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Cheng-Chih Pei

Department of Physics, University of California San Diego

La Jolla, California 92093

Abstract

We developed a practical scheme for the calculation of interface energies. It
combines the theory of generalized Wannier functions, the generalized recursion
method for calculating local densities of states and electronic density, and the
local density functional theory. As a first application of this method we

are calculating the stacking fault energy of nickel using tight binding type
Wannier functions for the d-electrons and ignoring the effect of the s-electrons.
The d band degeneracy is fully taken into account. The method also allows one
to handle charge transfer effects: a stacking fault perturbation potential is
included and calculated quasi-self-consistently. Comparison is made between the
moment scheme, the non-self-consistent scheme and the self-consistent scheme.

We find that the self-consistent scheme affects very little the stacking fault

energy compared with the non-self-consistent scheme.

* Supported in part by the Office of Naval Research and the National Science
Foundation.




Chapter 1

Introduction

Hohenberg and Kohn1 and Kohn and Sham2 (KS) developed
a procedure for determining the ground state energy of a system of
interacting electrons subject to an external potential. This procedure
involves the solution of a single particle Schrddinger equation for an
electron moving in an effectivé potential that is determined self-
consistently, Traditional methods of solving this one-particle
Schrddinger equation for crystalline solids have involved obtaining
the Bloch band structure. A perfect infinite and periodic lattice is
an essential ingredient in this method. If one is to deal with non-
periodic solids, such as clean or overlayered solid surfaces, inter-
faces, problems associated with bulk impurities, stacking faults,
vacancies, etc. the eigenstates and eigenvalues of this Schrodinger
equation are very difficult or impossible to solve for. In addition to
this difficulty of calculating the eigenstates apd eigenvalues, the
iterative procedure described by KS is in general quite time-consum-
ing to implement as has been pointed out several times. 3 In this
part, we want to develop a practical scheme for the calculation of the
ground state energy for transition metals in a non-periodic system.

Because of the localized nature of the d orbitals, it seems
reasonable to study the role of the d-electrons in the properties of

transition metals in the tight binding approximation. A recursion
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method to calculate approximately the local electron density of states
and charge density within the tight binding model developed by
Haydock et al. ¢ and Rehr and Pei5 in a non-periodic system without
the necessity of calculation eigenstates of the one-particle Schrédinger
equation,

We now discuss our procedure for handling the iterative
difficulty. The KS self-consistency loop goes as follows:

Starting from a trial electron density ,no(!:) , one constructs
the effective potential and finds a new TI(L). A new effective potential
is then generated and the entire procedure is iterated until self-
consistency is reached.

Since the ground state energy has the stationary property
with respect to M(Y) , the error of the ground state energy is of the
second order in the error of M({) . That means even without any
iteration, we still can have very accurate results of the ground state
energy provided we choose a good initial trial ’no([) . Again, be-
cause of the localized nature of the d orbitals, the state of the elec-
tron in a crystal is very similar to that in the free atom. Therefore,
a superposition of partially overlapping charge densities for individual
atoms placed on the appropriate lattice sites will be a very natural
and good choice for the initial trial ) .

A description of our method for calculating the ground state

energy is presented in Chapter II. In Chapter lII, we present a




simple illustration of this method in which the stacking fault energy

is calculated for a nickel in the 3d104so configuration, In Chapter IV,
we study the stacking fault energy for a nickel crystal in the

3d9' 4480' b configuration with a self-consistent method. Finally,

Chapter V contains a discussion and a comparison with some related

methods.
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Chapter 11

Calculational Procedure

The general scheme of our method is indicated by the 'flow
chart' of Fig., 1. A more detailed discussion of this flow chart is
given in the following paragraphs.

The ground state atomic wave functions are taken from the
Herman and Skillman atomic orbitals. 5 These functions are fitted by
a set of Gaussians in order to facilitate the subsequent Hamiltonian
matrix element computations., The atomic charge densities of elec-
trons, described by these atomic wave functions, are chosen to be
spherically symmetric and the total electronic charge density in the
crystal is constructed by adding the overlapping charge distributions
produced by neutral atoms placed on the appropriate lattice sites.

From this electron charge density the effective potential is
constructed. An important saving in computation time is obtained by
separating the effective potential V‘“ (Y) into a sum of overlapping
spherically symmetric atomic effective potential V,'z (o) élus a
corresponding correction term a VM (!'_)(this term comes from the

nonlinearity of the exchange and correlation potential):

V.“,m=Zl: Vag (r-DtaVg .1

where
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Here L runs over all the lattice sites, and

Jxe o) = d (M €xcm),/dm 2.5)

where e,(d“) is the exchange and correlation energy per electron of
a uniform gas of density /1 . The first and second terms on the
right hand side of Eq. (2.2) are the Coulomb potential and the third i

term is the exchange and correlation contribution to the chemical

potential of a uniform gas of density M . Again, for facilitating the
subsequent Hamiltonian matrix elements computation, the atomic

effective potential is fitted to the following 'Gaussian'' form:

-d.T" M 2
a C| e - "’d,‘,r
V.« (N=———+2, ;€ (2. 6)
3q k=2 ;i

A V‘“(L) , the nonlinear part of the exchange and correla-
tion potential is small and a weak function of L , which in the first

order approximation, can be treated as a constant <A V.n“([)) ¢ - Lhis




constant can be obtained by taking an average of the values of 4 V%\[)

over a unit cell,

At the same time, the generalized Wannier funcl:ions7 (GWF)
of d orbitals are constructed from these normalized atomic orbitals,
These GWF QZ{[) are localized respectively about the lattice sites

); and orthogonalized by the Lowdin algorithm8 with respect to all
the orbitals (including ls, 2s, 2p, 3s, 3p, and 3d orbitals) which are
localized at the nearest neighbors of 2‘ .

If we choose these orthonormal GWF as localized basis func-
tions, we can calculate the matrix elements of the Hamiltonian H
for various relative orientation of sites (see Appendix A). In our
computations only the nearest neighbor interaction have been included.
In this case, the matrix elements of H can be expressed in terms of
the self energies and the nearest neighbor hopping integrals,

0
= 10, 1 have been developed to calcu-

Several techniques
late the local electronic density of states from the matrix elements
of a tight binding Hamiltonian in a non-periodic system. In the follow-
ing we shall use a relatively new and powerful generalized recursion
method which was developed by Haydock et al. . and generalized by
Rehr and Pei5 to find the local electronic density of states ’Yl,(E) and
the electron charge density ML) . g

Before proceeding with the calculations of '“L(E) and ML) ,

let us briefly review the basic structure of the recursion method,




In this method the local density of states at a given site, say at site !;‘ ¥

is calculated from the diagonal Green's function matrix element:

fnl(e)=§. ’h:(E) (2.7)

N T g
'Y\L(E)—SQ:S TTI'“ Gr“(En&') A (2. 8)

~

where O is the index describing the type of the corresponding orbital

at site 2; (for a 5-fold d band, there are five types of orbitals at
od

each lattice site), and where Gﬁ Q(E) is evaluated using a continued

~

fraction representation:

Gpp (1= o, L] (B=HY' [ o0, L)
LR |
TR bo

10

: (2.9)

Here lo(, 2,) denotes a GWF of type & at site & . For the
moment we restrict our discussion to a particular &4 , for simpli-
fying the notation the explicit & dependence will be suppressed.
The coefficients Qx’i and bﬂ i in Eq. (2.9) are precisely the

=
coefficients of a 3-term recursion relation, which defines a new

basis I,!;,j} in which the Hamiltonian has a 'tridiagonal' repre-

sentation (a tridiagonal matrix is one whose non-zero elements




appear only on the main diagonal and the two sub-diagonals, upper

right and lower left):

11 -t}=0 , lg,ot=1L

\£,i+'}=(H-Q1,i3\&,ﬂ"b“ﬂ\g,i-\} (2. 10)
where

. ; : : 2
o <JLiHIL] _ HLaHiging|
i (il : A1 u,“g,ini,ﬁ\\i,ﬁ*l}. (2.11)

We shall refer to the states \2,’3} in this semi-infinite, one-
dimensional basis as ''shell states, " 3 being a shell index, since,
roughly speaking, they are spatially localized about the jﬁk shell of
neighbors surrounding the atom at site 2, .

Following the generalized recursion method, 4 we can write

the single particle energy € and the electron charge density M([) :

€

Er

2

where the Fermi energy EF is fixed by the condition

_ (%
N=2,»5 mL‘E)dE (2.13)




N being the total number of electrons in the system and

€
n=2, a ”)A P .M (E)dE (2. 14)
23 £ 2,3 L

~? ~—

(r), the normalized shell states, can be expressed as

where ,Al ,'}

linear combination of GWF':

<L|.,,1}
()= ;
Aa&(” f HIY ] (2.15)

and where P +(E) are the orthonormalized polynomials which are

~):

generated by a recursion relation identical to the one obeyed by the

shell states. This ortho-normalization is in the following sense:

jp”(af (BN, () dE = 53 B

Let us now return to the case of a composite band (such as
a 5-fold d. band complex), the single particle energy € and the

electron charge density are given, respectively, by

%
€= € (2. 17)

ok

m) = Z_. ’Y\d(,[) (2. 18)




An important remark about this method should be made:
The self-consistent Hamiltonian must have the property that the total
electronic charge, calculated with a unigque EF , precisely cancel

the total ionic charge.

With this self-consistent € and M(Y) , we can calculate

the ground state energy of the system by the KS equation:

E=€ “:|>T S%L?Fl axr A£+SM(D[ e,“(mn) -/lxc(mn)] a\L (2.19)




Chapter II1

Example: Stacking Fault Energy of a Nickel Crystal
in 3d10440 Configuration

In this chapter we apply the method developed in Chapter II
to the calculation of the stacking fault energy of nickel in the 3d104so
configuration, the hypothetical case of filled d bands (the actual
number of o electron in metallic Ni is about 9.4/atom). Before
proceeding with the calculation, let us briefly review the properties
of a stacking fault.

A compact structure can be described as a stacking of hexa-
gonal close packed planes A, B and C; f.c.c. and h.c.p. lattices
being respectively defined by periodic successions ABCABC and
ABAB as shown in Fig. 2.

In a f. c.c. lattice, there are two types of stacking faults.
The first is an intrinsic stacking fault, which is obtained by removing
a plane of atoms, i.e. ABCA1CAB as shown in Fig. 2(c). The second
is an extrinsic stacking fault, which is obtained by inserting an extra
plane C between plane A and plane B, i.e. ABCA(TJBCA as shown in
Fig. 2(d). All the above faults preserve close packing, so that any
atom keeps the same number of the nearest neighbors at the same
distances, Thus, it is reasonable to assume that the formation of
these faults will require a small energy. From the experimentally
determined stacking fault energies YSF , they are seen to be indeed

small compared to the surface energies fs and grain boundary

-11=-
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\2
energies Yq in f, c, c. lattices (for example, in Ni S’SF=220M}%_:,

13 14
s/sg 2000 .Mr/a,,@ , Y€‘= 930 W‘f/am’- jo Although they are

small energies, the stacking fault energies are very important from |
a metallurgical point of view, since they govern some of the plastic ,
properties of metals and are useful for the study of the relative
stability of f. c. c. and h.c.p. phases, .

Let us now return to our calculation. We want to obtain a
reasonably accurate expansion for the atomic wave functions \Pn (£)
( m 1is the index of state, i.e. s, p, d, etc.) which are calculated
by Herman and Skillman6 in terms of a number of Gaussian type

orbitals G’m(d) Y)

G, (&, )= R (3.1) |

where M denotes the types of the Gaussian, for example, M

equals 1, 2 and 3 denote s, p and d types, respectively.

M
- t
Yoz 2. ¢ Gml,N) (3.2) i
r=l i
|
The 2M parameters of; and L are to be chosen so as to make |

the approximation as good as possible. The most convenient criterion
‘ | to use is to mininize a weighted squared deviation,
s 2
=Z [V -Z Gl ] win
D-? ,.YP) e adhe [ Rl FA . (r) (3.3)

A=

f; -12-




where WI(¥p)is a weight function, and its choice is governed by the

use to which the expansion is to be put. For example, our purpose of

the expansion is to facilitate a three-dimensional integration in which
Y is the distance from a given center, then, in Eq. (3.3), we would

choose

2

wr =r (3.4)

which is proportional to the volume of an element of spherical shell
of radius ¥ .

The selection of the best set of the exponential parameters

{ola} and the coefficients {C.‘.} presents considerable difficulties.

This is due to the existence of multiple minima for the value of D
in the space spanned by variational parameters {cl.‘,, C;} . Therefore,
it is not claimed that we have obtained and listed true optimum values
of tdi, ci] in table 1, The sets in table 1 are actually chosen in
such a way, that they fit the function ‘P..(v) uniformly in the whole
range of [ .

The minimization is performed using an efficient IBM
Fortran program and the 'best'' set of {Ji, Ci} are given in table 1.

We use the same routine to expand the atomic effective
potential in terms of a number of 'Gaussian'' which are shown in
Eq. (2.6) and the exponential parameters and the coefficients are

given in table 2, The values of < AVA“(D> for a perfect crystal and

_|3-




a stacking fault are 0, 148669087 au and 0. 148669870 au, respectively.

In the case of a filled band the integral of Eq. (2.14) van-
ishes by Eq. (2.16), except when i=o . Thus the expression for

ML) reduces to a trace over all the GWF:

-

—_— = of PA
fmr_\‘-'-?;.% | a3 (0] (3.5)

and the expression for € reduces to a trace of Hamiltonian over

all the GWF:
€=ZJZ:_| <°‘;£IH‘J;}.> (3. 6)

where <o, 1lH4, L>  isthe self-energy of type & at site ‘Q\
We shown in Appendix B that the stacking fault energy for a
filled band nickel is 1,98 ergs/cm'2 which is very small compared to
the measured stacking fault energy 220 ergs/cmz. The difference
between our theoretical estimate and the measured value is mainly
due to the fact that our model treats Ni as a filled band metal. We

note that a vanishing result was obtained by other theoretical calcu-

1
lat:ions1 using a full d-band.

B b i, s




Chapter IV

9.44 0.6

Stacking Fault Energy of Nickel in the 3d s ~ Configuration

In this chapter we apply the method explained in Chapter II
to a model for paramagnetic nickel.

We know from the energy band calculatioms16 that there are
9.4 d electrons per atom in a solid nickel crystal, Therefore, we will
9.4 480. 6

calculate the stacking fault energy of sclid nickel in the 3d

configuration. In this calculation, we neglect the effects of sd band

hybridization and study only the role of the d electrons in the stacking
fault energy in the Hartree approximation. To do this calculation we
follow the same procedure as we mentioned in Chapter II except for
constructing the atomic effective potential V‘;‘.([) Since the 4s wave
function is highly extended in space, it is necessary to sum several
shells ( > 10) of neighbors in order to obtain an accurate value of
V_.,“_([) (see Eq. (2.1)). In order to reduce computation time, we
separate the atomic electronic density into what we will call a local-
ized atomic charge density ?lE(L) which receives contributions from
the 1s, 2s, 2p, 3s, 3p, and 3d states and a non-localized atomic

’
charge density 'T\.‘(D which is made up from the 4s state:

e /
My = MM + M) (4.1)

a
and construct Vl“ (Y) and Av,ﬁ(!) in the following fashion:

-]S-




Ly -x|

P et
Vo= B | TEE 4 (R)

AV,“(D=/Axc(m“m)—% Poxe (T-0)

(4.2)

Here we will calculate the stacking fault energy using the
following three schemes: 1. the moment scheme“; 2. the non-self-
consistent scheme”; and 3. the self-consistent scheme

1. The moment scheme

We approximate the density of states by a Gaussian multiplied
by a polynomial (Edgeworth series) fitted to the four first moments
(see Fig. 4):

«

PRI | x A~3 (o a2t Bl o
rng(e) I_‘m)«,me [|+ o (3-6X4X ,+2,x(|+%)]7 o

-~

where

E

A= et/ J2w

y =

B= i/ pl |

. —




and where/‘z(b : /13(!') and /J‘(i) are the second, third and

fourth moments of the site L , respectively. In this scheme we use
S

Eq. (2.13) to determine the Fermi levels EFF and E: of the

crystal with and without a stacking fault. The stacking fault energy

is given by ESF g

E
F F
AE=ZS E'n’F(E)e\E ~Zj E’nBlE)AE
) ! 1 3
-
=J (E—E’)['z;'_msF(E)-%.M:lE)]o\E

F
(4.5)

where the superscripts SF and B denote the system with and
without the stacking fault energy, respectively. The stacking fault
energy calculated by this scheme is 18.50 ergs/cmz.

2. The non-self-consistent scheme

This scheme is analogous to the moment scheme. The impor-
tant feature here is the continued fraction representation; it is one of
the best method of reconstructing a density of states from a set of
continued fraction coefficients (see Fig. 3(a)). This reconstructed
density of states has the property of having the correct leading 2N+ 2
moments if the correct leading continued fraction coefficients Qé N

bi ; i_-:o’.. 3 .,N are used. Using the density of state ’Yl’(E)which

is constructed by this recursion method correct to ten continued

fraction coefficients and Eq. (4.5), we obtain for the stacking fault

energy a value of 60, 20 ergs/cmz.

-17-




3. The self-consistent scheme {

s We know that in a metal the perturbing potential due to a stack-
ing fault is completely screened out over a few interatomic distances.
The Fermi level is the same as for the perfect crystal. However in
the moment and the non-self-consistent schemes, we introduce a non-

physical variation of the Fermi level for a system with a stacking

fault to satisfy the charge neutrality requirement. In order to avoid

this problem, we use a self-consistent scheme introduced by Allan18 ;
to insure both that the Fermi level of a system with the stacking fault 2
is the same as that of a perfect crystal and that charge neutrality is %
maintained. Since the perturbing potential is well localized near the
stacking fault, the main difference between the self-consistent and f’
non-self-consistent Hamiltonian will be its diagonal elements

<o, LI HI, Ly where }\: denotes a stacking fault site. We

denote this difference by W, and adjust it so that, using the bulk L

B
Fermi level EF throughout the stacking fault region is electrically

neutral:

Z M (E,u.) dE .-.ZJ' m_ (E)AE (4. 6)
£) 4 T |

In the presence of a stacking fault we know from the non-self-con-

sistent calculation that W, should be a very small quantity compared

with the bandwidth, Therefore, we can assume in this range that the

ol
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change of total charge at the stacking fault planes is linearly propor-
tional to the change in W, . Using linear interpolation instead of the ]

*a.u.

truly self-consistent loop, we obtain We=|,13 X (o
The stacking fault energy in the self-consistent Hartree

approximation is given by

Bt SF Eg B
AE=%5 Eml(s)uo)ds—%y E’hl(E)dE

"% y LMo+ A’h([ﬂ[Vo(DMV(D}o\H %5 MAOVD AL (4. 7)

where Mo, and \/, are the electron density and the potential in the
perfect crystal. In the crystal with a stacking fault these quantities
are changed into Mo+am and \/y+a\J . The first two of Eq. (4.7)
corresponds to the one-electron contribution. The last two terms of
Eq. (4.7) are added to prevent the double counting of Coulomb inter-

actions occurring in the integral. It can be written as

-3 L j Mott) aV () dY + Sam(p\lom af + ganm)a\/mo‘ﬂ (4.8)
It is easy to show that the first two terms in Eq. (4. 8) give an equal
contribution. Here we must notice that 4V is well localized near the

stacking fault and the preponderant term in M, is d:o (see Eq. (2. 14)).

Therefore we can rewrite Eq. (4. 8) under the form

_23‘1’0'% (295 -Ze)Uo (4.9)

where Zg and Z;F are the number of d-electrons per atom in the
bulk and on the stacking fault, respectively. The stacking fault

energy calculation by this scheme is 64. 28 ergs/cmz.

-]9_




Chapter V

Comparison and Discussion

For purposes of comparison we have drawn the bulk density of
states computed with ten continued fraction coefficients (ai, ,bj;
J=0,...,9) and a histogram deduced from Pettiforlg with the appro-
priate scaling in Fig. 3(a). The good agreement of our results for the
bulk density of states with band structure calculations gives us confi-
dence in our further discussion.

We have also calculated the stacking fault energies with these
three schemes which were discussed in Chapter IV using the Slater-
Koster overlap parameters ddv , ddw and ddd to calculate the

nearest neighbor hopping integrals instead of using our constructed

Hamiltonian. The parameters we have used are (in atomic units)

dds =-0.020833 ddTw=0.00942) ddd =-0,001165%

which was chosen by Desjonquerés et al, = The results of these cal-
culations are given in Table 3.,

From Table 3, we can draw the following conclusions:

1. To replace our constructed Hamiltonian by a parameterized
Hamiltonian seems to Lave very little effect on the stacking fault
energy,

2. The density of states which is correct to the fourth moment

is not good enough for the stacking fault energy calculations.




3. The difference between the numerical values of the stack- 5

ing fault energies obtained in the non-self-consistent scheme and that ']
obtained in the self-consistent scheme is very small.
4. The results we find are smaller than the available experi- - ]
mental values (the range of values = 160 ergs/cmz ~ 300 ergs/cmz).
Two possible sources of the discrepancy are the following: our neg-
lect of s-d hybridization and the fact that the measured values refer
to nickel in its ferromagnetic state rather than the paramagnetic state #
which we used in our calculation. ]
5. Although our value for the stacking fault energy is rather

smaller than the best experimental value, it is in much closer agree-

ment than is the value calculated by Cyrot-Lackmann using the
moment scheme. Our result is a factor of three higher than her
result.

Therefore, the next step in such calculations would be to

include s-d hybrdization effect for a ferromagnetic state nickel. &

Let us finally notice that our scheme could in a straight-

forward way be used to calculate energies of more complicated

—

defects, for instance, formation energy of vacancies, etc.

-21-
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Appendix A

In this appendix we present expressions for the integrals used
in the computation of the matrix elements of the Hamiltonian.
In the Cartesian coordinates a Gaussian type orbital (GTO)

centered at A is written as
L = nl y™am A 2)
JFA o, by m) =y oy B Bep (=l ), (A.1)

Here X, , \aA and 5A are the components of a position vector
Xa relative to A , W=Y-A ,and L , " and M are

~ ~ ~ ~
"quantum numbers' and are zeroes or positive integers.

First, let us define some notations:

s = " =5 1. PA, PB t
1 gt = (ocp*rPAnQ‘('vawsx)ﬁ L}’L& (B, &, PA,PBOXp (4 o)

where Fﬁx and FE,‘ are the ¢ component of the vectors PA

(E@EB-A) and PB(PB=P-B) , respectively.

|
FbU:)EJ w? (-tuhHdw (A.3)
G

Then we have the following expressions:
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/2 o °( A 2 2 /2] (ZL“)”
L el 0 P, T8O Tt

= (%)

[(mtm] S b it
X Z‘ f‘za‘ (M;,Mz, PAQ 9 FB:) W
j=o
["“n"ﬂﬂ/ﬂ ik
Z :: 2r-)Il
X * ‘S-zﬁ (ml,mz) PAS ) FBZ) W
=0
’
where
= o +oly
P=wA +o, B)/Y
(2i-D11 =135 (24-1)

and where [X] means "largest integer less than or equal to X ."

(A. 4)

(A.5) .
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i 2d§{S (R2+2,m2 mz) + S (L2, Mot 2, M) + S (1, rnzm}

i Ji { n?.( Qz‘l) S( Qz~2)’m2, M)+ Mz(Mz~1) S( 2z)’mz'z; mz)

% Malma=1) S (L, My, =20 | , (A 6)

f%( d|)2|,m‘p, 1 B “.l %( olz) m,,m,)&xiad%
_ ooy 7%

= Z&’E 3 Z.. Aivul bR, Ax, B, O, €)

A, 0

Z PRV ,m'),m‘) AB} Baaca)?)

AV
- —2
xi%wAi){)w\m., My, AS’ Bé, Cs, §) FD (% (A.7)




where D= i+»j+&—2(r+ﬂ.+i)—(u+'\r+w),

=L
€ ig

and where

Ai,r,u( R') 12) Ax) B")Q")g>

— L-2Y-2U

r+w
(-1) 4! PC 3
= (-1) 'f' (Qn, Qz)PAX)PB") Y‘\.Lu! (i-‘zf—uﬂl/‘&)

In Eq. (A.7) the summations with respect to indices o é and ‘k

extend from 0O to Q|+ Qz : [1-/2] and T (L-2v)/27 ,

tively. The range of (i ’ A)’U‘) or (&)t) W) can be easily found in

the same way.

oll A $2, mz_m, |
: “B| 33| 5B| l r2 "h |

J“*ﬂ ar: Wy, ‘&A 3A

JT‘ La
X“c ‘zcz 5 3¢, N %N 0\4 “rpz

B o, ©

(r.mY""f “'“‘ABZ =)

XL T8y (0,0, Ay, Be, BBl 4, %, D &, )

ky, k)Y Y2 U
M dshne "~ 77
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X Z B. (rmb’mz)Aa,Ba,Pa,(l‘MJ,W)CH,Da,Qa,(z)

{ dvi:lAyA:;\T 1\,11,A|,A31‘U'
X Z B (’nl,mz As 85 Fs Xl\mS,N}CS,D&Q&,(Z)F (E.l)
R kbt w ) 13,08, v\53
259, 5%
(A.9)

where b= 2.|+ 1.2-}- q‘ﬁ-a\z-\-&,-\- &z—z(rﬁ-ﬁf Al*ﬂz*’*ﬁ{;)-u-’lf—(«)

§) = oy + oly o= o3+

Pa YA+ B Q= BEt4l

i g - &2

i
§= zlt—"*' 4_& (A. 10)

and where

( 21, nz) Ax, BX)PX) 8’;‘ 93, 9-4)Cx, Dx)Qx, ?2)

BL.)L;) YW

= (=02 F, (0, PR, PBOT, (s, 1,80, B0)
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- L
" O,
w! s v ha=2(N+ V) =2u] |

la=2(h+ R)-2U 3“

X { L+ ip-2 (Mﬁ)}[

(A.11)




In Eq. (A.9) the summations with respect to the indices :L. » L2, Y
\

Y, , and W extend from © to Q¢ly, L+ly ., [ L7, [ Lla/27
and [ (1, z-ﬂ/z-h-?‘z] » respectively. The range of (1‘.,42,

Ay, AV) or (*.,-ﬁz)t‘) *‘}w) can be found in the same way.
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Appendix B

The stacking fault energy of a nickel crystal is the difference
between the ground state energy of a system with a stacking fault and
that of a perfect system:

AE'—'—'ESF—EE

g Font “)Ardr . memm(n drdv
’5 lr-x'| R

j m (D[ EylM D\ ‘/‘xc(’“ (1’)] ar

e J‘ mB(!-J [ GXC( 'Y\B(D) “/Axc ( ')\.B([))J AL

- AE| ‘\'4E1 +AE3
(B. 1)

sf 8
where AE=E -€

5; B 8 .
) (M (1) MO MW )
25,2 1) IL- ILA'A“j T

A= ym (D] €xc® m)-/u,«(m"’m)]dz J m‘(x)[éxé"‘s‘l’ /‘“"""i

AL (B. 2)




Here the subscripts SF and B  denote the system with the stacking

fault and the perfect system respectively.

0
For a nickel crystal in the 3c1l 480 configuration the single

particle energy € is given by Eq. (3.6). Then 4E, is given by

SE, = 1.98 WM/ om?

Since 4 Ey involves two six-dimensional integrals, usually

it is impossible to do this integration numerically. However, in our

representation the charge density M(r) is expressed in terms of a
P g y L P

number of GTO (see Eq. (3.5)) and this integral can therefore be cal-

culated analytically. Due to the large computation time (because the

number of GTO is too large) we cannot in practice calculate

4E,

directly., Here we want to give some estimates for this term under

the assumption that the GWF do not overlap between the third nearest

neighbors, If we write ‘3'_' \J, &, '7\), the atomic wave functions

\P: (c- ) can be written as

o
Yo ="n L-0)
The GWF and the electron charge density are given by

4 i :
0y (1) -‘Pp(!‘ : PZ*'(‘ \P(,,m (%, ¥

- 29_

(B. 3)

(B.4)
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Therefore, the coulomb interaction energy can be written as :
/ ol /
JAEs Ry 27 [ Boho ol
Bl gy
{ " 'y g !

s v ) WD) WelH Pele) .
_22_\2__4" ((‘P&'.LPX)J LPGU: ;PYA" Iq;& q)d’ AIO‘L

G5 & & (B. 6)

§2f
The first term on the right hand side of Eq. (B. 6) is a two-center 'g
integral ( [5’() and the second term is a three-center integral
( (L,&’, i;' ). Since the stacking fault preserves the same nuniber of
nearest and second nearest neighbors at the same distance as that in

perfect lattice, the two-center integrals give the same values for the

system with and without a stacking fault (see Eq. (A.9)). By the
same reason, the three-center integrals give the same results for
these two different systems except in the following situation: the
three centers involve three parallel planes in which the stacking fault
occurs. The difference of this kind of term between the system “with
a stacking fault and the system without a stacking fault is bounded by
0.16 erge/cmz. Therefore, we can neglect the effect of AE, on the

stacking fault energy.




We calculate 4E; using an IMSL three-dimensional integra-

tion subroutine, and the result is given by

AE; =0,014 Mr/mz

_3]-
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Figure 1. Flow chart for the calculation of Ni stacking fault energy.
Starting from atomic wave function and densities, we first
obtain (a) generalized Wannier function Q;(D and (b) an
effective potential for the stacking fault. l:rom these the

Hamiltonian matrix and finally single particle energy, elec-

tron density and total energy are calculated.
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Figure 2(a). Projection normal to the (1,1, 1) plane showing the
three types of stacking positions A, B, and C; (b) Perfect
f. c.c. stacking; (c) Intrinsic stacking fault in f.c.c. struc-

ture; (d) Extrinsic stacking fault in f. c. c. structure.
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Figure 3 (a). The bulk density of states of Ni. The histogram
is deduced from Pettifors exact calculations, the full line

being our result correct to the loth continued fraction

coefficients,
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Figure 3 (b). The local density of states on the stacking fault

with Ugy=0 .
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Figure 3(c). The local density of states on the stacking fault with
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Figure 4. The bulk density of states given by the Edgeworth series

fitted with 4 moments for Ni,
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Table 1. Orbital exponential parameters % and expansion coeffi-
cients Ci for ls, 2s, 38, 2p, 3p and 3d orbitals in
atomic unit

ol Ci

s ls 2s 3s
11516.5 33,0481 8. 82768 4, 20507
3061.22 53,2612 19.3895 5.94182
962.010 40.2191' 6. 74675 6.48046
530, 057 64. 2795 32, 1637 7.55527
165.397 80.7803 4,20110 19. 2241
134, 438 -19.0622 28.9506 -6.32380
59. 5449 14,3051 -.969386 3.35939
15, 1521 -. 259403 -14.7299 -12.5191
6.24163 . 165880 -3, 28423 -. 048757
1.39054 -.033213 -. 028432 3.56488

P 2p 3p
340, 262 116. 178 46. 2843
155. 768 154, 761 59.3034
50,4147 127, 228 55, 0839
20,7513 62.4323 26. 2800
7.06297 9.45597 -.526122
2.92262 -.394319 -7.10654
. 951675 . 035764 -1, 23424

d 3d
48,9403 62,747
13,7169 36.546
4, 63951 13,677
1.57433 2.6311
. 486409 . 24164

ki i .

k-




biiros o

Table 2.

Parameters of atomic effective potential expansion in atomic
unit, & are the exponential parameters; C; are the
coefficients

ol i
1.710018091851 ~26.39857137242
26.72930960088 17. 08366865139
7.640172520328 21, 12143227226
2.324012025830 32.21210656087
0.260972626075 ~0.861105554065

Table 3.

Comparison between the stacking fault energies in ergs/cm2
which are obtained by the moments scheme, the non-self-
consistent scheme and the self-consistent scheme by using
(a) our constructed non-periodic Hamiltonian, (b) 3 parame-
ters ddy , d&w and 443  fitted Hamiltonians.

Moments N. S. C. S.C.

a 18.50 60. 20 64, 27

b 20,72 56. 40 64. 83
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