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F‘ We have been working on a production system model of human
cognition celled ACT. An  earlier version of the ACT system, cclled
ACTE, 1s described in  Anderson [[2]], Anagerson, Kline, and Lewis [[%]!,
ond Xline and Angerson  [[21])). That system has been used to devclop
mini-models for retrieval from memory, inference making, language
comprehension, question-unswering, and problem solving. We are
currently working on a new version of ACT called ACTF. This paper
discusses a number of the design decisions underlying the ACT system.
We will discuss how these design decisions are motivated by both
psychological and artificial intelligence (AI) considerations.
(What is ACT?]
ACT is at the same time a high-level programming language and a
b theory of the cognitive mechanisms underlying human information
processing. A high-level programming language is a formalism that
facilitates programming certain kinds of algorithms. However, it may
also be difficult to program algorithms other than the intended kinds,
so thal high-level programming languages are often "special-purpose".
ACT 1s a special-purpose programming language in this sense. But the
fact that certain processes or algorithms czn be coded in ACT more
efficiently and easily than others is the means by which ACT provides a
theory of the cognitive mechanisms that underlie human information
processing. Humans are also more successful at certain cognitive
processes than others. The hope is that ACT limitations correspond to

human limitations. If this 1is so, psychological theories of specific




cognitive behaviors automatically acquire a certain face validity when
embodied as programs in the ACT programming language.

Given the adaptiveness and flexibility of human cognition no
static ACT program can serve as an adequate psychological model. ACT
must have the capability for evolving new programs and our current work
is focused on developing a learning program. However, space
limitations do not permit us to discuss this learning work, we will
confine the discussion to the principles by which ACT programs are
interpreted and executed.

[A Relationship Between Psychology and AT)

We conjecture that there is a strong relationship between
cognitive psychology and those Al efforts concerned with developing
general and adaptive systems. (This is what we will mean by AI for the
remainder of this paper.) This conjecture can be stated as follows:

Good cognitive psychology is good artificial intelligence. (1)
The majority of this paper will be devoted to illustrating how belief
in this principle has influenced the design of the ACT system.
However, first we would like to discuss the implications of this claim.
What exactly does it mean? By "good psychology" we mean a

theory that meets four scientific criteria: parsimony, effectiveness,

broad generality, and empirical accuracy (see [[3]] for a discussion of

these). Of principal importance to our points are the criteria of
effectiveness and empirical accuracy. Effectiveness refers to the

constraint that the theory be specified well enough that predictions




can be rigorously derived from it. The important consequence of
effectiveness is that a computer simulation of the theory can be
produced . By empirical accuracy we mean that it successfully predicts
human behavior in various cognitive tasks. Thus by conjecture (1) we
mean that the computer simulation of a psychological theory that
successfully accounts for empirical data will be translatable into a
good Al program. By a good AI program we mean one that produces
intelligent behavior under reasonable constraints of ccﬁputational
efficiency. Since @ good psychology program will mimic human behavior,
a reasonable standard of intelligence is guaranteed. The non-obvious
aspect of our conjecture concerns the matter of computational
efficiency.

If conjecture (1) is true, one way to attempt Al is to develop
a program that models psychological data. Note, however, we are not
cleiming that this is the only way to develop a good AI theory.
Moreover, we are explicitly not endorsing the claim that an AI program
must meet standards of good psychology. That is, we are not claiming:

Bad cognitive psychology is bad artificial intelligence, (2)
nor 1ts contrapositive equivalent:
Good artificial intelligence is good cognitive psychology. (3)

Claim (3) has been put forward (but not endorsed) by Newell
[[25]] as a possible relationship between Al and psychology. It has been
endorsed informally by a number of workers in AI. (We wonder if its

endorsers were aware of its equivalent contrapositive (2) which would




make all Al endeavors subject to psychological test.) The argument for
(3) is that the feats of human intelligence are so difficult that there
is essentially only one way of accomplishing them on any physical
device including a human brain or a serial computer. While what is
meant by "essentially only one way"™ is uncertain, we feel the claim is
implausible. We find this claim implausible in light of the non-
identifiability results in psychology [[3]], the behavioral equivalences
among different machines in automata theory, the existence of very
different programs to perform a range of functions from sorting to
parsing, and the observation that nature has evolved different
mechanisms to serve the same function.

So, we feel there are different routes to the goal of good AI,
only some of which involve psychologicazl theories. For example, there
would be nothing wrong with an AI program that found it easier to
analyze a sentence than a picture, but there would be somethirg wrong
with a psychological theory that did. However, it is a fac® th  there
is no current Al program that begins to meet the criteri: c¢f broad
generality and adaptivity. Thus, while there may be many ways to
acnhieve a good Al program, it clearly is proving difficult to discover
any of these ways. Thus, while it is not necessary for the Al worker
to follow psychological research in designing his systems, <t might
prove to be a good heuristic in trying to search for a- &d2quate
program.

The implications of conjecture (1) about the relation:saip




betwecn psychology and Al are not one-sided. This can be seen by
considering the contrapositive of (1):

Bad artificial intelligence is bad cognitive psychology. (4)

This places a new constraint on a psychological theory. It
must be translatable into a good AI program. In particular, the
implementution of a theory must obey certain constraints on
computational efficiency. For instance, a theory of language
processing would be judged inadequate if its best simulation produced
comprehension times that were exponential functions of sentence lengths
or which required exponentially increasing computational space.

We think complexity functions are Dbetter measures of
computational efficiency than are absolute amounts of computation space
or time. Judgments about what is an acceptable absolute amount are
determined by current machine capabilities. It would be silly to
cripple our psychological theory because current machine capabilities
do not match those of the human brain. It would be particularly silly
given the reasonable expectation that current limitations will be
exceeded by many orders of magnitude over the next decades.

However, evaluating the efficiency of an algorithm in terms of
complexity functions 1is not without its problems either. Complexity
functions make no allowances for the fact that often only a restricted
range of complexities are encountered in a practicel problem. AI

programs employing algorithms with superior performance on this




restricted range would be preferred even if the asymptotic performance
of Lhese algorithms was very poor.

With suitable allowances for this problem with complexity
functions, we might understand (1) and (Y4) os asserting that a good
psychology progran will employ algorithms which are cnaracterized by
reasonable complexity functions. But, there are still problems.
Suppose our best simulation predicted that a certain process took an
exponentially increasing amount of time as a function of problem
complexity. That would not be unacceptable if it could be shown that
the best known computer algorithm also displayed this complexity
function and that human processing time increased exponentially with
problem complexity. It 1is also the case that human behavior often
displays a poorer complexity function than the best known algorithm.
For instance, consider the time it takes humans to identify & concept
in a concept-identification task [[17]]. Their identification times are
often lineer 1in the number of possible hypotheses rather than
logerithmic. However, humans can be trained to implement a logarthmic
algorithm. The upshot of these qualifications is that (1) and (4)
amount to the requirement that the best algorithm implementable 1in a
psychological theory like ACT display the best possible complexity
function on a serial computer. We would conjecture that humans are
capable of achieving this same complexity function after suitable
training.

Now that we finally understand what (1) and (4) should be taken
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to mean, we see that for (1) and (4) to be valid the human brain and
the serial computer must be subject to the same complexity constraints.
That 1is, if either computing device can employ algorithms whose
complexity functions are unattainable by the algorithms available to
the other, (1) and (4) will probably be false.

The fact that humans can hand simulate computer programs
suggests that the brain is not at a disadvantage in this respect. On
the other hand, we know of no physically realizable computational
device (the brain included) that achieves better complexity functions
than the serial computer #2.

Thus barring the discovery that the brain has fundamentally
superior computational abilities, (1) and (4) would appear to
characterize the relationships between good psychology and good AI. If
this characterization is accurate, there is potential for fruitful
interaction between the two disciplines. The remainder of ¢this paper
will discuss how Al considerations and psychological considerations
converge in the case of the ACT program.

(Propositional Network]

The data base in ACT is a propositional network. A
propositional network is an associative network structured so it can be
divided into units having a propositional status. There has been some

concern whether associative networks have adequate expressive power

(cf., [[35])). However, in conjunction with the production system it can

be shown that ACT has expressive power at least equivalent to the




predicate calculus [[3]]. The condition of an ACT production specifies
network configurations that must be present or absent for the
production to apply. The execution of an ACT production can cause new
propositions to be built in memory and old propositions to be modified.
The associative network structure of ACT is such that each
concept indexes all the propositions it occurs in. The structure is
double-linked so it is possible to go both from concept to proposition
and from proposition to concept. This associative indexing feature of
ACT nicely 1illustrates the convergence of psychological and Al
considerations. There is a large amount of data indicating some sort
of assocliative structure in memory. A simple phenomenon is that of
word association: Take a word, generate a semantic associate to it,
take that word and generate an associate to it, and so on. For
instance, starting with dog: dog-bark-hear-ear-organ-body-weight-scale-
step-foot-ball-etc. The obvious way to simulate such free association
protocols (cf., [[20]] ) is by a search process over an associative
network. The computational advantage of associative indexing 1is also
well understood. It serves to make time to retrieve a fact
approximately independent of the number of facts in the data base.
There are also converging arguments for imposing a
propositional structure on the data base rather than some simpler
associative  structure. Most Al programs that have performed
inferential reasoning have used proposition-like representations of

informution. The reason is that a propositional structure abstracts




out und mukes s« ient aspects of the information relevant for deciding
the validity (or plausibility) of inferences.

There are numerous sources of psychological data supporting the
concept of propositional organization. For instance, there is
considerable evidence (e.g., [[6, 4, 16]]) that propositions tend to
oe forgotten as units. That is, the conditional probabilities are high
that if one element of a proposition is forgotten the remainder will
also be forgotten. While subjects do occasionally recall only partial
propositions (e.g. "The hippie touched somebody but I can't remember

who.") such reports are statistically rare. There is also considerable

evidence (e.g., [[28, 32]]) that subjects, in remembering sentential

information, often do not remember the exact wording of what was said
but only the propositional content.

[Spreading Activation]

The concept of spreading activation has been quite popular in
cognitive psychology (Collins & Loftus, 1975; Collins & Quillian, 1972;
Kieras, 1977). There is an activation process that operates on the ACT
network. Particular nodes can be activated either by stimulation from
environmental events or by execution of production actions. With the
passage of time activation spreads from the source nodes to associated
structures. Productions, in matching their conditions, can only
inspect the active portion of memory. Therefore, this activation
process serves to focus attention. There are also mechanisms in ACT
which deactivate all the structure that has been activated by a source

when that source loses its activation.
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A spreading activation process was suggested by Quillian [[27]].
There is considerable physiological evidence for an associative spread
of excitation through the nervous system ([[29]). There 1is also
considerable behavioral data pointing to the utility of the concept

({3, 111]. For instance, subjects can be slowed in deciding a

proposition is false if there is an irréievéatréonnection anong the
elements of the proposition (e.g., Madrid is in Mexico, see [[11]]). 1In
other circumstances such irrelevant connections can facilitate
processing [[23]]. Such effects indicate a diffuse activation process
that is priming all connections, relevant or not.

It seems that Quillian's spreading activation notion has not
received much acceptance in the AI community (see ([24, 34]] for
criticisms). It 1is computationally expensive to compute a spread of
activation. In fact, in our own simulation we have found it too
expensive to simulate faithfully the conceptual-neural model we would
want to endorse. Rather we approximate this with a much quicker
activation process. We suspect that it is the cost of the activation
computation that accounts for the infrequency of its use in AI. By
application of (4) we might be tempted to conclude that the conceptual-
neurul model is bad cognitive psychology. However, this problem with
spreading activation may reflect only current computational limits.
Given faster processors and the prospect of parallel computation, we
suspect that efficiency objections to the conceptual-neural model will

be less serious with passing years.
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The computational function of the activation process within ACT
is to enable us to run a pattern-evoked production system in a
propositional network but to avoid linear (or worse) growths in the
amount of computation time with the size of the data base or the number
of productions. This is achieved in two ways. First, the activation
prccess serves to limit the amount of structure needing to be searched
in determining whether the condition of a nominated production matches.

Second, productions are nominated for consideration by the
activation process. Associated with each node is a list of productions
that make reference to that node. When that node is activated these
productions are considered. Since the number of nodes that are active
is independent of the total number of productions, under this scheme
the growth of computation time with number of productions will depend
on the average number of productions that are associated with any given
node. Newell (personal communication --see also [[22]])) has argued that
in realistic problem domains the number of productions tends to
increase more rapidly than the number of data base elements. Il this
were true of ACT, there would be an increase in the production to node
ratio with growth in the size of the system. Newell has observed from
simulations that this increase in the ratio 1is approximately
logarithmic with the number of productions. We would regard a
logarithmic complexity function as acceptable.

The activation process basically serves to limit the amount of

data that the system has available at any one time. Therefore, it is

12




important to the operation of the system that the currently availeble
set of data not be just randomly selected but rather be associated to
those source nodes the system 1is currently focused on. These are the
currently relevant deta. For instance, when a word is heard it is made
a souvrce node, activation spreading from that node will activate
syntactic and semantic information needed for its comprehension.

While the utility of activating the associative surround of
items in focus is clear, the utility of stretching out this activation
process over time may not be so obvious. Why not immediately activate
all the structure that is going to be activated? The spreading process
allows ACT to focus first on those data most likely to be relevant, and
to try less relevant data later. Thus, the spreading process allows
the system to "bet" its limited computational resources on what is most
promising first.

This is facilitated by having strengths associated with network
links. The strength of a link reflects how frequently and recently it
has been involved in successfully matching the condition of a
production. In the spread of activation, the total amount of
activation energy at a node 1is divided among the links emanating from
that node. The amount of energy given to a link is a function of its
strength relative to the strength of all links. The rate at which
activation will spread down a link to activate structures connected to
the 1link is a function of this amount of energy. This means the

structure that tends to be more rapidly activated is the structure that

13




-

has more often proven useful in matching productions. This, of course,
is a computationally sensible criterion for ordering the activation of
structure. It 1is also a well documented psychological fact [[3, 4]]
that subjects can retrieve more quickly information which they have
used often.

This strength mechanism 1is also responsible for forgetting in
ACT. Forgetting of information occurs when the 1links encoding a
structure become so weak relative to competing links that it becomes
effectively impossible to reactivate the structure. This implies that
forgetting is due to competition by interfering information--one of the
most well-docunented facts about human memory [[4]].

[Virtues of Production Systems]

Production systems by now are a familiar AI formalism and there

are discussions available of the advantages that they offer (cf.,

[(14]])). Therefore we will focus mainly on the advantages production

systems provide as a psychological theory and on those aspects of the
ACT production system that are unique. A striking similarity has been
noted [[3, 26]] between production systems and other stimulus-
response(S5-R) theories in psychology. The connection between condition
and action is quite similar to the S-R connection. There have been a
series of psychological critiques of S-R theory [[3, 4,
8, 10, 18]]. These critiques have basically been aimed at the

computational power of the S-R formalism. It has been shown [[18]] that

at least certain versions of S-R models do not have the computational
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power of finite state machines. However, production systems circumvent
these limitations by use of variables, patterns, and memory [[3]].
Thus, production systems can be seen as having some of the
psychological advantages of S-R theory without forfeiting computational
power. The positive features of production systems discussed bélow are
also true of S-R theories.

[Data- Driven Character)

One of the important features of production systems is their
data-driven character. In each cycle of the production system there
must be a reevaluation of the consequences of the current knowledge
state for the control of behavior. Thus information that comes in and
changes the knowledge state can have immediate effects on behavior.
The survival advantages of a data-driven processing system for humans
are obvious. There 1is also evidence that human cognition, even when
survival is not at stake, operates in a strongly data-driven mode. For
instance, the work on chess [[9, 26]] indicates chess masters do much of
their intellectual work by means of pattern recognition, and that chess
masters usually perceive the correct move within a few seconds of
scanning the board. It has been argued that chess masters' knowledge
of board positions can be properly modeled by a large production system
where individual productions contain board configurations as condition-
patterns and appropriate responses (often moves) as actions.

[Unity of Control and Data Store]

One of the central features of production systems is their lack

15
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of distinction between the medium that stores control information and
the medium that stores data. Unlike most programming languages there
are no special facilities for storing control information--no separate
program counter, pushdown stack, etc. All control information must be
stored in the same data base (e.g., in Newell's PS this is STM, in ACT
it is the propositional network) that serves to store the input and
results of computations.

Intuitively, it seems compelling to us that unity of control
and deta is a feature of human cognition. Fortunately, we do not have
to rely just on intuition. There is some psychological data supporting
this assumption. A variety of experiments have looked for a trade-off

between the size of the immediate memory span and the computational

complexity of an on-going task [(7, 13, 30, 33]]. For instance, Wanner

and Maratsos [[33]) had subjects hold a set of words in memory while the

subjects tried to comprehend sentences of various syntactic complexity.
In the ATN model they were testing, this complexity translated into
amount of control information that had to be held. (It would translate
into amount of control information in most computational models.) They
found subjects were able to recall fewer of the words when
comprehending sentences of greater syntactic complexity, and hence
requiring more control information. This trade-off between the amount
of information in memory Span and the amount of control information is
typical of the research results in this area. The hypothesis that there
is one storage medium for data and control information predicts this

combined storage limitation.
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Our feeling is that the use of a single representational
formalism for control information and all other data has advantages for
a system that is to acquire and modify productions. The role of an
individual production in the overall flow of control becomes more
apparent, and this comprehensibility should be as much of an advantage
for a learning system which must make decisions about the function of a
particular production as it is for a human programmer. The structure
of productions and their rules of interpretation are also considerably
simplified if there is no distinction between control information and
other data, and this simplicity is also an advantage for production
acquisition.

Unfortunately, while production systems tend not to make a
formal distinction between control and data, in practice, one often
finds an implicit distinction made by the programs written within
production systems. This is seen in the use of special control
conventions in order to achieve the same sequential execution of
functions found in conventional programming languages. Although some
of our earlier work in ACT had made extensive use of such control
conventions, we are currently trying to avoid them because they forfeit
some distinct advantages of production systems.

[Modularity]

Another important feature of production systems is the
modularity of the individual productions. Because each production

makes reference to a data base common to all productions and because no
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production makes reference directly to other productions, individual
productions tend to be independent of one another. That is, if a
particular production is added, deleted, or changed, the basic
performance of the system tends to remain relatively unaffected. We
feel that claims about the modularity of production systems have been
sometimes exagerated. There can be production systems designed such
that the change of one production would have disastrous effects on the
system. However, in a sense such production systems reflect "bad
programming style." Production systems should be constructed to
max imize the modularity of individual productions.

The advantage of modularity to the comprehensibility of the
system is obvious. The advantage of modularity to the development of a
learning system capable of self-extension is equally obvious. The
basic modularity of human information processing is attested to by the
gradual development of our processing abilities and by the fact that
new skills almost never have disastrous interactions with old. (Of
course, these facts about human modularity could be produced by
formalisms other than production systems.)

[Parallelism]

There are a number of places in ACT where we have found it
useful to simulate parallel computation. As discussed above,
activation is conceived of as spreading simultaneously from all active
nodes to the associated network structure and in the process, selecting

the productions that reference these nodes for further testing. Not
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only does ACT select in parallel among a large set of productions on
each cycle, it is also the case that on each cycle ACT simulates the
ability to apply (test and execute) a number of productions in
parallel. The evidence is quite compelling that humans can carry along
a number of processes in parallel. For instance, consider the well-
worn example of being able to hold a conversation and drive at the same

time. We have found parallel procedures useful in language processing

[{51). In comprehending a sentence one must perform a large number of

operations--make perceptual judgments about words, switch attention
from word to word, perform syntactic analysis, perform semantic
analysis, resolve pronominal references, recognize the referents of
definite descriptions, perform inferences, etc. It is implausible that
each of these operations occupies separate segments of time with
control switching among them. It is much more intuitively plausible to
suppose that these various linguistic processes proceed in parallel.
While we do allow ACT to pursue more than one process in
parallel, there is a capacity limitation on how much can be computed in
parallel. There is a probabilistic parameter that places a maximum on
the mean number of productions applied per cycle. In the current
implementation this parameter is (arbitrarily) set to limit this mean
to 10 productions per cycle. As the number of productions required per
cycle approaches this limit, performance degrades. This degradation is
produced by making productions wait multiple cycles before applying and

forcing certain processess (sequences of productions) to drop out. The
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evidence is quite clear for such capacity limitations in the human case
( [[3]], Section 6.3). A familiar example 1is the problem of holding
conversation in difficult traffic. As the amount of computation
required for processing traffic information increases, less capacity is
left over for the conversation. The AI motivation of such a limitation
is simply that the 1limits of finite processing capacity must be
respected in any physical machine (whether it has parallel processors
or not).

Given that only a small number of productions will be allowed
to apply in parallel, it becomes important to have some way of deciding
which of those that can apply are most relevant. This is very much
like the problem discussed above of insuring that the currently most
relevant nodes in the network are those that are allowed to be active.
A solution in terms of strength measures is also adopted in this case.
Assoclated with each production is a strength reflecting the past
success of that production. Details of how this strength is computed
are motivated by learning considerations and so have been omitted from
this discussion. For present purposes it is important only to note
that the probability that a production will apply on a cycle when its
condition 1is satisfied depends on the strength of that production
relative to the strengths of all the other productions whose conditions
are also satisfied. This means that the stronger productions (and
hence the more successful processes) tend to be tried first and are

less disturbed by processes going on concurrently.
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Consider the implication of these strength mechanisms for
processing of structural ambiguity in language where competing sets of
productions are responsible for different interpretations of the same
linguistic structure. The relative frequency of the two structural
interpretations will be reflected by the relative strengths of the two
sets of interpretative productions. We would therefore expect that
subjects would tend to interpret the sentence according to the more
frequently intended interpretation, but that they could retrieve the
other interpretation and that they would sometimes choose the less
frequent interpretation first. Also, we would expect that by
bombarding the subject with examples of the less frequent
interpretation we could make it the favored interpretation of the

ambiguous structure. All these implications are known to be true [[15]].
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Footnotes

1. Distribution of this manuscript and current research on the ACT model are

supported by ONR contract NOOO14-77-C-0242.

2. It has to be pointed out here that there is still considerable ignorance
about the capabilities of serial computers and their abstractions. For instance,
while many problems are conjectured to have exponent time functions as minimums,
no natural prcblem has been shown to require greater than n"E for a

E>0 [[1]].
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