions are permitted for a number of’ r ea sons .

First , because they are semantically consistent with X3 .23,

it is no more difficult to verify programs written in the

more general forms. Second , since the generalized forms are

more syntactically natural (i.e. yield greater syntactic

uniformity in the resulting language) than the original

forms , the CTG is shorter and clearer than it would

otherwise be. Finally, we could easily augmen t appropriate

rules of the CTG to exclude t hese ex tens ions if’ , for some

reason , that was eventually found desirable. But , in any

case , since the extensions are all compatible with X3.23,

— V V- -  - 
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the CTG does correctly specify the transduction into

Abstract COBOL of standard language programs not employing

the extensions.

Our secon d sor t of amen dmen t has cons iste d of

subsetting the procedure division so that , in this limited

initial effort , we can deal with a language of’ manageable

proportions. On the other hand , we wish to include enough

of COBOL to d e m o n s t r at e  t he  practicality of applying

ver ification techniques to COBOL , as well as to begin to

detail the techniques required . Thus we have tried to

choose a group of verbs that is representative of’ COBOL and ,

moreover , is sufficient in scope to permit the writing and

ver ification of some reasonable example programs. The

technique of’ table—driven syntax transduction makes it quite

easy to extend the subset with which we dea l , an d suc h

extension would be a natural part of a continuation of the

presen t ef for t .

The par ticular subse t we have chosen include s the ver bs

A CCEPT’, ADD , COMPUTE , CLOSE’, DISPLAY , DIVIDE , GO , IF ,

MOVE , MULTIPLY , OPEN0 , PERFORM , READ , STOP’, SUBTRA CT , and

WRITE. Asterisks indicate verbs for which the CTG allows

only a subset of the alternative constructions in X3.23. We

have excluded verbs dealing with string manipulation , table

handlin g, mer ge and sor t operations , error process ing and

debugging, complex file processing, interprocess

- ~~~~~~~~~~~~~~~ - V 
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communications and multi—processing, and re por t genera tion.

The v erbs t hus excluded are ALTE R , DELETE , DISABLE , ENABLE ,

ENTER , EXIT , GENERATE , INITIATE , INSPECT , MERGE , RECEIVE ,

RELEA SE , RETURN , REW RITE , SEARCH , SET , SORT , STRIN G ,

SUPPRESS , TERMI NATE , UNSTRIN G , and USE. We hav e also

excluded the ‘abbreviated combined conditional ’ relational

ex press ion .

B. The Correspondence between COBOL and Abstrac t COBOL

The object of this section is to describe , in general

terms , the correspondence between standard COBOL programs

and their transduced versions in Abstract COBOL. Strictly

speaking, the  CTG as given in Appendix A is the definitive

specification of this correspondence——it is both exact and

procedural. However , the level of detail in Appendix A ,

together  w i t h  the formal  languages  of’ t r a n s d u c t i o n  grammar

and CLISP that are used , may be quite difficult for the

uninitiated reader . Consequently we give a more tutorial

presen t a t i on  here .

The procedure d iv is ion  of’ a COBOL program cons ists of a

number of labeled sections, each of which is made up of a

number of labeled opragrpphs . These paragraphs , in turn ,

are made up of a variable number of sentences.

Alternatively, a program may omit the intermediate level

(sections) and consist simply of a number of paragraphs.

Both cases are represented in Abstract COBOL by lists of the

V ~~~~~~~~~~~~~~~ -- — ---—- -- —-V 
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form

(PROCEDURED IV ISION $
(SECTION$ section—namel

(PARAG RAPH$ paragraph—namea
sen tence sentence .. .)

(PARAGRAPH$ paragraph—namez
sentence sen tence . . .) )

(SECTION$ section—namen
(PARAGRAPH$ paragraph—nameaa

sentence sentence ...)

(PARA GRAPHs paragraph—namezz
sentence sen tence . . .) ) )

We repre3ent the case of a ‘sec tionless ’ program by taking

n: 1 and s e c t i o n — n a m e l :N I L , i . e . ,  by

(PROCEDUREDIV1SION$
(SECTION$ NIL

( P A R A G R A P H $  p a r a g r a p h — n a m e a
sentence sentence . . .)

( P A R A G R A P H S  p a r a g r a p h — n a m e b
sentence  sentence ...)))

The sentences of Abstract COBOL serve the same function

as the sentences of COBOL in that they serve as the building

blocks of the language . Standard COBOL sentences are of two

k i n d s — — t h o s e  represented  in Abs t r ac t  COBOL by a s ingle

i n t e r n a l  sentence  and those represen ted  in Abs t r ac t  COBOL by

several  i n t e rna l  sentences .  The f i r s t  sort of sentence is

defined by the nonterminal ‘sentencel ’ in the CTG . Such

sentences are those using one of the following verbs:

ACCEPT , CLOSE , GO , IF , PERFORM , READ , STOP , WRITE , ADD CORR ,

and SUBTRACT CORR . The second sort of’ sentence--comprisIng

sentences with the verbs COMPUTE , DISPLAY, DIVIDE ,
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GO..  .DEPE NDING , OPEN , MOVE , ADD , DIVIDE , MULT IPLY , or

SUBTRACT—- is represented in the CIG by the nonterminal

‘sentence2 ’. To some exten t there is a possible trade—off

between the designation of the type of a COBOL sentence and

the com p lex it y of’ the associated internal semantic

primitives . That is , forc ing a sen tence to be of the  f i r s t

type may require the use of more complex internal pr imitives

than would transducing as a ‘sen tence2 ’ to a list of

internal sentences. To increase simplicity in the

verification condition generator and COBOL axiomatization ,

we have therefore chosen to transduce to lists of simpler

interna l sen tences where possi b le.

~e now sketch the internal equivalents of the various

COBOL sentences. Those derived from the nontermina]

‘sentencel are described first . Amon g these sentences ,

those with verbs AC CEPT , CLOSE , GO (the sim p le case ), IF,

h EAD , STOP , an d WRITE are straightforwardly transduced . For

exam pl e ,

ACCEPT x F R OM U A Y T I M E

becomes

(ACCEPT x DAYTIME)

where ACCEPT is considered , in Abstract COBOL , to be a

seman tically primitive function of two arguments.

Similarly,

IF x..3(1O; al ; ELSE s2.

becomes

__________________________________________________________________________-

~~~~~~ - 

V — ~~~~~~ ‘•V — 
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(IF (LT$ (+ 3 x) 10) si ’ s2’)

where s1 and s2’ are the Abstract CiJBOL equivalents of the

ex ternal sentences Si and s2.

Note t h a t  the CTG ru les  for  c o n d i t i o n  and a r i t h m e t i c

ex pression yield the functional form (LT$ (+ 3 x )  10) for

the COBOL infix expression x+3<1O. The CTG translates any

con dition or ar ithme tic ex press ion into a func tional form

employing only operators chosen from + , - , * , I , LT$, EQS or

GT $, or the logical opera tors AND , OR , NOT , ISALPHABETIC $,

and ISNUHERIC$.

There are two somewhat more complex cases . The first

of these Is the PERFORM statement. We analyze a PERFORM

statemen t into three parts: the verb PERFORM , a body suc h as

FUll THROUGH FUMBA R , and a list of’ controls. Each control is

a qualifier such as 7 TIMES or AFTER J FROM 1 BY 3 UNTIL J

IS GREATER THAN 15 and is analyzed into a keyword and a

parameter . For example , the control 7 TIMES has keywor d

TIMES and parameter 7. The control AFTER J FROM 1 BY 3

UNTIL J IS GREATER THAN 15 has keyword V A R Y I N G  and parameter

(J 1 3 (GT$ J 15)). COBOL allows two other sorts of

contro l ; t h ese are ‘U N TIL con di t ion ’ an d a d e f a u l t e d  control

(as in PERFORM FUll ’ ) .  The f i r s t  of these has keyword U N T I L

and as parameter the transduction of the condition . The

second has keyword ONCE and parameter NIL. Suppose the

external form of a PERFORM statemen t is

-. - - ~~~~~~~ V_ _ _ _ _  V
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PERFORM body control(i) ... control (n).
For each 1 between 1 and n , let kcontrol(i) be the  keyword

a s s o c i a t e d  w i t h  control(i) and let pcontrol(i) be its

parameter . Then we transduce to the internal equivalen t

(PERFORM kcontrol(n)
(PERFORM kcontrol(n— 1) . .. pcontrol(n— 1) NIL)
pcontrol (n)
NIL )

Thus the semantic primitive PERFORM in Abstract COBOL takes

four arguments: a control keyword , a transduction of’ the

body which is either

(DO$ procedure—namel procedure—name2)

(the simple case) or the transduction of the nested inner

PERFORM , a con trol parame ter list , and a final ar gumen t

which is——at present——NIL. As a more complex example ,

consider the sentence

PERF ORM PA R1 VARYING 1 FROM 1 BY 1 UNTIL 1:10
7 TIn ES
UNTIL X (10.

In internal form , this will be represented by

(PERFORM VARYING
(PERFORM TIMES

(PERFORM UNTIL
(DO$ PA lM PAlM )
(LT$ X 10)
NIL)

7
NIL)

(I 1 1 (EQS I 10))
NIL)

Observe that when we proceed , in planned project work ,

to use the transduced program as an input to a verification

condition generator . an additional item of information will

~s’
I

V 

~~~~~ - 

- V 
- — 

~
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be needed for each iteration . This will be an induc t ive

invariant which describes the logical behavior of the

i t e r a t i o n  b o d y ,  and it will be recorded in the final

argumen t position of the corresponding PERFORM. Ideally,

one woul d prefer t~ have a verification system synthesize

such an invariant on the basis of’ the program t ex t , but  it

is not possible to do so in rea l  programs g i v e n  t he  p resen t

s ta te  o f the  a r t  of v e r i f i c a t i o n .

The remaining derivatives of’ ‘sen tence l ’ are those

us ing ADD CORR and SUBTRA CT CORR . These transla te to calls

on the semantic primitives ADDCORRESPONDING$ and

SUBTRACTCORBESPONDING$ with four arguments: the two apparent

subjects of’ the COBOL sentence , either ROU N DED or NIL as

specified by the external sentence , and a transduction of

the COBOL imperative sentence that is to be executed it’ S

SIZE ERROR occurs.

We now descr ibe the translat ion of der iva tives of
‘sen tence 2’ in the grammar . Recall that these generally

translate to several intcrnal sentences. To represent the

COMPUTE and other a r i t h m e t i c  sentences , we introduce the

seman tic functions SETS and SETROUNDED$. Each is a function

of three arguments : the target of the operation , th e source

expression , and an error sentence analogous to the third

ADDCORRESPONDING$ argumen t as described above. For example ,

consider the COBOL sentence

— 

V~ V~~ V V -. -~~~~~~~~~~ -,LV~ — 
—V.—-
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ADD x ,y TO z,w ROUNDED .

We t r a n s l a t e  t h i s  to the two internal sentences

(SETS z (+ (+ z y) x) NIL)
(SETHOUNDED$ w (+ (.‘~ 

v y )  x ) N I L )

Other arithmetic verbs are h a n d l e d  in the same fashion , with

the CTG transductions creating the proper functional form

sourc e expression . Observe that in the example a SIZE ERROR

Imperative statemen t is omitted ; if it were present then its

transduction would appear in the proper argumen t positions

in each of the resulting i n t e r n a l  sen tences . We h a n d l e  MOVE

in the same way, translating

MOVE x TO y.

to

(SETS y x NIL)

For the MOVE CORRESPONDING statement , we introduce the

semantic primitive MOVECORRESPONDING$ and translate , for

example ,

MOVE CORR a OF x TO b OF y.

to the internal form

(MOVECOHRESPONDING$ (OF y (b)) (OF x (a)))

where the ~ subexpressions are the internal renditions of

COBOL qualifications.

The internal primitive DISPLAY is similar to ACCEPT

described above. However , since the COBOL language allows

DISPLAY to ta ke a list of ar guments , we transduce to a list

of internal DISPLAYs , e.g.,

- -I—- --- .---- .-
’- 
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DISPLAY x ,y,z UPON PRINTER.

becomes

(DISPLAY x PRINTER )
(DISPLAY y PRINTER )
(DISPLAY z PRINTER)

OPEN is t r a n s l a t e d  in a s i m i l a r  w a y ,  using the three

internal primitives OPENINPUT$, OPENOUTPUT$ , and OPENBOTH$.

For ex amp le ,

OPEN 1—0 filel ,file2.

becomes

(OPENBOTH$ f i l el )
( O P E N B O T H $  f I l e 2)

Finally, we describe the transduction of GO.. .DEPENDING

sentences . In general , suc h a sen tence has the form

GO TO n i ,n 2 , . . .  D E P E N D I N G  ON e x p r e s s i o n .

and is translated as though it had been the sentence

IF express ion :1;  GO TO n 1 ;  ELSE
It’ expression~ 2; GO TO n2; ELSE

w h i c h , r endered  in A b s t r a ct  CObO L , Is

~. iF (EQS expression 1)
(GO ni)
(It’ (EQS expression 2)

(GO n2)

3. I n t e r a c t i v e  F a c i l i t i e s

We have developed a v a r i e t y  of i n t e r a c t i v e  f a c i l i t i e s

to support the construction of CTGs and the subsequent

parsing of COBOL programs. The system we describe Is

- 
— 
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written in the LISP programming language and runs under

INTE HLISP (q.v. INTEHLISP Reference Manual by Warren

Teitelman , Xerox Palo Al to Researc h Cen ter ).

The two basic functions used to crea te a CTG are

PUTRULES and PUTTRANS. They are both variadic functions

whose first argumen t is a nonterininal of the grammar and

whose subsequent arguments are , respectively, the production

rules and transductions for the nonterminal . When a

non terminal is initially used as first argumen t to PUTRULES

or P U T T R A N S , i t  is appended to the list NONTERMS of

n o n t e rm i n a l s  thus far in the grammar . To distinguish this

case , PUTRULES re turns the nonterm inal as i ts resul t ;

otherwise it returns NIL. The first nonterminal introduced

becomes the root symbol of the grammar (e.g., the

non term in al ‘proceduredivis ion ’ in the CTG of Appendix A).

Once a nonterm inal and some corresponding <production ,

transduction ) pairs have been specified In this way,

adjustments to the grammar may be made by using PUTRULES and

PUTTRANS to add additional alternatives for the nonterminal

(or for other nonterm inals ), and by us ing the INTERLISP

editing facilities to modify the alternatives then in

effect. In particular , EDITV(NONTERMS) will allow the user

to modify the list of’ nonterminals and ED1TP (nt) will allow

the user to mod i fy the productions and transduction s of a

particular nonterminal . 

—V.- - ---— V. 
~~~~~~~~~~~~~~~~~~~~~ ‘— - - 
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The grammar (or any part of it) may be listed in a

r e a d a b l e  f o r m a t  (a s  in A p p e n d i c e s  A and B) by c a l l i n g

P R I N T G R A M M A H  with any subset of NONTERMS as argumen t.

Appendix A contains such a listing for the subset of the

COBOL procedure division we h a v e  se lected . Each n o n t e rm i n al

is printed along with a list of <production , transduction>

pairs—-one for each a l t e r n a t i v e .  We have  adop ted  the

convention that lower case symbols denote nonterminals while

upper case symbols and delimiters denote terminals. Also ,

note that the transductions are printed in the CLISP

c o n v e r s a t i o n a l  d i a l e c t  of LISP for  inc reased  conciseness  and

r e a d a b i l i t y .  ( I n  t h i s  d i a l e c t , d e s c r i b e d  in d e t a i l  in

Chapter 23 of the INTERLISP Reference Manual , angle b r a c k e t s

( ‘ < ‘ and  ‘
> ‘)  denote the list consisting of the bracketed

elements. Thus <A B <C>> is equivalen t to (LIST A B (LIST

C)). However , an exclamation , point indicates that the

following elemen t is to be inserted as a segment , e.g. <t A

B ! C> is equivalen t to (APPEND A (LIST 8) C). Other

n o t a t i o n a l  i n n o v a t i o n s  of CLI SP t h a t  we use f r e e l y  are

apos t rophe  ( ‘ ) to quo te  the  symbol  or form tha t  i t  precedes

and colon and double colon as infix operators. X:I, where  I

is an integer denotes the Ith element of’ the list X; X::I

denotes  the Ith  ta i l  of X . )

Once the grammar  has been r e f ined  to the user s

sa ti sfact ion , it ma y be saved in a symbolic file for

subsequent reference by the function call

- -  

- - --— - -  V — _ _ _ _ _ _ _ _.-— ___
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S A V E G H A M ( f i l e n a m e ) ,  which will also sort the nonterm inals

into alphabetic order (except for the root symbol which

remains the first elemen t of’ NONTERMS). Prior to this call ,

the user may also wish to sort the alternatives for each

nonterminal into lexicographical order (based on the

productions of the alternatives). This is done by the call

SORTRULES(NONTERMS).

When the grammar is comple te d , the system may be used

to transduce COBOL programs within the COBOL subset that has

been defined . There are two functions available for this

purpose—— PURIFY and ABSTRACT. The first of these

automa tically transforms the grammar to an equivalen t one

that contains no erasing rules. This is important because

the man y optional words in the COBOL language lead to

eras ing nonterm inals in the grammar (e .g . ,  ‘at ’ and ‘is ’ in

A ppendix A). However , our parser has been designed to deal

only with grammars without erasing rules; this permits a

simpler and more efficient parser than would otherwise be

p o s s i b l e .  C o n s e q u e n t l y ,  a ‘purification ’ process is needed

to obtain a grammar acceptable to the parser. The effect of’

this process on a CTG may be seen by comparing Appendices A

and B. For example , the nonterminal ‘sentencel ’ has nine

alternatives in the original grammar but requires

twenty—three in the purified grammar to make up for the

absence of erasing rules. A purified grammar may be $aved

with SAVEGRAM as described in the previous paragraph .

— 
_~~__V.V. ~~V - - 
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Once these preliminaries are complete , it is possible

to parse a COBOL program . The user must enter the program

into the  LISP  e n v i r o n m e n t  and t hen  i n v o k e  the function

ABSTRAC T providing two arguments—— the program and the

function COBOLTOKENFN. The program is then parsed and

transduced and the resulting value of ABSTRACT is the

translated program in Abstract COBOL. Appendix C conta ins

an example of this process: part 1 is a simple COBOL program

and part 3 is the abstract form of the program . Part 2,

included here for comple t enes s  b u t  u s u a l l y  of no i n t e r e s t  to

a user , shows the parse tree which is constructed from the

input program prior to the invocation of the transductions

of the CTG .

Finally, let us describe the use of’ COBOLTOKENFN by

ABST RACT. The read er w ill ob serve that no rules are given

for three nonterminai s of the CTG—— ’symbol ’, ‘num ber ’, and

‘string ’. This is because  t h e y  correspond to the basic

lexical symbols , numer ic cons tan ts , an d textual constants

p e r m i t t e d  in COB OL w h i c h  are , na tura l ly , muc h too n u m e r o u s

to be listed explicitly. Instead , as eac h l ex ical token of

an input program is read by the parser , COBOLTOKENFN is

invoked to check w h e t h e r  i t  is a symbol , number , or string .

If so , the appropriate rule alternatives are added

dynamically to these nonterminals so that parsing may

procee d successfully.

‘-V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ‘V V. V V —
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A p p e n d i x  A.  COBOL T r a n s d u c t i o n  Grammar

p r oce d u r e d  ivision

= P R O C E D U R E  D I V I S I O N  . paragraphs
(< ‘PhOCEDU}LMIVISION~ < ‘SECTION$ NIL ! TL~>> )

PR OC EDURE DIVISION . sec tions
(< ‘PR OCEDUREDIVISION$ ! Ta> )

ar gumen t

expressions
(Ti)

e x p r e s s i o n s  c o n n e c t o r  e x p r e s s i o n
((if T2 NEQ (‘BY)

t hen  < !  Ti  T 3>  e l s e i f  T1 ::1 then (HELP
“Error in reduction to

argument. ”)
else < T 3  ! T i > ) )

a t

(NIL)

AT
( N I L )

ciasscondition

ALPHA BETI C
( ‘ISAL PHAB ET IC)

= N U M E R I C
( ISNUMERIC)

computetarget

computetarget i
(<Ti>)

_ _ _ _ _ _- .  V- V. 
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i d e n t i f i e r  , computetarget
(<< ‘SETS Ti> f T3>)

= identifier ROUNDED , computetarget
(<< SETROUNDED$ Ti> T a > )

computetarget 1

identifier
(< ‘SET$ Ti>)

= identifier HOUNDED
(< ‘SET~OUNDED$ Ti>)

condition

= condition OR conditlon2
(<T2 Ti T3>)

condition ?
( T i )

condition2

condition2 AND condltion 3
(-<T2 Ti T3>)

condition 3
(Ti)

condition 3

NOT condition3
(<Ti T2>)

condltion L$
(Ti)

con d ition4

= ( c o n d i t i o n  )
(T2)

V V ___________ - ‘ ~~ ~~~~~~~~~~~~~~~~ - --=—~~~~- ~~~~~~~~~ — 1—V.———-- - - - —
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sim p l e c o n d i t i o n
( T  1)

cond Itionname

symbo l
(Ti)

conne ctor

BY
(Ti)

= FROM
( T i )

INTO
(Ti)

= TO
(Ti)

corres po n d ing

= CORR
(NIL)

CORRESPONDING
(NIL)

corro p

= ADD
‘ADDCORRESPONDING $)

= SUBTRACT
(‘SUET RACTC ORRESPONDING $)

divideargument s

= expression BY expression
(<Ti T3>)

—~~~~~ — 
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= expression INTO expressIon
(<~~ Ti> )

else

= ELSE
(NIL)

= OTHE RWISE
(NIL)

elseclause

- 
( ‘t~EX 1 )

= sem i else N E X T  SENTEN CE
(‘NEXT )

semi else sentence
(T3)

endcondition

- 
( N I L )

a t END sen tenc e
( TL 4 )

e r ro rcond  i t i o n

- 

(NIL)

on SIZE ERR OR sen tence
(T5)

express ion

= expression + expression 2
( < T 2  T i T 3 > )

- -r . V ’V.~~ - 
V ‘
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= ex press ion2
(Ti)

expression2

= expression2 • expression3
( < T 2  T i  T3> )

express ion2  / expression3
( < T2 T i  13>)

expression3
(Ti)

expression 3

= expression 3 •• expressio&4
( < T 2  T i  T 3 > )

express ion Z$

( T i )

ex press ion~4

= ( ex press ion )
( 12)

= + expression Z~(12)

= — ex press ion 1l

( < T i  0 12>)

= ZE RO
(0)

: ZEBOES
(0)

= ZEROS
(0)

i d e n t i f i e r
(Ti)

* number
(Ti)

- ‘  — — ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ --— -V. ’ —V.
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= string
( T i )

expressions

= expression
(<Ii>)

= expression , ex pressions
(<Ti ! T3>)

fi l ename

sym bol
(Ti)

f i l enames

f i lename
( < T i > )

= filename , fi lenames
(<Ti ! 13>)

identi tier

= qualification
( ( if (N L I S T P  Ti)

then Ti elseif T1:i ’OF and T1:3=NIL then Ti:2 else
(HELP ‘ErrorS inS reductionS toS identifier.)))

= qualification ( subscripts )
( ( ‘OF ( i f  (N L I S T P  Ti)

then TI elseif Ti :i= ’OF and T1:3=NIL then 11:2
else

( HELP ‘ErrorS inS r educ t i onS  toS i d e n t i f i e r .) )
13>)

identifiers

identifier
((Ti>)

-- 
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= i de n t i f i e r  , i d e n t i f i e r s
( T1  ‘ 13>)

in d exna rn e

= symbol
(Ti)

iotype

= iN P U T
(‘OPENINPUT$)

I0
(‘OPENBOTH $)

= OUTPUT
(‘OPENOUTPUT $)

is

(NIL)

= IS
(NIL)

mnem on icname

sym bol
(Ti)

move

= MOVE
(‘SETS )

= MOVE corresponding
‘M O V E C O R R E S P O N D I N G $ )

_ _ _ _  - -V.—— — - —~~~~
- - - — -—- -
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of

IN
(NIL)

= OF
(NIL)

on

(NIL)

= ON
(NIL)

opera tor

= ADD
( ‘+ )

: D I V I D E
(‘I)

= M U L T I P L Y
( ‘ I)

SUBTRACT
(‘ — )

paragraph

= pa r ag raphnam e  . sentences
( < ‘P A R A G R A P H $  Ti  ? T 3 > )

paragraphname

* symbol
(Ti)

oaragraphs

-= 
V .

~ 
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= naragraph
(<Ti>)

= paragraph paragraphs
(<Ti ! 12>)

per f’ormbocly

= proce d ur ename
(< ‘DO$ Ti Ti>)

= proce dur ename th ru proce dure n ame
(< ‘DOS TI T3> )

per formcontro l

= UNTIL condition
((12 Ti>)

ex pression TIMES
(<T2 Ti>)

= varying expression FROM expression BY expression UNTIL
cond i t ion

( < T i < T2 111 T6 T B > > )

per formcont ro ls

- 

(NIL)

= performcontrol perf’ormcontrols
( < T i  ! 12>)

proce dur ename

= sym bol
( T i )

proce durename s

: proce d ure n ame
( < T i > )

V - ‘ 
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= procedurename , proced urenames
(<Ti I T3>)

quail uication

= sym bol
(< ‘OF T i N I L > )

= symbol of q u a l i f ic a t i o n
(< 13 : 1  T3:2 <I T3:3 Ti>>)

read target

- 
(NIL)

INTO identifier
(T2)

recor d

- 

(NIL)

- R E C O R D
(NIL)

recordname

= sym bol
(T i )

relat iono pera tor

= NOT relationoperator2
( ( SELECT Q 12 ( ( Q U O T E  EQ$ )

‘NEQ$) V

((QUOTE NEQ$)
‘EQ$)

((QUOTE LIS)
‘GTQ$)

((QUOTE GTQ$)
‘L.T$) 

- V .  
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((QUOTE LTC$)
‘01$)

((QUOTE GT$)
‘LTQ$ )
(HELP

“Erro r  in r e d u c t i o n  of first a l t e r n a t i v e  of’
r e l a t i o n op e r at o r . ” ) ) )

= relationoperator2
(Ti)

re la tiono pera tor2

= (
( ‘L T $ )

- 
(‘EQ$)

= )
(‘GT$)

EQUAL to
‘EQ$)

= G R E A T E R  t h a n
(‘GT$)

LESS than
(‘LT$)

r o u n d e d

- 

(NIL)

= HOU NDED
(Ti)

sec ti on

= sectionname SECTION . paragraphs
((‘SECTION$ Ti I Ta>)

- -‘ - --- - -~~~~~~~~~~~ V. 
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sec t ionname

= symbol
(Ti)

sections

= sec tion
(<Ti>)

= sec tion sec tions
( < T i I T 2 > )

semi

(NIL)

(NIL)

sen tence

= sen tence l
(Ti)

= sen tence 2
((if’ Ti ::1 then (‘DO$ I T i >  else 11: 1) )

sentence 1

ACCEPT id ent i f ier source
( < T i 12 13>)

* CLOSE f i l enames
( < T i ’  I T 3 > )

= GO to procedurename
(<Ti T3>) V

* IF condition thenclause elsec].ause
(<T i T2 T3 T~1>)

* PERFORM pertormbody per formcontrola
((if 13 then (for ( XR _T2 ) 

- _ _ _ _ _ _ _ _ _ _ _ _ _
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in
(R E V E R SE T 3 )
do R _ < ‘P E R F O R M  X : i  R X : 2  N I L >  f i n a l l y
(RETURN R))

else < PERFORM ‘ (ONCE$)
12 N I L  N I L ) ) )

= HEAD filename record readtarget endcondition
( < T i  T2 T~4 T 5> )

STOP R U N
( T i )

= W R I T E  recordname w r i t e s o u r c e
( < T i  T2 T 3 > )

= corrop corresponding i d e n t i f i e r  c o n n e c t o r  i d e n t i f i e r
rounded

errorcond it ion
(<Ti 13 T5 T6 T7>)

sen ten ce2

= C O M P U T E  computetarget = expression errorcondition
((for X in T2 collect (I X T~4 T5>))

= DISPLAY identifiers target
( ( f o r  X in T2 co l l ec t  < T i  X T 3 > ) )

= D I V I D E  d i v i d e a r g u m en t s  G I V I N G  c o m p u t e t a r g e t i  R E M A I N D E R
i d e n t i  f i e r

e r ro rcond  I t i on
( < c !  T~4 < ‘I I T2> T7> < ‘SET$ T6 (NIL T2:i <

‘‘ T L~:2 T 2 :2 > >
T 7 > > )

= GO to procedurenames DEPENDING on expression
((for I to (LENGTH T3)

col lect
( < ‘ IF < ‘EQ $ T6 D ( ‘GO ( C A R  ( N I H  13 I ) )

> ‘ NEXT >)))

= OPEN loty pe f i l enames
((for X in T3 collect <T2 X>))

= mov e express ion  TO i d e n t i f i e r s
((for X in 114 collect <Ti X T2 NIL>))

= operator arguments GIVING computetarget errorcondition
((for X in 14 collect <I X (for (Y (R_ T2:—i ))

in
(REVERSE T2)

~~1.. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~V - - — -V.V — ~~~~~~~~~ - - -V.4*~V. V - V ~~~~~~ - ________
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: : i  do R <T i Y H >
finally

(RETURN R))
15> ) )

= operator  expr ess ions  connec tor com putetar get
errorcondition

((for X in 12 Join
( for Y in 114 co l l ec t  < I  Y < T i  Y : 2  X> 1 5> ) ) )

sen ten ces

= sentencei
(<Ti>)

sen tence ) . sentences
(<Ti ‘ T 3 > )

= sen tence 2
(T i )

sen ten ce2 . sen tences
( < I T i  1 13>)

si gn c o n d i t i o n

= NEGATIVE
( ‘  (GT$ 0))

= NOT NE GATIVE
( ‘  (LT Q $ 0 ) )

= NOT POSITIVE
V (GTQ$ 0))

: NOT ZERO
(‘ (NEQ$ 0))

= P O S I T I V E
C ’ (LT$ 0))

* ZERO
( ‘  (EQ $ 0 ) )

simpleconditlon

_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _
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= conditionname
(Ti)

e x p r e s s i o n  is relationoperator expression
(<13 T i T14>)

e x p r e s s ion  is s i gn c o n d i t i o n
(<!! T3 T i > )

ide n tit ’ier is ciasscondition
( < ‘13 ~ i>)

source

: r ROM D A T E
(12)

~‘RO i4 DAY
( T 2 )

rH , ~ 
V
~ I M E

( T 2 )

t k - ’!~ r~ne mo n icna rne
(i2)

s u ~‘ scr I pt S

= expression
(<Ti>)

ex pression , s u b s c r i p t s
(<T i ! T3>)

tar get

- 
(NIL)

= UPON mnemonicname
( T 2 )

t ian

— —V  ~~~~~~~~~~ V- ~~~~~~~~~ ~~~~~~~~~~~~~~~
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- 
(NIL)

= T H A N
( N I L )

t h e n c l a u s e

= N E X T  SENTENCE
‘N E X T )

= semi sentence
( 12)

thru

= T H R O U G H
( N I L )

T H R U
( N I L )

to

(N1L)

= TO
(NIL)

varying

= AFTER
C ‘V A R Y I N G )

= VA R YING
(‘V A R Y I N G )

wr i t e sou rce

(NIL)

-- 
V -- —V--- ~~~~~‘ -_V.V.

~~~~~~~~~
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= FROM identifier
(12)

_ _ _ _ _ _ _ _ _  --- V. - ~~~~~ -,—.- - - 
‘i- -_ _ _
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A ppendix B. COBOL Non—erasing Transduction Grammar

proceduredivision

= PROCEDURE DIVISION . paragraphs
(< ‘PR OCEDUREDIVISION$ < ‘SECT I ON $ N I L  1 114>>)

= PR OC EDURE D I V I S I ON . sec tion s
(< ‘PH OC E D U R E D I V I S I ON $ I 114>)

argumen t

= ex pr ess ions
(Ti)

= ex press ions conne ctor ex press ion
( ( if  T2 NE Q ( ‘b Y )

then (1 Ti 13> elseif Ti ::1 then (HELP
“Error  in re d uct ion to

argumen t “)

else <T3 I Ti>))

at

= AT
(NIL)

classcondi tion

A LP HABETI C
( ‘ISA L P H A B E T I C )

N U M E R I C
‘ISNU M ER I C)

corn pu tetarget

c o mp u t e t a rg e t i
(<Ti>)

= i d e n t i f i e r  , c o m p u t e t a r get
( < < ‘SET$ T i >  I 13>)

LL. 
- -
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= i d e n t i f i e r  R O U N D E D  , computetarget
(<< ‘SETHOUNDED$ Ti> I T*l>)

computetarget 1

= identifier
(< ‘SET$ Ti>)

identifier ROUNDED
(< ‘SETROUNDED$ Ti>)

condition

c o n d i t i o n  OR c o nd i t i o n 2
(<12 Ti T3>)

condition2
(Ti)

condition2

= condition2 AND condition 3
(<12 Ii T3>)

condition3
(Ti)

condition3

NOT conditlon3
(<Ti T2>)

co n d i t i o n 1 4
(Ti)

co n d it i o n 1 4

c o n d i t i o n  )
( T 2 )

simplecondition
( T i )

- _ _ _ _ _ _ _ _ _ _  -
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conditionname

= symbol
(Ti)

connec tor

BY
(T i )

= FROM
(Ti)

= INTO
(Ti)

= TO
(Ti)

corresponding

COR k
(NIL)

= COR R E SPONDIN G
(NIL)

corrop

= ADD
(‘ADDCORHESPONDING$)

= SUBTRA CT
(‘SU BT R A CTCORRE SPOND IN G$)

d iv idea rgum en  t s

= ex press ion BY ex press ion
( < T i T 3 > )

expression INTO expression
(< 13 T i > )

- 

- V - V V. — - —
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else

= EL SE
(NIL)

OTHER WISE
( N I L )

el seclause

= sem i else NEXT SENTEN CE
(‘N E X T )

sem i else sentence
(13)

= else NEXT ~E.~’T E N CE
( ‘N E X T )

else sentence
(12)

endcond ition

= ; at END sentence
(114)

= ; END sentence
(T3)

er rorcond i t i o n

= ; on SIZE ERROR sentence
(15)

SIZE ERROR sentence
(T 1 4)

ex pression

= express ion  + ex press ion 2
( < T 2  T i  13>)

_ _ _ _ _ _ _ _  
- — - V V - 
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= ex press ion2
(Ti)

ex press ion 2

= expression2 * expression3
(<12 Ti T3>)

= expression2 / expression3
(< T2 T i  T 3 > )

= ex pression3
(Ti)

ex press ion3

ex press ion3 ** ex press ion 14
(<T2 Ti T3>)

= ex press ion ll
(Ti)

ex press ion 4

ex press ion
(12)

= + ex press ion 14
(T2)

= — ex press ion Zl
(<Ti 0 T2>)

= ZERO
(0)

ZER OES
(0)

= ZEROS
(0)

: Identifier
(Ti)

= num ber
( T i )
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= string
(Ti)

ex press ions

expression
(<Ti>)

expression , expressions
(<Ti I T3))

filename

= symbol
(Ti)

fi lenames

fi l ename
(<Ti>)

= fi l ename , f i lenames
(<Ti I T3>)

identifier

= qualification
((if’ (NLISTP Ti)

then Ti  elseif  T i : i = ’OF and T i :3 : NI L .  then  T i : 2  else
( H E L P ‘Error% in% r e d u c t i o nS  toS identifier.)))

: qualification ( subscripts )
(< ‘OF (if (NLISTP Ti)

then Ti elseif Ti :1 ’OF and T 1 :3 : N IL  then  11:2
else

( H E L P  ‘Er rorS  inS reduction S to% i d e n t i f i e r .) )
13> )

i d e n t i f i e r s

= identifier
(<Ti>)

_ _  

_ _ _  _I- -— - - - -- - — - 
~~
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= identifier , i d e n t i f i e r s
(<Ti I T3> )

indexnarn e

symbol
(Ti)

iotype

= 1NPUT
(‘OP EI~I N P UT~~)

10
(‘OPENBOTH$)

= OUTPUT( ‘OPEN OUTPUT $)

is

= IS
(NIL)

mne m on icn ame

= symbol
(Ti)

mo ve

HOVE
(‘SETs)

= MOVE corresponding
( ‘MOVECO RRES PONDING$)

of

= IN
(N IL)

j 
_ _  

_ _ _  
_ _ _  

V
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0I~’
(NIL)

on

= ON
(NiL)

operator

= ADD

= D I V I D E
(‘I)

= M U L T I P L Y
( ‘•)

SU B T R A CT
( ‘— )

paragraph

paragraphna me . sentences
(< ‘PARA GRA PH$ Ti 1 13>)

~aragraphname

= symbol
(Ti)

paragraphs

= paragraph
(<Ti > )

= p a r a g r a p h  pa rag raphs
( < T i  ! T 2 > )

~ 

V.— ___
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per f’ormbody

procedurename
(< ‘DOe Ti Ti>)

procedurename thru procedurename
(< ‘DO$ Ti T3>)

per formcontrol

= UNTIL condition
( ( T2 T i > )

= expression TI~IES
(<T2 Ti>)

= v a r y i n g  e x p r e s s i o n  FR O Il  e x p r e s s i o n  BY expre3sion UNTIL
condition

(<Ti <T2 114 16 18>>)

per formcontrol s

= per formcon trol per for m con tro ls
(<Ii I T2>)

= performcontro l
(<Ti>)

procedurena me

= symbol
( T I )

proc ed urenames

= procedurename
(<Ti>)

= proce d urename , proce d urenar n es
( T i  1 13>)

quali ficat Ion

V -  -- - -~~~~ — - —~~~~~~ --- -- _I-.__ - V. - -
~~~~~
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symbol
(< ‘OF Ti NIL>)

symbol  of q u a l i f i c a t i o n
(<T3:i T3:2 <I T3:3 Ti>>)

read target

= INTO identifier
(T2)

recor d

RE CORD
(NIL)

r e c o r d n am e

= symbol
(Ti)

rel ati ono perator

= NOT relationoperator2
((SELECTQ 12 ((QUOTE EQ$)

‘NEQ$ )
((QUOTE NEQ$ )
‘EQ$)

((QUOTE LT$)
‘GTQ$ )

((QUOTE GTQS )
‘LT$)

((QUOTE LTQ$)
‘GTe)

( ( Q U O T E  GT$ )
‘LTQ$)
(HELP ‘

“Error in reduction of first alternative of
r e l a t ion o p e r at o r  .“)))

= r e l a t i o n o p e rat o r 2
(Ti)

_ _ _  
- -- 

- 
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r e l a t i o n o p e r a t o r 2

= ( ‘LT$ )

- 

(‘EQ$)

>( ‘G T *)

EQUAL to
( ‘EQ$ )

z G R E A T E R  th an
( ‘GT$)

= LESS than
‘LT$)

= EQUAL
(‘EQ$)

G R E A T E R
( ‘ G T $ )

= LE SS
(‘LT$)

roun d ed

= ROU N DED
(Ti)

sec tion

= sectionname SECTION . paragraphs
(< ‘SECTIO N $ T i I 114>)

sec ti onname

symbol
(Ti)

-

-

~~~~~~ 

- - 
~~~~~~~~~~~~~~~~~~~~ - V~~V .~~~~~_ ~ — - — -, - 
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sec ti ons

= section
(<Ti>)

= section sections
( < j V ~~ I 12>)

semi

(NIL)

sentence

= sentencei
(Ti)

sentence2
((if Ti ::1 then < ‘DO$ ! Ti> else Ti:i))

sentence 1

ACCEPT id en tifi er source
(<Ti 12 T3>)

CLOSE filenames
(<Ti I T3>)

= GO to procedurename
(<Ti 13>)

= IF condition thenclause elseclause
(<Ti 12 T3 T14>)

= PERF ORM per form body performcon trols
( ( if  T3 then  ( for ( X  R T 2 )

in
(REVER SE T3)
do R, < ‘PERFORM X:i R X:2 NIL> finally
(RETURN R))

else < ‘PERF ORM ‘ (ONCES)
12 NIL NIL> ))

= READ filename record readtarget endcondition
(<Ti 12 14 T5>)

,s.
1i. — - -  

V_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -r~~~~~-- 
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z OT OP H U N
( T i )

= ~ R1TE recordname writesource
(<T i 12 T~~> )

corrop corresponding identifier connector identifier
rounded

e r r o r c o nd 1 t i on
( < T i  T I~ ‘r~ T6 17>)

= GO procedurename
( < T i  T 2 > )

IF con ~~i t 1o n  t h e n c l a u s e
(<Ti T2 13 ‘NEXT )

P~ F~~U~ M performbody
((if NIL then (for (X R_T2)

in
(REVERSE NIL)
do H < ‘PERFORM X: i H X:2 NIL> finally
(H E T U R N  R ) )

else < ‘P E R F O R M  ‘ ( O N C E $ )
1 2 NIL NIL)))

HEAD filenarr e readtarget endcondition
(<Ti T2 T3 T14))

= READ filename record endconditio n
(‘~Ti T2 NIL TM >)

= HEAD filename endcondit ion
(<Ii 12 NIL T3>)

= HEA D filename record readtarget
(<Ti T2 TM N I L > )

= HEAD filename readtarget
(<T i 1? T3 NIL>)

= HEA D filename record
(<Ti T2 NIL NIL>)

HEAD f ilename
(<Ti T2 NIL NIL>)

= ~.}iITE recordnarn e
(<Ti T2 NIL))

= corrop corresponding identifier connector identifier
e r r o rco n d  I t i o n

( < T I  13 15 N I L  T 6 > )

_ _ _ __ _  - --~~~~~~~~~~~~~V.- - - —1-
~~~~ —
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cor rop  c o r r e s p o n d i n g  i d e n t i f i e r  c o n n e c t o r  i d e n t i f i e r
roun d ed

(<Ti T3 T5 16 NIL>)

= corrop corresponding identifier connector Identifier
(<Ti 13 T5 NIL NIL>)

sen tence2

= COMPUTE computetarget = expression errorconditlon
((for X in T2 collect <I X TM 15>))

= DISPLAY identifiers target
((for X In T2 collect <Ti X T3>))

= DIVIDE dividearguments GIVING computetargeti REMAINDER
i d en t i f icr

errorcond ition
(<< I TM < ‘I I 12> T7> < ‘SET $ T6 <NIL 12:1 <“  T14:2 T2:2>>

Ti >> )

GO to procedurenames DEPENDING on expression
((for I to (LENGTH T3)

coll ect
(< ‘IF < ‘EQ$ T6 I> < ‘GO (CAR (NTH T3 I))

> ‘ N E XT > ) ) )

OPEN iotype filenames
((for X in 13 collect <T2 X>))

move expression TO Identifiers
( ( f o r  X in T M c o l l e c t  < T i  X T2 N I L > ) )

= operator arguments GIVING computetarget errorcondition
((for X in TM collect <I X (for (Y (R_ T2:—i))

In
(REVERSE T2)
::i do R_ (T i Y H>

finally
(R E T U R N  H ))

T 5 ) ) )

= operator expressions connector computetarget
errorc on d I t ion

((for X in T2 join
(for Y in TM collect <1 Y <Ti Y:2 X> 15>)))

= COMPUTE com pu tetar get : ex pr ession
((for X In T2 collect <I X T1~ NIL>))

- V.—-__ -- - V — -~~



CObOL Language , Parsing, and Abstract Form I—Mg

= DISPLAY identifiers
((for X in 12 collect <Ti X NIL>) )

= DIVIDE divideargur nents GIVING computetarget i REMAINDER
i d e n t i  f i e r

(<<1 TM < ‘I ! 12) NIL> < SET$ T6 <NIL T2:i < ‘  T 14 :2
T2:2)> NIL>>)

= GO p r o c e d u r e n ar n e s  D E P E N D I N G  on e x p r e s s i o n
((for I to (LENGTH 12)

collect
(< ‘IF < ‘EQ$ T5 I> < ‘Go (CAR (Nm 12 I))

> ‘ N~LXT ) ) ) )

GO to procedurenames DEPENDING expression
((for I to (LENGTH T3)

collect
(< ‘IF < ‘EQ$ T5 I> < ‘GO (CAR (NIH T3 I))

> ‘ NEXT >)))

GO procedurename s L E P E N D I N G  expression
((for I to (LENGTH T2)

collect
(< ‘IF < ‘EQ$ TM I> < ‘GO (CAR (NTH 12 I))
) ‘ NEXT >)))

operator arguments GIVING computetarget
((for X in TM collect < ! X (for (Y (H 12:—i))

in
(R E V E R SE T2)
::i do H <Ti Y H>

finally
(RETURN H))

NIL>))

= operator expressions connector computetarget
((for X in T2 join

(for Y In 14 collect < 1 Y < T i  Y :2 X> NIL>)))

sen ten ces

= sentencei
(<Ti > )

= sen tence i . sen tences
(<Ti 1 13>)

sentence2
(T i)

-~~~~~ 

, - -  
- - V -~~ 
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= sen tence2  . sentences
(<! Ti I T3>)

s i g n c o n d i t i o n

= NEGATIVE
V (GT$ 0))

= NOT NEGATIVE
V (LTQ$ 0))

= NOT POSITIVE
( ‘ (GTQ$ 0))

NOT ZER O
( ‘  (NEQ$ 0))

= POSITIVE
( ‘  ( L T $  0 ) )

= ZER O
( ‘ (E Q S  0 ) )

s imp l e c o n d i t i o n

= conditionname
(Ti)

= ex press ion is rela tionopera tor ex press ion
(<13 TI T M> )

= expression is signcondition
(<II 13 Ti> )

= id e n t i f i e r  is cl a s s c o n dlt i o n
(< 13  T i > )

= express ion  r e l a t i o n o p e r a t o r  expres s ion
(<12 Ti 13>)

= expression signoondition
( < I !  T2 T i > )

= i d e n t i f i e r  classcondltion
(<12 Ti>)

H 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _  
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sourc e

= FR OM DATE
(12)

= FR OM DAY
(T2)

FROM TIME
(T2)

= F R OM mnemonicname
(12)

s u b s c r i p t s

expression
( < T i > )

ex press ion , subscripts
(<Ti I T3>)

t a r g e t

= UPON mnemonicname
(12)

than

T H A N
(NIL)

th en cl ause

= NEXT SENTENCE
( ‘N E X T )

= semi s e n t e n c e
(2)

= sentence
( T i )

-
~~ 

- 
- - - -—-- - -
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t hr u

THR OU GH
( N I L )

THRU
( N I L )

to

= TO
(NIL)

varying

AFTER
(‘VARYING )

= VARYIN G
(‘VARYING )

wr ite source

= FROM identifier
( 12)

I
-V. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — —~~- - ----
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A p p e n d i x  C. A Sample Transduction

1. A COBOL Program

P R O C E D U R E  D I V I S I O N
START— HER 1.

OPEN INPUV I A CNT— RILE
MLV ~ . ZE R O ru ST oR E

H E A D — I T
R~~A L  A C N T ~ FILE ; AT END GO TO END— IT
ALL 1 To SlOHE

C O M P A R E
IF ACNT — N O EQUAL STORE GO HEAD— IT
DIS PLAY SIORE
IF STORE ECUAL 99 STOP HUN
ADD 1 TO STORE
GO COMPARE

E N L — I T
C O I I P U I t .  STO R E ~~

V
~~~~V E  + 1

IF STORt. IS GREATER THAN 9Q ; STOP H U N
DISPLAY STORE
GO TO E N D - I T

2 . The C o r r e s p o n d i n g  Parse Tree

((root . 1)
((proceduredivision . 1)
PR OCED iHE DIVISION % .
((paragraphs . 2)
((paragraph . 1)
((par~ graphname 1) ((symbol . 1) START—HERE))

((sentences . 4)
((sentence2 5)

OPEN
((iotype . 1) INPUT)
((filenames . 1)
((filename . 1) ((symbol . 2) ACNT—FILE))))

((sentences 3)
((sentence2 . 6 )

((move . 1) MOVE )
((expression . 2)
((expression2 . 3)
((expression3 . 2) ((expressionM . 44 ) ZERO))))

TO
((identifiers . i)
((identifier . i)
((qualification . 1) ((symbol . 3) STORE)))))

S . ) ) )
((paragraphs . 2)

Vi  
_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _

~~~

- j n it 
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((paragraph . 1)
((paragraphname . i) ((Symbol . 4) READ— IT))
((sentences . 2)
((sentencei . i s )

R E A D
((filename . 1) ((symbol . 2) ACNT—FILE))
( ( e nd c on d i tio n  . 1)

( ( a t  . i )  A T )
END .
((sentence 1)
((sentencel . 3)
GO
((to . i) TO)
((procedurenav ~ie . 1) ((symbol . 5) END—IT))))))

S.
((sentences . 3)
((sentence2 . 16)
((operator . 1) ADD )
((expressions . 1)
((expression . 2)
((expression2 . 3)

((expression3 . 2)
((expression4 . 8) ((number . 1) tfl))))

( (c o n n e c t o r  . 4) TO)
((computetarget . i)
((computetargeti . 1)
((identifier . 1)
((qualification . 1) ((symbol . 3) STORE))))))

S.)))
((paragraphs . 2)
((paragraph . 1)
((paragraphname . i) ((symbol . 6) COMPARE))
S.
((sentences . 2)
((sentencei . ii)

IF
((condition . 2)

( ( c o n d i ti o n 2  . 2)
((condition3 . 2)
((condition44 . 2)
((simplecondition . 5)

( ( e x pression . 2)
( (exp r e s si o n 2  . 3)
((expression3 . 2)
((expressionM . 7)

( ( i d e n t i f ier  . i)
((qualification . i)
((symbol . 7) ACNT—NO)))))))

((relationoperator . 2)
((relationopsrator2 . 7) EQUAL))

((expression . 2)

- -- V - V - V~ V~~~~~~~ — -- V - -~~~~~~~ - —- — -
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((expression2 . 3)

((expression3 . 2)
((expression t4 . 7)

( ( i d e n t i f i e r  . 1)
((qualification . i)
((symbol . 3) STORE))))))))))))

((thenclause . 3)
((sentence . i)
((sentencei . iO)
GO
((procedurename . i) ((symbol . 4 )  READ—IT))))))

S .
((sentences . 44)
((sentence2 . 10)

DI SPLAY
((identifiers . 1)
((identif’ier . 1)
((qualification . 1) ((symbol . 3) STORE)))))

S .
((sentences . 2 )

( ( s e n t e n c e l  . ii)
IF
((condition . 2)
((condition2 . 2)
((condition3 . 2)
((condition t4 . 2)
((simplecondition . 5)
((expression . 2)
((expression2 . 3)

( ( e x p r e s s i o n3  . 2)
((expression4 . 7)
((iden ti fier . i)
((qualification . i )
((symbol . 3) STORE)))))))

((relationoperator . 2)
( (r e l a t i o n o p e r a t o r 2  . 7)  E Q U A L ) )

( ( e x p r e s s i o n  . 2)
((expression2 . 3)
((express1on~ . 2)
((expressionM . 8)

( ( number . 2 ) 9 9 ) ) ) ) ) ) ) ) ) )
( ( t h e n c l a u s ”  3)
((sentence . 1) ((sentence l . 7) STOP RUN))))

S.
((sentences 4)

( ( s e n t e n c e 2  . 16)
((operator . 1) ADD )
((expressions . 1)

V ((expression . 2)
( ( ex p r e s s i on 2  . 3)
((expression3 . 2)
((expression4 . 8) ((number . 1) i))))))

((connector . 4) TO)

i.L 
~~~~~~~ V V V -

- 
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( ( c o m p u t e t a r g e t  . 1)
((computetargetl . 1)
((identifier . i )
((qualification . i) ((symbol . 3) STOR E )) ) ) ) )

S.
((sentences . 1)
((sentencei . 1 0 )

GO
((procedurename . 1) ((symbol . 6) COMPARE)))

5 . ) ) ) ) ) )
((paragraphs . i)
((paragraph . 1)
((paragraphname . i) ((symbol . 5) END—IT))
S.
((sentences . 4)

( ( s e n t e n c e 2  . 9)
COMPUTE
((computetarget . 1)
((computetarget i . i)
((identifier . 1)
((qualification . 1) ((symbol . 3) STORE)))))

((expression . 1)
((expression . 2)
((expresslon2 . 3)

((expres sion 3 . 2)
((expression4 . 7)
((identifier . 1)
((qualification . 1) ((symbol . 3)

STORE)))))))
+

((expression2 . 3)

((expression3 . 2)
((express ion J4 . 8) ( ( n u m b e r  . 1) 1))))))

S.
( ( s e n t e n c e s  . 2)
((sentencel . ii)
IF
((condition . 2)
((condition2 . 2)
((condition3 . 2)

( ( c o n d i t i o n M  . 2)
( ( s im p l e c o n d it i o n  . 2)
((expression . 2)

( ( exp r e s s i on 2  . 3)
( ( e x p r e s s i o n 3  . 2)
((expression 4l . 7)
((identifier . 1)
((qualification . i)
((symbol . 3) STORE)))))))

( ( I s  . 1) IS)
((relationoperator . 2)
((relationoperator2 . 5)

- -- ,r — -
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GHEA ’IRR
((than . i )  THAN)))

((expression . 2)
((expression2 . 3)

((expression3 . 2)
((expressionl4 . 8)
((number . 2) 99))))))))))

((thenclause . 2)
((semi . 1) ;)
((sentence . 1) ((sentencei . 7) STOP RUN))))

((sentences . 14)
((sentence2 . i O )
L ISP L A Y
((Identifiers . i )
((identifier . 1)
((qualification . 1) (( sy mbol . 3) S T O R E ) ) ) ) )

S .

((sentences . 1 )

((sentence i . 3)
GO
( ( to . 1)  0)
((procedurer ~ame . 1 ) ( ( s y m bol . 5) E N D — I T ) ) )

br ~AD)

3. The C o r r e s p o n d i ng  A b s t r a c t  Form

(~~H O C E L U R E D 1 V 1 S I O N ~(s~-~C T I O N ~ N I L
( P A R A G H A P t I S  S T A R T — H E R E

( C P E N I N P U T $  ACNT— FILE)
(SEa STO R E 0 N I L ) )

( P A R A G R A P H s  R E A D — I T
( R E A D  A C N T — F I L E  N I L  ( GO E N D — I T ) )
( S E T S  S T O R E  (+  S 1 O H L  I )  N I L ) )

( P A h A W i A P ~~ C O M P A R E
( i F  ( E C S  A C N T — N O  S T O R E )  ( G O  H E A D — I T )

t ,~~X i )
( D I S P L A Y  STO R E N I L )
( I F  ( E Q S  STORE 9 9 )  ~~~~~~~ N E X T )
(SEn  STORE (+  S T O R E  1) N I L )
( GO C O M P A R E ) )

(PA RA GRA PI ~t E?~D— I1
(SETS S~ Oh E  ( +  STORE 1)  N I L )
( 1F  (Cl ’ S S 1 U R E  99)  STO P N E X T )
( U 1 S P L A Y  l O R E  N I L )
( G O  E N D — I T ) ) ) )

_ _ _ _ _ _ _  - V~~~ V -~~~~~~~~~~~~ V
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Syntax of the COBOL DATA DiVISION

L. Robinson

This  documen t c o n t a i n s  t h e  s y n t a x  of the DATA DIViSION

of the COBOL subset for verification . As is the case for

th e PR OCED URE DIVISION , the language is described as a

transduction gramm ar . At this point in t im e , t he

t r an s d u c t i o ns  for the DATA DIVISION grammar have not been

included . The objective of the transductlons of the

PROCEDU RE DIVISION is to create a COBOL program in abstract

form . The transductions of the DATA DIVISION can be used to

construc t a symbol table to be employed by the COBOL

verification system .

The DATA DIVISION is divided into two parts , the FILE

SECTION and the ~ORKING-STQRAGE section . The FILE SECTION

contains the information on files used by the program , and a

description of the data records associated with the file. A

data record contains the names and picture specifications

(i.e., the declarations) of variables used in the program .

The WORKING— STORAGE SECTION is used to declare the program

variables not contained in data records of files. Variables

in the WORKING — STORAGE SECTION may be declared individually

or grouped In to  data records.
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A t’ile declaration contain s several options , of which

only a tV ew are included In the subset. LABEL and DATA

RECORD options are included , while ELOCK , RECORD , VALU E OF ,

L1NAGE , CODE— SET , and REPORT are eliminated . BLOCK , RE CORD ,

~VAL UE_ O F , and CODE—SET are items of value to the

implementing machine. LINAGE and REPORT are used by the

report module of COBOL , none of whose primitives are part of

the subset.

Record descriptions are tree— structured . A record

description entry can designate a group item , in which case

it contains a level number and a name , or an elementary

~~em , In which case its picture , etc., are also described .

If the value of an elementary item corresponds to a

condition—name , a level—numbe~ of 88 is used together with a

description of the values that signify the condition. A

working— storage variable declared individuall y has a level

number of 77. The first name in a data record description

must have a level number of 01. For elementary or group

items , any two—digit level number (except 01 , 66 , 77, or 88 )

may ~e used .

A data description entry characterizes an elementary

data item . It consists of a level number followed by the

name of the Item or FILLER (if the item is not to be

referenced at the elemen tary level by the program) and a

list of options. v~e include the options PICTURE , JUSTIFIED ,

-. V— — ~V~~~~_ — — —~~~~~. — -,-— -V- 
-
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and VALUE. Excluded are REDEFINES , U S A G E , SI GN , OC C U R S ,

SY N CHR ON I Z E D , and bLANK ZERO. REDEFINES and OCCURS have not

been axiomatized , and would require an enlargemen t of the

subset . USAGE will only be LIShLAY for this subset , so it

was eliminated ( s i n i ’ e t n a ~ Is  the default). SIGN and BLANK

ZERO can be handled by numeric editin g . JUSTIFIED provides

for the a ’ignm ent of characters In an alphanumeric item when

data items are moved ~~“ I t .  ~A L L ’ E performs i n i t i a l i z a t i o n

of an elementary data it~~r .

PICTURE spec ifications are the most complicated (and

perhaps the most 1nteres~ in~~) part of the DATA DIVISION

grammar . There are three type s of pictures , with the

picture type determining the type of the data item .

aphabetic items may contain letters and spaces.

Alphanumeric items may contain any printable characters.

Numeric items contain fixed decimal or integer values. The

picture specification may indicate that the data item is

~~~~~~~ in which case changes are made in order to print out

the data item . Editing can take two forms—— ln~ ertipn and

zero ~~~~res3IQn . In Inser tion , ex tra c harac ters are

inserted between digits in the edited item . The nature of

the insertion may depend of the value of the item . In zero

suppressIor~, leading zeros (and intervening i nse r t i o n

characters) to the l e f t  of the  decima l point are replaced by

spaces , asterisks , or spaces followed by either plus , m inus ,

or currency sign . In PiCTURE specification s , the kind of’

~1. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--- --

~~ 

— - - -
~~~~~~~ 

- - -
~~~~~~~~~~~~~~~ 

— 
V~~~~~~~ V~~~~~~ —~~
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editing is described by the sequence of characters involved .

Since there are many possible character combinatio ns

(corresponding to the kinds of editing to be done), ~“e

grammar for the picture specifications is difficult indeed .

- — — -— V -V — ~VV •_~~~~~ • V V~~~~~~~~~~~~~ — —
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Appendix A. Grammar for the Data Division

data—division
DATA DIVISION
DATA DIVISION . file— section
DATA DIVISION . file—section working—storage—section
DATA DIVISION . working— storage— section

$character
= S

embeddedchara cter

$~ tring
$character $string
$strin g

$str in g l
Sstriri g
$string decimalpoint
$string decima lpoint $strlng
$string pstring irnpliedpo int
decimalpoint $string
impliedpoint pstring $string

‘character
- I

embeddedcharacter

‘string
‘character
‘character ‘string

9c ha ra cter
:9

e m b e d d e d c h a r a c t e r

‘-S. 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - - -~~~ V - ~~~~~~~~~~~~~ — -——-——-———---.-—., VV -V~~ V
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9str ln g
= 9cha rac t e r

9character 9string

cred ltdeb  it
.4.

CE
DB

cur rency i ri  ser t ion
$s t r i ng  e d i tst r i n g
$stringl

da t a— desc r ip t i on
88 symbol semi value ranges

= level—number data—name
level—num ber data—name picture justification value—clause

d a t a— d e s c r i p t I o n  1
symbol p ic tur e j u s t i f i c a t i o n  va lue—cla use

d a t a — d e s c r i p t i o n s
data—description
d a t a— d e s c r i p t i o n  . data—descriptions

data—name
= F I L L E R
= symbol

d a t a— r e c o r d

sem i DATA recor d symbols

decimalpoint

~~~— ‘
~~~~~~~~~~~~~~~~~— V-V-. -- -— --  — -----—---—— — V--  ~__V - V__ .W~ - —-V 
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V

editstring
= editstrlng2

pstrlng
= p st r i n g  imp l i e d p o i n t

editstririgi 
-

~~~

= t . .-
~~~L ~~~~~~~~

impliedpoint pstring gstring
pstring 9string

editstring2
= 9string
= 9strlng decimalpoint

9string decimalpoint 9string
9strlng pstring
9str ing pstrlng irnpliedpoint

= decimalpoint 9string

embeddedchara cter
: 0

/
= B

fIle—descriptor
= FD symbol label—record

FD symbol label—record data—record . record—descriptions

f i l e— d e s c r i p t o r s
f i l e— d e s c r i p t o r

= f i l e— d e s c r i p t o r  f i l e— d e s c r i p t o r s

file—section
= FILE SECTION
= FILE SECTION . f i l e— d e s c r i p t o r s

_______ — —--~~~~~~~ -- -V—-- - -
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impliedpoint

= V

lnltialpart
= $
= 5 +
=

=

is

= IS

just
JUST

= JUSTIFIED

justification

= semi just
= semi just RIGHT

label —record
= semi LABEL record OMITTED
= semi LABEL record S T A N D A R D

l i t e r a l
= number
= string

m i n u s ch a r a c t e r

= embeddedcharacter

‘I. .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- V~-V~-V V ~~~~~~~~~~ - - ~~~~~~~~~~~~~~ —
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rninusstr ing
minusc hara cter
minuscharacter minusstring

numericedited
currencyinsertion

= currencyinsertlon creditdebit
initialpart numericedited i
riurnericedited i
numericed ited l creditdebit
sign currencyinsertion
signinzertion

numericedited 1
= editstring l

zerosup pression

picture

= semi picture—word is picture— spec

picture—word
= PlC

PICTURE

p1 uscharacter
= +
= embeddedcharacter

plusstring
= p lu s c h a r a c t e r
= p lu s ch a r a c t e r  p lu s s t r i ng

pstring
= P
= P pstring

_ _- V V ___— -- - 
~~~~~~~~~~ 
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range
= li t er al
= literal thru literal

ranges
= range

range , ran ges

recor d
= REC ORD
= RECORD IS
= RECORD S
= RECORDS ARE

record—descr ip t ion
= 01 symbol . d a t a — d e s c r i p t i o n s

record—descr ip t ions
record—description

= r eco rd— desc r ip t i on  . record—descriptions

semi

sign
= +

signinsertion
= $ s ign at r i n g  e d i t s t r i n g
= signstring editstring
= signstringl 

——--—--.--— 
.
~~
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signstring
= minusstring
= plusstring

signstringl
= decimalpoint sigristring

impliedpoint pstring signstring
= minusstring declmalproint minusstring
= plusstring decimalpoint plusstring
= signstring
= signstring decimalpoint
= signstring pstring itnplledpoint

suppressstr ing
= ‘string
= zstring

suppressstring 1
‘string decimalpoin t ‘string

= decimalpoin t suppressstring
= impliedpoint pstring suppressstrlng
= supp ressst r ing
= suppressstriri g decimalpoint
= suppressstring p st r lng  impliedpoint
= zstring decimalpoint zstring

symbols
= symbol

symbol symbols

thru
= T H R O U G H
= THRU

va lue
= VALUE
= VALUE IS

VALUES
= VALUE S ARE

~
_e ~~~~~~~~~~~~~~~~~~~~~~~~ 

- —- —---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ — -
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va lue— clause

= sem i VALUE IS literal
sem i VALUE literal

working—storage—list
= 77 data—description 1
= 77 data—description 1 . working—storage—list
= record—description

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . w o r k i n g— s t o r a g e — l i s t

w o r k i n g— s t o r a g e — s e c t i o n
= WORKING—STORAGE SECTION
= WORKING— STORAGE SECTION . w o r k i n g — s t o r a g e — l i s t

zc har ac ter
Z
embeddedchar ac te r

zerosupp ress ion
= suppress s t r ing  e d i t s t r in g

s u p p r ess s t r i n gl

z s t r i n g
zc harac ter

= ‘~character zstring

~~~~ 
~~~~~~~~~~~~~~

.

~~~~~~

——-i 
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APPENDIX I I I

M. W . Green

Axiomat iza t ion  of COBOL Semantics

This section reports on prel iminary work toward an axiomatic repre-

senta tion of COBOL semantics. The aim is to describe an adequate , but

somewhat res tr ic ted , subset of COBOL in such a way that automatic or semi-

automatic generation of program verification conditions is facilitated .

To a cons iderable extent we have been gu id ed by b are ’s axioniatization of

the language PASCAL [1]. Howeve r , COBOL is in some respects a much more

complex language than PASCAL , so tha t  some additional notational and meta—

linguistic conveniences had to be improvised to describe the effect of certain

COBOL statements.

The COBOL language is described in the ANSI Report [2) by a collection

of syn tatic fo rms accompan ied by informa l or ‘prose” specifications of the

effect of each language statement. In interpreting this document we have

noticed several instances where a restriction or a relaxation of the allowed

language expressions would be helpful in formulatin g useful program verif i—

cation conditions . Where these situations arise , we have arbit rar ily chosen

to use the most convenien t interpretation (or restriction). In particular,

we should ment ion

1. There are seve ral instances where the descr ip t ion  of COBOL

syntax (as given in the AN SI  report) seems unnecessarily re-

strictive . For example , the GOTO.. . DEPENDING ON [ Id)  state-

ment could just as well accept an integer—valued arithmetic

expression (or even a COMPUTE...) instead of a simple iden-

tifier. Where we could see no reason for observing this

sort of language restriction we have omitted it from the

axiomatization of the version of COBOL tha t actually will be

used in program proving. If a compiler forb id s the mo re

relaxed syn tax , then the program i s no t well formed and proo f

of correc tness is not an issue.

- —-
~~~~~~~~ 

-. - - - V V — ---- ~~~~~~ — - 
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2 .  There are instances where a COBOL statement is considered

to be too dangerous or too difficult to cope with in program

verification . Examples are the ALTER verb and the MOVE

statement applied to group d a t a — i t e m s . in the former case ,

the possibly intricate variations in flow of program control

are very dif licul t to handle . In the latter case , the pred-

icates associated with all of the poss i ble consequences of

an unformatted t ransfer of alphanumeric data are extremely

complex. For such reasons we w i l l  o f t e n  o m i t  some COBOL

statement from the axiomatic description (forbid them) or

restrict the generality of others .

3. Wh ere the syntatic correctness of an allowed COBOL statemen t

is clearly checkable by a compiler , we will assume correctness

on the part of the comp iler. Furthermore we assume that certain

run—time checks that detec t operands of inappropriate type will

be compiled into the execu table code. This means , for example ,

that we need not adjoin predicates to an ADD statement which

assert tha t the arguments are numeric quantities. The consequences

of a run—time error in data—type may be hand led in at least two

sensible ways . The first would attach an implicit ON ERROR GOTO...

to each statement where such a situation could occur. We choose a

simpler alternat ive in ~Vhich these errors si gnify non—termination

of the program . This is consisten t with Iloare ’s treatmen t of PASCAL

wherein P[S3Q is satisfied if S di\Ver~&es

-1 . ~OROL is a language with a rather weak notion of data—type , and a

very elaborate collection of conversion rules. Other algebraic

languages make do with few standard internal representations for

data—types and a few permissible hi gh—level coercion rules such as

I N TEGER 4 REAL ~
- REAL to preserve integrit y of data—type. In these

langua~ E~s the explicit round ing or tunca t ion  of numer ic  q u a n t i t i e s

to conform with non—standard internal representation must usually

he accompl i shed by extra arithmetic manipulations expressed as high—

lovel language s t a t e m e n t s .  In the l a t te r  respect COBOL is pecu l ia r

(bu t n o t  u n i q u e ) ,  because a simp l ~ assi gnmen t s t a t e m e n t  need not

---V -- - . ______-1-S 
~~~~~~~~~~~~~~~ - --—-------- ~~~~~~~----— - —
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preserve numeric equality between the sending and receiving

values. For this reason we need some method of expressing

the effect of transmitting the value of an elementary COBOL

data—item to a receiving identifier . The route we have taken

is to express these conversion rules as functions (without

side—effects) that accept values and PICTURES as arguments and

return values equivalen t to the COBOL convers ion rules. (See

details below.)

I l lustra tive Examp les

1 . MOVE

The COBOL MOVE sta temen t is the analog of the ass ignmen t statemen t

in other high—level languages. For the most primitive form of this statemen t ,

MOVE x TO y; the correspond ing PASCAL or ALGOL equivalent is y:= x. The Hoare

axiomatization of this statemen t would be,

r~
’CMovE x TO y)P

where the notation P~
’ denotes the predicate derived from P by s u b s t i t u t i o n

of the value of x for v in P. Informally, if P is true after execution of

[i~iovE x TO y} then P
3’ is also true. Now the MOVE statement , in addition to

having several variational forms, may also modify data so that x ~ y af ter

a MOVE. This occurs whenever x suffers an editing operation on being trans-

ferred to location y . All such editing operation s may be described by functions

h a v i n g  no s i d e — e f f e c t s  such as E d i t ( x ,p i c ) .  Here , Ed i t  is a func t ion  of two

ar gumen ts , the value of x and the PICTURE corresponding to the var iable  y.  The

internal details of the function Edit implemen t the conversion rules described

by the COBOL report and the function d e f i n i t i o n  of E d i t  can serve to d e f i n e  the

semantics of the conversion process.

In s ta tements  t ha t  man i pula te  arithmetic quantities , COBOL prov ides

the option of truncating or rounding values that mig ht not be accommodated to

full precision in the receiving picture . Truncation Is the normal default

operation , but round ing  can be forced by the use of the ROUNDED modifier in

most arithmetic operations. The effects of truncation or rounding may also

be described by e d i t i n g  functions , for example ,

E d it t r u n c(x ,pic ) and E d lt r o u n d ( x ,p i c )

with equally precise internally def ined semantics . In the following discussion

_ _ _ __ _ _ _ _ _ _ _  _ _ _ _ _ _
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we will use the function Edit as a generic name for the conversion function .

When a ROUNDED modifier appears in a COBOL statemen t it should be understood

that Editround is to be used instead of Edit etc.

Standard COBOL permits a MOVE of non—elementary (group) i tems via

an unformatted block—transfer of alphanumeric information . To avoid this

dangerous programming practice , we make a restriction that MOVE x to y where

x and y are group i tems is permitted only when x and Y have identical picture—

structure as defined in the DATA DIVISION . ~Vith this constraint all MOVE

statements can be decomposed into MOVEs of elementary items .

Observing these conventions the axiom for the MOVE of an element2ry

data—item becomes

P~~MOVE x TO y)P, where E Edit(x ,p ic)

The alternative form , MOVE x to a , b , . . .is transduced by the CTG (see Appendix I)

to a sequence of simple MOVES and therefore does not require separate axiomati—

zation. However , to explicate this notion , we introduce the rule

E 1, E 2 , . ..

E 1 Ed
~~

t ( X
~ P~

C
a

)
~ 

E 2 E d i t ( x ,p ic b
)

N o w , according  to Section 5.15. I of the COBOL standard , value sub-

stitution s are to be carried o u t  in sequence r a t her  than “s imul t aneous ly .”

Th u s , the s t a t emen t s

MO VE 1 to j ,  a ( j )

\~~~~\V 1V
; i to a (.j ) ~ j

should have differen t etlect s . C o n s e q u e n t l y,  we w i l l  observe the  convent ion

t h a t  the n o t a t i o n

stand s for the expression resulting 1 m m  fIrst substituting E
1 

for a in P,

then s u b s t i t u t i n g  
~~~,, 

foi b in the derived expression , e tc .  Th i s  d i f f e r s  from

the i n te r p r e t a t i o n  found In Iioare 11] ,  where s imul taneous sub s t i t i o n  was the  rule.

- — -VV_~~~~~~ ~~~~~~~~~~~ ~~~~~ — - -  V.4
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The third variant of the MOVE statemen t, namely MOVE CORRESPCED IN G

x TO y,  involves group data—items. In the internal representation of the

data d ivision of a COBOL program there w ill be a form of symbol table that

provides a unique address (name) for each elementary data-item. However this

information is kept , an equivalent unique name for each elementary item can

be specified by forming the ordered list of identifiers (i.e., qualifiers)

proceeding from the name of the data item upward through each level of data

subdivision to the 01 level. For example in the data structure

01 RECORD

02 BAZ
oc A

05 B

the namelist  of B is (B , BAZ , RECORD) , and th is  is ent i re ly  equivalent  to

the specif icat ion in COBOL syn t ax , B IN BAZ IN RECORD.

Def in i t ion :

Two elementary i tems are CORRESPONDIN G w i t h  respect to id 1 and id 2
i f id 1 ~ Id

2 
and the nameli s t  of the first i tem up to but not includ ing id

1 
is

ident ica l  w i t h  the namel is t  of the second i t em up to but  not inc luding id2 .

Let Z be the set of ordered pairs

[~1~1, x
2
y
2
... Ix 1Y1

CORRE SPONDING in X ,Y)

and E1 = E d i t ( x1,pi c ) ...y l

then the llule

Y(x ~ y )  € Z: P
E~

[MOVE x~ TO

I y •••

(i~iov~ CORRESPONDING X ‘ID Y)P

gives the semant ic  i n t e rp re t a t i on  in t h i s  fo rm  of the PL)U ~~t a ~~~’r. - ’

2. GOTO

The GOTO statemen t has two varian ts.

GOTO procedure—name ,

GOTO procedure —nam e 1 , Iproce~iur .—i~~~.

DEPENDING (1’. tdcnUl~~,~r.

L -
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A suitable axiomatic treatmen t of the GOlD is given in Knuth [3]. For

COBOL programs , we need the following rules. To each procedure—name L in

the program that is the target or possible target of a GOlD we must provide

a logical assertion pred icate P(L) that must be true whenever flow of pro-

gram control reaches L. Then

P(L) [GOTO L) f a l s e

and the rule of inference

P(L) [body)Q
P(L) tL: bodyjq

gives the appropriate condition that the GOTO must satisfy. Here ~~~~
represents the statements belonging to a procedure-name.

For the second version of the GOTO sta t ement , wh ich resembles the
ALGOL switch construct , the informal semantics are that the identifier is

evaluated to an integer ! and control is transferred to the ith procedure

in the procedure—name list. If i is not an integer in the range 1 to fl

(n is the num ber of procedures in the name list) then the statement has no

effect , i.e., con trol “fa l l s  th rou gh” to the next COBOL statement.

We handle this construct by developing the OEPI2~1DIN G ~ J conditional

into a set of equivalen t IF statements during the transduction phase so that

no separate axiomatization is required.

3. IF-ELSE

The syntatic form of this COBOL statemen t is

(s tatement
1 ~ (

ELSE statement
2IF cond ition 

~ NEXT S}~4TE~4CEç ~ ELSE NEXT S~ 4T~ 4CE

Here some restrictions that existed in earlier versions of COBOL have been

relaxed in the present ANSI standard s to permi t statemen t
1 
and statemen t

2
to be of either imperative or conditional type. If we interpret the phrase

NEXT S~~TF~ CE as an impezative statement having no effec t, then its axiom—

it izatton is simply

P [NEXT SENT}~ CE1 P

— 
-~ 

~ . —
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and if S
1 
and S2 

stand for permissible statements including NEXT STATEMENT

then

PA condition [S
1
)Q, PA ‘ condition CS2)Q

PIIF condition S
~ 

ELSE S
2JQ

is the appropriate rule of inference for the IF—ELSE statement.

4. ADD

The ADD statement in COBOL with its several variations and its

optional error exit is perhaps the most syntactically complex arithmetic

statement to be found in any high—level language. Its axioinatization is

fairly straightforward , however, having much the same form as that of the

MOVE statement. (In fact, the semantic primitives SET$ and SETROUNDED$ rep-

resent both in Abstract cOBOL.) In the most primitive form

ADD x TO y (ROUNDED]

we have, by analogy with MOVE,

p [ADD x TO y) P, E = Edit  (x÷Y~ Pic~ )

where Edit should be replaced by Editround if the ROUNDED modifier is

.ploy ed. The more general form

ADD x,y,z ... TO u,v,w
we currently expand into multiple internal statements so the latter form

needs no separate axiomatization. The varian t

AOl) x ,y ,z ...GIVING w [ROUN DED]

has a similar rule , n amely

~; (ADD x,y,z ...GIVIN G w) P, E = Edit (x+y+z ...,pic )

Here also , the appearance of a list of variables in the place of ! would

be expand ed into separate internal statements. A third variant ,

ADO CORRE8 P~ 1DINO X TO Y ( ROtil DED) ,

leads to an axiom set very similar to tha t of the MOVE COR ESPCN DIN G state—

mee t (se. 1 above). That is ,

_ _ _ _ _ _ _ _ _ _ _
-

~~~ 

~~~~

- -  . 

- 

~~~~~~~~~~~~~~~~~~~ T71T~:~ ~~~~~~
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z = [X~Y1. 
x
2
y
2 
... Ix~y~ CORRES~~~DING in X,Y)

E = Edit (x
1+y1

,pic )
yl

Y(x
iyj) e Z: ~E 

[ADD x~ TO y~
)P

CORRESI~~ DIN G X TO Y)P

In each of the variants of the ADD statement , an optional clause [ON SIZE

ERROR imperative statement] may be attached to take appropriate action if

numeric overflow or underf low conditions arise in the computation. There-

fore, we must consider the family of statements of which

ADD x TO y; ON SIZE ERROR S .

is typical (where S is some imperative statement). This statement requires

several axioms. Let “Sum—f its(y,x-4-y)” be the assertion that the result of

the computation “x+y” fits in location y. Then one correct rule of inference

is

P{ADD x TO y~}Q

P & Sum—fits(y,x+y) [ADD x TO y; ON SIZE ERROR S)Q

i.e., in the absence of an error, the error condition is superfluous. Next ,

suppose that Sum—ftts (y,x+y) is false. Then a complete axiomatization must

distinguish two cases. The first case Is that the error is detected before

y is modified . Then we may use the inference rule:

Early—detection (y x+y) & (P[S)Q) & ‘ Surn fits (y,x+y)

P(ADD x TO y; ON SIZE ERROR S)Q

The second case is that an error is detected after y has been modified . A

complete axiomatizatton must then account for the execution of S in the modi-

fied environment. We intend , in our present work, to make the simplifying

assumption that this case does not arise.

1~111~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _— _. f1,~~ r U’~~~”
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