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FOREWORD

The work reported herein was sponsored by the Air Force Avionics
Laboratory (AFAL) and made extensive use of the DECsystem-1O computer
facility at AFAL . This report is a dissertation presented to the faculty
of the School of Engineering, Air Force Institute of Technology (AFIT-EN) ,
Wright-Patterson Air Force Base, Ohio , in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy . The effort was
funded by AFAL under Project Number 2003, Avionic System Design Technology ;
Task Number 200303 , Avionics Systems Simulation Facility ; and Work Unit
Number 20030319 , Efficient Low—Level Multiple Processor Coordination.
The time period covered by the work was October 1974 through November 1976.

I wish to thank my advisor , Professor Gary B. Lemont, for his able
guidance and my readers, Professors George Orr, J. B. Peterson , and
Edward Reeves, for their helpfu l suggestions. I am especially grateful
to Professor Robert D. Dixon of.Wright State Univers ity for carefully
studying my proof of correctness of the mastermode/normalmode algorithm

k and for discovering a flaw in an earlier version of the algorithm .
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SECTION I

INTRODUCTION

1 . BACKGROUND

In recent years , remarkable advances have been made in the construction
of large digital computing systems. Such systems are presently available
whose capabilities far exceed those of the computing systems in use a
decade ago. Current large-scale sys tems typically provide such advanced
features as parallel interactive serv i ce of numerous independent users ,
virtual memory techniques which allow a user ’s memory address space to
exceed the physical memory capacity of the system, increased computational
power through the use of two or more central processors which operate
concurrently, advanced on-line data base management capabilities , and
sophisticated resource management facilities which allow the most efficient

• use of various peripheral devices connected to the system (References 1
and 2). Such features have proved to be extremely useful and have come
to be accepted and even demanded by the users of digi~al computing systems.
There seems little doubt that these and other advanced features wil l be
incorporated into future computing systems.

The implementation of advanced features such as those described
above has generally been accomplished by increasing the complexity of the
control programs known collectively as the computer ’ s “operating system” ,

:1 “executive ” , or “monitor ” . This added complexity has led to the appearance
of a number of serious problems which are presently among the foremost con-
cerns of operat ing system designers . Large operating systems have become
enormously expensive to build , with development times which are long and
unpredictable. The system never becomes a finished product because
programming “bugs ” appear continually and must be eliminated . Modifi-
cations to enhance system performance are difficult to install and often
have unforeseen effects which appear much later as new bugs. Simply
documenting the changes made in the software by the operating system
developer and distributing that documentation to all users can present
considerable difficulties.

• _ _ _ _ _ _ _ _ _ _  
_ _ _
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Computer programmers have always faced problems in trying to establish
and maintain the correctness of their programs , but these probl ems seem to
have taken on an added dimension in the development of large and complex
computer operating systems. This is due largely to the occurrence in such
systems of a phenomenon which programmers have not often had to treat in
depth previously: the simultaneous execution of many interacting programs.
Such situations arise in various ways in the design of operating systems,
ranging from the apparent concurrency obtained by multiprogramming a single
central processing unit (a technique which must by now be considered
commonplace) to the real concurrency resulting from the presence of more

than one central processor (Reference 3). A predominant characteristic
of a typical modern operating system for a large digital computer is that
in order to understand it one must be prepared to keep track of many
activities which go on at the same time and which interact with one
another. Thus , the designers of a large operating system, who must
presumably be the first to understand it , are faced with a monumental task
if they wish to develop a system in which all possible interactions have
been taken into account. Judging from experience with actual operating
systems, this goal must be nearly unatta i nable.

2. LEVEL-STRUCTURED SYSTEM ORGAN IZATION

A significant step toward overcoming the problems created by increasing
compl exity and concurrency was taken by E. W. Dijkstra when he introduced in
1968 the idea of a level— structured , or hierar chical , system organization
(References 4 and 5). The operating system designer who wishes to adopt
this approach views the physical devices (i.e., the hardware ) of his com-
puting system as the l owest level of a multilevel system which is to be
built from the bottom up, one l evel at a time . The structure which re-
sults when a new level has been added is regarded as an “abstract” or
“virtual” machine whose characteristics differ in some respect from those
of the system which existed prior to the addition of that level. Once
the designer has built a new level and tested the operation of the re-
sulting virtual machine , he can proceed as if that virtual machine were
the real machine for which he is designing an operating system. That is ,
he can forget about all l ower levels and proceed with the development of

2
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a new level as though he were starting over with a real machine having
the characteristics of his current virtual machine. Of course , properly
carrying out the testing mentioned above , although not our immediate
concern , is by no means a trivial problem .

If the system designer is to realize a positive benefit from the
hierar- ”~cal approach just described , he must see to it that the virtual
machines c eated at successively higher levels are not merely different
but are in some respect better machines than those which have been left
behind at l ower levels. Thus , in deciding how to build the next level ,
the designer identifies some capability which he would like his system
to have but which does not exist in his current virtual machine (for
example , the ability to handle data files in a logical rather than a
physical manner). He then implements that capability in software or
firmware , creating an abstraction of his current virtual machine which
becomes a new virtual machine at the next higher level . This is the
process referred to earlier as “building a new level .”

The level-structured organization just described allows a system
designer to create a sequence of virtual machines with progressively
more desirable operating characteristics . At the same time it greatly
reduces the amount of detailed system structure which the designer must be
able to manage intellectually at a given time . Thus , the designer of a
given level is only concerned with providing a suitable virtual machine
to the next level in terms of the virtual machine provided him by l ower
levels. He must know the characteristics of the latter machine but does
not have to be concerned with how it is implemented. Provided the in-
crease in abstraction (i.e., the complexity of the added features)
between adjacent levels is not too great it should be possible for the
designer to become thoroughly convinced of the correctness of the level he
is designing before proceeding to a higher levE’l . Thus he assures him-
self of always having a properly functioning virtual machine with which
to work.

3
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A number of operating systems have been designed in which the con-
cepts of level-structured organization have been applied more or less
strictly (References 4, 6, 7, 8, and 9). The development of specialized
hardware mechanisms to support a level-structured operating system has also
been proposed (Reference 10). In the present investigation we will con-
centrate on finding efficient solutions to certain critical problems

which must be faced at the l ower levels of a strictly level-structured
organization by a system designer who is constrained to work with a
specified computing system whose hardware does not include explicit
level-structuring mechanisms .

3. A POSSIBLE SE COND LEV EL

In the preceding section we described how a level-structured system
organization could help to solve the problems faced by an operating
system designer due to the rapid increase in complexity as additional
capabilities are added to the system. We have not , however , considered
the question of how a level—structured design influences the problems which
result from the presence of concurrent activity in the system. We do
not intend to let this question escape our scrutiny . Indeed , the remainder
of this dissertation may be considered an elaboration upon this particular
issue.

As a first step toward understanding the relationship between level -
structured system organization and concurrent activity , we will describe
a virtual machine which might appear at the second level of a level-
structured system desiqn based on a specified collection of physical
devices . Of course , we do not have to worry about designing the first
level ; the equipment manufacture r did that when he built the hardware .
That is , we regard the physical machine as the first level of our con-
templated level-structured system. We said that the virtual machine to be
described is one which “might appear ” at the second l evel because the
level-structured design approach al lows the system designer complete
freedom in selecting the abstraction he wishes to make in proceeding
from one level to the next. Hence , many different system designs could

4
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result from the same fi rst level , depending on the choices made by the H

system designer as he implements successive levels. The following
description of a possible second level will hopefully serve to make the
level-structured design concept more concrete for the reader. It is also H
intended to introduce the environment in which we will carry out the rest
of this investigation.

For the physical machine upon which higher levels will be built , we
will consider a typical large-scale computing system containing a single
central processing unit (CPU) of conventional architecture . More spe-
cifically, we will base our design example upon a bottom l evel consisting
of a Digital Equipment Corporation DECsystem-1O computer containing a
Model KIlO CPU. The choice of this bottom level is a result of the
availability of such a system to the author for experimental work. The
instruction set of the KIlO CPU includes arithmetic , logical , program
control , and register and memory transfer operations typical of such
processors. It also includes a number of read-modify-write memory
reference instructions and a set of instructions for manipulating register
and memory data on a half-word basis (Reference 11). It is a conventional
machine in that it does not provide any specialized hardware operations
to explicitly support a level-structured operating system (such as those
proposed in Reference 10) or to synchronize the execution of concurrent
programs .

Now let us consider the development of a second level starting from
the physical system just described . The result of this development will
be a virtual machine which is supposed to be more convenient to work with
than the original machine . As mentioned earlier , we w i l l  a r r ive  at one
of many possible virtual machines , depending on the specific improvement
we wish to make in the bottom level . We propose to investigate a virtual
machine which eliminates the restriction that the computing s ’stem can
only be engaged in one task at a given time . This restricti . n is imposed
by the existence of only a single processing unit at the bottom level .
If the system contained severa l processors we could allow several inde-
pendent users to have computing work done simultaneously. Therefore, we

5
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• shall specify that the virtual machine appearing at the second level must
provide a number of independent processors which can operate concurrently
and which can perform the same instructions as the KIlO CPU. We will
refer to these processors as “virtual processors” to distinguish them
from the physical processor of the bottom level . For the sake of gener-
ality we will not set any upper limit on the number of virtual processors
which may be required .

The reader has probably realized that the collection of virtual
processors just described is the abstraction created in modern operating
systems by multiprograming a single physical processor. A number of
well-known techni ques are a v a i l a b l e  for creat ing such an abstract ion and

hence implementing a virtual machine of the required type (Reference 3).
One straightforward approach makes use of a hardware clock to periodically
interrupt the CPU , a “scheduler ” implemented in software to select the
virtual processor to which the CPU shall be assigned next , and a “context
switcher ” , also implemented in software , to restore the CPU to a state
consistent with the one which existed when the selected virtual processor
was last interrupted. In this approach it is generally true that the
virtual processors have no control over the occurrence of an interrupt
and the selection of the next virtual processor to run. Therefore, these
must be considered as essentially random events as far as the virtual
processors are concerned . Hence no assumptions can be made about the
relative speeds with which the various processors execute their programs .

Because of the widespread acceptance and practice of multiprogramming,
we will not dwell further upon the details of implementing an abstract
machine which provides a number of i ndependent virtual processors that
operate concurrently (References 2 and 3). We will concern ourselves
instead with the question of how the system designer ought to proceed
once he has implemented such on abstraction . Before proceeding, however ,
we ought to recognize an important consequence of the level-structured
design approach being followed . We described the virtual machine at the
second level as an abstraction of a bottom level containing a single
physical processor. It is conceivable that an identical virtual machine

6
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could be implemented starting from a different bottom level . For example ,
we might arrive at the same virtual machine starting from a bottom level

• containing more than one physical processor. We might even find a case
in which a separate physical processor is available for every virtual
processor , so that the required virtual machine already exists at the
bottom level . Our work from this point on will depend on the character-
istics of the specified virtual machine but will not depend on the nature
of the lower level or levels from which it was developed . Hence, our
results should be applicable to any physical system in which it is possible
to implement a virtual machine having the required properties. As a matter
of fact, during the course of the experimental work for this investigation
a second KIlO CPU was added to the DECsystem-lO being used , providing a
true multiprocessor configuration . This addition did not require any
change in algorithms developed previously to coordinate the activity of
numerous v i rtua l processors , even though a qualitatively different kind of
concurrency could occur among the virtual processors after the addition
of the second CPU.

4. OUTLINE OF THE DISSERTATION

The succeeding chapters of this dissertation will describe an investi-
gation into certain problems faced by a system designer at the lower level s
of a level-structured operating system whose first abstraction provides a
virtual machine of the type described in the previous section . This
virtual machine has the following characteristics:

(1) It includes an arbitrarily large number of processors which can
all be executing their programs at the same time ;

(2) The relative operating speeds of the processors are unspecified
and may in  fact vary with time ;

(3) We assume that the system ’ s primary memory includes a set of
storage locations accessible to all the processors , providing them a
means to comunicate with one another;

(4) The primitive operations available to the processors are the
indivisible user-mode machine instructions of the KIlO central processing
unit.

7
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By “primitive operations ” (at 
~~ 

level) we mean a set of operations
having the property that if two or more operations from the set are per-
formed simu l taneously, the end result is the same as if the operations
were performed one by one in some specific (although not predetermined)
order. Requiring certain of the processors’ operations to be primitive
allows us to legitimately assume that no two of those operations are ever
performed at exactly the same time , although there will be cases in which
we cannot predict the order in which two operations will be performed by
different processors. The “user-mode ” instructions of the KIlO CPU are
those which can be executed by the program of any user of the system, as
opposed to certain instructions which require special privileges.

The problems we will investigate are specifically those which arise
from the need to coordinate the activities of interacting processors.
Such interaction generally results when several processors share a common
resource such as a data base or an input/output device . In Section II we
introduce a pair of rudimentary operations which provide an efficient
means for delaying a processor , that is , for causing a processor to sus-
pend and later resume the execution of its program . In Section III we
develop a more advanced pair of operations which allow the processors to
enforce mutually exclusive execution within certain “critical sections ”
of their programs . Then in Section IV we describe a systematic procedure
for solving general processor coordination problems , based on the processor

• delay and mutual exclusion mechanisms of Sections II and III. We illus-
trate the procedure by solving several well-known coordination problems .

Next we take up the problem of finding an implementation for the
mutual exclusion mechanism of Section III which is efficient enough to
allow its use at a very low level in a level-structured operating system.
In Section V we formulate a problem called the mastermode/normalmode
problem whose solution is an algorithm which implements the mutual
exclusion mechanism . The conditions imposed In the statement of the
problem are strict enough that only a very efficient algorithm will solve
the problem. In Section VI we present an algorithm which solves the
mastermode/nornialmode problem , and in Section VII we give a rigorous proof
that the algorithm is a correct solution .

8
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In Secti on VI II we cons ider certa in processor coord i na ti on probl ems
more complex than those sol ved in Secti on IV , involving simultaneous

access to sev eral independen t shared resources. We demons trate that the
algorithm described in Section VI can also be used in the solution of

these problems . Finally in Section IX we summarize the results of the
investigation and suggest several topics for further study.
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SECTION II

EFFICIENT SUSPENSION OF PROCES SOR ACTIVITY

1. INTRODUCTION

This section begins an attempt to establish cooperative interaction
among a group of processors, specifically the virtual processors described
in the last section . These virtual processors may have arisen from the
multiprograming of one or more physical processing units or may each
correspond to one physical processor, depending on the exact physical

• configuration underlying the virtua l processor abstraction . Our primary 
S

objective at present is to determine how to make the processors cooperate
rather than interfere as they execute separate but related tasks. A
secondary objective is to determine the extent to which we can ignore the
underlying physical configuration of our computing system and instead view
the system in terms of the virtual processor abstraction . Recall that
this abstraction gives us an arbitrary number of processors which execute

• their programs concurrently at indeterminate relative speeds. The primitive
operations a v a i l a b l e  to these processors are the indivisible user-mode
machine instructions of the KIlO centra l processing unit. The only means
provided for communication among the processors is a set of memory
locations to which all of the processors have access. We are now ready
to consider how the activity of such a group of processors might be
coordi nated .

2. THE NEED FOR PROCES SOR DE LAY

One of the fundamental coordination requirements of a group of
independent processors is a mechanism which gives them some control over
the progress of one another~s processing activity (References 2, 4, 12,
and 13). An example may serve to clarify this requirement. Suppose that
one processo r, which we will call the producer , is executing a cyclic
program in which it creates and formats packets of data and stores them in
a buffer of some kind. Suppose that a second processor , which we will
cal l the consumer , periodically retrieves data packets from the buffer,
subjects them to further processing, and transmits them to an output
dev ice.
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If the above process is to work properly, some kind of coordination
between the producer and the consumer is clearly necessary . Without such
coordination the producer might occasionally refill the buffer before the
consumer has emptied it , resulting in the destruction of the previously
produced data packet. Likewise the consumer might occasionally retrieve
a packet before the producer has refilled the buffer, resulting in
erroneous output data .

To see how such undesirabl e behavior might be avoided , let us consider
the latter case in more detail. The following question must be addressed :
If the consumer reaches that point in its program at which it retrieves
a new data packet from the buffer and the producer has not yet deposited
a new packet in the buffer, what shall the consumer do? Assuming that the
sole function of the consumer is to retrieve and process-data packets ,
there is not much for it to do in this case but wait until the producer
has made a new packet available. In other words , the consumer should
temporarily cease to execute its program and should resume execution only
after the producer has filled the buffer. (We will consider l ater how
such behavior for the consumer can be arranged.)

We will refer to any arrangement which enables a processor to suspend
and later resume execution as a “processor delay mechanism ” . The purpose
of the above example was to show that such a delay mechanism is needed to
coordinate the activity of independent processors . This is in contrast to
situati ons involving a single processor , when it is generally preferable
for the processor to proceed with its execution at the greatest possible
speed.

3. A POSSIBLE PROCESSOR DELAY MECHANISM

Consider how a delay mechanism might be implemented ucing the basic
— K I l O  machine instructions (Reference 11) and the set of shared memory

locations available to the virtual processors. Since no instructions are
available which give one processor direct control over another ’s activity ,
a processor to be delayed must itself perform the operations which result
in the delay . Moreover, the only instruction which allows a processor to

11
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cease execution (a halt instruction ) requires manual intervention before
execution can continue , and hence is not suitable for the temporary
suspension of execution required by a processor delay mechanism . Thus,
a processor must continue to run , that is it must keep executing
instructions , while waiting for the end of the condition that required
it to be suspended. 

S

The above reasoning suggests a possible processor delay mechanism ,
which we will now describe in terms of the producer-consumer problem of
the last subsection . A shared memory location which initially contains
zero will be used for comunication between the producer and the consumer.
When the producer finishes filling the buffer it sets the shared location
to a nonzero value . When the consumer prepares to empty the buffer, it
first tests the number in the shared location . If that number is nonzero
the consumer proceeds to empty the buffer but if the shared location
contains zero the consumer simply repeats the test. The consumer thus
remains in a tight loop , repeatedly testing the shared location until
that location is set to a nonzero value by the producer. When the con-
sumer finally exits from this loop and finishes emptying the buffer, it
sets the shared location back to zero. The producer must perform a
similar test prior to filling the buffer, except that it continues to
repeat the test until it finds zero in the shared location.

Note that the processor delay mechanism described above requires the
processors to remain active even while their progress is suspended. For
this reason the kind of activity the processors engage in while testing
the shared location has been referred to as “busy waiting ” (Reference 5).
Before spending any more time on this approach we ought to answer the
following question : Is busy waiting an acceptable form of processor
delay? Unfortunately we cannot answer this question unequivocally,
because the answe r depends on the nature of the physical system under-
lying the abstract system of virtual processors with which we are trying
to work . For example , if each virtual processor represents an i ndependent
physical processor then busy waiting might be entirely acceptable as a
means of processor delay. However , consider the more comon case in which
the virtual processor abstraction is created by multiprogramming a single

12
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physical processor. In this case the physical processor will almost
certainly have something better to do than execute a busy wait l oop for
one of the virtual processors , and hence busy waiting leads to an
intolerable waste of processing power. Since our goal is to arrange for
efficient processor coordination regardless of the underlying physical
configuration of a computing system we must abandon the processor delay
mechanism suggested earlier and look for one which does not depend on
busy waiting.

4. A BETTER APPROACH TO PROCESSOR DELAY

In the preceding subsection we were led to the use of busy waiting
by the fact that our abstract computing system provided no operations which
would allow a processor to temporarily stop running. We got into this
trouble by trying to ignore the physical system underlying the abstraction
while developing a concept (efficient processor delay) whose very meaning
depends on the underlying system. We conc ude that our first abstraction
was inadequate and should have provided a delay mechanism for the processors
of the initial virtual machine.

To correct the problem just described we must provide for processor
suspension while implementing the abstraction in which the virtual proces- j
sors first appear. To take a specific example , if we develop a multi-
programed operating system which will allow a single physical processor
to appear as a number of virtual processors operating simultaneously we
should include an explicit processor delay mechanism when implementing
the initial abstraction which creates the virtual processors. That is ,
we should give the virtual processors explicit delay operations which are
(presumably) not present in the instruction set of the physical processor.
Starting from some other kind of underlying system , for example one
containing several physical processors , we would provide delay operations
which operate identically (as far as the virtual processors are concerned )
but which would be implemented differently to account for the difference
in the underlying configuration . This approach allows us to arrive at
identical abstractions from different physical systems, while achieving an
acceptable form of processor delay in each system. Having done this , we

13
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can proceed wi th the design of higher levels without worrying about the
underlying physical configuration of the system and can later use the
same higher-level design with other configurations.

5. THE SLEEP/WAKEUP MECHANISMS

Let us put aside for the moment the question of implementation and
consider the functional appearance of a reasonable processor delay
mechanism . Since we intend to provide a mechanism which is functionally
the same regardless of our system ’s physical configuration it is important
that the delay mechanism be as simple as possible. Otherwise , we would
run the risk of not being able to implement the mechanism efficiently in
certain systems, undesirably restricting the applicability of our general
processor coordination scheme.

Because of the requirement for simplicity , we propose to use a
rudimentary processor delay mechanism which is similar to Saltzer ’s
BLOCK/WAKEUP mechanism (Reference 12) but which only allows a processor
to suspend its own execution. The proposed mechanism , which we will refer
to as the SLEEP/WAKEUP mechanism , provides two operations known as the
SLEEP operation and the WAKEUP(k) operation. A processor which wishes to
temporarily suspend its own execution does so by simply performing the
SLEEP operation. No other processor is affected by this action. The
WAKEUP operation has an argument , the positive integer k, which designates
a specific processor. Thus , we assume that the processors have been
numbered from 1 to N . where N is the total number of virtual processors
and may be arbitrarily large. The effect of the WAKEUP operation is to
cause a sleeping processor (i .e . ,  one which has suspended itself with the
SLEEP operation ) to resume its execution . Thus , if Processor 13 , for
example , comes to a SLEEP operation in its program , it does not execute
any more instructions unti l some other processor performs the WAKEUP(l3)
operation , at which time it resumes execution with the next instruction
in its program after the SLEEP operation.

14 
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6. PENDING WAKEUPS -
S

The above description of the SLEEP/WAKEUP mechanism does not address
the following question : What is the effect of a WAKEUP operation directed
at a processor which is not asleep at the time? We could specify that
such a WAKEUP operation will simply be ignored but this approach would
make the SLEEP/WAKEUP mechanism very difficult to use. The source of the
difficulty is that in the abstract system to which we are proposing to add
the SLEEP and WAKEUP operations , the processors have no control over one
another ’s activity . Thus , for example , if Processor 13 suspends itself
with the SLEEP operation and another processor enables it to continue by
sending it a wakeup (i.e., by performing a WAKEUP (l3) operation), we have
no simple way to guarantee that the WAKEUP operation will be performed after
rather than before the SLEEP operation . We would like the final result to
be the same in either case. Therefore, we require that the SLEEP and

• WAKEUP operations work as follows . If a WAKEUP operation is directed at a
processor which is not asleep , its occurrence will be registered and we
will say that a “pending wakeup” is in effect for the processor. When the
processor later performs the SLEEP operation it will not stop running but
will merely cancel the pending wakeup and continue to execute its program.

Al though allowing for pending wakeups will undoubtedly make the
SLEEP and WAKEUP operations harder to implement , we will tolerate this
complication because the SLEEP/WAKEUP mechanism would be hd’-d to use
without it. We will not , however, require a processor to “remember” more
than one pending wakeup at a time . Thus , if a WAKEUP operation is directed
at a running processor for which a pending wakeup is already in effect,
that WAKEUP operation will be ignored . We will have to take this possi-
bility into account when using the SLEEP/WAKEUP mechanism.

7. IMPLEMENTING THE SLEEP/WAKEUP MECHANISM

As noted earlier , the nature of an efficient SLEEP/WAKEUP imple-
mentation depends on the specific physical configuration underlying an
abstract collection of virtual processors . If there is one physical
processor for each virtual processor, for example , we might use some

15
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form of busy waiting to delay a processor or we might require special
hardware which would allow a physical processor to be temporarily halted
under program control . Saltzer has described a possible implementation
for the multiprogranined single physical processor case (Reference 12).
This approach uses for each virtual processor a “sleep ” bit and a “wakeup

Waiting ” bit which can be examined by the multiprogram monitor when
scheduling virtual processors to run and when determining how to respond
to SLEEP and WAKEUP operations performed by the virtual processors .

A SLEEP/WAKEUP mechanism identical to the one we have proposed is
provided to system users by the TOPS-lO Monitor of the DECsystem-lO77

• dual—processor computer system (Reference 1). As noted in Section I , this
is the system whose CPU instructions have been chosen as the basic operations
for our virtual processors and which will be used later to demonstrate
the solution of some processor coordination problems . The SLEEP/WAKEUP
implementation used by the TOPS-b Monitor is similar to the one described
above for the single-processor case. Possible complications arising from
the presence of two physical processors are eliminated by allowing SLEEP
and WAKEUP operations to be performed on only one physical processor ,
which is called the master processor. If a particular job (as the virtual
processors are called) is running on the other processor and attempts to
perform a SLEEP or WAKEUP operation , it is not allowed to continue on that
processor and is marked by the monitor as being runnable onl~’ on the
master processor.

We have i ntentionally not considered implementations of the SLEEP/
WAKEUP mechanism in much detail. As noted in Section I , our main objective
is to develop techniques for processor coordination starting from a high
enough level of abstraction that the specific physical system underlying
the abstraction can be disregarded. We assume that the SLEEP/WAKEUP
mechanism can be implemented because we know that it ha’ in fact been
implemented (in one form or another) in various computer systems . However ,
having developed an abstraction in which SLEEP and WAKEUP are available to
the virtual processors as primitive operations , we will never again (we
hope) have to concern ourselves with the details of the physical system
from which the abstraction has been developed .

16
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SECTION III

MUTUAL EXCLUSION

1. INTRODUCTION

As a result of the development in the preceding sections , we now
have a virtual machine to work with in which an arbitrary number of
independent processors , as described in Subsection 1-4, can control one
another ’s activity to a limited degree by means of the SLEEP/WAKEUP
operations. Since our ultimate goal is to promote the cooperative
interaction of such processors , let us determine what kind of cooperation
can be achieved with our present abstraction . We will do this by con-
sidering a simple problem involving processor interaction , which we will
try to solve using the operations available to our assumed virtual
processors . (Recall that these operations consist of the indivisible
user-mode machine instructions of the KIlO physical processor along with
the SLEEP and WAKEUP operations described in the last section.) Our
consideration of this example problem will lead us to a new processor
control mechanism which permits the virtual processors to enforce mutual
exclusion among given sections of their programs .

2. A SIMPLE COORDINATION PROBLEM

It is clear that a problem in which processor interaction is a
factor must involve at least two processors . We will suppose that exactly
two of our computing system’s arbitrary number of processors are active
at the time ur,der consideration. For convenience we will refer to the
active processors as Processor P and Processor Q. Suppose that Processor P
is engaged in a cyclic process in which it periodically updates the
information contained in a data file of some kind (perhaps one stored on
a magnetic disk unit) and suppose that Processor Q is periodically
examining the information in this same file. Finally, suppose that we do
not want Q to examine the file wh ile P is updating it. The coordination
problem is then to prevent both processors from accessing the file at
the same time .

17
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To solve this problem requires some kind of communication between
the processors . Our virtual machine provides a medium for such com-
munication in the form of a segment of prima ry storage (i.e., core
memory) to which all processors have access. Hence our first attempt at
a solution might involve the use of particular shared storage locations
as flags with which the processors would signal one another. For example ,
Processor P could set a shared storage location to a nonzero value just
before starting to update the file and set that location back to zero
after finishing its update operation. Then Processor Q could examine the
same shared location prior to reading the file. If Q found zero in the
shared location it could begin reading without conflict , but if it found
a nonzero value it would have to wait for P to finish with the file.
Q could use the SLEEP operation to be sure of doing its waiting efficiently,
in the sense discussed in Section II.

However , we would not want Q to sleep forever and thus would require
P to perform a WAKEUP (Q) operation after finishing with the file.
Another shared l ocation could be used by Q as a flag to signal P to
perform the required WAKEUP operation. A second set of such flags would
be needed to handle the reverse situat ion in which Q is already reading
the file when P wants to update it.

Unfortunately, a solution of the form just described would be a

dismal failure . The trouble is that each processor must perform several

• distinct operations when preparing to use or finishing with the file and

we have no control over the order in which the processors perform their
operations relative to each other. For example , suppose Processor P tests
the flag indicating that Q is reading the file , finds it to be zero, and
thus determines to begin updating the file. But suppose that before P is
able to set the flag which indicates it is updating the file , Q tests

-

- that flag and , finding it to be zero, determines to read the file at once.
The result would be simu l taneous reading and uodating of the file , a
violation of the required behavior.

18 
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There are other ways the solution can fail. For example, suppose
that Q finds the file being updated and hence must perform the SLEEP
operation to delay itself. But suppose that before Q sets the flag
which will signal P to perform the WAKEUP(Q) operation , P finishes updating
the file , tests that flag, and finds that no wakeup is needed . Then Q
will go to sleep and will not wake up even when the file is no longer
being updated . In fact, if P does not update the file again , Q will
never wake up.

3. THE NEED FOR MUTUAL EXCLUSION

It is conceivable that we might find a clever sequence of flag
manipulations and SLEEP/WAKEUP operations with which the processors
could avoid the pitfalls of the previous subsection . It is not clear ,
however , how we should go about finding such a sequence of operations ,
or even how we can be sure that the sequence we find really works
properly. Furthermore , we certainly do not want to look for such a
clever solution each time we have a new processor coordination problem
to solve . It would be much better to have a simple and efficient mechanism
whereby a processor could perform a series of operations with no possibility
of intervening operations by other processors .

Actually , not all intervening operations would have to be excluded ,
just those which i nvolve interaction between the processor in question
and other processors . It appears that what we need is a way to identify
certain sequences of operations in the program of each processor which
will be executed by only one processor at a time . Dijkstra named such
program sequences “critical sections ” and pointed out their usefulness
in solving coordination probl ems (Reference 14). If a given processor
is performing operations which have been identified as belonging to a
critical section , all other processors are excluded from their critical
sections. Thus , a mechanism which permits identification of critical
sections is referred to as a “mutual exclusion ” mechanism for the pro-
cessors. We will show in Section IV that a mutual exclusion mechanism
can be used in conjunction with a processor delay mechanism (such as that
provided by the SLEEP/WAKEUP operations) to solve processor coordination
probl ems in a logical and systematic manner.

19



- 
—- — ———5-”- - —

~~~‘—~~‘- r s ~” ”’ ~~~~~~~~~~~~~~~~~~~~~~ ~ s~_,s s__ s_ •_,_ 5~~~~~~~~
5 -~~~‘~~~~~~~~~~~ ‘ 5 -~~~’ 55-.- . — ____

~~5S__ • ._ ,  5

AFAL-TR-77-43

4. THE MASTERMODE/NORMALMODE MECHANISM

We will now describe a simple mutual exclusion mechanism. By “simple ”
we mean that the mechanism allows critical sections to be identified in a
simple way and not that we expect the actual implementation of the mech-
anism to be a simple matter. The mechanism takes the form of a new set
of operations which we intend to make available to the processors and

• which we wish the processors to treat as part of their basic set of primi-
tive operations. In essence, we are proposing to develop from our present
abstract computing system a higher-level abstraction in which explicit
operations are available for enforcing mutual exclusion.

As a first step toward the next level of abstraction , let us suppose
that the processors in our computing system have two distinct states or
modes of operation , which we designate as normalmode and mastermode , and
that all processors are initiall y in the norma l mode state.

The significance of these states is that while any number of processors
can be in the normalmode state simultaneously, at most one processor will

S be allowed to be in the mastermc Ie state at any given time .

Let us also suppo3e that the processors have available two operations ,
MASTERMODE and NORMALMODE , for changing from one state to the other. Thus ,
if a processor is in norma lmode , the state in which all processors are
presumed to begin their execution , and the processor wishes to enter
mastermode (i.e., to change its state to the mastermode state), it does
so simply by executing the MASTERMODE operation . When the processor
wishes to return to normalmode it does so by executing the NORMALMODE
operation .

Since only one processor can be in mastermode at a given time , the
operations just described provide a simple way to define critical sections
and to enforce mutual exclusion . We merely begin each critical section
with a MASTERMODE operation and end it with a NORMALMODE operation . This
seemingly simple approach may , in fact, be quite complicated but its
complications are hidden in the implementation of the MASTERMODE/NORMALMODE
operations. For the time being we will assume that these operations can

20
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i ndeed be implemented using the primitive operations available to the
lower-level virtual processors described in Sections I and II.

Figure 1 shows the l evel-structured system which has been developed
up to this point. Several possibilities are indicated for the underlyin g
physical system at Level 0. Level 1 represents the virtual machine
described in Section II. It is developed from Level 0 by implementing a
collection of virtual processors which can perform the SLEEP and WAKEUP
operations in addition to the machine instructions of the underlying
physical processor(s). A new virtual machine at Level 2 is developed
from Level 1 by implementing the MASTERMODE/NORMALMODE mechanism. This
implementation , which is carried out on the Level 1 virtual machine , is
considered in great detail in Sections V , VI , and VI I.

Certain questions about the MASTERMODE/NORMALMODE mechanism have not
yet been answered. For example , what happens to a processor which performs
the MASTERMODE operation when another processor is already in mastermode?
Clearly the former processor must be delayed , that is , its execution must
be temporarily suspended , until the latter processor performs the NORMAL-
MODE operation , so that both processors will not be in mastermode at the
same time . This brings up another question. If one processor is in
mastermode and several others are waiting to enter mastermode (i.e., have
been delayed while performing the MASTERMODE operation), which processor
will be allowed to enter mastermode next? The MASTERMODE/NORMALMODE
operations might be implemented in such a way that no definite choice is
made , so that any of the waiting processors might be next to enter
mastermode. If this approach were taken , however , a particularly unlucky
processor might be delayed indefinitely. We would rather be able to
guarantee that any processor which performs the MASTERMODE operation will
eventually be allowed to enter mastermode . A simple way to do this is to
specify that when severa l processors are waiting to enter inastermode, the
one allowed to enter next shall be the processor which has been waiting
longest. In addition to preventing indefinite blocking of a particular
processor, requiring the operations to work this way will also simplify the
solution of certain processor coordination problems which demand strict
first-come-first-served access to a shared resource.

21
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In view of the above considerations , we shall require that processors
be allowed to enter mastermode in the precise order in which they perform
the MASTERMODE operation . Of course , it remains to be seen whether we can
devise an efficient implementation having this property . But before we
consider how to implement the MASTE RMODE an d NORMAL MOD E opera tions us i ng
lower-level operations already in existence , we would like to show that
such a mutual exclusion mechanism is worth implementing . Therefore in
the next section we will describe a fairly systematic way to solve processor
coordination problems using the MASTERMODE and NORMALMODE operations along
with the SLEEP and WAKEUP operations introduced in Section II.

23
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SECTION IV

A SYSTEMATIC APPROACH TO PROCESSOR SYNCHRONIZAT ION

1. INTRODUCTION

In the preceding chapters we have developed a computer system
abstraction in which a number of independent processors can control one
another ’ s activity to a limited degree by means of the SLEEP/WAKEUP oper-
ations and can enforce a strictly-ordered mutual exclusion among themselves
by means of the MASTERMODE /NORMALMODE operations. Before considering how
to implement the latter set of operations , we wish to assess their useful-
ness in solving problems which arise as a result of concurrent activity
in a computer system. We will begin by presenting a straightforward
approach to the solution of processor synchronization problems based on
a concept originated by Dijkstra (Reference 15). We wil l then illustrate
this approach by using it to solve several versions of a well -known
synchronization problem .

2. ALLOCATION OF SHARED RESOURCES

a. General Considerations

There are certain situations in which two processors can operate
concurrently without any possibility of interference even in the absence
of an explicit synchronizing mechanism. In general such situations arise
when the processors do not engage in any kind of sharing. Such situations
are rare, however , and we usually can expect the relationship between two
processors to involve sharing of some kind. For example , processors engaged
in related tasks must often share a common data base. Even when their
tasks are unrelated , processors usually must share various resources
provided by the computing system such as memory banks , mass storage units ,
and input/output devices. By broadening the idea of a “resou rce ” to in-
clude everything that might be shared among a group of processors, we can
formulate virtually all the coordination needs of the processors as problems
in the allocation of shared resources. This is the viewpoint from wh i ch
we will consider problems of processor synchronization In the present
sec ti on.
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Now let us consider the activity of a processor which is sharing
some resource with one or more other processors . We will assume that
certain periods in this activity can be identified during which the
processor is making active use of the shared resource and that except in
these periods the processor engages only in private tasks free from
interaction wi th other processors . A processor doing this kind of sharing
has two main responsibilities. First , it must not use the resource at
the wrong time . Second , it must not prevent another processor from using
the resource at the right time. Whether it is right or wrong at a given
time for a processor to use the resource is determined by the specific

S 

resource allocation problem being solved .

In fact , we generally define a resource allocation problem by spec-
ifying the conditions under which a given processor or class of processors
may use the shared resource .

Suppose that the processor under consideration has been programed so
that it never uses the shared resource at the wrong time . This implies

— that before using the resource , the processor examines the current state
(i.e. , condition or status) of the resource and the other processors and
takes steps to delay itself if the time is not yet right. (Recall that
the operations available on our assumed virtual machine allow a given
processor to be delayed only by voluntary action on the part of that
processor. ) Thus , the processor must perform certain actions in
order to gain access to the shared resource . When the processor has
finished using the resource , it must make this fact known so that other
processors can correctly assess the state of the system. Based on this
reasoning we give the following generalized program to represent the
activity of a processor which is making periodic use of a shared resource :

START : perform private tasks ;
gain access to the resource ;
use the shared resource ;
relinquish access to the resource ;
go back to START.
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The “private tasks” mentioned above are those which do not require any
coordinating activity among the processors . Note that the processors are
sharing a single resource. More compl i cated cases, for example the
simultaneous sharing of several independent resources , are considered in
Section VIII .

b. Gaining Access to the Shared Resource

We will now consider in greater detail the actions performed
by a processor which is preparing to use a shared resource. We have already
noted that such a processor must exami ne the current state of the system
(which includes the shared resource and all of the processors) to deter-
mine whether it can proceed . This implies that information about the
state of the system is available to all processors , a condition we can
satisfy by requiring the state information to be kept in a segment of
shared memory. If a processor , after inspecting this information , deter-
mines that it may now use the resource , it must modify the state infor-
mation before proceeding so that other processors will recognize that the
given processor is using the resource.

This necessary updating of the state information l eads to a
potential problem. If a processor has determined that it can use the
shared resource but has not yet modified the state information to reflect
that it is doing so, another processor may examine the outdated state
information and decide wrongly that it can also use the resource. Thus
if we permit several processors to inspect and modify the state infor-
mation concurrently, we will be confronted with chaos.

Fortunately, we have available a means to eliminate the problem
just described. We simply require that a processor preparing to examine
the state information enter mastermode before doing so and not return to
normalmode until it has updated the state information to reflect the
course of action it has decided to follow . Thus , the activities of
examining the state of the system, making a decision based on that
examination , and updating the state information to reflect that decision



S 
-- -~~~~~

AFAL-TR- 77-43

are all combined i nto one primitive operation through the use of the
MASTERMODE/NORMALMODE operations.

Now let us consider the case in which a processor must be delayed
in using the shared resource . Suppose a processor has entered mastermode ,
examined t~e state of the system, and determined that the right conditions
do not presently exist for it to use the shared resource. Then after
updating the state information to indicate that it wants to use the shared
resource but is not yet able to, the processor must take some action to
delay its progress until the right conditions do exist. To accomplish
this delay efficiently, we would like to use the SLEEP/WAKEUP mechanism
described in Section II. That is , we want the processor in the given
situation to delay itself by performing the SLEEP operation , counting on
a later wakeup by another processor at the appropriate time .

If the processor is still in mastermode when it performs the SLEEP
operation , other processors will be blocked from examining the state
of the system until the given processor wakes up and returns to normal-
mode. This is unacceptable because there may be other processors which
could use the shared resource at once under the existing conditions.
Thus , the processor must return to normalmode before performing the
SLEEP operation .

Now we must allow for the fact that sometimes the processor will
be able to use the shared resource at once , and hence should not delay
itself. We will do this by requiring the processor to perform the SLEEP
operation conditionally, based on the value of a private variable which
the processor will set while in mastermode and test after returning to
normalmode . In particular , we will establish for each processor a
private Boolean variable named MUST.WAIT which the processor will set
true when desiring to delay itself and will set false when able to use
the shared resource at once. After returning to normalmode the processor
may perform the SLEEP operation , depending on whether MUST.WAIT is true
or false.

27 



-5---- ~~
— -5-- — -

- .

AFAL-TR-77-43

The approach just described for gaining access to a shared resource
is summarized in the followi ng program:

START : perform private tasks;

MASTE RMO DE ;

examine current state of system ;
if resource cannot be used now , update

state information to show this processor
waiting to use the resource and set MUST.WAIT
true ;

otherwise , update state information to show this
processor using the resource and set MUST.WAIT
false;

NORMALMODE ;

if MUST.WAIT then SLEEP;
use the shared resource;
relinquish access to the resource ;
go back to START .

Comparing the above program with the general program in Section IV-2 ,a,
it is clear that the program action originally described as “gain access
to the resource” is now being accomplished by the program steps from the
MASTERMODE operation down through the conditional SLEEP operation. If
a processor sets MUST .WAIT true while in mastermode, it performs the
SLEEP operation after returning to normalmode and its progress comes to
a halt. Its fate, which is not yet clear , will be revealed in the next
subsection .

c. Relinquishing Access to the Shared Resource

Now let us consider the responsibilities of a processor which
has just finished using the shared resource. For one thing, it must
update the state information to indicate that it is no longer using the
resource . In addition , it is possible that certain processors which are

28 
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asleep waiting to use the resource should now be allowed to do so. If
this is the case , the processor which has j ust finished with the resource
is responsible for waking up those processors . As before, the processor
must be in mastermode while examining and modifying the system state
information. This approach leads to the following program.

START: perform private tasks ;
gain access to the resource ;
use the shared resource ;

MASTERMODE :
update state information to show this processor

not using the resource;
examine current state of system ;
if some processor , say Processor M , is waiting
to use the resource and now qualifies to do so,
perform WAKEUP(M) and update state information
to show Processor M using the resource ;

repeat last two steps until there are no waiting
processors which qualify to use the resource ;

NORMALMODE ;

go back to START.

In this program the steps from the MASTERMODE operation down through the
NORMALMODE operation take the place of the “relinquish access to the
resource ” step in the general program in Subsection IV-2 ,a.

It is now clear that a processor which put itself to sleep while
trying to gain access to the shared resource will continue to sleep until
it is awakened by a processor which has just finished using the resource.
Of course, the processor trying to gain access might receive the wakeup
before it even performs the SLEEP operation , in which case it will complete
the SLEEP operation without delay. (Refer to the discussion of “pending
wakeups ” in Subsection 11-6.) We have assumed that a waiting processor
only becomes eligible to use the resource as a result of some other
processor finishing with the resource. Conceivably a resource allocation
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problem could arise in which a waiting processor would become eligible
as a result of some other processor attempting to gain access to the
resource . Such a problem could be solved by an obvious extension of the
above scheme in which each processor would make a test while gaining
access to the resource to see if it should wake up any other processors.

d. Procedure for Solving Allocation Problems

In the last two sections we have described the actions required
of the processors provided by our virtual machine when they engage in re-
source sharing. From this description we derive the following procedure
for solving a stated resource allocation problem .

(1) Devise a strategy for each processor or class of processors.
This strategy has two parts which specify respectively how the processor
will gain and relinquish access to the shared resource . The strategy is
determi ned by answering the following questions:

(a) When a given processor wants to use the shared resource ,
under what condit ioi~ should it be allowed to do so at once and under
what conditions should it be delayed?

(b) When a given processor has finished using the
resource , under what conditions should it release another processor which
is waiting to use the resource? 

S

(2) Decide what information about the state of the system is
needed by each processor in order to carry out its strategy . This
decision establishes the i tems to be included in the data base which
will be maintained in the shared memory segment accessible to all processors.

(3) Develop a program for each processor incorporating its
strategy into the pattern of the general programs listed in Subsection
IV- 2, b and c.

In addition to providing a systematic approach to the solution of
resource alloca tion problems , the above procedure also simplifies the
task of verifying the correctness of a solution . It does so by allowing
tho proof of correctness to be divided into the separate tasks of verify ing
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that the strategy selected for a given processor leads to the correct
behavior of that processor , and verifying that the program for a given
processor correctly implements its strategy . It should be noted that a
formal procedure for devising a strategy has not been given and hence , the
strategy developed in a given problem is not likely to be unique. The
procedure requires that a strategy be found for each processor which will
lead to the behavior specified in the problem statement but does not re-
quire that there be only one such strategy .

3. CONCURRENT CONTROL WITH READERS AND WRITERS

a. Problem Description

In order to illustrate the procedure described in the last
section , we will now solve several example problems . We will restrict
our attention to a family of resource allocation problems referred to as
the problems of concurrent control with readers and writers , or simply
reader/writer problems . The reader/writer problems were first classified
by Courtois , Heymans , and Parnas (Reference 16), who solved two of the
problems using the relatively high-level P and V synchronizing operations
of Dijkstra (Reference 5). Since that time these problems , as well as
other members of the same family of problems , have been used by a number
of authors as examples and test cases in various studies of processor
coordination (References 2, 17 , 18, 19 , and 20).

The reader/writer problems may be described briefly as fol l ows .
A group of processors is divided into two classes , called readers and
writers . The processors compete for access to single shared resource ,
which we may think of as a data file of some kind. Any number of readers
may be using the resource (i.e., reading the file) simultaneousl y, but
only one writer may use the resource (i.e., update or supersede the file)
at a given time . Thus , at any particular time the users of the resource
must consist of either no processors , an arbitrary number of readers , or
a single writer.

The above requirement is the “basic reader/writer condition ” which
must be met in all of the reader/writer problems . The individual members
of this family of problems are distinguished by “access rules ” which
specify the order in which access to the resource will be granted when
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not all requests for access can be satisfied at once . We will consider
three particular problems . We i dentify two of them as the “immediate
access problem ” and the “writer preference problem ” . These problems were
originally identified as Problem 1 and Problem 2 respectively by Courtois ,
Heymans , and Parnas , and were called the “weak reader preference problem ”
and the “writer preference problem ” by Presser (Reference 2). The third
problem we will consider , called the “request-ordered access problem ” ,
has not previously appeared in the literature to the author ’s knowledge.

H b. Statement of the Immediate Access Problem

In this reader/writer problem it is required that a processor
wanting to use the resource be granted i mmediate access unless the basic
reader/writer condition would be violated by such access. In particular , if
a reader is reading and a wri ter is waiting to write , then a request to
read by a second reader will be satisfied at once . If several processors
are waiting which cannot be allowed simultaneous access , no specific order-
ing of subsequent accesses to the resource is demanded in this problem .
Thus , if a writer is writing and several readers and wri ters are waiting,
access to the resource might be granted next to any of the writers or to all
of the readers, regardless of the order in which the processors requested
to read or wri te.

Note that in the immediate access problem it is possible for the
resource to be kept in continuous use by a stream of readers , in which
case any wri ters wishing to use the resource will be forced to wait in-
definitely. The occurrence of such indefinite blocking of writers cannot
be considered a defect of a particular solution because the possibility of
such a condition is inherent in the statement of the problem.

c. Statement of the Writer Preference Problem

Now suppose that we want a writer to be able to start writing as
soon as possible after requesting to do so. Then we would modify the access
rule of the previous problem to require that no reader be granted access to
the resource while any writer is writing or waiting to write . This leads to
a new reader/writer problem , namely the writer preference problem . A solu-
tion to this problem will guarantee that a writer waiting to use the re-
source will do so ahead of any reader which was not already reading when
the writer requested to write .
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Note that in the writer preference problem it is possible that the
readers may have to wait indefinitely while the resource is used by a con-
tinuous stream of writers . As before, this possibility is a direct conse-
quence of the problem statement. Al so as in the previous problem , no
specific ordering is required among several waiting writers .

d. Statement of the Request-Ordered Access Problem

In the two reader/writer problems just given , certain processors
could be prevented indefinitely from gaining access to the shared resource.
We will now describe a new reader/writer problem , the request-ordered
access problem , in which such blocking cannot occur. The access rules

H for the request-ordered access problem are as follows :

(1) A reader may not read until all writers have finished which
S requested to write before that reader requested to read .

(2) A writer may not wri te until all processors have finished
which requested to read or write before that writer requested to write .

The essence of these rules is that we must allow processors to use the
shared resource in the exact order in which they request to do so. Of
course the basic condition that access to the resource is granted jointly
to the readers and individually to the wri ters has not changed . As an
example , suppose that a writer is writing and several readers and writers
are waiting. If the longest-waiting processor is a writer , it must be

• granted exclusive access to the resource when the present writer finishes.
If the longest-waiting processor is a reader, then all readers which have
been waiting longer than the longest-waiting writer must be allowed to
start reading when the present writer finishes.

In the request-ordered access problem , a processor never uses the
resource ahead of another processor which made an earlier request for
access. Thus , no processor can be denied access indefinitely. (We are
assuming, as we have all along, that a processor using the resource even-

F tually relinquishes it.) Using the resource allocation problem solving
procedure discussed earlier , the request-ordered access problem is the
easiest to solve of the three problems described and its solution will be
given first.

L~~~ _ 
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4. SOLUTION OF THE REQUEST-ORDERED ACCESS PROBLEM

a. Processor Strategies

We know that processors requesting to use the resource will
sometimes have to wait and that the order in which requests occur is
significant. Therefore we propose to provide a “waiting line ” which
processors can join (at the end) when unable to gain immediate access
to the resource. Following the procedure in Subsection IV-2 ,d , we now
determine strategies for the readers and wri ters, based on the statement
of the request-ordered access problem .

Reader Strategy

(1) If a wri ter is writing or the line is not empty , join the line
and wait to read. Otherwise begin reading at once.

(2) After finishing reading, if no other readers are still reading
and the line is not empty , allow the processor at the head of the line
(which must be a writer) to leave the line and begin writing.

Writer Strategy

(1) If either reading or writing is going on , join the line and
wait to write. Otherwise , begin writing at once.

(2) After finishing writing, if a writer is at the head of the
line allow it to leave the line and begin writing. If a reader is at the
head of the line allow it and all the other readers immediately following
it in line (if any) to leave the line and begin reading .

As mentioned earlier we do not assert that these are the only
correct strategies. The reader should take the time to convince himself
that these particular strategies do indeed l ead to the behavior required
of readers and writers in the request-ordered access problem.

b. Assignment of Shared Variables

Now let us consider the information required by the processors
to carry out the strategies just given . For one thing, a processor must
be able to determine whether any writer is writi ng at a given time . Thus ,

34
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we propose to include in the shared memory segment a Boolean variable ,

WRI TIN G , which is true when a wri ter is using (or has at least been given
access to) the shared resource. The writers must be able to tell whether
one or more readers are reading , and the readers must be able to tell ,
after finishing with the resource, whether any other readers are still
using it. Thus , we introduce a shared integer variable , READERS , whose
value is the number of readers which have access to the resource at a
given time .

Finally, a processor must be able to check the waiting line for
the presence of other processors, to remove the processor at the head
of the line , and to join the line itself. The line has the form of a
simple queue (Reference 21 , pp. 234-238) which can be represented by
an integer array of N+2 variables , LINE [-l:N], where N is the total
number of readers and writers . (Here we have used the ALGOL notation
indicating that LINE is a one-dimensional array whose subscript ranges
from -l to N.) This array is located in the shared memory segment and
is used to implement the waiting line as follows . LINE [-l] contains the
number of the processor at the tail of the line and LINE[O] the number
of the processor at the head of the line . LINEC-l] and LINE[O] both
contain zero when the line is empty . For K in the range from 1 to N
(i.e., the number of one of the processors), LINE[K] contains the number
of the processor which follows Processor K in line , provided that
Processor K is in line and is not at the tail of the line. Otherwise
the value of LINE[K] is immaterial.

The following procedure is performed by Processor K to join the
line: Set LINE[LINE[-l]] equal to K and then set LINE[-l] equal to K.
The following procedure is performed by any processor to remove the
processor at the head of the line: If LINE[O] is equal to LINE [-l], then
set both LINE [O] and LINE [-l] to zero; otherwise set LINE [O] equal to

• LINE[LINE[Ofl.

For these procedures to work correctly, two processors must not try
to join the line or remove another processor from the line at the same
time . We ensure this by requiring that processors only perform these
procedures while in mastermode .
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For convenience we will assume that the readers are numbered
1 , 2, . . ., M and the writers are numbered M+l , M+2, . . ., N. Then
the processor at the head of the line is a writer if and only if LINE[O]
is greater than M.

The variables WRITING and READERS and the array LINE [-l:N] constitute
the shared state information needed to solve the request-ordered access
problem. Initially READERS , LINE[-l], and LINE[O] must be equal to zero
and WRITING must be false.

7 c. Programs for the Readers and Writers

We must now develop programs which implement the reader and
writer strategies, following the pattern of the general programs in
Subsection IV-2 ,b and c. All readers follow the same strategy and hence
may use the same program , the only distinction being that different readers
have different numbers . The reader program is listed below.

START: perform private tasks;

MASTERMODE ;

if WRITING is true or LINE[O] is nonzero,
join the line and set MUST.WAIT true;

otherwise increase READERS by one
and set MUST.WAIT false;

NORMALMODE ;

if MUST.WAIT then SLEEP;
use the shared resource;

MASTERMODE ;

decrease READERS by one ;
if READERS is zero and LINE[0] is

nonzero , then set WRITING true ,
perform WAKEUP(LINE [0]), and remove
processor at head of line;

NORMALMODE ;
go back to START.
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The above program should be compared with the pattern programs
(Subsection IV-2 ,b and c) and with the reader strategy (Subsection IV-4,a).
Note that since a reader will be responsible for waking up one writer at
most, no iteration is required in the testing done by a reader when re-
linquishir ig access to the resource.

The following is the program used by the writers :

START: perform private tasks;
MASTERMODE ;

if WRITING is true or READERS is nonzero ,
join the line and set MUST.WAIT true;

otherwise set WRITING true and
set MUST.WAIT false;

NO RMAL MODE ;
if MUST.WAIT then SLEEP;
use the shared resource ;
MA STERMODE ;

set WRITING false ;
if LINE[O) is greater than M, then set

WRITING true, perform WAKEUP(LINE [0]),
and remove processor at head of line ;

otherwise , if LINE[O] is greater than
zero, repeat the following as long as
LINE[O] remains greater than zero and
not greater than M: i ncrease READERS
by one , perform WAKEUP(LINE[O]), and
remove processor at head of line ;

NORMALMODE;
go back to START.

Note that a writer may have to wake up several readers when re-
linquishing access to the shared resource . This results in an iterative
step at the corresponding point in the program . The pattern program in

Subsection IV-2 ,c allows for such iteration . 
S
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d. ALGOL Implementation of the Programs

We will now describe the imp l ementation of the above solution
in a high-order programing language . This implementation has been
developed primarily because it satisfies a desire to see the problem
actually run on a computer and because it illustrates the way in which
the rather abstract virtual machine of Sections I and II is realized by
the operating system of a time-shared computer facility .

Actual computer programs for the request-ordered access solution are
listed in Figure s 2 and 3. For simplicity , these programs have been
written to allow for a maximum of five readers and five writers , each of
which uses the shared resource three times before finishing its execution .
The programs are written in DEC system- b ALGOL , a dialect of ALGOL-6O .
The programs call a number of separately compiled procedures which are
specified by means of external procedure declarations. The SLEEP , WAKEUP ,
MASTER MODE , and NORMALMODE procedures perform operations already discussed.
We will now briefly describe the operation of the other external procedures
to help the reader understand the programs .

The INITIALIZE procedure is called once near the beginning of each
program. Its function is to establ~sh access to the shared memory segment
used for communication between processors . Initialize has two integer
parameters. The first is the number of the processor making the call ,
represented in these programs by the integer variable MYNUM. A value for
MYNUM is read by a given program as input data prior to the call to
INITIALIZE. It is the value read for MYNUM by different copies of the
same program running at the same time that distinguishes , for example ,
between different readers . The second parameter of the INITIALIZE
procedure specifies a base address in the shared memory segment. It is
used in later programs to allow several groups of processors to make
independent use of the MASTERMODE/NORMALMODE operations. This paramet€r
is always zero in the present programs .

The ALGOL language being used does not allow for explicit sharing
of variables among independent programs . Therefore we must use
procedure calls to read from and write into the shared memory segment.
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BEGIN I READER P ROGRAM FOR REQUEST-ORDERED ACCESS PROBLEM;

- BOOLEAN MUST.WAIT;
INTEGER MYNUM, READERS , WRITING,INDEX ,HEAD;
INTEGER ARRAY LINE1(-l:1O];
EXTERNAL PROCEDURE NASTERMODE, NORMALMODE, INITIALIZE,

ASSIGN , SET, PUT.IN, REMOVE.FROM ,
REPORT, PAUSE, SLEEP, WAKEUP ;

EXTERNAL INTEGER PROCEDURE VALUE.OF, RANDOM;
EXTERNAL BOOLEAN PROCEDURE TRULY;

I ESTABLISH POINTERS TO SHARED VARIABLES;
READERS:=21; WRITING:=22;
FOR INDEX:=-1 UNTIL 10 DO LINE1[INDEX]:=INDEX+24;

READ (MYNUM); INITIALIZE (MYNUM ,O); FOR INDEX:=1 UNTIL 3 DO

BEGIN I START OF READ CYCLE;

PAUSE(500+ (5*RANDOM));

MASTERMODE ; 
-

IF VALUE.OF (LINE1 [0])>O OR TRULY (WRITING)
THEN BEGIN REPORT (MYNUM , “WAITING TO READ “);

PUT. IN (LINE1 ,MYN UM )
MUST • WAIT: =TRUE;

END
ELSE BEGIN ASSIGN (READE RS,VALUE.OF(READERS)+l);

MUST • WAIT: =FALSE;
END ;

NORMALMODE;

IF MUST.WAIT THEN SLEEP;
REPORT (MYNUM, “STARTING TO READ “ ) ;
PAUSE (500+RANDOM) ;

MASTERMODE ;
REPORT (MYNUM,”FINISHED READING “);
ASSIGN (READERS ,VALUE.OF (READERS)-l);
UEAD:=VALUE.OF(LINE1(O]);
IF VALUE.OF(READERS)=O AND HEAD>0 THEN

BEGIN SET (WRITING,TRUE);
WAKEUP (HEAD);
REMOVE. FROM (LINE1) ;

END ;
NORMAL MODE ;

END OF CYCLE ;

END

Figure 2. Reader Program
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BEGIN 1 WRITER PROGRAM FOR REQUEST-ORDERED ACCESS PROBLEM ;

BOOLEAN MUST. WAIT;
INTEGER MYNUM , READERS ,WRITING , INDEX ,HEAD ;
INTEGER ARRAY LINE1[—1:10];
EXTERNAL PROCEDURE MASTERMODE , NORMALMODE , INITIALIZE ,

ASSIGN , SET , PUT. IN , REMOVE. FROM,
REPORT , PAUSE , SLEEP , WAKEUP ;

EXTERNAL INTEGER PROCEDURE VALUE.OF, RANDOM ;
EXTERNAL BOOLEAN PROCEDURE TRULY ;

I ESTABLISH POINTERS TO SHARED VARIABLES ;
READERS:=21; WRITING:=22;
FOR INDEX:=—1 UNTIL 10 DO LINE1[INDEX] :~~IN DEX+24;

READ (MYNUM) ; INITIALIZE (MYN UM ,0); FOR INDEX:=1 UNTIL 3 DO

BEGIN I START OF WRITE CYCLE ;

PAUSE ( 50 0+ ( 5* RANDOM ) )

MASTERMODE ;
IF VALUE.OF (READERS)>O OR TRULY (WRITING )

THEN BEGIN REPORT (MYNUM , “WAITING TO WRITE “ ) ;
PUT.IN (LINE1,MYNUM )
MUST.WAIT:=TRUE;

END 
-

ELSE BEGIN SET (WRITING ,TRUE) ;
MUST. IIAIT:=FALSE;

END ;
NORMALMODE ;

IF MUST.WAIT THEN SLEEP ;
REPORT (MYNUM , “STARTING TO WRITE ”);
PAUSE ( 500+RANDO M ) ;

MASTERMODE ;
REPORT (MYNUM , “FINISHED WRITING “) ;

SET(WRITING ,FALSE) ;
HEAD:=VALUE.OF(LINE1(O]);

- IF HEAD>5
THEN BEGIN SET(WRITING ,TRUE) ;

WAKEUP (HEAD) ;
REMOVE. FROM (LINE1) ;

END
ELSE WHILE HEAD>0 AND HEAD<6 DO

BEGIN ASSIGN (READERS ,VALUE .OF (READERS) +1);
WAKEUP (HEAD); REMOVE.FROM(LINE1) ;
HEAD :=VALUE,OF(LINE1(O]);

END;
NOR MALMODE ;

END OF CYCLE ;

END Figure 3. Writer Program
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The procedure calls VALUE.OF( location ) and TRULY(bocation), where “location ”
is an integer , return the value stored at the specified location in the
shared segment. VALUE.OF returns an integer value and TRULY returns a
Boolean value (“true” or “false”). The procedure call ASSIGN(bocation ,
value) stores an integer value at a specified shared l ocation , and the
call SET(location , value) does the same thing for a Boolean value. These
four ALGOL procedures invoke assembly language routines which actually
access the shared segment.

The procedures PUT.IN and REMOVE.FROM are provided to manipulate
queues such as the waiting line used in this problem . The procedure call
PUT.IN(arrayname ,number) is performed by the processor with the given
number in order to enter the queue defined by the given array name . The
call REMOVE .FROM(arraynanie) causes the processor at the front of the
specified queue to be deleted from the queue. The operations actually
performed by these procedures were described in Subsection IV-4 ,b.

The procedure call PAUSE(m) causes the execution of the calling
program to be suspended for m milliseconds. Such calls are used to
simulate the time spent by a processor in performing private tasks and in
ucing the shared resource. The length of each pause , in the present

~rograms , is determined by calling the procedure RANDOM , which returns a
random i nteger value uniformly distributed from zero to 1 000. The value
returned by RANDOM is never initialized , so the random sequence generated
by successive calls to RANDOM starts off differently each time the same
program is run.

The procedure REPORT allows a processor to report the times at which
significant events occur. Each call to REPORT generates one line of
output data which includes the number of the processor , an identification
of the event being reported , and the time of day at which the procedure
call occurred (to the nearest sixtieth of a second). In the present
programs a processor makes a report whenever it starts waiting to use the
resource , starts using the resource , or finishes using the resource.
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Figure 4 is a listing of output data for an experimental run with
four readers (numbered 1 , 2, 3, and 4) and two writers (numbered 6 and 7).

• The programs for these six processors were executed by six independent
timesharing jobs which were competing with each other and with the jobs
of other users for access to the computing system ’s two physical processors .
About thirty jobs were active at the time of this part i cular run. To
produce the listed output data , the reports from all six processors were
merged and then sorted into the proper order based on the time of each
report . (The times are reported in kiloj iffies since midnight. A j iffy
is one-sixtieth of a second.) The reader may verify that the behavior of
the readers and writers as reflected by the listed output data satisfies
the conditions of the request-ordered access problem .

5. SOLUTION OF THE WRITER PREFERENCE PROBLEM

a. Restatement of the Problem

Now let us obtain a solution to the writer preference problem ,
using the same general procedure followed above. Recall that in this
problem a reader must not be granted access to the resource if a writer
is waiting, even though other readers are currently reading. Thus , waiting
writers have absolute priority over waiting readers .

The problem statement does not specify any kind of priority among
waiting writers . However , our approach to shared resource allocation
requires that a particular writer be selected to go next when several
are waiting, since our simple WAKEUP operation must be directed at a
specific processor. The most natural selection is probably to let the
longest-waiting writer use the resource next , so that a first-come—firs t-
served discipline is enforced among the writers . Such a discipline is
easy to achieve and may actually enhance the value of the solution in
some cases. At any rate a solution which provides this ordering will
not violate any conditions of the problem statement. Therefore we
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NO. 4 STARTING TO READ AT 3096.993
NO. 1 STARTING TO READ AT 3097.013
NO. 6 WAITING TO WRITE AT 3 0 9 7 . 0 4 5
NO. 4 FINISHED READING AT 3097.077
NO. 1 FINISHED READING AT 3097.079
NO. 6 STARTING TO WRITE AT 3097.086
NO. 6 FINISHED WRITING AT 3097.137
NO. 1 STARTING TO READ AT 3097 .287
NO. 4 STARTING TO READ AT 3097.309
NO. 1 FINISHED READING AT 3097.330
NO. 3 STARTING TO READ AT 3097.345
NO. 4 FINISHED READING AT 3097 .348
NO. 2 STARTING TO READ AT 3097.351
NO. 7 WAITING TO WRITE AT 3097.372
NO. 3 FINISHED READING AT 3097.392
NO. 2 FINISHED READING AT 3097.413
NO. 3 WAITING TO READ AT 3 0 9 7 . 4 3 3
NO. 6 WAITING TO WRITE AT 3097.447

• NO. 7 STARTING TO WRITE AT 3097.456
NO. 4 WAITING TO READ AT 3097.508
NO. 7 FINISHED WRITING AT 3097.527
NO. 3 STARTING TO READ AT 3097.703
NO. 1 WAITING TO READ AT 3097.732
NO. 2 WAITING TO READ AT 3097.751
NO. 7 WAITING TO WRITE AT 3097.755
NO. 3 FINISHED READING AT 3097.779
NO. 6 STARTING TO WRITE AT 3097.841
NO. 6 FINISHED WRITING AT 3097.876
NO. 4 STARTING TO READ AT 3097.914
NO. 1 STARTING TO READ AT 3097 .92  3
NO. 2 STARTING TO READ AT 3097.929
NO. 1 FINISHED READING AT 3097 .969
NO. 6 WAITING TO WRITE AT 3 0 9 7 . 9 7 9
NO. 4 FINISHED READING AT 3097.993
NO. 3 WAITING TO READ AT 3098.033
NO. 2 FINISHED READING AT 3098.035
NO. 7 STARTING TO WRITE AT 3098.114
NO. 7 FINISHED WRITING AT 3098.168
NO. 6 STARTING TO WRITE AT 3098.245
NO. 7 WAITING TO WRITE AT 3 0 9 8 . 2 7 5
NO. 6 FINISHED WRITING AT 3098.326
NO. 3 STARTING TO READ AT 3098.344
NO. 2 WAITING TO READ AT 3098 .380
NO. 3 FINISHED READING AT 3099.222
NO. 7 STARTING TO WRITE AT 3099.274
NO. 7 FINISHED WRITING AT 3099 .341
NO. 2 STARTING TO READ AT 3099.489
NO. 2 FINISHED READING AT 3 0 9 9 . 52 4

Figure 4. Reader/Writer Output Data
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propose to find a solution which does provide first-come-first-served
access for writers. This leads to the following access rules for the
writer preference problem:

( 1 )  A writer must be allowed to write as soon as poss ible after
it has requested to do so. In particular , it must go ahead of any reader
which was not already reading when the writer requested to write .

(2) Requests to write by several writers must be satisf ied in
the exact order in which the requests occurred .

The first rule was the original condition for the writer preference
— probl em . We have added the second rule because it may make the solution

more usefu l and because our method requires that a definite choice be
made among waiting writers .

b. Processor Strategies

It is clear that both readers and writers maya have to wait at
times. However any waiting writer has priority over any waiting reader ,
which suggests that we should provide two separate waiting lines , one
for readers and one for writers. Now , if several readers are waiting
they must not read until a time when no writers are writing or waiting to
wri te , and at that time they should all start reading. Thus , all waiting
readers wil l be released together . For this reason , we wil l  imagine that
readers wait in a “waiting room” rather than a line , although t’e will use
the same kind of simple queue as above to implement both the room and the
line. Appropriate processor strategies are now rather easy to determine.

Reader Strategy

( 1 )  If a writer is writing or the line is not empty , enter the

room and wait to read. Otherwise , begin reading at once.

(2) After finishing reading , if no other readers are still
reading and the line is not empty , allow the writer at the head of the
line to leave the line and begin writing.
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Writer Strategy -~~~

(1) If either reading or writ ing is going on , join the line and
wait to write. Otherwise , begin writing at once .

(2) After finishing writing , if the line is not empty al low the
writer at the head of the line to leave the line and begin writing . Other-
wise , allow all readers in the room (if any) to leave the room and begin
reading.

c. Assi gnment of Shared Variables

The system state information required by the processors to carry
out the above strategies is the same as in the request-ordered access problem ,
except that there is now a waiting room to keep track of in addition to the —

waiting line. Thus , we will add an integer array ROOM[-l:M] to the shared
data base for this problem. (Recall that the readers are numbered
1 , 2 , . . . ,  M.) The procedures used by a reader to enter the room or
remove another processor from the room are identical to the corresponding
procedures in Subsection IV-4 ,b. The variables WRITING and READERS and the
array LINE[-l :N] will be used just as in the previous problem.

d. Programs for the Readers and Writers

The following is the program used by the readers :

START : perform private tasks;
MASTERMODE ;

if WRITING is true or LINE [O] is nonzero ,
enter the room and set MUST.WA IT true;

otherwise increase READERS by one and set
MUST.WAIT false;

NO RMAL MO U E
if MUST .WAIT then SLEEP;
use the shared resource ;
MASTERMODE ;

decrease READERS by one;
if READERS is zero and LINErO] is nonzero , then

set WRITING true , perform WAKEUP(LINE[O]), and
remove processor at head of line;

NORMALMODE;
go back to START .
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Note that this program is almost identical to th~ reader program

for the request-ordered access problem (Subsection I V - 4,c). The onl y

difference is that a reader enters the room instead of joining the
line when forced to wait.

The following is the program used by the writers :

START: perform private tasks;

-
~ MASTERMODE ;

if WRITING is true or READERS is nonzero ,

join the lin e and set MUST .WAIT tru e;

otherwise set WRITING true and

set MUST .WAIT false;

NORMALMODE ;
i f MUST .WAIT then SLEEP ;
use the shared resource ;

MAST ERMODE ;
set WRITING false ;

if LINE[O] is nonzero then set WRITING

true , perform WAKEUP(LINE [O]), and
remove processor at head of line;

otherw i se , if ROOM[O] is nonzero ,

repeat the following until ROOM[O]
equals zero : increase READERS by

one , perform WAKEUP(ROOM[O]), and
remove processor at front of room ;

NORMALMODE ;
go back to START .

These prog rams comp lete the solut i on of the wr i ter p reference
problem.
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6. SOLUTION OF THE IMMEDIATE ACCESS PROBLEM

a. Restatement of the Problem

• As a final illustration of the procedure introduced in this
section for solving shared resource allocation problems , we will obtain a
solution to the immediate access problem . Recall that in this problem
readers get access to the resource as soon as they make their requests ,
unless a writer is actually writing at the time . The processor selected
to use the resource next when several are waiting is not specified in the

• problem statement but our procedure require s that a definite choice be

made . The simplest approach would be to give priority either to readers
or to writers. We will use a somewhat more complicated approach , merely to
illustrate the possibilities afforded by our general procedure . We will

solve a version of the immediate access problem defined by the fol l owing

access rules:

(1) A processor wh ich is ready to read or write must be per-

mitted to begin at once unless the basic reader/writer condition would be

violated thereby .

(2) If several processors are waiting to read or write , the one

which has been waiting ongest must be permitted to go next.

The first rule above distinguishes the immediate access problem from

the other reader/writer problems . We have added the second rule to es-

tabl ish a specific order for releasing waiting processors . An example

wil l  demonstrate the consequences of these rules . Suppose a writer is
writing and several readers and writers are waitin g. If the longest-

waiting processor is a reader, then by the second rule it must be allowed

to read as soon as the present writer relinquishes the resource . But then ,

by the first rule , all other waiting readers must be allowed to read . Thus ,

if the longest-wa iting processor is a reader , all waiting readers will be

given access to the resource when the present wri ter finishes. If the
longest-waiting processor is a writer , on the other hand , it will be given
exclusive access when the present writer finishes .
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b. Processor Strategies

Since waiting readers are sometimes released before longer-
waiting wri ters, it is clear that a single waiting line for both readers
and writers will not suffice. Thus , we will retain the waiting line and
waiting room of the previous problem . The following strategies satisfy
the access rules given above .

Reader Strategy

(1) If a writer is presently writing, then either join the
line (if there is not already a reader in the line) or enter the room
(if there is already a reader in the line). But if no writing is going on ,
begin reading at once .

(2) After finishing reading, if no other readers are still
reading and the line is not empty , allow the processor at the head of
the line (which must be a writer) to leave the line and begin writing.

Writer Strategy

(1) If either reading or writing is going on , join the line
and wait to write . Otherwise , begin writing at once.

(2) After finishing writing, if there is a writer at the
head of the line allow it to leave the line and begin writing. Otherwise ,
if there is a reader at the head of the line allow it to leave the line
and begin reading, and also allow all readers in the room (if any) to
leave the room and begin reading.

Note that there can be at most one reader in the line , and it “holds
the place ’ for all waiti ng readers . When it reaches the head of the line ,
it and any readers in the waiting room will gain access to the shared
resource .

c. Assignment of Shared Variables

Compared with the previous problems , some additional information
Is required by the processors to carry out the above strategy. Specifically,
a reader which has requested to read and has been forced to wait must be able
to determine whether another reader is already in the line . Using the same
shared variables as in the writer preference problem , the needed information
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can be provided by changing the interpretation of READERS . Before , this
integer variable represented the number of readers currently having
access to the resource . Suppose we let READERS be equal to the number of
readers which are either reading or waiting to read . Then a reader which
has to wait because writing is going on can determine whether one or more
readers are already waiting by checking READERS . Note that at any time
when a processor can inspect the shared variables (i.e., when all other
processors are in NORMALMODE), the readers which have requested to read are
either all reading or all waiting to read , so the value of READERS repre-
sents one or the other at a given time . The Boolean variable WRITING and
the arrays LINE[-l:N] and ROOM[-l:M] will be used as in the previous problem.

d. Programs for the Readers and Writers

The following is the program used by the readers :

START : perform private tasks ;
MASTERMODE ;

if WRITING is true , then join the line if READERS
is zero and enter the room if READERS is
nonzero , and in either case set MUST.WAIT true;

otherwise , set MUST.WAIT false;
increase READERS by one;

NORMALMODE ;
if MUST .WAIT then SLEEP;
use the shared resource ;
MASTERMODE ;

decrease READERS by one ;
if READERS is zero and LINE[O] is nonzero ,

then set WRITING true , perform WAKEUP(LINE[O]),
and remove processor at head of line;

NORMALMODE ;
go back to START .

Note that in this program a reader attempting to gain access to the
resource will increment READERS regardless of whether it reads at once or
is forced to wait.
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The following is the program used by the writers :

START: perform private tasks ;
MASTERMODE ;

if WRITING is true or READERS is nonzero ,
join the line and set MUST.WAIT true;

otherwise set WRITING true and set MUST .WAIT false;

NORMAL MODE ;
if MUST.WAIT then SLEEP;
use the shared resource ;

MA STERMODE ;
set WRITING false;
if LINE [O] is greater than M , then set WRITING

true , perform WAKEUP(LINE[O]), and remove
processor at head of line;

otherwise , if LINE[0] is greater than zero,
perform WAKEUP(LINE [O]), remove processor
at head of line , and if ROOM[O] is nonzero repeat
the following until ROOM[O] equals zero:
perform WAKEUP (ROOM[O]) and remove processor
at front of room ;

NORMALMODE;

go back to START.

Note that in this program a wri ter does not increment READERS when
releasing a waiting reader as it did in the previous writer programs .
This is a consequence of our modified use of the variable READERS and
reflects the fact that when a waiting reader is released , the total number
of readers which are reading or waiting to read does not change .

The two programs above complete the solution of the immediate access
problem .
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7. EVALUATION OF THE SOLUTIONS

In the preceding sections we have solved three rather complex
processor coordination problems using a systematic l ow-level approach.
The approach is “low-level” in the sense that it requires no more compli-
cated synchronizing mechanisms than a rudimentary SLEEP/WAKEUP facility
implemented at the same level as the virtual processors themselves , and
a simple mutual exclusion capability provided by the MASTERMODE/NORMALMODE
operations , whose implementation will be considered in the next chapter.

Shorter programs which solve the reader/writer problems can be
obtained using more sophisticated synchronizing primitives , as shown by
the solutions discovered by Courtois , Heymans , and Parnas using the P and
V operations (Reference 16). However, the discoverers pointed out that
these solutions , though simple in form , were not easily found and required
several cycles of correction and simplification. The low-level approach
we have used requires the solutions to contain much detail that could be
avoided if higher-level operations were available. However , it has the
advantages that a relatively systematic solution procedure is possible
and that the solution can easily be given desirable properties which
would be difficult to achieve with higher -level operations (e.g., the
strict access ordering obtained in the reader/writer problems).

The above discussion of high -level vs. low-level synchronization
would seem rather academic to a system designer starting with a bare machine
whose hardware made no provision for processor coordination. He would
have to implement for himself whatever operations he selected to perform
such coordination .

Our concentration on l ow-level operations reflects a concern for
efficient implementation and a conviction that the alternative high -level
synchronizing operations represent too great an abstraction to be efficiently
implemented at the l owest l evels of a finely level-structured system. The
problem of implementing the MASTERMODE /NORMALMODE operations will be
treated in detail in the next three sections. 
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SECTION V

THE MASTERMODE/NORMALMODE PROBLEM

1 . INTRODUCTION

In the last section several versions of a well-known synchronization
problem were solved in a fairly systematic manner. The solutions required
the use of the SLEEP/WAKEUP operations introduced in Section II. In
addition , certain operations were required to enforce mutual exclusion
among the processors , namely the MASTERMODE/NORMALMODE operations
described in Section III. In the present section we take up the problem
of implementing the latter set of operations on the virtual machine whose
organization was descri bed in Sections I and II. Recall that this virtual
machine is an abstraction of an underlying collection of physical devices
whose exact form no longer concerns us. We are concerned instead with
the characteristics of the virtual machine itself , which may be sumarized
as follows :

(1) The machine consists of a number of processors which operate
concurrently. No information is available on the relative operating
speeds of the different processors , and in fact these speeds must be
expected to vary wi th time . The total number of processors may be
arbitrarily large.

(2) Each processor can perform certain operations which will in
fact be executed directly by physical devices at the l owest level . These
operations are, in general , a subset of the machine instruction set of
the system’s physical processing unit or units. Some of these operations
manipulate information stored in memory locations , and there exists a set
of such memory locations to which all of the processors have common access.

(3) Each processor can also perform the SLEEP and WAKEUP operations ,

which work as described in Section II. These operations give the proces-

sors a limited degree of control over each other ’s activity .
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(4) If two or more processors perform any of the above
operations at the same time , the effect is the same as if the operations
were done in a specific (though not predetermined ) order. That is , the
operations mentioned in (2) and (3) above are primitive operations , as
defined in Section I. This property allows us to assume that no two
operations are ever performed simultaneously. We will often find it
convenient to make this assumption.

2. THE CRITICAL SECTION PROBLEM

As mentioned above , we are now concerned with the problem of
implementing the MASTERI’IODE/NORMALMODE operations. That is , we wish to
develop an abstraction of our present virtual machine to create a new
(higher level ) virtual machine in which MASTERMODE and NORMALMODE are
primitiv e operations available to every processor. This is a special
case of a problem known in the literature as the “critical section ”
problem . The critical section problem was first posed in 1965 by
Dijkstra (Reference 14) in the following form :

Each of N processors is engaged in a cyclic process. A portion of
each cycle is identified as a “critical section ” , and the processors
must be programmed in such a way that at most one process will be in its
critical section at a given time . The processors can communicate via a set
of shared memory locations but the only available operations on these
locations are reading from and writing into one location at a time . A
processor must be able to halt outside its critical section without
blocking the progress of other processors . If two or more processors
are about to enter their critical sections , one of them must eventually
do so, regardless of the sequence in which the processors execute their
instructions relative to each other.

Note that the problem statement above does not specify the first-come-
first-served entry to critical sections that we require the MASTERMODE
operation to provide . Thus , a solution to the critical srction problem
will not necessarily suffice to implement the MASTERMODE/NORMAL MODE
operations.
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Dijkstra gave an algorithm which solved the probl em as stated above
(Reference 13). A shortcoming of his solution was that a particular
processor might be delayed indefinitely from entering its critical section .
(Note that the problem statement does not rule out this possibility.)

An improved algorithm was devised by Knuth (Reference 22) which prevented
the blocking of individual processors by guaranteeing that a given proces-
sor could enter its critical section within 2N~~_ 1 turns after making its

request (a “turn ” being the execution of a critical section by any
processor). In modifications of Knuth ’s algorithm , the longest possible
waiting period was reduced to 1/2 N(N-l) turns by deBruijn (Reference 23)

and to N-l turns by Eisenberg and McGuire (Reference 24). None of these
algorithms enforced a first-come-first-served discipline among the corn-
peting processors. That is , in these algorithms the processor allowed to
go next when several processors were waiting to enter their critical
sections might or might not be the one which had been waiting longest.

A remarkable new solution to the critical section problem was pub-
lished in 1974 by Lamport (Reference 25). Lamport ’s solution , known as
the “bakery algorithm ” , differs from the earlier algorithms in that it
provides a limited kind of first-come-first-served access to critical
sections. It is also simpler and easier to understand than the previous
solutions. Thus , the bakery algorithm deserves further consideration
for possible use in implementing the MASTERMODE /NORMALMODE operations.
As we will see, the bakery algorithm has a number of characteristics
which make it unsuitable for this purpose. Recognizing these character-
istics , however , will enable us to develop the criteria for a satisfactory
implementation .

3. DESIRED MASTERMODE / NORMALMODE PROPERTIES

a. General Considerations

We are proposing to implement the MASTERMODE /NORMALMODE
operations at a very low level . That is , the virtual machine we have to
work wi th provides only a rudimentary SLEEP/WAKEUP capability in addition
to the basic machine instructions of the underlying hardware . We may wish
to use the MASTERMODE/NORMALMODE operations to implement more sophisticated
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synchronizing primitives , such as Dijkstra ’s P and V semaphore operations
(Reference 5) or one of the more general extensions of these operations
(References 2 and 26). To do this successfully, we must have highly
efficient MASTERMODE and NORMALMODE operations. In other words , the
“overhead” incurred by the processors when entering and leaving mastermode
must be as small as possible. We would be happiest , in fact, if our basic
hardware could provide an explicit mutual exclusion function. As is often
the case , however , our bottom level (the hardware) is fixed , and we must
find an implementation which is efficient in the context of a specific
physical processor (namely the DEC system-b KIlO central processor). The
search for efficiency will probably be the most notable feature of our
efforts to implement the MASTERMODE/NORMALMODE operations.

Of the published solutions to the critical section problem , the
bakery algorithm of Lamport comes closest to providing an acceptable
implementation of the MASTERMODE/NORMALMODE operations. In the following
paragraphs we will develop a set of criteria for a satisfactory implemen-
tation based on a consideration of the bakery algorithm . This algorithm
is based upon one commonly used in bakeries , in which each customer
receives a number upon entering the store and the holder of the l owest
number is the next one served . The algorithm itself is listed in
Appendix A. Although not essential , an understanding of how the bakery
algorithm works will help the reader to appreciate the following discussion.

b. Busy Waiting

The greatest shortcoming of the bakery algorithm is its use of
“busy waiting ” to delay a processor ’s progress. A processor performs a
sequence of logical tests and , if all are passed , gains access to the
critical section . If any test is failed , it is immediately repeated , and
Continues to be repeated until it is passed. Thus, the processor remains
active continuously even when unable to proceed with useful work. This
form of processor delay might be acceptable in a (rather unusual)
multiprocessor environment which could provide an actual hardware processor
for each processor of the virtual machine. It is certainly not acceptable 

~~~~~~~ - -—--
~~~-~~~~~~~~~~~~~~ —



_ _  
- —--- -5— - - - -  -51

AFAL-TR-77-43

in the conventional multiprogramming environment , in which one or more
physical processors are time-shared to create the virtual processor
abstraction . -]

Our objection to busy waiting should not be construed as a criticism
of the bakery algorithm per Se , which is merely following the implicit
ground rules of the critical section problem . The bakery algorithm and
all previous solutions use busy waiting because no other method of
processor delay is provided for in the statement of the problem. In
implementing the MASTERMODE/NORMALMODE operations , however , we have
available an explicit mechanism to control processor delay , in the form
of the SLEEP/WAKEUP operations. Our first criterion for a satisfactory
implementation is that busy waiting be eliminated through the use of the
SLEEP/WAKEUP mechanism . (In taking this approach we are passing to a
l ower level the responsibility for achieving a specific form of processor
delay which is consistent with the underlying physical configuration of
the system.)

c. Cyclic Sleep ing

One way to minimize the inefficiency of busy waiting is to use
“cyclic sleeping ” . In this approach , a processor which has failed a test
that would have allowed it to proceed with its program does not immediately
repeat the test. Instead it performs a special form of the SLEEP operation
which causes it to wake up automatically after a specified elapsed time .
It then repeats the test to see if it can proceed . The advantage over busy
waiting is that the processor does not remain continuously active while
waiting to proceed.

The primary attraction of cyclic sleeping is that available algorithms
which use busy waiting can be adapted by simply replacing each “busy wait”
loop with a “cyclic sleep ” l oop . The method has some significant dis-
advantages , however. For example , it requires a new and previously
unnecessary form of the SLEEP operation. Also , it may involve considerable
overhead because the testing of the condition being wa i ted on may have to
be repeated many times. (Here it offers a quantitative but not qualitative
advantage over busy waiting.) A final disadvantage of cyclic sleeping is
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that a processor must wait until the end of its latest sleep period to
proceed , even after the condition it is waiting on has been satisfied ,
resulting in a certain amount of unnecessary delay . Because of these
disadvantages we require that cyclic sleeping not be used in implementing 5-

the MASTERMODE/NORMALMODE operations.

d. First-come-fi rst-served Access

The bakery algorithm is a first-come-first-served method in the
following limited sense. A processor which is about to enter its critical
section passes two points in the program , which we will call (in order of
appearance) Al and A2 , prior to reaching any point at which its progress
can be delayed . Points Al and A2 are each defined by a single primitive
operation , so that a definite sequence can be established for the times
at which the points a-e passed by the various processors. If a certain
processor passes point 12 before another processor passes point Al , then
the former processor will always perform its critical section ahead of
the latter processor. This is not the strictest kind of first—come-first-
served behavior , because if there is a time when two processors are both
between points Al and A2 , we cannot predict the order in which they will
perform t he i r cr iti cal sec ti ons , even if we know the order in which points
Al and A2 were passed by each processor.

Although the behavior just described for the bakery algorithm prevents

indef inite blocking of individual processors (which was one objective in

requiring first-come-first-served access to mastermode), it is not suf-
ficient for solving those shared resource allocation problems in which
strict first-come-first-served access to a shared resource is demanded
by the problem statement. So that such problems will be easy to solve , we
require that the MASTERMODE operation have the following property . Each
processor which performs the MASTERMODE operation will pass a certain
point in its program , which we denote as point A , prior to any possibility
of being delayed . Proces3ors must enter mastermode in the precise order
in which they passed point A. In other words , to be considered satis-
factory the implementation must provide the strictest kind of first-
come-first-served access to mastermode. -
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e. Iterated Testing

In the bakery algorithm there are two 1oops in which a processor
must perform one or more logical tests associated with another specific
processor and which must be repeated until the tests have been made for
every processor in the group. Because of our emphasis on efficiency ,
such iterated testing is rather distasteful. For one thing, we will
suffer the overhead normally associated with loops (e.g., the processing
required to increment indices and test l oop counters). Even more serious ,
the overhead incurred in entering a critical section will become greater
and greater as the total number of interacting processors increases , even
though some of the processors may ent r their critical sections very in-
frequently. To eliminate such overhead , we i~equire that the MASTERMODE/
NORMALMODE operations be implemented by an algorith m which makes no use of
iterated testing. Another way of stating this requirement is that the
amount of processing done when entering and leaving mastermode must be
i ndependent of the total number of processors. In conjunction wi th our
previous restrictions against busy waiting and cyclic sleeping, the pro-
hibition of iterated ~esting means that in essence we are requiring the
MASTERMODE/NORMALMODE operations to be implemented by a completely loop-
free algorithm .

f. Dependence of Algorithm on N

One data item which appears explicitly in the bakery algorithm
is the total number of interacting processors , N. Its appearance in the
algorithm is unavoidable due to the iterated testing menti oned above. One
undesirable consequence is that the maximum number of processors must be

- 
predetermined , and once set cannot be changed without reprogramming or at
least restarting all of the processors . We would prefer an implementation
in which a new processor could join the group of competing processors at
any time , i rrespective of any prior limit on the maximum number of proces-
sors. In the hope of achieving this result , we require that N , the numbe r
of processors, not appear in the data base of the algorithm which imp l ements
the MASTERMODE/NORMALMODE operations. That is to say, a particular processor

L 

must not require knowledge of the maximum number of processors with which
it is competing (or might compete) to enter mastermode.
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g. Shared Memory Allocation

In implementing the MASTERMODE/NORMALMODE operations a means of
communication among the processors is needed . As in the case of the
cr i t i cal section pro b lem , the means provided is a memory segment to which

all processors have ‘-ommon access. If we are to achieve the goal mentioned
above of allowin g new processors to joi n the grou p at any time and in any
number , our im plementation must not depend on a static allocation of shared

memory locat ions made pr ior to the t ime at wh i ch the p rocessors start
runn ing. Instead , we woul d like to allocate shared memory dynamically, as

the need for it arises. In addition to avoiding a predetermined limit on

the number of p rocessors , dynamic allocation would also allow the shared

loca ti ons assoc iated w i th a g iven p rocessor to be released for other uses
if that p rocessor were ever deact i vate d.

The use of dynamic allocat i on implies tha t a new p rocessor jo i ning t he
active group will obtain any additional shared locations required for its

part i c ip at ion from amon g wha tever locat i ons are currentl y unused i n t he
shared memory segment. This requires, in particular , t ha t the i mp l emen tat i on
not depend on the share d locations bein g con ti guous . T herefore , in the

hope of making dynamic allocation possible , we specif~-’ that the MASTERMODE

and NORMALMODE opera ti ons w i ll be implemente d by an al gor i thm which does
not require contiguous shared memory locations.

h. Shared Memory Size

The bakery algorithm uses 2N shared memory locations , there
being two locations associated with each of the N processors . In order to

rule out implementations which require an inordinate amount of shared
memory , we will set 2N as an upper limit on the number of shared l ocations
required . It is intended that this restricti on be applied rather loosely.
For example we would not reject an otherwise satisfactory implementation
simply because it required 2N+l shared locations.

i. Permissible Operations on Shared Memory

According to the statement of the critical section problem , the
only primitive operations which processors can perform on shared memory
locations are the operations of reading from and writing into one location

~~~ 
~~~~~
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at a time . An advantage of this limitation is that the resulting solutions
will work on practically any existing physical processor. However , the
limitation is unnecessarily restri ctive when , as in the present case , we
are trying to find a highly efficient solution for a specific physical
processor. The KIlO central processor has in its instruction set a number
of read-modify -write memory reference instructions which are constrained
by hardware to act as primitive operations even when performed simultaneously
in a system having more than one physical processor. To take advantage of
these instructions in implementing the MASTERMODE/NORMALMODE operations ,

we spec i fy that the pri mi t i ve operat ions avai la b le to each p rocessor ,

besides SLEEP and WAKEUP , are the indivisible user-mode machine instructions
of the KIlO centra l processor. This is our single relaxation of the
restrictions given in the statement of the critical section problem . It

is through this relaxation , along with the availability of the SLEEP and
WAKEUP operations , that  we ex pect to be a b le to meet a l l  of the add i tiona l
conditions we have imposed .

4. STATEMENT OF THE MASTERMODE /NORMALMODE PROBLEM

We have liste d above the desired properties of the MASTERMODE/

NORMALMODE operations. We will now collect these properties into a

concise statement of the problem we wish to solve . We will refer to the
problem in this specific form as the “mastermode/norma l mode problem ” to
distinguish it from the original critical section problem. An algorithm
which solves the mastermode/normalmode problem is given in the next Section.

The Mastermode/Normalmode Problem

N independent processors are concurrently executing the cyclic pro-
gram shown on the flowchart in Figure 5, each processor having initially
begun at the START point. The relative operating speeds of the processors
are unknown and in fact may vary with time . The problem is to devise
programs for the ENTRY and EXIT blocks such that at most one processor
can be in mastermode (i.e., be executing in the MASTERMODE block) at a
given time . The processors communicate via a set of memory locations to
which all processors have common access. The primitive operations
available to each processor are the SLEEP and WAKEUP operations (which
work as described in Section II) and the indivisible user-mode machine

_  
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START_ 1
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I EXITJ

Figure 5. Cyclic Mastermode/Normalmode Program

instructions of the KIlO centra l processing unit. A processor must be able
to halt in normalmode without blocking the progress of other processors . If
two or more processors have reached the ENTRY block , one of them must even-
tually be allowed to enter mastermode regardless of the relative sequence in
which the processors execute their instructions (i.e., deadlock of the whole
system must not occur). In addition the solution must satisfy the fol l owing
previously discussed restrictions:

(1) Busy waiting is not allowed .
(2) Cyclic sleeping is not allowed .
(3) Iterated testing is not allowed .
(4) There must be a point near the beginning of the ENTRY block , say

point A , which each processor can reach prior to any possibility of being
delayed . Processors must enter mastermode in the precise order in which
they reach point A.

(5) The total number of processors , N , must not appear as an i tem in
— the data base of the solution.

(6) The solution must not require that the shared memory locations
be contiguous.

(7) The N processors must not require the use of more than 2N shared
memory locations.

(End of problem statement.)
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SECTION V I

A SOLUTION TO THE MASTERMODE/NORMALMODE PROBLEM

1. INTRODUCTION

In this chapter an algorithm is presented which solves the mutual
exclusion probl em stated in Section V. The al gorithm sa t i s f ies  all of

the conditions listed in Subsection V-4. A detailed proof that the
algorithm is a correct solution will be given in Section V II . The aim of
the present chapter is to introduce the algorithm and give the reader a
general idea of its operation. We will begin by describing a scheme for
classifying the interactions which can occur among the various processors
as they compete to enter mastermode. This classification scheme , it is
felt, will make the solution easier to understand and will provide a
starting point for the correctness proof.

2. CHARACTERIZATION OF PROCESSOR INTERACTIONS

The statement of the masterniode/normalmode problem was based on a
cyclic program executed by N processors which operate concurrently. The
flowchart for this program is shown in Figure 6 for convenience . To solve
the problem we must devise programs for the ENTRY and EXIT blocks satisfy-
ing the problem statement in Subsection V-4. Even though all processors
follow the same algorithm in entering and leaving mastermode , we will
simplify the implementation of the algorithm by assuming (at least for
now) that each processor executes its own private copy of the programs
for the ENTRY and EXIT blocks.

Recall that there is a point in the ENTRY block , point A , which each
processor reaches prior to any possibilit y of delay . The problem state-
ment requires that processors enter mastermode in the precise order in
which they reach point A. To eliminate any ambiguity in this order , we
will require that point A be defined by a single primitive operation.
Since only one processor can be in mastermode at a given time , a processor
which reaches point A while another processor is still in masterniode must
be delayed until the processor in mastermode returns to normalmode . A
precise meaning for the phrases “st ill in mastermode ” and “returns to
normalmode ” is provided by a point in the EXIT block , point B , which each

62

-5- -5——-- - - — • -5----—-5—5-- -.

~

--- - --.--- 5. —



— - — ,~ -~ - - —-“-5- — 5--— — —“ ----“ -—--—-— ———,-~~~~~~~~~~~~~~ ——-- - -

AFAL-TR-77-43

START

INITIALIZE

NORMALMODE

Point A

ENTRY

MAS TE RMODE

Point B

EXIT

Figu.e 6. Cyclic Mastermode/Normalmode Program

processor passes while returning to normalmode . If there is just one
processor in mastermode , and it passes point B before a second processor
reaches point A , the second processor will be allowed to enter mastermode
wi thout delay . If the second processor reaches point A while the first is
between point A and point B (i .e., has reached point A and has not reached
point B), the second processor will be delayed . Thus , a processor is
“still in mastermode” until it reaches point B.

The following definitions will make it easier to talk about the
relationships between processors comDeting to enter mastermode . If a
given processor , say Processor P , has passed point A , and the next processor
to reach point A , say Processor Q, does so before Processor P reaches
point B, we will say that Processor P is the “leader ” of Proces sor Q,
and Processor Q is the “follower ” of Processor P. If a third processor
now reaches point A , it becomes the followe r of Processor Q (not P) and
Processor Q becomes its leader. Note that a processor can enter and exit
mastermode without having a leader. This is the case if there is no other

~~~ processor between points A and B at the time the given processor reaches
_ _ _
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point A. A processor can also enter and exit mastermode without having
a fol l ower. This is the case if no other processor reaches point A during
the time that the given processor is between points A and B.

The activity of a processor from the time it first attempts to enter
mastermode until it finally returns to normalmode will be called a “pass ”
through mastermode . We will now characterize the various kinds of pass a
processor can make . If a processor enters mastermode and returns to
norma lmode without having either a l eader or a followe r, we will say that
it has made a “type N” pass (N stands for “neither ”). If the processor
had a leader but not a follower , its pass was of “type L” , and if it had
a follower but not a leader , its pass was of “type F” . Finally, if the
processor had both a leader and a follower , it has made a “type LF” pass.

Suppose Processor P is making a type F pass through mastermode , and
its follower is Processor Q. If P remains in mastermode for some time
after Q reaches point A , Q must be delayed so as not to enter mastermode
before P returns to normalmode (or at beast passes point B). Now , the
problem statement does not allow a “busy wait” l oop as a means of delaying
a processor , so the only legitimate way for Processor Q to be delayed is
for it to voluntarily go to sleep. Thus , we suppose that in the situation
just described , Processor Q will perform the SLEEP operation . It then

becomes the responsibility of Processor P. after passing point B , to
perform a WAKEUP (Q) operation so that Processor Q will wake up and enter
mastermode . Clearly, Processor P must have some way to determine which
processor to wake up, that is , to find out who its follower is. But P
cannot do this by checking each of the other processors in turn , because
the problem statement prohibits the use of iterated testing. Instead , we
suppose that Processor Q, just before going to sleep, has left an indi-
cation that it is to be awakened by Processor P (for example by storing

5- 

its unique processor number in a shared memory l ocation associated with
Processor P). This requires that Processor Q be able to determine who
its leader is. It seems likely that this can be done , since as soon as
Processor Q reaches point A it obtains as its leader the processor which
reached point A just before it. We will assume for the moment that the
machine instruction which defines point A can be chosen in such a way
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that a given processor , as a result of passing point A , is able to (1) deter-
mine whether or not it has a leader , (2) determine who its leader is ,
whenever it has one , and (3) arrange for these determinations to be made
correctly by the next processor to reach point A.

Th€ type F pass by Processor P described above may be summarized as
follows . Processor P passes point A and , upon finding that it has no
leader , enters mastermode without delay . Before Processor P reaches
point B, Processor Q passes point A , becoming P’ s follower. When Q finds
that P is its leader , it leaves a message for P to wake it up and goes
to sleep. After P passes point B , it reads the message from Q, wakes
Q up, and returns to normalmode . Q wakes up and enters mastermode . Note
that Processor Q is making either a type L or a type LF pass.

We have just described the “normal” interaction between a processor
making a type F pass and its follower. We will further classify this as
a “type Fl” pass to distinguish it from another case which will now be
described . Suppose in the above example that Processor P has passed
point B and has reached the point of reading the message from its follower
before Processor Q has reached the point of leaving the message . We
consider this an “abnormal ” interaction because it is not expected to
happen often. Nevertheless it can happen and our solution must allow for
it. When this situation arises , we will say that Processor P is making a
“type F2” pass. Discussion of how it can be handled is postponed until
a complete solution is presented . Note that the abnormal interaction would
not occur if a processor , as part of the process of passing point A , could
notify its leader to wake it up. Since point A is defined by a single
machine instruction , however , it is unlikely that this notification can
be included with the other things we are requiring to happen at point A.

When a processor makes a type L pass , the same kind of abnorma l
interaction can occur between the processor and its leader , in which case
we will refer to the pass as “type L2” . In contrast to this is the “type
Ll” pass , in which the norma l interaction occurs i.e., the follower has
l eft the message for its leader before the leader tries to read it.
When a processor makes a type LF pass , a normal or abnormal interaction
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can occur between the processor and its l eader and , independently, between
the processor and its follower. Thus , there are four kinds of LF pass ,

which will be denoted L1F1 , L1F2 , L2F1 , and L2F2. To say that a processor
has made a type L1F2 pass , for example , means that (1) the processor had
both a leader and a follower; (2) the processor , before going to sleep

prior to entering mastermode , notified its leader to wake it up, and the
leader later recognized the notification and woke the processor up (normal
interaction); and (3) the processor , after finishing in mastermode and
passing point B, looked for a notification from its follower before the
follower had made any notification , requiring a special (and as yet
unspecified ) action to handle this case (abnorma l interaction).

The preceding paragraphs have defined nine ways a processor can pass
through mastermode , namely the passes of type N , Ll , L2, Fl , F2, LIF 1 ,

L1F2 , L2F1 , and L2F2 . By specifying one of these nine types , one can com-
pletely characterize the interactions which took place between the processor
and its leader (if any) and between the processor and its follower (if any).
Note: We do not intend to imply that this classification is inherent in
the statement of the problem. it is based , in fact , on our assumption
about the activity which will take place when a processor passes point A.

3. DATA BASE FOR THE SOLUTION

Before presenting an algorithm which solves the mastermode/norma l mode
synchronization problem , we will describe the various data i tems which
appear in the algorithm. Some of these data i tems are shared variables to
which all of the processors have common access , and some are private
variables , each of which is accessible only to a particular processor.
Since the permissible operations on these data i tems are the machine
instructions of the KIlO CPU (Reference 11), it is necessary to specify
which i tems are stored in fast memory (i.e., machine accumulators) and
which are stored in main (core) memory .
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a. Shared Variables

The N processors share a total of N+l core memory locations
which are identified as follows :

Shared flag word
Processor l’ s wakeup wo rd )
Processor 2’s wakeup word

- ) N4-l locations

Processor N’ s wakeup word )

These locations can be arranged in any order and need not be contiguous ,
although the algorithm does require that the wakeup words have nonzero 5-
addresses. The shared flag word must initially contain zero before any
processor starts running. The initial values of the other shared variables
are immaterial .

b. Private Variables

The local data storage for each of the N processors includes
the followi ng data i tems :

Name Use or Contents

AC General-purpose register
J Index register
MYNUM This processor ’s number
FLAG Address of shared flag word
WAKEUP Address of this processor ’ s wakeup word

The first two i tems above are accumulators and the last three are core
memory locations. All three core locations contain constants , that is ,
their contents are not changed once they have initially been set to the
values indicated .

4. FLOWCHART OF SOLUTION ALGORITHM

A solution to the mastermode/no rmalmode problem is shown in flowchart
form in Figure 7. This diagram has the same form as the one appearing in
the statement of the problem , but now the operations performed in the
ENTRY and EXIT blocks are shown in detail at the (KIlO) machine instruction
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Figure 7. Flowchart of Solution Algorithm
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level . A conventional register transfer notation is used . For example , 
5-

A-’-B means that the value stored at location A (or the value A itself ,
if A is a constant) is stored at location B , replacing the current con-
tents of B. A parenthesized term i dentifies the location whose address
is stored at the location within the parentheses (indirect addressing).
Thus , A+B-*-(C) means that the contents of locations A and B are added
and the result is stored at the location whose address is stored at
location C. Subscripts L and R denote the l eft and right halves ,
respectively, of a specified location or value and are used when repre-
senting certain KIlO halfword instructions necessary to the operation
of the algorithm. The variable names appearing in the flowchart were
described in the preceding section .

For reference, each step of the algorithm has been given a number.
The number sign (~) will be used consistently to denote these steps.
Thus , for example , #5 standing alone always refers to step #5 of the
algorithm as indicated in the flowchart . Some of the steps are enclosed
in double boxes (#3, #5, etc.). These are the steps which modify shared
variables , and which can thus be considered primitive operations only by
virtue of being single machine instructions. The remaining steps ,
enclosed in single boxes , may each represent one or more machine instruc-
tions. However , these steps involve only the private variables of a given
processor , and hence may also be considered primitive operations. For
example , if two processors have done step #7 concurrently, the net effect
is as if it had been done by first one and then the other , simply because
each processor has accessed only its own private storage locations.

5. DESCRIPTION OF FLOWCHART STEPS

Before the solution is explained , the action performed at each step
of the algorithm will be described . It should be emphasized that each of
the N processors is independently executing a program represented by the
flowchart. Thus , the activity at each step is described from the point
of view of a particular processor. Throughout the rest of this section
and all of the next section frequent reference to the flowchart will be
made . For the reader ’ s convenience , a copy of the flowchart is provided
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as a foldout drawi ng in Figure 9. The following description of flowchart
steps is presented at this time to ensure that the reader understands the
symbology used in the flowchart. The reader may wish to refer back to this
list when the operation of the algori thm is discussed later.

#1 - After a processor is started , and before it enters the main cycle ,
certain of its private variables need to be initialized . In particular ,
appropriate constants are stored at the private locations MYNUM , FLAG , and
WAKEUP. This step does not affect the shared flag word , which had to be
cleared before any processors were started.

#2 - All the noncritical processing of the cyclic program takes place
within this step, and here the processor presumably spends the majority of
its time in each cycle. When the processor has finished its normalmode
processing and is ready to request access to mastermode , it does so in
practice by calling a procedure named MASTERMODE , which consists of the
ENTRY block.

#3 - Set this processor ’s wakeup word to zero .

#4 - Store the address of this processor ’s wakeup word in both the
left and right halves of private accumulator AC.

#5 - Interchange the contents of AC and the contents of the shared
flag word . (This must be done by a single machine instruction.)

#6 - Test the value now in the right half of AC against zero.

#7 - Move the value now in the left half of AC to accumulator J.
Then store this processor ’s number in AC.

#8 - Interchange the contents of AC and the contents of the location
whose address is in J.

#9 - Test the contents of AC against zero.

#10 - Wake the processor whose number is in AC (i.e., perform the
WAKEUP(M) operation , where M is the number now contained in AC).

#11 - Perform the SLEEP operation . The processor will not proceed
beyond this point until some other processor performs a WAKEUP(K) operation ,
where K is the number of this processor.

70

—-.--— -—

~

-‘ - - -5 - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—-5 - - - - - -

AFAL- TR- 77-43

#12 - No processing is done at this step . It represents the point at
which it is permissible for the processor to enter mastermode . In practice ,
this step is the return point of the MASTERMODE procedure .

#13 - The critical processing of the cyclic program takes place
within this step. (This is the processing which requires mutual exclusion
from the critical sections of all other processors.) In general there is
no restriction on the kind or amount of processing done here , except that
the processor must not halt while in mastermode. However , it is assumed
that the shared variables appearing in the algorithm ’ s data base are
altered only where explicitly shown in the flowchart . Hence , a processor
is not allowed to modify the shared flag word or any wakeup word while
executing #13. Additional rules , for example “A processor may not perform
the SLEEP operation while in mastermode ,” may be imposed to ensure that
the system of processors does not become deadlocked. When a processor has
finished mastermode processing and is ready to return to normalmode , it
does so in practice by calling a procedure named NORMALMODE , which con-
sists of the EXIT block.

#14 - Store the address of this processor ’ s wakeup word in the right
half of AC and clear the left half to zero.

#15 - Form the bit-by-bit “exclusive OR ” of the contents of AC and
the shared flag word , and store the result in both AC and the shared flag
word . This must be done by a single machine instruction. Note that the
left half of the shared flag word is not changed in this step, since the
left half of AC contained zero. Also note that the right halves of AC
and the shared flag word will now contain zero if and only if the right
half of the shared flag word contained the address of this processor ’ s
wakeup word just before this step was done.

#16 - Test the value now in the right half of AC against zero.

#17 - Store the value now in the left half of the shared fl ag word
in the right half of that word , leaving the left half unchanged. This
must be done by a single machine instruction . (Note: The value stored
might not be the one which was in the left half of the shared flag word

r at the time #15 was done , since another processor may have done #5 in the
meantime.)

~~~~~~~~~

- 

71

-5-— —-5——— ~~~~ - -
~~ 

-.
~~~ 

--5- - -



- ---- — ‘~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFAL-TR- 77-43

#18 — Store this processor ’s number in AC.

#19 - Interchange the contents of AC and the contents of this
processor ’s wakeup word .

#20 - Test the contents of AC against zero.

- #21 - Perform the SLEEP operation. Do not continue beyond this point

unti l some other processor performs the WAKEUP(K) operation , where K is

this processor ’s number.

#22 - Move the number now contained in this processor ’s wakeup word
into AC.

#23 - Perform the WAKEUP(M) operation , where M is the number now
contained in AC.

#24 - No processing is done at this step . It represents the point
at which the processor is ready to return to normalmode . In practice ,

this step is the return point of the NORMALMODE procedure .

6. INITIAL STATE OF THE SYSTEM

It is assumed that when each processor is first started , it begins
at the START point of the fl owchart and follows the cyclic program
specified therein. The only assumption about the speed of a given
processor is that it continues to progress at some rate unless it has de-
l ayed itself indefinitely by performing the SLEEP operation or has halted
while in norma lmode . An aspect of the algorithm not shown in the flow-
chart is the required initial state of the system prior to the starting
of any processor. The requirements are that the shared flag word contain
zero and that there be no pending wakeups in effect for any processor.

7. EXPLANATION OF SOLUTION ALGORITHM

We described above each step of the flowchart , but have still not
explained how or why the algorithm works. To do this, it will help to
consider the various interactions that can occur between processors .
Recall that the activity of a processor from the time it first requests
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to enter mastermode until it is ready to return to normalmode is
called a pass through mastermode . The processing done from step #3
to step #24 of the flowchart represents one pass. This part of the
flowchart is shown on the right in skeleton
form. Here only the decision points at which
the processor can take alternate execution
paths are shown . Clearly there are three
ways to traverse the upper part of the
flowchart and three ways to traverse the
l ower part , and hence there are nine dif-
ferent paths a processor might take on a
given pass. Previously nine kinds of pass
were defined based on the interaction
between a processor and it~. leader and its
follower. It is not a mere coincidence
that there are nine kinds of pass and also
nine flowchart paths. In fact, there is
an exact correspondence between which of the nine paths a processor is
following and what type of pass it is making. Point A and point B , used
in defining the pass types , correspond to step #5 and step #15 of the
flowchart , respectively.

Now consider the path followed by a processor making a type N pass.
That the pass is type N indicates that the processor has neither a
leader nor a follower , which means that (1) there were no processors
between #5 and #15 when the given processor did #5, and (2) the processor
will do #15 before any other processor does #5. It will be shown later
th~t the right half of the shared flag word contains zero whenever
there are no processors between #5 and #15. Thus , the processor making
a type N pass , in doing #5, sets the right half of AC to zero. As a
result , it takes the “yes” path from #6 and enters mastermode without
de l ay. Later, when the processor is ready to do #15 , the riaht half of
the shared flag word still contains the address of the processor ’s
wakeup word , which it put there when it did #5. Thus , in doing #15 , the
processor sets the right half of AC to zero. As a result it takes the
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“yes” path from 16 and returns to normalmode at once. Note that as soon
as there is no longer a processor between #5 and #15 (i.e., as soon as
the processor does #15), the right half of the shared flag word agair
contains zero, as required . Thus, if another processor now makes a type
N pass , it will work exactly like the one just described .

Next we will determine the path followed by a Drocessor , say
Processor Q, which is making a type L pass (either type Lb or type L2).
Since the pass is type L , Processor Q has a leader , which we denote as
Processor P. From the definition of a type L pass, we know that at the
time Processor Q does #5, one or more processors are between #5 and #15 ,
and the one which did #5 most recently is Processor P. We will show
l ater that whenever there are one or more processors between #5 and #15 ,
the right half of the shared flag word is nonzero and the left half of
the shared flag word contains the address of the wakeup word of the
processor which most recently did #5. Thus , in doing #5, Processor Q
stores a nonzero value in the right half of AC and the address of
Processor P’ s wakeup word in the left half of AC. Furthermore , it stores
its own wakeup word ’ s address in both halves of the shared flag word ,
so the condition stated above still holds. As a result , it takes the
“no” path from #6.

Let us now look ahead to the time when Processor P has finished its
mastermode processing and is ready to return to norma lmode. (Processor P
might be asleep waiting for its turn in mastermode when Processor Q does
#5, but in that case it will eventually be waked up by its own leader in
the same way that it in turn wakes up Processor Q, which is the case we
will describe.) Just before Processor P does #15 , the right ha lf of the
shared flag word will contain the address of the wakeup word not of
Processor P. but rather of Processor Q, so the “exclusive or” operation
will place a nonzero result in the right halves of both AC and the shared
flag word . No other processor has done #5 in the meantime , since such a
processor would become Q’ s follower , but Q is making a type L pass and
hence has no follower. As a result of the nonzero value in the right half
of AC , Processor P will take the “no ” path from #16.
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We have just seen that because Processor Q is making a type L pass ,
it will take the “no” path from #6, and its leader , Processor P, will
(eventually) take the “no” path from #16. We now have to consider whether
Processor Q reaches #8 before or after Processor P reaches #19 , because
this determines whether Processor Q is making a pass of type Lb or type L2.
In the normal case , corresponding to a type Lb pass , Processor Q does #8
before Processor P does #19. Consider what happens when Q does #8.
Before, in step #7, Q stored in J the address of P’s wakeup word , which
it got from the left half of the shared flag word back at step #5. At
#7 Processor Q also stored its own number in AC. Thus , at #8, Q stores
its own number in P’ s wakeup word and stores in AC the value previously
in P’ s wakeup word . But this value is zero , because Processor P cleared
its wakeup word when it did #3, and no other reference to P’ s wakeup word
is made until P does #19. Thus, Q will take the “yes” path from #9 and
will perform the SLEEP operation at #11 . Here Processor Q’ s progress
comes to a halt for the time being.

In the meanwhile , Processor P has been working its way toward #19.
At the time Q did #8, P was most likely doing #13 , but it could in fact
have been just getting ready to do #6, or have been asleep itself at #11 ,
or have already reached #18. That is , we only know with certainty that P
has already done #5 and has not yet done #19 when Q does #8 in the case
under discussion. At any rate, we know that P will eventually take , or
has already taken , the “no ” path from #16 , for reasons already given.
At #17 Processor P restores the shared flag word to its condition before
P did #15 by copying its left half , which contains the address of
Processor Q’ s wakeup word , inasmuch as Q has no fol l ower , into its right
half. This is necessary so that the test at #16 will work correctly
when Processor Q does it later. At #19 P stores its number in its own
wakeup word , and stores in AC the value previously in its wakeup word .
This value is Processor Q’s number , put there by Q at step #8. Since
this value is nonzero , P takes the “no” path from #20. At #23 it wakes
up the processor whose number is in AC , namely Processor Q, and then
returns to normalmode to repeat its cycle. As soon as P does #23, Q is
allowed to proceed past #11. Its subsequent activity is like that of a
processor making a type N pass , as already described .
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In the case just discussed , a processor making a type Ll pass
(Processor Q) went to sleep prior to entering mastermode and was l ater
wakened by its leader (Processor P). The sequence was distinguished as
type Lb by the fact that Q did #8 before P did #19. Even in this sequence ,
it is possible that P will do #23, performing the WAKEUP(Q) oneration ,
before Q reaches #11 and does the SLEEP operation . If this happens , a
pending wakeup goes into effect for Processor Q, wh ich will then wake up

immediately upon performing the SLEEP operation . Thus , the processors
still behave as desired . This result reflects a required characteristic
of the SLEEP/WAKEUP operations , namely that a WAKEUP directed at a processor
which is not sleeping causes the next SLEEP by that processor to have no
effect other than to cancel the pendin g wakeup.

Next we will consider the “abnormal” case , corresponding to a type
L2 pass , in which Processor P does #19 before Processor Q does #8. In
this case Processor P’s wakeup word still contains zero just before P
does #19 , so in doing #19 P sets AC to zero. As a result , P takes the
“yes” path from #20 and performs the SLEEP operation at #21 . When
Processor Q does #8, Processor P’ s number is moved from P’ s wakeup word
(where it was put by P at #19) into the AC of Processor Q. Thus , Q takes
the “no” path from #9, wakes up at #10 the processor (Processor P) whose
number is in AC , and then goes to sleep at #11 . Processor P proceeds
from #21 after Q does #10. At #22, Processor Q’ s number is moved from
P’ s wakeup word (where it was put by Q at #8) to the AC of Processor P.
Thus , at #23 Processor P performs the 1~JAKEUP(Q) oDeration , after which it
returns to normalmode for another cycle. After P does #23, Q proceeds
from #11 , enters mastermode , and completes its pass as if it were type N.

We have now fully described the interaction which takes place
- - between a processor making a type L pass and its leader. When a processor

makes a type F pass , a similar interaction occurs between the processor
and its follower. Suppose Processor P is making a type F pass (either
type Fl or type F2) and its follower is Processor Q. In describing this
case we will concentrate mainly on the differences between it and the
previous case , in which Processor Q was making a type L pass. Note that

5- 

now Q is making either a type L or type [F pass.
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Since Processor P is making a type F pass and hence has no leader ,
we know that it will take the “yes” path from #6 and will be the only pro-
cessor between #5 and #15 when Processor Q does #5. This is in contrast
to the previous case , in which P might or might not have had its own
leader and in which there might have been any number of processors between
#5 and #15 when Q did #5. But whether or not P has a leader , Q still
finds a nonzero value in the right half of the shared flag word and finds
the address of P’s wakeup word in the left half of the shared flag word
when it does #5 , so Q’ s behavior in the ENTRY block is the same as before .
In particular , Q takes the “no” path from #6 after leaving the address of
its own wakeup word in both halves of the shared flag word at #5.

Now we return to Processor P’s activity after Processor Q has done #5.
Since Q might have a follower , one or more other processors might do #5
before P does #15. Even so, the right half of the shared flag word will
contain a wakeup word address other than P’ s own , and therefore in doing
#15 P will store a nonzero value in the right half of AC and will sub-
sequently take the “no” path from #16. When P does #17 , it may or may
not restore the shared flag word to its condition just before P did #15 ,
because some processor might have done #5 while P was between #15 and #17.
But in this case P can do no harm when doing #17, since both halves of
the shared flag word will already contain the same number. (The case
previously discussed , in which Q has no follower , is the case which makes
#17 necessary.)

We have just seen that a processor making a type F pass will take
the “no” path from #16 and its ft.~llower will take the “no” path from #6.
We noted a similar result before from the viewpoint of the follower. The
interaction which now occurs between leader and follower is identical to
that of the previous case. If Q does #8 before P does #19, in which case
P is making a type Fl pass , then Q goes to sleep after taking the “yes”
path from #9 and is later awakened by P, which has taken the “no” path
from #20. On the other hand if P does #19 before Q does #8, then P (which
is now making a type F2 pass) will go to sleep at #21 and will be awakened
later by Q at #10, after which it will return the favor by performing a
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WAKEUP(Q), al l owing Q to get past #11. (Of course in each case it is
possible for the WAKEUP to precede the SLEEP , causing the SLEEP in effect
to be ignored.)

All the interactions that can occur between a processor and its
leader or its followe r have now been described . Although the case of a
processor making a type LF pass has not been covered specifically, it may
be described by combining the previous cases . That is , if a processor is
making a type [F pass , its activity in the ENTRY block is the same as that
of a processor making a type [ pass , and its activity in the EXIT block
is the same as that of a processor making a type F pass. This activity
may be summarized as follows :

(1) A processor takes the “no” path from #6 if and only if it has
a leader.

(2) A processor takes the “no” path from #16 if and only if it
has a follower.

(3) A processor takes the “yes” path from #9 if and only if it
does #8 before its leader does #19.

(4) A processor takes the “yes” path from #20 if and only if it
does #19 before its follower does #8.

These four statements emphasize the significance of the leader!
follower relationship among the interacting processors , and would be
highly useful in proving the correctness of the algorithm. Unfortunately
we have up to now merely asserted , not proved , that these statements are
true. As we begin to construct a rigorous proof , we must be carefu l not
to use arguments which depend explicitly or implicitly on the validity of
these statements.

8. SATISFACTION OF PROBLEM REQUIREMENTS

Before going on to the correctness proof of the next section , let us
note that several of the requirements appearing in the statement of the
mastermode/normalmode problem are clearly satisfied by the proposed
algorithm. For example the solution require s N+l shared memory l ocations ,
meeting the upper limit of 2N l ocations. Furthermore these locations do
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not have to be contiguous. The total number of processors, N, does not
appear in the data base of the solution so there is no predetermined
limit on this number , and dynamic allocation of shared storage is feasible.
Finally, note that the sections of the flowchart representing the ENTRY
and EXIT blocks are loop-free even at the primitive operation (machine
instruction ) level . Thus , the algorithm employs no busy waiting , cyclic
sleeping, or iterated testing, ~l1 of which would involve some kind of
loop. It remains to be established that the algorithm satisfies the
following requirements :

(1) At most one processor can be in mastermode at a given time .

(2) Processors enter mastermode in the same order that they pass
point A, i.e., execute step #5.

(3) Any processor which passes point A eventually completes its
pass through mastermode and returns to normalmode , i.e., deadlock does
not occur.

A rigorous proof that the algorithm does indeed satisfy these con-
ditions is given in the next section. The discussion given up to now
has merely provided an informal “explanation ” of the algorithm. At this
point the reader should be reasonably familiar with the operation of the
algorithm and the interactions that occur among processors competing to
enter mastermode .

9. EFFICIENCY OF THE SOLUTION ALGORITHM

As we noted earlier , the algorithm presented above meets all the
conditions imposed in the statement of the mastermode /normalmode problem .
Several of these conditions were included in the hope that they would
make the solution highly efficient. In other words , it was hoped that a
solution which met all of the conditions would be one in which the pro-
cessors would incur a relatively low “overhead” in their use of the
mastermode /normalmode facility . We are now in a position to determine

5- whether this hope has been realized .
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When using the approach to process synchronization described in
Section IV , we normally expect processors to spend most of their time in
normalmode , only occasionally entering mastermode for relatively brief
intervals. Under such conditions , the most common kind of pass for a
processor to make is the type N pass in which the processor does not
interact with other processors either when entering or leaving mastermode .
To consider a given solution efficient , we would certainly require low
overhead for a processor making a type N pass through mastermode . We will
consider all processing done in the ENTRY and EXIT blocks to be overhead ,
since a processor making a type N pass would have performed correctly if
it had simply begun its mastermode processing and returned to normalmode
without executing the steps of the algorithm in the ENTRY and EXIT blocks.

During a type N pass a processor takes the “yes” path from both #6
and #16. After such a processor calls the MASTERMODE procedure , i.e.,
reaches the ENTRY block in the fl owchart , the sixth machine instruction
executed is a return to the calling program , at which point the processor
has successfully entered mastermode . After the processor calls the
NORMALMODE procedure , i.e., reaches the EXIT block , the fourth machine
instruction executed is a return to the calling program , at which point
the processor has successfully returned to normalmode. These instruction
counts are based on the fact that steps #3, #5, #6, #12 , #14, #15 , #16 ,
and #24 each require one machine instruction and step #4 requires two
machine instructions. An assembly language program which implements the
algorithm is listed in Appendix B.

In addition to the above processing, one machine instruction is
required for each of the two procedure calls (to the MASTERMODE and
NORMALMODE procedures). Thus , a processor making a type N pass through
mastermode incurs an overhead of 12 machine instructions. By comparison ,
using the “bakery algorithm ” described in Section V the overhead in a
corresponding situation is 7N+18 machine instructions , where N is the
total number of processors . This figure was obtained from an efficient
assembly language implementation of the bakery algorithm as given in
Appendix A. Thus , for example if there are ten processors using the
mastermode/normalmode facility , a processor which entered and exited
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mastermode while all other processors remained in normalmode would incur
an overhead of 88 machine instructions using the bakery algorithm. On
the basis of this comparison it seems fair to consider the algorithm
presented in this chapter a highly efficient one and to conclude that
the conditions imposed in the statement of the mastermode/norrnalmode
problem have been justified by the quality of the resulting solution .
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SECTI ON V I I

PROOF OF CORRECTNESS OF THE SOLUTION

1. INTRODUCTION

In this chapter we will develop a rigorous proof that the solution

to the mastermode/normalmode problem presented in the Section VI is
correct. As noted in Subsection VI-8 , we have to establish that processors
are granted mutually exclusive first-come-first-served access to mastermode
and that any processor which requests to enter mastermode eventually does
so and finally returns to normalmode . The proof is complicated and we will
have to take great care to avoid the fallacy of basing certain proofs on
implicit assumptions which in reality depend on later results. If the
reader wishes to follow the proof in detail he is advised to refer con-
tinually to the flowchart in Figure 9.

2. AN IMPORTANT ASSUMPTION

A rigorous proof of correctness might be impossible (instead of very
difficult) without the following assumpti 3n : The SLEEP and WAKEUP operations
only occur where shown explicitly in the flowchart. In particular , no
processor performs SLEEP or WAKEUP operatv’rns during normalmode processing
at step #2 or mastermode processing at step #13 of the algorithm. We
will depend on this assumption when performing the correctness proof , but

will have to violate it when actually using the MASTERMODE and NORMALMODE
operations. To understand this violation of the assumption , recall that
the general procedure for solving resource allocation problems described
in Section IV required the use of SLEEP and WAKEUP operations for efficient
control of processor delay . That is , the same SLEEP /WAKEUP mechanism —

which is used to implement the MASTERMODE and NORMALMODE operations , as

shown in the flowchart , is also used at a higher level to control the
activity of processors competing for an aribtrary shared resource . Such
use requires SLEEP and WAKEUP operations to occur during normalriiode and
mastermode processing at steps #2 and #13. The latter activity is said
to occur at a “higher level” because the Section IV procedure for resource
allocation treats MASTERMODE and NORMALMODE as primitive operations , with
no cognizance of the fact that performing either operation may cause one or
more SLEEP or WAKEUP operations to occur.
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Due to the rudimentary nature of the SLEEP/WAKEUP mechanism , a
processor cannot distinguish the wakeups which it receives in connection
with its use of the MASTERMODE/NORMALMODE operations from those it
receives in connection with its (higher-level ) use of a shared resource .
Hence the possibility exists for improper system behavior due to unexpected

- 

interactions between these two uses of the SLEEP/WAKEUP mechanism . To

rule out this possibility , after provin g the correctness of the algorithm

under the assumption that SLEEP and WAKEUP only occur where shown in the

fl owchart , we must establ ish that additional SLEEP and WAKEUP operations

performed according to the pattern programs in Subsection IV-2 ,b an d IV-2 ,c

will not lead to im proper system behavior. We will consider this issue

again in Subsection V II -ll after completing the correctness proof.

3. OUTLINE OF THE PROOF PROCEDURE

The correctness proof to be g i ven i n this sect i on i s long and comp lex ,

providing many chances for the reader to become lost in details and lose

track of the overall objective . For that reason we will begin by listing

the major steps to be performed in the course of the proof. The reader

is encouraged to refer back to this outl i ne , which w i ll hopefully restore
h is perspective of the overall proof procedure , whenever he begins to

feel overwhelmed by the mass i ve deta i l and intricate reason i ng required
to complete the proof. The main steps of the proof are as follows :

(1) Determine the values which will appear in the l eft and right

halves of the shared flag word and the circumstances under which these
values can be altered . (Lemmas 1 through 5.)

(2) Develo p a rigorous definition for the terms “leader ” and
“follower ” which were used informally in the Section VI . (Definitions

1 and 2.)

(3) Define the concept of a “c h a i n ” of processors , which is a group
o- processors that enter mastermode one after the other, and describe a
way of representinc~ processor activity by drawing a “chain diagram ” .
(Definition 3.)
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(4) Establish a correlat ion between the leader/follower relationship

and certain patterns appearing in the chain diagram. (Proposition 1.)

(5) Devise a definition which allows the “activity associated with
a given chain ” to be correlated with the execution of specific flowchart
steps by specific processors . (Definition 4.)

(6) Recognize and rigorously define a “ rest state ” which the system
of processors occupies when no processor interactions related to mastermode

access are in progress. (Definition 5.)

(7) Show that once the system reaches the rest state , the processors

will never again be influenced by activity associated with any previous

chains . (Proposition 2.)

(8) Show that if the system is in the rest state just before the

start of a given chain , the first processor of that chain will enter master-

mode without delay. (Proposition 3.)

(9) Determine the values which will appear in the shared wakeup

words associated with the processors of a particular chain , given that

the system was in the rest state just before the start of that chain.

(Proposition 4.)

(10) Show that if the system is in the rest state just before the

start of a given chain , then all the processors of that chain wh ich have

followers , i.e., all but the last p rocessor of the cha in, are granted
mutually exclusive , deadlock-free , first-come-fi rst-served access to

mastermode . (Proposition 5.)

(11) Show that if the system is in the rest state just before the

start of a given chain , then the results of Proposition 5 also apply to

the last processor of the chain , provided the chain has a last processor.
(Proposition 6.)

(12) Show tha t if the system is in the rest state j ust before the
start of a chain which terminates , i.e., has a last processor , then the
system will again be in the rest state at some time after the end of that
chain and before the start of the next chain. This result al lows us to
show by induction that the system is in the rest state just before the
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start of every chain , and hence that Propositions 3 through 6 apply to
every cha in. (Proposition 7.)

(13) Show that although the proofs developed for the above results

depend on the assumption given in Subsection VII-2 that SLEEP and WAKEUP

operations only occur where shown explicitly in the flowchart , the con-
clusions remain valid when additional SLEEP and WAKEUP operations occur in

accordance with the general procedure for resource sharing developed in

Section IV . (Proposition 8.)

4 . THE CONTENTS OF THE SHARED FLAG WORD

Before beginning a detailed proof of correctness of the algorithm ,

we will derive some important prel iminary results concerning the values

appearing in the left and right halves of the shared flag word . We will

denote these halfwords by (FLAG)L and (FLAG)R , i n agreement w i th the
notation used in the fl owchart. Our results are expressed in Lemmas 1

through 5.

Our first objective is to determine which flowchart steps can alter

the contents of the shared flag word . (As noted in Section VI , we assume
that the shared locat ions used in the algorithm are altered only as

shown in the flowchart .) The steps which affect the shared flag word

clearly include #5, #15 , and #17. To these we must tentatively add #8,

because at step #8 an exchange occurs between a processor ’ s AC and the
location whose address is in that processor ’ s J register , and as far as

we know J might contain the address of the shared flag word . Now the
value in J when #8 is done was moved there at #7 from the left half of

AC , which in turn was loaded from (FLA G)L at the time #5 was done. Only
— i f  this value is the address of the shared flag word can #8 affect the

shared flag word . But can ( FLAG)L ever contain the address of the shared
f l ag  word? Of course it contains zero (which might be the address of the

shared flag word) initially, before any processor has done #5, but in this
case ( FLAG)R also contains zero , so the first processor to do #5 will take

the “yes” path from #6 , bypassing #8. When #5 is done for the first time ,
and every time thereafter , the address of some processor ’ s wakeup word is
stored in (FLAG)L. Thus , if (FLAG)L is ever to be set to the address of
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the shared flag word , it can only happen at #8. But this means that the
execution of #8 can alter the shared flag word only if the shared flag
word has already been altered by the execution of #8 , which rules out the
possibil ity of such an alteration ever happening for the first time . This
result is summed up in the following lemma .

Lemma 1. Whenever the contents of the s~’ared flag word are altered ,
it is the result of some processor doing either #5, #15 , or #17.

Since (FLAG)L is not affected by #15 or #17 , we see from Lemma 1
that it only changes when a processor does #5. This leads immediately
to the fol low ing result :

Lemma 2. After #5 has been done for the first time by any processor ,

(FLAG)L always contains the address of the wakeup word of the processor
5- wh ich did #5 most recently.

Now we are ready to consider the contents of (FLAG)R. In particular

we want to know when the value in (FLAG)P. can be zero , because this value
(after being moved to the right half of AC) is compared against zero in

the critical tests at #6 and #16. That is , the path taken from ~6 by a

given processor reflects the condition (zero or nonzero) of (FLAG)R just

before #5 was done by that p rocessor , and the path taken from #16 reflects
the condit ion of (FLAG)R just after #15 was done. Now at step #5 (FLAG)R

is set to the (nonzero) address of a processor ’s wakeu p wor d , and at step
#17 it is set to (FLAG)L , which by Lemma 2 also contains the address of a

p rocessor ’ s wakeup word . Thus , ~l5 is the onl y steo whose execution could

set (FLAG)R to zero. Clearly , if #15 is done by the processor which most

recentl y execute d ste p #5 , without an intervenin g execution of #15 by a

different processor , then (FLAG)R will be set to zero by the “exclusive
or ” operation at #15. Note that an intervening execution of #17 does not

change this result, since any processor doin g #17 sets (FLAG)R to the

address of the wakeup word of the processor which most recently did #5 ,

as is clear from Lemma 2.
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But there i s another way (FLAG)R might become zero, as the following
example shows. Suppose that Processors 1 , 2, and 3 have their wakeup
words at the shared locations whose addresses are 1 , 2, and 3 respectively,
and suppose Processor 3 has done #5, so that (FLAG)L and (FLAG)R each
contain the number 3. If Processor 2 does #15 now, it takes the “exclusive
or” of its AC (whose right half contains 2) and the shared flag word
(whose left and right halves contain 3) giving a result whose left half
is 3 and whose right half is 1. This result is stored in the shared flag
word, so the number in (FLAG)R is changed from 3 to 1. Now suppose
Processor 1 does #15 before any processor does #5 or #17. Since (FLAG)R
contains 1 , Processor 1 sets (FLAG)R to zero in doing #15. Thus , (FLAG)R
has become zero even though #15 has not been done by the processor whi ch
most recently did #5 (namely, Processor 3). Clearly this would not have
happened if some processor had done #5 or #17 between the times #15 was
done by Processors 2 and 1 , because a processor doing #5 would set (FLAG)R
to the address of its own wakeup word , and a processor doing #17 would set
(FLAG)R back to 3 (which is the address of the wakeup word of the processor
which most recently did #5). The above argument may be summarized as
follows :

Lemma 3. The contents of (FLAG)R can only be changed from a nonzero
to a zero value as a result of one of the foll owing:

(1) #15 is done by the processor which did #5 most recently.

(2) #15 is done two or more times in succession by different processors,
without an intervening execution of #5 or #17 by any processor.

Note that the lema does not say that (FLAG)R must become zero under
the stated conditions , but rather that it is possible for it to become
zero only under these conditions.

We will prove later that the second condition of Lemma 3 cannot
occur. In order to keep our results on the shared flag word together,
that result is given here wi thout proof.

Lemma 4. If a processor does #15 and sometime thereafter the same
or another processor does #15 again, some processor will have executed #5
or #17 in the meantime .
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Now suppose a processor has just done #15 for the first time since
#5 was most recently done. If the processor is not the one which did #5,
it will not have set (FLAG)R to zero in doing #15. Furthermore, before
#15 is done again by any processor, Lemma 4 says that #5 ~r #17 will be
done by some processor. But as soon as any processor does #5 or #17, it
is again true that (FLAG)R contains the address of the wakeup word of
the processor which most recently did #5, so only this processor can set
(FLAG)R to zero by doing #15. This leads to the following result:

Lema 5. The contents of (FLAG)R are changed from a nonzero to a
zero value when and only when #15 is done by the processor which did #5
most recently.

Of course we must remember not to use Lemma 4 or Lema 5 until we
have proved Lemma 4.

5. RIGOROUS DEFINITION OF LEADER AND FOLLOWER

In the preceding section we used the terms “ leader ” an d “fol l ower ”
to simplify the description of processor interactions. However, we did
not define the terms very carefully at the time . In particular , we
disregarded the fact that each processor is engaged in a cyclic process
and may make many passes through mastermode . Because of this fact, a
gi ven processor, say Q, may have one processor as its leader on one pass
and a different processor as its leader on a later pass. In such a case,
is the first l eader of Q still considered Q’s leader on the later pass,
giving Q two leaders? If not, exactly when did Q lose its first leader
and gain its second one? The following definitions allow us to answer
such questi ons precisely.

Definition 1. “Processor P is the leader of Processor Q” means that
the fol lowing statements are true:

(1) Q is between #5 and #15.

(2) P was between #5 and #15 at Tq, which denotes the time at which
Q did #5 most recently.

(3) No processor did #5 after Tpq and before Tq, where Tpq denotes
the most recent time prior to Tq at which P did #5.

88

- - .

~ 

—-—-- — - --——---—-~~-—.————- ---- - -— —.-



___ - ,-.--~~~‘-—— - —&~~~- 
- . ,

~~~
-.- .-, —- - 

.

AFAL-TR-77-43

Definition 2. “Processor Q is a follower of Processor P” means
that P is the leader of Q.

It is important to realize that these definitions refer to conditions
which may or may not exist at a given time . That is , the answer to the
question “Is P the leader of Q?” may be “yes” at one time , “no” at a later
time , and “yes” again at a still later time. Whenever a statement in-
volv ing leaders and followers is made, it should be interpreted as if a
phrase such as “at the present time” or “at the time implied by the context”
were added to the statement.

The following consequences of Definitions 1 and 2 are noted in
passing. They may give the reader a better idea of what it means for a
processor to be a leader or a follower.

(1) When a processor becomes a follower , it does so at #5. There-
after it continues to be a follower until and only until it does #15.

(2) When a processor becomes a leader, it does so at some point
between #5 and #15. Thereafter it continues to be the leader of a
particular follower until that follower does #15.

(3) It is possible for a processor to have more than one follower at
F a given time . For instance , it could have one fol lower associated with its

current pass and one associated with its previous pass. (After establishing
the correctness of the algorithm , we can show that a processor cannot have
more than two followers at a given time.)

(4) It is not possible for a processor to have more than one leader
at a given time.

(5) It is possible for a processor to be a leader and a follower at
the same time. In fact it could be the leader and the follower of the
same processor at a given time.

(6) It is not possible for a processor to be its own leader or
follower.
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6. REPRESENTATION OF PROCESSOR ACTIVITY

The following procedure gives a way of recording the activity which
occurs when several processors concurrently perform the flowchart
algorithm:

Starting at a time before any processor has done #5, record each
execution of #5 by writing down the number of the executing processor.
Write these processor numbers from left to right in the order that the
processors do #5. As each execution of #5 is recorded , note whether the
processor which did #5 just before, i.e., the processor whose number is
to the left of the number just written , is still between #5 and #15.
If so, place a dash between the last two numbers written.

Definition 3. The string of numbers and dashes produced by this
procedure will be called a “chain diagram ” , and each group of processors
joined by dashes will be called a “chain ” . The leftmost processor in
each chain is designated the “first processor ” of the chain. The right-
most processor , if it exists , is designated .the “las t processor ” of the
chain. The “beginning of a chain ” denotes the time at which the first
processor of the chain executes #5, and the “end of a chain” denotes
the time at which the last processor of the chain executes #15. The system
of processors is said to be “between chains ” during the time interval
after the end of one chain and before the beginning of another.

Below is shown a chain diagram which might result when N=5 i.e.,
there are five processors numbered 1 to 5.

2 2-4-1 3-5-3-2 4-2-5-1-2-3-4-1-

The final dash means that observation of the processors stopped here, and
the last chain may or may not extend beyond this point. In the third
chain above , Processor 3 is the first processor and Processor 2 is the
last processor. This chain ends when Processor 2 does #15. The definition
does not Imply that the other processors of the chain will have done #15
by this time . In the given diagram , It is not possibl e to determine

whether the fourth chain has a last processor.
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The procedure for making a chain di agram requires that the first
number be recorded when #5 is first done by any processor. We do not
rule out the possibility , however, that all the processors may be started
over again at the START point of the flowchart at some later time. Before
a new startup of the processors, the shared flag word must be reset to zero
and all pendi ng wakeups (if any) must be cancelled . A new chain di agram
results from each startup of the processors. The following proposition
shows the significance of the chain diagram.

Proposition 1. When a chain diagram is created as described above,
the sequence P-Q will appear in the diagram if and only if Processor Q
became the fol lower of Processor P upon doing #5.

Proof. This proposition fol l ows immediately from Definition 1. In
fact, the procedure for making the chain diagram was developed with

F Definition 1 in mind , so that the chain diagram would have the property
given in this proposition . End of Proof.

Proposition 1 shows that all leader/follower relationships appear in
the chain diagram. For example , consider the fourth chain of the diagram
shown above. The first dash in this chain signifies that Processor 2
became a follower of Processor 4 at the indicated time (the indicated
time being the fourth execution of step #5 by Processor 2 since the
processors were started). Then when Processor 5 did #5, it became
Processor 2’s follower. Processor 2 had to be between #5 and #15 at
this time , and hence was still a follower of Processor 4. Thus , there
was some time period when Processor 2 was both a follower of Processor 4
and the leader of Processor 5. Similarly, in the third chain it is seen
that there was a time period when Processor 5 was both the leader and
the follower of Processor 3. When Processor 2 did step #5 in the third
chain it became a fol lower of Processor 3, but the diagram does not
indicate whether Processor 5 was still Processor 3’s fol lower at that
time. This depends on whether Processor 5 did #15 before or after
Processor 2 did #5. In the latter case, Processor 3 would have had two
followers at the same time.
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7. INTERFERENCE BETWEEN CHAINS

In Section VI we introduced the idea of a “pass through mastermode”
corresponding to the execution of steps #3 through #24 by a given pro-
cessor. It is clear that a processor does #5 one time and hence, appears
once in the chain diagram for each pass it makes. Consequently, we can
associate all actions of a processor that occur between steps #3 and #24
inclusive with a particular appearance by that processor in the chain
diagram . Likewise we can identify all the activity associated with a
particular chain of the chain diagram . The frllowing definition makes
that identifi cation explicit.

Definition 4. The “activity associated with a given chain ” denotes
collectively the execution of steps #3 through #24 of the algori thm by all
processors during the pass or passes on which they appear in the given
chain.

Note that by this definition , the activity associated wi th a given
chain starts before the beginning of the chain and continues after the
end of the chain. For example , consider the chain diagram just discussed.
After Processor 4 completed its first pass (on which it appeared in the
second chain) it may have done #3, starting its second pass, before the
beginning of the third chain. It would then have had to remain between #3
and #5 until after the end of the third chain , since we see from the dia-
gram that the fourth chain began when Processor 4 did #5 on its second pass.
In the case just described , some activity associated wi th the fourth
chain occurred before the beginning of the third chain. It is also easy
to think of examples in which activity associated with the second chain
would continue to occur after the start of the third chain.

The fact that activity associated with earlier and l ater chains can
occur between the beginning and end of a given chain (which we refer to
as the “present” chain) raises a significant question : Can such activity
Interfere with the proper interaction of processors appearing in the
present chain? The answer to this question is intimately related to a
certain state, which we will call the “rest state,” in which the entire
system of processors may be found. The rest state plays an important
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part in the proof of correctness and is analogous to the “homing
position ” of Dijkstra and Habermann (References 4 and 27). We define
the rest state as follows:

Definition 5. The system of processors is said to be in the “rest
state” when the following conditions hold:

(1) If any processor is between #3 and #5, its wakeup word contains
zero.

(2) The right half of the shared flag word contains zero.

(3) There are no processors between #5 and #15 or between #16 and #23.

(4) Any processor between #15 and #16 will take the “yes” path
from #16.

(5) No pending wakeups are in effect.

Note that the system of processors is in the rest state initially,
before any processor has done #5. Since in the rest state there can be
no processors between #5 and #15, it is clear that the system must be
between chains when in the rest state. Another significant property of
the rest state is expressed in the following proposition .

Propositi on 2. Once the system reaches the rest state, no shared
storage location will ever again be affected by any activity associated
with a previous chain , nor wi l l any processor perform the WAKEUP operati on
as a result of any such acti vity.

Proof. When the system is in the rest state, any processor in a
previous chain must have already passed #15, and either will take (or has
taken) the “yes” path from #16, or will already be past #23 if it took the
“no” path from #16. Therefore, such a processor cannot al ter the shared
flag word (see Lemma 1) unless it appears in a new chain by doing #5
again , nor can it do #8 or #19, the only steps which can alter the shared
wakeup words. By similar reasoning no processor from a previous chain can
do #10 or #23 once the system has reached the rest state, and these are
the only steps In which the WAKEUP operation is performed . This establishes
Proposition 2. End of Proof.
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Proposition 2 identifies a sufficient condition for ruling out any
possibility that activity associated with earlier chains might interfere
with the present chain. The sufficient condition is that the system of
processors be in the rest state at some time between the end of the
previous chain and the beginning of the present chain. As we noted
above, the system is clearly between chains when in the rest state.
However, the converse question (namely, is the system in the rest state
when between chains) is much more diffi cult to answer and in fact will
not be resolved until we have proved Proposition 7. Until that time it
will be necessary to include , among the given conditions for each
proposition that we prove, a requirement that the system be in the rest
state prior to the beginning of the chain to which the proposition applies .

8. RELATION OF CHAIN DIAGRAM TO FLOWCHART PATHS

In Section VI we described the activity of various processors in terms
of the paths they fol l owed in the flowchart while performing the algorithm .
In the present section we have introduced a new way to describe such
activity , namely the chain diagram. With the following proposition we
begin to show a correlation between these two approaches.

Proposition 3. Suppose the system is in the rest state at some time
before the beginning of a given chain and after the end of any previous
chain. Then the first processor of the given chain will take the “yes”
path from #6.

Proof. When the system is in the rest state, (FLAG)R contains zero
by Definition 5. But by Proposition 2, (FLAG)R will not be altered until
a new chain begins. Thus the first processor of the new chain will set
the right half of its AC to zero in doing #5, and hence will take the
“yes” path from #6. End of Proof.

Proposition 3 may be paraphrased as follows : Assuming that the
system is in the rest state prior to the start of a given chain , the
first processor of that chain will be allowed to enter mastermode without
delay. We would certainly expect this to be the case, since we know that
there can be no processors between #5 and #15 when the first processor of
a chain does #5 under the given condition .
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Recall that there is a shared storage l ocation called a wakeup word
associated with each processor. We will refer to the processor corresponding
to a given wakeup word as the “owner” of that word . The following propo-
sition describes the contents of the wakeup words.

Proposition 4. Suppose the system is in the rest state at a time ,
say time 11, before the beginning of a given chain and after the end of
any previous chain. Then the following statements are true of the wakeup
word of each processor in the given chain:

(1) It is set to zero when its owner does #3.

(2) It is set to its owner ’s number when and if its owner does #19
during the new chain.

(3) It is set to the number of a follower of its owner when and if
any such follower does #8 during the new chain.

(4) It is not altered under any circumstances other than the ones
just listed , between time Ti and the end of the new chain.

(5) It contains zero when its owner does #5 for the first time in the
new chain.

Proof. Statements (1) and (2) are obvious from the flowchart. —

Considering Lemma 2 and the flowchart, it is clear that any processor
doing #8 references the wakeup word of the processor which did #5 just
before it did , which by definition is its leader if it has a leader. But
it must have a leader because otherwise it would be the first processor
in the chain and by Proposition 3 would not be doing #8. Thus , whenever
a processor does #8 it references the wakeup word of its leader , setting
that word to its own number . This proves statement (3). To prove (4),
note from Proposition 2 that after time 11 no processor from a previous
chain can alter a wakeup word. Thus , only processors of the new chain
can affect a wakeup word between time 11 and the end of the chain. From
the flowchart the only steps which can alter a wakeup word are #3, #8, and
#19, and the effects of each of these have been accounted for in statements
(1), (2), and (3). Thus, statement (4) is established . To prove (5), let
P be any processor of the new chain. It is clear from the statements
already proved that P’s wakeup word cannot change from zero to a nonzero
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value between time Tl and the time P first does #5. Therefore, if P does
#3, setting its wakeup word to zero, after time Ti , then the wakeup word
must still contain zero when P does #5. On the other hand , suppose P does
#3 before time Ti. In this case P will be between #3 and #5 at time Ti ,
so by the first part of Definition 5 P1 s wakeup word must contain zero at
time Ti. Hence in this case also , P’ s wakeup word will still contain zero
when P first does #5. This proves (5) and finishes the proof of the
proposition . End of Proof.

9. THE MAIN PROPOSITION

At this point it may seem to the reader that our correctness proof
is not getting anywhere , since we have not yet touched upon the primary
issues , as listed in Subsection VI—8 , that we set out to prove. Fortunately
that situation is about to change . The proposition given in this section
establishes that our proposed solution to the masterinode/normalmode problem
has every property required in the problem statement. This proposition
will not complete the proof of correctness, however , because it does not
apply to all of the processors appearing in the chain diagram. After
proving the proposition , our remaining task will be to extend its applica -
bility to cover every appearance of every processor in the chain diagram .

Proposition 5. Suppose the system is in the rest state at some time
before the beginning of a given chain and after the end of any previous
chain. Then the following statements hold for a processor of the given
chain during any pass on which that processor has a follower:

(1) Its follower will take the “no” path from #6.

(2) It will eventually do #19, and moreover will do so before its
follower does #12.

(3) It will eventually do #24, but not before its follower does #8.

(4) Once it reaches #24, it has no wakeup pending and will not receive
a later wakeup resulting from the pass it has just made .

Note : With regard to the terminology used in part (4), we cons ider
that a WAKEUP(P) operation “resul ts from” a particular pass by P if the
processor which performs the operation does so after finding P’ s num ber i n
a wakeup word where it was placed by P during the given pass.
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Proof. The proof will be by induction . We will first prove that the
proposition holds for the first processor of the chain. Then we will prove
that if the proposition holds for all processors in the chain up through a
given one, it also holds for the follower of the given processor.

Let P be the first processor of the chain , and let Q be its follower. -

If P has no follower , the proposition does not apply. By Proposition 3,
P takes the “yes” path from #6 and hence eventually reaches #15. We will
now show by contradiction that no other processor of the current chain
reaches #15 before P does. Suppose this is not the case, and let V be the
first processor to do #15 in the current chain. Now when P did #5 it set
FLAG(R) to a nonzero value , and it is clear from Lemma 3 that FLAG(R)
cannot be set to zero at least until V does #15. Hence , V finds a nonzero
value in FLAG(R) at #5, takes the “no ” path from #6, and eventually performs
the SLEEP operation at #11 . In order for V to proceed past #11 some pro-
cessor of the current chain , say Processor W , must perform the WAKEUP(V)
operation at #10, since Proposition 2 rules out a wakeup by a processor
from a previous chain. Now for W to wake up V at #10, it must have found
V’ s number in its leader ’s wakeup word at #8. But until some processor
passes #15, returns to norma lmode, and begins another pass , no processor
of the chain can have more than one follower. Hence , when W does #8 it is
making the first reference to its leader ’s wakeup word since a time at
which the wakeup word contained zero, namely when the owner of the word did
#5 (see part (5) of Proposition 4). Thus , W must find zero, rather than V’ s
num ber, in its leader ’s wakeup word at #8. This contradiction establishes
that no processor of the current chain does #15 ahead of P, the first
processor of the chai n.

The above conclusion and Lemma 3 together imply that (FLAG)R is not
set to zero when P does #15 (note that at least Processor Q must do #5
before P does #15, else Q would not be P’s fol lower). Therefore, P will
take the “no ” path from #16 and must eventually do #19. We also conclude
that Q, having done #5 before P did #15, must take the “no ” path from #6.

We now wish to show that Q cannot do #12 before P does #19. Since
there can be no pending wakeup in effect for Q (by part (5) of Definition 5),
it will suffice to prove that when Q goes to sleep at #11 it cannot be
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waked up except by P at #23. It is clear from the flowchart that before
a processor can do the WAKEUP(Q) operation it must find Q’s number in
some wakeup word . This number must have been put there by Q itself ,
because one processor never puts another ’s number into any wakeup word
and because the wakeup word in question had to contain zero when its
owner first did #5 in the current chain. But the only wakeup word
referenced by Q so far in the current chain is that of its leader , P, at
#8. Thus , after Q goes to sleep at #11 , another processor can wake Q
up only after finding Q’ s number in P’s wakeup word . Now by Proposition 4
the only processor which can do this is P itself. Therefore, a wakeup by
P at #23 is the only possibility for the WAKEUP(Q) operation to be per-
formed when Q is asleep at #11 (or has not yet reached #11). This makes
it clear that P must do #19 before Q can do #12.

Nex t, we must show that P eventually does #24, but not before Q does
#8. We have already established that P eventually does #19, and also that
Q eventually does #8 since Q takes the “no ” path from #6. Two cases will
now be considered . In Case I , we assume that Q does #8 before P does #19.
In this case, P obviously does not do #24 before Q does #8, so we only
have to show that P does in fact reach step #24. Now when Q does #8 it
sets P’ s wakeup word to its own number , and that wakeup word must remain
unaltered until P does #19 (see Proposition 4). Thus , P will find a non-
zero value in its wakeup word at #19 and take the “no” path from #20.
This ensures that P will reach #24, since there is no possibility of
blocking, i.e., the SLEEP operation -is not performed , when the “no” path
is taken from #20.

For Case II , we assume that P does #19 before Q does #8. By
Proposition 4, P’ s wakeup word contained zero when P did #5 and cannot be
altered thereafter until P does #19. Thus , when P does #19 it sets its AC
to zero and sets its wakeup word to its own number. As a result , P takes
the “yes” path from #20 and performs the SLEEP operation at #21 , beyond
which point it cannot proceed until a WAKEUP(P) operation is performed by
some processor of the present chain. We will now prove that a WAKEUP(P)
can only be done by Q. Suppose some processor of the present chain other
than Q, say Processor W , performs the WAKEUP(P) operation , and let V be the
leader of W. (P cannot be the leader of W , because P is making its first
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appearance in the present chain and hence cannot have more than one fol-
l ower before completing its current pass.) Now if W does the WAKEUP(P)
operation at #10, it must have found P’s number in V’ s wakeup word while
doing #8. Or if it does the WAKEUP(P) operation at #23, it must have
found P’ s number in its own wakeup word while doing #19 or #22. By
Proposition 4, both of these wakeup words contained zero at the time their
owners first did #5 in the present chain , and either word could later be
set to P’s number only if P were a fol l ower of the owner of the word . But
this is impossible , because P is the fi~’st processor in the chain and
cannot become a follower before completing its first pass. Thus , by con-
tradiction , only Q can perform the WAKEUP(P) operation during P’s first
pass.

Now we must prove that Q does in fact perform the WAKEtJP(P) operation
in the present case (Case II). Recall that P sets its wakeup word to its
own number when doing #19 , and Q has not yet done #8 at that time . By
Proposition 4, P’s wakeup word can be altered between the time P does #19
and the time Q does #8 only if P returns to normalmode , begins a new pass ,
and repeats #3 before Q does #8. But we have just proved that P cannot
proceed past #21 until Q wakes P up. Thus , when Q references P’ s wakeup
word at #8, it still contains P’ s number , put there by P at #19. As a

• result Q will take the “no” path from #9 and perform the WAKEUP(P) operation
at #10. Hence , in Case II P will eventually do #24, but not before Q does
#10, and thus surely not before Q does #8.

Finally we need to show that there is no pending wakeup in effect for
P at the time P does #24, and that no processor performs the WAKEUP(P)
operation after that time as a result of P’s first appearance in the chain.
Now in Case I , when P takes the “no” path from #20, Proposition 4 guarantees
that P’ s wakeup word will remain unaltered from a time at which it con-
tam ed zero (namely, when P did #5) until Q does #8. As a result , Q will
find zero in P’s wakeup word at #8, will take the “yes” path from #9, and
will not do the WAKEUP operation at #10. In Case II , when P takes the
“yes” path from #20, we proved above that Q does perform the WAKEUP(P)

— 
operati3n at #10. We also proved that no processor besides Q performs the
WAKEUP(P) operation . Thus , the WAKEUP(P) operation is performed during P’s
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first pass if and only if P has gone , or will go, to sleep at #21. As a
result, P will not reach #24 unti l Q has already done the WAKEUP(P)
operation , if it is going to do that operation. After P does #24, its
wakeup word can be referenced again only by P itself at #19 (on a new
pass) or by a new fol lower of P at #8. In either case P will already
have repeated #3, clearing the number it placed in its wakeup word during
its first pass. Hence any WAKEUP(P) operation which is performed after P
does #24 on its first pass cannot be a result of that first pass. Finally,
note that a pending wakeup for P is created during P’ s first pass only if
Q does #10 before P does #21 , but in this case the pending wakeup will
have been cancelled by P at #21 by the time P reaches #24. This completes
the proof that Proposition 5 holds for P, the first processor of the chain.

Next we will establish the induction step for the proof of Proposition
5. Suppose the four statements in Proposition 5 hold for all leaders in
the chain up to and including Processor R , and let S be the follower of R.
We refer here to a specific appearance of R in the chain , and to its fol-
lower on that particular appearance . Assume S is also a leader (if not
there is nothing more to prove) and let T be the follower of S. We want
to prove now that Proposition 5 holds for Processor S.

Before beginning with this part of the proof, we will establish the
following useful fact. Let U be a processor making an appearance in the
current chain , and suppose that U came before S on its previous appearances
(if any) in the current chain. Then U’s wakeup word will contain zero at
the time U does #5 during its present pass. To prove this , note that if
U is making its first pass in the current chain , the conclusion fol l ows
directly from part (5) of Proposition 4. On the other hand , suppose U has
made one or more previous passes in the current chain. When U does #3 on
its present pass it clears its wakeup word , which will still contain zero
when U reaches #5 unless some other processor changes it. By Proposition 4
this could only be done at #8 by a fol lower of U from a previous pass in

the current chain. But by the induction hypothesis , Proposition 5 holds
for Processor U during its previous passes and part (3) of Proposition 5
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shows that a followe r of U from a previous pass would have already done
#8 by the time U completed that pass. Hence U’s wakeup word is not altered
between the times U does #3 and #5 on its present pass and consequently
contains zero when U does #5.

Now let us proceed wi th the proof that Proposition 5 holds for
Processor S. As the first step in this proof, we will show that S
eventually does #15. Since Proposition 5 holds for Processor R, we know
that R eventually does #19 and that S takes the “no ” path from #6 and

• hence eventually does #8. We now consider two cases similar to those
introduced for Processors P and Q previously. In Case I we assume that
S does #8 before R does #19. Note that R’ s wakeup word contained zero
when R did #5, by the argument in the previous paragraph. Furthermore,
that wakeup word will remain unchanged until S does #8, since any previous
follower of R must have already done #8 before R could begin its present
pass (by part (3) of Proposition 5). Hence S finds zero in R’s wakeup
word at #8, takes the “yes” path from #9, and performs the SLEEP operation
at #11. At #8 S also placed its own number in R’s wakeup word , which will
remain unchanged thereafter until R does #19. Thus , R finds S’s number
in its wakeup word at #19 , takes the “no ” path from #20, and performs the
WAKEUP(S) operation at #23. After R does #23 S can get past #11 , so S is
sure to reach #15 eventually in Case I .

For Case II we assume that R does #19 before S does #8. As noted
above, R’ s wakeup word contained zero when R did #5, and will remain
unchanged thereafter until (in this case) R does #19. Hence, R finds
zero in its wakeup word at #19, takes the “yes” path from #20 and performs
the SLEEP operation at #21 . At #19 R also placed its own number in its
wakeup word , so when S does #8 it finds R’s number in R’ s wakeup word ,

takes the “no” path from #9, and performs the WAKEUP(R . operation at #10.
Note that no other WAKEUP(R) could have occurred in the meantime , because
then the wakeup by S would still be pending when R finally reached #24,

contradicting part (4) of Proposition 5. Hence , R cannot reach #22 until
after S has done #10, which of course occurs after S Dlaces its number in
R’s wakeup word at #8. Thus , R finds S’s number in its wakeup word at #22.
We rule out the possibility of another processor changing R’ s wakeup word
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by the same reasoning used several times already : Any fol l ower of R left
over from a previous pass by R must have done #8, and hence be past the
point of changing R’s wa keu p word , before R started its present pass (by
part (3), of Proposition 5), and Proposition 4 admits no other way for R’ s
wakeup word to be altered. We conclude that R will perform the WAKEUP(S)
operation at #23 in Case II as well as Case I , again allowing S to get
past #11 . This completes the proof that S eventually does #15.

Our next objective is to prove that S takes the “no ” path from #16
and hence eventually does #19. To do this , we must first determine
whether a processor which comes after S in the chain can do #15 before S.
Let “time Y” denote the first time at which #15 is executed by a processor
which has done #5 more recently than R did #5, i.e., a processor which
comes after R in the chain. By Lemma 3 (FLAG)R remains nonzero from the
start of the present chain at least until time Y , so any processor which
does #5 before time V takes the “no ” path from #6, except, of course , for
P, the first processor in the chain. Let W be any processor which comes
after S in the chain and which reaches #8 before Time Y, and let V be the
l eader of W. If V made a pass in the current chain prior to its pass as
W ’s leader , and if it appeared after R in the chain on that prior pass ,
time V would have occurred before the appearance of W in the chain , con-
tradicting our assumption that W reaches #8 before time V . Hence, V mus t
have appeared ahead of S in the chain on any pass prior to its present
pass as W ’s leader. By the argument beginning four paragraphs previously,
then , V’ s wakeup word contained zero when V did #5 on its present pass.
Clearly, V cannot do #19 before W does #8, because W does #8 before time V.
Thus , V ’s wakeup word still contains zero just before W does #8. As a
result , W finds zero in V’ s wakeup word at #8, takes the “yes” path from
#9, and performs the SLEEP operation at #11.

The following arguments show that W will not proceed beyond #11 prior
to time V: By part (5) of Definition 5 no pending wakeup for W Is left
over from a previous chain; by part (4) of Proposition 5 no pending wakeup
is left over from a previous pass in which W appeared ahead of R in the
present chain , nor will W receive a wakeup while asleep at #11 resulting

~

- ~~ ----~~~~~~~ •--• -- - •• -- - -•  •~~~ •~~~~~~~ • . _~~~~~~~~~~~~~ _~~~~~~ -••-•- - -_ •- •~~~•- - - - •_•-_•~~~ - ••••- -• •__ ~ ~~ •• -~~ • - • • • - • -



AFAL-TR-77-43

• from such a previous pass; W ’s fol lower on its present pass will not do
the WAKEUP(W) operation at #10 prior to time V , because that follower will
take “yes” path from #9 if it gets to #8 before time V (as proved in the

• previous paragraph); W ’s leader V will not do the WAKEIJP(W) operation at
#23 prior to time Y, because V cannot proceed past #15 before time V (by
definition of time V). These exhaust the possibilities for W having a

• wakeup pending or being waked up prior to time Y , proving that W cannot
pass #11 before time V. Therefore, we conclude that any processor which
comes after S in the chain cannot pass #11 , and hence cannot get to #15,

• prior to time Y. But time V does not occur unti l some processor which
comes after R does #15, so clearl y S mus t be the processor whic h does
#15 at time V. We have already proved that S eventually does #15. Now,
we know that R has already done #19 by the time S does #15, and that S’s
follower I must do #5 before S does #15, so by Lemma 3 we see that S does
not set (FLAG)R to zero when doing #15. Therefore, S takes the “no ” path

from #16 and will eventually do #19.

In the preceding paragraphs we established that every processor
which does #5 before S does #15, i.e., prior to time V , must take the
“no” path from #6, except for the first processor of the chain. In
particular , Processor I , the followe r of S, must take the “no” path from
#6. This is a fact we needed to establish as part of the proof that
Proposition 5 applies to Processor S.

As the next part of the proof, we wish to show that S does #19 before
T does #12. By Proposition 2 and part (4) of Proposition 5 there is no
pending wakeup in effect for I due to a previous appearance in a prior or
the present chain. Thus , it will suffice to prove that when T goes to
sleep at #11 , it cannot be waked up except by S at #23. It is clear from
the flowchart that before a processor can do the WAKEUP(T) operation , it
must find T’s number in some wakeup word . This number must have been put
there by T itself , because one processor never puts another ’s number into
any wakeup word and because the wakeup word in question is known to have
contained zero when its owner first did #5 in the present chain. Now a
processor which does the WAKEUP(T) operation during T’s curren t pass

103

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ • • • •—
~~~
•_.

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~
••

~~~~~~~~ •~~~~~~



•~~~~~~~~~~~~~~~~~~~~~~~ . c 7 ~~~~~~~ r~~~~~~~~~- •~~~ -~~~~~~~~~~ _~~~~~~~~~~~~~~~ - ? —.• •.-----— • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFAL-TR-77-43

cannot have found l’s number in a wakeup word which T referenced only
during a previous pass, because this would contradict part (4) of
Propositi on 5. Hence, it must have found l’s number where T put it on
this pass. But assuming T has not yet done #19, the only wakeup word it
could have referenced during its current pass is that of its leader , 5,
while doing #8. Thus , after T goes to sleep at #11 , another processor
can wake I up only after finding T’s number in S’s wakeup word. Now by
Proposition 4 the only processor which can do this is S itself , since any
fol l ower of S besides T must have already done #8 before S’s current pass
started (in accordance wi th part (3) of Proposition 5). Therefore, a
wakeup by S at #23 is the only possibility for the WAKEUP(T) operation to
be performed when I is asleep at #11 , or has not yet reached #11. Note

• that this proof that a certain processor sleeping at #11 can only be waked
up by its leader at #23 does not apply to an arbitrary processor of the
chain. The proof depends on the knowledge that both S and T would have
been subject to Proposition 5 on any previous appearances in the chain.

As the next step in the proof that Proposition 5 holds for Processor 5,
we must show that S eventually does #24, but not before I does #8. We
have already established that S eventually does #19, and also that T
eventually does #8 (since T takes the “no ” path from #6). We again consider
two cases. In Case I we assume that I does #8 before S does #19. Then S
obviously does not do #24 before I does #8, so we only have to show that S
really does do #24. Now between the times I does #8 and S does #19, no
other fol l ower of S can change S’s wakeup word , because by part (3) of
Proposition 5 any such follower would already have done #8 before S began
its current pass. Thus , by Proposition 4 S’s wakeup word remains unchanged
during the indicated interval , so S finds a nonzero value (namely, l’s
number) in its wakeup word when doing #19. As a result S takes the “no”
path from #20 and eventually does #24, there being no possibility of

blocking in this path .

For Case II , we assume that S does #19 before I does #8. Note that
S’s wakeup word contained zero when S did #5. ThIs wakeup word will not
thereafter be altered by a prior follower of S, by the same argument as
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gi ven i n Case I. Thus , when S does #19 it sets its AC to zero, subsequently
taking the “yes” path from #20 and performing the SLEEP operation at #21 .
Now by part (5) of Definition 5, and also part (4) of Proposition 5, if
S has appeared previously in the present chain , no pending wakeup was in
effect for S when S did #5 on its current pass. Hence S cannot proceed
beyond #21 unless some processor now does the WAKEUP(S) operation , or has
already done so during S’s current pass. Any such processor must have
found S’s number in some wakeup word which S referenced duri ng its current
pass, by the same reasoning given previously for Processor T. There are
two such wakeup words, namely that of R, which S referenced at #8, and
that of S itself , which S referenced at #19. Now by Proposition 4 only
R could find S’s number in R’ s wa keu p word , since any prior follower of R
must be past #8 before the start of S’s current pass , and no subsequent
follower of R can do #8 unti l R has repeated #3, erasing S’s number from
its wakeup word . Similarly, only I could find S’s number in S’s wakeup
word during the time in question . Hence a wakeup by R at #23 and a
wakeup by T at #10 are the only possibilities for a WAKEUP(S) operation
to occur during S’s current pass. But the wakeup by R is what allowed S
to get past #11 , so that wakeup is no longer in effect by the time S
reaches #21 . We conclude that in Case II only a wakeup by I at #10 will
permit S to proceed beyond #21 .

The above conclusion makes it clear that S will not do #24 before T
does #8 in Case II. To show that S will in fact do #24, however , we must
still prove that the wakeup by I at #10 actually occurs in this case.
Recall that S sets its wakeup word to its own number when doing #19, and
T has not yet done #8 at that time (since we are in Case II). Since any
prior follower of S must already be past #8, S’s wakeup word can be
altered between the time S does #19 and the time I does #8 only if S does
#3 (on a new pass) before I does #8. But we showed above that S cannot pro-
ceed past #21 until I does the WAKEUP(S) operation at #10, if it ever
does. Thus , S’s wakeup word does not change during the time in question ,

so when I does #8 it does indeed set its AC to S’s number , take the “no”
path from #9, and perform the WAKEUP(S) operation at #10. This completes
the proof that S eventually does #24, but not before T does #8.
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To complete the proof that Propositi on 5 holds for Processor S, we
need to show that there is no pending wakeup in effect for S at the time
S does #24, and that no processor performs the WAKEUP(S) operati on after
that time as a result of the pass S has just completed . From the argu-

F ments in the last three paragraphs it is clear that the WAKEUP(S) oper-
ation must be performed by R before S can pass #11 , and will be performed
by I only if S does #21 . Hence, both wakeups must have already occurred ,
if they ever will , by the time S reaches #24. After S does #24, its wakeup
word can be referenced again only by S itself at #19, on a new pass , or
by a new follower of S at #8. In either case S will have already repeated
#3, clearing the number it placed in its own wakeup word at #19 during
the pass already completed . S also placed its number in R’s wakeup word
(while doing #8) and if this occurred after R did #19 then the number
will still be there after R finishes its current pass. But in this case
R’ s wakeup word will not be referenced again until R repeats #3, clearing
S’s number. We conclude that any WAKEUP(S) operation which is performed
after S completes its current pass by doing #24 cannot be a result of the
pass just completed . Fi nally, note that a pending wakeup for S is created
during S’s current pass only if R does #23 before S does #11 or if I does
#10 before S does #21. Either pending wakeup will have been cancelled by
S (at #11 and #21 , respectively) by the time S does #24. Thus , no wa keu p
is pending for S when S does #24. We have now proved that Proposition 5
hold s for Processor 5 , given that S has a fol l ower and that the proposition
holds for all processors in the present chain up to and including the
leader of S. This , by induction , completes the proof of Proposition 5.
End of proof.

10. COMPLETION OF THE CORRECTNESS PROOF

The proof of Proposition 5 has been difficult and time-consuming, but
It is a powerful result which tells a great deal about the interactions
between processors of a particular chain , provided the system was in the
rest state prior to the beginning of that chain. For example , by part (2)

each leader does #19 before its current follower does #12. From this it
Is clear that no two processors of the chain can be in mastermode at the
same time . In addition , since the leader/follower relationship is
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established by the order in which the processors do #5, it is clear that
processors enter mastermode in exactly that order. By part (3) of
Proposition 5, each leader in the chain eventually does #24. That is ,

• a processor which begins a pass through mastermode and which has a fol-
lower on that pass must eventually complete its pass and return to
normalmode . However , there may be a processor (namely, the last processor
of the chain) which makes a pass wi thout having a follower , and which is
therefore not subject to Proposition 5. The next proposition will show
that this processor also must eventually do #24, thus establishing that
the algorithm has the required freedom from deadlock. Before stating the
next proposition , we note one further consequence of Proposition 5.
From part (2) it is clear that during a chain to which the proposition
applies , an execution of #17 occurs between any two executions of #15.
Furthermore , executions of #15 in earlier or later chains are separated
from those in the present chain by at least one execution of #5 (performed
by the first processor in the present or the next chain , as the case may
be). Therefore, we can conclude that Lemma 4, which was stated previously
without proof, and Lemma 5, which depended on Lema 4, are valid during a
chain prior to whose beginning the system was in the rest state. We will
use this result in proving the following proposition .

Proposition 6. Suppose the system is in the rest state at some time
before the beginning of a given chain and after the end of any previous
chain. Then each time a processor appears in the giver chain , it will
eventually do #24. Furthermore , the last processor of the chain (if there
is one) will reach #24 via the “yes” path from #16.

Proof. By Proposition 5, each processor in the chain which has a
follower on a given pass eventually does #24. However , suppose that at
some time a processor, say Processor Z, joins the chain by doing #5, and
for an arbitrarily long period of time thereafter no more executions of
#5 occur. Then Z may never have a follower , so we cannot use Proposition 5
to prove that Z eventually does #24. But In establishing the induction
step of Proposition 5 we proved that a certain processor, S, would
eventually do #15. This part of the proof did not depend on the fact
that S was a leader , but only on the fact that Proposition 5 was valid 
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for all processors in the chain up to and including the leader of S.
Hence, by the same argument we can show that Z eventually does #15. Now
if another processor does #5 after Z does #5 and before Z does #15, it
becomes 2’s fol lower, allowing us to apply Proposition 5 to Z and thus
state that Z eventually does #24. On the other hand , suppose that when
Z does #15, there have been no executions of #5 since the time Z did #5.
Clearly this is the case if and only if Z is the last processor of the
chain. By Lemma 5, Z will set (FLAG)R to zero when it does #15 in this
case. As a result Z will take the “yes” path from #16 and will eventually
do #24. This establishes the proposition . End of proof.

We have now proved everything we would like to prove about the
processors of a chain prior to whose beginning the system was in the
rest state. In particular , we have shown with Propositions 5 and 6 that
the processors of such a chain are granted mutually exclusive first-come-
first-served access to mastermode and that any processor which begins a
pass through mastermode eventually completes that pass. Our only remaining
task, which we undertake in the next proposition , is to prove that the
system is in the rest state just prior to the start of every chain.

Proposition 7. Suppose the system is in the rest state at some time
before the beginning of a given chain which terminates (i.e., has a last
processor) and after the end of any previous chain. Then at some time
between the end of the given chain and the beginning of the next chain
the system will again be in the rest state.

Proof. Let “Chain C” denote the terminating chain referred to in the
statement of the proposition and let time 11 be a time prior to the start
of Chain C (i.e., between the end of the previous chain and the beginning
of Chain C) at which the system was in the rest state. Let Processor Z
be the last processor of Chain C, and let 12 be the time immediately after
the end of Chain C. That is , time T2 occurs after Z does #15 and before
any processor executes any other step of the algorithm. Let Processor R
be any processor which appears ahead of Z in Chain C (if there is any
such processor). Let Processor W be any processor whi ch does not appear
in Chain C (if there is any such processor). We will prove the proposition
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by showing that the system is in the rest state at time 12. To do this ,
we will consider one by one the five conditions listed in Definition 5
which must be met when the system is in the rest state and will prove that
each condition is satisfied at time 12 by each of Processors R , W , and Z.

(1) If any processor is between #3 and #5, its wakeup word
contains zero.

If Processor R is between #3 and #5 at time 12 (i.e., is getting
ready to join a new chain which follows Chain C) we know that it cleared
its own wakeup word at #3. By part (3) of Proposition 5, any follower of
R in Chain C will have already done ~8 and hence cannot alter R’s wakeup
word after R does #3. Proposition 2 rules out the alteration of R’s
wakeup word by a follower from a previous chain. Hence, R’ s wakeup word
must still contain zero at time 12.

Suppose Processor W is between #3 and #5 at time 12. If W did #3
after time Ti , it set its wakeup word to zero in doing so. If it did #3
before Ti , its wakeup word contained zero at time 11 by part (1) of
Definition 5. In either case, W’ s wakeup word contained zero at some
time between 11 and 12. From Proposition 2 and the fact that W does not
appear in Chain C, it is clear that W’ s wakeup word cannot be set to a
nonzero value between time Ti and time 12. Hence, W’ s wakeup word must
still contain zero at time 12.

Finally, note that Processor Z cannot be between #3 and #5 at time
12, since by definition Z is between #15 and #16 at T2. We conclude that
if any processor is between #3 and #5 at time 12, its wakeup word contains
zero at that time .

(2) The right half of the shared flag word contains zero.

It follows from Lemma 5 that Processor Z set (FLAG)R to zero when
it did #15. Hence , (FLAG)R contains zero at time 12.

(3) There are no processors between #5 and #15 or between #16
and #23.
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We know that R’ s follower cannot pass #11 until R does #23. We
established this fact when proving Proposition 5. But we know from part
(2) of Proposition 5 that R’s followe r, and i ndeed every processor of
Chain C, must have already done #15 at lime 12. Hence , R cannot be
between #5 and #15 or between #16 and #23 at T2.

( Since Processor ‘4 does not appear in Chain C, it is clear that W
cannot be between #5 and #15 at any time between 11 and 12 inclusive.
By part (3) of Definition 5, W was not between #16 and #23 at Ti. If it
was between #15 and #16 at Ti , it cannot be between #16 and #23 at 12
because of part (4), Definition 5. In short , W is not between #5 and #15
or between #16 and #23 at time T2.

Finally, note that 2 is between #15 and #16 at 12. We conclude that
at time 12 there are no processors between #5 and #15 or between #16
and #23.

(4) Any processor between #15 and #16 will take the “yes” path
from #16.

From part (2) of Proposition 5 it is clear that R is not between
#15 and #16 at 12.

Suppose N is between #15 and #16 at T2. Then it must have been there
throughout the interval from 11 to 12, since it could not do #15 between 11
and T2 without appearing in Chain C. But if W is between #15 and #16 at
Ti , it will take the “yes” path from #16, by part (4) of Definition 5.

Processor Z is definitely between #15 and #16 at time 12, and by
Proposition 6 we know it will take the “yes” path from #16. We conclude
that every processor which is between #15 and #16 at time T2 will take
the “yes” path from #16.

(5) No pending wakeups are in effect.

As noted above , R must have already done #23 at time 12. Hence,
there cannot be a pending wakeup in effect for R at time T2, becaus e
this would contrad ict part (4) of Propos iti on 5.
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By part (5) of Definition 5 no pending wakeup was in effect for W at
time Tl , and by Proposition 2 the WAKEUP(W) operation is not performed
between 11 and T2. Hence , there can be no pending wakeup in effect for
W at time 12.

Finally, let us consider whether there can be a wakeup pending for Z
at time 12. If Z appears more than once in Chain C, then after each pass
prior to its last one there will be no pending wakeup in effect for Z, by
part (4) of Proposition 5. If Z appears only once in Chain C , then its
last pass is also its first pass , at the start of which there was no
wakeup pending for Z by part (5) of Definition 5. Thus , in either case
there is not a pending wakeup in effect for Z when it begins its final
p~~s in Chain C. Since Z has no follower on its final pass , the WAKEUP(Z)
operation can only be performed during that pass by 2’s leader at #23, and
if a pending wakeup is generated thereby (i.e. if 2 has not reached #11
at the time), that pending wakeup will be cancelled by Z at #11. Thus ,
there can be no pending wakeup in effect for Z at time T2. We conclude
that at time 12 no pending wakeups are in effect.

We have now shown that all the conditions for being in the rest state
are satisfied at time 12, completing the proof of the proposition .
End of proof.

The application of Proposition 7 depends on the fact that the
system is in the rest state sometime before the beginning of the first
chain. The proof of this is trivial if we pick a time before any pro-
cessor has started executing the algorithm and recall that zero in the
shared flag word and the absence of pending wakeups are specified initial
conditions assumed to hold prior to processor activation . Given that
the system is initially in the rest state , a simple inductive argument
using Proposition 7 establishes that the system is in the rest state at
some time between any two successive chains. As a result , we can state
that Propositions 5 and 6 apply to every chain. As noted earlier , these
propositions show that the algorithm provides the required mutually
exclusive first-come-first-served access to mastermode and freedom from
deadlock. lo rephrase this more emphatically, we have now rigorously
proved that the flowchart algorithm provides a correct solution to the
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mastermode/normalmode problem , assuming that the shared memory locations
are protected from extraneous references not connected with the algorithm
and that the SLEEP and WAKEUP operations only occur where shown in the
flowchart . The latter assumption is considered further in the next section.

11 . THE ASSUMPTION OF SUBSECTION VII-2 REVISITED
— The correctness proof just completed was based on the assumption that

SLEEP and WAKEUP operations only occur where explicitly shown in the flow-
chart. We must now show that additional SLEEP and WAKEUP operations of a
specific sort will not interfere wi th the correct operation of the
MASTERMODE /NORMALMODE mechanism. These additional operations are the ones
which the processors perform while competing for access to a genera l shared
resource, as described in Section IV . Ihe scheme for such competition
developed in Section IV used the same SLEEP/WAKEUP mechanism to control
processor delay that we have now used to implement the MASTERMODE/NORMALMODE
operations. Before contenting ourselves that these operations work cor-
rectly, we must consider possible interaction between the two uses of
the SLEEP/WAKEUP mechanism.

Recall from Section IV that a processor attempting to use a shared
resource might delay itself with the SLEEP operation , in which case it
would later (or nerhaps earlier) receive a wakeup from a processor re-
linquishing access to the resource . For convenience we will refer to the
relinquishing processor as the “releaser” of the processor it awakens ,

and to the processor which receives the wakeup as the “releasee” . Figure 8

shows a simplified flowchart representing the cyclic use of a shared
resource by a processor which uses the MASTERMODE/NORMALMODE operations
to enforce the required mutual exclusion . The steps in this flowchart
have been given the same numbers as the corresponding steps in the flow-
chart of the MASTERMODE /NORMALMODE algorithm . Since one cycle of shared
resource access involves two passes through mastermode , each step of the
MASIERMODE/NORMALMODE algorithm appears twice in Figure 8. Thus , #6a
identifies step #6 of the algorithm in the processor ’s first pass through
mastermode, when it gains access to the resource , and #6b identifies step
#6 in the processor ’s second pass , when it relinquishes access to the
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resource . Before continuing the reader is advised to work out the con-
nections among the flowchart in Figure 8, the general programs in
Subsections IV-2 , a and b , and the flowchart of the MASTERMODE/NORMALMODE
algorithm in Figure 9.

Although many steps have been omitted in Figure 8 to simplify the
flowchart , all SLEEP and WAKEUP operations are shown . Our correctness
proof guarantees that for each SLEEP operation performed by a processor
as part of a MASTERMODE or NORMALMODE operation , one and only one WAKEUP
operation will be (or has been) directed at that processor by some other
processor which , as we know , is either its l eader or its follower. Thus ,
a SLEEP at #lla is matched by a WAKEUP at #23a performed by the leader of
the sleeping processor , and a SLEEP at #2la is matched by a WAKEUP at

S 
#lOa performed by the follower of the sleeping processor. Similar remarks
apply to steps #llb , #23b, #21b , and #lOb . Fu rthermore, assuming that
proper strategies have been chosen to accomplish the resource sharing, we
know that a processor which delays itself with a SLEEP operation while
gaining access to the resource will sooner or later be waked up by its
releaser when the latter relinquishes the resource . Ihus , for each
SLEEP operation performed at #2b there is a matching WAKEUP operation
performed at #13b by the rel easer of the sleeping processor.

The condition just described of having each SLEEP operation matched
by exactly one WAKEUP operation is clearly necessary for correct system
behavior. Unfortunately it is not by itself a sufficient condition ,
because there is a way for WAKEUP operation to “get lost” . Suppose
some processor performs a WAKEUP(P) operation at a time when Processor P
is not asleep, i.e., before P has performed the SLEEP operation which
matches the given WAKEUP operation. Then a pending wakeup goes into
effect for P which will keep P from being delayed when it finally does
perform the SLEEP operation . But suppose another WAKEUP(P) operation is
performed by some processor in the meanwhile. The SLEEP/WAKEUP mechanism
does not allow a processor to “remember ” more than one pending wakeup , so
the second t-IAKEUP(P) operation will have no effect. Now, however,
Processor P has two SLEEP operations to perform , one matching each
WAKEUP(P) operation . When P performs the first of these SLEEP operations
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it will cancel its pending wakeup and continue to run , but when it
performs the second it will go to sleep and never wake up, since the
matching WAKEUP(P) operation has already occurred and has been ignored .
This is clearly not the behavior desired of Processor P.

From the correctness proof in the preceding sections it is clear
S that the improper behavior just described would not occur if the SLEEP

and WAKEUP operations were limi ted to those which implement the MASTERMODE/
NORMALMODE operations. Furthermore , if the latter operations did not use
the SLEEP/WAKEUP mechanism , the improper behavior described above would
not arise from the use of SLEEP and WAKEUP operations in resource sharing.
To see this , consider that a processor only goes to sleep and receives a
matching wakeup as a result of trying to gain access to the shared resource ,
if the SLEEP/WAKEUP operations associated with MASTERMODE/NORMALMODE are
disregarded . Clearly the processor cannot try to gain access to the
resource a second time until it has passed the SLEEP operation on the
way to its first access. Thus , there is no possibility of a second
wakeup prior to that time .

In short , the SLEEP/WAKEUP operations have been shown to work
correctly both for resource sharing and for enforcement of mutual exclusion
when the two uses are considered separately. Our real concern is with
interaction between the two uses that might lead to the improper behavior
described above . To determine how such interaction might occur , let us
consider for each SLEEP operation in Figure 8 how early the matching
WAKEUP operation might occur. A processor about to sleep at #lla will
sooner or later receive a wakeup from its l eader and this clearly cannot
happen before the processor about to sleep acquires a leader by doing #5a.
Thus , a processor may receive a wakeup before it reaches #lla , resulting
in the creation of a pending wakeup , but such a pending wakeup cannot be
created before the processor even reaches #5a. A processor does not
sleep at #21a unless it does #l9a before its followe r, which will later
wake it up, does #8a. Thus , a pending wakeup for a sleep at #21a cannot
be created until the processor about to sleep at least does #19a . The
same considerations apply to the SLEEP operations at #llb and #2lb.
Finally, a processor which is about to sleep at #2b in order to wait for
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the shared resource cannot receive its matching wakeup until it has at
least done #13a , because the wakeup results from changes in shared state
information which the processor made while trying to gain access to the
resource at #13a.

From the above considerations it is clear that there is only one
possibility for the improper behavior which would result if a processor
received two wakeups prior to performing the SLEEP operation matching either
of them. Specifi cally, a processor which has done #l9a and is about
to sleep at #2la may receive a wakeup from its fol lower (when the fol l ower
does #lOa ) and may receive a wakeup from its releaser (when the releaser
does #13b) prior to sleeping at #2la.

In view of all the work we have done up to this point , it is
fortunate that we can rule out the possibility just described . We can
do so because the WAKEUP operation performed by a releaser at #l3b is done
in mastermode, and hence cannot occur while the releasee is in mastermode .
We proved in Subsection VII-.9 that a follower cannot proceed beyond #11 ,
and hence cannot enter mastermode , unti l its l eader has done #23. Thus ,
a releaser cannot enter mastermode and wake up its releasee at # l3b while
the releasee is between # l9a and #2 la. To state this more carefully, we
have shown that Proposition 5 will not be violated due to a bad SLEEP/
WAKEUP interaction unless it has already been violated by the appearance
of two processors in mastermode simu ltaneously. But the latter violation
could only result from a bad SLEEP/WAKEUP interaction , since such an
interaction is the only possibility we failed to consider when proving
the proposition . We conclude that a violation of Proposition 5 can never
occur in the first place . Now we are really finished with the proof that
we have found a correct solution to the mastermode/normalmode problem .
For completeness we will state the outcome of the arguments of this
section in a final proposition .

Proposition 8. Although the correctness proof for the MASTERMODE/
NORMALMODE algori thm depended on an assumption that SLEEP and WAKEUP
operations only occur where shown explicitly in the flowchart of
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Figure 9, the conclusions of the correctness proof remain valid when
additional SLEEP and WAKEU P operations occur in accordance wi th the
general procedure for resource sharing given in Section IV.

- Proof. Given above.
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SECT ION VI II

SYNCHRONIZI NG INDEPENDENT GROUPS OF PROCESSORS

1 . INTRODUCTION

In  Section IV several processor coordination problems were solved
using a basic processor delay mechanism (the SLEEP/WAKEUP mechanism) and
a basic mutual exclusion mechanism (the MASTERMODE/NORMALMODE mechanism).
At that time it was just assumed that the MASTERMODE and NORMALMODE
operations could be implemented efficiently with available l ower-level
operations. This assumption has now been justified by the algorithm
and correctness proof given in Section VI and VII.

Although the coordination problems in Section IV were solved rather
easily, the solutions had to include detailed specification and manipulation
of the shared variables and processor queues involved . The need for this
detail in the solutions arose because of the low level at which the
problems were solved (i.e., because of the functional simplicity of the
available coordination mechanisms). Such l ow—level coordination is
appropriate in system programing situations , such as the development of
computer operating systems, because the required coordination mechanisms
can be made to operate with the high efficiency needed in such situations.

On the other hand , being able to give a simple description of a
desired solution is probably more important than achieving maximum
efficiency to an applications programmer working in a high-order programi ng
language. This suggests that we may want to develop a higher-level
abstraction of our computing system in which we can solve coordination
problems without worrying about the small details of shared storage
allocation and processor queue manipulation . That is , we may want to
devise a powerful “processor synchronization language ” and implement it

S using the coordination mechanisms available at our present level of
abstraction . Several languages of this kind have been proposed ; for
example , Presser ’s extension of Dijkstra ’ s sema phore operati ons
(Reference 2) and Brinch Hansen ’s “critical region ” language (Reference 17).
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It is not our intention to develop a new high-level processor
synchronization language . We are interested , however , in determining

whether the l ow-level coordination mechanisms described in previous
sections are powerful enough to imp lement such languages. In Section IV

we demonstrated the use of SLEEP , WAKEUP, MASTERMODE , and NORMALMODE
operations to solve arbitrary processor synchronization problems involvin g

the allocation of a single shared resource. Most proposed high-level
synchronization languages , however , allow different groups of processors
to compete for several independent shared resources without interference .
We will show in this chapter that such problems can also be solved using
the l ow-level approach described in Section IV .

2. ALLOCATION OF INDEPENDENT SHARED RESOURCES

Suppose that several readers and writers of the type described in

Section IV are competing for access to a data file , and suppose that at
the same time several other readers and writers are competing for access
to a different and independent data file. We will refer to the two groups
of processors as Group A and Group B. We could provide for the proper
behavior of all the processors with programs similar to those developed
in Section IV . Of course, the shared variables used for communication
among the processors would have to be different for the two groups.
That is , the shared arrays used to implement the waiting lines and the
shared variables WRITING and READERS would have to be duplicated , so
that each group would have a separate set of those shared locations.

There is one serious disadvantage to a solution of the form just
described : A reader or writer which enters mastermode to gain or re-
linquish access to its data file will exclude from mastermode the other
processors not only of its own’ group but also of the other group. Thus ,
a reader in Group A might be delayed from gaining access to the file
belong i ng to Group A while a writer in Group B relinquishes access to
that group ’s file. Since the two groups of processors use disjoint sets
of shared locations to control access to their respective data files ,

such mutual exclusion between groups is unnecessary . Hence , the delay

which it might cause is undesirable and ought to be avoided.
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To prevent the unnecessary delay just described , we want two processors
to be able to enter mastermode at the same time provided they belong to
different groups. Fortunately the MASTERMODE/NORMALMODE algorithm
presented in Section VI makes this possible with no change in the basic
form of the algorithm . Recall that the algorithm associates with each
processor a shared location referred to as the processor ’s wakeup word ,

and provides an additional shared location (the shared flag word) which
is used symetrically by the various processors. The desired noninterfering
use of the MASTERMODE/NORMALMODE mechanism by independent groups of
processors can be achieved by simply providing each group with a different
shared flag word .

In terms of the algorithm ’s data base this is accomplished by
initially storing the address of a particular shared location in the
private memory location called FLAG of each processor in Group A , and by S

storing the address of a different shared location in each private FLAG
location of the Group B processors . If this is not clear , review the
data base description , Subsection VI-3. The shared location whose address
is stored in the FLAG locations of the Group A processors becomes the
shared flag word for that group, and similarly for Group B. A review of
the MASTERMODE/NORMALMODE algori thm makes it clear that with different
groups of processors using different shared flag words , a processor in
one group never references a shared flag or wakeup word of another group.
Thus , processors in one group enter mastermode and return to normalmode
independently of processors in a different group.

In Subsection IV we described an ALGOL implementation of the solution
to one of the reader/write - problems . Although not used or explained , a
simple method was provided to allow coordination of independent groups of S

readers and wri ters. This method consists of a capability to specify for
each processor an offset for its references to the shared memory segment.
Recall that each reader and writer invokes the INITIALIZE procedure near
the start of its prog ram with a call of the form INITIALIZE(MYNUM ,k),

where MYNUM is the number of the calling processor. The second argument
k is a nonnegative integer which will be added to the processor ’s private
storage locations FLAG and WAKEUP. Recall that these l ocations are part
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of the data base for the MASTERMODE/NORMALMODE algorithm and contain the
addresses of the shared flag word and the processor’s wakeup word ,
respectively. The addresses contained in these locations are established
by the INITIALIZE procedure and are not changed thereafter. The processors
can be divided into i ndependent groups by specifying a different offset k
for the processors of each group. The offset for each group must be chosen
so that the shared locations used by one group do not overlap with those
used by another group .

As we have just noted , the value of k specified by a given orocessor
is used as an offset for the implicit memory references which that pro-
cessor makes to shared flag and wakeup words in performing the MASIERMODE
and NORMALMODE operations. Therefore, processors using different offsets
(i.e., processors in different groups) will not interfere with one

S another ’s MASTERMODE and NORMALMODE operations. The offset k can also
be used by each processor when establishing pointers to the shared memory
locations which the processor will reference explicitly using the SET,
ASSIGN , TRULY , and VALUE.OF procedures. As a result , processors in dif-
ferent groups will use different l ocations for the shared variables which
appear in their programs . For example , the shared arrays representing
waiting lines and the shared variables WRITING and READERS in the reader!
writer programs. This means that corresponding processors in different
groups can use programs which are identical except for the offset used
when calling the INITIALIZE procedure and when establishing pointers to
shared variables .

Specifying different offsets for different groups of processors is
not a very sophisticated approach inasmuch as it requires a static al-
location of shared memory l ocations for each group. It is not hard to
envision more elaborate schemes for partition i ng the shared l ocations
used by various groups of processors . Nevertheless , the simple approach
described above is adequate to illustrate the coordination of multiple
groups of processors and to demonstrate the potential capabilities of
the MASTERMODE/NORMALMODE algori thm. We will explore these capabilities
further in the next section by considering a processor coordination problem
belonging to a different family from the problems discussed in Section IV .
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3. PRODUCERS AND CONSUMERS WITH A POOL OF BUFFERS

a. Statement of the Problem

In order to illustrate the coordination technique descri bed in
the preceding section , we will now state and solve a problem involving
independent groups of processors . The problem we will consider belongs to
a family of processor synchronization problems known as the producer !
consumer problems . In Subsection 11-2 we introduced a simple problem of
this type involving two processors called the producer and the consumer.
Recall that the producer created packets of data and stored them in a
buffer and the consumer retrieved the data packets from the buffer and
subjected them to further processing. We will consider an extension of
this problem in which packets are produced by an arbitrary number of
producers for consumption by an arbitrary number of consumers. In
addition we will assume that instead of just one buffer there is a pool of
identical buffers available for passing packets between the producers
and the consumers . Thus , it will be possible for various processors to
be producing, depositing , retrieving , and consuming data packets simul-
taneously.

Several versions of the above problem are possible depending on
various processor and packet ordering requirements. In the version we
will consider , we do not require that packets be consumed in the same order
in which they were produced , and we do not care which consumer retrieves
a packet produced by a particular producer or stored in a particular
buffer. We merely want the producers to keep producing packets and
filling buffers and the consumers to keep emptying buffers and consuming

packets as fast as possible. Thus , when a producer has a packet ready ,
it may be allowed to fill any available buffer. It will have to be
delayed only if all buffers are currently being filled or emptied or are
already full. Similarly a consumer which is ready to retrieve a packet
will have to be delayed only if no full buffers are ava ilable. If
several producers are waiting for an empty buffer, or if several consumers

are waiting for a full buffer, we require that the next empty or full
buffer be assigned to the producer or consumer which has been waiting
longest , to avoid the possibility of some processor havin g to wait forever.
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The producer/consume r problem described up to now involves a single
group of producers and consumers all of which interact with one another.
Now let us suppose that there are several independent groups of producers
and consumers working simultaneously, each group having its own separate
pool of buffers. Solving the problem in this form will allow us to try
the approach described previously for coordinating independent groups of
processors . Later in this section we will further complicate the producer!
consumer problem by introducing a new kind of processor which can interact
wi th the prccessors of more than one group. First , however, we will develop
a solution to the producer/consumer problem as it has been presented up
to this point.

b. Processor Strategies

To solve the producer/consumer problem described above we must
first determine the strategies to be followed by the producers and con-
sumers. We will keep different groups of processors separate by offsetting
their references to the shared memory segment , and hence the processors ’
strategies will not have to take into account the existence of other
groups . That is , the strategies will be the same as if there were only
one group of producers and consumers . Since the processors may have to
wait for an available buffer we will provide two waiting lines , one for S

the producers and one for the consumers . Of course we will end up with ,~-
two such lines for each separate group of processors but this will come
about automatically because of the way the processors ’ references to
shared memory occur. The strategies are now rather easy to determine.

Producer Strategy

(1) Check the buffers in any order to find an empty one . If an
empty buffer is found , begin filling it. If there are no empty buff~.~~,
join the produce r line and wait.

(2) After filling a buffer , if the consumer line is not empty
allow the consumer at the head of the line to leave the line and begin
emptying the buffer just filled.
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Consumer Strategy

(1) Check the buffers in any order to find a full one. If a full
buffer is found , begin emptying it. If there are no full buffers , join
the consumer line and wait.

• (2) After emptying a buffer, if the producer line is not empty allow
the producer at the head of the line to leave the line and begin filling
the buffer just emptied.

c. Assignment of Shared Variables

Now we must determine the system state information required by
the producers and consumers to carry out the above strategies . We will
distin quish the processors and buffers in a given group by numbering the
producers from 1 to NPROD , the consumers from 1 to NCON , and the buffers
from 1 to NBUF , where NPROD , NCON , and NBUF are the number of producers , S
consume rs, and buffers , respectively, in the given group. tie will mi -
plement the waiting lines just as we did in the reader/writer problems
in Section IV. Thus , we provide shared integer arrays P.LINEI-l:NPROD]
and C.LINE [-l:NCON] to represent the producer and consumer waiting lines.
The first two elements in each array must initially contain zero, indi-
cating that the lines are empty .

It is clear from the strategies in the preceding section that the
processors must be ab1~ to tell if a given buffer is full or empty . To
make this determination possible we will provide two shared Boolean
arrays , FULL[l:NBUF] and BUSY [l:NBUF], which will be used as follows .
FULL[J] will be true if and only if Buffer J is full , meaning that a
producer has finished filling it and a consumer has not yet started to
empty it. BUSY[J] will be true if and only if Buffer J is “busy ” ,
meaning that it is in the process of being filled or emptied . Thus , a
consumer tries to find a full buffer by searching for a value of J such
that FULL[J] is true , and a producer tries to find an empty buffer by
searching for a value of J such that both FULL [J 1 and BUSY{J) are false.
All elements of the arrays FULL and BUSY must initially be false ,
indicating that the buffers are empty .
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Finally, we note that a processor which has been waitin g for a buffer
to become available must be able to determine which buffer it is supposed
to use when it is finally allowed to proceed. To make this determination
possible we will provide two shared integer arrays , P.USE [1:NPROD] and
C.USE[l:NCON]. P.USE[J] will contain the number of the buffer to be
filled next by Producer J , and C.USE[J] will contain the number of the
buffer to be emptied next by Consumer J. Thus , when Consumer J is just
on the verge of emptying a buffer (i.e., has proceeded past the con-
ditional SLEEP operation with which it delayed itself if necessary), it
must examine C.IJSE[J] to find out which buffer to use. The value in
C.USE[J] was placed there either by Consume r J itself , if it found a full
buffer during its search , or by a producer which found Consumer J at the
head of the consumer line after filling a buffer. In the latter case
Consumer J would have delayed itself by performing a SLEEP operation.
Clearly the produc2r which finds Consumer J at the head of the consume r
line must place the number of the buffer it has just filled into C.USE[J]
before performing the WAKEUP operation which will allow Consumer 3 to

S proceed . This is the first time we have had to be concerned with the
exact sequence of operations performed by a processor while in mastermode ,
because in the problems solved previously it was never necessary for a
processor to examine a shared l ocation while in normalmode .

The six arrays defined above, namely the arrays P.LINE , C.LINE ,
FULL , BUSY , P.USE , and C.USE , constitute the shared state information
needed by the processors to solve the given producer /consumer problem.

d. ALGOL Programs for the Producers and Consumers

ALGOL programs which implement the producer and consumer
strategies are listed in the first four pages of Appendix C. The programs
allow for up to four groups of producers and consumers , referred to as
Groups A , B, C, and D. Note that each processor will be supplied with
input data specifying the group it belongs to and the number of

- producers , consumers , and buffers in that group . Each producer also
reads in a value for the integer variable P.LOOP , which specifies ho’S
many times the producer will go through its cycle of producing and
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depositing a data packet. Thus , the number of packets produced may be
different for different producers . Each consumer has an integer variable
C.LOOP which serves the same purpose.

The external procedures declared in the producer and consumer
programs are the same ones which were used in the reader/writer programs
and which were described in Subsection IV-4 ,d. The REPORT procedure has
been modified slightly to permit each processor to include the name of
its group when making a report.

The coding of the cyclic portion of the producer and consumer
programs is derived directly from the producer and consumer strategies
and from the generalized resource allocation programs given in Subsection
IV-2 ,b and IV-2 ,c. The reader may wish to verify that the programs as
coded correctly implement the specified producer and consumer strategies.

4. A NEW KIND OF PROCESSOR INTERACTION

In the synchronization problem solved in the preceding section , each
group of processors had its own poci of buffers and there was no interaction
at all between processors of different groups. It is not unusual , however ,
for one processor to require access at various times to a number of dif-
ferent shared resources. One way of describing this situation is to say
that the processor in question belongs to different groups of processors
at different times. The group it belongs to at a given time consists of
all the other processors which are competing for access to the particular
shared resource it is trying to use at that time .

We will now consider an extension of the producer/consumer problem
which will illustrate the possibility of one processor interacting wi th
the processors of severa l different groups . The extension involves a
new class of processors known as “distributors ” . A distributor is like

S 

a producer in that it periodically creates a packet of data which it
stores in a buffer for later retrieval by a consumer. The unique
characteristic of a distributor is that it is free to deposit its data
packet in a buffer belonging to any of the producer/consumer groups.
Thus , a distributor may be thought of as a member of different groups
of producers and consumers at different times. At a particular time it
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is a member of the group in whose buffer pool it is waiting to deposit or
actually depositing a data packet.

When a distributor is interacting with a given group of processors,
it behaves as though it were just another producer in that group . Thus ,
the strategy followed by the distri butor is identical to the producer
strategy described earlier. The presence of distributors does not change
the shared state information required for a solution , but the shared
arrays P.LINE and P.USE must be large enough to provide not only for the
actual producers of a given group but also for all the distributors which
might occasionally join that group. The producer and consumer programs
need not change at all for a solution in which distributors are present.
However, the value of NPROD supplied as input data to each producer and
consumer must account for the existence of distributors . Thus , if a
certain group contains three producers and there are two distributors which
may join the group, the producers and consumers will be informed , by way of
the value they read for NPROD , that the group contains five producers . Their

‘ I operation will not be affected by the fact that two of the “producers ” are
actually distributors .

Now let us consider how distributors join particular groups of
processors . Recall that we divide processors into different groups by
arranging for them to use disjoint sets of shared memory locations.
Thus , when we say that a distri butor joins a given group, we mean that
it starts using the shared locations associated with that group. Of
course it should not do this while it is still inte racting with the
processors of another group. That is , a distributor should only change
groups when it is at a point in its program corresponding to the “perform

private tasks ” step of the genera l program in Subsection IV-2 ,a.

Each processor establishes pointers to the shared locations that it
is going to reference explicitly. Thus , when a distributor wishes to
join a new group it can arrange to use such locations associated with
the new group simply by redefining its pointers . On the other hand , the

shared l ocations which a distributor references implicitly in performing
the MASTERMODE and NORMALMODE operations present a problem , because the
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distributor cannot directly access these locations. To solve this problem
we will provide a new procedure called NEWGROUP . A call to this procedure

- 

- 

has the form NEWGROUP(MYNUM ,k), where MYNUM is the number of the calling
processor and k is an offset whose function is the same as that of the
offset specified when calling the INITIALIZE procedure . Thus , a call to
NEWGROUP causes the addresses stored in private l ocations FLAG and WAKEUP
of the calling processor to be adjusted by the offset k, so that when the
processor subsequently performs MASTERMODE and NORMALMODE operations it
interacts with those processors which specified the same offset in calls
to INITIALIZE or NEWGROUP.

5. SOLUTION TO THE PRODUCER/CONSUMER/DISTRIBUTOR PROBLEM

An ALGOL program implementing a distributor is listed in Appendix C.
This program allows a distributor to become a member of Group A , B, or C.
Note that the input data supplied to the distributor includes the number
of producers , consumers , and buffers in each of those groups. Input values
are also supplied for NDIS , the number of distributors , and D.LOOP , the
number of packets to be produced by this distributor. The external
procedures called by the distributor are the same ones used by the
producers and consumers , with the addition of the NEWGROUP procedure
described in the preceding section .

Instead of establishing pointers to shared variables once at the
beginning of its program , the distributor defines an internal procedure
named SET.POINTERS which it can invoke when changing groups. The cyclic
portion of the program is almost the same as that of the producer program .
After each produce/deposit cycle the distri butor joins a new group of
producers and consumers by calling the SET.POINTERS procedure to redefine
its pointers to shared variables and by calling the NEWGROUP procedure so
that it will interact with processors in the new group when subsequently
performing MASTERMODE and NORMALMODE operations. For the sake of
simplicity the distributor has been programed to deposit its data packets
cyclically in the buffers of Groups A , B, and C in that order.
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Fol lowing the program listings in Appendix C is a listing of output
data for an experimental run with three groups of producers and consumers
and two distributors . The configuration of the processors for this run
is shown in Figure 10. In each group of processors the producers are

- 5 shown on the left, the buffers in the middle , and the consumers on the
right. The distri butors at the bottom belong to each group in turn .
Note that Group C has no producers , so that only the distributors deposit

• data packets in the buffer of that group. The number in parentheses
under each processor indicates the number of packets produced or consumed
by that processor. To ensure that all the processors terminate their
execution normally, these numbers have been chosen so that the number of
packets produced in each group is equal to the number consumed in that
group. The ambitious reader may wish to verify that the results listed
in Appendix C reflect the desired behavior of the processors .

• 6. A FINAL CLARIFICATION

Before concluding our discussion of the programs developed to
illustrate multi ple processor coordination , we wish to eliminate a
possible source of confusion . The alert reader has probably noticed that
we did not discuss the effect of independent groups of processors on the
SLEEP and WAKEUP operations. The most alert reader has probably noticed
that when we establish pointers to shared variables in all of the sample
programs , we skip the first 2N+l locations in a given group ’s block of
shared locations , where N is the total number of processors in the group.
N+l of these unexplained locations are used for the shared flag and
wakeup words needed to implement the MASTERMODE and NORMALMODE operations.
We did not describe this scheme earlier because it is only one of many
possible ways of allocating those shared locations and it has no direct
bearing on the nature of the solutions.

I,e remaining N unexplained locations contain a mapping between the
processor numbers of a given group and the “logged-in job numbers ” which
must be used in the monitor call that actually performs the wakeup function.
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Figure 10. Experimenta l Processor Configuration
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This mapping is established for a given processor when it calls the
INITIALIZE or NEWGROUP procedures and is used thereafter when any processor
sends a wakeup to the given processor. This explains why the wakeup
mechanism is not deceived by the concurrence of WAKEUP(k) operations in
which the same value of k refers to processors in different groups. Of
course the SLEEP operation does not have a similar problem , because it
has no argument and only affects the processor which performs it.

134
S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- SL



~
-S—J~’~

•’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -  — S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

- -

AFAL-TR-77-43

SECTION IX

CONCLUSION

1. SUMMARY

The producer/consumer/distributor problem solved in the last section
is the final example we will give of the use of efficient low-level
operations to coordinate the activity of interacting processors. The
programs in these sample problems , which were developed by following the
general procedure described in Section IV , were not intended to be
“practical” examples of efficient processor synchronization solutions.
Indeed, if efficiency were our only concern we would have written the
programs in assembly language rather than in ALGOL . Using programed
monitor calls to control processor delay and coding the solutions in a
high-order language should be considered merely as convenient techniques
for simulating the multiprocessor environment in which low-level coor-
dination is needed and for illustrating such coordination in a straight-
forward way. Hopefully, the reader has not lost sight of the objective
we set for ourselves in Section I , which was to determine how one can
efficiently organize a complex computing system containing one or more
physical processing units whose design does not include explicit processor
synchronization capabilities. The result of our investigation may be
summarized in the following advice which we would offer to the computer
system architect or programmer faced with the task of organizing such
a computing system.

(1) Resolve to abide by the principles of a level-structured
system design philosophy. This requires that the hardware and software
of the system b 2 organized in a series of “levels of abstraction ” in
which each abstraction is developed from the level below it and repre-
sents a virtual computing system which has some desirable property or
capability not available at l ower l evels. Attempt to reach a l evel of S

abstraction as early as possible in which it is no longer necessary to
account for the exact configuration of the underlying physical system.
The objective of such a design philosophy is to develop a system which
is “robust” in the sense defined by Dijkstra (Reference 28). That is , S
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creating an abstraction which is independent of the system ’ s physical
configuration will give us some immunity against the effects of accidental
or intentional changes in that configuration. Furthermore the carefully
organized stepwise development required in a level-structured design
will make it easier for us to establish the correctness of that design.

(2) For the first abstraction of the physical system, implement a S

collection of virtual processors which can execute the machine instruc-
tions of the physical processor(s) and which can also perform efficient
operations to suspend their execution when necessary . That is , provide
the virtual processors wi th a delay mechanism such as the SLEEP/WAKEUP
mechanism described in Section II. The imp l ementation of this initial S

abstraction will necessarily depend on the specific nature of the physical
system from which the abstraction is developed .

(3) At the next level of abstraction , provide processors which are
able to perform all l ower-level operations and which are also able to
enforce mutual exclusions within “critical sections ” of their programs .
The implementation of the mutual exclusion mechanism will depend upon
the processor delay mechanism developed previously and the other operations
available to the processors , but will not be influenced by the specific
configuration of the underlying physical system. Expend as much effort
on the creation of this abstraction as is necessary to devise a mutual
exclusion mechanism with all the desirable characteristics outlined in
Section V and to become convinced of the correctness of the mechanism ’s
operation .

The main achievement of our investigation has been to demonstrate ,
through the development of the MASTERMODE/NORIIALMODE mechanism the
feasibility of creating such an abstraction based upon a simple processor
delay mechanism and the machine instruction set of a particular physical
processing unit.

(4) Develop a higher level or l evels of abstraction in which It is
possible to perform operations which synchronize processor activity
without worrying about small details such as shared storage allocation
and processor queue manipulation . The implementation of such “high -level
coordination ” operations will depend upon the l ower-level processor delay
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and mutual exclusion mechanisms developed previously. Thus , the system
designer should have in mind a systematic approach to low-level coordi-
nation such as the one illustrated in Sections IV and V III.

Our investigation did not extend to the level of abstraction just
described. We did , however , solve processor synchronization problems of
sufficient complexity to suggest that our proposed l ow-l evel mechanisms
are suitable for implementing desirable high -level coordination operations.

2. SUGGESTIONS FOR FURTHER WORK 5

In the course of this investigation a number of questions have
occurred to the author which suggest areas for further study under the
general heading of “low-level processor coordination ” . The most interesting
of these questions are listed here.

(1) The MASIERMODE/NORMALMODE algorithm presented in Section VI , was
based on the machine instruction set of the DECsystem-lO KIlO CPU . Can 

S

mutual exclusion mechanisms with the same desirable properties be developed
using the machine instructions available in other modern computer systems? 

S

If so, how will the algori thms differ from the one given in Section VI?

(2) Suppose that instead of being given a physical processor to
work wi th , we are designing a new one and can specify the machine
instructions we want it to have . What instructions should we include to
facilitate the solution of processor synchronization problems? What can
we say in general about the characteristics of instruction sets with
which it is possible to solve the rnastermode/normalmode problem stated
in Section V? Are the read-modify-write , register/memory exchange , and
halfword data transfer instructions which we used to implement a solution
the most suitable types of instructions for processor coordination?

(3) The proof of correctness given in Section VII , while believed
to be completely rigorous , was not based on any formal theory of program
correctness. In addition it was quite long and difficult. Can formal
or automated theorem-proving techniques also be used to establish that
the algorithm shown in Figure 9 is a correct solution to the mastermode/
normalmode probl em?
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(4) In the example problems solved in Sections IV and VII I , each
processor had its own copy of the routines which implement the MASTERMODE
and NORMA LMODE operations. It should be possible , though , for the
processors to conserve storage space by sharing these routines , provided
appropriate measures are taken to preserve the integri ty of each processor ’ s
private storage locations. Under what circumstances can such sharing be S

successfully carri ed out, and what are the details of the necessary
arrangements?

(5) The output data for the example problems mentioned above consisted
of a sequence of reports of significant events by the various processors.
In a complicated problem it is a long and tedious job to manually inspect
the output data , such as that appearing on the last three pages of
Appendix C, to determine whether the processors behaved correctly. Could
we devise an automated checker which would perform this function after - •

being given a formal description of the coordination problem , a description
of the processor configuration for a specific experimental run , and a
listing of the resultant output data?

3. FINA L REMAR KS

Before concluding this dissertation the author would like to express
his appreciation to the patient and diligent reader who has followed the
entire presentation , especially through the difficult sections of the
correctness proof in Section VII. It is hoped that this investigation
of low-level multiple processor coordination may provide some inspiration
to those readers who are or will be faced with the task of organizing
and distributin g the computational resources of a large-scale data
processing system.
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APPENDIX A

THE BA KERY ALGORITHM

The following solution to the critical section problem was given by
Leslie Lamport in Reference 25. The algorithm is based upon one commonly
used in bakeries , in which a customer receives a number upon entering the
store. The holder of the l owest number is the next one served . In
Lamport ’s algorithm each processor chooses its own number. The processors
are named 1 , 2, . . ., N. If two processors choose the same number , then
the one with the l owest name goes first. The memory locations shared by
the processors consist of the integer array CHOOSlNG[l:N] and NUMBER [l:N].
Each processor has a private integer variable 3 which is used as a l oop
index. The following is the program for Processor I:

BEGIN
Li: CHOOSING[I] :=i;

NUMBER(I ] : 1+MAXIM tThI (NUMBE R[ 1] , . . ., N U M B E R [N ] ) ;
CHOOSING ( I J  : =0;
FOR J=1 UNTIL N DO

BEGIN
L2: IF CHOO SI N G (J] #0 THEN GOTO L2;
L3: IF NUM BER [J ) 40 AND

(NUMBE R( J ]~~.NUMBER (I )  OR
(NUMBE R[ J]=NUMBER (I]  AND J~~I ) )

THEN GOTO L3 ;
END;

CRITICAL SECTION ;
NUM BE R[ I ] : 0 ;
NONCRITICAL SECTION ;
GOTO Li;

END
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APPENDIX B

IMPLEMENTATION OF MASTERMODE/NORMALMODE ALGORITHM

MACRO-lU ASSEMBLY LANGUAGE ROUTINES INVOKED
BY CALLS TO THE MASTERMODE AND NORMALMODE
PROCEDURES. LOCAL CON SThNTS WAKEUP , FLAG ,
AND JOBNO WILL HAVE ALREADY BEEN INITIALIZED
BY A CALL TO THE INTTIALIZE PROCEDURE .

MAST: SETZM @ WAKEUP ;CLEAR OUR WA1~EUP WORD .
ZIOVE AC ,WAXEUP ;LOAD BOTH HALVE S OF AC WITH
HRLS AC ;ADDBESS OF OUR WAKEUP WORD
EXCH AC , @FLAG ;AN D SWAP WITh FLAG WO RD .
TRNN AC,-l ;DO WE HAVE A LEADER?
POPJ P , ;NO , RETURN (IN MASTERMODE) .
HLRZ J ,AC ;YES , SO LOOK AT HIS WAKEUP
MOVE AC ,JOBNO ;WORD TO SEE IF HE HAS
EXC}I AC , (J)  ;GOTTEN TOO FAR AHEAD
JUMPE AC ,MAST1 ;AND NEEDS A WAKEUP .
WAKE AC , - ;HE h A S , SO WAKE HIM UP.
HALT ; (ERROR)

MAST1: MOVSI AC,(1B16!1B17) ;WE SLEEP HERE UNTIL
fIBER AC, ;AWAFENED BY OLTR LEADER.

HALT ; (ERROR) 
S

POPJ P, ;RETURN (IN MASTE R~- 1ODE) . :1

NORM: HRRZ AC,WAKEUP ;LOAD RIGHT HALF OF AC AND
XORB AC,@FLAG ;EXCLUSIVE OR WITH FLAG WORD
TRNN AC ,-1 ;DO WE HAVE A- FOLLOWER?
POPJ P , ;NO, RETURN (IN NORMALMODE) . S

HLRS @FLAG ;YES, RESTORE FLAG WORD.
MOVE AC ,JOBNO ;LOOK AT OUR OWN WAKEUP WORD - S

EXCH AC , @WAKEUP ;TO SEE IF WE’VE GOTTEN TOO
JUMPN AC ,NORM 1 ;FAR AHEAD OF OUR FOLLOWER.
MOVSI AC ,( 1B1611B 17) ;WE HAVE , SO WE WILL SLEEP
HIBER AC, ;HERE UNTIL HE CATCHES UP. ’

HALT ; (ERROR)
MOVE AC,@WAKEUP ;NOW HIS NUMBER IS THERE .

NORM1: WAK E AC , ;WAXE OUR FOLLOWE R UP.
HALT ; (ERROR)

POPJ P, ;RETURN (IN NORMAL~’iODE) .
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APPENDIX C

LISTING FOR THE PRODUCER/CONSUMER/DISTRIBUTOR PROBLEM

BEGIN 1 PRODUCE R FOR BUFFER POOL PROBLEM;

INTEGER NPROD,NCON ,NBUF,P.LOOP;
STRING GROUP; S

READ (GROUP,NPROD,NCON,NBUF,P.LOOP); 
S

BEGIN

INTEGER MYNUM ,MYBUF ,BASE ,HEAD , USER]3ASE ,
BOOLEAN FOUND ,MUST.WAIT ;
INTEGER ARRAY P.USE(1:NPROD]- , C.USE (l:NCON],

P.LINEI-1:NPROD), C.LINE (-l:NCON],
FULL[l:NBUF], BUSY[1:NBUF] ;

EXTERNAL PROCEDURE MASTERMODE , NORM ALMODE , INITIALIZE ,
ASSIGN , SET , PUT.IN, REMOVE.FROM ,

- REPORT , PAUSE , SLEEP , WAKEUP ;
EXTERNAL INTEGE R PROCEDURE VALUE .OF , RANDOM ;
EXTE RNAL BOOLEAN PROCEDURE TRULY ;

I ESTABLISH BASE ADDRESS OF SHARED AREA;
IF GROtJP&’A” THEN BASE = O ;
IF GROtJP ” B ” THEN BASE~~~’O O ;
IF GROUP= ”C” THEN BASE ~=2 O O ;
IF GROUP= ”D ” THEN DASE:=300;
USERBASE:=2* (NPROD+NCON )+BASE; 

-

I ESTABLISH POINTERS TO SHARED VARIABLES;
FOR J:~ 1 UNTIL NBtJF DO FULLEJI :=USERBASE4~J;
FOR J: ]. UNTIL NBUF DO BUSY (J] :=FULL [NBUF]+J;
FOR J: 1 UNTIL NPROD DO P.USE(J]:=BUSY[NBUF ]+J;
FOR J: 1 UNTIL NCON DO C.USE [J) :~=P.USE [NPROD3 +J;
FOR J: -1 UNTIL NPROD DO P.LINE[JJ:=C.USE(NCON J +J+2;
FOR J:=-l- UNTIL NCON DO C,LINE(J] :=P.LINE [NPROD]+J+2;

READ(MYNUM); INITIALIZE (MYNUM,BASE);
FOR J:=1 UNTIL P.LOOP DO
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BEGIN 1 START OF PRODUCER CYCLE;
S PAUSE(500 +(5*RANDOM));

MASTERMODE ;
S MYBUF:=O;

FOUND :=FALSE;
WHILE MYBUF~~NBUF AND NOT FOUND DO

S BEGIN 1 SEARCH FOR A BUFFER;
S MYBUF : =MYBUF+1;

IF NOT TRULY (FU LL [MYBUF I ) AND
NOT TRULY(BUSY (MYBUF] ) THEN
BEGIN FOUND: TRUE;

SET (BUSY [MYBUF] ,TRUE);
S ASSIGN (P.USE [MYNU M] ,MYBUF);

MUST.WAIT : FALSE;
END;

END OF SEARCH LOOP ;
IF NOT FOUND THEN

BEGIN REPORT (GROUP , “PRODUCER” ,MYNUM ,
“WAITING TO FILL “ ,O) ;

PUT. IN (P .LINE ,MYNUM )
S MUST.WAIT: TRUE ;

S END ; S
NORMALMODE ; 

S

IF MUST.WAIT THEN SLEEP; -

MYBUF : =VALUE • OF (P . USE [ MYNUM ]
REPORT (GROUP , “PRODUCER” ,MYNUM ,

“STARTING TO FILL “ ,MYBUF);
PAUSE(SOO+IthNDOM);

MASTERMODE ;
REPORT (GROUP , “PRODUCER” ,MYNUM,

“FINISHED FILLING “ ,MYBUF);
HEAD:VALUE .OF(C.LINE [O]);
IF HEAD>O THEN BEGIN ASSIGN (C.USE [HEAD] ,MYBUF) ;

REMOVE . FROM (C. LINE) ;
WAKEUP (HEAD+NPROD) ;

END
ELSE BEGIN SET(FULL [MYBUF] ,TRUE);

SET (BUSY [MYBUF] ,FALSE) ;
- 

END;
NORMALMODE ;

END OF CYCLE;

END;
END
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BEGIN 1 CONSUMER FOR BUFFER POOL PROBLEM ;

INTEGER NP ROD , NCON , NBUF , C. LOOP;
STRING GROUP ;
READ (GROUP., NPROD , NCON , NBUF ,C . LOOP ) ;

BEGIN S

INTEGER MYNUM ,MYBUF ,BASE ,HEAD , USERBASE ,
BOOLEAN FOUND,MUST • WAI T;
INTEGER ARRAY P . U S E I 1 :N P R O D I , C .USE (1 :NCON ] ,

P .LINE [-1 :NPR OD] , C .L I N E [ — 1 : N C O N ] ,
FULL[1:NBUFJ , BUSY[1:NBUF]; 

S

EXTERNAL PROCEDURE MASTERMODE , NORMALMODE , INITIALIZE ,
ASSIGN , SET, PUT.IN , REMOVE.FROM ,
REPORT, PAUSE, SLEEP, WAKEUP;

EXTERNAL INTEGER PROCEDURE VALUE.OF, RANDOM;
EXTERNAL BOOLEAN PROCEDURE TRULY;

I ESTABLISH BASE ADDRESS OF SHARE D AREA;
IF GROUP=”A” THEN BASE~~~0;
IF GROUP=”B” THEN BASE~ =1OO; 

S

IF GROUP=”C” THEN BASE 200;
IF GROUP= ” D” THEN BASE : 300;
USERBASE :=2* (NPROD+NCON ) -i-EASE;

1 ESTABLISH POINTERS TO SHAPE D VARIABLES;
FOR J: 1 UNTIL NBUF DO FULL [J]  :=U SERBASE+J ;
FOR J:= 1 UNTIL NBUF DO BUSY (J] :=FULL[NI3UF]±J;
FOR J:= 1 UNTIL NPRO D DO P.USE (J 1 :=BUSY[NBUF ]+J ;
FOR J:= 1 UNTIL NCON DO C .U S E [J ]  :=P . USE [NPROD] +J ;
FOR J: -1 UNTIL NPRO D DO P . L I N E [ JJ  :=C .USE [NCONJ +J+2 ;
FOR J: -1 UNTIL NCON DO C .LINE [J]  :=P.LINE [NPROD] +J+2;

READ(MYNUM) ; IN ITIALIZE (MYN UM+NPROD ,BASE) ;
FOR J :1 UNTIL C.LOOP DO
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BEGIN I START OF CONSUMER CYCLE;

PAUSE (500+ ( 5* RANDOM ) )

MASTE RMODE ;
MYBUF:=O;
FOUND: ~ FALSE;
WHILE MYBUF<NBUF AND NOT FOUND DO

BEGIN I SEARCH FOR A BUFFER;
MYBUF =MY~ UF+1;
IF TRULY (FULL[MYBUF]) THEN

BEGIN FOUND:=TRUE ;
S SET (FULL [MYBUF] ,FALSE) ;

SET (BUSY (MYBUF] ,TRUE) ;
ASSIGN (C .USE (MYN UM ] ,MYBUF) ;
MUST.WAIT :=FALSE;

END;
END OF SEARCH LOOP ;

IF NOT FOUND THEN
BEGIN REPORT(GROUP , “CONSUMER” ,MYNUM,

“WAITING TO EMPTY “,O);
PUT.IN (C.LINE,MYNUM);
MUST.WAIT :=TRUE;

END;
NORM.ALMODE; S 

S

IF MUST.WAIT THEN SLEEP;
MYBUF : =VALUE . OF (C. USE [MYNUM] )
REPORT (GROUP , “CONSUME R ” ,MYN UM ,

“STARTING TO EMPTY” ,MYBUF) ;
PAUSE (500+RANDOM) ;

MASTERMODE ;
REPORT (GROUP, “CONSUMER” ,MYNUM,

“FINISHED EMPTYING ” ,MYBUF) ;
HEAD: VALUE .O F ( P .L I N E [ 0 ] ) ;
IF HEAD>0 THEN BEGIN ASSIGN (P. USE (HEAD] ,MYBUF);

REMOVE . FROM (P .LINE )
WAKEUP(HEAD ) ;

END
ELSE SET(BU SY [MYBUF) ,FALSE) ;

NORMALMODE ;

- END OF CYCLE ;

END;
END
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BEGIN I DISTRIBUTOR FOR BUFFER POOL PROBLEM;

INTEGER NPRODA , NCONA ,NDUFA , NPRODB , NCONB ,NBUFB ,
NPRODC,NCONC ,NBUFC,NDIS,D.LOOP ;

READ (NPRODA ,NCONA ,NBUFA) ;
READ (NPRODB ,NCONB ,NDUFB ) ;
READ (NPP.ODC,NCON C ,NI3UFC) ; -

READ (NDIS ,D.LOOP ) ;

BEGIN

INTEGER MYNAME ,MYN UM ,MYBUF , BASE ,HEAD , USERBASE ,
- NPRO D ,NBOTH ,NCON ,NBUF ,J ,JX; -

BOOLEAN FOUND , MUST. WAIT;
STRING GROUP ;
INTEGER ARRAY P.LINE [-I:NDIS+IMAX (NPRODA ,NPRODB ,NPRODC)),

C.LINE [—1:IMAX (NCONA ,NCONB ,NCONC)],
P.USE[1:NDIS+IM.AX (NPRODA ,NPRODB ,NPRODC)],
C. USE [1: INAX (NCONA , NCONB, NCONC) I
FULL(1:IMAX (NBUFA ,NBUFE,NBUFC)]
BUSY (1:IMAX(NBUFA,NBUFB ,NBUFC)];

EXTERNAL PROCEDURE MASTERMODE, NORMALMODE , INITIALIZE ,
S ASSIGN, SET, PUT.IN, REMOVE.FROM ,
S REPORT, PAUSE , SLEEP , WAKEUP , NEWGROUP ;

EXTERNAL INTEGER PROCEDURE VALUE.OF, RANDOM ;
EXTERNAL BOOLEAN PROCEDURE TRULY ;

1 PROCEDURE TO ESTABLISH POINTERS TO SHARED VARIABLES ;
PROCEDURE SET.POINTERS ( S) ;  VALUE S; STRING S;
BEGIN GROUP:=S ;

IF ’S= ”A” THEN BEGIN BASE:=000; NPROD :=NPRODA;
NCON:=NCONA; NBUF :=NBUFA; END;

IF S= ”B” THEN BEGIN BASE:=100; NPROD :=NPF.ODB;
NCON :~~NCONB ; NBUF :=NBUFB ; END;

IF S=” C” THEN BEGIN BASE : 200;  NPROD:=NPRODC ;
NCON : NCONC ; NBUF :=NBUFC ; END;

NBOTH :=NDIS+NPROD ;
MYNUM : =MYNAME+NP ROD ;
USERBASE :=2* (NBOT II+NCON)+BASE;
FOR J:= 1 UNTIL NBUF DO FULL[J] :=USERJ3ASE+J;
FOR J:= 1 UNTIL NBUF DO BUSY (J) :=FULL [NBUF]+J ;
FOR J: 1 UNTIL NBOTH DO P.USE(J] :~~BUSY [NBUF] +J;
FOR J:= 1 UNTIL NCON DO C . U S E(J ]  : P .USE (NBOTH ] +J ;
FOR J :=-1 UNTIL NBOTH DO P.LINE[J] :=C.USE (NCON]+J+2;
FOR J:=-]. UNTIL NCON DO C.LINE[J] : P.LINE (NBOTH]+J+2;

END; -

READ ( MYNAME) ; SET.POINTERS ( “ A ” ) ;
INITIALIZE (MYNUt i,BASE);
FOR JX:=1 UNTIL D.LOOP DO
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BEGIN I START OF DISTRIBUTOR CYCLE ;

PAUSE (500+ (5*RANDOM));

MASTERMODE; -

NYBUF:=O;
FOUND:=FALSE; 

-

WHILE MYBUFCNBUF AND NOT FOUND DO
BEGIN I SEARCH FOR A BUFFER;

MYBUF : =MYBUF+1;
IF NOT TRULY(FULL(MYBUF ] ) AND

NOT TRULY ( BUSY (MYBUF] ) THEN
BEGIN FOUND : = TRUE ;

SET (BUSY [MYBUF ) ,TRUE) ;
- ASSIGN (P.USE [MYN UM) ,MYBUF);

MUST.WAIT: FALSE;
END;

END OF SEARCH LOOP; 
S

IF NOT FOUND THEN
BEGIN PEP OR T (GF~OUP , “ DSTRBUTR” ,MYNANE,

“WAITING TO FILL “ ,O ) ;
PUT.IN(P.LINE ,MYNUM);
MUST.WAIT: =TRUE ;

S END;
S 

NORMALMODE ; - S

IF MUST.WAIT THEN SLEEP ;
MYBUF VALUE • OF (P . USE (MYNUM]);
REPORT (GROUP , “DSTRBUTR” ,MYN AME ,

“STARTING TO FILL “ ,MYBUF);
PAUSE (500+RANDOM) ;

MASTERMODE ; 
S

REPORT (GROUP , “ DSTRBTJTR” ,MYN AME ,
“ FINISHED FILLING “ ,MYBUF);

HEAD: VALUE .OF(C.LINE [ O ] ) ;
IF HEAD> O THEN BEGIN ASSIGN (C.USE [HEAD] ,MYBUF) ;

REMOVE. FROM (C .LINE ) ;
- WAKEUP (HEAD+NBOTH) ;

END 
-

S ELSE BEGIN SET(FULL [MYBUF] ,TRUE) ;
SET (BUS Y (MYBUF) ,FALSE) ;

END; S

NORMALMODE;

IF GROUP= ”A” THEN SET.POINTERS(”B”)  ELSE
IF GROUP= ”B” THFN SET POINTERS ( “ C ” )  ELSE

S IF GROUP= ” C” THEN SET.P OINTERS ( “ A ” ) ;
NEWGROUP (MYNU M ,~~ASE) ;

END OF CYCLE ;

END;
END
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GROUP B CONSUMER 1 WAITING TO EMPTY BUFFER AT 3766.225
GROUP A PRODUCER 2 STARTING TO FILL BUFFER 1 AT 3766.245
GROUP A PRODUCER 1 STARTING TO FILL BUFFER 2 AT 3766.272

S GROUP A PRODUCER 2 FINISHED FILLING BUFFER 1 AT 3766 .280
GROUP C CONSUMER 1 WAITING TO EMPTY BUFFER AT 3766 .303
GROUP A PRODUCER l FINI SHED FILLING BUFFER 2 AT 3766.338
GROUP C CONSUMER 2 WAITING TO EMPTY BUFFER AT 3766.349
GROUP A DSTRBUTR 2 STARTING TO FILL BUFFER 3 AT 3766 .362
GROUP A DSTRI3UTR 1 WAITING TO FILL BUFFER AT 3766.366
GROUP A CONSUMER 1 STARTING TO EMPTY BUFFER 1 AT 3766.386
GROUP A PRODUCER 2 WAITING TO FILL BUFFER AT 3766 .388
GROUP A DSTRBUTR 2 FINISHED FILLING BUFFER 3 AT 3766 .405
GROUP B CONSUMER 2 WAITING TO EMPTY BUFFER AT 3 7 6 6 . 4 0 7

S GROUP B CONSUMER 3 WAITING TO EMPTY BUFFER AT 3766.414
GROUP B PRODUCER 1 STARTING TO FILL BUFFE R 1 AT 3766.4 18
GROUP A PRODUCER 1 WAITING TO FILL BUFFER AT 3766.429
GROUP A CONSUMER 1 FINIS}I~ D EMPTYING BUFFER 1 AT 3766.454

S GROUP A DSTRBUTR 1 STARTING TO FILL BUFFER 1.AT 3766.459
GROUP B PRODUCER 1 FINISHED FILLING -BUFFER 1 AT 3766.468
GROUP B CONSUMER -i STARTING TO EMPTY BUFFER 1 AT 3766.471
GROUP A DSTRBUTR 1 FINISHED FILLING BUFFER 1 AT 3766.508
GROUP A CONSUMER 1 STARTING TO EMPTY BUFFER 1 AT 3766.519
GROUP B PRODUCER 1 STARTING TO FILL BUFFER 2 AT 3766.554
GROUP B CONSUMER 1 FINISHED EMPTYING BUFFER 1 AT 3766.556
GROUP- B DSTRBUTR 2 STARTING TO FILL BUFFER 1 AT 3766.560
GROUP A CONSUMER 1 FINISHED EMPTYING BUFFER 1 AT 3766.569
GROUP B PRODUCER 1 FINISHED FILLING BUFFER 2 AT 3766.589
GROUP B CONSUMER 2 STARTING TO EMPTY BUFFER 2 AT 3767.113

S GROUP B DSTRBUTR 2 FINISHED FILLING BUFFER 1 AT 3767.113
GROUP B CONSUMER 3 STARTING TO EMPTY BUFFER 1 AT 3767.117
GROUP B DSTRBUTR 1 STARTING TO FILL BUFFER 3 AT 3767.118
GROUP B CONSUMER 1 WAITING TO EMPTY BUFFER AT 3767.121
GROUP B DSPRBUTR 1 FINISHED FILLING BUFFER 3 AT 3767.158
GROUP B CONSUMER 1 STARTING TO EMPTY BUFFER 3 AT 3767.1-61
GROUP B PRODUCER 1 STARTING TO FILL BUFFER 4 AT 3767.174
GROUP B CONSUMER 3 FINISHED EMPTYING BUFFER 1 AT 3767.185
GROUP C DSTRBUTR 1 STARTING TO FILL BUFFER 1 AT 3767.194
GROUP B CONSUMER 2 FINISHED EMPTYING BUFFER 2 AT 3767.204

S GROUP S PRODUCER 1 FINISHED FILLING BUFFER 4 AT 3767.235
GROUP C DSTRBUTR 2 WAITING TO FILL BUFFER AT 3767.240
GROUP C DSTRI3UTR 1 FINISHED FILLING RUFFER -1~~ T 3767.270
GROUP B CONSUMER 2 STARTING TO EMPTY BUFFER 4 Z~T 3767.275
GROUP B PRODUCER 1 STARTING TO FILL BUFFER 1 AT 3767.311
GROUP B PRODUCER 1 FINISHED FILLING BUFFER 1 AT 3767.397
GROUP B PRODUCER 1 STARTING TO FILL BUFFER 2 A T  3767.473
GROUP B CONSUMER 3 STARTING TO EMPTY BUFFER 1 AT 3767.479
GROUP B PRODUCER 1 FINISHED FILLING BUFFER 2 AT 3767.526
GROUP A PRODUCER 2 STARTI~ C, TO FILL BUFFER 1 AT 3767.537
GROUP A PRODUCER 2 FINISHED FILLING BUFFER 1 AT 3767.586
GROUP A PRODUCER 2 WAITING TO FILL BUFFER AT 3767.6 42
GROUP A CONSUMER 1 STARTING TO EMPTY BUFFER 1 AT 3767.799
GROUP B CONSUMER 1 FINISHED EMPTYING BUFFEI~ 3 AT 3767.812
GROUP A CONSUMER 1 FINISHED EMPTYING BUFFER 1 AT 3767.884
GROUP A PRODUCER 1 STARTING TO FILL BUFFER 1 AT 3767.886
GROUP A PRODUCER 1 FINISHED FILLING BUFFER 1 AT 3767 .956
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GROUP B CONSUMER 1 STARTING TO EMPTY BUFFER 2 AT 3767.963
GROUP B CONSUMER 2 FINISHED EMPTYING BUFFER 4 AT 3767.979
GROUP B CONSUMER 1 FINISHED EMPTYING BUFFER 2 AT 3768.015
GROUP A CONSUMER 1 STARTING TO EMPTY BUFFER 1 AT 3768.018
GROUP A CONSUMER 1 FINISHED EMPTYING BUFFER 1 AT 3768.093
GROUP B CONSUMER 3 FINISHED EMPTYING BUFFER .1 AT 3768.19 4
GROUP B CONSUMER 2 WAITING TO EMPTY BUFFER AT 3768.229

- GROUP C CONSUMER 1 STARTING TO EMPTY BUFFER 1 AT 3768.356
GROUP C CONSUME R 1 FINISHED EMPTYING BUFFER 1 AT 3768.432
GROUP C DSTRBUTR 2 STARTING TO FILL BUFFER 1 AT 3768.435
GROUP B CONSUMER 3 WAITING TO EMPTY BUFFER AT 3768 .470
GROUP C CON SUMER 1 WAITING TO EMPTY BUFFER AT 3768.472
GROUP C DSTRBUTR 2 FINISHED FILLING BUFFER 1AT 3768.500
GROUP C CONSUMER 2 STARTING TO EMPTY BUFFER 1 AT 3768.564
GROUP C CONSUMER 2 FINISHED EMPTYING BUFFER 1 AT 3768.637
GROUP C CONSUMER 2 WAITING TO EMPTY BUFFER AT 3768.774
GROUP A PRODUCER 2 STARTING TO FILL BUFFER 1 AT 3768.993
GROUP A DSTRBUTR 1 WAITING TO FILL BUFFER AT 3768.995
GROUP A DSTRBUTR 2 WAITING TO FILL BUFFER AT 3768.998
GROUP A PRODUCER 2 FINISHED FILLING BUFFER 1 AT 3769.053
GROUP A CONSUMER 1 STARTING TO EMPTY BUFFER 1 AT 3769.067
GROUP A CONSUMER 1 FINISHED EMPTYING BUFFER 1 AT 3769.119
GROUP A DSTRBUTR 1 STARTING TO FILL BUFFER 1 AT 3769.121
GROUP A DSTRBUTR 1 FINISHED FILLING BUFFER 1 AT 3769.171
GROUP A CONSUMER 1 STARTING TO EMPTY BUFFER 1 AT 3769.260
GROUP A CONSUMER 1 FINISHED EMPTYING BUFFER 1 AT 3769.322
GROUP A DSTRBUTR 2 STARTING TO FILL BUFFER 1 AT 3769.324
GROUP A CONSUMER 1 STARTING TO EMPTY BUFFER 2 AT 3769.379
GROUP A DSTRBUTR 2 FINISHED FILLING BUFFER 1 AT 3769.390
GROUP B DSTRBUTR 1 STARTING TO FILL BUFFER 1 AT 3769.406
GROUP A CONSUMER 1 FINISHED EMPTYING BUFFER 2 AT 3769.423
GROUP B DSTRBUTR 2 STARTING TO FILL BUFFER 2 AT 3769.639
GROUP B DSTRBUTR 1 FINISHED FILLING BUFFER 1 AT 3769.809
GROUP B CONSUMER 2 STARTING TO EMPTY BUFFER 1 AT 3769.815
GROUP B CONSUMER 2 FINISHED EMPTYING BUFFER 1 AT 3769.859
GROUP C DSTRBUTR 1 STARTING TO FILL BUFFER 1 AT 3769.968
GROUP C DSTRBUTR 1 FINISHED FILLING BUFFER 1 AT 3770.003
GROUP C CONSUMER 1 STARTING TO EMPTY BUFFER 1 AT 3770.005
GROUP C CONSUMER 1 FINISHED EMPTYING BUFFER 1 AT 3770.049
GROUP B DSTRBUTR 2 FINISHED FILLING BUFFER 2 AT 3770.149
GROUP B CONSUMER 3 STARTING TO EMPTY BUFFER 2 AT 3770.153
GROUP B CONSUMER 3 FINISHED EMPTYING BUFFER 2 AT 3770.234
GROUP A DSTRBUTR 1 STARTING TO FILL BUFFER 2 AT 3770.316
GROUP B CONSUMER 3 WAITING TO EMPTY BUFFER AT 3770.340
GROUP A DSTRBUTR 1 FINISHED FILLING BUFFER 2 AT 3770.350
GROUP C DSTRBUTR 2 STARTING TO FILL BUFFER 1 AT 3770.364
GROUP C DST1~BUTR 2 FINISHED FILLING BUFFER 1 AT 3770.429
GROUP C CONSUMER 2 STARTING TO EMPTY BUFFER 1 AT 3770.432
GROUP C CONSUMER 2 FINISHED EMPTYING BUFFER 1 AT 3770.498
GROUP A DSTRBUTR 2 WAITING TO FILL BUFFER AT 3770.539
GROUP A CONSUMER 1 STARTING TO EMPTY BUFFER.1 AT 3770.606
GROUP C CONSUMER 2 WAITING TO EMPTY BUFFER AT 3770.633
GROUP A CONSUMER 1. FINISHED EMPTYING BUFFER 1 AT 3770.647
GROUP A DSTRBUTR 2 STARTING TO FILL BUFFER 1 AT 3770.650
GROUP A CONSUMER 1 STARTING TO EMPTY BUFFER 2 AT 3770.682
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GROUP A CONSUMER 1 FINISHED EMPTYING BUFFER 2 AT 3770.771
GROUP A DSTRBUTR 2 FINISHED FILLING BUFFER 1 AT 3771.187
GROUP A CONSUMER 1 STARTING TO EMPTY BUFFER 1 AT 3771.253
GROUP A CONSUMER 1 FINISHED EMPTYING BUFFER 1 AT 3771.288
GROUP B DSTPBUTR 2 STARTING TO FILL BUFFER 1 AT 3771.365
GROUP B DSTBBUTR 2 FINISHED FILLING BUFFER .1 AT 3771.414
GROUP B CONSUMER 3 STARTING TO EMPTY BUFFER ’ l AT 37-71.420

- GROUP A CONSUMER 1 STARTING TO EMPTY BUFFER 3 AT 3771.434
GROUP B CONSUMER 3 FINISHED EMPTYING BUFFER 1 AT 3771.456
GROUP A CONSUMER 1 FINISHED EMPTYING BUFFER 3 AT 3771.510
GROUP C DSTBLUTR 2 STARTING TO FILL ’ BUFFER 1 AT 3771.536
GROUP S C DSTRBUTR 2 FINISHED FILLING BUFFER 1 AT 3771.602

S GROUP C CONSUMER 2 STARTING TO EMPTY BUFFER 1 AT 3771.605
GROUP C CONSUMER 2 FINISHED EMPTYING BUFFER 1 AT 3771.657 
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