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I NTERFACE ENERGIES
a

a,

Cheng-Chih Pei

Depar tmen t of Phys ics , Un i vers i ty of California San Diego

La Jolla , California 92093

Abstract

We deve l oped a practica l scheme for the calculation of interface energies. It

comb i nes the theory of gene ra l ized Wann i e r f un c ti ons , the generalized recurs i on

method for calculating local densities of states and electronic density, and the

loca l dens ity functional theory . As a first application of this method we

are calculating the stacking fault energy of nicke l using tight binding type

Wann ier functions for the d-electrons and ignoring the effect of the s-electrons.

The d band degene racy is f u l l y  taken i nto accou nt . The method a lso a l lows one
to handle charge transfer effects: a stacking fault perturbation potent ial is

included and calculated quasi-self-consistentl y. Comparison is made between the

moment sche me , the non-self-consistent scheme and the self-consistent scheme .

We find that the self-consistent scheme affects very little the stacking fault

energy compared with the non-self-consistent scheme.

~ Supported in part by the Office of Nava l Research and the National Science
Foundation .
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Chapter I

Introduction

• Hohenberg and Kohn ’ and Kohn and Sham2 (KS) developed

a procedure for determining the ground state energy of a system of

interacting electrons subject to an external potential. Thi s procedure

involve s the solution of a single parti cle Schrödinger equation for an

electron moving in an effective potential that is determined self-

consistently. Traditional methods of solving thi s one-particle

Schr6dinge r equation for crystalline solids have involved obtaining

the Bloch band structure. A perfe ct infinite and periodic lattice is

an essential ingredient in this method. If one is to deal with non-

periodi c solids , such as clean or overlayered solid surfaces, inter-

faces , problems associated with bulk impurities, stacking faults ,

vacancies, etc. the eigenstates and eigenvalues of this Schr~ dinger

equation are very diffi cult or impossible to solve for. In addition to

• thi s diffi culty of calculating the eigen states and eigenvalues , the

iterative procedure described by KS is in general quite time-consum-

ing to implement as has been pointed out several times. In thi s

part , we want to develop a practical scheme for the calculation of the

ground state energy for transition metals in a non-periodic syBtem .

Because of the localized nature of the ~~.. orbitals , it seems

reasonable to study the role of the d-electrons in the properties of

transition metals in the tig ht binding approximation. A recursion

_ _ _ _ __ _ __ _ _  - ___ —
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method to calculate approximately the local electron density of states

a and charge density within the ti ght bindi ng model developed by

Haydock ~~ ~j. arid Rehr and Pci5 in a non-periodic system without

the necessity of calculation eigenstate s of the one-particle Schrddinger

equation.

We now discuss our procedure for handling the iterative

difficulty. The KS self-consistency loop goes as follows:

Starting from a trial electron density “fl°(~) ,  one constructs

the effective potential and finds a new ‘fl~X ) .  A new effe ctive potential

is then generated and the entire procedure is iterated until self-

consistency is reached.

Since the ground state energy has the stationary property

with respect to ‘fl~~) , the error  of the ground state energy is of the

second order in the error  of ‘fl(~) . That means even without any

iteration, we still can have very accurate result s of the ground state

energy provided we choose a good initial trial . Again , be-

cause of the localized nature of the J... orbitals , the state of the elec-

tron in a crystal is very similar to that in the free atom. Therefore ,

a superpo sition of partially overlapping charge densities for individual

atoms placed on the appropriate lattice sites will be a very natural

and good choice for the initial trial

A description of our method for calculating t he g round state

energy is presented in Chapte r II. In Chapter III , we present a

—2—
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simple illustration of this method in which the stacking fault energy

is calculated for a nickel in the 3d
10

4s ° configuration. In Chapter IV ,

we study the stacking fault energy for a nickel crystal in the

3d 9° 44~ 0 6 configuration with a self-consistent method. Finally,

Chapter V contains a discussion and a compari son with some related

methods.

— 3 —
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Chapter II

Calculational Procedure

The general scheme of our method is indicated by the ~flo w

chart u of Fig. 1. A more detailed discussion of thi s flow chart is

given in the following paragraphs.

The ground state atomic wave function s are taken from the

Herman and Skilirnan atomic orbitals. 6 These functions are fitted by

a set of Gaussian s in orde r to facilitate the subsequent Hamiltonian

mat r ix  element computations. The atomi c charge densitie s of ele c-

t rons , described by these atomic wave functions , are chosen to be

sphe rically symmetric and the total electronic charge density in the

crystal is constructed by adding the overlapping charge distributions

produced by neutral atoms placed on the appropriat e lattice sites.

From thi s electron charge density the effective potential is

constructed. An important saving in compu tation time is obtained by

separating the effe ctive potential V~~U )  into a sum of overlapping

spherically symmetric atomic effective potential V4 (Q plus a

corresponding correction term A V14.~, (~ ) (thi s te rm come s from the

nonlinearity of the exchange and correlation potential):

V
*

r=Z ~~~~~~~~~~~~~~ 
(2 ,1)

whe re 

_
~~~~~~~~~~~~~~~ _ _ 
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(2.2)

~ V~~(r) ~~t~ Yfl°(
~
)) - L ~~~~~~ 

(2 . 3)

a 
(2 .4)

Here runs ove r all the lattice sites , and

— S ( ‘fl (2 . 5)

where ~~~rj~Y~) is the exchange and correlation energy per ele ctron of

a uniform gas of density ‘fl . The first and second terms on the

right hand side of Eq. (2. 2) are the Coulomb potential and the third

term is the exchange and correlation contribution to the chemical

potential of a uniform gas of density ‘fl . Again, for facilitating the

subsequent Hamiltonian matrix elements computation, the atomic

effe ctive potential is fitted to the following t
~3aussian U form:

— I v i

C ~~~~~~~~~~~~~~

V 4 L =  x i  (2. 6)

A V.~~(L) , the nonlinear part of the exchange and correla-

tion potential is small and a weak function of L , which in the f i rs t

order approximation, can be treated as a constant  (Z~ V*4i,(L)) . This

-5- 
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constant can be obtained by taking an average of the value s of A V~~r)

over a unit cell.

At the same time, the generalized Wannie r functions
7 

(GWF)

of ~~ . orbitals  are constructed from these normalized atomic orbitals.

These GWF Q.
~1L’~ are localized respe ctively about the lattice site s

and orthogonalized by the L~ wdin al gorithm8 with re spect to all

the orbitals (inc luding is , 2s , Zp, 3s , 3p, and 3d orbi ta ls)  which are

localized at the neare st nei g hbors of

If we choose these orthonormal GWF as localized basis func-

tions , we can calculate the matr ix  elements of the Hamiltonian H

for various relative orientation of sites (see Appendix A). In our

computations only the nearest neighbor interaction have been included .

In this case, the matrix elements of H can be expressed in te rm s of

the self energies and the nearest neig hbor hopping in tegrals.

4 , 9 , 10 , 11
Several techniques have been developed to calcu-

late the local electronic density of state s from the matrix elements

of a tight binding 1-lamiltonian in a non-periodic system. In the follow-

ing we shall use a relatively new and powerfu l generalized recursion

method which was developed by Haydock ~~ 
~~~~~

. and generalized by

Rehr and Pci
5 

to find the local electronic density of states ‘fl
3
(E) and

the electron charge density ‘fl~~) .

Before proceeding with the calculations of ‘Vl~(E’) an d ‘)‘I(~)

let us briefly review the basic s tructure of the recursion method .

-6-
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In this method the local density of states at a given site , say at site

is calculated from the diagonal Green ’s function matrix element :

(E)=2A~~(E) (2.7)

~~~ E ) ’ ~~~ Ivn Gr (E ~~L~) (2.8)
L €- ‘~o

11

where at is the index describing the type of the corresponding orbital

at site (for a 5-fold d band, there are five types of orbitals at

each lattice site), and where is evaluated using a continued

fraction representation :

~~~~~~~~ (o
~
, & I (E — 

~~~ I O~) t

— LM

E — O.. - _ _ _ _ _ _ _ _ _ _ _ _

r,L
— ______

.tt,i

S (2 . 9 )

He re I o~~ ~> denotes a GWF of type ot at site . For the

moment we restrict our discussion to a particular o(.. , for simpli-

fying the notation the explicit o( dependence will be suppressed .

The coefficients O~ and - in Eq. (2.9) are precisely the

coefficients of a 3-term recursion relation, which defines a new

bas i s ~~~ in which the Hamiltoruan has a “Iridiagonal ” repre-

sentation (a tridiagonal matrix is one whose non-zero elements

— 7—

L _ __ _ _ _ _ _ _ _
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appear only on the main diagonal and the two sub-diagonals, upper

• right and lower left):

,

(2 . 1o~

where

2.

I HI~;i1 bçct,j Ii~1 ; J.~1 ~ , (  1~t tt ,’~4h 1 ( 2 . 1 1 )

We shall refer to the states I in this semi-infinite, one-

dimensional basis as “shell states, “ ~ being a shell index, since,

roughly speaking, they are spatially localized about the shell of

neighbors surrounding the atom at site

Following the generalized recur sion method , we can write

the single particle energy E and the electron charge density ‘71(L )

E~~zJ Em2~
E~ SE (2.12)

where the Fermi energy E~ is fixed by the condition

(2 .13 )

-8-
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~ being the total number of electrons in the system and

~~~~~ ~~(L) A~~t) ~~~~~~~~ ~1
tE)aE (2. 14) 

- 

-

where A~~(fl,  the normalized shell states, can be expressed as
linear combination of GWF:

(2. 15)

and where P2~~LE) are the orthonorinalized polynomials which are
generated by a recursion relation identical to the one obeyed by the

shell states. This ortho-normalization is in the following sense:

~~

‘ 

cE)r ,(E)’~~~
)aE = 

~~~~~
‘ (2 . 16)

Let us now return to the case of a composite band (such as

a 5-fold ~ band complex), the single particle energy E and the

electron charge density are given , respectively, by

(2 . 17)

&18) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ . L
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An important remark about thi s method should be made :

- 
The self-consistent Hami ltonian must have the property that the total

electronic charge, calculated with a unique E~ , precisely cancel

the total ionic charge.

With this self-consistent ~ and ‘~
(L) , we can calculate

the ground state energy of the system by the KS equation:

€ 4f ~~~~
’
~~~ ~X~~+ ( [ ~~ x W) ixc(

~~
L
~PL (2 . 19)

Li — 1 0 —

_ _ _ _ _
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Chapter III

Example: Stacking Fault Energy of a Nickel Crystal
• in 3d~~ 4s° Configuration

In this chapter we apply the method developed in Chapter II

to the calculation of the stacking fault energy of nickel in the 3d
10
4s°

• configurat ion, the hypothetical case of filled ci. bands (the actual

• number of ci electron in metallic 1’JL is about 9.4/atom). Before

proceeding with the calculation, let us briefly review the propertie s

of a stacking fault.

A compact structure can be described as a stacking of hexa-

gonal close packed plane s A, B and C; f . c. c. and h. c. p. lattices

being respectively defined by periodic succession s ABCABC and

ABAB as shown in Fig. 2.

In a f . c. c. lattice , there are two type s of stacking faults.

The first is an intrinsic stacking fault , which is obtained by removing

a plane of atoms , i .e.  ABCA 1CAB as shown in Fig. 2 ( c ) .  The second

is an extrinsic stacking fault , which is obtained by inser t ing an ex t ra

p lane C between plane A and plane B , i. e. ABCACBCA as shown in

Fig. 2(d). All the above faults pre se rve close packing,  so that  any

atom keeps the same numbe r of the nearest  nei ghbors  at th.. same

distances.  Thu s, it is reasonable to assume that the format ion of

these faults will require a small energy. From the experimental ly

determined stacking fault energies 
~
‘SF , they are  seen to be indeed

small compared to the surface energies k’~ and ~i n h~ uuc1ary

- I I  -
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energies k’4 in f . c. c. lattices (for examp le, in N~.

~
‘
~~

= 2 0 0 0j ~~/ ~~2 , ~~~ c~~ r~ ) .  Although the y are

small energie s, the stacking fault energies are very important from

a metallurgical point of view, since the y govern some of the plastic

properties of metals and are usefu l for the study of the relative

stability of f. c. c. and h. c , p. phases. 
15

Let us now return to our calculation. We want to obtain a

reasonably accurate expan sion for the atomic wave function s ~ ( t)

m is the index of state, i. e. s, p, d, etc. ) which are calculated

by Herman and Skillman6 in terms of a numbe r of Gaussian type

orbitals

‘n-s —~r1r ‘2. ( 3 . 1)

where #V~ denote s the type s of the Gaussian , for example , i71

equals 1, 2 and 3 denote s, p and d type s, respective ly.

H

~~~~~~~~ Ct~~m (o(
~,~) (3 .2 )

The ZM parameters o(~ and C~. are to be chosen so as to make

the approximation as good as possible. The most convenient cr i ter ion

to use is to minin ize a weig hted squared deviation ,

H a
~~ 

— ZJ c..~:
(
~&,r,)J (rr) (3 3)
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where L)(t~)is  a weight function, and its choice is governed by the

use to which the expansion is to be put. For exam ple , our purpose of

the expansion is to facilitate a three-dimensional integration in which

r is the distance from a given center, then , in Eq. (3. 3), we would

choose

(3 .4)

which is proportional to the volume of an element of spherical shell

of radius r
The selection of the best set of the exponential parameters

and the coefficients {C 13 pre sents considerable difficulties.

• Thi s is due to the existence of multiple minima for the value of D

in the space spanned by variational parameters ço&~, C~ . Therefore ,

• it is not claimed that we have obtained and listed true optimum values

of in table 1. The set s in table 1 are actually chosen in

such a way, that they fit the function uniformly in the whole

range of r
The minimization is performed using an efficient  IBM

Fortran program and the ~best u set of are given in table 1.

We use the same routine to expand the atomic effective

potential in terms of a number of I~Gaussian u which are shown in

Eq. (2. 6) and the exponential parameters  and the coef f ic ien ts  are

given in table 2. The values of ~ for a perfect  c r y s t a l  and

Ii -1 3—
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a stacking fault are 0. 148669087 au and 0. 148669870 au , respectively.

In the case of a filled band the integral  of Eq. (2 . 14) van-

. 

• ishe s by Eq. (2. 16), except when ~ . Thu s the expression for

• • ‘P1(L ) reduce s to a trace over all the GWF:

— — ,~ 2.
~~~~~~~~~~~~~~~ ( 3 . 5)

and the expre ssion for E reduces to a trace of Hamiltonian over

all the GWF:

(3 .6)

where <ce ) I I  H 1 ~t, L) is the self-energy of type o( at site

We shown in Appendix B that the stacking fault energy for a

filled band nicke l is 1.98 erg s/cm
2 

which is very small compared to

the measured stacking fau lt energy 220 e rgs /cm2. The diffe rence

between our theoretical e stimate and the measured value is mainly

due -to the fact that our model treat s Ni as a filled band metal. We

note that a vani shing result was obtained by othe r theoretical calcu-

l i
lations using a full d-band.

-14- Li

- —
~~~

- - 5 -
~~~~~~~~~~~~~~~~~~ •- • - ~~~~~~•—~~~~— — -- ~~~~~~~~~ • - - — - • — -  —

~~~ ~~~~~ —~~~~~~~~~ —— - - • -_ -_ _ ~~~~
_ -- ~~~~-—~~~~——~~~~~~ —-5-—



• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ -~~ -

Chapter IV

• Stacking Fault Energy of Nickel in the 3d9~ 
44s°~ 

6 
Configuration

In this chapter we apply the method explained in Chapte r II

to a model for paramagnetic nickel.

We know from the energy band calculations 16 that the re are

9. 4 d electrons per atom in a solid nickel crystal. Therefore , we will

9 .4  0.6calculate the stacking fau lt energy of solid nickel in the 3d 4s

confi guration. In this calculation, we neg lect the effects of sd band

hybridization and study only the role of the d electrons in the stacking

fault energy in the Hartree approximation. To do this calculation we

follow the same procedure as we mentioned in Chapter II except for

constructing the atomi c effe ctive potential VAa~
(
~ . Since the 4s wave

function is highly extended in space , it is necessary to sum several

shells ( > 10) of nei ghbors in order to obtain an accurate value of

V.~ ( Y )  (see Eq. (2. 1)) . In order to reduce computation time , we

separate the atomic electronic density into what we will call a local-

ized atomic charge density 

~~~~~ 

which receives contri butions from

the is , Zs , Zp, 3s , 3p, and 3d states and a non-localized atomic

charge density ‘fl5 ~
E) which is made up from the 4s state :

L° (t) ‘fl~
(
~) (4. 1)

and construct V$~~ and in the fol lowing fashion:

L -~~~~~~~~~~~~~ ~~• •~~~~~~• - •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5- - — - ~~~~~~~~~ - 5 - -~~~~~~~~~~~~ - •- . .~~~~~~_ _ _
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V4~tt~s= 

~~ 
-~H~1 c&~t

’
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- 

~
A V
*

(
~

’) =/ xc((
~
1h° (i)) —~~~~~~~~ ,P~~(’~~t~~

)

(4. 2

Here we will calculate the stacking fault energy using the

following three schemes: 1. the moment scheme U ; 2. the non-self -

consistent scheme
17 ; and 3. the self-consistent scheme 18

:

1. The moment scheme

We approximate the density of states by a Gau ssian multiplied

by a polynomial (Ed geworth series) fitted to the four f irst  moments

• (see Fig. 4):

(4.3)

where

E

A=?4 /1p~~
)

B 3t/ ,u~ b (4 . 4 )

L_ _ _ _  _ _ _ _ _ _ _  

-16- 
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and wherej 42 (j) , and JI~( J )  are the second , third and

fourth moment s of the site , respectively. In this scheme we use

Eq. (2 . 13) to determine the Fermi levels and of the

c rys ta l  with and without a stacking fault . The stacking fault energy

is given by

I ~~. I

— 

J
(E-E~~)[ (E~-~~~~~IE)J~~E

• — 
(4.5)

where the superscripts SF and B denote the system with and

without the stacking fault energy, respectively. The stacking fault

energy calculated by thi s scheme is 18. 50 erg s/cm 2
.

2. The non-self-consistent scheme

This scheme is analogou s to t~he moment  scheme . The impor-

tant feature here is the continued fraction representat ion;  it is one of

the best method of reconstructing a density of states from a set of

continued fraction coefficients (see Fig. 3(a)) .  This reconstructed

density of states has the property of having the correct leading 21J+ 2

moments if the correct leading continued fraction coefficient s O.~ ,

; j=o,..- . 
~~ are used. Using the densi ty  of state ‘fl~~(E) which

is constructed by thi s recursion method correct  to ten continued

fraction coefficients and Eq. (4 . 5) ,  we obtain for the stacking fault

energy a valu e of 60 . 20 e rgs/ cm 2
.

— 17 —
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3. The self- consistent scheme

We know that in a metal the perturbing potential due to a stack-

ing fault is completely screene d out over a few interatomic distances.

• 

- 
The Fermi level is the same as for the perfect crystal. Howeve r in

the moment and the non-self-consistent scheme s, we introduce a non-

physical variation of the Fermi level for a system with a stacking

fault to satisfy the charge neutrality requirement. In order to avoi d

thi s problem, we use a self-consistent scheme introduced by Allan ’8

to insure both that the Fermi le vel of a system with the stacking fault

is the same as that of a pe rfect crystal and that charge neutrality is

maintained. Since the pe r turbing potential is well localized near the

stacking fault , the main difference between the self-consistent and

non-self-consistent Hatniltonian will be its diagonal elements

<~~ ! I H 
~~~
, ~> where denotes a stacking fault site . We

denote this difference by U.0 and adjust it so that , using the bulk

Fe rmi level throughout the stacking fault region is electrically

neutral:

~ E =zj~~ (E)&E (4 . 6 )

In the presence of a stacking fault we know from the non- self-con-

• sistent calculation that  (Lb should be a very small quantity compared

with the bandwidth. Therefore , we can assume in this range that the

~~~~~~~~~~~~~~~~~ •_
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change of total charge at the stacking fault plane s is linearly propor-

tional to the change in U~, . Using linear interpolation instead of the

truly self-consistent loop, we obtain U.c,~~~, V~, )( &. U. .

The stacking fault energy in the self-consistent Hartree

approximation is given by

AE = 
~~~~~ 

— ~~ ~~~F 
‘ ( E) c ~~

.-; 
~t. ~ s(~ )- ~~~~~ V0w#4V Lr~\c~r+ ) ‘Je’~ ) ’~r (4 .7)

where ‘Plo and ‘J0 are the electron density and the potential in the

perfect crystal. In the crystal with a stacking fault these quantities

are changed into ‘P\ o+4&Vt and Vb+ o\.J . The first two of Eq. (4 .7 )

corresponds to the one-electron contribution. The last two te rms of

Eq. (4 .7)  are added to prevent the double counting of Coulomb inter-

actions occurring in the integral. It can be written as

~~~~~~~~ ~ .S~ ~ ot t) ~~\J ( !) cl~ ~~+ ~~~~ 
(
~ ) ( 1 c ~X] (4 .8)

It is easy to show that the first  two terms in Eq. (4. 8) give an equal

contribution. Here we must notice that oV is well localized near the

stacking fault and the preponderant term in ‘~1~ is 4 — O  (see Eq. (2 . 14)).

Therefore we can rewrite Eq. (4. 8) under the form

B U~o~~~ (~~~F — ~~~
)

~~ o ( 4 . 9 )

whe re 
~ g and are the number of d-electrons per atom in the

bulk and on the stacking fault , respectively. The stacking fault

2
energy calculation by thi s scheme is 64. 28 e rg s / cm  .

- 19-
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Chapter V

Comp arison and Discus~ j o~

• For purposes of comparison we have drawn the bulk den8ity  of

state s computed with ten continued fraction coefficient s (aã ,  b~;

• j 0, ... , 9) and a his togram deduced f rom Pettifo r ’9 with  the appro-

• priate scaling in Fig. 3(a) . The good agreement  of our re sult s for t h e

bu lk density of state s wi th  band structur e calculations give s us confi-

dence in our further discussion .

We have also calculated the stacking f a u l t  energies with these

three schemes which were discussed in Chapter IV using the Slater-

Koster overlap parameters ~~~ , d4ir and &&& to calculate the

nearest neighbo r hopping integrals  instead of using our const ruct ed

Harnj ltonj an. The parameters  we have used are (in atomic uni t s )  H

= -O.o2o~~~ ci4it~ o.00q42~ d4~=-o,oo~~~S

which was chosen by Desjonq uer~~s ~~ 
20 

The results of these cal-

culations are given in Table 3.

From Table 3, we can draw the fol lowing conclusions :

1. To rep lace our constructed }Iamiltonj an by a parameterj zed

l-Iamiltonj an seems to have very  Little effect on the stacking fau lt

energy.

2. The densit y of state s which is correct to the fourth moment
is not good enoug h for the stacking fault energy  calculations .

LI 



3. The difference be tween the numerical value s of the stack-

ing fault energies obtaine d in the non-self--consistent  scheme and that

obtaine d in the sell-consistent scheme is ve ry small .

4. The results we find are smaller than the available experi-

mental values (the range of values = 160 ergs/cm
2 

‘~~ 300 ergs/cm
2
).

Two possible sources of the discrepancy are the following: our neg-

le ct of s-d hybridization and the fact that the measured value s refe r

to nickel in its ferromagnetic state rathe r than the paramagnetic state

which we used in our calculation.

5 . Although our value for the stacking fault energy is rathe r

smaller than the best experimental value , it is in much closer agree-

ment than is the value calculated by Cyrot-Lackrnann using the

moment scheme. Our result is a factor of three higher than her

re suit.

Therefore, the next step in such calculations would be to

include s-d hybrdization effe ct for a ferromagnetic state nickel.

Let us finally notice that our scheme could in a straight-

forward way be used to calculate energie s of more comp licated

defects, for instance , formation energy of vacancies , etc.

-2 1-
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• Appendix A

In this appendix we present expressions for the integrals  used

in the computation of the matr ix  element s of the Hamiltonian.

In the Carte sian coordinate s a Gaussian type orbital (GTO)

centered at A is wri t ten as

• (A . 1~

Here 1~~~~~ , and are the components of a position vector

)~ relative to A , r - A , and j  , ,~ and (It are

“quantu m numbers ” and are zeroes  or positive in tegers .

First , let us define some notations:

~~J +~ 
(2~, 22,PAg~~Bx~~~ (A . 2)

where ?A~ and PB~ are the 2(. component of the vectors

( P A~~~~— A )  and PB ( Pt3~~,~ —B) , respectively.

(A. 3 )

Then we have the following expressions:

~ I



S ( i2) tfl ~2 ) (
~ ~~~~ 

~~~ 
f~i, fn,)9~ ( B~ o~~ ,~~ryn2

3 —z
= (~~)

/2
e

_ 
T AB 2 +2j (2 2)~~4 X ,F~ X) 

(2
(
L~~~~

t
x ,

~~ ~~~~~~~~~~~~~~~~~~ ~~
~

X 
~ ~ ~ Z& (mI)

~ 2) I)iA 3 ? ?B
~
) (2&-.O~

( A .4 )

where

~~

~ +o4 t3) /~’ 

(24.—~) (A . 5 )

and whe r e (.‘~~) 
means “largest  integer less than or equal to ‘X ~

-23-
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J~x~ (~~~~~~
)

O~~ )
) 
L, ~~~~~~~~~ [-. .~~~ ~~~~~~~~ 4~1 

~K.(~/ 2, ~21~ 3,’~3)~1L

o?�~[2 ( L4m\2.+m ~
’) +3J S (~2,tm 7y ~2’)

— 2 c~~ [s (2~ +2) ‘m21’n2) + S ( ~2j fl~a+ 2) lfla~) * S 
~ ~~ ~12~ ‘fl2t

— -~~ 

~ k h—i) St ~~~~~~~ 
/n2) + ‘Th2(’h~2—t) SC t2,’Pfl~~2, / ‘)

-
~~ ‘~‘I2Vfl2~~ ) S I.. !2)’~12) (nz—2)3 (A. 6)

(
~ ~~~~ L,’~,’n~) 2~ ~~~~~ jt~2,IP~ ) ct~c~

_ o
~
Ic!t

A
Z

= ye  tf~ 
B z ~~~~~~~~~~~~~~~~

xZ ~~~~~~~~~~~~~
~A,1T

XZ ~~~~~~~~~~~~~~~~~~~~ (A. 7

~~~~ -24-
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~~~~~~~~~~~~~~~~~~~~ 
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~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
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where

and where

~ (t i, 12) A~, B$)Cx,~’)

— L— 21—2u~
2 ~ 

(—~~i~ PC~
I, Z~ ~ r~ u~ t L -~~r-2u~ t ( A . 8)

In Eq. (A. 7)  the summations with respect to indices 1 , and

extend from 0 to ~~~ , t ’-/21 and t ( L - 2 ~)/z] , respec-

tively. The range of (~ , A~,V) or (4 ,t, c~)  can be easily found in

the same way.

~: ~: ~~~

‘ ê°”~ ~~
1% 

14 
~“4 tl~4 ~~~

-

• x 
~~~ ~c2 p2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r1 r2 ~ ~ ~~~~~~~~~~~~~~~~~~~~~~, I i



— .
~~

-.. ———--—
~~~i~~~~~ 

- -• 
: .zz~~:.

)(
L
.,~~~~2

1 ~I, A~a,,’V~

x
4, j E~ 

~ ~I~P
4Z) I)”2)~~ 

I~xI ~~~~~~~~~~~~~ F~ (~~~~)
.. a~ I~ L1

( A .9)

where 2) = L~+ ~~~ ~~~~~ ~—2(r~+r~.i~ ~~t *~~~~+&~*+~~~
— ~--tr— k)

p= ~~~~~~~~ ~~~~

(A. l 0 )

and where

L2, r1) r~, u~ 
I) 2) A~, 8X1 F’x) ~1 ~~ ~

.4 CX) Px,Qc ) ~~
)

= ( l .)11 

~L1~ ~~ 
V.2, F’AX,F’

~X )4~L2 ( ~~) 
2~.,QCx ,

__________________  • 
(4)r1 

(4~,.)
rZ ~z(r~kr)~

(4k)” ~~ ~~L1~~L2 r,~ r2~ (L~—2r,)i (L-~~’)~ 
—

U. L.,+L2—2(I~+rL)—2U. U.
(I - 

,
~ 

(—I)~~ P
~ 

l.~# L2— 2 ( 11*r1))~

~
(A. 11 )
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In Eq. (A. 9) the summations with respect to the indices i., , , , ,

r2 , and U. extend from 0 to .#~~~~ , i~+L4 , t ~/a1 , ~~ 
i.~/2) 

-

and [ 
~~~~~~~~~~~~~~~~~ 

, respectively. The range of •

4~, A~,ir) or ~~~~~~ ~~~~~~~~ can be found in the same way.
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Appendix B

The stacking fault energy of a nickel crystal is the difference

between the ground state energy of a system with a stacking fault and

that of a pe rfect system :

A E E ~~~~~E
3

sF 3

— 
~ SF~~~ ,~j~~~’) 

~~~~~~

J Ii’ ~~~~~~~~

+ J (fl*(~~[ e / ((r~~)] ~

— 

~~~ [ ~~
( ~~~

(B .l)

SF B
where AE~~~ ~

AE2~ 
~~~~

J (~ F(~) ~ 
~ ~~(~~! )) —/~cc (4~’~n)] ‘it

k (B.Z)  
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Here the subscripts SF and B denote the system with the stacking

fault and the perfect system respectively.

For a nickel crystal in the 3d ’04s° configuration the sing le

particle energy ~ is given by Eq. (3. 6) . Then ~~~~~~~~~ is given by

o~~ ~~~

Since ~ ~~ 
involve s two six-dimensional integrals, usually

it is impossible to do th is  integration numerically. However , in our

• representation the charge density lf l (j )  is expressed in te rms  of a H

number of GTO (see Eq. (3. 5 ) )  and thi s integral  can therefore  be cal-

culated analyticall y. Due to the large computation time (because the

number of GTO is too large) we cannot in practice calculate 4E1

directly. Here we want to give some estimates for thi s term unde r

the assumption that the GWF do not overlap between the third nearest

neighbors. If we write Se ~0L~ ~~
., ‘Tt’), the atomic wave functions

can be written as

(B . 3)

The GWF and the ele ctron charge density are given by

~~(L~ 2~~~~~~~~~ ‘}~‘(L) ~~~~~~~~~ (B. 4)
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. 

— 

~ ~~~~~ 
—~i:~ ~~~~~~~~~ (B .5)

Therefore , the coulomb interact ion energy can he wri t ten as

~~ 

= ~~

-211 1 ~~~~~~~~~~~~~~~~ 
(B.c)

~ fr
i

The fi r st term on the right hand side of Eq. (B. 6) is a two-center

integral ( f ~,~’) and the second term is a three-center integraI

- • ( f ~
, % , ~ç ? 

). Since the stacking fault preserves  the same nunibe r of

nearest and second nearest neighbors at the same distance as that in

perfect lattice , the two-center integrals give the same value s for the

system with and without a stacking fault (see Eq. (A. 9) ) .  By the

same reason, the three-center integrals give the same resul ts  for

these two different systems except in the following situation: the

three centers involve three parallel plane s in which the stacking fault

occurs . The difference of this kind of te rm between the system with

a stacking fault and the system without a stacking fau lt is bounded by

0. 16 ergs/cm
2
. Therefore , we can neg lect the effect of 4E 1 on the

stacking fau lt energy.

n 
_ _ _  _ _  _ _ _ _ _ _ _ _
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•

We calculate 4E3 using an IMSL three-dimensional integra-

tion subroutine, and the result is given by - 
•

AE
3 0,014 J

~A?,%~~
2 

- 

- 
.

_ _ _



-~.~~~~~ —~-,---.- •~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—r- ------— • -.--—~~~~~~ —-~~~~~~ --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

References

1. P. Hohenberg and W. Kohn , Phys . Rev. ~~~ B864 (1954).

2. W. Kohn and L. J. Sham, Phys . Rev . ~~~~~~~, A 1l33 (1965).

3. J. H. Rose , Jr. and H. B. Shore , Solid St. Commun. 17, 327
(1975) .

4. R. Haydock , V. Heine , and M. J. Kelly, J. Phys. G~, 2845
(1972);  8, 2591 (1975) .

5. J. J. Rehr and C. C. Pei , Phys. Rev. B. ,  to be published.

6. F. Herman and S. Skiliman, Atomic Structure Calculations 
• I

(Prentice-Hall, Eng I.ewood Cliff s, N . J .,  1963).

7 . W. Kohn and J. R. Onffroy , Phys . Rev. ~~~~~, 2845 (1973);
J . J. Rehr and W. Kohn , Phys. Rev. ~~~~~, 1981 (1974); BlO ;  448
(1974).

8. W. Kohn, Phys. Rev. ~~~~~, 4388 (1973) .

9. F. Yndurian, J. D. Joannopoulos, M. L. Cohen , and L. M.
Falicov , Solid St . Commun. 15 , 617 (1974) .

10. R. Alben, M. Blume , H. Krakanev, and L. Schwartz , Phys.
Rev . B l Z , 4090 (1975).

11. F. Ducastelle and F. Cyrot - Lackmann, J. Phys. Chem. Solids
- 31 , 1295 (1970); 32, 285 (1971).

12. R. P. Reed and R. E. Schrarn m , J. Appl. Phys. j~, 4705 (1974) .

13. W. R. Tyson, Can. Met . Quart. 14 , 309 (1975).

14. T. A. Roth , Mat . Sci. Eng. j~~, 183 (1975).

15. G. Saada , Theory of Crys ta l  Defects , edited by B. Gruber
(Academic Press , New York , 1966) .

16. L. Hodges , H. Ehrenreich, and N . D. Lang, Phys . Rev. 152 ,
505 (1966).

-3 2-

~



— •  -~ .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

17. F. Cyrot-Lackmann, J. Phys. Chem. Solids ~~~~, 1235 (1968).

- 
18. G. Allan, Ann. Phys. (Paris)~~, 169 (1970).

19. D. G. Pettifor , J. Phys. C: Solid St. Phys. 3, 367 (1970).

20. M. C. De sjonqueres and F. Cyrot-Lackmann, J. Phys. F:
Metal Phys. 5, 1368 (1975) .

- 33 —



Figure 1. Flow chart for the calculation of Ni stacking fault energy.

Starting from atomic wave function and densities, we first

ob tain (a) generalized Wannier fun ction and (b) an

effective potential for the stacking fault . From these the

Hamiltonian matrix and finally sing le particle energy, elec-

tron density and total energy are calculated.
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I

Figure 2(a) . Projection normal to the (1 , 1, 1) plane showing the

three types of stacking positions A, B, and C; (b) Perfect

f . c. c. stacking ; (c) Intrinsic stacking fault in f. c. c. struc-

ture; (d) Extrinsic stacking fault in f. c. c. structure.
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Figure 3 (a). The bulk density of states of Ni. The histogram

is deduced from Pettifors exact calculations, the full line

• being our result correct to the io4.. continued fraction

coefficients.
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Figure 3 (b) . The local density of state s on the stacking fault

with U.~~o
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Figure 3(c ). The local density of state s on the stacking fault with

U~= ~.%o~~~i ~~~ a.~ .
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Figu.re 4. The bulk density of states given by the Edgeworth serie s

fitted with 4 moments for Ni .
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Table 1. Orbital exponential parameters ~~~ and expansion coeffi-
cients C~. for is , 2s , 38 , 2p, 3p and 3d orbitals in
atomic unit

r
. C&L 

-

~~~~

8 is 2s 38

11516. 5 33.0481 8. 82768 4. 20507

3061.22 53.2612 19. 3895 5.94182

962.010 40.2191 6.74675 6. 48046

530.057 64. 2795 32 . 1637 7.55527

165.397 80.7803 4.20110 19.2241

134. 438 -19. 0622 28 .9506 -6.32380

59. 5449 14.305 1 -.969386 3 .35939

15. 1521 -. 259403 -14.7299 -12.5191

6. 24163 . 165880 —3 . 28423 -. 048757

1. 39054 -. 033213 -. 028432 3. 56488

340. 262 116. 178 46. 2843

155. 768 154. 761 59. 3034

50.4 147 127. 228 55. 0839

20.7513 62. 4323 26. 2800

7.06297 9.45597 -.526122

2. 92262 -.394319 -7. 10654

.951675 .035764 -1.23424

d 3d

48.9403 62 . 747

13.7169 36. 546

4. 63951 13. 677

1. 57433 2. 6311

.486409 .24164
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Table 2. Parameters of atomic effective potential expansion in atomi c
unit . o~ . are the exponential parameters; C~ are the
coefficient s

1.71001809 1851 -26. 39857 137242

26. 72930960088 17. 08366865139

7. 640172520328 21. 12143227226

2.324012025830 32. 21210656087

0. 260972626075 -0 . 861105554065

Table 3. Comparison between the stacking fau lt energies in ergs/cm 2

which are obtained by the moments scheme, the non-self -
consistent scheme and the self-consistent scheme by using
(a) our constructed non-periodic Hamiltonian, (b) 3 parame-
ters 4~. , J.Iir and &J3 fitted Hami ltonians .

Moments N. S.C . S. C.

a 18. 50 60. 20 64. 27

b 20.72 56.40 64.83
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