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It is conjectured that a good cognitive psychology theory will lead
to a good artificial intelligence (Al) progran . If this is true there
should be a convergence of psychological end Al considerations in theory
construction . This convergence is illustrated in terms of ACT, a computer
simulation model of cognitive processes. Separate Al and psychological
considerations are used to motivate the decision to design ACT as a prod uction
system operating on an associative net~~rk data base . Similar motivation is
provided for other features of ACT impl ented within this fraieis rk . These
features include the use of a propositional structure for the associative
net~~rk , a spread ing activation process operating on the net~~rk , the
simulated ability to execute several procedures in parallel , and the use of
strength measures to select asong competing productions and compet ing paths
in the net~~rk.
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Abstrac t

It is~conjectur ed that a good cognitive psychology theory will

lead to a good e~rtificial intelligence (Al) progr~in. If this is tru~ ,

there should be a convergence of psychological nnd Al considerations in

theory construction . This convergence is illustrated in terms of ACT,

a computt’r simulation model of cognitivL proccsses. Separate AT and

psychologic~d consiucrations are used tc motivate the decision to

design ACT as a production system operating on an associative network

data base . Sim ilar motivation is provided for other features of ACT

implemented within this fr~inework. These features includ e the use of a

propositional structure for the associative network , a spreading

activation process operating on the network , the simulated ability to

exet~ute several procedures in parallel , and the use of strength

measures to select ~nong c~npeting productions and canpeting paths in

the network.
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F We have been working on a production system model of himian

.;(~~,fl it.IJH ~~i ltti ACT . An an ~er ~~ rsion of tr~ ACT system , c~ 1 1~

IL , i ~ I~’z~.: ib~~ in AnLicr3on 11. 1 , Ariatrson , Ki int~ , and Lewis 1~
ia ( ij n e  •~nd Rr at~ son [L ?1 JJ . That system has been used to develop

mnii—models for retrieval from memory, inference making , language

conipr~hension , qut~stion—answering , and problem solving . We are

~urr~nt1y working on a new version of ACT called ACTF. This paper

liscusses a nunber of the design decisions underlying the ACT system .

We will discuss how these design decisions are motivated by both

psychological and artificial intelligence (AT) considerations.

[What is ACT?]

ACT is at the sane time a high-level prograiining language and a

theory of the cognitive mechanisms underlying hunan information

processing. A high—level progr~tining language is a formalism t h a t

lzcilitates prograTining certain kinds of algorittins . However , it may

also be difficul t to prograi~ algoritPmis other than the intended kinds,

so tflat high—level progra*Ining languages are often “special-purpose” .

AC I is a special-purpose progr~nning language in this sense. ~.it the

fact that certain processes or algorithns can be coded in ACT more

I~fficiently and easily than others is the means by which ACT provides a

the-ory of the cognitive mechanisms that underlie hunan information

pru~cssing . Hiznans are also more successful at certain cognitive

processes than othr~rs. The hope is that ACT limitations correspond to

hun~
g limitations. If this is so, psychological theories of’ specific

2
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cognitive behaviors automatically acquire a certain face validity when

(mbodied as progr~ins in the ACT prograTining language.

Given the adaptiveness and flexibility of hunan cognition no

static ACT progrcsn can serve as an adequate psychological model . ACT

must. ti.~ve the capability for evolving new prograns and our current work

is focused on developing a learning progran. However , space

limitations do not permit us to discuss this learning work, we will

confine the disc ussion to the principles by which ACT prograns are

interpreted and executed

(A Relationship Between Psychology and All

We conjecture that there is a strong relationship between

cognitive psychology and those Al efforts concerned with developing

general and adaptive systems. (This is what we will mean by Al for the

remainder of this paper.) This conjecture can be stated as follows:

Good cognitive psychology is good artificial intelligence. (1)

The majority of this paper will be devoted to illustrating how belief

in this principle has influenced the design of the ACT system .

However , first we would like to discuss the implications of this claim .

What exactly does it mean? By “good psychology” we mean a

theory that meets four scientific criteria: parsimony, effectiveness ,

broad generality , and empirical accuracy (see ((3)1 for a discussion of

these). Of principal importance to our points are the criteria of

effectiveness and empirical accuracy. Effectiveness refers to the

constraint that the theory be specified well enot~ h that predictions

3
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can be r igorously derived from it. The important consequence of

effectiveness is that a computer simulation of the theory can be

produced . By empirical accuracy we mean that it successfully predicts

hiznan behav ior in various cognitive tasks . Thus by conjecture (1) we

mean that the computer simulation of a psychological theory that

successfully accounts for empirical data will be translatable into a

good AT progran . By a good Al progran we mean one that produces

intelligen t behavior under reasonable constraints of computational

efficiency. Since a good psychology progran will mimic hunan behavior ,

a reasonable standard of intelligence is guaranteed . The non—obvious

aspect of our conjecture concerns the matter of computational

efficiency.

If conjecture (1) is true , one way to attempt Al is to develop

a progran that models psychological data . Note , however , we are not

claim ing that this is the only way to develop a good Al th~or y .

Moreover , we are explicitly not endorsing the claim that an AT progr an

must. meet standards of good psychology. That is , we are not claiming :

Bad cognitive psychology is bad artificial intelligence , (2)

nor its contrapositive equivalent:

Good artificial intelligence is good cognitive psychology. (3)

Claim (3) has been put forward (but not endorsed) by Newell

[ [251 )  as a possible relationship between Al and psychology. It has been

endorsed informally by a nunber of workers in Al. (We wonder if’ its

endorsers were aware of its equivalent contrapositive (2) which would

£4



make .~l 1 Al endeavors subject to psychological test.) The argunent for

(3) is that the feats of htsnan intelligence are so difficul t that there

is essentially only one way of accomplishing them on any physical

device including a huna~ brain or a serial computer . While what is

meant, by “essentially only one way”~ is uncertain , we feel the claim is

impl~iusible. We find this claim Implausible in light of the non—

identifiability results in psychology [[3)], the behavioral equivalences

anong different machines in automata theory, the existence of very

different prograns to perform a range of functions from sorting to

parsing , and the observation that nature has evolved different

mechanisms to serve the sane function.

So, we feel there are different routes to the goal of good Al ,

only some of which involve psychological theories. For exanple , there

would be nothing wrong with an AX progran that found it easier to

analyze a sentence than a picture , but there would be someth:-g wrong

with a psychological theory that did . However , it is a fa: - ‘ there

is no current Al progran that begins to meet the criteri c~
’ broad

generality and adaptivity . Thus, while there may be many ways to

a~ iieve a good Al progran , it clearly is proving difficult to discover

any of these ways . Thus , while it is not necessary for the Al worker

to follow psychological research in designing his systems, ~t might

prove to be a good heuristic in trying to search for t

prog ran

The impl ications of conjectur e (1) about the re)n ior 
~
I
~
p
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be tween psychology ~and Al are not one—sided . This can be seen by

ccusiciering th~ contrapositive of ( 1) :

Bad artificial intel ligence is bad cogn i t i ve  psycho l ogy.  ( i t )

This places a new constraint on a psychological theory. It

must. be translatable into a gooa Al progran. In particular , the

impl~men t~ t ion of a theory must obey certain constraints on

computational efficiency. For instance , a theory of l anguag e

processing would be judged inadequate if its best simulation produced

comprehension times that were exponential functions of sentence lengths

or which required exponentially increasing computational space.

We think complexity functions are better measures of

computational eff iciency than are absolute anounts of computation space

or t ime . Judgments about what is an acceptable absolute anount are

determined by current machine capabilities. It would be silly to

cripple our psychological theory because current machine capabilities

do not match those of the hunan brain . it, would be particularly silly

given the reasonable expectation that current limitations will be

exceeded by many orders of magnitude over the next decades.

However , evaluating the efficiency of an algorithn in terms of

complLx lty functions is not without its problems either. Complexity

functions make no allowances for the fact that often only a restricted

r ange of complexities are encountered in a practical problem . Al

prograns employing algoritrrns with superior performance on this

6

_ _ _ _ _ _ _ _  5— —~~~~~~--—-S-. - —-5-— —S



r ~a~ri c t t~J runge i~~uld be pre ferred even if the as~~pto t ic per fo r~naricc

at u s~’ ~AgoritJins was ve ry poor .

,~1th su~ tab1e ~1lo~ aei~ es for t~ is prub~ ~ n wi~ h compit xi ’~ y

t ior s , ~i might und rst m d  ( 1)  and ~) :i •isserting h~~ a good

psv ~. ‘~ogy program w il l employ algoritrrns which ar’ characteriz r’ l by

rtasonab le complexity functions. But , tnere are still problems.

~up~~sm~ our best simul~ tion predicted that a ce r t3 in  process took an

expon entia l ly  in:reasing anount 01 time as a function of problem

complLxity. That would not be unacceptable if it could be shown that

the best known computer algor iU-in also displayed this complexity

function and that hLxnan process ing time increased exponentially with

problc~n complex ity. It is also the case that ht.rnan behavior often

dlsplay3 a poorer complexity function than the be st known algorithn.

For 1nmst ~~n:~~, ansidtr the time i~ takes huitans to identify a concept

in :or.ccpt- identification task [ [ 17] ] .  Their identificdt ion times are

e r ~ I inc . r in tn: nut~ber of possible hypoth eses rather than

ig .~ritIinic . However , hun an s can b~’ trained to implement a logarttrnic

.~1gorit~in. The upshot of these qualificat i~ ns is that ( 1) and ( i t)

amount to the re quirement that the best algor ithn implementable in a

pi~y~JoIogical theory like ACT display the best possible complexity

function on a s e r i a l computer . We would conjecture that hunans are

capable of achieving this s~~ie complexity function after suitable

tr.,~rm in~

Now thu we finally understand what (1) and (U) should be taken

7
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to mean , we see that for (1) and (U) to be valid the hunan brain and

the serial computer must be subject to the sane complexity constraints.

That is , if either computing device can employ algorlt~ins whose

complexity functions are unattainable by the algor ithns available to

the other , ( 1 )  and (U) wil l probably be false.

The fact that hunans can hand simulate computer prograns

suggests that the brain is not at. a disadvantage in this respect. ~~i

the other hand , we know of no physically realizable computational

device (the brain included) that achieves better complexity functions

than the serial computer (/2.

Thus barring the discovery that the brain has fundanentally

superior computational abilities, (1) and (It ) would appear to

characterize the relationships between good psychology and good AX . If

this characterization is accurate , there is potential for fruitful

interaction between the two discipl ines. The remainder of th4 s paper

will discuss how Al considerations and psychological considerations

converge in the case of the ACT progran .

[Propositional Network]

The data base in ACT is a propositional network. A

propositional network is an associative network struc tured so it can be

div ided Into units having a propositional status . There has been some

concern whether associative networks have adequate expressive power

( cf . ,  [(35))). However , in conjunction with the production system it can

be shown that ACT has expressive power at least equivalent to the

a
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predicute calcUlus [[3]]. The condition of an ACT production specifies

netwo rk configurdtions that must be present or absent for the

production to apply. The execution of an ACT production can cause new

propositions to be built in memory and old propositions to be modified.

The associative network structure of ACT is such that each

concept indexes all the propositions it occurs in. The structure is

double—linked so it is possible to go both from concept to proposition

~~ from proposition to concept . This associative indexing feature of

ACT nicel y illustrates the convergence of psychological and A

considerations. There ‘5 a large anount of data indic~ ting some sort

of associ~ tive structure in memory. A simple phenomenon is that of

word association : Take a word , generate a semantic associate to it ,

take that word and generate an associate to it , and so on. For

instance , starting with dog : dog—ba rk—hea r—ear -organ-body—weight—s cale—

step—foot—ball —et c . The obvious way to simulate such free association

protocols (c f . ,  [ [20) ]  ) is by a search process over an associative

network. The computational advantage of associative indexing is also

wel l understood . It serves to make time to retrieve a fact

approx imately independent of the nuttber of facts in the data base.

There are also converging argiinents for imposing a

proposit ional structure on the data base rather than some simpler

associativ e structure. Most Al prograns that have performed

irmtc r ~nt ial reasoning have used proposition—like representations of

information . The reaso n is that. a propositional structure abstracts

9
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out. ~nci makes sc lent aspects of the information relevant for deciding

the validity (or plausibility) of inferences .

There are nunerous sources of psychological data supporting the

concept of propositional organization. For instance , there is

considerable evidence (e.g., [[6 , LI , 16]]) that propositions tend to

be forgotten as units. That is , the conditional probabilities are high

that if one element of’ a proposition is forgotten the remainder will

also be forgotten . While subjects do occasionally recall only partial

propositions (e.g. “The hippie touched somebody but I can ’t remember

who.”) such reports are statistically rare. There is also considerable

evidence (e.g., [[28, 32]]) that subjects, in remembering sentential

information , often do not remember the exact wording of what was said

but only the propositional content.

[Spreading Act ivation]

The concept of spreading activation has been quite popular in

cognitive psychology (Collins & Loftus, 1975; Collins & Quillian , 1972;

Kieras , 1977). There is an activation process that operates on the ACT

network. Particular nodes can be activated either by stimulation from

enviromental events or by execution of production actions. With the

passage of time activation spr eads from the source nodes to associated

struc tures. Productions , in matching their conditions , can only

inspect the active portion of memory. Therefore , this activation

process serves to focus attention. There are also mechanisns in ACT

which deactivate all the structure that has been activated by a source

when that. source loses its activation.

10



A spreading activation process was s~~gested by ~.iillian [[27)].

There is considerable physiological evidence for an associative spread

of excitation through the nervous system ([29]]. There Is also

considerable behav ioral data pointing to the utility of’ the concept

[[
~~, 11]]. For instance , subjects can be slowed in deciding a

proposition is false if there is an irrelevant connection anong the

elements of the proposition (e.g., Madrid is in Mexico , see till])). In

other circixnstances such Irrelevant connections can facilitate

processing 1 (23]]. Such effects indicate a diffuse activation process

that is pr iming all connections, relevant or not .

It seems that ~iillian ’s spreading activation notion has not

received much acceptance in the Al conm~unity (see ff211 , 3111) for

criticisns). It is computationally expensive to compute a spread of

activation . In fact, in our own simulation we have found it too

expensive to simulate faithfully the conceptual-neural model we would

want to endorse. Rather we approx imate this with a much quicker

activation process. We suspect that it is the cost of the activation

computation that accounts for the infrequency of its use in A X .  By

application of ( LI )  we might be tempted to conclude that the conceptual—

neural model is bad cognitive psychology. However , this problem with

spreading activation may reflect only current computational limits.

Given faster processors and the prospect of parallel computation, we

suspect that efficiency objections to the conceptual—neural model will

be less serious with passing years.

11
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The computational function of the activation process within ACT

is to enable us to run a pattern—evoked production system in a

propositional network but to avoid linear (or worse) growths in the

amount of computation time with the size of the data base or the nunber

of productions. This is achieved in two ways. First , the activation

process serves to limit the anount of structure needing to be searched

in determining whether the condition of a nominated production matches.

Second , productions are nominated for consideration by the

activation process. Associated with each node is a list of productions

that make reference to that node. When that node is activated these

productions are considered . Since the nunber of nodes that are active

is independent of the total nt.xnber of productions, under this scheme

the growth of computation time with nunber of productions will depend

on the average nunber of productions that are associated with any given

node. Newell (personal coninunication --see also ((22 )]) has argued that

in realistic problem domains the nunber of productions tends to

increase more rapidly than the nunber of data base elements. If this

were true of ACT, there would be an increase in the production to node

ratio with growth in the size of the system. Newell has observed from

simu1~ tions that thL increase in the ratio is approx imate’s

~o~y.rit~in1c with the nunber of productions . We would regard a

logarit~rnic complexity function as acceptable.

The activation process basically serves to limit the anount of

data that. the system has available at any one time . Therefore, it Is

12
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important to the operation of the system that the currently available

set of data not be just randomly selected but rather be associated to

those source nodes the system is currently focused on. These are the

currently relevant data . For instance , when a word is heard it Is made

a sou -ce node, activation spreading from that node will activate

syntactic and semantic information needed for its comprehension.

Wh ile the utility of activating the associative surround of

items in focus is clear , the utility of stretching out this activation

process over time may not be so obvious. Why not ininediately activate

all the structure that is going to be activated? The spreading process

allows ACT to focus first on those data most likely to be relevant , and

to try less relevant data later . Thus, the spreading process allows

the system to “bet” its limited computational resources on what is most

promising first.

This is facilitated by having strengths associated with network

links . The strength of a link reflects how frequently and recently it

has been involved In successfully matching the condition of a

production. In the spread of activation, the total anount of

activation energy at a node is div ided anong the links emanating from

that node. The anount of energy given to a link is a function of its

strength relative to the strength of all links. The rate at which

activation will spread down a link to activate structures connected to

the link is a function of this amount of energy. This means the

st ructure that tends to be more rapidly activated is the structure that

13
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has more often proven useful in matching productions. This, of cour se,

is a computationally sensible criterion for ordering the activation of

structure . It is also a well docunented psychological fact 1(3, II)]

that subjects can retrieve more quickly information which they have

used often .

This strength mechani~n is also responsible for forgetting in

ACT. Forgetting of information occurs when the links encoding a

structure become so weak relative to competing links that it becomes

effectively impossible to reactivate the structure. This implies that

forgetting is due to competition by interfering information——one of the

most well-docunented facts about huna, memory [[LI]].

[Virtue s of Production Systems)

Production systems by now are a familiar AX 1ortnali~ n and there

are discussions available of the advantages that they offer (cf .,

[ [ 111]] ) .  Therefore we will focus mainly on the advantages production

systems provide as a psychological theory and on those aspects of the

ACT production system that are unique. A striking similarity has been

noted [[3, 26]] between production systems and other stimulus—

response(S-R) theories in psychology. The connection between condition

and action Is quite similar to the S—H connection. There have been a

series of psychological critiques of S—H theory [(3, 11,

8, 10 , 18]]. These critiques have basically been aimed at the

computational power of the S—H forinalisn. It has been shown [[ 18))  that

at least certain versions of S—H models do not have the computational

14
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power of finite state machines. However , production systems clrciznvent

these limitations by use of variables , patterns , and memory ([311.

Thus , production systems can be seen as having sane of the

psychological advantages of S—R theory without forfeiting computational

power. The positive features of production systems discussed below are

also true of S—R theories.

[Data— Driven Character]

One of the important features of production systems is their

data—d riven character . In each cycle of the production system there

must b- a reevaluation of the consequences of the current knowledge

State for the control of behavior. Thus information that canes in and

changes the knowledge state can have imediate effects on behavior.

The survival advantages of a data—driven processing system for hunans

are obv ious . There is also evidence that hunan cognition , even when

survival is not at stake , operates in a strongly data—driven mode. For

instance , the work on chess [[9 , 261.1 indicates chess masters do much of

their intellectual work by means of pattern recognition , and that chess

rnasttrs usually perceive the correct move within a few seconds of

scanning the board . It has been argued that chess masters ’ knowledge

of board positions can be properly modeled by a large production system

wher€ individual productions contain board configurations as condition—

patterns and appropriate responses (often moves) as actions.

[Unity of Control and Data Store)

One of the central features of production systems is their lack

15
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of distinction between the meditin that Stores control information and

the med iun that stores data . Unlike most prograiriing languages there

are no special facilities for storing control information-—no separate

program counter , pushdown stac k , etc . All control information must be

stored in the same data base (e.g., in Newell ’ s PS this is STM , in ACT

it is the propositional network) that serves to store the input and

results of computations.

Intuitively, it seems compelling to us that. unity of control

and d~.ta is a feature of hunai cognition. Fortunately, we do not have

to rely just on intuition . There is some psychological data supporting

this assunption . A variety of experiments have looked for a trade—off

between the size of the ininediate memory span and the computational

complexity of an on—going task ([7, 13, 30 , 33]]. For instance , Wanner

and Maratso s [[33]) had subjects hold a set of words in memory while the

subjects tried to comprehend sentences of var ious syntactic complexity.

In the ATh model they were testing , this complexity translated into

~nount of control information that had to be held. (It would translate

into amount of control information in most computational models.) They

found subjects were able to recall fewer of the words when

comprehending sentences of greater syntactic canpl xity , and hence

requiring more control information . This trade—off between the amount

of information in memory span and the amount of control information Is

typical of the research results in this area. The hypothesis that there

Is one storage med iun for data and control information predicts this

combined storage limitation.

16
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Our feeling is that the use of a single representational

formali3n for control information and all other data has advantages for

a system that is to acquire and modify productions . The role of an

individual production in the overal l flow of control becomes more

apparent , and this comprehensibility should be as much of an advantage

for a learning system which must make decisions about the function of a

particular production as it is for a hunan progra~iner . The structure

of productions and their rules of interpretation are also considerably

simplified if there is no distinction between control information and

other data , and this simplicity Is also an adv antage for production

acquisition .

Unfortunately, while production systems tend not to make a

formal distinction between control and data , in practice, one often

finds an implicit distinction made by the programs written within

production systems . This is seen in the use of special control

conventions in order to achieve the same sequential execution of

functions found in conventional prograiining languages. A1thot~h some

of our earlier work in ACT had made extensive use of such control

conventions, we are currently trying to avoid them because they forfeit

some distinct advantages of production systems.

[Modularity]

Another important feature of production systems is the

modularity of the individual productions . Because each production

makes reference to a data base comon to all productions and because no
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production makes reference directly to other productions, individual

productions tend to be independent of one another. That is, if a

particular production is added , deleted , or changed , the basic

performance of the system tends to remain relatively unaffected . We

feel that claims about the modularity of production systems have been

somet imes exagerated . There can be production systems designed such

that the change of one production would have disastrous effects on the

system. However , in a sense such production systems reflect “bad

progra~ining style.” Production systems should be constructed to

max imize the modularity of individual productions.

The advantage of modularity to the comprehensibility of the

system is obvious . The advantage of’ modularity to the developnent of a

learning system capable of self— ex tension is equally obvious . The

basic modularity of hunan information processing is attested to by the

gradual developnent of our processing abilities and by the fact that

new skills almost never have disastrous interactions with old . (Of

cour se , these facts about hunan modularity could be produced by

formallmns other than production systems.)

[Parallel i3n]

There are a nunber of places In ACT where we have found it

useful to simulate parallel computation . As discussed above,

activation is conceived of as spreading simultaneously from all act ive

nodes to the associated network struc ture and in the process , selecting

the productions that reference these nodes for further testing . Not
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only does ACT select in parallel among a large set of productions on

each cycle , it is also the case that on each cycle ACT simulates the

ability to apply (test and execute) a nunber of productions in

parallel . The evidence is quite compelling that hunans can carry along

a nunber of processes In parallel . For instance, consider the well—

worn example of being able to hold a conversation and drive at the same

time . We have found parallel procedures useful in language processing

[[5)). In comprehending a sentence one must perform a large nunber of

operations——make perceptual judgments about ~~i’ds , switch attention

from word to word , perform syntactic analysis, perform semantic

analysis , resolve pronominal references , recognize the referents of

definite descriptions , perfo rm inferences, etc. It is implausible that

each of’ these operations occupies separate segments of time with

control switching among them. It is much more intuitively plausible to

suppose that. these various linguistic processes proceed in parallel .

While we do allow ACT to pursue more than one process in

parallel , there is a capacity limitation on how much can be computed in

parallel . There is a probabilistic parameter that places a rnax imun on

the mean nunber of productions applied per cycle. In the current

implementation this parameter is (arbitrarily) set to limit this mean

to 10 productions per cycle. As the nunber of productions required per

cycle approaches this limit , performance degrades. This degradation is

produced by making productions wait multiple cycles before applying and

forcing certain processess ( sequences of productions) to drop out . The
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ev idence is quite clear for such capacity limitations in the hunai case

((3]), Section 6.3). A familiar example is the problem of holding a

conversation in difficult traffic . As the amount of computation

required for processing traffic information increases, less capacity is

left over for the conversation. The AT motivation of such a limitation

is simply that the limits of finite processing capacity must be

respected in any physical machine (whether It has parallel processors

or not).

Given that only a ~nall nunber of productions will be allowed

to apply in parallel , it becomes important to have some way of deciding

which of those that can apply are most relev ant. This Is very much

hke the problem discussed above of’ insuring that the currently most

relevant nodes In the network are those that are allowed to be active.

A solution in terms of strength measures is also adopted in this case .

Associated with each production is a strength reflecting the past

success of that production. Details of how this strength is computed

are motivated by learning considerations and so have been omitted from

this discussion . For present purposes it is important only to note

that the probability that a production will apply on a cycle when its

condition is satisfied depends on the strength of that production

relative to the strengths of all the other productions whose conditions

are also satisfied. This means that the stronger productions (and

hence the more successful processes) tend to be tried first and are

less disturbed by processes going on concurrentl y.
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Consider the implication of these strength mechanimns for

processing of structural ambiguity in language where competing sets of

productions are responsible for different interpretations of the same

linguistic structure. The relative frequency of the two structural

interpretations will be reflected by the relative strengths of the two

sets of interpretative productions. We would therefore expect that

subjects would tend to interpret the sentence according to the more

frequently intended interpretation , but that they could retrieve the

other interpretation and that they would sometimes choose the less

frequent interpretation first. Also , we would expect that by

bombarding the subject with examples of the less frequent

interpretation we could make it the favored interpretation of the

ambiguous structure. All these implications are kno~e~ to be true [[15)] .
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Footnotes

1. Distribution of this manuscript and current research on the ACT model are

supported by ONR contract N00014-77—C—02’12.

2. It has to be pointed out here that there is still considerable ignorance

about the capabilities of serial computers and their abstractions. For instance,

while many problems are conjectured to have exponent time functions as mthimuns,

no natural prcblem has been shown to require greater than n~’~ for a

E)0 ((1]) .
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