

APPROXIMATION OF A COMPLETELY MONOTONE FUNCTION . BY 10 KHURSHEED ALAM T WALTER WALKER 13 Napp14-75-C-\$451 12) 11p. (14) N89, TR-270 DDC И N 89 Оставана 1977 JAN 11 1978 TECHNICAL REPORT, #270 ASTRIBUTION STATEMENT A pproved for public release; Distribution Unlimited 407183 13

ACCESSIO	Al for	
NTIS DOC UNANNOU JUSTIFICA	White Buff & NCED TION	Section D Section D
BY DESTRIBUT	ION/AVAILABILI	TY CODES
Dist. A	AIL and/o	SPECIAL
A		

APPROXIMATION OF A COMPLETELY MONOTONE FUNCTION

Khursheed Alam* & Walter Walker Clemson University

ABSTRACT

 \bigvee A function f on $(0, \infty)$ is completely monotone if it possesses derivatives of all orders, and the successive derivatives alternate in sign. It is shown that for each x the value of f(x) lies between any two consecutive partial sums of the expansion of f(x) in Taylor series. The given result can be applied to various functions such as the hypergeometric and confluent hypergeometric functions, which are widely used in applied mathematics. Some statistical applications are also given.

Key words and phrases: Hypergeometric; Confluent Hypergeometric; Exponential function; Gamma distribution.

AMS Classification: Primary 26A86

Secondary 62E15

* The author's work was supported by the Office of Naval 0451 Research under Contract N00014-75-C-Task NR 042-271. 1. Introduction and main results. A function f on $(0,\infty)$ is said to be completely monotone if it possesses derivatives $f^{(n)}$ of all orders and

$$(-1)^{n} f^{(n)}(x) \ge 0, x > 0.$$

Typical examples of a completely monotone function are e^{-x} and $(1+x)^{-m}$, where m is a positive number. A wide class of functions which arise in applied mathematics have the completely monotone property. Consider, for example, the confluent hypergeometric and the hypergeometric functions, given by

$$\Phi(a,b;x) = \sum_{r=0}^{\infty} \frac{a_r}{b_r} \cdot \frac{x^r}{r!}$$

$$\Psi(a,b;c;x) = \sum_{r=0}^{\infty} \frac{a_r}{c_r} \cdot \frac{x^r}{r!}$$

Where (a) $_{r} = a(a+1)...(a+r-1)$. By the integral representation formulas (see e.g. Abramowitz and Stegun [1], 13.2.1, 15.3.1) we have that

$$\frac{\Gamma(b-a)\Gamma(a)}{\Gamma(b)} \phi(a,b;x) = \int_{0}^{I} e^{xt} t^{a-1} (1-t)^{b-a-1} dt \quad (1.1)$$

$$b > a > 0$$

$$\frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \psi(a,b;c;x) = \int_{0}^{I} t^{b-1} (1-t)^{c-b-1} (1-tx)^{-a} dt \quad (1.2)$$

c > b > 0

From (1.1) and (1.2) it is seen that the confluent hypergeometric function
$$\Phi(a,b;-x)$$
 is completely monotone for $b > a > 0$
and the hypergeometric function $\psi(a,b;c;-x)$ is completely mono-
tone for $c > b > 0$, $a > 0$. If $a = b$ then $\Phi(a,b;-x) = e^{-x}$.

-1-

The completely monotone property is important in the theory of probability and statistical analysis. It is known that a function f on $(0,\infty)$ is the Laplace transform of a probability distribution if and only if it is completely monotone and f(0) = 1. From Feller ([2], X111.4, Criterion 1 and 2) we have that if f and g are completely monotone then the product fg is also monotone and that if f is completely monotone derivative then f(g) is completely monotone (in particular, e^{-g} is completely monotone).

Let

$$S_n(x) = \sum_{r=0}^n f^{(r)}(0) \frac{x^r}{r!}$$

denote the partial sum of the Taylor series expansion of f(x). The following theorem shows that if f is completely monotone then for each x the value of f(x) lies between any two consecutive partial sums.

<u>Theorem 1.1</u>. Let n be a positive integer. If f is completely monotone then for each x > 0

$$S_{2n-1}(x) \leq f(x) \leq S_{2n-2}(x)$$
. (1.3)

Proof: Let

$$h(x) = f(x) - S_{2n-1}(x)$$
.

We have $h^{(r)}(0) = 0$ for r = 0, 1, ..., 2n-1. Since $h^{(2n-1)}(0) = 0$ and $h^{(2n)}(x) = f^{(2n)}(x) \ge 0$ therefore $h^{(2n-1)}(x) \ge 0$. Repeating

-2-

the argument we have that $h^{(2n-2)}(x) \ge 0$. Successive repetition of the argument yields $h(x) \ge 0$, establishing the first inequality in (1.3). The second inequality in (1.3) is proved similarly. \square

The result of Theorem 1.1 for $f(x) = e^{-x}$ is known. The following theorem and its corollary extend that result. Theorem 1.3 below gives a monotonicity property of the tail of the exponential series. The proof of the theorem is omitted. Let

$$M_t(x) = e^{-x} - \sum_{r=0}^t (-x)^r / r!, x \ge 0.$$

Theorem 1.1. If t is even (odd) then for all $x \ge 0$ and $0 \le v \le 1$

$$M_t(x) + (-1)^t \frac{x^{\nu+t}}{\Gamma(\nu+t+1)} \ge (\le) 0.$$
 (1.4)

Proof: Let $x \ge 0$, $0 \le v \le 1$ and let L(v) denote the quantity on the left side of the inequality (1.4). Since $M_t(x) \le (\ge)0$ if t is even (odd) by Theorem 1.1, we have that $L(v) \ge (\le)0$ if t is even (odd) for v = 0 and 1.

Let $Z = x^{\nu+t}/\Gamma(\nu+t+1)$. We have

$$\partial^2 \log z/\partial v^2 = -\partial \psi (v+t+1)/\partial v$$

< 0

where ψ denotes the digamma function. Hence Z is either decreasing or increasing or first increasing then decreasing as ν varies from 0 to 1. Suppose that t is even. Then L(ν) is either decreasing or increasing or first increasing then decreasing as ν varies from 0 to 1. Since L(ν) \geq 0 for ν = 0 and 1, it follows that $L(v) \ge 0$ for $0 \le v \le 1$. Similarly, $L(v) \le 0$ for $0 \le v \le 1$ if t is odd.

Corollary 1.1. If
$$0 \le v \le 1$$
 then for all $x \ge 0$
 $|M_+(x)| \le x^{v+t}/\Gamma(v+t+1)$.

Let

$$m_{t+v}(x) = |M_t(x)|/x^{t+v}$$
.

<u>Theorem 1.3</u>. As x varies from 0 to ∞ , $m_{t+1}(x)$ increases and $m_{t+\nu}(x)$ first increases then decreases for 0 < ν < 1.

Application: Let

$$g_{v}(x) = \frac{x^{v-1}e^{-x}}{\Gamma(v)}, \quad v, x > 0$$

denote the density function of the gamma distribution with v degrees of freedom. The distribution function is given by

$$G_{\nu}(\mathbf{x}) = \int_{-\infty}^{\mathbf{x}} g_{\nu}(\mathbf{y}) d\mathbf{y}$$
$$= \frac{\mathbf{x}^{\nu} e^{-\mathbf{x}}}{\Gamma(\nu+1)} \Phi(1,\nu+1; \mathbf{x})$$
$$= \frac{\mathbf{x}^{\nu}}{\Gamma(\nu+1)} \Phi(\nu,\nu+1; -\mathbf{x}). \quad (1.5)$$

Let X_i be a random variable distributed according to a gamma distribution with v_i degrees of freedom, i=1, ..., K. Let X_1, \ldots, X_K be jointly independent, and let $X^* = \max(X_1, \ldots, X_K)$. The fandom variable X* arises in various statistical problems, such as life testing. The mth moment of X* is given by

$$\mu_{m} = E(X^{*})^{m}$$

$$= \sum_{i=1}^{K} \int_{0}^{\infty} x^{m} \prod_{\substack{i=1\\j\neq i}}^{m} G_{\nu_{j}}(x) dx$$

$$= \sum_{i=1}^{K} \int_{0}^{\infty} x^{m} \prod_{\substack{i=1\\j\neq i}}^{m} \frac{x^{\nu_{j}}}{\Gamma(\nu_{j}+1)} \Phi(\nu_{j}, \nu_{j}+1; -x) g_{\nu_{i}}(x) dx$$

Using Theorem 1.1 we obtain bounds on the value of $\mu_{m}^{},$ given by

$$\sum_{i=1}^{K} \int_{0}^{\infty} x^{m} \prod_{\substack{j \neq i \\ j \neq i}}^{m} \frac{x^{\nu} j}{\Gamma(\nu_{j} + 1)} S_{2n-1}(\nu_{j}, \nu_{j} + 1; -x) g_{\nu_{i}}(x) dx \leq \mu_{m} \leq \sum_{i=1}^{K} \int_{0}^{\infty} x^{m} \prod_{\substack{j \neq i \\ j \neq i}}^{m} \frac{x^{\nu} j}{\Gamma(\nu_{j} + 1)} S_{2n-2}(\nu_{j}, \nu_{j} + 1; -x) g_{\nu_{i}}(x) dx \qquad (1.6)$$

where n is any positive integer and

$$S_{n}(a,b;x) = \sum_{r=0}^{n} \frac{(a)_{r}}{(b)_{r}} \cdot \frac{x^{r}}{r!}$$

denotes the partial sum of the confluent hypergeometric series $\Phi(a,b;x)$. The left side of the inequality (1.6) reduces to $\begin{pmatrix} K \\ (\Pi \ \Gamma(v_j))^{-1} \\ j=1 \end{pmatrix}^{-1} \begin{bmatrix} * \ (-1) \\ j \neq i \end{bmatrix}^{\Gamma(m+\sum_{j=1}^{K} v_j + \sum_{j \neq i} s_j) \prod_{\substack{j \neq i}} (v_j + s_j) s_j!)^{-1}$

where $\sum *$ denotes summation over all non-negative integer values of $s_j \leq 2n-1$, $j \neq i$. The right hand side of (1.6) is reduced similarly. The relation (1.6) is useful in the computation of μ_m .

For another application consider a non-central gamma distribution with ν degrees of freedom and non-centrality parameter δ , given by the density function

-5-

$$g(\mathbf{x}) = \mathbf{e}^{-\delta} \sum_{r=0}^{\infty} \frac{\delta^{r}}{r!} g_{\nu+r}(\mathbf{x}).$$

The mth moment of the distribution is given by

$$\mu_{m}(\delta) = e^{-\delta} \sum_{r=0}^{\infty} \frac{\delta^{r}}{r!} \int_{0}^{\phi} x^{m} g_{v+r}(x) dx$$

$$= e^{-\delta} \sum_{r=0}^{\infty} \frac{\delta^{r} \Gamma(m+v+r)}{\Gamma(v+r) r!}$$

$$= \frac{\Gamma(m+v)}{\Gamma(v)} e^{-\delta} \Phi(m+v,v;\delta)$$

$$= \frac{\Gamma(m+v)}{\Gamma(v)} \Phi(-m,v;-\delta) \qquad (1.7)$$

If $-\nu < m < 0$ the confluent hypergeometric function $\Phi(-m,\nu;-\delta)$ is completely monotone in δ . Then the results of Theorem 1.1 can be used to derive bounds on the value of $\mu_m(\delta)$.

References

[1]	Abramowitz,	м.	and	Stegun,	I.	Α.	(1970).	Handbook	of
	Mathematica	1	Funct	ions.	Dove	er l	Publicati	ons.	

[2] Feller, W. (1965). An Introduction to Probability Theory and It's Applications, Vol. II. Wiley Publications.

211 23

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
NRG	
TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
a monotone funct:	ion
Approximation of a completely monotone funct.	
	6. PERFORMING ORG. REPORT NUMBER
	TR #270
AUTHOR(s)	S. CONTRACT OR GRANT NUMBER(S)
Khursheed Alam	N00014-75-C-0451
Walter Walker	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Clemson University	AREA & WORK UNIT NUMBERS
Dept. of Mathematical Sciences	NR 042-271
Clemson, South Carolina 29631	
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Office of Naval Research	
Lode 430 Arlington Va 22217	13. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report)
	Unclassified
	15. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlin	nited.
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlin 17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different	nited.
 DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlin DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, if different B. SUPPLEMENTARY NOTES 	nited.
 DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlin 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 8. SUPPLEMENTARY NOTES 	nited.
 DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlin DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, if different SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES 	nited.
 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlin 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elds if necessary and identify by block num Completely monotone function; Hypergeometric functions; Gamma distribution. 	hited.
 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlin 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different B. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elds if necessary and identify by block num Completely monotone function; Hypergeometric functions; Gamma distribution. 0. ABSTRACT (Continue on reverse elds if necessary and identify by block num A function f on (0,∞) is completely monotone of all orders and the successive derivatives aughors have shown that for each x > 0 the v two consecutive partial sums of the expansion	hited. from Report) from Report) ser) and Confluent hypergeometric fi it possesses derivatives alternate in sign. The value of f(n) lies between any on of f(x) in Taylor series.

24-14

