AD=AO4S 257 STANFORD RESEARCH INST MENLO PARK CALIF F/0 9/2
THE VERIFICATION OF COBOL PROGRAMS. (U)

VUN 78 L ROBINSON: M W GREEN: J M SPITZEN DAHCO4=78=C=0011
UNCLASSIFIED . N

. | .




Il H
" _IEO ol

[l | A
= fiee

L2s flis e

NN




P A AN

VL 7 1NN\

STANFORD RESEARCH INSTITUTE

Menlo Park, California 94025 - U.S.A
AN N 1 J 7 d

AN

THE VERIFICATION OF COBOL PROGRAMS ,

INTERIM REPORT
SRI Project 3967 "

(/2)
Authors? | L./Robinson)
/ M. W, /Green |
J. M./Spitzen |

Prepared for
U.S. ARMY COMPUTER SYSTEMS COMMAND
FORT BELVOIR, VIRGINIA 22060

ADAO04825%

Prepared by
STANFORD RESEARCH INSTITUTE
333 Ravenswood Avenue
MENLO PARK, CALIFORNIA 94025 c-
U.S. ARMY RESEARCH OFFICE Contract 4 DAHCJm-vs*du ]

/5

DISTRIBUTION STATEMENT

>
% Approved for public release. Distribution Unlimited.
(-
J Approved :
/ (W "
B £.
Y David R. Brown, Director Jack Gold g
z Information Science Laboratory Project SBupervisor
[t [ o
< &

T8 500

Gc

e e i pang St -

}



”» g o s N
»
ii
DISPOSITION INSTRUCTIONS
Destroy this report when no longer needed., Do not return it to the
originator.
DI SCLAIMER
The findings of this report are not to be construed as an official
Department of the Army position unless so designated by other authorized
documents,
‘ .
(IS ANy,
Hir dadiifil
fii it
U
ifnt
it
I L wliid
_____ N 2




iii

ABSTRACT

\

.)This report describes the progress of an investigation concerning
the verification of COBOL programs. The report contains discussions
of program verification, the COBOL language, and the role of structured
programming in COBOL verification. The report also contains a presen-
tation of a COBOL subset suitable for an experimental verification
system--its syntax and semantics. The report also contains a discus-
sion of the assertion language and rules of inference to be used in a

COBOL verification system,

FOREWORD

i This document was prepared under the authority of U.S. Army
Research Office Contract No. DAHC 04-75-C-0011 in accordance with
Part II, Article 4 of the contract, and was prepared by Stanford

Research Institute for the U.S. Army Computer Systems Command.
This report describes some preliminary results in an investigation

concerning the verification of COBOL programs,
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1. Introduction

This report describes the progress of a project intended to study
the issues involved in the verification of COBOL programs, and to produce

some simple examples of verified programs in a selected subset of COBOL.

Given that program verification is useful in improving the relia-
bility of programs, and that it is of great importance that COBOL pro-
grams be reliable (the vast majority of all programming is done in
COBOL), it is certainly worthwhile to examine the feasibility of applying
verification techniques to COBOL programs., One question is, "Why hasn't

it been done sooner?'" The answer lies in two factors:

(1) COBOL is a "real" language (i.e., designed for and used by
a large community of users). Verification has only recently
been applied to real languages, because of the relative new-
ness of verification and because of the great complexity of

real languages.

(2) Verification has, up to now, been practiced mainly by
academicians, and academicians have a known distaste for

COBOL.

This project is mainly a feasibility study, with some research and
proof of concept. Once the major issues in COBOL verification are deter-
mined, we intend to illustrate what it means to verify a COBOL program
(on a very small scale). The research involved is intended to extend
current verification techniques to make them applicable to COBOL. This
report is devoted mainly to a discussion of issues, and to a description

of the techniques that we are developing.

The body of the report contains general motivational material
describing the theory, observations, and general approach of the project.
The three appendices contain descriptions of the particular results of
the project so far--the syntax and semantics of the COBOL subset for

verification.

2, Program Verification - Theory

The idea of program verification goes back as far as programming
itself: it was first discussed by von Neumann and Goldstine (1). The

basic idea is that there is a state that models some external phenomenon




(e.g., differential equations, matrices, payroll records). The state
can be represented by core memory, the contents of files, or program
variables (at a more abstract level), There is also a set of elementary
operations that change the state, Examples of elementary operations

are machine instructions or statements in higher-level programming
languages. A program defines a (possibly infinite) set of sequences

of elementary operations. When a program is executed, only one se-
quence of elementary operations is performed. The selection of one
sequence out of the set of sequences defined by the program is deter-
mined by the state just before the program is executed (i.e., the

initial state), Thus a program is a function from states to sequences

of operations. If the program terminates, the state just after termi-

nation is called the final state,

The user of a program is interested in knowing, for a given
initial state of the program, what the final state will be, Often he
will have a specification, which is a mapping from initial states to

final states. It is not immediately obvious whether a program (a mapping
from states to sequences of operations) and a specification (a mapping
from states to states) are consistent, Consistency between a specifica-

tion and a program is often called program correctness., Program verifi-

cation is a set of techniques for proving this consistency. Floyd (2)
first described this method of verification. The specification consists
of a statement of the properties that the initial state must have (the

input assertion), and a statement of the relation between the initial

state and the final state (the output assertion)., Both input and output

assertions are stated as predicates,

The effects of each of the elementary operations on the state must
also be formally described (input and output assertions for these opera-
tions are useful as well), The control operations, which do not in
themselves affect the state, must also be axiomatized. Since a program
may, in a small number of statements, describe a large (possibly

infinite) sequence of operations, inductive assertions must be associated

with each of the loops of the program,

Floyd's method is used for proving partial correctness of programs.

A partially correct program is consistent with its assertions only if
it terminates, Termination of a program can be proved separately.

Given input and output assertions, program text (with inductive assertions),
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and the definition of the elementary operations, a formula in first order
logic can be constructed whose validity is equivalent to the partial cor-

rectness of the program. This formula is called a verification condition.

A software system that accepts as input the program to be verified (with

input, output, and inductive assertions) is called a verification condition

generator (3,4). Verification conditions can be proved by hand, or can

serve as input to a deductive system, or automatic theorem prover, which
attempts to generate a proof. Most deductive systems are inadequate for
proving verification conditions by completely automatic means, and many
systems are equipped with interactive facilities to allow users to guide the
proof. Deductive systems with interactive facilities are also called semi-

automatic verification systems.

The application of formal techniques to a particular programming language
environment is often a matter of style. The verification condition generator
incorporates most of the language-dependent features, because it must trans-
late statements in the programming language into expressions in predicate i
calculus., Some verification condition generators are based on a particular
semantic description of a language. A verification condition generator for
PASCAL (London, Luckham, and Igarashi, 4) is based on the axiomatic des-
cription of PASCAL by Hoare and Worth (5).

A verification condition generator axiomatizes the control structures
of the language, but properties of the data types of a language are often
too complex to be incorporated into the verification conditions themselves.
Verification conditions, especially in a high-level language, typically con-
tain references to functions that axiomatize the data types of the language.
The deductive system can prove formulae containing these functions either by
invoking their definitions (if supplied) or by applying axioms (or high-level
rules of inference) to make deductions, The first method works well for
primitive recursive functions (Boyer and Moore, 6) but is extremely ineffic-
ient for more complex domains. Most verification systems, including the SRI
system (Elspas et al., 3; Waldinger and Levitt, 7), use the second method.
However, in this method all proofs may not be trusted if the axioms are wrong.
One approach to this problem is to use high-level rules of inference to find ;
a proof, and to check its validity using definitions and a proof checker
(Boyer et al., 8). The proof checker would be used to substantiate the
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validity of any instantiation of an axiom that is actually used in a proof.
This may be easier than proving the most general form of the axiom from the

definitions.

There are several areas that have not been addressed by the mainstream
of program verification. The first is termination. This issue has been
addressed by several researchers (3,9,10), and can be treated either together
with or separately from the issue of partial correctness. Two other issues,
run—-time errors and validity of input data, are also important to formalize
if verification is to lead to software reliability. All three of these
issues have been grouped, to some extent, into a property called clean
termination (Sites, 11). Although these issues are important, they will not
be considered during this contract, which must limit itself to the basic

issues of partial correctness for COBOL programs.

3. Program Verification for Real Languages

COBOL is a member of the set of 'real programming languages, i.e.,
those that are widely used in many applications and for which standards
exist, Real languages are usually, but not always, commercially viable
products. Examples of real languages are COBOL, FORTRAN, PL/1, and (to a
lesser extent) Algol and LISP. The properties that make a programming lan-
guage a real language unfortunately also serve to detract from the ease of
verifying programs in that language. Most of these undesirable properties

can be summed up under the term "lack of semantic cleanliness.”

A language has a "'clean' semantics if the definition of the language is
elegantly expressible in some formal medium. There are many good reasons
why real languages are not semantically clean. The first reason is the size
of the language. A real language is the incorporation of the special interests
of many groups of users, whose interests are not always compatible. The result
is often that large numbers of features are added on. The addition of these
features not only complicates the semantics of the language, but often violates
the spirit that motivated the initial conception of the language. PL/1 is a
good example of this tendency. In a desire to overcome some of the difficulties
of FORTRAN, COBOL, and Algol, the designers of PL/1 created something larger
than any of its ancestors., Considered alone, the size of real languages is a

major obstacle to verification. Second, most real languages must concede




syntactic generality in the interests of a fast implementation, either in

the compiler or the generated code. Examples of these dependencies are
limitations in the number of nestings (COBOL) or in the complexity of an
arithmetic expression in certain places (FORTRAN). Lack of syntactic gen-
erality makes the syntactic analysis phase of the verification system more
difficult to implement. Third, most languages must have some features that
deal with the hardware or operating system. The environment division and
communication module of COBOL are examples of these features. Standardi-
zation has served to make a uniform interface between the language and the
environment., However, the fact that a variable is SYNCHRONIZED or that there
are 100 logical records in a block will not affect the correctness of a COBOL
program, but may affect the performance of that program. Fourth, most real
languages are the products of an evolving development, as illustrated by the
fact that many real languages have numbers after their names to indicate the
particular dialect in the sequence (FORTRAN IV, Algol 60, LISP 1.5). In

many cases, there is a desire for upward compatibility, so that bad features
that could have been eliminated remain--"augumented' by the improvements.
Another aspect of this problem is that most of the currently important lan-
guages got their start before the aesthetics of programming were well estab-

lished. Thus, many real languages lack features such as strong typing, block

structure, and flexible procedure and macro facilities. Sturctured programming

practices are motivated by a desire to infuse these new aesthetics into the

programming world. Perhaps verification will generate its own set of aesthetics

by which the design of future programming languages will be guided. Lastly
there is the problem that even if the semantics of a real language is

clean, they are usually stated in natural language in a standards manual (12).
A standards manual may be all right for programmers and language implementers,
but it is certainly difficult for verification. If the standards people had
some clean vision of a language in mind, they should have written down the
formal semantics somewhere. The formal definition of PL/1 is such an attempt.
The length of the formal definition of PL/1 is a commentary on our tools for
specifying programming language semantics (e.g., VDL) and on the inherent

semantic complexity of real languages,

Before solutions to these problems are considered, there is one major

constraint to these solutions: the solutions must have minimum effect on

the languages themselves. Manufacturers do not want to rewrite their compilers,
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and users do not want to rewrite their programs. Thus, the solution to the
verification problem for real languages must be incremental. Research in

new languages that support verification is very important, but the data pro-
cessing community will ignore this research unless verification can be shown

useful on a more immediate basis.

The problem of language size has two aspects, syntactic, and semantic.
When a language has syntactic complexity, there are many different ways to
do the same thing. When a language has semantic complexity, there are many
things that can be done. In cases where there exists more syntactic complex-
ity than semantic, verification can be done on a program written in an internal
form which is syntactically simple, i.e., there is only one way to do any given
thing. Automatic translation from the external form to the internal form is
relatively straightforward. Semantic complexity is handled primarily by sub-
setting, which involves choosing a sublanguage that permits only the desired
semantic features. Real languages differ in the extent to which subsets can
be generated for them. If a language construct is neccssary, but also seman-
tically messy, there will be trouble in doing subsetting. This is precisely
the trouble with the go to. It is clearly necessary in languages like FORTRAN
and COBOL, but also permits the writing of programs with very messy control

structures, The solution to this type of problem takes several forms:

(1) Try to change the language.

(2) Establish management techniques to prevent abuse of

the construct.

(3) Develop a preprecessor for the language, which permits

desirable constructs in place of harmful ones.

It is the goal of this project to propose a subset of COBOL such that pre-
processing need not take place. For more information, see Section 4, on

structured programming and COBOL.,

In the case of sacrificing syntactic generality for the speed of the
compiler or the generated code, it is desirable to allow the verification
system to process a language with more syntactic generality. To prevent the
successful verification of programs that will not even compile, one then
requires that all programs be run through the syntactic analysis phase of

the compiler before verification, Thus the compiler can check the special
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cases of the language, allowing the verification system's parser to be simpler

(see Appendix I). Such a decision is made in this effort.

With regard to the features of a real language that are dependent on the
hardware or the operating system, there are two strategies: either to axiom-
atize them or ignore them. Statements in COBOL's ENVIRONMENT DIVISION, and
items like SYNCHRONIZED or the number of logical records per block, can be
ignored since they do not affect the outcome of the program. Special kinds
of file I/0 and communication with the operating system can be axiomatized
as properties of the abstract machine on which a program runs. The formal
definition of a programming language involves specifying the instruction set
of an abstract machine that runs the program, and specifying the interpreter

that runs the program on the abstract machine.

The technelogy of program verification has ignored several issues that
are essential in the verification of programs written in real languages. One
reason for this phenomenon is that researchers in program verification are
still having difficulty in applying program verification to toy languages
(partly because verification is a comparatively new technique and because it
is an extremely difficult one). These problems are also difficult in them-

selves. Among the problems are:

(1) Finite machine arithmetic.
(2) Clean termination and run-time errors.

(3) Validity of input data.

The issue of finite machine arithmetic is particularly acute in COBOL
because data items have no more digits than they need for internal storage,
while other languages have the (relatively large) word size of the machine.
Thus, overflow and truncation occur more often. Consideration of these
items will appear in the section dealing with the semantics of COBOL data

items,

Clean termination has been described in an earlier section. Because
of the limited scope of this project this issue will not be dealt with at
this time. Clean termination assumes the absence of run-time errors. However,
such assumptions cannot always be made, as is the case in hardware and oper-
ating system errors and in situations where input data is invalid (see below).
At some point such possibilities should be considered in efforts to verify

programs in real language.




In verification the asumption is made that input data is valid (with
respect to type, range of values, etc.). One of the greatest difficulties
in assuming the reliability of programs in real languages is that such
assumptions cannot be made. In other words it is a frequent occurrence
that input data are faulty, and programs must be written to account for
such situations. A real program will typically have several degraded modes
of performance (without blowing up), depending on the severity of the error.
Thus even if a single record is messed up, all other records may be pro-
cessed correctly., There is a need in program verification to anticipate
such occurrences and to make the input assertions for these prcirams as

weak as possible.

q, Structured Programming and COBOL

There is a growing interest in various techniques for increasing the
"well~structuredness' of COBOL programs. This section discusses their
impact on verification. The techniques fall into the categories of pre-

processors and restrictions on the way in which COBOL programs are written,

The intent of these techniques is to simulate a block=structured lang-
uage, in which control is nested. This kind of structure within a program
makes the program easier to understand and debug. The conclusions are less

certain for proof.

Let us first examine the preprocessors. Instead of the go to, they
offer a set of control primitives such as do...while, if...then...else, case,
and others. The intent is that such well-behaved control structures are
easier to axiomatize than the go to and thus it would be easier to prove
programs using only those constructs, This was the belief of Hoare (5), in
his axiomatization of PASCAL. However, Knuth (13) in his paper on structured
programming with the go to reports that go lglg are surprisingly easy to
axiomatize (see the appendix on the semantics of the COBOL subset). It is
only necessary to put assertions at each label (and at PERFORM loops). Thus,
there is no decrease per se, in the complexity of verification when go to's

are removed from the language.

However, sturctured programming was intended to limit the complexity
of the programs being written by reducing the average number of control paths
per line of code. Structured programming also reduces the number of patterns

of control paths by {orcing the paths to be nested. Since the complexity of




Floyd verification is roughly proportional to the number of paths, it seems
that (on the average) structured programs--whether written by preprocessor

or by management fiat--are easier to verify than unstructured ones.

There is another sense in which the term "structured programming" is
applicable., Structure can be gained by breaking large programs up into
small, loosely coupled pieces. This is the modularity concept of Parnas (4),
in which the change in a single design decision affects only one module.
Unfortunately, the COBOL language itself does not provide facilities (such
as flexible procedure calls or macros) for accomplishing this goal. In
many cases management techniques are used to break up a large programming
project into small, manageable pieces. One of the methods for accomplishing
modularity is to hide the format of data structures within a single module.
Since data structures (i.e., shared files) are precisely the means by which
COBOL programs communicate, the format information for the data structures
tends to be scattered over many programs. Thus, a change in file formats
may require a lot of reprogramming, more than might be necessary if con-

cepts of modularity were more visible in COBOL.

Decomposing a program into hierarchical levels of abstraction has been
suggested (Dijkstra, 15) as a means for handling program complexity. Recently
Robinson and Levitt (16) have proposed a method for formalizing a level of
abstraction in a self~contained way, and for decomposing the proof of the
large program into many small independent proofs, one for each level of abstrac-
tion., The applicability of this work to COBOL is perhaps a long way off, because
the hierarchical method depends strongly on the notion of data abstraction.
COBOL programs do not seem to have data structures that can be abstracted very
easily. In spite of the tree-structured data in COBOL programs, all data
structures seem to have one level of detail that is not hidden from parts of
the program. Abstraction would not in this case lead to simple programs at

higher levels. However, the problem bears further study.

5. Discussion of the COBOL Language

COBOL is a language of fairly simple control, but its data structures
and operations are rich., The area of most immediate concern for verification
is the elementary data item, All computation in COBOL is character-oriented.
Numeric data items have pictures and sizes. Arithmetic operations must con=-
sider truncation and overflow with almost every operation. Even without the
primitives STRING and UNSTRING, the manipulation of strings is inherent in

e NP

each operation.
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The most important feature of an elementary numeric data item is its
PICTURE, a specification of how it would look if it were printed out.
For example, a picture specification of 999 would print out a three-digit
integer. The sign and decimal point information are also included in the
specification, Although the decimal point in numeric items is implicit
(remembered by the system but not stored with the item), the sign (if present)
is encoded in one of the digits of the stored data item. A great deal of
string processing can be performed by a simple assignment operation, because
of the editing feature. There is a special type of data item called numeric
edited, whose picture specification can contain additional information con-
cerning inserted characters, zero suppresion, sign printing, and currency
symbols. For example, a data item with a picture specification of $3$$,$$$.99
would print out $10,000.00 when its contents are 10000 and $5.63 when its
contents are 5.63. Notice that the comma disappears and the dollar sign moves
over when the value of the item decreases. These features can be used to
generate fancy reports, and can also create complexities with regard to veri-
fication. The editing must be axiomatized, and functions must be added to
the assertion language in order to state properties of numeric edited data
items. There are many data features that are not axiomatized by the subset
provided by this project, e.g., string processing, table handling, sorting,

and overlays.

COBOL is a language of input-output. There is sequential, random, indexed,
and conscle 1/0. Any verification system that deals with COBOL must handle
1/0 to some extent., This subset will handle console I/0 and some very simpli-
fied versions of sequential 1/0, enough to verify some elementary programs.
We are using a method similar to Hoare's axiomatization of I/0 in PASCAL (5).
In it, a file is a sequence of values for the set of variables that constitute
the input or output record. Each file has a pointer that designates the cur-
rent record. Reading the file simply moves the pointer, while writing the

file adds to the sequence and changes the pointer as well,

The records in COBOL are tree~structured, an attribute which presents
a naming problem, Several elementary items may have the same local name,
with the ambiguity resolved by different qualification statements. The
CORRESPONDING option makes use of this feature. A COBOL verification system

must incorporate the same naming mechanism that COBOL uses.
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Several data features not incorporated in the subset are the REDEFINES
and RENAMES options., REDEFINES allows a data item, either group or elemen-
tary, to have a different name and a different definition (i.e., set of
picture specifications). It is like FORTRAN's COMMON statement, except that
the sharing is done within one program. RENAMES allows the renaming of a
sequence of elementary data items, but the same pictures are retained. It is
analogous to the FORTRAN EQUIVALENCE statement. The REDEFINES option is much
more difficult to handle, since it involves representation decisions in the
machine, e.g., the number of characters contained in a group or elementary
data item. These decisions also involve alignment and word boundaries,

factors which vary depending on the implementation machine.

6. COBOL Subset for Verification

We have carefully examined the syntax and semantics of the COBOL lang-
uage as defined by (12), and have arrived at a subset suitable for verification
according to the criteria described in the previous sections of this report.
The results of this research are described in the Appendices I, II, and III.
Appendix I describes the syntax of the PROCEDURE DIVISION for the COBOL subset,
the method (transduction grammars) for describing such syntax, the sof tware
system for manipulating these grammars, and the parsing program that uses them.
Appendix II describes the syntax of the DATA DIVISION. Not all of the decisions
have been made concerning the transductions for names and pictures of data items,
so that the transductions are left out, Appendix III contains a discussion of
the issues involved in the description of the semantics of COBOL statements
and data types. This is a difficult problem, perhaps the most difficult of

the project; only preliminary results have been shown here.

If one were to examine a list of the primitives that have been eliminated
from the COBOL subset for verification, they could have been eliminated for

one of two reasons:

(1) A primitive was considered to be undesirable for the
purposes of verification.

(2) A primitive was considered to be reasonable for veri-
fication, but was not deemed essential.,” Thus it was
eliminated from this subset, which had to be kept small.

STt
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Very few constructs have been eliminated from the language for reason (1):
the ALTER statement, the "abbreviated combined conditional’ relational expres-
sion, the MOVE statement between group data items, and the REDEFINES and
RENAMES statements. Even these features could be axiomatized, but with great
difficulty.

The method for representing the COBOL grammar in the verification system
is designed to allow extensions to the language at any time. It is predicted
that further work in the project will call for the enlargement of the subset

of COBOL handled by the verification system.

7. Assertion Language and Rules of Inference

The object of the assertion language is to allow a COBOL programmer to
state any property of a COBOL program in an elegant way. This involves
experimentation withh many different COBOL programs to see what must be said
and how to say it. At this time the assertion language design is in its very
preliminary stages, and this section is a set of general guidelines that will

motivate the final assertion language design.

Formulae in the assertion language must be handled by a general theorem-
proving program, so that the syntactic basis for any assertion language must
be first-order logic. The assertion language must deal with numeric quantities,
so that arithmetic operators and relations are also included. Although sets
do not occur in COBOL, they are useful in aggregating a multiplicity of items
in assertions. Seguenées appear in the axiomatization of files and strings,
and are an otherwise useful structure. These general features should éccur

in any assertion language.

Instead of augmenting the syntax of the assertion language by adding
language-dependent constructs, it is useful just to use functions and predicates
to define these constructs. In order to perform deductions, axioms and defi-
nitions are used to describe properties of the functions and predicates. Axioms
constitute high-level rules of inference and definitions can be viewed as sub-

stitution rules.

The particular functions used to describe the properties of COBOL are

interesting. They fall into one of four categories:




13

*3“ (1) Type information. These functions tell whether an alphanumeric
data item contains alphabetic or numeric data at a given time.

(2) Values of data items. Each numeric data item has a numeric
value (real or integer) and a print value (character string).

(3) Naming information. The semantics of some COBOL operations
depend on the data names above and below a data item in the
tree-~structured data definition.

(4) Operations on data items. Truncation, rounding, and editing
of data items require special functions.

The enumeration and definition of these predicates and functions is

now in progress.,

8. Structure of Proposed Verification System

In our view of the problems of verification in real languages, we
actually require the assistance of the compiler in the verification process.
In addition, large parts of the verifier are table driven, so that certain
h changes in the COBOL subset will have a minimal effect on the programs com-

prising the verification system,

The proposed verification system is shown in Figure 1. In it, systems
or processes (i.e., parts of the verification system) are denoted by ovals
or circles. Documents or programs (i.e,, the data that is processed by the
verification system) are represented by rectangles. Knowledge encoded in

system tables is represented by diamonds.

A program is first compiled by a standard COBOL compiler to check for
syntax errors. Then user-supplied assertions are added to the program text,
and the combined argument is fed to the parser of the verification system.
Using the syntactic specifications for the language (the transduction grammar),

the parser creates an internal form for the COBOL program. The verification
condition generator takes the program in internal form and (using its knowledge
of COBOL operations) produces the verification conditions. The verification
conditions are then fed to the interactive deductive system, which attempts

to produce a proof of the verification conditions (with the help of a human).

The scope of this project calls for the programming of the parser and
verification condition generator. However, the most difficult issues are

involved in deciding formal representation media for the items in the three

i
:
J.)"
H

diamonds, and for encoding the COBOL syntax and semantics using the represen-
tation media.
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The system is being implemented on the PDP-10 at the Artificial
Intelligence Center at Stanford Research Institute, using the INTERLISP
programming environment. The system provides sophisticated interactive
facilities for all phases of the programming process. The SRI facility
is accessible through the ARPANET (address SRI-AI), Much of the docu-

mentation for the project is on-line at the same facility.
9. Conclusions

It is our feeling that we have uncovered some very interesting areas
of study, and that COBOL verification is feasible and challenging. The
level of effort does not permit as deep an examination of some of the

issues as we had hoped, but this research provides a basis for further work.
The current status of the project can be summed up as follows:

(1) We have a thorough knowledge of the general issues of
COBOL verification.

(2) We have decided on the syntax of the COBOL subset but
have not yet finished axiomatizing it. However, a
substantial amount of work has already been done.

(3) The parser has been written, and the verification
condition generator has been sketched out.

(4) The documentation is adequate and up to date.

(5) Some sample COBOL programs have been studied, and assertions
for them have been written.

(6) Except for the exact choice of auxiliary functions, the
assertion language has been designed.

The following tasks remain to be done:

(1) Completion of semantic axiomatization, the choice of functions
of the assertion language, and the rules of inference for the
functions. These tasks are all related.

(2) Implementation of the verification condition generator.
Given the completion of task (1), this is a relatively
straightforward programming effort.

(3) More work on examples=-both in writing assertions and generating
hand-proofs. We will devote our attention to programs containing
about 15-50 lines of PROCEDURE DIVISION.




(4) Completion of the study of structuring methods (including
hierarchical methods) as applied to COBOL verification.
At this time such efforts do not seem so fruitful as they
did earlier. Perhaps we will have to devise slightly new
techniques for partitioning the proofs of COBOL programs.
Several observations may be made:

(1) COBOL is an interesting language and is well designed.

(2) Structure and abstraction are not as promising as
originally anticipated (see 4 above).

(3) We have been able to bring a surprising amount of tech-
nology to bear on the problems encountered.

The following problems either exist now or are anticipated:

(1) With the functions for editing and truncation, verifi-
cation conditions may be longer than originally anticipated.

(2) It is taking more time than originally anticipated to arrive
at a formal statement of COBOL semantics.

The following issues, although they will not be covered in the current
effort, are important and deserve to be studied in future projects.
(1) Clean termination of COBOL programs,
(2) Graceful degradation in the presence of invalid data.
(3) The application of verification techniques to other
areas related to the reliability of COBOL programs--

e.g., testing, symbolic evaluation, and debugging.

It certainly seems as though the verification of COBOL programs is

possible, and eventually may become cost effective.

15
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APPENDIX I

COBOL Language, Parsing, and Abstract Form

Jay M. Spitzen

1. Introduction

We intend to use a table-driven language transducer for
initial processing of COBOL programs that are to be
verified. Syntax transduction is the process of translating
an input program from the standard form in which COBOL
programs are written by users of the language to an abstract
form with the same semantic import but with a uniform
structure easily manipulated by a yerification condition
generator (the next phase of verification). Such a
procedure is especially helpful in dealing with COBOL: this
language has extensive syntactic complexitie=s that often do
not correspond to comparable semantic complexities. The
point of the syntactic complexity of the language is to
permit programmers to write in an expressive and natural
format. While such a format is quite suitable for human
consumption, it is inappropriate for the sorts of machine
manipulation needed in verification, and it is consequently
beneficial to translate to the syntactically much simpler

abstract form that we have devised.

The correspondence between COBOL and Abstract COBOL is
specified by a transduction grammar. Such a grammar
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consists of a set of BNF productions to describe the COBOL
language, and a corresponding transduction for each
production. The transduction 1is a LISP program which
computes the abstract form of the language fragment
specified by the associated production. Thus we translate a
COBOL program to abstract form by using a parser to analyze
a valid program into a ‘parse tree’ according to the
productions of the grammar, and then process the parse tree
from bottom to top using transductions to obtain the parts

of the desired Abstract COBOL program.

Qur transduction grammar for a substantial subset of
the constructs allowed in the COBOL procedure division,
together with various parsing and grammar manipulating tools
(described in Section 2), not only specifies the
correspondence between COBOL and Abstract COBOL, but also
constitutes an efficient algorithm for translating between
the two languages. As a result of this translation, while a
user may submit to the COBOL Verifier a general COBOL
program (suitably annotated by logical assertions), parts of
the system operating after transduction need to deal only
with a very 1limited set of semantic primitives. For
example, the translation expresses all ADD, SUBTRACT,
MULTIPLY, DIVIDE, COMPUTE, and MOVE sentences (except for
the CORRESPONDING option, which is handled separately) in
terms of two semantic primitives SET$ and SETROUNDEDS.
Similarly, GO TO ... DEPENDING ON ... sentences are
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expressed in Abstract COBOL by an equivalent set of IF and
GO TO sentences. A detajiled description of these
correspondences, and of the primitives of Abstract COBOL, {s

given in Section 3.

Finally, observe the advantage that derives from
employing a COBOL Transduction Grammar (CTG) to drive the
transducer. Although we have made a number of simplifying
assumptions for the purposes of the initial phase of the
project activity, it will be a simple matter to extend the
subset of COBOL that is accepted just by augmenting the CTG.

Such extensions require no modification of the transducer.
2. The COBOL Language
A. Amendments to the Language

For the purpose of this project, we have designed a CTG
for the COBOL procedure division which does not precisely
correspond to the language described in the 1974 ANSI
standard for COBOL (q.v. American National Standard
Programming Language COBOL, American National Standards
Institute, Standard Number X3.23-74). Our amendments are of

two sorts and we now proceed to describe them in turn.

The first sort of amendment moderately extends the
language. In the arithmetic sentences ADD, DIVIDE,
MULTIPLY, and SUBTRACT, our CTG permits the arguments to be

arbitrary arithmetic expressions rather than Just
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identifiers or 1literals. In the GO TO...DEPENDING ON...

sentence, we similarly generalize the qualifying identifier

so as to allow any arithmetic expression. In the
PERFORM. . .AFTER... construct, we allow arbitrary nesting
rather than a maximum of three levels as in X3.23. More

importantly, the CTG specifies a generalized (but fully
compatible) PERFORM statement which, for example, permits
the construction

PERFORM procedure-namel VARYING I FROM 1 BY 1 UNTIL I=10
5 TIMES

This construction 1is not allowed in X323 but is
semantically consistent with it when given the meaning

PERFORM procedure-namel VARYING I FROM 1 BY 1 UNTIL I=10
VARYING J FROM 1 BY 1 UNTIL J=5

where J is some new identifier not otherwise wused in the

program.

These extensions are permitted for a number of reasons.
First, because they are semantically consistent with X3.23,
it is no more difficult to verify programs written in the
more general forms. Second, since the generalized forms are
more syntactically natural (i.e. yield greater syntactic
uniformity in the resulting language) than the original
forms, the CTG is shorter and clearer than it would
otherwise be. Finally, we could easily augment appropriate
rules of the CTG to exclude these extensions if, for some
reason, that was eventually found desirable. But, in any

case, since the extensions are all compatible with X3.23,
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the CTG does correctly specify the transduction into
Abstract COBOL of standard language programs not employing

the extensions.

OQur second sort of amendment has consisted of
subsetting the procedure division so that, in this limited
initial effort, we can deal with a language of manageable
proportions. On the other hand, we wish to include enough
of COBOL to demonstrate the practicality of applying
verification techniques to COBOL, as well as to begin to
detail the techniques required. Thus we have ¢trjed to
choose a group of verbs that is representative of COBOL and,
moreover, is sufficient in scope to permit the writing and
verification of some reasonable example programs. The
technique of table-driven syntax transduction makes it quite
easy to extend the subset with which we deal, and such
extension would be a natural part of a continuation of the

present effort.

The particular subset we have chosen includes the verbs
ACCEPT®, ADD, COMPUTE, CLOSE®, DISPLAY, DIVIDE, GO, IF,
MOVE, MULTIPLY, OPEN®, PERFORM, READ, STOP®*, SUBTRACT, and
WRITE. Asterisks indicate verbs for which the CTG allows
only a subset of the alternative constructions in X3.23. We
have excluded verbs dealing with string manipulation, table
handling, merge and sort operations, error processing and

debugging, complex file processing, interprocess
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communications and multi-processing, and report generation.
The verbs thus excluded are ALTER, DELETE, DISABLE, ENABLE,
ENTER, EXIT, GENERATE, INITIATE, INSPECT, MERGE, RECEIVE,
RELEASE, RETURN, REWRITE, SEARCH, SET, SORT, STRING,
SUPPRESS, TERMINATE, UNSTRING, and USE. We have also
excluded the ‘abbreviated combined conditional’ relational

expression.

B. The Correspondence between COBOL and Abstract COBOL

The object of this section is to describe, in general
terms, the correspondence between standard COBOL programs
and their transduced versions in Abstract COBOL. Strictly
speaking, the CTG as given in Appendix A is the definitive
specification of this correspondence-~it is both exact and
procedural. However, the 1level of detail in Appendix A,
together with the formal languages of transduction grammar
and CLISP that are used, may be quite difficult for the
uninitiated reader. Consequently we give a more tutorial

presentation here.

The procedure division of a COBOL program consists of a
number of labeled sections, each of which is made up of a
number of labeled paragraphs. These paragraphs, in turn,
are made up of a variable number of aentences.
Alternatively, a program may omit the intermediate level
(sections) and consist simply of a number of paragraphs.

Both cases are represented in Abstract COBOL by lists of the
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form
(PROCEDUREDIVISIONS
(SECTION$ section-namel
(PARAGRAPH$ paragraph-namea
sentence sentence ...)

(PARAGRAPH$ paragraph-namez
sentence sentence ...))

(SECTION$ section-namen
(PARAGRAPH$ paragraph-nameaa
sentence sentence ...)

(PARAGRAPH$ paragraph-namezz
sentence sentence ...)))

We represent the case of a “sectionless’ program by taking
n=1 and section-namei1=NIL, i.e., by
(PROCEDUREDIVISIONS
(SECTIONS$ NIL
(PARAGRAPH$ paragraph-namea
sentence sentence ...)
féARAGRAPﬂs paragraph-nameb
sentence sentence ...)))

The sentences of Abstract COBOL serve the same function
as the sentences of COBOL in that they serve as the building
blocks of the language. Standard COBOL sentences are of two
kinds--those represented in Abstract COBOL by a single
internal sentence and those represented in Abstract COBOL by
several internal sentences. The first sort of sentence is
defined by the nonterminal “sentencel” in the CTG. Such
sentences are those using one of the following verbs:
ACCEPT, CLOSE, GO, IF, PERFORM, READ, STOP, WRITE, ADD CORR,
and SUBTRACT CORR. The second sort of sentence--comprising

sentences with the verbs COMPUTE, DISPLAY, DIVIDE,
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GO...DEPENDING, OPEN, MOVE, ADD, DIVIDE, MULTIPLY, or
SUBTRACT=--1is represented in the CTG by the nonterminal
‘sentence?’. To some extent there is a possible trade-off
between the designation of the type of a COBOL sentence and
the complexity of the associated internal semantic
primitives. That is, forcing a sentence to be of the first
type may require the use of more complex internal primitives
than would transducing as a ’sentence2’ to a 1list of
internal sentences. To increase simplicity 1in the
veritication condition generator and COBOL axiomatization,
we have therefore chosen to transduce to lists of simpler

internal sentences where possible.

We now sketch the internal equivalents of the various
COBOL sentences. Those derived from the nonterminal
“sentencel’ are described first. Among these sentences,
those with verbs ACCEPT, CLOSE, GO (the simple case), IF,
KEAD, STOP, and WKITE are straightforwardly transduced. For
example,

ACCEPT x FROM DAYTIME
becomes
(ACCEPT x DAYTIME)
where ACCEPT is considered, in Abstract COBOL, to be a
semantically primitive function of two arguments.
Similarly,
IF x+3<10; s1; ELSE s2.

becomes
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(IF (LT$ (+ 3 x) 10) s1° 827)
where s1° and s2  are the Abstract CUBOL equivalents of the

external sentences s1 and s?2.

Note that the CTG rules for condition and arithmetic
expression yield the functional form (LT$ (+ 3 x) 10) for
the COBOL infix expression x+3<10. The CTG translates any
condition or arithmetic expression into a functional form
employing only operators chosen from +, -, #,6 /, LT$, EQ$ or
GT¢, or the logical operators AND, Ok, NOT, ISALPHABETIC$,

and ISNUMERICS.

There are two somewhat more complex cases. The first
of these 1is the PERFORM statement. We analyze a PERFORM
statement into three parts: the verb PERFORM, a body such as
FUM THKOUGH FUMBAK, and a list of controls. Each control is
a qualifier such as 7 TIMES or AFTER J FROM 1 BY 3 UNTIL J
IS GHEATER THAN 15 and 1is analyzed into a keyword and a
parameter. For example, the control 7 TIMES has keyword
TIMES and parameter 7. The control AFTER J FROM 1 BY 3
UNTIL J IS GREATER THAN 15 has keyword VARYING and parameteﬁ
{d 1 3 (G288 4 1%)). COBOL allows two other sorts of
control; these are ‘UNTIL condition’ and a defaulted control
(as in "PERFORM FUM“). The first of these has keyword UNTIL
and as parameter the transduction of the condition. The
second has keyword ONCE and parameter NIL. Suppose the

external form of a PERFORM statement is
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PEKFOKM body control(1) ... control(n).
For each i between 1 and n, let kcontrol(i) be the keyword
associated with control(i) and 1let pcontrol(i) be its
parameter. Then we transduce to the internal equivalent
(PERFORM kcontrol(n)
(PERFOKM kcontrol(n-1) ... pcontrol(n-1) NIL)
pcontrol(n)
NIL)
Thus the semantic primitive PERFORM in Abstract COBOL takes
four arguments: a control keyword, a transduction of the
body which is either
(DO$ procedure-namel procedure-name2)
(the simple case) or the transduction of the nested inner
‘ PERFORM, a control parameter 1list, and a final argument
which is--at present--NIL. As a more complex example,
consider the sentence
PERFORM PAR1 VARYING 1 FROM 1 BY 1 UNTIL I=10
7 TIMES
UNTIL X<10. .
In internal form, this will be represented by
(PERFORM VARYING
(PERFORM TIMES

(PERFORM UNTIL
(DO$ PAR1 PAR1)

(LT$ X 10)
NIL)
7
NIL)
(I 11 (EQ¢ 1 10))

NIL)

Observe that when we proceed, in planned project work,
to use the transduced program as an input to a verification

condition generator, an additional item of information will
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be needed for each {teration. This will be an inductjve
invarjant which describes the 1logical behavior of the
iteration body, and it will be recorded 1in the final
argument position of the corresponding PERFORM. Ideally,
one would prefer to have a verification system synthesize
such an invariant on the basis of the program text, but it

is not possible to do so in real programs given the present

state of the art of verification.

The remaining derivatives of ’“sentencel  are those
using ADD CORR and SUBTRACT CORR. These translate to calls
on the semantic primitives ADDCOKRESPONDINGS and
SUBTRACTCORRESPONDINGS with four arguments: the two apparent
subjects of the COBOL sentence, either ROUNDED or NIL as
specified by the external sentence, and a transduction of
the COEOL imperative sentence that is to be executed if a

SIZE ERROR occurs.

We now describe the translation of derivatives of
‘sentence2’ in the grammar. Recall that these generally
translate to several internal sentences. To represent the
COMPUTE and other arithmetic sentences, we introduce the
semantic functions SET$ and SETROUNDED$. Each is a function
of three arguments: the target of the operation, the source
expression, and an error sentence analogous to the third
ADDCORRESPONDINGS$ argument as described above. For example,

consider the COBOL sentence

e SR S . ) .
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ADD x,y TO z,w ROUNDED.
We translate this to the two internal sentences

(SET$ z (+ (+ z y) x) NIL)
(SETROUNDED$ w (+ (+ w y) x) NIL)

Other arithmetic verbs are handled in the same fashion, with
the CTG transductions creating the proper functional form
source expression. Observe that in the example a SIZE ERKOR
imperative statement is omitted; if it were present then its
transduction would appear in the proper argument positions
in each of the resulting internal sentences. We handle MOVE
in the same way, translating

MOVE x TO y.
to

(SET$ y x NIL)
For the MOVE CORRESPONDING statement, we introduce the
semantic primitive MOVECORRESPONDING$ and translate, for
example,

MOVE CORR a OF x TO b OF y.
to the internal form
(MOVECORRESPONDINGS (OF y (b)) (OF x (a)))

where the (_[' subexpressions are the internal renditions of

COBOL qualifications.

The internal primitive DISPLAY is similar to ACCEPT
described above. However, since the COBOL language allows
DISPLAY to take a list of arguments, we transduce to a 1list

of internal DISPLAYs, e.g.,

¢ e b o b

R— R
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DISPLAY x,y,z UPON PRINTER.
becomes
(DISPLAY x PRINTER)
(DISPLAY y PRINTER)
(DISPLAY z PKINTER)

OPEN is translated in a similar way, using the three
internal primitives OPENINPUTS$, OPENOUTPUT$, and OPENBOTHS$.
For example,

OPEN I-O fileil,file2.
becomes
(OPENBOTH$ file1l)
(OPENBOTH$ file2)
Finally, we describe the transduction of GO...DEPENDING
sentences. In general, such a sentence has the form
GO TO n1,n2,... DEPENDING ON expression.
and is translated as though it had been the sentence
IF expression=1; GO TO n1; ELSE
IF expression=2; GO TO n2; ELSE
which, rendered in Abstract COBOL, is

(LF (EQ$ expression 1)

(GO n1)

(IF (EQ$ expression 2)
(GO n2)
ik P

3. Interactive Facilities

We have developed a variety of interactive facilities
to support the construction of CTGs and the subsequent

parsing ot COBOL programs. The system we describe |is
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written in the LISP programming language and runs under
INTERLISP (q.v. INTERLISP Reference Manual by Warren

Teitelman, Xerox Palo Alto Research Center).

The two basic functions used to create a CTG are
PUTRULES and PUTTRANS. They are both variadic functions
whose first argument is a nonterminal of the grammar and
whose subsequent arguments are, respectively, the production
rules and transductions for the nonterminal. When a
nonterminal is initially used as first argument to PUTRULES
or PUTTRANS, it 1s appended ¢to the 1ist NONTERMS of
nonterminals thus far in the grammar. To distinguish this
case, PUTRULES returns the nonterminal as 1its result;
otherwise it returns NIL. The first nonterminal introduced
becomes the root symbol of the grammar (e.g., the

nonterminal ‘proceduredivision’ in the CTG of Appendix A).

Once a nonterminal and some corresponding <production,
transduction> pairs have been specified in this way,
adjustments to the grammar may be made by using PUTRULES and
PUTTRANS to add additional alternatives for the nonterminal
(or for other nonterminals), and by using the INTERLISP
editing facilities to modify the alternatives then in
effect. In particular, EDITV(NONTERMS) will allow the user
to modify the list of nonterminals and EDITP(nt) will allow
the user to modify the productions and transductions of a

particular nonterminal.

B RSN
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The grammar (or any part of it) may be 1listed in a
readable format (as in Appendices A and B) by calling
PRINTGRAMMAR with any subset of NONTERMS as argument.
Appendix A contains such a listing for the subset of the
COBOL procedure division we have selected. Each nonterminal
is printed along with a list of <production, transduction>
pairs--one for each alternative. we have adopted the
convention that lower case symbols denote nonterminals while
upper case symbols and delimiters denote terminals. Also,
note that the transductions are printed in the CLISP
conversational dialect of LISP for increased conciseness and
readability. (In this dialect, described in detail in
Chapter 23 of the INTERLISP Reference Manual, angle brackets
(‘<" and °>°) denote the list consisting of the bracketed
elements. Thus <A B <C>> is equivalent to (LIST A B (LIST
Cl)e However, an exclamation. point indicates that the
following element is to be inserted as a segment, e.g. <! A
B ! C> is equivalent to (APPEND A (LIST B) C). Other
notational innovations of CLISP that we wuse freely are
apostrophe (°) to quote the symbol or form that it precedes
and colon and double colon as infix operators. X:I, where I

is an integer denotes the Ith element of the list X; X::I

denotes the Ith tail of X.)

Once the grammar has been refined to the wuser’s
satisfaction, it may be saved in a symbolic file for

subsequent reference by the function call
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SAVEGKAM(filename), which will also sort the nonterminals
into alphabetic order (except for the root symbol which
remains the first element of NONTERMS). Prior to this call,
the user may also wish to sort the alternatives for each
nonterminal into lexicographical order (based on the
productions of the alternatives). This is done by the call

SORTRULES(NONTERMS) .

When the grammar is completed, the system may be wused
to transduce COBOL programs within the COBOL subset that has
been defined. There are two functions available for this
purpose--PURIFY and ABSTRACT. The first of these
automatically transforms the grammar to an equivalent one
that contains no erasing rules. This is important because
the many optional words in the COBOL 1language 1lead to
erasing nonterminals in the grammar (e.g., “at’ and “is’ in
Appendix A). However, our parser has been designed to deal
only with grammars without erasing rules; this permits a
simpler and more efficient parser than would otherwise be
possible. Consequently, a ‘purification’ process is needed
to obtain a grammar acceptable to the parser. The effect of
"this process on a CTG may be seen by comparing Appendices A
and B. For example, the nonterminal ‘sentencel’ has nine
alternatives in the original grammar but requires
twenty-three in the purified grammar to make up for the
absence of erasing rules. A purified grammar may be saved

with SAVEGRAM as described in the previous paragraph.
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Once these preliminaries are complete, it 1is possible

to parse a COBOL program. The user must enter the program
into the LISP environment and then invoke the function

ABSTRACT providing two arguments--the program and the
function COBOLTOKENFN. The program 1is then parsed and
transduced and the resulting value of ABSTRACT 1is the
translated program in Abstract COBOL. Appendix C contains
an example of this process: part 1 is a simple COBOL program
and part 3 is the abstract form of the program. Part 2,
included here for completeness but usually of no interest to
a user, shows the parse tree which is constructed from the
input program prior to the invocation of the transductions

of the CTG.

Finally, let us describe the use of COBOLTOKENFN by

ABSTRACT. The reader will observe that no rules are given
for three nonterminals of the CTG--"symbol’, ‘number’, and
‘string’. This 1is because they correspond to the basic

lexical symbols, numeric constants, and textual constants
permitted in COBOL which are, naturally, much too numerous
to be listed explicitly. 1Instead, as each lexical token of
an input program is read by the parser, COBOLTOKENFN is
invoked to check whether it is a symbol, number, or string.
i so, the appropriate rule alternatives are added
dynamically to these nonterminals so that parsing may

proceed successfully.
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Appendix A. COBOL Transduction Grammar

proceduredivision

= PROCEDURE DIVISION . paragraphs
(< "PROCEDURLDIVISIONS < SECTIONS$ NIL ! T4>>)

= PROCEDURE DIVISION . sections
(< "PROCEDUREDIVISIONS ! Tu>)

argument

= expressions
R

= expressions connector expression
(¢if T2 NEQ ("BY)
then <! T1 T3> elseif T1::1 then (HELP
"Error in reduction to
argument.")
else <T3 V. T1¥))

- - - - -

(NIL)

"

AT
(NIL)

classcondition

ALPHABETIC
( "ISALPHABETIC)

NUMERIC
( "ISNUMERIC)

computetarget

= computetarget!
(€T 13)
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= Jidentifier , computetarget
(€< SETE T1> I T3>)

= identifier ROUNDED , computetarget
(<<"SETKOUNDEDS$ T1> ! Tu>)

---------------------------- - - - -

computetarget1

= 1identifier
(< SETS T1»)

= 1identifier ROUNDED
(< "SETROUNDEDS$ T1>)

- - ——— . ——— - - - -

condition

condition OR condition?
(<T2 T1 T3>)

condition?
5

---------------------------- - -

condition?

condition2 AND condition3
(<T2 T I3>)

condition3
(T7T)

condition3

= NOT condition3
(<T1 T2>)

= conditiond
(T1)

conditiony

= ( condition )
(T2)
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= simplecondition
(T1)

conditionname

= symbol
CT1)

connector

=il
(T1)

= FROM
(T1)

INTO
(T1)

"

= I
(T1)

corresponding

= CORR
(NIL)

= CORRESPONDING
(NIL)

corrop

ADD
( "ADDCORRESPONDINGS$)

SUBTRACT
( "SUBTRACTCORRESPONDINGS)

dividearguments

= expression BY expression
(<TY T3¥)
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= expression INTO expression
(<T3 T1>)

el se

z ELSE
(NIL)

= OTHERWISE
(NIL)

- - e - -

elseclause

( "NEXT)

= semi else NEXT SENTENCE
( “NEXT) .

= semi else sentence

(T3)

- - - -, - - - -

endcondition

(NIL)

s 4+ at END sentence
(T4)

- - - - - -

errorcondition

(NIL)

; on SIZE EKROR sentence
(TS)

- - - - - - - - -

expression

= expression + expression?2
(TR -T1-T3>)

I-21
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expression?2
(T1)

expression?2

expression2 ®* expression3
(<T2 T1 T3>)

expression2 / expression3
(€<T2 T1 1I35)

expression3
(T1)

expression3

expression3 #%* expressiond
(<12 T1 I3>)

expressiondy
£T1)

expressiond

( expression )
(T2)

+ expressiond
(T2)

- expressionl
(<T1 0 T2>)

ZERO
(0)

ZEROES
(0)

ZEROS
(0)

identifier
(T1)

number
(T1)

Parsing, and Abstract Form

1-.22
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= string
(T1)

expressions

= expression
(<T1>)

expression , expressions
(<TY | T3>»)

filename

= symbol
(T1)

filenames

= filename
(<T1>)

= filename , filenames
(<T1 ! T3>)

identifier

qualification
((if (NLISTP T)1)

then T1 elseif T1:1="0OF and T1:3=NIL then T1:2 else
(HELP ‘Error$% in% reduction% to% identifier.)))

(<°OF (if (NLISTP T1)

qualification ( subscripts )

then T1 elseif T1:1="OF and T1:3=NIL then T1:2

else

(HELP ‘Error% in% reduction% to% identifier.))

identifiers

= identifier
(<T1>)

S e e N O

~ e
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= 1identifier , identifiers
(<TY ' T3>)
indexname
= symbol
(T1)
iotype
= INPUT
(“OPENINPUTS)
= 10
( "OPENBOTHS)
= OQUTPUT
( “OPENOUTPUTS)
is
(NIL)
S 7
(NIL)
mnemonicname
= symbol
(T1)
move
= MOVE
("SETS$)

= MOVE corresponding
( "MOVECORRESPONDINGS)

Parsing, and Abstract Form

I-24
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of
= 1IN
(NIL)
= OF
(NIL)
on
(NIL)
= ON
(NIL)
operator
= ADD
("+)
= DIVIDE
)
= MULTIPLY
('®)
= SUBTRACT
("=)
paragraph

= paqagraphname . sentences
(< PARAGRAPHS$ T1 ! T3>)

paragraphname

= symbol
(T1)

paragraphs

1-25




COBOL Language, Parsing, and Abstract Form 1-26

= paragraph
(<T1>)

paragraph paragraphs
(<T1 ' T2>)

per formbody

= procedurename
(<°DO$ T1 T1>)

procedurename thru procedurename
(<°DO$ T1 T3>)

"

per formcontrol

= UNTIL condition
(<T2 T1>)

= expression TIMES
(<T2 T1>)

= varying expression FROM expression BY expression UNTIL
condition
(<T1 <T2 T4 T6 T8B>>)

- S S S SR S S R D e e -

per formcontrols

(NIL)

= performcontrol performcontrols
(<T1 ! T2>)

procedurename

= symbol
(T1)

procedurenames

= procedurename
(<T1)
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= procedurename , procedurenames
STE T T3>

qualification

symbol
(<°OF T1 NILD)

of qualification
T3:2 <! T3:3 T1>>)

"
—~
A<

readtarget

(NIL)

INTO identifier
{T2)

record

(NIL)

RECORD
(NIL)

"

recordname

= symbol
(T1)

relationoperator

= NOT relationoperator?2
((SELECTQ T2 ((QUOTE EQ$)

"NEQ$)

((QUOTE NEQS$)
‘EQS$)

((QUOTE LTS$)
‘GTQS)

((QUOTE GTQS$)
‘LT$)

1-27
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((QUOTE LTCS$)
‘GT$)
((QUOTE GT¢)
‘LTQ$)
(HELP °
"Error in reduction of first alternative of
relationoperator.")))

= relationoperator?
(T1)

- - . e Gn e e W R e e e

relationoperator?
= <

(“LTS¢)
("EQs$)

>
(°GT$)

= EQUAL to
("EQ$)

= GHKEATER than
("GT$)

LESS than ‘
(°LT$)

rounded

(NIL)

ROUNDED
(T1)

section

= sectionname SECTION . paragraphs
(<"SECTIONS T1 ! Tu>)
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sectionname

= symbol
{T1)

sections

= section
(<T1>)

= section sections
(<T1 ¢ T2>)

sentence

sentencel
(T1)

sentence?
((if T1::1 then <'DO$ ! T1> else T1:1))

sentencel

= ACCEPT identifier source
€<T1 T2 T3>)

= CLOSE filenames
(<T1 1 T3>)

GO to procedurename
(<T1 T3>)

= IF condition thenclause elseclause
(<T1 T2 T3 TU>)

= PERFORM performbody performcontrols
((41f T3 then (for (X R_T2)

1-29
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in
(REVERSE T3)
do R_ < PERFORM X:1 R X:2 NIL> finally
(RETURN R))
else < PERFORM °~ (ONCE$)
T2 NIL NIL>))

= KEAD filename record readtarget endcondition
C<T1 T2 T4 T5Y)

= STOP RUN
(T1)

= WRITE recordname writesource
(<T1 T2 T

= corrop corresponding identifier connector identifier
rounded
errorcondition

(€Tt T3 T5 16 TT>)

sentence?2

= COMPUTE computetarget = expression errorcondition
((for X in T2 collect <! X TU T5>))

= DISPLAY identifiers target
((for X in T2 collect <T1T X T3>))

= DIVIDE dividearguments GIVING computetarget1 KEMAINDER
identifier
errorcondition
(<< I € F L -T2 TT> < SET$ T6 <NIL T2:1 ¢ % THs2 T2:2>>
T7>>)

GO to procedurenames DEPENDING on expression
((for I to (LENGTH T3)
collect
(<'IF <'EQ$ T6 I> <°GO (CAR (NTH T3 I))
> ° NEXT >)))

= OPEN iotype filenames
{(for X In T3 colledct <T2 X>))

move expression TO identifiers
({for X in T4 colleot <T1 X T2 NIL>))

operator arguments GIVING computetarget errorcondition
((for X in T4 collect <! X (for (Y (R_ T2:=1))

in

(REVERSE T2)

—
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1 do R <TY ¥ B>
finally
(RETURN R))
152))

= operator expressions connector computetarget
errorcondition
((for X in T2 join
(for Y in TU collect <! Y <T1 Y:2 X> T5>)))

sentences

= sentencel
(<T1>)

= 8Sentencel sentences

(<TE Y E3%)

sentence?2
(T1)

= Ssentence?2 . sentences
(<1 F1 t F3>)

signcondition

= NEGATIVE
(° (GT$ 0))

= NOT NEGATIVE
(" (LTQ$ 0))

NOT POSITIVE
(" (GTQ$ 0))

= NOT ZERO
(" (NEQ$ 0))

= POSITIVE
(" (LT$ 0))
= ZERO

(" (EQ$ 0))

simplecondition

-4

Ll -
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T
"

conditionname
(T1)

= expression is relationoperator expression
{<T3 TV T&X)

= expression is signconditicon
(€LY T3 .T1>)

identifier is classcondition
(LT3 T1>)

source

= FROM DATE
(T2)

FROM DAY
(T2)

"

FROM TIME
(1T2)

i“"

= FROM mnemonicname
({T2)

- O . -

subscripts

expression
(<T1>)

expression , subscripts
(CEY ! -T3>)

........ - - - -

target

(NIL)

UPON mnemonicname
(T2)

- -

than

I1-32
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thenclause

NEXT SENTENCE
( “NEXT)

semi sentence
(T2)

thru

THKROUGH
(NIL)

THRU
(NIL)

varying

AFTER
( "VAKYING)

VARYING
( “VARYING)

writesource

(NIL)

1-33
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= FROM identifier
(T2)

and Abstract Form

1-34
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Appendix B. COBOL Non-erasing Transduction Grammar

proceduredivision

= PROCEDURE DIVISION . paragraphs
(< "PROCEDUREDIVISION$ < SECTION$ NIL ! Tu4>>)

= PROCEDURE DIVISION . sections
(< "PROCEDUREDIVISIONS ! T4>)

argument

= expressions
(T1)

expressions connector expression
((if T2 NEQ ('BY)
then <! T1 T3> elseif T1::1 then (HELP
"Error in reduction to
argument.")
else <T3 ! T1>))

classcondition

ALPHABETIC
( "ISALPHABETIC)

"

NUMERIC
( "ISNUMERIC)

computetarget

= computetarget]
(<T1>)

1deqt1f1er , computetarget
(<< SETS T1> & T3)
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= identifier ROUNDED , computetarget
(<< "SETROUNDEDS$ T1> ! T4>)

computetarget1

= identifier
{<°"SETS$ T1>»)

= identifier ROUNDED
(< "SETROUNDEDS$ T1>)

condition

= condition OR condition?
{<T2 TV T3>)

= condition?2
(T1)

condition?2

= condition2 AND condition3
(€2 1) 13>)

= condition3
(TT1)

condition3

= NOT condition3
{<TY T2>)

= conditiondy
(TY)

conditiony

( condition )
{T2)

simplecondition
(T1)

P p———
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e e G e e e -

conditionname
= symbol
(T1)
connector
= BY
(Y1)
= FROM
(T1)
= INTO
{T1)
s 10
(T1)
corresponding
= CORR
(NIL)
= CORRESPONDING
(NIL)
corrop
= ADD

( "ADDCORRESPONDING$)

SUBTRACT
("SUBTRACTCORRESPONDINGS)

dividearguments

expression BY expression
(<TY T3

expression INTO expression
(<T3 T1)
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el se

= ELSE
(NIL)

= OTHERWISE
(NIL)

elseclause

= semi else NEXT SENTENCE
( “NEXT)

= semi else sentence
(T3)

else NEXT SENTENCE
( "NEXT)

= else sentence
(T2)

endcondition

; at END sentence
(TH)

; END sentence
(T3)

errorcondition

; on SIZE ERROR sentence
(T5)

;7 SIZE ERROR sentence
(T4)

expression

= expression + expression?2
(<2 TY T3%)
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= expression?
(T1)

expression?2

= expression2 * expression3
(<T2 T1 T3>)

= expression?2 / expression3
(<T2 T1 T3>)

= expression3
(T1)

expression3

= expression3 *#* expressiond
(<T2 T1 T3>)

= expressiony
(T1)

expressionl

( expression )
(T2)

= + expressiond
(T2)

- expressiony
(<TY O T2>)

= ZERO
(0)

= ZEROES
(0)

ZEROS
(0)

identifier
(T1)

= number
(T1)
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= Sstring
{T 1]

- - ———— - - -

expressions

expression
(<T1>)

"

expression , expressions
tCr YL T3y)

filename

= symbol
(T1)

filenames

= filename
(<T1>)

= filename , filenames
(<T1 ! T3>)

---------------------------- -- - - -

identifier

qualification
((1f (NLISTP T1)

Form

I-40

then T1 elseif T1:1="0OF and T1:3=NIL then T1:2 else
(HELP “Error% in% reduction® to% identifier.)))

(<°OF (4f (NLISTP T1)

qualification ( subscripts )

then T1 elseif T1:1="OF and T1:3=NIL then T1:2

else

(HELP ‘Error% in% reduction% to% identifier.))

identifiers

= identifier
(<T1>)
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= identifier , identifiers
CCTY 1 F3>)

- - - - - - - - - - -

indexname

s Ssymbol
(T1)

iotype

INPUT
( "OPENINPUTS¢)

I0
( "OPENBOTHS)

OUTPUT
( "OPENOQUTPUTS)

- - . - e e e W W e W -

mnemonicname

= symbol
(T1)

move

MOVE
("SETS$)

MOVE corresponding
( "MOVECOKRESPONDINGS)

"

of
= IN
(NIL)
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= OF
(NIL)

on

= ON
(NIL)

operator

= ADD
(")

= DIVIDE

{ 4]

= MULTIPLY
L")

= SUBTRACT
(=)

paragraph

= paragraphname . sentences
(<"PARAGRAPHS T1 !t T3>)

paragraphname

= symbol
e b

paragraphs

= paragraph
(<T1>)

= paragraph paragraphs
(eI I T2%)

e
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performbody

= procedurename
(<°DO$ T1 T1>)

procedurename thru procedurename
(<°DO% T1 T3>}

performcontrol

= UNTIL condition
(<12 T1>)

= expression TIMES
£<12 T1>)

= varying expression FROM expression BY expression UNTIL

condition
{€T1 €T2 T4 T6 T8>>)

per formcontrols

performcontrol performcontrols

£<T3 1 T2>)
= performcontrol
{<TIX)
procedurename
= symbol
(T1)
procedurenames

= procedurename
(<T1>)

procedurename , procedurenames
C<T1. § T3>)

qualification
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= symbol
L<"OF TV NILY)

= symbol of qualification
(<TI0 T3:2 €0 T3:3 T1oy)

readtarget

= INTO identifier
(T2)

- e e e S e e A -

record

= RECORD
(NIL)

- - - - - - - - -

recordname

= symbol
$T1)

relationoperator

= NOT relationoperator?
((SELECTQ T2 ((QUOTE EQ$)
"NEQ$)
((QUOTE NEQS$)
"EQ$)
((QUOTE LTS$)
‘GTQS)
((QUOTE GTQ¢)
"LT8)
((QUOTE LTQS$)
‘GT¢)
((QUOTE GT$)
‘LTQS)
(HELP °

“"Error in reduction of first alternative of

relationoperator.")))

= relationoperator?
(T1)
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relationoperator?

<
("LT$)

("EQ$)

= >
(°GT$)

= EQUAL to
("EQ$)

= GREATER than
(“GT$)

= LESS than
(°LTS$)

= EQUAL
("EQS$)

= GREATER
("GT$)

= LESS
(°LT$)

rounded

= KOUNDED
(T1)

section

= sectionname SECTION . paragraphs
(< "SECTIORS T1 T TH>) ;

sectionname

= symbol
(T1)

I-45
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sections

= section
C<T1>)

= section sections
(<21 1. .T2>)

sentence

= sentencel
(T1)

sentence?

(€1f Tres1 then < BO% ! T else T1:

- - G -

sentencel

= ACCEPT identifier source
(ST % T2 T

CLOSE filenames
(<TY 1 T3>)

GO to procedurename
(<T1 T3>)

= IF condition thenclause elseclause
(<T1 T2 T3 TRY)

= PERFORM performbody performcontrols
((4f T3 then (for (X R_T2)
in
(REVERSE T3)

1))

I-46

do R_ <'PERFORM X:1 R X:2 NIL> finally

(RETURN R))
else < PERFORM °~ (ONCES$)
T2 NIL NIL>))

VETT 12 BN TEY)

KREAD filename record readtarget endcondition
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=z STOP RUN
(T1)

= WRITE recordname writesource
(<T1 T2 T32)

= corrop corresponding identifier connector identifier
rounded
errorcondition

¢€T1 T3 TS5 T TT>)

= GO procedurename
(<TT T25)

= IF condition thenclause
(<T1 T2 T3 "REXT >)

= PERFORM performbody
((if NIL then (for (X R_T2)

in
(REVERSE NIL)
do R. < PERFORM X:1 R X:2 NIL> finally
(RETURN R))

else < PERFORM ° (ONCES$)

T2 NIL NIL>))

= READ filename readtarget endcondition
(CTT B2 hs Tak)

= KEAD filename record endcondition
(<TY T2 NIL T&%)

= KEAD filename endcondition
¢<TY T2 NIL-T3>)

= HKEAD filename record readtarget
(<T1 T2 T4 NIL>)

= HEAD filename readtarget
AT 3T 3T Ly

KREAD filename record
(<T1 T2 NIL NIL>)

READ filename
K<T1 T2 NIL NIL>)

WHITE recordname
{<T1 T2 BiL>)

= corrop corresponding identifier connector identifier
errorcondition
(<T1 T3 TS NIL T6>)
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= corrop corresponding identifier connector identifier
rounded
(<TY T3 15 T6 NIL>)

= corrop corresponding identifier connector identifier
(<TT1T3'TS NIL"NIE>)

sentence?

= COMPUTE computetarget = expression errorcondition
((for X In T2 colleet <t X T4 T5>})

= DISPLAY identifiers target
((for X in T2 collect <Tt X T3>))

= DIVIDE dividearguments GIVING computetarget1 REMAINDER
identifier
errorcondition
(<€l TR < /vt T2 TT3 ¢ SETS T6 <NIL T2:7 < % TH:2 T2:2>>
T7>>)

= GO to procedurenames DEPENDING on expression
((for 1 to (LENGTH T3)
collect
(<"IF <"EQ$: T6 I> ¢ GO (CAR (NTH T3 1))
> T NEXT >)))

= OPEN iotype filenames
((for X in T3 collect <T2 %>})

= move expression TO identifiers
((for X in T4 collect <T1 X T2 NIL>))

operator arguments GIVING computetarget errorcondition
(t(for X in T4 colliect <1 X (for (Y (R_ T2:=1})
in
(REVERSE T2)
fer do R X11 ¥ Hp
finally
(RETURN R))
T5>))

= operator expressions connector computetarget
errorcondition
((for X in T2 join
(for Y in T4 collect <! Y <T1 Y:2 X> T5>)))

= COMPUTE computetarget = expression
((for X in T2 collect <! X T4 NIL>))

e ——————— T - -,
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= DISPLAY identifiers
({for X in T2 collect <T1 X NIL>))

= DIVIDE dividearguments GIVING computetarget1 REMAINDER
identifier

(<< TR €7/ 1 T2> NIL> < SEBTS T6 <NIL T2:1 <% Th:2
T2:2>> NIL>>)

GO procedurenames DEPENDING on expression
((for I to (LENGTH T2)
collect
{<"IF < EQ% TS5 Iy < GO (CAR (NTH T2 1))
> NE¥T >)))

L]

GO to procedurenames DEPENDING expression
((for I to (LENGTH T3)
collect
(< IF < BG$ TS I» <'GO (CAR (NTH T3 I))
> ° NEXT >3))

= GO procedurenames DEPENDING expression
((for I to (LENGTH T2)
collect
(< IF <"EQ% TH I> <"680 (CAR (NTH T2 1))
> " NEXT »)))

= operator arguments GIVING computetarget
((for X in T4 collect <! X (for (Y (R_ T2:=1))

in

(REVEKSE T2)

(s do R %) ¥ B>

finally
(KETURN R))
NIL>))

= operator expressions connector computetarget

((for X in T2 join
(for ¥ in TH collect <! ¥ <T1 ¥:2 X> NIL>)))

sentences

= sentencel
€<T1>)

= sentencel . sentences
(<31 1 T3>)

sentence?2
(T1)
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= sentence?l2 . sentences
(€Y TY 1 T35)

signcondition

= NEGATIVE
(" (GT$ 0))

= NOT NEGATIVE
(" (LTQ$ 0))

= NOT POSITIVE
(" (GTQ$ 0))

= NOT ZERO
(° (NEQ$ 0))

= POSITIVE
(" (LT$ 0))

ZERO
(" (EQ$ 0))

simplecondition

= conditionname
£31)

expression is relationoperator expression
RT3 T T8>

= expression is signcondition
(<11 T3 T1>)

identifier is classcondition
(<I3 T1>)

expression relationoperator expression
$<T2 T2 T3>)

expression signcondition
(<ty 12 T1>)

identifier classcondition
(<T2 T1>)
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source

= FROM DATE
(T2)

FROM DAY
(T2)

= FROM TIME
(T2)

FROM mnemonicname
(12)

subscripts

= expression
{<T13)

= expression , subscripts
(€T ¢ T3

target

= UPON mnemonicname
(T2)

than

= THAN
(NIL)

thenclause

= NEXT SENTENCE
( "NEXT)

semi sentence
(1T2)

sentence
(T1)

Form
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thru

"

THROUGH
(NIL)

THRU
(NIL)

Parsing,

and Abstract Form

varying

"

AFTER
( “VARYING)

VARKYING
( "VARYING)

- A - - -

writesource

FROM identifier

(T2)

I-52
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Appendix C. A Sample Transduction

1. A COBOL Program

PROCEDURE DIVISION
START-HERE .
OPEN INPUT ACNT-FILE
MOVE ZEKO TO STORE
KREAD-IT .
KEAD ACNT-FILE ; AT END GO TO END-IT
ADD 1 TO STORE
COMPARE
IF ACNT-NO EQUAL STOKE GO READ-IT
DISPLAY STORE
IF STORE EQUAL 99 ETOP RUN
ADD 1 TO STOKE
GO COMPARE
END-IT
COMPUTE STORE = STORE + 1 .
IF STORE 1S GREATER THAN 99 ; STOP KUN
DISPLAY STORE
GO TO END-IT

2. The Corresponding Parse Tree

{{root . 1)
((proceduredivision . 1)
PKOCEDURE DIVISION %.
((paragraphs . 2)
((paragraph . 1)
((paragraphname . 1) ((symbol . 1) START-HERE))
% .
((sentences . 4)
((sentence2 . 5)
OPEN
((iotype . 1) INPUT)
((filenames . 1)
((filename . 1) ((symbol . 2) ACNT-FILE))))
S
((sentences . 3)
((sentence?2 . 6)
((move . 1) MOVE)
((expression . 2)
((expression2 . 3)
((expression3 . 2) ((expressionld4 . 4) ZERO))))
TO
((identifiers . 1)
((identifier . 1)
((qualification
%.)))
((paragraphs . 2)

. 1) ((symbol . 3) STORE)))))
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((paragraph . 1)
((paragraphname . 1) ((symbol . 4) KEAD-IT))

1.

((sentences . 2)
((sentencel . 15)
READ

((filename . 1) ((symbol . 2) ACNT-FILE))
((endcondition . 1)

t{at .. 1) &T)
END .
((sentence . 1)
((sentencel . 3)
GO
(ke . 1} T0)
((procedurename . 1) ((symbol . 5) END=IT))))))
%.
({(sentences . 3)
((sentence2 . 16)
((operator . 1) ADD)
((expressions . 1)
((expression . 2)
((expression2 . 3)
((expression3 . 2)
((expressiond . 8) ((number . 1) 1))))))
((connector . 4) TO)
((computetarget . 1)
((computetarget! . 1)
((identifier . 1)
((qualification . 1) ((symbol . 3) STORE))))))
$.)))
((paragraphs . 2)
((paragraph . 1)
((paragraphname . 1) ((symbol . 6) COMPARE))
%.
((sentences . 2)
((sentencel . 11)
IF
((condition . 2)
((condition2 . 2)
((condition3 . 2)
((conditiond . 2)
((simplecondition . 5)
((expression . 2)
((expression2 . 3)
((expression3 . 2)
((expressiond . 7)
((identifier . 1)
((qualification . 1)
((symbol . 7) ACNT-NO)))))))
((relationoperator . 2)
((relationoperator?2 . 7) EQUAL))
((expression . 2)
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((expression2 . 3)
((expression3 . 2)
((expressionld . 7)
((identifier . 1)
((qualification . 1)
((symbol . 3) STORE))))))))))))
((thenclause . 3)
((sentence . 1)
((sentencel . 10)
GO
((procedurename . 1) ((symbol . 4) READ-=IT))))))
-
((sentences . 4)
((sentence2 . 10)
DISPLAY
((identifiers . 1)
((identifier . 1)

((qualification . 1) ((symbol . 3) STORE)))))

%.

((sentences . 2)
((sentencel . 11)
IF

((condition . 2)
((condition2 . 2)
((condition3 . 2)
((conditionld . 2)
((simplecondition . 5)
((expression . 2)
((expression2 . 3)
((expression3 . 2)
((expression4 . 7)
((identifier . 1)
((qualification . 1)
((symbol . 3) STORE)))))))
((relationoperator . 2)
((relationoperator2 . 7) EQUAL))
((expression . 2)
((expression2 . 3)
((expression3 . 2)
((expressiond . 8)
((number . 2) 99))))))))))
((thenclause . 3)
((sentence . 1) ((sentencel . 7) STOP RUN))))
%.
(

(sentences . 4)
((sentence2 . 16)
((operator . 1) ADD)
((expressions . 1)
((expression . 2)
((expression2 . 3)
((expression3 . 2)

((expressiond . 8) ((number . 1) 1))))))
((connector . 4) TO)

m,——m—
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((computetarget . 1)
((computetargett! . 1)

((identifier . 1)
((qualification . 1) ((symbol . 3) STORE))))))

%

((sentences . 1)
((sentencel . 10)
GO

((procedurename . 1) ((symbol . 6) COMPARE)))

$:13))))
((paragraphs . 1)
((paragraph . 1)
((paragraphname . 1) ((symbol . 5) END-IT))
%
((sentences . 4)
((sentence2 . 9)
COMPUTE
((computetarget . 1)
((computetarget?1 . 1)
((identifier . 1)
((qualification . 1) ((symbol . 3) STORE)))))

((expression . 1)
((expression . 2)
((expression2 . 3)
((expression3 . 2)
((expressiond . 7)
((identifier . 1)
((qualification . 1) ((symbol . 3)

STORE)))))))
+
((expression2 . 3)
((expression3 . 2)
((expressiond4 . 8) ((number . 1) 1))))))

2.
((sentences . 2)
((sentencel . 11)
IF
((condition . 2)
((condition2 . 2)
((condition3 . 2)
((conditiond . 2)
((simplecondition . 2)
((expression . 2)
((expression2 . 3)
((expression3 . 2)
((expressiony . 7)
((identifier . 1)
((qualification . 1)
((symbol . 3) STORE)))))))
( (I8 1) 28)
((relationoperator . 2)
((relationoperator2 . 5)
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GREATEK
((than . 1) THAN)))
((expression . 2)
((expression2 . 3)
((expression3 . 2)
((expressionyd . 8)
((number . 2) 99))))))))))
((thenclause . 2)
(Csemt . 1} 39
((sentence . 1) ((sentencel . 7) STOP RUN))))
((sentences . 4)
((sentence?2 . 10)
DISPLAY
((identifiers . 1)
((identifier . 1)
((qualification . 1) ((symbol . 3) STORE)))))
((sentences . 1)
((sentencel . ?)
GO
t(ta . 1) Ta)
((procedurename . 1) ((symbol . ) END-IT)))
F B g 8
KPAD)

3. The Corresponding Abstract Form

(PROCEDUKEDIVISION?
(SECTIONS NIL
(PAKAGRAPHY START-HERE
(CPENINPUTS ACNT-FILE)
(SET$ STORE 0 NIL))
(PAKAGRAPH$ KEAD-IT
(KEAD ACNT-FILE NIL (GO END-IT))
(SET$ STORE (+ STORE 1) NIL))
(PAKAGKAPH$ COMPAKE
(IF (EC$ ACNT-NO STORE) (GO READ-IT)
NEXT)
(DISPLAY STORE NIL)
(IF (EQ$ STORE 99) STUP NEXT)
(SET$ STORE (+ STOKE 1) NIL)
(GO COMPAKE))
(PARAGRKAPH$ END-IT
(SET$ STOKE (+ STORE 1) NIL)
(IF (GT$ STORE 99) STOP NEXT)
(DISPLAY STORE NIL)
(GO END=-IT))))
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Syntax of the COBOL DATA DIVISION

L. Robinson

This document contains the syntax of the DATA DIVISION
of the COBOL subset for verification. As is the case for
the PROCEDURE DIVISION, the 1language is described as a
transduction grammar. At this point in time, the
transductions for the DATA DIVISION grammar have not been
included. The objective of the transductions of the
PROCEDURE DIVISION is to create a COBOL program in abstract
form. The transductions of the DATA DIVISION can be used to
construct a symbol table to be employed by the COBOL

verification system.

The DATA DIVISION is divided into two parts, the FILE
SECTION and the WORKING-STORAGE section. The FILE SECTION
contains the information on files used by the program, and a
description of the data records associated with the file. A
data record contains the names and picture specifications
(i.e., the declarations) of variables used in the program.
The WORKKING-STORAGE SECTION is used to declare the program
variables not contained in data records of files. Variables
in the WORKING-STORAGE SECTION may be declared individually

or grouped into data records.
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A file declaration contains several options, of which
only a few are included 1in the subset. LABEL and DATA
KRECORD options are included, while ELOCK, RECORD, VALUE OF,
LINAGE, CODE-SET, and REPORT are eliminated. BLOCK, RECORD,
VALUE-OF, and CODE-SET are items of value to the
implementing machine. LINAGE and RKEPORT are used by the
report module of COBOL, none of whose primitives are part of

the subset.

Record descriptions are tree-structured. A record
description entry can designate a group jitem, in which case
it contains a level number and a name, or an elementary
item, in which case its picture, etc., are also described.
If the value of an elementary item corresponds to a
condition~-name, a level-number of 88 is used together with a
description of the values that signify the condition. A
working-storage variable declared individually has a level
number of 77. The first name in a data record description
must have a level number of 01. For elementary or group
items, any two-digit level number (except 01, 66, 77, or 88)

may be used.

A data description entry characterizes an elementary
data item. It consists of a level number followed by the
name of the item or FILLER (if the item is not to be
referenced at the elementary level by the program) and a

list of options. We include the options PICTURE, JUSTIFIED,
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and VALUE. Excluded are REDEFINES, USAGE, SIGN, OCCURS,
SYNCHKONIZED, and BLANK ZERO. HKEDEFINES and OCCURS have not
been axiomatized, and would require an enlargement of the
subset. USACE will only be DISPLAY for this subset, so it
was eliminated ( since that is the default). SIGN and BLANK
ZERQ can be handled by numeric editing. JUSTIFIED provides
for the alignment of characters in an alphanumeric item when
data items are moved t~ it. VALUE performs initialization

of an elementary data iti:m.

PICTURE specifications are the most complicated (and
perhaps the most interesting) part of the DATA DIVISION
grammar. There are three types of pictures, with the
picture type determining the ¢type of the data item.
Alphabetic items may contain letters and spaces.
Alphanumeric items may contain any printable characters.
Numerjc items contain fixed decimal or integer values. The
picture specification may indicate that the data item is
edited, in which case changes are made in order to print out
the data item. Editing can take two forms--insertion and
zero suppression. In insertion, extra characters are
inserted between digits in the edited item. The nature of
the insertion may depend of the value of the item. In zero
suppression, leading zeros (and intervening insertion
characters) to the left of the decimal point are replaced by
spaces, asterisks, or spaces followed by either plus, minus,

or currency sign. In PICTURE specifications, the kind of
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editing is described by
Since there are many
(corresponding to the

grammar for the picture

the sequence of characters involved.
possible character combinations
kinds of editing to be done), ihe

specifications is difficult indeed.
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Appendix A. Grammar for the Data Division

data-division

DATA DIVISION .

DATA DIVISION . file-section

DATA DIVISION . file-section working-storage-section
DATA DIVISION . working-storage-section

$character
$
embeddedcharacter

$=tring
= $character $string
= $string

$string?

$¢string

$string decimalpoint

$string decimalpoint $string
$string pstring impliedpoint
decimalpoint $string
impliedpoint pstring $string

®#character
#*

embeddedcharacter

#string
= ¥character
= %*character #*string

9character
2 .9
= embeddedcharacter

- -
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9string
9character
9character 9string

- - - . G S e e .

creditdebit

T

=5 "CH

= DB
currencyinsertion

= $string editstring
= $stringi
data-description

88 symbol semi value ranges
level -number data-name

"noan

data-descriptioni

= symbol picture justification value-clause

- — - - - - - - - - - -

data-descriptions
= data-description

data~description . data-descriptions

data-name
FILLER
symbol

data-record

semi DATA record symbols

decimalpoint

I1-6

level-number data-name picture justification value-clause
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- - - - - . e e e .

editstring

editstring?

pstring

pstring impliedpoint

editstring?

ediisiiinge

impliedpoint pstring 9string
pstring 9string

editstringe

= gstring

9string decimalpoint

9string decimalpoint 9string
9string pstring

9string pstring impliedpoint
decimalpoint 9string

embeddedcharacter

"o ono
o\ -

file-descriptor
FD symbol label-record
FD symbol label-record data-record

file-descriptors
= file-descriptor
= file-descriptor file-descriptors

file-section
s FILE SECTION .
= FILE SECTION . file-~descriptors

II-7

v record-descriptions
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impliedpoint

R
<3

initialpart

I + oo

"woauon nn

justification
= semi just
= semi just RIGHT

. - - - e - -

label -record

= semi LABEL record OMITTED
= 8semi LABEL record STANDARD
literal

= number

s 8String

minuscharacter

= embeddedcharacter

I1I1-8
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- . e W e e -

minusstring
= minuscharacter
= minuscharacter minusstring

- - e G e

numericedited

currencyinsertion
currencyinsertion creditdebit
initialpart numericedited?
numericedited1

numericedited1 creditdebit
sign currencyinsertion
signinsertion

fHoooonon

numericedited1l
= editstringi
= zerosuppression

picture-word
LR )
=z PICTURE

- - - - -

pluscharacter
B
= embeddedcharacter

plusstring
= pluscharacter
= pluscharacter plusstring

- - —————— - - - - - - - - -

pstring
A
s P pstring

II-9
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range
= literal
= literal thru literal

ranges
= range
= range , ranges

record

= RECORD

= RECORD IS

= RECORDS

= RECORDS ARE

e et e L L T

record-description
= 01 symbol . data-descriptions

- - e AP e AR S e TR R S e WD e e e -

record-descriptions

= record-description

= record-description . record-descriptions
semi

S

sign

= o+

signinsertion

= § signstring editstring
= signstring editstring

= signstringi

II-10
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signstring
= minusstring
= plusstring

signstring1l

= decimalpoint signstring

impliedpoint pstring signstring
minusstring decimalpoint minusstring
plusstring decimalpoint plusstring
signstring

signstring decimalpoint

signstring pstring impliedpoint

suppressstiring
= $®string
= zstring

e e e e e L L L

suppressstring1

#string decimalpoint #string
decimalpoint suppressstring
impliedpoint pstring suppressstring
suppressstring

suppressstring decimalpoint
suppressstring pstring impliedpoint
zstring decimalpoint zstring

symbols
= symbol
= symbol symbols

THRU

VALUES
VALUES ARE

II-11
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value-clause

semi VALUE IS literal
semi VALUE literal

working-storage-list

77 data-description!

77 data-description?1 . working-storage-list
record-description

record-descrintion . working-storage-list

working-storage-section
WORKING-STORAGE SECTION .
WORKING-STORAGE SECTION . working-storage-list

zcharacter
S
= embeddedcharacter

zerosuppression
= suppressstring editstring
= suppressstring?

- - T - S - - - -

zstring
= 2zcharacter
= 7character zstring

II-12
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APPENDIX III

M. W. Green

Axiomatization of COBOL Semantics

This section reports on preliminary work toward an axiomatic repre-
sentation of COBOL semantics, The aim is to describe an adequate, but
somewhat restricted, subset of COBOL in such a way that automatic or semi-
automatic generation of program verification conditions is facilitated.

To a considerable extent we have been guided by Hoare's axiomatization of

the language PASCAL [1]. However, COBOL is in some respects a much more
complex language than PASCAL, so that some additional notational and meta-
linguistic conveniences had to be improvised to describe the effect of certain

COBOL statements.

The COBOL language is described in the ANSI Report [2] by a collection
of syntatic forms accompanied by informal or 'prose” specifications of the
effect of each language statement. In interpreting this document we have
noticed several instances where a restriction or a relaxation of the allowed
language expressions would be helpful in formulating useful program verifi-
cation conditions. Where these situations arise, we have arbitrarily chosen
to use the most convenient interpretation (or restriction). In particular,

we should mention

;A There are several instances where the description of COBOL
syntax (as given in the ANSI report) seems unnecessarily re-
strictive. For example, the GOTO...DEPENDING ON [id] state-
ment could just as well accept an integer-valued arithmetic
expression (or even a COMPUTE...) instead of a simple iden-
tifier. Where we could see no reason for observing this
sort of language restriction we have omitted it from the
axiomatization of the version of COBOL that actually will be
used in program proving. If a compiler forbids the more
relaxed syntax, then the program is not well formed and proof

of correctness is not an issue.
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There are instances where a COBOL statement is considered

to be too dangerous or too difficult to cope with in program
verification. Examples are the ALTER verb and the MOVE
statement applied to group data-items. In the former case,
the possibly intricate variations in flow of program control
are very difficult to handle. In the latter case, the pred-
icates associated with all of the possible consequences of
an unformatted transfer of alphanumeric data are extremely
complex. For such reasons we will often omit some COBOL
statement from the axiomatic description (forbid them) or

restrict the generality of others,

Where the syntatic correctness of an allowed COBOL statement

is clearly checkable by a compiler, we will assume correctness

on the part of the compiler. Furthermore we assume that certain
run-time checks that detect operands of inappropriate type will

be compiled into the executable code. This means, for example,
that we need not adjoin predicates to an ADD statement which

assert that the arguments are numeric quantities. The consequences
of a run-time error in data-type may be handled in at least two
sensible ways. The first would attach an implicit ON ERROR GOTO...
to each statement where such a situation could occur. We choose a
simpler alternative in which these errors signify non-termination
of the program. This is consistent with Hoare's treatment of PASCAL

wherein P{S]Q is satisfied if S diverges.

COBOL is a language with a rather weak notion of data-type, and a
very elaborate collection of conversion rules. Other algebraic
languages make do with o few standard internal representations for
data-types and a few permissible high-level coercion rules such as
INTEGER + REAL = REAL to preserve integrity of data-type. In these
languages the explicit rounding or tuncation of numeric quantities
to conform with non-standard internal representation must usually

be accomplished by extra arithmetic manipulations expressed as high=
level language statements. In the latter respect COBOL is peculiar

(but not unique), because a simple assignment statement need not
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preserve numeric equality between the sending and receiving
values. For this reason we need some method of expressing
the effect of transmitting the value of an elementary COBOL
data-~item to a receiving identifier. The route we have taken
is to express these conversion rules as functions (without
side~effects) that accept values and PICTURES as arguments and
return values equivalent to the COBOL conversion rules. (See

details below.)

Illustrative Examples

¥, MOVE

The COBOL MOVE statement is the analog of the assignment statement
in other high-level languages. For the most primitive form of this statement,
MOVE x TO y; the corresponding PASCAL or ALGOL equivalent is y:= x. The Hoare

axiomatization of this statement would be,

Pi{MOVE x 1O y}P

where the notation Pi denotes the predicate derived from P by substitution

of the value of x for y in P. Informally, if P is true after execution of

{MOVE % TO y} then Pi is also true. Now the MOVE statement, in addition to
having several variational forms, may also modify data so that x # y after

a MOVE. This occurs whenever x suffers an editing operation on being trans-
ferred to location y. All such editing operations may be described by functions
having no side~effects such as Edit(x,picy). Here, Edit is a function of two
arguments, the value of x and the PICTURE corresponding to the variable y. The
internal details of the function Edit implement the conversion rules described
by the COBOL report and the function definition of Edit can serve to define the

semantics of the conversion process.

In statements that manipulate arithmetic quantities, COBOL provides
the option of truncating or rounding values that might not be accommodated to
full precision in the receiving picture. Truncation is the normal default
operation, but rounding can be forced by the use of the ROUNDED modifier in
most arithmetic operations. The effects of truncation or rounding may also

be described by editing functions, for example,
Edittrunc(x,picy) and Edltround(x,picy)

with equally precise internally defined semantics., In the following discussion
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we will use the function Edit as a generic name for the conversion function.
When a ROUNDED modifier appears in a COBOL statement it should be understood

that Editround is to be used instead of Edit etc.

Standard COBOL permits a MOVE of non-elementary (group) items via
an unformatted block—transfer of alphanumeric information. To avoid this
dangerous programming practice, we make a restriction that MOVE x to y where
X and y are group items is permitted only when X and y have identical picture-
structure as defined in the DATA DIVISION., With this constraint all MOVE

statements can be decomposed into MOVEs of elementary items.

Observing these conventions the axiom for the MOVE of an elementary

data-item becomes

P;{MOVE x TO y}P, where E = Edit(x,pic,)

The alternative form, MOVE x to a, b, ...is transduced by the CTG (see Appendix I)
to a sequence of simple MOVES and therefore does not require separate axiomati-
zation. However, to explicate this notion, we introduce the rule

igls v

E s Eyreee

B

E1 = Edit(x,pica), E2 = Edit(x,picb) ot

Now, according to Section 5.15.4 of the COBOL standard, value sub-
stitutions are to be carried out in sequence rather than "simultaneously."

Thus, the statements
MOVE i to j, a(j)
MOVE i to a(j), Jj

should have different effects, Consequently, we will observe the convention

that the notation

a;bees

El'E2'°'

p

stands for the expression resulting from first substituting E; for a in P,

!

then substituting E_ for b in the derived expression, etc. This differs from

2
the interpretation found in Hoare {1], where simul taneous substition was the rule.
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The third variant of the MOVE statement, namely MOVE CORRESPONDING

x TO y, involves group data-items. In the internal representation of the

‘ data division of a COBOL program there will be a form of symbol table that

? provides a unique address (name) for each elementary data-item. However this
\ information is kept, an equivalent unique name for each elementary item can
be specified by forming the ordered list of identifiers (i.e., qualifiers)
proceeding from the name of the data item upward through each level of data

subdivision to the 01 level. For example in the data structure

01 RECORD
02 BAZ

ns A

05 B

the namelist of B is (B, BAZ, RECORD), and this is entirely equivalent to
the specification in COBOL syntax, B IN BAZ IN RECORD.

Definition:

Two elementary items are CORRESPONDING with respect to idl and id2

if id1 - id2 and the namelist of the first item up to but not including id1 is

identical with the namelist of the second item up to but not including id2.

Let Z be the set of ordered pairs

{x

and El = Edlt(xl,picyl)...

Fyr Bo¥ sk IxiinORRESPONDING in X,Y}

then the 4u1e

y
. i
v 7 ;
(x,y,) € Z PEi{MOVE x; TO yi}P
[ e
Py {MOVE CORRESPONDING X TO Y}P
10

gives the semantic interpretation in this form of the MOVE
2. GOTO

The GOTO statement has two variants,
GOTO procedure-name,

GOTO proccduro~namol,[pxn.n*

DEPENDING ON identid
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A suitable axiomatic treatment of the GOTO is given in Knuth[3]. For
COBOL programs, we need the following rules. To each procedure~name L in
the program that is the target or possible target of a GOTO we must provide
a logical assertion predicate P(L) that must be true whenever flow of pro-

gram control reaches L. Then
P(L) {Goro L} false
and the rule of inference

P(L) {bodylqQ
P(L) {L: body}Q

gives the appropriate condition that the GOTO must satisfy. Here body

represents the statements belonging to a procedure-name.

For the second version of the GOTO statement, which resembles the
ALGOL switch construct, the informal semantics are that the identifier is
evaluated to an integer i and control is transferred to the ith procedure
in the procedure-name list. If i is not an integer in the range 1 to n
(n is the number of procedures in the name list) then the statement has no

effect, i.e., control ''falls through" to the next COBOL statement.

We handle this construct by developing the DEPENDING ON conditional
into a set of equivalent IF statements during the transduction phase so that

no separate axiomatization is required.
3. IF-ELSE
The syntatic form of this COBOL statement is

statement1 ELSE atatement2

IF conditfon ) vpxr SENTENCE) (ELSE NEXT SENTENCE

Here some restrictions that existed in earlier versions of COBOL have been

relaxed in the present ANSI standards to permit statement, and statement

1 2
to be of either imperative or conditional type. If we interpret the phrase
NEXT SENTENCE as an imperative statement having no effect, then its axiom-

itization is simply

P {NEXT SENTENCE]} P




s
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and if S1 and S2 stand for permissible statements including NEXT STATEMENT

then

PA condition [sl}q, PA = condi tion {sz}q
P{IF condition S_. ELSE sz}q

1
is the appropriate rule of inference for the IF-ELSE statement.

4. ADD

The ADD statement in COBOL with its several variations and its
optional error exit is perhaps the most syntactically complex arithmetic
statement to be found in any high-level language. Its axiomatization is
fairly straightforward, however, having much the same form as that of the
MOVE statement. (In fact, the semantic primitives SET$ and SETROUNDED$ rep-
resent both in Abstract COBOL.) In the most primitive form

ADD x TO y [ROUNDED]

we have, by analogy with MOVE,

Pi {abp x TO v} P, E = Edit (x+y,picy)

where Edit should be replaced by Editround if the ROUNDED modifier is

employed. The more general form
ADD x,y,Z «.o TO u,v,w ... ,

we currently expand into multiple internal statements so the latter form

needs no separate axiomatization. The variant
ADD x,y,z ...GIVING w [ROUNDED]
has a similar rule, namely
p; {ADD x,y,z ...GIVING w} P, E = Edit (x+y+z ceeypic) .
Here also, the appearance of a list of variables in the place of w would
be expanded into separate internal statements. A third variant,

ADD CORRESPONDING X TO Y [ROUNDED],

leads to an axiom set very similar to that of the MOVE CORRESPONDING state-

ment (see 1 above). That is,
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N
]

{x;v,) X¥, +-«|x,y, CORRESPONDING in X,Y}

E = Edit (x1+y1,pic L

51
¥ 1 {
(x;y,) € 2: pEl ADD x, TO yi]P
py1
E....{ADD CORRESPONDING X TO Y}P

1
In each of the variants of the ADD statement, an optional clause [ON SIZE
ERROR imperative statement] may be attached to take appropriate action if
numeric overflow or underflow conditions arise in the computation. There-

fore, we must consider the family of statements of which
ADD x TO y; ON SIZE ERROR S.

is typical (where S is some imperative statement). This statement requires
several axioms. Let "Sum-fits(y,x+y)" be the assertion that the result of
the computation "x+y' fits in location y. Then one correct rule of inference
is

p{ADD x TO ylQ
P & Sum-fits(y,x+y){ADD x TO y; ON SIZE ERROR S}Q

i.e., in the absence of an error, the error condition is superfluous. Next,
suppose that Sum-fits(y,x+y) is false. Then a complete axiomatization must
distinguish two cases. The first case is that the error is detected before

y is modified. Then we may use the inference rule:

Early-detection X+ & (PLS & — Sum=-fits(y,x+
p{ADD x TO y; ON SIZE ERROR S}Q

The second case is that an error is detected after y has been modified. A
complete axiomatization must then account for the execution of S in the modi-
fied environment. We intend, in our present work, to make the simplifying

assumption that this case does not arise,
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