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APPROXIMATION OF A COMPLETELY MONOTONE FUN CTION

Khursheed Alam* & Walter Walker AClemson University

ABSTRACT

A function f on (O ,co~ is completely monotone if it

possesses derivatives of all orders, and the successive

derivatives alternate in sign. It is shown that for each x

the value of f(x) lies between any two consecutive partial

sums of the expansion of f(x) in Taylor series. The given

result can be applied to various functions such as the hy—

pergeometric and confluent hypergeometric functions, which

are widely used in applied mathematics. Some statistical

applications are also given. ~,
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1. Introduction and main results. A function f on (O ,oo)

is said to be completely monotone if it possesses derivatives

f~~~ of all orders and

(~l)
’
~ f

(fl) (x) > 0, x > 0.

Typical examples of a completely monotone function are e X

and (l+X) m, where m is a positive number. A wide class of

functions which arise in applied mathematics have the completely

monotone property. Consider, for example, the confluent by-per-

geometric and the hypergeometric functions, given by

a r
•(a , b ; x )  — Lr=0 (b)r

L (a) (b)
*(a,b;c;x) = 

~;=~ ~~~r 
r •

Where (a)r = a(a+l)...(a+r—l). By the integral representation

formulas (see e.g. Abraxnowitz and Stegun [1], 13.2.1, 15.3.1)

we have that

r (b—a)r(a) 
~(a,b;x) = eX~ ~

a_l i_~ 
•
~~~ dt (1.1)

b > a > 0

r (c) 
~(a,b;c;x) = jI ~

b_l (l_ ~)
c_b_1 (l_ ~X)

-a dt (l.;
r(b)r(c—b) 0

c > b >  0

From (1.1) and (1.2) it is seen that the confluent hypergeo-

metric function $(a,b;—x) is completely monotone for b > a > 0

and the hypergeometric function ~p(a,b;c;-x) is completely mono-

tone for c > b > 0, a > 0. If a = b then •(a,b;—x) = ~~~

* _____



The completely monotone property is important in the

theory of probability and statistical analysis. It is known

that a function f on (0,oo) is the Laplace transform of a

probability distribution if and only if it is completely mono-

tone and f(0) = 1. From Feller ((2], Xlll.4, Criterion 1 and

2) we have that if f and g are completely monotone then the

product fg is also monotone and that if f is completely mono-

tone and g is a positive function with completely monotone

derivative then f(g) is completely monotone (in particular,

e~~ is completely monotone).

Let

n r
S (x) — V f(r)(Ø) xL~~~o rL

denote the partial sum of the Taylor series expansion of f (x).

The following theorem shows that if f is completely monotone

then for each x the value of f(x) lies between any two con-

secutive partial sums.

Theorem 1.1. Let n be a positive integer. If f is com-

pletely monotone then for each x > 0

S2~_ 1 (x) < f ( x)  < S2~_ 2
(x). (1.3)

Proof: Let

h (x )  f(x) — S2~~1(x).

We have h~~~
(O) — 0 for r — 0, 1, ..., 2n—l. Since h(2r~

i.)(O) = 0
“n) (2n) (2n—l)and h ’ (x) — f C x) > 0 therefore h (x) > 0. Repeating

I 
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the argument we have that h~
2’
~
2
~ Cx) > 0. Successive repe-

tition of the argument yields h(x) > 0, establishing the first

inequality in ( 1.3) .  The second inequality in ( 1.3) is proved

similarly. 0
The result of Theorem 1.1 for f(x) = e~~ is known . The

following theorem and its corollary extend that result. Theorem

1.3 below gives a monotonicity property of the tail of the

exponential series. The proof of the theorem is omitted . Let

Mt (x) = e~~ - 

~r=0 
(_x) n/r!, x > 0.

Theorem 1.1. If t is even (odd) then for all x > 0 and

0 < v < l

v+t
Mt(x) + (—1) r(v+t+l) > (<)0. (1.4)

Proof : Let x > 0 , 0 ~ v < 1 and let L ( v )  denote the

quantity on the left side of the inequality ( 1 .4) .  Since

M~
(x) < (>)0 if t is even (odd ) by Theorem 1.1, we have that

L ( v )  > (<)0 if t is even (odd ) for v = 0 and 1.

Let Z = x\*t/r (v+t+ 1) .  We have

~
2log z/a\, 2 

= — 3~p ( v+t+l)/~ v

< 0

Where i~ denotes the digamma function . Hence Z is either de-

creasing or increasing or first increasing then decreasing as

v varies from 0 to 1. Suppose that t is even. Then L(v) is

either decreasing or increasing or first increasing then de-

creasing as v varies from 0 to 1. Since L(v) > 0 for v = 0
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and 1, it follows that L(v) > 0 for 0 < v < 1. Similarly,

L(v) < 0 for 0 < ~ < 1 if t is odd .

Corollary 1.1. If 0 < v < 1 then for all x > 0

< x~~
t/r (v+t+l) .

Let

m
~+

(x) = Cx) /xt~~.

Theorem 1.3. As x varies from 0 to 
~~~
, m

~+1
(x) increases

and mt+~
(x) first increases then decreases for 0 < v < 1.

Application: Let

= r () V g X > 0

denote the density function of the gamma distribution with v

degrees of freedom. The distribution function is given by

G
~
(x) 

L: 
g~ (y)dy

x)

r (v+i) •(~~,v+1; —x ) . . (1.5)

Let X1 be a random variable distributed according to a gamma

distribution with v~ degrees of freedom, i=l, ... , K. Let

..., XK be jointly independent, and let X* = max (X1, .. ., XK).

The fändom variable X* arises in various statistical problems,

such as life testing. The mth moment of X~ is given by

.

~ 

~~~~~~~~~~~~~~~~~~
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=

K m
= 

~j1 
f ~m IT G

~~
(XY 

~~ 
(x) dx

0 1

= 

~~~~~~ ~~~ 
~~ i r ( v ~+l) ~~(v .,  v .+1;—x)g (x)dx

Using Theorem 1.]. we obtain bounds on the value of j i ,  given

by

1 f~ ~
m

JI r~ v~+i S2~~1 Cv~ ,v.+1;-x)g, (x)dx < 11m~~

~~~~~~~ ~ 

~~~ 
r (v~+1) ~~~~~~~~~~~~~~~~~~~~~~~ 

(1.6)

where n is any positive integer and

n (a) r
S~ (a~b;x) = Zr 0  (b)r ~~

denotes the partial sum of the confluent hypergeometric series

~(a,b;x). The left side of the inequality (1.6 ) reduces to

(n r ( v . ) ) 1 
~~*

where ~ denotes summation over all non-negative integer values

of s~ < 2n-1, j+i. The right hand side of (1.6) is reduced

similarly. The relation (1.6) is useful in the computation of

For another application consider a non-central gamma dis—

tribution with v degrees of freedom and non-centrality parameter

5 , given by the density function 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~



~~~~~~~~~~~

—6—

r-6 6g(x) = e 
~r=0 ~~ 

g~~~ (x).

The mth moment of the distribution is given by

= e 6 
~ ;=~~ 

~~~~~~~~~~~~~~

— 
6 ~ 6rr (++r)

— e L r=0 r (v+r)r!

= ~mr))~ e~~ ’~(m+v ,v;ó)

= ~ (—m ,v;—6) (1.7)

If —v < m < 0 the confluent hypergeometric function

~(—m,v;—6 ) is completely monotone in 6. Then the results of

Theorem 1.1 can be used to derive bounds on the value of Um (6~~

I

_ _  44



• ~~~~~~~~~~~~ .~~~.. .-•-~~~~~ — -~~. - - - - . . - - ~~~~--.~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

—7—

References

(1] Abramowitz, M. and Stegun, I. A. (1970). Handbook of
Mathematical Functions. Dover Publications.

(2] Feller, W. (1965). An Introduction to Probability Theory
and It’s Applications, Vol. II. Wiley Publications. 

~~~~~~~~ ~~~~~~~~~~~~~~~ -
, -m~~- - ~~—.--~~~~~~~~ -- •• ~~~~~~~~~~~~~ 

‘

~~~~~~~~~~~~ .



~~— •r

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (*~lsfl Da*. EnI.,.d) 

____________________________________

DE°”~~ E~~~~”~ 
D A~E 

READ INSTR UCTI ONS
r~ u ‘,#r’. U U~~~~ URi ~~ I~~~ I ~~~~~ ~ ~~~~ BEFORE COMPLETIN G FORM

• t . REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIP IEHTS CATALOG NUMBER

N89 __________________________

• 4. T IT L E (aid SubtitI.) 5. TYPE OF REPORT S PERIOD COVERED

Approximation of a completely monotone funct io

6. PERFORMING ORG. REPORT NUMBER
TR #270 ‘

7. AUTHOR(s) I. CONTRACT OR GRANT NUMSER(I)

N00014-75-C-0451 V

S. P5RFORM1NG ORGANIZATIO N NAME AND ADDRESS Th. PROGRAM ELEMENT . PROJECT . TASK
AR EA 6 WORK UNIT NUMBERS

Clemson University
Dept. of Mathematical Sciences NR 042-271
C1emson~ South Carolina 29631 ____________________________

II. CONTROL LING O F FI C E N A M E A NO AODR ESS 12. REPORT DATE

Office of Naval Research ocT.I~17
Code 436 13. NUMSEROF PAGES

Arlington, Va. 22217 __________________________
IS. MONITORING AGENCY NAME & AOORESS(S1 ditt.r.i I from Con trolling Otlic.) IS. SECURITY CLASS. (of  this r.port)

Unclassified
ISa. OECLA SSIFICATION/OOWNG RA DING

SCHEDULE

15. DISTRIBUTION STATEMENT (of t i l ls R.Port)

Approved for public release; distribution unlimited.

IT. DISTRIBUTION STATEMENT (of A. .b.&act antsrod In Stock 3D. If dtff.,w,t ftc., Ru .rt)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (C ntlnu. on r . u•  .Id. If n.c..omy aid IdsidII~
. 6T block rn b.r)

completely monotone fun ct ion; Hypergeometric and Confluent hypergeometric
functions; Gamma distribution.

20. ABSTRACT (Continu. an rsva ~i .id~ U ~~~~~~~~ aid idaiulI? b~ block nombat)

A function f on (0,~) is completely monotone if 
it possesses derivatives

of all, orders and the successive derivat ives alternate in sign. The
aughors have shown that for each x > 0 the value of f (n )  lies between any
two consecutive partial sums of the expansion of f (x) in Taylor series.

DD ~~~~~ 1473 EDITION OF I NOV 61 iS OBSOLETE
S/N O1O2 ’ 014 6601 I 

CLASSIF ED
SECURITY Ci.A1$1PICATIOM OF THIS PAGE (Ibm bat. &ntarOd)

—





—!!~~
-

—

(
~~~~~~~~ T 

-

~

_ -: 
—• 

__
~

---- 1
~, ±1


