

FG 3 OFFICE OF NAVAL RESEARCH AD A 0 4 8 2 2 Contract/ N00014-75-C-0756 Project .NR 356-593 TECHNICAL REPORT. NO. 7 6 Physical and Chemical Properties of Squarate Complexes. I. Spectral, Magnetic, and Thermal Behavior of Dimeric Iron(III) Squarate. by James T. /Wrobleski and David B./ Brown Prepared for Publication in the Inorganic Chemistry DEC 28 1977 University of Vermont Department of Chemistry Burlington, Vermont 05401 December 8, 1977 Reproduction in whole or in part is permitted for any purpose of the United States Government Approved for Public Release: Distribution Unlimited.

408 892

B

REPORT NUMBER 7 1TILE (and Subming) 7 1TILE (and Subming) 1 "PHYSICAL AND CHEMICAL PROPERTIES OF SQUARATE COMPLEXES. I. SPECTRAL, MAGENETC, AND THERMAL BEHAVIOR OF DIMERIC IRON(III) SQUARATE" 5. TYPE OF NEPORT & PENDO COVERED Technical Report AUTHOR(s) D. B. Brown, J. T. Wrobleski 5. CONTRACT OR GRANIZATION NAME AND ADDRESS Department of Chemistry 10. PROGRAM ELEVENT PROJECT, TASK MONOLULA OFFICE NAME AND ADDRESS 10. PROGRAM ELEVENT PROJECT, TASK APPORT DATE Department of Chemistry 11. REPORT DATE 12. REPORT DATE Defice of Naval Research Bepartment of the Navy APPINTORNY AGENCY NAME & ADDRESS(II different From Controlling Otto) 13. NUMBER OF PAGES A MONTORING AGENCY NAME & ADDRESS(II different From Controlling Otto) 13. SECURITY CLASS. (of this report) Contractor of Superior Controlling Otto) 13. SECURITY CLASS. (of this report) Contractor of Public Release, Distribution Unlimited 15. SECLASSFICTION DOWNGRADING SCHEDULE Approved for Public Release, Distribution Unlimited 10. Control Control Control DownGRADING SCHEDULE Submitted for publication in Inorganic Chemistry 10. ADDITY (Control complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis A ADDYN, These susceptibility behavior of an inon(III) squarate complex tith empirical formula Pe(Crol) (OH) (H2O) thas been studied in the range 10. JO	ALL OKT DUCOMENTATION FAO	E READ INSTRUCTIONS BEFORE COMPLETING FORM
 7 TITLE (and Submitted) TYPE OF REPORT A PERIOD COVERED Technical Report Technical Repo	. REPORT NUMBER 2. GO	VT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
 TITLE (and Subsilie) "PHYSICAL AND CHEMICAL PROPERTIES OF SQUARATE COMPLEXES. I. SPECTRAL, MAGENTEC, AND THERAAL BEHAVIOR OF DIMERIC IRON(III) SQUARATE" AUTHOR() D. B. Brown, J. T. Wrobleski "NO0014-75-C-0756 "PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry University of Vermont Burlington, Vermont 05401 "Contract or GRANT NUMBER() "ControlLing Office of Naval Research Department of the Navy Anlington, Vermont 05401 ControlLing Office of Naval Research Department of the Navy Anlington, Vermont 3 22217 "MONITORING AGENCY HAME & ADORESS(II different from Controlling Office) SECUNITY CLASS. (of this report) Unclassified 15. DECEmber 3, 1977 NUMBER of PACES (of the report) DISTRIBUTION STATEMENT (of the shatred entered in Black 20, II different from Report) Submitted for public Release, Distribution Unlimited Submitted for publication in Inorganic Chemistry Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis ABSYMAT (Continue on reverse side if necessary and Identify by Mock number) The magnetic susceptibility behavior of an iron(III) squarate complex ith empirical formula PE(10) (OH) (II) black number) The magnetic susceptibility behavior of an iron(III) squarate complex ith empirical formula FE(10) (OH) (II) black number) The magnetic susceptibility behavior of an iron(III) squarate complex ithe appertund and bridging hydroxy groups is supported by the infrared ipactrum of the dimer. The ⁵⁷ P Kosshauer spectrum of the is compound consists of a single absorption with 6=0.40 mm/s relative to iron metal. Based on these 	/ -	
 THESTEAL AND CHEMICAL PROPERTIES OF SQUARATE COMPLEXES. I. SPECTRAL, MAGNETIC, AND THERMAL BEHAVIOR OF DIMERIC IRON(III) SQUARATE" ANTHORGO D. B. Brown, J. T. Wrobleski CONTRACT OR GRANIZATION NAME AND ADDRESS Department of Chemistry University of Vermont Burlington, Vermont 05401 CONTROLING OFFICE NAME AND ADDRESS Department of the Navy Arlington, Vermont 05401 CONTROLING OFFICE NAME AND ADDRESS Department of the Navy Arlington, Vermont 05401 CONTROLING OFFICE NAME AND ADDRESS Department of the Navy Arlington, Vermont 05401 CONTROLING OFFICE NAME AND ADDRESS Department of the Navy Arlington, Vermont 05401 DESTRIBUTION STATEMENT (of the Report) Approved for Public Release, Distribution Unlimited DISTRIBUTION STATEMENT (of the seatest onlined in Black 20, II different from Report) Submitted for publication in Inorganic Chemistry S. KEY WORDS (Continue on recease side if measures and identify by black number) Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis ABSNALT (Continue on recease side if measures and identify by black number) The magnetic susceptibilities were best fit to a S. 55, 57,2 dimer model with 5. 6,9 cm¹ and g=2.00. Presence of both terminally-Coordinated bidentate quarate dianion and bridging hydroxy groups is supported by the infrared ignertue of the dimer. The ⁷ P K Sobauer spectrum of this compound consists of a single absorption with 6=0.40 mm/s relative to iron metal. Based on these 		5 TYPE OF PEROPT & PERIOD COVERED
Autoreal and content of the Part is souther in Southand Technical Report COMPLEXES. I. SPECTRAL, MAGENTC, AND THERMAL BEHAVIOR OF DIMERIC IRON(III) SQUARATE" Technical Report Authoreal D. B. Brown, J. T. Wrobleski D. D. B. Brown, J. T. Wrobleski Performing organization NAME AND ADDRESS Department of Chemistry NO0014-75-C-0756 University of Vermont Buildington, Vermont 05401 December 3, 1977 Controlling Office of Naval Research December 3, 1977 Department of the Navy Allington, Vermont 3, 22217 Authoreal of Chemistry University and the second of the second	"PHYSICAL AND CHEMICAL DOODEDTIES OF S	COLLADATE
BEHAVIOR OF DIMERIC IRON(III) SQUARATE" 4. PERFORMING ORGANIZATION NAME AND ADDRESS AUTHOR(*) B. Brown, J. T. Wrobleski * NO0014-75-C-0756 * PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry * NO0014-75-C-0756 Department of Chemistry * NO0014-75-C-0756 * PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry * NO0014-75-C-0756 University of Vermont * Performance of the Name of the Science of the statistic entered in Black 20, If different from Report) * DISTRIBUTION STATEMENT (of the statistic entered in Black 20, If different from Report) * Office of a content of the statistic entered in Black 20, If different from Report) * NEW WORDS (Continue on reverse side If necessary and identify by black number) * Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectrum of the state of the distance of the state of the theory of an iron(III) squarate complex (CONTRULATION) * AND FOR (Continue on reverse side If necessary and identify by black number) * Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectrum of the state of the distance of the compound consists * ALEY WORDS (Continue on reverse side If necessary and identify by black number) * Squaric acid, iron complexe	COMPLEXES I SPECTRAL MAGNETIC AND	TUFPMAL Technical Report
AUTHOR OF DIMERIC IRON(III) SQUARTE C PAROAMING ON AND CONTRACT ON C	BEHAVIOR OF DIMERIC IDON(III) COUNDAT	THERMAL
 AUTHOR(s) AUTHOR(s)	DEMAVIOR OF DIMERIC IRON(III) SQUARAL	
D. B. Brown, J. T. Wrobleski NO0014-75-C-0756 Department of Chemistry NO0014-75-C-0756 Department of Chemistry Nonconstry University of Vermont Burlington, Vermont 05401 Burlington, Vermont 05401 I: REPORT DATE Controctions Corride Away ADDRESS I: REPORT DATE Office of Naval Research Department of the Navy Aplington, Vermont 25401 I: Mometor P Pades A MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) I: Nummetor P Pades A MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) I: SECURITY CLASS. (of the report) A MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) I: SECURITY CLASS. (of the report) A proved for Public Release, Distribution Unlimited Is SECURITY CLASS. (of the report) Approved for Public Release, Distribution Unlimited Is SUPPLEMENTARY MOTES Submitted for publication in Inorganic Chemistry Security Continue on complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis A ASTRAT (Continue on converse side If necessary and identify by block number) Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis A SUBARAT (Continue on converse side If necessary and identify by block number) The magnetic susceptibilities were beset	· AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(*)
 NOUDI4-75-C-0756 PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry University of Vermont Burlington, Vermont 05401 CONTROLING OFFICE NAME AND ADDRESS Office of Naval Research Department of the Navy Alington, Virginia 22217 MONTORING AGENCY NAME & ADDRESS(I different from Controlling Office) SECLASSIFICATION/DOWNGRADING DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) SUPPLEMENTARY NOTES Submitted for publication in Inorganic Chemistry KEY WORDS (Continue on reverse side if necessary and identify by block number) Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis Assyndat (Continue on reverse side if necessary and identify by block number) The magnetic susceptibilities were best fit to as (s 5, 25, 27) dimer model with 5-0, 40 mm/s relative to iron metal. Based on these 	D. B. Brown, J. T. Wrobleski	
 PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry University of Vermont 05401 Burlington, Vermont 05401 I. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Department of the Navy Arlington, Virginia 22217 I. Number of PAGES I. PECCRAN ELEMENT PROJECT. TASK ARE & WORK UNIT NUMBERS. TASK Performed of the data of the second of the second of the data of the second of the seco		₩ N00014-75-C-0756
 PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry University of Vermont Burlington, Vermont 05401 I. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Department of the Navy Arlington, Virginia 22217 I. NUMBER of PAGES I. REPORT DATE December 8, 1977 I. NUMBER of PAGES I. REPORT DATE December 8, 1977 I. NUMBER of PAGES I. SECURITY CLASS. (of this report) Unclassified I. S. DECLASSIFICATION/DOWNGRADING SCHEDULE C. DISTRIBUTION STATEMENT (of the Report) Approved for Public Release, Distribution Unlimited Dec ASSIFICATION/DOWNGRADING SCHEDULE C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis C. ADSTRIAL (Continue on reverse side II necessary and Identify by block number) The magnetic susceptibility behavior of an iron(III) squarate complex tith empirical formula Fe(Cp(1)(0H)(H¹_0) is has been studied in the range O-300K. These susceptibilities were best fit to a S₂-5/2 dimer model with E-6-9 em⁻¹ and g=2.00. Presence of both terminally-Coordinated bidentate squarate dianion and bridging hydroxy groups is supported by the infrared incent for the form of the 5-0.40 mm/s relative to iron metal. Based on these 		
Department of Chemistry University of Vermont Burlington, Vermont 05401 1. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Department of the Navy Arlington, Virginia 22217 1. NUMBER OF PAGES 12 13. NUMBER OF PAGES 14. MONITORING ACENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE 6. DISTRIBUTION STATEMENT (of the Report) Approved for Public Release, Distribution Unlimited 7. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different from Report) 16. SupplementARY NOTES Submitted for publication in Inorganic Chemistry 5. KEY WORDS (Continue on reverse side II necessary and Identify by black number) Squaric acid, iron complexes, magnetic susceptibility, Mössbauer spectroscopy, thermal analysis 16. ABSTRAFT (Continue on reverse side II necessary and Identify by black number) The magnetic susceptibility behavior of an iron(III) squarate complex if the magnetic Susceptibility behavior of an iron(III) squarate complex if the magnetic all formula FeC(TQ)(OH)(HfQ) is as been studied in the range 20-300K. These susceptibilities were best fit to a S_S_S-5/2 dimer model with 15. Supported by the infrared Squarate dianion and bridging hydroxy groups is supported by the infrared Squarate dianion and bridging hydroxy groups is supported by the infrared Squarate dianion and bridging hydroxy groups is supported by the infrared Squarate dianion and bridging hydroxy groups is supported by the infrared Squarate dianion and bridging hydroxy groups is supported by the infrared Squarate dianion and bridging hydroxy groups is supported by the infrared Squarate dianion and bridging hydroxy groups is supported by the infrared Squarate dianion and bridging hydroxy for this compound consists of a single absorption with 6=0.40 mm/s relative to iron metal. Based on these	PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
University of Vermont Burlington, Vermont 05401 1: controlling office and AND ADDRESS Office of Naval Research Department of the Navy Arlington, Virging 22217 4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 5. SECURITY CLASS. (of this report) MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 5. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Distribution Unlimited 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 8. KEY WORDS (Continue on reverse side if necessary and Identify by block number) Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis 8. ABSTRAFT (Continue on reverse side If necessary and Identify by block number) The magnetic susceptibility behavior of an iron(III) squarate complex cith empirical formula Fe(Cp(2))(OH)(H(D) is as been studied in the range 0.300K. These susceptibilities were best fit to a S_1=S_2-5/2 dimer model with 15. Organize diation and bridging hydroxy groups is supported by the infrared squarate dianion and bridging hydroxy groups is supported by the infrared squarate dianion and bridging hydroxy groups is supported by the infrared squarate dianion and bridging hydroxy groups is supported by the infrared squarate dianion and bridging hydroxy groups is supported by the infrared squarate dianion and bridging hydroxy groups is supported by the infrared squarate dianion and bridging hydroxy groups is supported by the infrared squarate dianion and bridging hydroxy groups is supported by the infrared squarate dianion and bridging hydroxy groups is supported by the infrared squarate dianion and bridging hydroxy groups is supported by the infrared squarate dianion and bridging hydroxy groups is supported by the infrared squared by the infrared	Department of Chemistry	
Burlington, Vermont 05401 • ControlLing office NAME AND ADDRESS Office of Naval Research Department of the Navy Arlington, Virginia 22217 • MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) • Distribution statement (of the Report) Approved for Public Release, Distribution Unlimited • DISTRIBUTION STATEMENT (of the Report) Approved for Public Release, Distribution Unlimited • DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) • DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) • Schedule • Submitted for publication in Inorganic Chemistry • KEY WORDS (Continue on reverse side if necessary and identify by block number) Squaric acid, iron complexes, magnetic susceptibility, Mössbauer spectroscopy, thermal analysis • ABSTRAFT (Continue on reverse side if necessary and identify by block number) The magnetic susceptibility behavior of an iron(III) squarate complex if and g=2.00. Presence of both terminally-coordinated bidentate 20-300K. These susceptibilities were best fit to a S = S = 5/2 dimer model with = 6.9 cm ⁻¹ and g=2.00. Presence of both terminally-coordinated bidentate squarate dianion and bridging hydroxy groups is supported by the infrared squarete dianion and bridging hydroxy groups is supported by the infrared squarete dianion and bridging hydroxy groups is supported by the infrared squarete dianion and bridging hydroxy from selative to iron metal. Based on these	University of Vermont	
 1. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Department of the Navy Arlington, Virginia 22217 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified Ustraigution STATEMENT (of the Report) Approved for Public Release, Distribution Unlimited DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution STATEMENT (of the abstract entered in Block 20, II different from Report) Submitted for publication in Inorganic Chemistry Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis Asstract (Continue on reverse side if necessary and identify by block number) The magnetic susceptibility behavior of an iron(III) squarate complex if the miprical formula Fe(C(0))(OR)(H(0)) thas been studied in the range 0.300K. These susceptibilities were best fit to a S₁=S₂=5/2 dimer model with the formula Fe(C(0))(OR)(H(0)) thas been studied in the range 0.300K. These susceptibilities were best fit to a S₁=S₂=5/2 dimer model with the formula Fe(C(0))(OR)(H(0)) thas been studied in the range 0.300K. These susceptibilities were best fit to a S₁=S₂=5/2 dimer model with the formula Fe(C(0))(OR)(H(0)) thas been studied in the range 0.300K. These susceptibilities were best fit to a S₁=S₂=5/2 dimer model with the formula Fe(C(0))(OR)(H(0)) thas been studied in the range 0.300K. These susceptibility below proved by the infrared spectrum of the dimer. The ⁵⁷Fe Mossbauer spectrum of this compound consists of a single absorption with 6=0.40 mm/s relative to iron metal. Based on these 	Burlington, Vermont 05401	
Office of Naval Research Department of the Navy Arlington, Virgina 22217 December 3, 1977 13. NumeEn OF PAGES 12 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 5. DISTRIBUTION STATEMENT (of the Report) SchEdule Approved for Public Release, Distribution Unlimited If the report of the source of the terminally-coordinate bidentate source of the dimer. The ⁵⁷ Fe Mossbauer spectrum of the dimer. The ⁵⁷ Fe Mossbauer spectrum of the source	1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Department of the Navy 11. NUMBER OF PAGES Arlington, Virginia 22217 12 12 13. SECURITY CLASS. (cf this report) Unclassified 15. SECURITY CLASS. (cf this report) Approved for Public Release, Distribution Unlimited 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 8. SUPPLEMENTARY NOTES Submitted for publication in Inorganic Chemistry 9. KEY WORDS (Continue on reverse side If necessary and Identify by block number) Squaric acid, iron complexes, magnetic susceptibility, Mössbauer spectroscopy, thermal analysis 7. ABSTRIFT (Continue on reverse side If necessary and Identify by block number) Squaric acid, iron complexes, magnetic susceptibility, Mössbauer spectroscopy, thermal analysis 7. The magnetic susceptibility behavior of an iron(III) squarate complex if the mpirical formula Fe(C ₁ 0 ⁺)(OH)(H ⁰ ₁ 0) thas been studied in the range 20-300K. These susceptibilities were best fit to a S ₁ =S ₂ =5/2 dimer model with 16=6.9 cm ⁻¹ and g=2.00. Presence of both terminally-coordinated bidentate spectrum of the dimer. The ⁵ TFE Mössbauer spectrum of this compound consists of a single absorption with 6=0.40 mm/s relative to iron metal. Based on these	Office of Naval Research	December 8. 1977
Arlington, Virginia 22217 12 A MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. SECURITY CLASS. (of this report) Approved for Public Release, Distribution Unlimited 16. Distribution STATEMENT (of this Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) DEC 93 1971 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) DEC 93 1971 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) DEC 93 1971 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) DEC 93 1971 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) DEC 93 1971 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) DEC 93 1971 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis 8. KEY WORDS (Continue on reverse side If necessary and Identify by block number) Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis 8. ABSTRACT (Countime on reverse side If necessary and Identify by block number) The magnetic susceptibility behavior of an iron(III) s	Department of the Navy	13. NUMBER OF PAGES
 15. SECURITY CLASS. (of this report) 15. SECURITY CLASS. (of this report) 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Distribution Unlimited 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) 18. SUPPLEMENTARY NOTES Submitted for publication in Inorganic Chemistry 19. KEY WORDS (Continue on reverse side II necessary and Identify by block number) Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis 10. ABSTRIAT (Continue on reverse side II necessary and Identify by block number) The magnetic susceptibilities were best fit to a S = 5, =5/2 dimer model with the forgunate dianion and bridging hydroxy groups is supported by the infrared spectrum of the dimer. The ⁵/F Mössbauer spectrum of this compound consists of a single absorption with δ=0.40 mm/s relative to iron metal. Based on these 	Arlington, Virginia 22217	12
Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE 5. DISTRIBUTION STATEMENT (of the Report) Approved for Public Release, Distribution Unlimited 7. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different from Report) 7. Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis 10. ABSTRACT (Continue on reverse side if necessary and Identify by block number) 7. The magnetic susceptibility behavior of an iron(III) squarate complex tith empirical formula Fe(Cr01)(OH)(H20) has been studied in the range 10-300K, These susceptibilities were best fit to a S_=5,=5/2 dimer model with 13-6.9 em 1 and g=2.00. Presence of both terminally-Coordinated bidentate squarate dianion and bridging hydroxy groups is supported by the infrared spectrum of the dimer. The 57Fe Mössbauer spectrum of this compound consists 5 f a single absorption with 6=0.40 mm/s relative to iron metal. Based on these	4. MONITORING AGENCY NAME & ADDRESS(II different from	Controlling Office) 15. SECURITY CLASS. (of this report)
3. DISTRIBUTION STATEMENT (of the Report) Approved for Public Release, Distribution Unlimited 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 7. Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis 7. ABSTRACT (Continue on reverse side if necessary and identify by block number) 7. The magnetic susceptibility behavior of an iron(III) squarate complex rith empirical formula Fe(Cr01)(OH)(H(0)) has been studied in the range 70-300. These susceptibilities were best fit to a S_=S_=5/2 dimer model with 1=-6.9 em 1 and g=2.00. Presence of both terminally-Coordinated bidentate equarate dianion and bridging hydroxy groups is supported by the infrared spectrum of the dimer. The 57Fe Mossbauer spectrum		Unalassified
 Approved for Public Release, Distribution Unlimited Approved for Public Release, Distribution Unlimited 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 8. SUPPLEMENTARY NOTES Submitted for publication in Inorganic Chemistry 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) The magnetic susceptibility behavior of an iron(III) squarate complex rith empirical formula Fe(Cf(0))(OH)(H(0)) has been studied in the range 10-300K. These susceptibilities were best fit to a Sq=55/2 dimer model with 1=6.9 om 1 and g=2.00. Presence of both terminally-coordinated bidentate supertum of the dimer. The ⁵⁷Fe Mossbauer spectrum of this compound consists of a single absorption with δ=0.40 mm/s relative to iron metal. Based on these 		15- DECLASSIFICATION/DOWNGRADING
 Approved for Public Release, Distribution Unlimited Approved for Public Release, Distribution Unlimited 7. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, If different from Report) Distribution STATEMENT (of the abstract entered in Black 20, If different from Report) Submitted for publication in Inorganic Chemistry Section 20, 100 (Continue on reverse side if necessary and identify by black number) Squaric acid, iron complexes, magnetic susceptibility, Mossbauer spectroscopy, thermal analysis Approved for Continue on reverse side if necessary and identify by black number) The magnetic susceptibility behavior of an iron(III) squarate complex rith empirical formula Fe(Cf(0⁺))(OH)(H⁺(0)) thas been studied in the range 20-300K. These susceptibilities were best fit to a Size 25/2 dimer model with tene. 9 and g=2.00. Presence of both terminally-coordinated bidentate equarate dianion and bridging hydroxy groups is supported by the infrared spectrum of the dimer. The ⁵⁷Fe Mossbauer spectrum of this compound consists of a single absorption with δ=0.40 mm/s relative to iron metal. Based on these 		SCHEDULE
 Submitted for publication in Inorganic Chemistry KEY WORDS (Continue on reverse side if necessary and identify by block number) Squaric acid, iron complexes, magnetic susceptibility, Mössbauer spectroscopy, thermal analysis ABSTRAFT (Continue on reverse side if necessary and identify by block number) The magnetic susceptibility behavior of an iron(III) squarate complex rith empirical formula Fe(CrO⁺)(OH)(H⁺O)⁺ has been studied in the range 20-300K. These susceptibilities were best fit to a S = S = 5/2 dimer model with i= 6.9 cm⁻¹ and g=2.00. Presence of both terminally-coordinated bidentate iquarate dianion and bridging hydroxy groups is supported by the infrared ipectrum of the dimer. The ⁵⁷Fe Mössbauer spectrum of this compound consists of a single absorption with 6=0.40 mm/s relative to iron metal. Based on these 	7. DISTRIBUTION STATEMENT (of the abstract entered in Blo	ck 20, 11 different from Report)
 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Squaric acid, iron complexes, magnetic susceptibility, Mössbauer spectroscopy, thermal analysis 40. ABSTRAFT (Continue on reverse side if necessary and identify by block number) The magnetic susceptibility behavior of an iron(III) squarate complex with empirical formula Fe(Cr0⁺)(OH)(H^f0)⁺ has been studied in the range 20-300K. These susceptibilities were best fit to a S₁=S₂=5/2 dimer model with l=-6.9 cm⁻¹ and g=2.00. Presence of both terminally-coordinated bidentate squarate dianion and bridging hydroxy groups is supported by the infrared spectrum of the dimer. The ⁵⁷Fe Mössbauer spectrum of this compound consists of a single absorption with δ=0.40 mm/s relative to iron metal. Based on these 	7. DISTRIBUTION STATEMENT (of the abstract entered in Blo	ck 20, If different from Report)
The magnetic susceptibility behavior of an iron(III) squarate complex with empirical formula $Fe(C_10_4^+)(OH)(H_1^{\ell}0)$ has been studied in the range $20-300K$. These susceptibilities were best fit to a $S_1=S_2=5/2$ dimer model with 1=-6.9 em ⁻¹ and g=2.00. Presence of both terminally-coordinated bidentate equarate dianion and bridging hydroxy groups is supported by the infrared spectrum of the dimer. The 57 Fe Mössbauer spectrum of this compound consists of a single absorption with $\delta=0.40$ mm/s relative to iron metal. Based on these	7. DISTRIBUTION STATEMENT (of the abetract entered in Blo B. SUPPLEMENTARY NOTES Submitted for publication in Inorgan	ck 20, 11 different from Report)
	 DISTRIBUTION STATEMENT (of the ebetract entered in Blo SUPPLEMENTARY NOTES Submitted for publication in Inorgan KEY WORDS (Continue on reverse side if necessary and iden Squaric acid, iron complexes, magnet Mossbauer spectroscopy, thermal anal 	Ack 20, If different from Report)
	 DISTRIBUTION STATEMENT (of the abstract entered in Blo SUPPLEMENTARY NOTES Submitted for publication in Inorgan KEY WORDS (Continue on reverse side if necessary and iden Squaric acid, iron complexes, magnet Mössbauer spectroscopy, thermal anal The magnetic susceptibility beh vith empirical formula Fe(Cr0⁺₁)(OH)(H^fC) 20-300K. These susceptibilities were h =-6.9 em⁻¹ and g=2.00. Presence of bo squarate dianion and bridging hydroxy g pectrum of the dimer. The ⁵⁷Fe Mössba fa single absorption with δ=0.40 mm/s 	ack 20, II different from Report) Dick 20, II different from Report) Dick 20, II different from Report) Dick 23, 1977 Dick

results an octahedral structure with molecular formula $[Fe(C_{10}, 0)(0H)(H_{20})_{2}, 2H_{20}$ is suggested for this dimer. The thermal weight loss curve for this material is described by the initial loss of both lattice and coordinated water followed by a complex decomposition process involving the squarate ligand.

Physical and Chemical Properties of Squarate Complexes. I. Spectral, Magnetic, and Thermal Behavior of Dimeric Iron(III) Squarate

by

James T. Wrobleski and David B. Brown*

Contribution from the Department of Chemistry University of Vermont, Burlington, Vermont 05401 Trivalent metal-ion complexes which contain the squarate dianion (I, Sq) with general formula $M(Sq)(OH)(H_2O)_3$ were first reported by West and Niu¹ (M=Al, Cr, or Fe) and Condren and McDonald² (M=V). Niu's suggestion of a dimeric structure for

Fe(Sq)(OH)(H₂0)₃ was principally supported by the reduced room temperature magnetic moment of this compound. The other trivalent metal complexes were subsequently assigned dimeric structures based on their x-ray isomorphism to the iron compound.^{1,2}

As part of our investigation of the electronic and structural properties of ironsquarate complexes we have studied the variable-temperature magnetic susceptibility, spectral, and thermal behavior of $Fe(Sq)(OH)(H_2^0)_3$, and report here evidence which supports a dihydroxy-bridged dimeric structure (II) for this complex.

Π

-1-

Experimental Section

Materials and Methods. Squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) was purchased from Aldrich Chemical Co. and used as received. FeCl, 6H,0 was purified by centrifuging a concentrated ethanolic solution of commercial hydrated ferric chloride and discarding the insoluble material. Magnetic susceptibilities were determined using a conventional Faraday balance calibrated with Hg[Co(NCS),].4 Ligand diamagnetism was treated as usual by assuming $X_{so} = 30.6 \times 10^{-6} \text{ cgsu}^1$ and by using a table at Pascal's constants. 5 Mössbauer spectra were obtained by using the spectrometer previously described⁶ with a ⁵⁷Co(Pt) source maintained at room temperature. A moderately-thin foil of natural α -Fe was used to define the velocity scale. Mössbauer spectra were deconvoluted by assuming pure Lorentzian line shapes superimposed on a parabolic base line. Parameters obtained in this manner were reproducible to ± 1%. Infrared spectra were obtained on a Beckman IR 20A instrument by using KBr pressed pellets. X-ray powder diffraction patterns were obtained with the Straumanis technique by using vanadium-filtered Cr radiation ($\lambda_{mean} = 2.2909$ Å). TGA curves were obtained by using a Dupont 900 Thermal Analyzer coupled to a Dupont 950 Thermogravimetric Analyzer. Iron was determined by EDTA titrimetry. C and H analyses were performed by Integral Microanalytical Laboratories, Inc., Raleigh, N.C.

Preparation of $[Fe(Sq)(OH)(H_2O)_2]_2 \cdot 2H_2O$. Di[µ-hydroxodiaquosquaratoiron(III)] dihydrate was prepared by adding an ethanolic solution of FeCl₃ to a stoichiometric amount of squaric acid dissolved in hot water. The resulting purple solution was refluxed and filtered. Upon cooling a purple-brown material crystallized. This solid was collected, repeatedly washed with cold ethanol, and air dried at room temperature. Anal. Calcd for FeC₄H₇O₈: Fe, 23.38; C, 20.11; H, 2.95. Found: Fe, 23.6; C, 19.93; H, 2.84. A partially deuterated analog was prepared by using 90% D₂O as reaction solvent. X-ray powder patterns of the normal and deuterated materials were identical.

-2-

Results and Discussion

X-ray powder pattern d-spacings obtained for the samples of $[Fe(Sq)(OH)(H_2O)_2]_2 \cdot 2H_2O$ prepared in this study are identical to those reported by West and Niu¹. Magnetic susceptibility data for $[Fe(Sq)(OH)(H_2O)_2]_2 \cdot 2H_2O$ given in Table I⁷ and shown in Figure 1 indicate moderate intramolecular antiferromagnetic spin exchange in this material. Both the magnitude and temperature dependence of the susceptibility typify the behavior of an S₁ = S₂ = 5/2 dimer.⁸ For such a system the following expression for the susceptibility is obtained from the dipolar coupling approach of Van Vleck.⁹

X _M =	$\frac{2N\beta^2 g^2}{kT}$	$55 + 30 \exp(-10J/kT) + 14 \exp(-18J/kT) + 5 \exp(-24J/kT)$ + $\exp(-28J/kT)$		
		$11 + 9 \exp(-10J/kT) + 7 \exp(-18J/kT) + 5 \exp(-24J/kT)$		
		+ 3 $exp(-28J/kT)$ + $exp(-30J/kT)$		

Symbols in this expression have their usual meanings. A least squares fit of the experimental susceptibility to this equation yields values of J and g. By assuming g = 2.00, the smooth curves shown in Figure 1 are obtained for $J = -6.9 \text{ cm}^{-1}$. This value of |J| is inconsistent with both oxo- and squarato-bridged structures. Oxo-bridged Fe(III) dimers are invariably characterized by coupling constants near -100 cm⁻¹.¹⁰ Squarate bridges, on the other hand, provide a poor exchange path as experimentally observed for the polymers Ni(Sq)(H₂O)₂ (J = - 0.7 cm⁻¹)¹¹ and Fe(Sq)(H₂O)₂ (J--0.7 cm⁻¹)¹² and the dimers $[Cu_2(Et_5dien)_2(Sq)](BPh_4)_2$ (J = -2.1 cm⁻¹)¹³ and $[Ni_2(macro)_2$ (Sq)] (ClO₄)₂ (J = - 0.4 cm⁻¹).¹⁴ Coupling constants in the vicinity of -10 cm⁻¹ have been observed for several dibridged Fe(III) dimers, including dihydroxo-bridged dimers.^{15,16}

A room temperature Mössbauer spectrum of $[Fe(Sq) (OH)(H_2^0)_2]_2 \cdot 2H_2^0$, shown in Figure 2, may be described by a single Lorentzian line with isomer shift $\delta = 0.40$ mm/s. If the data are fit to a quadrupole doublet, a splitting of $\Delta = 0.16$ mm/s is obtained with $\delta = -0.40$ mm/s, $\Gamma_1 = 0.40$, and $\Gamma_2 = 0.38$ mm/s. The fit is essentially identical for these two sets of parameters. Although the isomer shift increases to 0.48 mm/s at 19K we do not observe any greater resolution of the quadrupole doublet at low temperature.

Small values of Δ ,taken by themselves, do not distinguish tetrahedral from octahedral coordination for Fe(III) nor do they differentiate low-spin Fe(II) from high-spin Fe(III).¹⁷ In general the same applies for δ . Spin state is fortunately easy to diagnose from susceptibility data, but it is more difficult to distinguish T_d from O_h coordination for Fe(III). It has been our general experience that in the absence of magnetically-perturbed Mössbauer data (which may be equivocal for small Δ), it is possible to make this distinction by considering the relative percent effect (percent transmission) of T_d Fe(III) complexes to O_h Fe(III) complexes. Whereas many [FeX₄]⁻ complexes show 1-2% effect at room temperature, octahedral Fe(III) compounds at the same temperature realize 10-20% effect. This argument is by no means unequivocal but may be used as a qualitative guide in many instances. The relatively high percent effect shown by [Fe(Sq)(OH)(H₂O)₂]₂·2H₂O at RT (Figure 2) would seem to support octahedral rather than tetrahedral Fe(III) in this compound.

Infrared spectra of squarate-containing compounds are quite characteristic of the mode of coordination.² Thus it is possible to distinguish the terminal form of squarate as in II from the bridging form by virtue of the lower symmetry of the former. Polymeric divalent metal squarates, which contain the squarate ion in approximately D_{4h} symmetry, have as the most prominent feature in their infrared spectra a broad band near 1500 cm⁻¹ assigned to a mixture of C-0 and C-C stretching modes.^{1,2,12} The infrared spectrum of [Fe(Sq)(OH)(H₂0)₂]₂·2H₂O however shows not only this absorption but also moderate bands at 1640 and 1815 cm⁻¹. The former absorption may be assigned

-4-

to a C=C stretching mode and the latter to a C=O stretching mode. The infrared spectrum of this complex thus suggests nominal \underline{C}_{2v} symmetry for the squarate ion, as in squaric acid and metal squarates involving bidentate coordination of the squarate ion. A number of other infrared absorptions are present in the spectrum of $[Fe(Sq)(OH)(H_2O)_2]_2 \cdot 2H_2O$, all of which are consistent with structure II.¹⁸ These bonds and appropriate assignments are listed in Table II. We have assigned a weak absorption at 850 cm⁻¹ to the Fe-O-H deformation mode associated with bridging hydroxo groups.¹⁵ This assignment is supported by the observation that this band decreases in intensity upon partial deuteration.

The thermal weight loss curve of $[Fe(Sq)(OH)(H_2O)_2]_2 \cdot 2H_2O$ obtained in a nitrogen atmosphere shows two inflections. The first, at 160°C, corresponds to a 17.3% weight loss and the second, at 290°C, corresponds to a 64.8% total weight loss. If the first step corresponds only to dehydration then 4.6 moles of water are lost per mole of dimer. An x-ray powder pattern of the final residue shows the presence of iron metal. The total theoretical weight loss is 66.6% if iron metal is the only product of the decomposition. The thermal behavior of this material contrasts markedly with that of the vanadium analog.² The vanadium complex loses two moles of water per dimer at 80° in vacuum, and six moles of water in either air or argon at <u>ca</u> 150°, and, ultimately, decomposes to vanadium oxides, rather than the metal, at higher temperatures. The complexity of the final decomposition step in these complexes has been previously noted both for divalent^{19,20} and trivalent² metal squarates.

Acknowledgement. The authors acknowledge support of this work by the Office of Naval Research.

Supplementary Material Available: A listing of observed magnetic susceptibilities Table I (1 page). Ordering information is given on any current masthead page.

-5-

References and Notes

- (1) R. West and H. Y. Niu, J. Am. Chem. Soc., 85, 2589 (1963).
- (2) S. M. Condren and H. O. McDonald, Inorg. Chem., 12, 57 (1973).
- (3) H. Y. Niu, "New Aromatic Anions and Their Complexes", Ph.D. Dissertation, Univ. of Wisconsin, 1962.
- (4) D. B. Brown, V. H. Crawford, J. W. Hall, and W. E. Hatfield, J. Phys. Chem., 81, 1303 (1977).
- (5) F. E. Mabbs and D. J. Machin, "Magnetism and Transition Metal Complexes", Chapman and Hall, London, 1973, p 5.
- (6) C. W. Allen and D. B. Brown, Inorg. Chem., 13, 2020 (1974).
- (7) Supplementary material.
- (8) S. A. Cotton, Coord. Chem. Rev., 8, 185 (1972).
- (9) J. H. Van Vleck, "Electric and Magnetic Susceptibilities", Oxford University Press, London, 1932.
- (10) K. S. Murray, Coord. Chem. Rev., 1 (1974).
- (11) M. Habenschuss and B. C. Gerstein, J. Chem. Phys., 61, 852 (1974).
- (12) J. T. Wrobleski and D. B. Brown, in preparation.
- (13) Et₅dien is 1,1,4,7,7-pentaethyldiethylenetriamine. T. R. Felthouse, E. J. Laskowski, and D. N. Hendrickson, <u>Inorg. Chem.</u>, <u>16</u>, 1077 (1977).
- (14) Macro is 2,4,4,9,9,11-hexamethyl-1,5,8,12-tetraazacyclotetradecane. D. M. Duggan,
 E. K. Barefield, and D. N. Hendrickson, Inorg. Chem., 12, 985 (1973).
- (15) J. A. Thich, C. C. Ou, D. Powers, B. Vasiliow, D. Mastropaolo, J. A. Potenza, and H. J. Schugar, J. Am. Chem. Soc., 98, 1425 (1976).
- (16) J. T. Wrobleski and G. J. Long, Inorg. Chem., 16, 0000 (1977).
- (17) N. N. Greenwood and T. C. Gibb, "Mössbauer Spectroscopy", Chapman and Hall, London, 1971, p 90 ff.

--6-

- (18) A number of workers have discussed the infrared spectra of squaric acid, its anions, and their complexes. See for example: D. P. C. Thackeray and R. Shirley, J. Cryst. Mol. Struct., 2, 159 (1972); D. P. C. Thackeray and B. C. Stace, Spectrochim. Acta, 30A, 1961 (1974); M. Ito and R. West, J. Am. Chem. Soc., 85, 2580 (1963); and G. Doyle and R. S. Tobias, Inorg. Chem., 7, 2484 (1968).
- (19) R. A. Bailey, W. N. Mills, and W. J. Tangredi, J. Inorg. Nucl. Chem. 33, 2387 (1971).
- (20) C. C. Lewchalermwong, "A Study of the Thermal Dehydration and Decomposition of Oxocarbon Anion Salts of Transition Metals", M. S. Thesis, University of North Carolina at Greensboro, 1977.

-7-

т,к	X _M , cgsu	$\mu eff/Fe, \mu_B$	^µ calc ^{,µ} B
21.8	0.04054	1.88	1.92
22.1	0.04172	1.92	1.94
23.2	0.04141	1.96	2.00
24.2	0.04216	2.02	2.05
26.3	0.04395	2.15	2.15
27.8	0.04433	2.22	2.22
29.2	0.04571	2.31	2.28
31.8	0.04417	2.37	2.39
33.5	0.04554	2.47	2.46
34.3	0.04630	2.52	2.50
36.2	0.04598	2,58	2.57
39.0	0.04719	2.71	2.68
46.2	0.04710	2.95	2.93
55.0	0.04656	3,20	3.21
68.5	0.04600	3.55	3.57
82.1	0.04538	3.86	3.87
96.1	0.04460	4.14	4.12
104.2	0.04314	4.24	4.24
126.0	0.04037	4.51	4.50
146.7	0.04750	4.69	4.69
165.5	0.03523	4.83	4.83
196.2	0.03199	5.01	5.00
223.2	0.02924	5.11	5.11
247.6	0.02731	5.20	5.19
266.6	0.02576	5.24	5.24
285.8	0.02439	5.28	5.30
296.7	0.02385	5.32	5.31

Table I. Magnetic Susceptibilities and Moments a

 $\frac{a}{X}$ = 150 x 10⁻⁶ cgsu.

-8-

BEST AVAILABLE COR

Table II. Infrared Bands and Assignments (in cm⁻¹) a

Absorption	Assignment
3200 br, s	V(OH)
1815 sh, m	Sq, v(C=0)
1640 sh, m	Sq, v(C=C)
1500 br, s	Sq, $v(C-C) + v(C-0)$
1110, 1085 sh, w	$sq, v_{13}, \underline{E}_{u}^{\underline{b}}$
850, 750 br, w	$v(Fe-0-H) + \rho_{r}(H_{2}0)$
660, 460 br, w	ρ _w (H ₂ 0)
420 sh, w	unassigned
390 sh, w	v(Fe-0)
350 sh, vw	Sq, v_2 , A_{1g}

<u>a</u> Abbreviations: br, broad; s, strong; sh, sharp; m, moderate; w, weak; v, very.

<u>b</u> Ref 18.

BEST AVAILADIE CO

-9-

Figure Captions

- Fig. 1 Effective magnetic moments for $[Fe(Sq)(OH)(H_2O)_2]_2 \cdot 2H_2O$. The solid line gives the theoretical moments obtained for an exchange-coupled $S_1 = S_2 = 5/2$ dimer with J = -6.9 cm⁻¹ and g = 2.00.
- Fig. 2 Room temperature Mössbauer spectrum of [Fe(Sq)(OH)(H₂O)₂]₂·2H₂O. The solid line gives the fit for a single Lorentzian line with parameters given in the text.

-

TECHNICAL REPORT DISTRIBUTION LIST

No.	Copies	<u>No.</u>	Copies
Office of Naval Research Arlington, Virginia 22217 Attn: Code 472	2	Defense Documentation Center Building 5, Cameron Station Alexandria, Virginia 22314	12
Office of Naval Research Arlington, Virginia 22217 Attn: Code 1021P 1	6	U.S. Army Research Office P. O. Box 12211 Research Triangle Park, N.C. 27709 Attn: CRD-AA-IP	1
ONR Branch Office 536 S. Clark Street Chicago, Illinois 60605 Attn: Dr. Jerry Smith	1	Naval Ocean Systems Center San Diego, California 92152 Attn: Mr. Joe McCartney	1
ONR Branch Office 715 Broadway New York, New York 10003 Attn: Scientific Dept.	1	Naval Weapons Center China Lake, California 93555 Attn: Head, Chemistry Division	1
ONR Branch Office 1030 East Green Street Pasadena, California 91106	-	Naval Civil Engineering Laboratory Port Hueneme, California 93041 Attn: Mr. W. S. Haynes	1
Attn: Dr. R. J. Marcus	1	Professor 0. Heinz Department of Physics & Chemistry	
ONR Branch Office 760 Market Street, Rm. 447		Naval Postgraduate School Monterey, California 93940	1
Attn: Dr. P. A. Miller	1	Dr. A. L. Slafkosky Scientific Advisor	
ONR Branch Office 495 Summer Street Boston Massachusetts 02210		Commandant of the Marine Corps (Cod Washington, D. C. 20380	le RD-1) 1
Attn: Dr. L. H. Peebles	1	Office of Naval Research Arlington, Virginia 22217	
Director, Naval Research Laborat Washington, D. C. 20390	ory	Attn: Dr. Richard S. Miller	1
Attn: Code 6100	1 (R&D)		
Department of the Navy Room 4E736, Pentagon	(100)		
Washington, D. C. 20350	1		
Commander, Naval Air Systems Com Department of the Navy Washington, D. C. 20360	nmand		
Attn: Code 310C (H. Rosenwassen	1 (7		

+

TECHNICAL REPORT DISTRIBUTION LIST

No. Copies

* *

. .

No. Copies

1	Dr. W. Hatfield University of North Carolina Department of Chemistry Chapel Hill, North Carolina 27514 1
1	Dr. D. Seyferth Massachusetts Institute of Technology Department of Chemistry Cambridge, Massachusetts 02139 1
	Dr. M. H. Chisholm Princeton University Department of Chemistry Princeton New Jamagy 09540
1	Princeton, New Jersey 06540 1
	Dr. B. Foxman Brandeis University Department of Chemistry Waltham, Massachusetts 02154 1
1	Dn T Manke
	Northwestern University
	Department of Chemistry Evanston, Illinois 60201 1
1	Dr. G. Geoffrey Pennsylvania State University
	Department of Chemistry
	oniversity rark, remissivania 10002 1
1	Dr. J. Zuckerman University of Oklahoma
	Department of Chemistry
	Norman, Uklanoma /3019 1
1	
	1 1 1 1 1