" AD=A0S8 192 AIR FORCE AVIONICS LAB WRIGHT=-PATTERSON AFB ONIO
.- SOFTWARE COST ESTIMATING METHODOLOGY. (V)
AUS TT T 6 JAMES

Ly
UNCLASSIFIED AFAL=TR=T7=66

o

N
O

Il

22

iz fee

AD-AO¥E (7 A

AFAL-TR-77-66

/ -

\

el

SOFTWARE COST ESTIMATING METHODOLOGY

Synthesis and Analysis Branch
System Avionics Division

August 1977

TECHNICAL REPORT AFAL-TR-77-66

Final Report for Period June 1976 - September 1976

Approved for public release; distribution unlimited.

AIR FORCE AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

AFAL-TR-77-66

FOREWORD
.

This report covers work conducted in-house by the System Evaluation
Group (AAA-3), Synthesis and Analysis Branch, System Avionics Division,
Air Force Avionics Laboratory, Wright-Patterson AFB, Ohio 45433, under
! PE 62204F, Project 2003 “Avionics System Design Technology", Task 200309,
"Avionics System Cost-Effectiveness", Work Unit 20030902 "Avionics Life
Cycle Cost". The time period of work was June 76 through August 76.

Significant contributors to this report were Capt Boundon and
Capt White both from Electronic Systems Division, Hanscom AFB, MA. Great
appreciation is extended to Capt. Ken Almquist (AFAL/AAA-3) for his
participation.

iii

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dnlathflrvd)*

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE pprtEAD INSTRUCTIONS
; 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
AFAL-TR-TT~66
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
SOFTWARE COST ESTIMATING METHODOLOGY Final - June 76 - Sept T6

6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(Ss) 8. CONTRACT OR GRANT NUI'BER(s)

Lt Thomas G. James, Jr.

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::g2ﬂ&”‘oERLKEnsluftnpu‘:aoa)sinc;' TASK
System Evaluation Group (AFAL/AAA-3) L
Air Force Avionics Laboratory 6220L4F/2003/09/02
Wright-Patterson AFB, Ohio

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Air Force Avionics Laboratory August 1977
Wright-Patterson AFB, Ohio 13. NUMBER OF PAGES

T4 MONITORING AGENCY NAME & ADORESS(if different from Controlling Office) 15, SECURITY CLASS. (of this report)

Unclassified

LTs’Z. DECL ASSIFICATION DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

13. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and ideatily by block number)

Software Operations and Support
Cost Estimating Relationships

Cost Models

Life Cycle Costs

20. ABSTRACT (Continue on reverse side If neceasary and identi. - by block number)

The cost analysts of today are not only faced with predicting or estimating
the research, development, test, and evaluation (RDT&E), operation and/or
support costs of weapon systems hardware, but are also expected to derive a :
similar cost estimate for software. This report reviews several software cost
estimating "models" which exist today, and gives examples of their application }
to actual software programs. The models or cost estimating relaticnships
(CERs) presented generally provide software cost estimates for the RDT&E

e

DD, on'7s 1473 €oiTion oF 1 oV 68 15 oesoLETE

~LMCLASS IR e
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

[UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

F@ 20. ABSTRACT (Cont'd)

phases of the 1life cycle, but have yet to be validated. The purpose of this
report is to present some of the more popular software cost modeis and to
encourage validation studies to determine which methods or models provide
greatest promise for accuracy. It is hoped that this report will stimulate
research and analysis into software cost estimating similar to the ‘work being

done in hardware cost prediction techniques.

- - e c————

AGCISS 0N =

(1,] White Seciles

00¢ Butt Sscues ()

URANNOUNCED a

LA 11—

GN AVAILESILITY CODER
:), L o&ng, o 5 "'é;

~INCLASSIFTED

SECURITY CLASSIFICATION OF Yu'* PAGE(When Data Entered)

NOTICE

When Gdvernment drawings, specifications, or other data are used for any pur-
pose other than in connection with a definitely related Government procurement
operation, the United States Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact that the government may have formulated,
furnished, or in any way supplied the said drawings, specifications, or other
data, is not to be regarded by implication or otherwise as in any manner licen-
sing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use, or Sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable
to the National Technical Information Service (NTIS). At NTIS, it will be avail-
able to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

o 1) oD TR

THOMAS G. JAMES, 1 RICHARD L. BUSH, Major, USAF
Project Enginqbr Avionics Synthesis & Analysis Branch
Systems Avionics Division

FOR THE COMMANDER

Acting Chie
System Avionics Division

"If your address has changed, if you wish to be removed from our mailing list,
or if the addressee is no longer employed by your organization please notify
AFAL/AAA JW-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by se-
curity considerations, contractual obligations, or notice on a specific document.

‘uﬂ“,wua_n_.

AFAL-TR-77-66

TABLE OF CONTENTS

SECTION

[INTRODUCTION AND SUMMARY

11 DEFINITION OF TERMS
1. Software
2. Real Time Software
3. Software Acquisition Cost
4. Software Reliability
5. Maintainability
6. Operation and Support
7. Life Cycle Cost

111 REQUIREMENTS TO FORECAST SOFTWARE CO0S:S

1. Methods for Deriving Software Costs
2. Management Visibility
3. Work Breakdown Structure
4. Distribution of Software Development Effort

IV PAST/PRESENT AND FUTURE STUDIES (STATE OF THE ART)
1. hOME Air Development Center (RADC) Efforts
2. Electronic Systems Division (ESD) Efforts
3. TRW Efforts
4. RCA "PRICE" Software Acquisition Models

v SOME SOFTWARE DEVELOPMENT COST ESTIMATING MODELS
1. The Wolverton Model
2. Modified Wolverton Model
3. ESD Model
4. The Tecolote Model
5. The IBM Model
6. Naval Air Development Center Model
7. Aerospace Model
8. General Research Corporation Model
9. The System Development Corporation Model

PAGE

O 00 ® 0 N N N O o

12
13

15

15
18
22
22

24

24
27
28
31
33
35
37
39
42

AFAL-TR-77-66

TABLE OF CONTENTS (Cont)

SECTION
VI APPLICATION OF MODELS
1. Digital Avionics Information System (DAIS)
DAIS Close Air Support
F-15 Joint Tactical Information Distribution
System (JTIDS)
DAIS Support Software
5. Results
VII SUPPORT/MAINTENANCE COST AREA
APPENDIX A
REFERENCES

vi

PAGE
49
49
55

55
56
57

60
65
76

AFAL-TR-77-66

FIGURE
]
2

TABLE

o

11
12

LIST OF ILLUSTRATIONS

Estimated Distribution of USAF Software Costs
Hardware/Software Cost Trends

Program Size vs Reliability

LIST OF TABLES

Distribution of Software Development Effort
Category/Type vs Cost Per Word

Percent Difficulty

Factors Influencing Software Cost

Summary of Provisional Software Estimating
Relationships

Functional Trends in Avionics Memory Requirements
Distribution of Data By Programming Application
Computer Software Variables

Software Cost Estimate Input Worksheet, Definition
of Terms, and Software Qutput Sheet

Input Data
JTIDS Program Breakdown
Results of Cost Models

vii

PAGE

63

PAGE
14
26
27
29

34
40
43
44

50

53
56
58

AFAL-TR-76-66

SECTION I
INTRODUCTION AND SUMMARY

In a recent USAF study of information processing requirements it was
shown that in almost all applications, computer software was the major
source of difficult problems, a major contributor to operational per-
formance penalties, and potentially the largest source of life cycle
cost. During the acquisition cycle of a weapon system, the military
spends haif of the total system acquisition cost on software (Peference 1).
The Air Force spent between one and one and one-half billion dollars on
software alone in 1972, which represented an expenditure of about four to
five percent of the total Air Force budget (Reference 2). In comparison,
the Air Force spends only $300 to $400 million per year on computer hardware.
There have been large expenditures for software packages in the recent
past, and yet it appears that software development costs are continually
rising ($6 to $30 per line of code and upwards to $150 per line of code
for very complex space systems) (Reference 2). In a July 1976 "Newsweek",
it was stated that in the 1950's the rate of computer hardware costs to
software costs was 4 to 1, compared to the present figure of 1 to 4, a
complete turn-around in a little over 20 years (Reference 3). Decreasing
hardware production costs and increasing personnel costs, are partly the
explanation for this turn of events. Figure 1 is an estimated distribution
of the total portion of the USAF budget spent on software. Figure 2

shows the relationship of hardware to software costs projected to the year
1985 (Reference 4).

In addition to the constantly rising cost for software development,
software reliability, unresponsiveness, and indirect costs associated
with slippages in software developments are of major concern to the USAF.
A number of reports stress the fact that in software products acquired by
the military, the quality or "relaibility" of the software produced is
generally unacceptable (error ratgs of over 1 error per 100 lines of code
(Reference 2). The CCIP-85 report (Reference 5) states that military
software is extremely unreliable and unacceptable at the present time.

A number of examples were given which indicate that software errors have

AFAL-TR-77-66

L.LOGS AND
MAINT.
13%

SCIENTIFIC AND
ENGINEERING
23%

Figure 1. Estimated Distribution‘of USAF Software Costs (Reference 2)

n

A]

AFAL-TR-77-66

(4 8oUBU3J3Y) SPUBUL 3SO) BUBMIJOS/dUeMpARH “Z dunblL4

111

os6l

ss61

JYVYML40S

JUVMAYYH
@

P

| 1 L
] o
o ¢ S

1
o
®
4S0D W3ILSAS TVIOL IHL 40 LNIDON3Id

-1 001

AFAL-TR-77-66

caused considerable loss in terms of hardware equipment. Current Air

Force software reliability problems indicate that software errors could
cause the Air Force to lose critical command post or satellite capabilities
in a strategic crisis situation.

Also, software is frequently unresponsive: 95 percent of the SAC
Automated Command and Control System (465L) software package delivered to
SAC had to be rewritten to meet SAC's operational needs and 67 percent of
the Seek Data II software used during the Vietnam conflict had to be
rewitten (Reference 6). In addition, it has been established that indirect

costs of software slippages generally far exceed the direct costs (Reference
2}

The above examples emphasize the general criticality of military
software, where many operations have to be performed in a few seconds or
less. As a result, the military is taking a closer look at software
development procedures and a greater porticn of its R&D resources are
being allocated to the software verification and validation (V&V) and
development tools. However, in crder to reduce the costs of software,
the Air Force should have a defined method which will allow the analyst,
software engineer, and/or project manager to estimate software development
and- support costs, given the basic requirements of the new system being
developed. There exists today computerized models to predict the cost of
hardware in terms of research and development, acquisition, and operation/
support costs. These models, some of which have been validated, are
widely used. (NOTE: There are those who will disagree that the military
possesses the models to accurately predict hardware costs, but "life cycle
cost" models for hardware do exist). Hardware has been in existence longer
than software yet there is still nc widely agreed-upon hardware life cycle
cost methodology. Hence, the expectation that a validated/proven software
life cycle cost model will come along in the next few years may not be
realistic but it is certainly worth working toward.

AFAL-TR-77-66

The purpose of this report is to investigate the field of cost
estimating as applied to computer software, primarily for the purpose of
estimating the total life cycle cost of software for new avionics equipment
under development. In this report past, present, and future efforts to
derive a valid methodology to predict software life cycle costs will be
discussed. Several methods or "models" which are usable today will be
presented or referenced. The statistical confidence with which one may
use the methods, however, is quite low. Therefore, they are presented
not as tested, well-proven tools, but as guidelines to be used in conjunction
with additional techniques, experience, and judgemert. It is hoped that
the reader will acquire some knowledge as to what is being done to predict
software costs. The acquisition of software, the support of software,
and the reliability of software are topics permitting unlimited discussions.
This report will deal with each area in as much detail as time permits,
primarily focusing on the acquisition costs of software. Due to limited
time and space, the models are described in very concise terms in this
report. Before actually applying a model, the reader is referred to the
source document containing a more detailed discussion of a particular
equation/model.

The following types of computer software programs were analyzed by
various organizations in an attempt to derive a software cost estimating
procedure: Management information systems (MIS); avionics; scientific
and engineering; logistic and maintenance; command, control and com-
munication, and intelligence. The question of whether avionics software
is more costly than MIS software, etc., does rot seem to be addressed to
the point of defining a definite relationship, although it is thought
that space and avionics software are more costly due to required testing
and more detailed design effort.

AFAL-TR-77-66

SECTION I1
DEFINITION OF TERMS

Most persons that will read this report are already familiar with
the terms that have and will be used. Since, however, most readers have
their own definition of terms such as software, reliability, operation
and support, etc., these terms will be defined to insure a common
foundation for the discussion to follow.

1. SOFTWARE

AFAL-TR-73-341 defines software as "the programs and routines used
to extend the capability of automatic data processing equipment." To
expand the definition of software as defined in AFAL-TR-73-341, this
report also considers software as the programs and routines used to extend
the capability of computers which are imbedded within weapon systems (not
merely automatic data processing equipment). Software is further broken
down into two types, basic software and application software. For purposes
of this report, the term software will include all necessary documentation
from functional specifications to flowcharts and users' manuals as well as
the actual computer code.

a. Basic software comprises those routines and programs
designed to extend or facilitate the use of particular automatic data
processing equipment, the requirements for which take into account the
design characteristics of such equipment. This software is usually
provided by the original equipment manufacturers and is normally essential
to and a part of the system configuration furnished by him. Examples of
basic software are executive and operating programs, diagnostic programs,
compilers, assemblers, utility routines, file management programs, and
data management programs.

AFAL-TR-77-66

b. Application software consists of those routines and programs
designed by or for automatic data processing equipment users, to accomplish
specific mission-oriented tasks, jobs, or functions using the automatic
data processing equipment and basic software available. Except for general
purpose packages which are acquired directly from software vendors or
from the original equipment manufacturers, this type of software is normally
developed by the user in-house or through contract services.

2. REAL TIME SOFTWARE

A real time computer software system is; defined as one which controls
an environment by receiving data, processing them, and taking action or
returning results sufficiently quickly, to effect the functioning of the
environment at that time. "Sufficiently quickly" refers tc the time
which "allows users to interact with the computer on a time scale
appropriate for human beings ~- on the order of a few seconds between
responses."

3. SOFTWARE ACQUISITION COST

The term acquisition cost of software is used in the same sense as
acquisition cost of hardware. It includes the cost of analysis, design,
programming, checkout, test, and documentation.

4. SOFTWARE RELIABILITY

Software reliability is the rate at which errors are detected in a
program, i.e., number of errors per unit time of operations. A more
formal definition of reliability states "Reliability - the characteristic
of an item expressed by the probability that it will perform a required
function under stated conditions for a stated period of time."” {Reference
3). "Reliability is the measure of the frequency of failure of the
computer software." (Reference 5).

AFAL-TR-77-66

5. MAINTAINABILITY

Maintainability is defined as a measure of the ease with which errors
in a computer program can be corrected and system function and capability
can be expanded or added. Unlike hardware, software maintainability
entails some "redesign."

6. OPERATION AND SUPPORT

The operation/support (0&S) or maintenance costs of software include
the costs associated with using or "running" the computer programs,
modification or adaptation of an existing program to a computer system
or to accommodate changes in system software, and the general day-to-day
reprogramming that must be accomplished to keep the program operational.
The operation/support costs are directly related to the reliability
(number of errors) and the maintainability (cost to fix the errors).

7. LIFE CYCLE COST

The life cycle cost (LCC) of software is the total of the research
and development, acquisition, and operation and maintenance costs.

AFAL-TR-77-66

SECTION III
REQUIREMENTS TO FORECAST SOFTWARE COSTS

The requirements to forecast software costs can be broken down into
three areas of concern. The first and primary area is, what are the
different methods available today for deriving a software cost estimate.
Once the method has been determined, how are the historical data items
collected to utilize the method. The method of deriving a software cost
estimate plus the management responsibilities and proposed work breakdown
structure for the collection of software data will be discussed in the
following paragraphs.

1. METHODS FOR DERIVING SOFTWARE COSTS

In October 1974, a government/industry software workshop was held
at Hanscom AFB, Massachusetts, sponsored by Electronic Systems Division
(ESD) (AFSC). The purpose of the workshop was to "improve communications
between industry and government in the problems of forecasting software
development costs" (Reference 8). The objective of agencies dealing in
software is to improve the accuracy/credibility of future software cost
estimates for electronic defense systems. The workshop listed several
methods for deriving software cost, the principal ones being factors,
experts, ratio to previous experience, ratio to total system dollars, and
probabilities,

The factors method involves identification of cost drivers and the
formulation of an equation/series of equations relating these drivers to
cost. These equations, cost estimating relationships, (CER's) are
derived through the application of statistical methods to appropriate
historical data. During the ESD Workshop the following dominant cost
drivers were identified: (1) number of instructions in the program,
(2) type of programming language (Higher Ordered Language (HOL), Machine
Ordered Language (MOL)), (3) real time application, (4) type of program,
(5) desired quality, (6) amount of documentation, (7) hardware constraints,
(8) schedules, (9) size of data bases, (10) complexity, and (11) personnel

AFAL-TR-77-66

and management functions. Table 4 lists the driving factors the government
and industry agreed upon and best guesses as to the effects these drivers
have on software costs. NOTE: Items 1, 2, and 10 are common factors seen
in the majority of CER's developed thus far. The factor method is good
from the standpoint that it provides a quantitative relationship which is
easy to apply. A major drawback of the factors method is that some inputs
are subjective in nature, such as the complexity of the program, the skill
level of programmer, etc. Development of reliable software cost estimating
relationships (SCER's) using the factors method is currently limited by the
quality/quantity of historical software cost data availabic. The data
problem and what is being done to overcome it, will be discussed later.

The method of "experts" (delphi technique) has been used much in
the past. This method, as the name implies, is dependent upon subjective
opinions of a group of experts in the software field. Results are
obviously only as good as the participants of the group. The method of
experts, very similar to the corporate approach, is directed more along
the Tines of engineering estimates than statistically derived CER's.
After estimating program size and complexity (usually by comparison with
similar previous programs), historical corporate productivity data is
applied to estimate direct labor hours (and thus direct costs) for coding
and debugging. Costs for all other phases and factors in the development
process are then estimated as (historical corporate) percentages of this
direct labor cost.

The two methods of ratio to previous experience and ratio to total
system dollars both have the same characteristics. Their good feature is
that the ratio is developed on real experience and the drawback is the
degree with which the results represent the actual cost incurred. In both
ratio methods the data problem appears again; that is, there is the need
for better data collection and analysis.

The difficulty of understanding the procedure used detracts from the
probabilistic method. This method reflects reality by using past programs
but it is harder to sell its use to someone 'with no understanding of
probability theory. Again, to develop "good" best fit probability models,
the need for data is ever present.

10

AFAL-TR-77-66

2. MANAGEMENT VISIBILITY

Management control, visibility of the software structure, and a
standardized framework for collecting historical costs, sizing and
requirement data, is greatly needed by the Air Force today. A point
stressed during the ESD Workshop (Reference 8) is the need for good
specifications early in the program. "A good specification is fundamental
to building a realistic software cost estimate." Costing in the Air Force
Avionics Laboratory and throughout the R&D community is done at various
stages in the system life cycle, but the original most crucial costing is
done in the conceptual phase. During this timeframe high level management
often wants to be able to make a "go or no go" decision as to system
development, usually based on a cost-benefit analysis (costs to develop,
deploy, and maintain the system versus the benefits to be gained by
acquisition of the system). In these early stages the costing study is
extremely difficult because system documentations are usually incomplete
or lacking in detail and may be inconsistent or ambiguous. The appropriate
time at which an initial software cost estimate should be attempted is at
the earliest possible point after functional design specifications are
completed (Part I Specifications). Once the functions and/or modes the
software program will deal with are known, the "size of your program"
and a "rough" estimate of the software cost can be developed from analysis
of the functions of the program. The cost of deriving a good software
cost estimate is high since much preliminary design work is required.
However, the software workshop agreed that in order to accurately predict
software costs, a considerable amount of design work and project planning
must have been accomplished.

According to industry comments, the majority of software cost estimates
are obtained from elementary sizing parameters of the "estimated number of
instructions" usually derived from historical experience and/or engineering
Judgement. Once the size of the program is determined, then manpower
requirements are estimated, leading to the cost of the software package
development, Both rule of the thumb and mathematical methods do exist
but none are very reliable or validated.

n

rr——

AFAL-TR-77-66

3. WORK BREAKDOWN STRUCTURE

A major problem in the process of comparing or tracking actual software
development cost is that there is a lack of a common language, methodology,
and work breakdown structure (WBS) which would provide a basis for developing
and comparing cost estimates. In a report prepared for NAVSEA, "Interim
Guidance for Preparation of Cost Estimates for Tactical Software Programs,"
Oct 74, an interim work breakdown structure was provided as the frame-of-
reference for all NAVSEA tactical software program cost estimation
(Reference 9). The report provided a brief description of a typical
software development process and how the various activities relate to the
work breakdown structure. Worksheets or summary report formats were
presented to cover each of the following topics:

Cost Estimate for XXX Tactical Software.
Cost Incurred Schedule.

Tactical Software Program Summary
Milestone/Resource Allocation

a N o e

The problem and the inability to apply WBS methods tn software
development can best be summed up in a quote from the NAVSEA Report:
"In the past, industry and NAVSEA project managers/engineers have not
been able to describe or define the software programs for a tactical
system at levels parallel to that which have been developed for technical
management of hardware. This inability to develop realistic work packages
and milestones for management of software programs has resulted in
ineffective monitoring and cost forecating. In addition, the lack of a
suitable common structure of WBS language has limited the development of
norms and valid data banks for transferring experience and interfacing
with industry." (Reference 9)

It is quite possible that the approach of the NAVSEA report has been
adopted in MIL-STD-881, but it appears that the WBS has not yet been fully
utilized by managers of software packages, which leaves the cost estimators
in a state of flux.

12

AFAL-TR-77-66

3. DISTRIBUTION OF SOFTWARE DEVELOPMENT EFFORT

A majority of the models presented in Section V of this report arrive
at a total cost for software development. A distribution of software
development effort or allocation of effort during this phase is sometimes
desired. The development process can be broken down into three major
phases: Analysis and Design, Coding and Debugging, and Integration and
Test. Documentation costs will be included in Integration and Test.

Table 1 represents some findings into how the three phases are distributed
as a percent of the development effort. A general consensus of a 40, 20,
40 percent distribution can be drawn (i.e., 40% for Analysis & Design,

20% for Coding and Debugging, and 40% for Integration and Test). If only
airborne and space programs are considered, it can be seen that more
emphasis is being given to Analysis and Design and a great deal to
Integration and Test. In airborne programs, coding and debugging are a
smaller part or percent of the effort.

13

AFAL-TR-77-66

SOURCE

Ref 2

Ref 2

Ref 2

Ref 2

Ref 2

Ref 10
Ref 10
Ref 1
Ref 11
Ref 11
Ref 11
Ref 11
Ref 11
Ref 11
Ref 11
Ref 11
Ref 11
Ref 12
Ref 12
Ref 12
Ref 13

AVERAGE

DISTRIBUTION OF SOFTWARE DEVELOPMENT EFFORT

PROGRAM/COMPANY

SAGE/NTDS
TRW(COMMAND/CONTROL)
GEMINI/SATURN
0S/360

TRW (SCIENTIFIC)
RAYTHEON (BUSINESS)
INFORMATIES CORP
TITAN II1

X-15

APOLLO

GEMINI

SATURN V

AIRBORNE DAIS (EST.)
GRC EXPERIENCE
SKYLAB

TRW

SETS/BL

IBM

AEGIS

AN/BOQ-5

COST-BY-FUNCTION MODEL

AFAL (AAA-3)

TABL

E

ANALYSIS PERCENTAGE INTEGRATION

AND AND AND
DESIGN DEBUGGING TEST
35 % 17 % 48 7
46 20 34

34 20 46

33 17 50

44 26 30

44 28 28

46 16 48

33 28 39

36 17 47

31 36 33

36 17 47

32 24 44

38 15 47

3N 20 50

38 17 45

an 2N 40

42 18 an

3n 40 30

38 26 36

k4 43 26
34.5 18.0 47.5
38.7 21.7 39.6
36.8% 22.9% 40.7%

14

AFAL-TR-77-66

SECTION IV
PAST/PRESENT AND FUTURE STUDIES (STATE OF THE ART)

The alarming increase in software development costs and the
decreasing dollar resources available for software development have
forced the government and especially the military to find new ways of
producing quality software within very limiting constraints. These costs,
coupled with the fact that the quality of software produced is generally
unacceptable (error rates of over 1 error/100 lines of code), has spurred
several Air Force organizations into conducting various studies on software
cost estimating procedures and development methods.

1. ROME AIR DEVELOPMENT CENTER (RADC) EFFORTS

The Rome Air Development Center has begun an extensive study of the
software development field. The goal of the RADC program is to achieve
higher quality, lower priced software through the reduction of intrinsic
error rates; the improvement of programmer productivity (by using better
programming languages, better design, coding and testing techniques, and
better management control) and improvement of the readability, portability,
documentation, and maintainability of software code.

To achieve the Air Force objectives in the software development area,
the RADC approach is to develop a system of software facilities, all linked
to a centralized software data base. Three facility development efforts
are currently under negotiation at RADC for facilitating development of
the automated analysis system. The first is a multiregression facility
for statistically correlating various data with respect to reliability,
cost, and productivity. The second is a facility to use RADC's On-line
Pattern Analysis and Recognition System (OLPARS) to use the pattern
recognition for determining software reliability. The third is a language
control facility for coliecting various information on language usage and
relating errors to specific language constraints.

15

AFAL-TR-77-66

Principal functions of the centralized software data base will be
to: (1) collect software production data, (2) provide a computerized
data base of raw data for reliability, cost and productivity analysis,
(3) provide analytical tools for data analysis and modeling, and
(4) generate standard reports on information contained in the repository.
The necessity for collecting software data is based on the fact that no
clear conclusions or predictions can be made about quantities of interest,
such as the reliability of software or an accurate estimation of software
production costs, without the historical data base. The repository data
related to the design, coding, testing, and maintenance of software will
include software error data, software cost, complexity and productivity
data, and computer language. Once centralized software data bases have
been established, a number of efforts can proceed. For example, information
on the cost of software developments as related to the techniques used to
develop the software and on error rates as a function of a particular
language or a language feature are important areas of investigation that
will be aided significantly by the repository.

A major requirement for effective use of the software data base is
a software modeling facility. This type of facility would enable
researchers to model various aspects of the software development process.
For example, cost estimating models based on factors like functional
requirements, problem complexity, and programming experience, and sizirg
models for determining necessary computer resources, are critical for
accurate software cost estimates. Reiiability models for predicting the
occurrence or number of software errors in operational software are
important in answering questions related to the release of software for
operacional use and the progress of software testing. These models,
plus software complexity and production models, can lead to a true
appreciation of the significant factors underlying software development,
thus leading to increased control over the scftware process. Contractors
involved in RADC software programs include System Development Corporation
(SDC), I11inois Institute of Technology Research Institute (IITRI),
Polytechnic Institute of New York (PINY), and the MITRE Corporation.

16

AFAL-TR-77-66

The System Development Corporation (SDC) is conducting a data
collection study for RADC. SDC is studying the general area of data
collection, storage, and retrieval. Major emphasis has been placed on
the problems related to the collection of software production data. They
also analyzed previous efforts by IBM, TRW, and MITRE (Reference 1) in
the software data collection area.

The I11linois Institute of Technology Research Institute (IITRI) is
under contract with RADC to investigate, among other things, the specifi-
cations for a pilot repository facility at RADC. Thus, SDC and IITRI are
working closely to develop specifications for a Software Data Collection
& Repository System at RADC.

The MITRE Corporation has developed models for measuring structural
complexity of software, and is currently developing a Software Implemen-
tation Monitor (SIMON) for RADC to automatically gather and analyze data
during software development.

Polytechnic Institute of New York (PINY) is currently investigating
modeling techniques, similar to those used for hardware reliability, for
use in the software area. For example, PINY has developed a model for
predicting the reliability of software based on the use of Markovian
processes to determine the probability that a given software system is
in either an "up" state (no errors present in the system) or a "down"
state (an error has occurred and is being corrected). Other areas which
PINY is investigating at this time include:

a. Models to measure software complexity and develop relationships
among error content, debugging effort, program size and run time.

b. A study of the effects of modular and structured programming on
program errors.

c. Models to test effectiveness in removing software errors.

17

AFAL-TR-77-66

d. Development of models for comparison of different programming
languages with respect to such features as core size, run time, development
test, and debugging costs.

With respect to software reiiability/maintainability, RADC is currently
planning an effort to develop software reliability models based on the
Bayesian statistical theory. Along with this, methods will be developed
for making acceptance or rejection decisions about a software package
during software testing using these Bayesian models and Bayesian techniques.
Also planned by RADC is the evaluation of computer programs and designs
in terms of a quantitative measure of maintainability, and the restructuring
of computer programs for reliability and maintainability improvement. As
part of this effort, a maintainability model will be developed which tracks
and measures the propagation of modifications and/or errors through a
system of software modules, thus leading to a measurement of maintainability.

2. ELECTRONIC SYSTEMS DIVISION (ESD) EFFORTS

Two Electronic System Division (ESD) organizations, ESD/MCIO and
ESD/ACCI, are condurcting studies analyzing the software development cycle
and predicting software costs.

On 1-2 October 1974 an ESD workshop entitled, Government/Industry
Software Seizing and Costing was held at Hanscom Air Force Base, Bedford,
Massachusetts. The primary output of the workshop was a list of factors
and details on how these factors affect the cost of software development.
This list is what is referred to in this report as the "ESD Model", and
is described in detail in Section V-3. The dominant factors affecting
software costs were identified as the number of instruction, programming
language, real time application, type of program, desired quality, amount
of documentation, hardware constraints, schedules, size of data base,
complexity, stability of requirements, and personnel and management
required, Certain procurement procedures such as subordination of software
design goals to hardware design goals also were identified as having a
decided effect on software costs. The workshop agreed upoh? one general
point, i.e., that deriving a good scftware cost estimate is very expensive.

18

o=

AFAL-TR-77-66

Another point of interest was the need for an improved work breakdown
structure (WBS) and the fact that MI1-STD-881 has not been fully utilized
to decompose complex software projects into manageable work packages.

To further the software cost estimating techniques that exist teday,
ESD/MCI has two major efforts at the present time (Reference 6). The first
is a study entitled "Life Cycle Costing of System Software/Computer
Resources," being conducted by General Research Corporation (GRC). The
objective of the study is to develop WBS down to a level sufficient to
identify software cost elements and functional requirements. The second
step of this effort will be to collect data against this WBS. After these
two steps have been taken, GRC will employ statistical methods to develop
CZRs relating previously identified cost elements to resource expenditure
for each phase of the software life cycle. A follow on effort entitled
"Software Cost Prediction Aids" will render these CERs compatible with a
generalized life cycle cost model like the MITRE Electronic Systems Cost
Model, or a functional description tool 1ike the Computer Aided Require-
ments Analyses (Reference 14). Development of a total life cycle cost
model for software is expected to be completed in October 1976. The
results of the GRC effort under contract F19628-76-C-0180 are documented
in a preliminary draft report entitled "Cost Reporting Elements and
Activity Cost Tradeoffs for Defense System Software." The six month
study investigated the problems of software cost estimation, hypothesizing
relationships, gathering and analyzing data, and examining reporting
systems. There exists equations relating cost (in terms of estimating
the man-months) to the different phases of the software life cycle. The
equations are not presented here since it would be worthwhile to wait for
the final report to be released. The following quote exhibits the
confidence of the derived relationships: "Our second major objective
was to develop improved software cost estimating relationships. A
significant amount of work had been previously devoted to this task. The
work was performed by competent groups and focused on estimating total
man-hours or costs. Results have been disappointing, with derived re-
lationships exhibiting large variance." Some of the major findings by
GRC include the following.

a. Accurate estimating relationships for each life cycle phase
cannot be developed independent of the other phases

19

AFAL-TR-77-66

b. Estimating the tradeoffs between the life cycle phases is of
prime importance.

c. Estimating the tradeoffs can also lead to the development of
rules for optimal allocation among life cycle phases.

The GRC study to date is the most current and complete effort accomplished
to determine operation and support cost of software.

The second major effort is the Air Force Software Library. ESD/MCI
has developed a software library which is presently on-line in prototype
form at ASD? The Tibrary is designed to collect technical data on existing
software packages. The library at the present time contains a description
of the software program and the person or organization to contact for
additional information. An effort is now underway to collect and store
data, where available, on resources expended in developing and maintaining
these programs.

In a draft of a proposed in-house research program for improving
software cost estimating, ESD/ACCI proposes to develop two models, one
a "robust reoression model", the second a "software development simulator"
(Reference 14).

The robust regression model will be daveloped to handle small sample
sizes. AFSCM 173-1 describes the ground rules and methods of utilizing
the Tinear statistical model as a standard technique for developing
estimating relationships. AFSCN 173-1 adopts the principle of least
squares which is based on possessing a normal or "bell-shaped" statistical
distribution. When the variations are not distributed normally, these
properties cannot be proven to be true. Furthermore, AFSCM 173-1 states
that "when sufficient data points are available, the distribution of
sample means will remain normal to a satisfactory degree of approximation."
According to the ESD/ACCI draft report, 30 data points are generally a
large enough sample for the normality assumption to be sufficiently
approximated. In the area of software cost estimating, data definition
and collection problems do not generally give us 30 data points, (homogenous

20

AFAL-TR-77-66

sample sizes). "Thus, there is no reason to believe, a priori, that
standard statistical techniques will produce accurate CER's, and the
failures of SDC, GRC, and Tecolati are not all that surprising."

(Reference 14) The "robust regression technique" suggested by Capt Bourdon
(Reference 14) to handle this data problem is to employ the Kurtosis
(fourth standardized moment) of the least squares residuals. This method
has been demonstrated for the simple, two-variable model and cuite possibly
can be applied to a multivariate model. The,kurtosis then can be used when
random variables are not known to be distributed normally. According to
Capt. Bourdon, this method is as good or better than least squares
regression down to sample size of four.

The second model proposed is the software development simulator which
would employ a Monte Carlo sampling technique. The simulator envisioned
is predicated on the hypothesis that cost is an explicit function of the
time usage of direct labor and computer hours. An estimation of the
labor and computer hours consumed as a furction of time can be made and
in turn the cost arrived at by applying standard factors for engineering
management. overhead, etc. "“Thus the simulator serves to generate and
tabulate statistics on the consumption of labor and computer resources
by simulating the software development process." (Reference 14)

ESD/ACC pointed out in Reference 14 that there is a definite need
for an ad hoc planning group to guide future research in the software
cost estimating area, to eliminate duplication of research dcllars spent
and time and effort devoted to similar tasks. ESD/ACC recommends that
they be designated the software cost estimating research focal point for
all activities in the area conducted by agencies under the operational
control of the ESD Commander. Th2 proposed ad hoc planning group would
be responsible for:

a. Defining, monitoring, and reporting on the progress of all
in-house and contracted efforts aimed at bettering the ability to predict
the cost of softiware.

21

AFAL-TR-77-66

b. Coordinating on all Statements of Work and serving on all source
selection boards for procurements associated with software cost estimating
methodologies.

c. Organizing and coordinating periodic symposia and seminars for
the exchange of data, ideas, and findings between government, industrial,
and academic institutions active in software development and cost
estimating.

3. TRW EFFORTS

TRW is currently investigating the types of errors which are made
most frequently and an error classification scheme. TRW is also analyzing
how personnel, hardware problems, hardware interfaces, operational timing,
and input requirements contributed to errors which occurred. TRW has
developed a Mathematical Theory of Software Reliability (MTSR) for
predicting the reliability of software systems based on the complete set
of possibie data input, values, and the logical structure of the component
modules. They are currently applying this theory to an actual software
development project and are further analyzing the theory to determine the
effects of errors removal on reliability and the variance in sampling
techniques for measuring the reliability.

4. RCA "PRICE" SOFTWARE ACQUISITION MODELS

RCA is currently developing a software acquisition cost model
analogous to the proprietary hardware acquisition model. At the present
time, numerous DoD and contractor organizations utilize the PRICE model
to develop cost-estimates for new hardware equipment/systems, in terms of
development and acquisition costs. Business Week, 7 June 1976, "RCA's
Uncanny System for Estimating Costs" states that "Altogether, Systems
Command will spend $200,000 on PRICE this year. Some Air Force procurement
agencies even require that bidders' proposals include data in the specific
form need for PRICE input." Over the past two or three years, RCA has been
working to develop a software cost estimating technique that is similar to
the RCA PRICE model. It would be unfair to the reader to try to predict
the format, or the accuracy of the model at this time, but based on the

22

AFAL-TR-77-66

hardware model, PRICE, it is safe to state that this model Tooks promising
with respect to prediction of software development costs. The extent to
which the new software cost estimating model will be used depends upon

the cost charged the user by RCA and validation results. The model should
appear on the market for use sometime during the summer of 1977.

23

AFAL-TR-77-66

SECTION V

SOME SOFTWARE DEVELOPMENT COST ESTIMATING MODELS

In this section, several software cost estimating models are presented.
It is generally agreed that no software cost estimating relationship (SCER)
or model has been adequately validated. Hence, the use of these models
must be viewed in this light. Section VI includes demonstrations of the
use of each of these models on actual software development programs but
it should not be viewed as a validation or even an evaluation study.
Actual costs of software development programs required for such an
evaluation were not available. (Only two computer programs analyzed have
actual costs associated with them). The majority of models considered
are based upon an initial estimate of the number of instructions to be
written (sometimes arrived at by estimation of the number of functions
of a software program and general information as to number of instructions
per function). This implies that even if the SCER were to have say an
r 0.95, the number of instructiors estimated or "guessed" drives the
SCER output total cost. (NOTE: rl refers to the coefficient of
determination which is a measure of dispersion showing the proportion of
total variance accounted for by the estimating relationship). Another
general observation about the models is the fact that most were developed
on relatively small data bases (as small as two programs and as large as
169 programs).

1. THE WOLVERTON MODEL

In November 1973, Ray W. Wolverton of TRW Systems Group presented a
paper entitled “The Cost of Developing Large Scale Software" (Reference
10). This, most probably, was not the first attempt at a software cost
estimating model, but has become the most widely referenced work on
software cost estimation. The Wolverton model is the most widely used
and accepted software cost estimating technique developed thus far. This
methodology is applicable to large scale software development programs
which utilize a "structured programming" design approach. Structured
programming implies modular form.

24

AFAL-TR-77-66

The basis for the model is a TRW proprietary data base containing
historical information in the form of cost per instruction. Wolverton
assumes that the development cost varies proportionately with the number
of instructions. For each identified routine, the procedure combines a
user supplied estimate of the number of object instructions, category,
and relative degree of difficulty with relationships based on the historical

data base to determine a trial estimate of the total software development
cost.

The first step in the procedure is to estimate the number of
instructions in each category. The categories which Wolverton defines
are as follows:

a. (C) Control routine, which controls execution flow and is
non-time critical.

b. (I) Input/output routine, which transfers data into or out of
the computer

c. (P) Pre- or post-algorithm processor, which 1fipulates data
for subsequent processing or output.

d. (A) Algorithin, which performs logical or mathematical operations.

e. (D) Data management routine, which manages data transfer within
the computer.

f. (T) Time critical processor, which ic a highly optimized machine
dependent code.

To obtain a relative degree of difficulty there are basically two
substeps involved. First, determination of whether or not the routine
is an "01d" or a "new" program. Once that determination has been made
(0o1d or new), then the program must be classified as to whether it is an

25

AFAL-TR-77-66

easy, medium, or a hard program to code/design. Therefore, the possible
degrees of difficulty are:

Program Easy Medium Hard
01d (0]3 oM OH
New NE NM NH

where 0 = old, N = new, E = easy, M = medium, and H = Hard. The results
of step one are then multiplied by the significant cost per instruction
(CPI) expected for the type and difficulty categories. The total expected
cost of the program is the sum of the above calculations. Table 2 is a
breakdown of the Category/Type and the cost per word expected. As Capt.
Gaumer pointed out in his thesis, the costs associated with Wolverton's
categories were extracted from actual historical costs incurred by TRW,
Inc. based on 1972 dollars (Reference 15). Using Capt. Gaumer's method
and the Implicit Price Deflators index listed in the "Survey of Current
Business", Wolverton's 1972 figures are multiplied by an inflation factor
of 1.27. Hence, the figures in Table 2 are in 1976 dollars.

TABLE 2
CATEGORY/TYPE VS TYPE PER WORD

oLD C I P A D T
E $27 $23 $22 $19 $30 $95
M 34 30 29 25 39 95
H 38 34 33 28 44 95

NEW C I P A D T
E $42 $36 $36 $30 $47 $95
M 51 44 43 38 58 95
H 62 55 53 44 71 95

26

AFAL-TR-77-66

The major pitfall with the Wolverton model lies in the initial estimation

of the numbers of instructions by degree of difficulty and category. Once
these estimates are obtained the model is easily applied. Results naturally
depend on the accuracy of the initial estimates.

2. MODIFIED WOLVERTON MODEL

The System Evaluation Group, of the Air Force Avionics Laboratory
developed 2~ computerized version of the Wolverton Model for rapid analysis
of software development costs. As the title suggests, this model is based
on the TRW work conducted by Ray Wolverton.

The only required input to the computer program is the number of
instructions by type (i.e., number of C,I,P,A,D, and T instructions) as
defined in Section V-1. The program utilizes ten equations to obtain the
cost per instruction for each type. These equations were obtained through
regression analysis using the data displayed in Figure 12 of Reference 10.
The cost for time critical processor type (T) instructions is assumed
constant as in the Wolverton Model. Costs associated with the level of
effort are computed as follows: (1) total cost of the program is calculated
from the number of instructions and cost per instruction by type;

(2) analysis is 20 percent of total cost, design is 18.7 percent,coding
is 21.7 percent, testing is 28.3 percent and documentation is 11.3 percent.

The Modified Wolverton Computer Program generates program development
costs for "new" and "0l1d" code, for programs ranging in "percent difficulty"
from 10-90 percent. The user must, based on subjective decisions relative
to these characterizations, select the appropriate cost figure from the
spectrum of data aenerated. For the Modified Wolverton Model, Wolverton's
categories of easy, medium, and hard are redefined as "percent difficulty"
on a scale of 10 to 90 percent. The relationship between these categori-
zations is presented in Table 3 below.

TABLE 3. PERCENT DIFFICULTY

Easy Medium Hard
10-20-30% 40-50-60% 70-80-90%

27

AFAL-TR-77-66

The following characterizations of easy, medium, and hard programming
tasks developed by IBM may assist the user 1in assigning "percent difficulty"
figures when utilizing the Wolverton or modified Wolverton models.

a. Easy: Very few interactions with other system elements. The
class includes most problem programs or "application" programs. Any
program whose main function is to solve mathematical or logical problems
is probably in this class. Easy programs generally interact only with
input/output programs, data management programs, and monitor programs.

b. Medium: Some interactions with other elements. In this
category are most utilities, language compilers, schedules, input/output
packages, and data management packages. These programs interact with
hardware functions, with probiem programs, with monitor, and with others
in this class. Complicated by being generalized enough to handle multiple
situations: 1/0 from many different 1/0 devices or management of class
files with variable number of indices.

c. Hard: Many interactions with other system elements. A1l
monitors and operating systems fall into this class because they interact
with everything, Special purpose programs, such as a conversational
message processor, may be in this class if they modify the master operative
system.

The Modified Wolverton computer program listing and sample inputs
and outputs are contained in Appendix A.

3. ESD MODEL

The summary notes of the October 1974 Electronic Systems Division
sponsored software workshop (Reference 8) form the basis for what is
referred to herein as the "ESD Model". Factors identified as impacting
software costs are provided in Table 4.

28

AFAL-TR-77-66

TABLE 4

FACTORS INFLUENCING SOFTWARE COST

FACTOR

RELATTION TO COST

Number of delivered source instructions
Language

Real-time application

Type (0S, application, utility)
Point on learning curve

Application area (MIS, avionics,...)

Turnaround time
Amount of documentation

Hardware constraints
Schedule realism

Amount of previous software used
Size, structure of data base
Complexity

Stability of requirements

Stability of development environment

Representativeness of development environ-
ment

Personnel

Development methods (e.g., structured
programming)

Management

Linear, modified by other factors
HOL :
MOL: $12-24/source instruction

RT: $30-60/source instruction

If 0S, multiply by 2.5

If unfamiliar, multiply by 1.5 - 2.0

Sometimes, as percentage of total system
cost

$6-12/source instruction

"Man-rated": test cost ~ 40% of total
Non-"man-rated": test cost ~ 15% of

| total

Approximately linear relation to testing
cost

Approximately 10% of total; $35 - 150/
non-automated page

Asmptotic

Percent added cost =
acceleration

percent of schedule
Breakout and subjective

Subjective

Subjective

Subjective

Subjective

Subjective

Subjective; approximately 5:1 variability
Subjective; systematic approaches cheaper

Subjective: high variability

29

AFAL-TR-77-66

The primary step in using this model is the determination of the
number of delivered executable source instructions where delivered implies
designed, integrated, tested, and document (Reference 8). Source instruc-
tions which for this discussion exclude comment cards, is considered a
better estimation factor than the number of object instructions which is
then used in the Wolverton and Modified Wolverton models.

Once the number of instructions and the language are known, cost
factors presented in Table 4 are used to arrive at the basic cost figure.
As can be seen from the table, many factors affect the cost estimate,
such as whether it is a real-time application program, familiar, or
unfamiliar program, etc.

The "relation to cost" for several of the factors identified as
invluencing software cost are listed as "subjective". The size and
structure of the data base is an extremely important parameter. Quite
naturally, the effect on cost is more for large data file oriented
projects but as of yet, no quantitative relationship similar to those
developed for cost-per-instruction has been established. The complexity
factor as of yet has not been defined in a way so as to be used reliably
in a cost formula. Attempts have been made to correlate costs with such
factors as number of interfaces, percentage of branch statements, and
number of paths through a program, but without any highly reliable
correlations. The effect on cost that the development envircnment has
is merely the added cost required to adapt software to actual operational
conditions such as 4i7ferent computer configuration and operating
procedures; can be quite significant, upwards to 95 percent in some
instances, but can only be estimated subjectively.

Quality of personnel is considered by many experienced estimators
to be the most important factor affecting software development costs.
Productivity variations of 5:1 between individuals are common. Yet to be
developed is the quantitative effects on cost of using development
techniques such as structured programming, top-down development, chief
programmer teams, and automated aids. It is agreed that systematic

30

AFAL-TR-77-66

approaches to software development are better than disorganized ones.
Possible payoffs for the use of systematic software development techniques
are in operation and maintenance costs because of ease of detugging and
rebuilding the program.

To sum up the ESD approach, the basic cost is arrived at by utilizing
the number of instructions times the cost per instruction and adding cost
for type of program, unfamiliar, real-time, etc. Subjective factors are

then applied to adjust cost to reflect the development technique, personel,
etc,

4. THE TECOLOTE MODEL

In this report, the Tecolote Model refers to the basic equations
extracted from a report entitled, "A Provisional Model for Estimating
Computer Program Development Costs," Dec 1974, (Reference 16) prepared
by Brad C. Frederic of Tecolote Research, Inc., Santa Barbara, California,
for the Resource Analysis Branch, Office of the Chief of Naval Operations,
Department of the Navy specifically for estimating development cost for
tactical software. Tactical software is defined by Frederic as any
complete set of computer programs that resides in and drives a computer
system within a fire control system. Mr. Frederic stressed the point
that the model was a "provisional model," that is, serving only for the
time being.

The report emphasized the problem of obtaining data to perform
statistical analysis and noted that three large software cost data bases
had been already compiled at System Development Corporation (SDC), TRW,
and North American Autonetics (NAA). There were problems in the data
collected by Tecolote (387 separate points from 15 source references)
that proved insurmountable. Since the data had to be collected from
rather outdated published sources, locating spokesmen familiar with the
program to interpret the data was impossible. Therefore, the data base
could not be treated or rationalized into a homogeneous base. Hence,
Tecolote elected to undertake a small sample approach (5 data points)
utilizing only data which they thoroughly understood, and where "the

31

_——

AFAL-TR-77-66

estimating relationships developed would be more in the nature of
engineering scaling laws than strictly derived statistical equations."
(Reference 16)

The Tecolote analysis of software development included the following
activities, as given by Wolverton (Section V-1):

a. Software requirements generation.

b. Preliminary software design (and release).
c. Detailed software design (and release).

d. Code and debug.

e. Development testing.

f. Validation testing.

g. Operation demonstration (and handover).

The types of computer architectures which this study included were
single Central Procassor Units (CPU), democratic, and autocratic. Single
CPU involves a single central processor with storage and peripherals.

The democratic architectures consider multiple CPU's operating in parallel
with pairwise communication, common storage, and peripherals. Autocratic
is a combination of a single CPU's and democratic subsystems acting in
paraliel, under the control of a separate single CPU executive.

Mr. Frederic noted that computer system speed and fast storage
capacity are the major drivers of software requirements. The size of the
program in this model is the number of machine language instructions. The
size can be input as either the number of operational instructions or the
number of delivered instructions, In general, the number of delivered is
greater than the number of operational instructions. Operational instruc-
tions are those produced during development that are eventually installed
in the tactical hardware; delivered instructions are all those instructions
produced during development. The instructions contained in a development
“"test bed" which simulates hardware interfaces are an example of delivered
instructions which never become operational. According to Frederic, the

32

AFAL-TR-77-66

number of operational instructions increases for tactical software directly
as either the number of targets terminal-tracked increases or as the target
approach speed increases.

There are five basic cost estimating equations derived by Tecolote
given in Table 5. Each equation requires the input of one of five self
explanatory variables. The equation which the user utilizes depends on
the input variable which he is more corfident about. For example, if the
user knows the number of delivered instructions (D) then the equation
0.01(0)1'18, D in thousands, results in total development cost. Likewise,
if the user knows number of operating instructions (0) the equation
0.01(0)1‘24 gives you total development costs. Notes A, B, and C are
helpful in terms of understanding the basic assumptions of the CER. The
output is the total development cost in FY73 millions of dollars.

5. THE IBM MODEL

The IBM Model is documented in the IBM proprietary report "Estimating
Software Life Cycle Costs: by John C. Malone, April 1975 (Reference 17).
The report utilized software cost data which was derived from software
projects performed by IBM, which, (1) employed top-down structured
programming techniques and (2) utilized the Chief Programmer Teams
Operation Concept. Structured programming techniques feature a simple
flow of logic such that the program can be easily read and understood.
Structured programming tends to improve both software reliability and
maintainability but may not be efficient in terms of computer resource
usage, Structured programming constrains the implementer to three basic
constructs, "the straight line," "if then else," "do while (loop)."
Top-down programming is starting development with the top module such
that the real driver is used to test all submodules estimating interface
problems.

33

AFAL-TR-77-66

"$$37 ¥0 23S/W 05 SI Q33dS HOVOUddY LVYIYHL WAWIXVW 31 NWN10D Lv3I¥HL ¥3IS 3sn (J)
*J9NVY 23S/W 00£-0S2 IHL NI SI 033dS HOVOYddY LVIYHL WOWIXYW 41 NWNI0J LY3IYHL ¥IV 3sn (8)
“WW/SYNOH ¥ILNdWOD €2°t ONY “YNOH YILNAWOI/LL$ “¥O8YT Y04 0E6°E$ 3WNSSY iSO (V) :S3LON

34

(SGNYSNOHL)
39Y401S
.. (L)og"8 . (L)og pl 154
S0°L s0°1 SQYOM Y101
(SAONYSNOHL)
SNOI LINYLSNI
Pm.ﬁﬁhvop v#._ﬁmqu 0 _m.ﬁﬁhve, cc.PAmv_m 0 wzakﬂwwmm
(SAONVSNOHL)
SNOILONYLSNI
mo.,ﬁovmo., 0343AIT30
bm__Apvmp 1o (8)88°0 . (1)LL 1c-1(S)OE"D 101
: : . ¥oav
mm..hkvmv mN.,Amv_o L mw.PAhvmw mﬂ._ﬁmvmm 0 ¢N.PonNm 2 w_._ﬁovm¢ 2 m:kzou<umu
WS €4 Ad
1502
gg- 1 (1)6L°0 g, (SIEV000 wm.,AFVoM 0 mN.FAmVoNco 0 vw._ﬁovpo 0 w_._on_o 0| (W)E¥00°0 Pzwzaouw»wm
S1Nd.1N0
aIMIVYL (SANYSNOHL) aIIVYL (SONYSNOHL) | (SANVYSNOHL) | (SONYSNOHL)
TYNIWYIL | 39VH0LS 1SV4 | -TWNIWM3IL | 39v¥0LS 1SY4 |SNOILONYLSNI|{SNOILONYLSNI| ¥O8Y1
S139¥YL ‘1 [SGYOM T¥IOL “S| S139¥VL “L [SGYOM WIOL ‘S| ONILW¥IdO | OIIAIII0 |SHINOW-NW
(3) SLVI¥HL VIS (8) SLVIUHL VIV W01 "0 | WIOL "0 | WIOL "W | SINdNI
(¥ 3LON 33S) SAIHSNOILY13¥ ONILYWILSI FYYMLIOS TYNOISIAOYd 40 AYYWWNS
S 318vl

AFAL-TR-77-66

The chief programmer approach depends on top-down implementation,
and matches personnel capability with the complexity of the modules they
are to develop, i.e., the top-most complex modules are produced by a
highly qualified software system specialist, referred to as the chief
programmer. Less qualified personnel implement the lower lever modules
under the control and guidance of the chief programmer. The chief
programmer approach to software implementation is & good concept, but the
staffing profile can make it difficult to employ. This model addresses
only the software development phase. The data included costs for the
development phase of both real-time and support software. The equations
being of a proprietary nature could not be presented, however, the results
of applying the model are presented in Section VI of this report.

6. NAVAL AIR DEVELOPMENT CENTER MODEL

The cost relationship (CER) discussed in this section was taken from
a study done by Naval Air Development Center (NAVAIRDEVCEN or NADC)
entitled, "A Cost By Function Model for Avionic Computer Systems",
March 1971 (Reference 13). The NAVAIRDEVCEN developed an overall CER,
comprised of several equations, which could be used for predicting total
acquisition costs for research, development, test and evaluation, and
production of future avionic computer systems. Reference 13 gives a
complete computer listing of the "Cost-by-Function" model with its 10
basic modules. These 10 basic modules are as follows:

(1) Raw Technical System Requirements: Functional requirements of
the system are translated by a function/structure requirements matrix to
six variables denoting the raw technical requirements of the system.

(2) Total Technical System Requirements: The raw technical
requirements are modified using system architecture factors to reflect
performance needed.

(3) Modularized Technical System Requirements: Converts from total
technical system acquirements to integral units of the selected hardware
modules.

35

AFAL-TR-77-66

(4) Cost Trends Near Baseline: Cost trends with technical
requirements are determined in the vicinity of each baseline. This module
automatically recalibrates the model when new data becomes available.

(5) Programming Costs (RDT&E): The software requirements implied
by module two are converted to RDT&E programming costs.

(6) Estimated Hardware Costs: RDT&E and First Unit Production:
By utilizing the system performance characteristics, baseline characteristics
and cost trends, the hardware costs are estimated. The model selects a
baseline approximating the desired system.

7) Production Cost Breakout by Year: A learning curve and quantity
discoint are employed and aggregated on a yearly basis via an input
produc tion schedule.

(8) Breakout of RDT&E Hardware Costs by Line Item: The results of
module six are broken down by major line item.

(9) Breakdown of all RDT&E Costs by Year: RDT&E software costs

and hardware costs are broken out by year using the input program management
factors.

(10) Summary and Report Generation: The annual programming costs
generated by module five and the production cost breakout by year, module
7, are summarized and a report is generated.

The following equation, referred to in this report as the NAVAIRDEVCEN
software cost model, is basically module five, and provides an estimate of
the total number of man-months required to develop a software package for
an avionic computer system:

+ 10X, + X, - 188 (1)

Y= 2.8X2 + 1.3X3 " 33X4 - '|7X5 6 7

36

-

AFAL-TR-77-66

where Y = number of manmonths

><
"

2 number of machine language instructions (thousands) in delivered
program

x3 = number of man-miles traveled by contractors

X4 = number of document types produced

X5 = average programmer's experience with system (NOTE: The
experience “for the system programmer is the sum of the average number of
years of experience with the specific computer-type, application, and
language.")

x6 = number of independent consoles

x7 = percentage of new instructions

Module two can be used to calculate the variable X2 based on the
function of the program. An interesting comment found in a GRC report
notes that the weighing factor applied to the documentation in this model
is based upon pre-work standard (WS) 8506 experience. GRC, based upon a
private communication, 31 Aug 73, states that the documentation costs can
be expected to triple with the implementation of WS 8506. Hence, the X
term would be modified and the equation would appear as:

4

Y=2.8X,+ 1.3X, + 99X, - 17X, + 10X_ + X

2 3 4 5 i Bl (2)

7. AERGSPACE MODEL

The model referred to here as the "Aerospace Model" was taken from
a 1975 Aerospace Corporation report on cost estimating (Reference 18).
The data used to develop the cost equations for this model were divided
into two groups or types of programming efforts, real-time programs, and
support programs. Included in the cost data are costs that accrued as a
result of problems encountered in developing a large-scale software
program. The real-time software program development problem areas
identified were:

a. Limited core storage of computers.

b. Timing requirements

37

AFAL-TR-77-66

c. Accuracy requirements.
d. Fixed-point arithmetic.
e. Changing specifications.
f. Real-time simulations.
) Inability to interface languages.

2. Nonstandardization of computers between machines and
operational program or support program problem areas identified were:

(a) Timing and accuracy problems.

(b) Inability to transfer simulation activities of one
contractor to another due to language and machine differences.

(c) Inadequate and changing specifications.

(d) Lack of an organized method of defining endpoints and
products of various development phases.

The data base used to develop the cost equation for real-time software
program costs consisted of 13 large-scale programs, primarily airborne and
space oriented programs. The cost equation derived from a rearession
analysis of those 13 data points. The cost equation developed is as follows:

Man-months = 0.057 (Instruction)o‘94 (3)

The sample size for operational support programs consisted of seven
data points (both airborne and ground software programs were in the data

base). The resulting equation for support software man-months estimation
is:

)0.404

Man-Months = 2.012 (Instruction (4)

The comment about language type mentioned above holds true in this case
as well,

AFAL-TR-77-66

Once the number of man-months required for develupment is estimated
using Equation 3 or 4, a dollar value per man-month is used te derive the
total development cost. The estimated cost per man-month would obviously
vary with the particular company performing the programming function. For

planning purposes, an average of $5,000 per man-month is used by Aerospace
Corp.

8. GENERAL RESEARCH CORPORATION MODEL

The GRC model was taken from a report entitled "Estimation of
Computer Requirements and Software Development Costs", March 1974,
prepared by M. A. Taback and M. C. Ditmore of Generél Research Corporation
(Reference 12). The purpose of GRC was to determine a means of quantifying
computer software development cost from overall system requirements. GRC
had previously developed a procedure for determining the data processing
speed and memory required to implement various computer functions from
system performance requirements. The report presents a cost estimating
relationship for computer software development which models the effects
of the following: (1) program size, (2) computer language, (3) complexity,
and (4) hardware constraints. The key conclusion of the report was that
the program size, used along with the effects of program complexity,
high-level language, and hardware constraints, is a reasonable predictor
of software development cost.

The first step in utilizing any of the GRC models or any other such
model, that of estimating the number of instructions for the particular
program, appears to be the critical step. GRC suggests that one should
develop the algorithms that are required and then utilize Table 6, which
is a table of typical functional requirements in terms of number of
instructions required, to implement the algorithm.

The CER developed by GRC used the factors which they felt could be
identified either prior to program start up or immediately thereafter.
The major factors include:

a. Estimated number of instructions.

b. Language used.

39

AFAL-TR-77-66

TABLE 6

FUNCTIONAL TRENDS IN AVIONICS MEMORY REQUIREMENTS

Typicai Current Applications

Navigation

Air-to-Air Weapon Delivery
Air-to-Ground Weapon Delivery
Data Link

Tacan & Steering

Radar Update

Attitude Data

Displays and Contro)

Self Test

Executive & Input/Output
Common Subroutines

NADC Guidelines**

Radar Processing
Acoustical Processing
ASW Non-Acoustical Sensors
Navigation

Flight Control

Data Collection

Fire Control

Recon Data

Display Processing
Data Communications
Console and Cockpit

Projection for Near-Future Bomber

Instructions and Constants*

2600
930
1120
630
120
45.
380
1100
570
1400
300

Instructions and Data

16,000
16,000
16,000
8,000
8,000
8,000
8,000
8,000
16,000
8,000
16,000

Instructions and Data

Navigation

Weapon Delivery

Target/Check Point Acquisition
Radar Homing, Location
Communications

Countermeasures

Mission Data Center

Controls, Display & Outputs
Miscellaneous

*Constants are fixed numbers that are

17,000
9,000
4,500

14,500

10,000
5,000

11,500

17,000
7,000

used in computations and are

prestored, along with the instructions that use them.

**Minimum requirements, main storage only (offline mass storage

estimated separately).

40

AFAL-TR-77-66

c. Degree of difficulty or complexity.

d. Degree of saturation of the host computer, where degree of
saturation refers to the amount of excess central processor speed and
memory storage available to the programmer. The resulting CER provides
the

¢, = 0.232 N, 143 (5)
total software development cost in 1973 dollars assuming unlimited
computer resources, where Cs = total software development cost and Ni =
number of machine language instructions in the software development
effort under consideration. Equation 5 does not include the extra cost
incurred in the development of an operating system for a new computer

or the modification of an existing operating system to accommodate the
software program. Development cost for compilers, assemblers, and other
support software must be handled as additional software to be developed.

Addressing software developments within the context of constrained
computer resources, if we let P = fraction of maximum speed and memory
capacity utilized the total constrained software cost, (Cs)c 1s

7

(C.le=¢C —————9;———~_ for P > 0.5 (6)
g 7 .8

If, for example, a system were to utilize 75 percent of its memory

capacity (P = 0.75) then the CER reduces to:

0.7
1 -J0.25

GRC cited three primary effects of the use of a higher order
language (HOL) and stressed the fact that these are a first approximation
of the effect of an HOL:

(€g)e = € = 1.40 C, (7)

1. One to three times as much storage space is required for a
HOL as for a machine oriented language (MOL), depending on the type of
language and the compiler used.

4

AFAL-TR-77-66

2. Execution of a HOL is one to three times slower than execution
of MOL, depending on type of compiler.

3. Programming costs for a HOL are one-half to one-third those of
MOL .

9. THE SYSTEM DEVELOPMENT CORPORATION MODEL

The System Development Corporation (SDC) in 1967 published a report
entitled, "“Management Handbook for the Estimation of Computer Programming
Costs," based on work sponsored by the ESD (Reference 19). This report
includes qualitative discussions/guidelines to help managers estimate
costs of computer programming. SDC spent considerable time analyzing a
large amount of data in an attempt to identify the dominant factors
impacting programming costs. Table 7 presents the distribution of
software programs in the SDC data base by programming application.

Through regression analysis on the 94 variables displayed in Table 8,
SDC identified 12 variables which were sufficiently significant to use
as estimating indices. For this analysis 105 programs categorized as the
large computer subsample were selected from their software data base.
The Targe computer subsample consisted of software developed for machines
with a monthly rental price or equivalent purchase price of $750,000 or
greater. Eguation 8 estimates man-months per thousand instructions coded
(Y) expressed in terms of the 12 variables identified.

X = 0.04% + 15.2X6 -0.23X25 + 0.528X30 + 4.50X37 + 0.091X46
+10.4X5, (8)
where:

x6 = Complexity of the program system interface. In the computer
program, if more than 50 percent of the design effort is devoted to
problems associated with transferring data to or from the program data
point, x6 = 2; if between 10 percent and 50 percent effort is devoted to
data transfer problems, x6 = 1; if less than 10 percent effort is devoted,

X6 = (.

42

*suorjeziuebuo 4ysn ajededss y| Juasaudad eIe(y

g 82 L2 6L 691 101
Ll Ll 82 H Auedwo) 3I¥dS043Y
2 6l 12 9 Auedwo) aNY
L 2 € 4 Auedwo) JYYMOYYH
2 2 3 Auedwo) ¥31NdWO0I
INIWd013A30
1 g 2l Ll 69 a Auedwo) aNy
0 L L 9 Auedwo) HOYY3ISY
L L g Auedwo) AYML40S
£ 3 9 y Auedwo) ¥3LNdW0D
2 oL 92 8¢ +30404 ¥IV 'S'N INIWNY3A09
¥3IHL0 JYYMLI0S J1411N3IDS SSANISNG SINIOd
¥31NdW0I v1va
WY¥90¥d 40 3dAL W10l

(61 3INIY343Y) NOILYIITddY ONIWWYYO0Hd A8 VIV 40 NOILNGIYLSIO

L 378vl

43

AFAL-TR-77-66

TABLE 8
COMPUTER SOFTWARE VARIABLES (REFERENCE 19)

x] Vagueness of design requirements definition.

X2 Innovation required.

x3 Lack of knowledge of operational requirements.

XA Number of organizational users.

X5 Number of ADP centers.

X6 Complexity of program system interface.

X7 Response time requirements.

X8 Stability of design.

X9 On-Tine requirements.

X0 Total object instructions delivered.

X]] Percent delivered object instructions reused.

X]2 Total nondelivered object.instructions produced.

X13 Total source instructions written.

X]4 Percent sourcé instructions written in POL (Procedure Oriented
Language).

X]5 Percent of total source instructions discarded.

X16 Percent of total object instructions discarded.

Xy7 Number of conditional branches.

)(]8 Number of words in the data base.

Xi9 Number of classes of items in the data base.

X20 Number of input message types.

X2] Number of output message types.

X22 Number of input variables.

X23 Number of output variables.

44

AFAL-TR-77-66

TABLE 8 (Cont'd)

X24 Number of words in tables, and constants not in data base.
X25 Percent clerical instructions.

x26 Percent mathematical instructions.

X27 Percent input/output instructions.

X28 Percent logical control instructions.

X29 Percent self-checking instructions.

X30 Percent information storage and retrieval functions.
X3] Percent data acquisition and display function.

X32 Percent control or regulation function.

X33 Percent decision-making functions.

x34 Percent transformation functions.

X35 Percent generation functions.

X36 Average operating time.

X37 Frequency of operation. ;
X38 Insufficient memory.

X39 Insufficient 1/0 capacity.

X40 Stringent timing requirements.

X4] Number of subprograms.

x42 Programming language.

x43 POL expansion ratio.

X44 Support program availability.

X4s Internal documentation.

Xa6 External documentation.

x47 Total number of édocument types.

x48 Type of program (business, scientific, utility, other)

45

AFAL-TR-77-66

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

TABLE 8 (Cont'd)

Compiler or assembler used.

Developmental computer used.

First program on computer.

Average turn-around time.

ADP components developed concurrently.

Special display equipment.

Core capacity.

Random access device used.

Number of bits per word.

Memory access time.

Machine add time.

Compute cost.

Percent senior programmers.

Average programmer experience with language.

Average programmer experience with application.
Percent programmers participating in program design.
Personnel continuity.

Maximum number of programmers.

Lack of management procedures.

Number of agencies concurring in design.

Customer inexperience.

Computer operated by agency other than program developer.
Program developed at site other than the operational installation.

Different computers for programming and operation.

46

AFAL-TR-77-66

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
9
92
93
94

TABLE 8 (Concluded)

Closed or open shop operation.

Number of locations for program data point development.
Number of man trips.

Program data point developed by military organization.
Program data point developed on time-shared computer.
Complexity of system interface with other systems.
Security classification level. Yo o
Number of sources of system information.

Accessibility of system information.

Degree of system change expected during development.
Degree of system change expected during system operations.
Number of functions in the system.

Number of system components.

Number of components -- not off-the-shelf.

Percent senior analysts.

Quality of resource documents.

The availability of special tools.

Degree of standardization in policy and procedures.
Number of official reviews of documents.

Personnel turnover.

Output volume.

Input volume,

47

-

AFAL-TR-77-66

x25 = Percent of clerical instructions.
X30 = Percent of information storage and retrieval functions.

x37 = Frequency of operation. If this variable is not applicable,

X37 = 03 if frequency of operation is less than one per month, X37 i 5
more than one per month and less than one per week, X37 = 2; more than
one per week and less than one per day, X37 = 3; if daily, X37 -
utility or on-line, (including compilers) X., = 5.

37

X46 = External documentation. This is the number of pages written
for, or_distributed to, customers,

X48 i Business. For programs classified as business application,

Xgg.1 = 1 the remaining applications, X,q | = 0.

XS] = First program on computer. If it is a new machine or new to

the installation and to the programmers, XS] = 1. If old or not new,

X5] = .

X54 = Special display equipment involving use of graphic displays,
CRTs, scopes, etc. X54 = 1 if used, X54 = 0 if nnt used.

X56 = Random access device used such as drum, disc, etc. X56 =]
if used, X56 = (0 if not used.

x64 = Percent programmers participating in program design. This
is the ratio of programmers participating in the design of the program
to the total number of programmers assigned to the program development.

x65 = Personnel continuity, specifically, the number of personnel
working for the duration of the project divided by the maximum number
assigned at any time.

x74 = Number of locations for program development.

As GRC points out in Reference 12, this equation requires rather
detailed previous knowledge of software parameters, and when such
information is unavailable or cannot be estimated with accuracy, the
technique cannot be used.

48

-

AFAL-TR-77-66

SECTION VI
APPLICATION OF MODELS

A1l but one of the models presented in Section V of this report
were used to analyze cost associated with six large scale computer
programs. Because of the lack of sufficient data, the SDC model was
not applicable. Actual expended costs were known on two of the six
software packages analyzed. Although this exercise should not be
considered as a validation or even an evaluation of the models, the
results may assist software managers in becoming sensitive and aware of
what factors affect such engineering economic estimates.

The six programs will be described in as much detail as was needed
to apply the CER's and the basic assumptions that were made will be
presented. Input data requirements for the eight models under
consideration are presented in Table 9. Table 10 displays input data

assumed for this exercise for each of the software development efforts
analyzed.

1. DIGITAL AVIONICS INFORMATION SYSTEM (DAIS)

The Digital Avionics Information System (DAIS) Air Superiority
Program contained 36,916 statements and was programmed in a higher
order language, JOVIAL (J73/1). The program was broken down into nine
modules (executive, navigation, weapon delivery, ECM, control/display,
flight control, management, communications, DAIS Integrated Test System)
by number of instructions and type of program, 1.e., real-time,
operating system, utility, or application. The following facts and
assumptions were made pertaining to each module: (1) executive is an
operating system containing 4000 instructions, (2) navigation containing
3848 instructions was real-time program application type, (3) weapon
delivery is a real-time program application type containing 3272
instructions, (4) ECM contained 534 instructions and is a real-time
application type program, (5) control/display containing 3663 instructions
is a real-time utility program, (6) flight control, real-time application
program includes 8770 instructions, (7) management containing 7838

49

T

AFAL-TR-77-€6

TABLE 9

SOFTWARE COST ESTIMATE INPUT WORKSHEET, DEFINITION OF
TERMS, AND SOFTWARE OQUTPUT SHEET

LANGUAGE TYPE _ (HOL or MOL)
If HOL, give name

ESTIMATE NUMBER OF TOTAL INSTRUCTIONS

BREAKOUT OF TYPE OF INSTRUCTIONS:

of control instructions

pre-post CPU instructions

algocithm instructions
data management instructions

real timne instructions

DELIVERED OR OPERATING INSTRUCTIONS?

OBJECT OR SOURCE INSTRUCTIONS?

NEW OR OLD PROGRAM (% new, % old)?

RANK DIFFICULTY (between 1 and 9, 1 = easy, 9 = hard)

MANRATED OR NON-MANRATED?

IF UNFAMILIAR PROGRAM (NEW), RANK BETWEEN 1.5 and 2.0

(Subjective ranking of how unfamiliar program is)

OPERATING SYSTEM OR NOT?

REAL TIME SYSTEM OR NOT (%)?

MAN MILES TRAVELED BY CONTRACTOR

DOC TYPES

SYSTEM PROGRAMMER EXPERIENCE (YEARS)

INDEPENDENT CONSOLES

SUBROUTINES

REUSEABLE SUBROUTINES

FUNCTION OF PROGRAM (BRIEF STATEMENT)

-

AFAL-TR-77-66
TABLE 9 (Cont'd)

LANGUAGE - Self explanatory
NUMBER OF INSTRUCTIONS - Self explanatory
CONTROL INSTRUCTION - Controls execution flow and is non-time critical.

PRE-POST CPU INSTRUCTION - Pre- or post algorithm processor which manipulates
data for subsequent processing or output.

ALGORITHM INSTRUCTION - Which performs logical or mathematical operations

DATA MANAGEMENT INSTRUCTIONS - Data management routine which manages data
transfer within the computer.

REAL-TIME INSTRUCTIONS - Time critical processor which is highly optimized
machine dependent code.

DELIVERED OR OPERATING INSTRUCTIONS - Delivered is the total of instructions
received from contractor as opposed to the actual instructions you would use
(operating). Contractor may have to simulate your machine (system).

OBJECT VS SOURCE INSTRUCTIONS - Object is machine language instructions after
source deck has been compiled. Source -+ compiler -+ object

NEW OR OLD - Self explanatory
RANK DIFFICULTY - Subjective 1I=easy 5=median 9=difficult
MANRATED - NON-MANRATED - Self explanatory

UNFAMILIAR - For unfamiliar, multiply by 1.5 - 2.0. A judgement of how
unfamiliar the program is to the programmer.

OPERATING SYSTEM - Software which controls the execution of computer

programs and which may provide scheduling, debugging, I/0 control, accounting,
compilation, storage assignment, data management, and related services.
Operating system program component, of a system, costs more per instruction,
than the application or utility program components.

REAL TIME - Real time programs are those ir which the time is kept as a
variatle, stored in memory, to be incremented or stepped under program
control, It is used to describe processes in which the computer is
controlling a device and must receive input signals and transmit output
signals within the certain maximum time. For exam»l., SAT. control, ship
control, flight control, navigation.

MAN-MILES TRAVELED - Miles per man traveled by the contractor to and
from the customer.

DOC TYPES - Reports, flow charts, user manuals, etc.

SYSTEM PROGRAMMER EXP. - Total years of experience with the particular
system.

SUBRCUTINES - Self expiantory
OF REUSED SUBROUTINES - Reused from previous programs.

51

AFAL-TR-77-66

TABLE 9 (Concluded)

SOFTWARE OUTPUT SHELT

(Name of Software Program)

TOTAL COST TO DEVELOP PROGRAM ($75)

COST OF ANALYSIS $
DESIGN $
CODE $
LEST $
DOCUMENTATION $

TOTAL MAN MTHS (@ $3930/MAN MTH)

52

i A o el 7 el

AT AL

0°6 X X X 596°28

G'8 X A L80°2¢€1

X vLLCE
X 166

X 8€8°/
X 96%

X £€99°¢
€S
v€5°9
6£6°S

winoe 0008
L1 X 691° L€

>< >< >

>

X 000t
X 1666
X 8€8°L
X 0LL°8
X £99°‘¢
PES
rAYARS
88 e
X 000*¥
IAOC
X

> > >

L1 916°9¢

ALINJ14410 JAYND ALITILN NOILYOINddY ALITILN NOILVIINddY W31SAS T0W TOH "HLISNI 40
ONINAVY3T JWIL V3N ONI1VY3d0 Y3GWNN

Viva 1NdNI
Ol 378Vl

SAGS Al

43| tdwo)
1/eL0 111

saulLjnoaqgns
U0 {382 LUNWWO)
Juawabeuey
[oJ43u0) 314
Aeydsig/1o43u0)
Wi3

AuanL|aq uodeap
uorjebLaey
3ALINOAX3

j40ddng Aty
3s6() SIVa "Il

Sl11d

U0 32 Lunuwo?)
Juawabeuey
1043u0) 314
Ke|dsig/|043u0)
WJ3

A43AL|3Q uodeapm
uorjebiaey
9ALINDAXI

K3La0143dng
A1y SIVa °1

WYHO0¥d 40 3WYN

53

d/WN 0St ‘64035 Jaj2Weded

d/WN 6.5 *35u0?) abessay
d/WN X €8 uoL3oung “uydy
buissaosoud

d/WN X 6vE‘Y "Wwo) PaAL3IRY
d/NN X Gyl Aeldsig uoizen3Ls
d/WN X vLL 433dwoud
d/WN X 11 A aseg ejeq
d/WN 192 433 |14 abessay
a“zz 9¢ 4344ng 3ndu
d/kN 6LL L 3831 418§
¥/WO by BT ans u3ew
1 X Nveioy 05P°L 3A13N23xX3

X OJOLW SAILL “IA
d/RN 0S¥ ‘64035 Ja33WedRy
d/WN 99¢ "3su0) abessay
d/WN X 09 uoL3Iduny “uydY

buissadoud
d/hN X 029°¢ "UNIO) PaAAL3IBY
d/WN X ove‘l Aeydsig uorjenyis
d/WN X 021 433dwoud
d/NN X 020°L aseg ejeQ
d/RN 081 43314 Abessay
d/WN S2 J344ng ndug
d/WN (VAN 1S3] 318§
Y /WO WINOC 9.8 ans yaey
1 X) 000" | 3A13Nd3x3
NYY 1404
X LULW SOILC “A
ALINDI4410 3A¥ND AY093ILYD NOILVOIddY/ALITILN IWIL W3 W3ILSAS T0W TOH “¥1ISNI 40 WYH904d 40 3WYN
ONINYYIT NOLY3ATOM INILV¥3d0 Y3IGWNN

(papniou0)) 0L 378YL

AFAL-TR-77-66

instruction is an operating system, (8) communications containing 9991
instructions is a real-time application, and (9) DITS is a utility program
of 4000 instructions. The total DAIS air superiority program was man-rated.

2. DAIS CLOSE AIR SUPPORT

The DAIS Close Air Support program contained 37,169 statements. It
was also programmed in JOVIAL (J73/1) and broken down into nine modules
(Executive, Navigation, Weapon Delivery, ECM, Control/Display, Flight Control,
Management, Communications, Subroutines) by number of instructions and type
of program, i.e., real-time, operating system, utility, or application.
The following assumptions were made pertaining to each module: (1) executive
containing 8000 instructions was an operating system, (2) the navigation,
weapon delivery, ECM, flight control, and communication modules are all
real-time application programs with 5939, 6534, 534, 496, and 991 instructions
respectively, (3) the Control/Display module is a utility real-time program
of 3663 instruction, (4) management containing 7838 instruction is an
operating system, and (5) Subroutines contain 3174 instructions and was a
utility program.

For both the DAIS Air Superiority and Close Air Support programs, a
subjective "point on the learning curve" of 1.7 was assumed. This number
is based on the ESD model (Table 4) where "if unfamiliar, multiply by 1.5
to 2.0." (Reference 8)

/
3., F-15 JOINT TACTICAL INFORMATION DISTRIBUTION SYSTEM (JTIDS)

The F-15 Joint Tactical Information Distribution System (JTIDS)
software program has two versions, one for minicomputers, one for micro-
computers. The information about these programs was gathered from
Reference 15. Both the mini- and micro-computer JTIDS software programs
consisted of 12 modules. Table 11 displays the basic information about
each module. More detailed information is contained in the reference.

55

AFAL-TR-77-66

TABLE 11

JTIDS PROGRAM BREAKDOWN

Name

Executive

Mate Subroutine

Self Test

Input Message Buffer
Message Type Filter
Data Base Management
Prompter

Situation Display
Received Command Processing
Acknowledge Function
Message Construction

Parameter Storage

Wolverton Operating
Mini Cost System or
Instructions Category Instructions Real-Time
1000 T 1450 Operating
876 OM/A 1270 Neither
1271 NM/P 1719 Neither
25 NM/P 36 Neither
180 NM/P 261 Neither
7020 NM/P 7155 Operating
120 NM/P 174 Real-time
1340 NM/P 1745 Real-time
3620 NM/P 4349 Real-time
60 NM/P 83 Real-time
466 NM/P 579 Neither
450 NM/P 450 Neither

Both mini- and micro-computer JTIDS programs utilized the higher ordered
languages of FORTRAN or JOVIAL.

4. DAIS SUPPORT SOFTWARE

The last two programs to be analyzed were the DAIS J73/1 compiler and
the Software Design and Verification System (SDVS).

56

Sys

Both the J73/1 compiler
and the SDVS programs are good data points since we have actual costs to
compare the estimates against.

AFAL-TR-77-66

The J73/1 compiler consisted of 132,087 source instructions, written
in HOL. It was an old program which was modified, and ranked 8.5 in
difficulty (1 = easy, 10 = hard). The program was a man-rated, nonoperating
system, and non-real-time program. Total man-miles traveled by contractor
was 68,400. The number of document types was five, with three on-line,
remote terminals, and 50 percent of the program being new instructions.
The average of the programmers' experience was assumed to be three years.

The Software Design and Verification System (SDVS) was also written
in J73/1 and had 82,965 source instructions. SDVS was a non-man-rated,
operating system program with 9.0 degree difficulty. The program was
non-real-time with eight document types. An average of 21,600 miles was
traveled by contractors with an average of 2.8 years software experience.
The number of on-line remote terminals is five with 100 percent new
instructions.

5. RESULTS

Table 12 is a summary chart of results obtained by applying the eight
software cost estimating models. For application of those models, which
were not formulated in terms of the RCA PRICE model, economic inflation
rates were utilized to adjust the results to 1977 dollars. Those cases
where the information obtained was insufficient to utilize a particuler
methodology are identified on Table 12.

57

AFAL-TR-77-66

‘ AT ko St & e3eq e3eg

118" £9¢ Bvy vhL L L6L° LEB" | €14°998° | JUBLDL44NSU] JU3| DL 44NSUT SAQS
605926 £06°928° L GLE“IBLE 225°26L e3e(Q ejeq 43T1dW0D
: Juaidljinsug JuaLdliynsug 1/¢Lr
piseoz 1L e3eq LEB“ 8SY 210° 188 60L°L66 BYL 2.6 OYdINW
JUdLILJ4NSU] salice si-4
Sp5°2€0° L ejeQ Lt 9LE CL6 6hL 1G£°558 961°vES INIW
JuaLoLjinsug suiif 51~3
v19°189°‘2 ejeQ 698 LLb* L 9LE“EV0°2 UL TAR A ZARA 90€°L£2°2 ALTH0IY3dNS
JUaLOLIINSU] 41y
35072 SIva
0€.°066°2 ejeq 6Lv°90%° L 0Lv921°2 E6v°60S° L Ly8°569° 1L ALTHOIY¥3dNS
JULILJ4NSU] dly SIva
sweabouy

3Ivd4S0¥3Y N3JAIQYIVAVN 31070231 as3 NOLY3IATOM QOW NOLYIATOM

sajewilys

S1300W 1S0D 40 SLINS3Y

¢l 378vl

AFAL-TR-77-€6

"OYIIW Gl-4 404 WGG§ 03 WL'G$ Pu® INIW SQILC GLl-4

W' p$ 01 Wp™p$ UBIMIDQ PajeLL3sa Se|bnog | (BUUOGIW :ILON«
.U:L&mcm\m—“ .U:L“m:m\wmw #
000°€0L° L 986° 022 € 0££°2£0°21 $28°960° L SAGS
*anaqsuT/G$ *3NU15UT/0b$
6£0° 29 L10°bPE*S 992 pLY €2 129°298° 1 quWWWWw
B .4 4. 0¥ TN
10N« p22° 168 L£8°96b° 28°822 e R
TSNIISUT/S0%
110N« 880° Lb/ 665 L61° | Z1e 681 INIH
SQILC S1-4
"ona3sul//6$
921°8E (2 £6€°628°€ £61°81S ALTHOI¥3dNS
dIv
35019 SIVO
"ONAISU /458
9928002 VL Z6L'E 189°9¢5 ALI¥OT¥3dNS
, ¥IV SIV
WLV J9V4IAV 249 Wal

(papn(duo)) Z| 378Vl

i Ll b i B

59

~———

AFAL-TR-77-66

SECTION VII
SUPPORT/MAINTENANCE COST AREA

Once the software program has been accepted, continual support must
be furnished to modify the software package to meet changing mission and
performance requirements. Besides the modifications to software programs,
corrections must be made to previously undetected errors which occur.
Because software is the controlling and integrating agent in weapon systems
today, proper support is required to insure that the program performs its
intended functions properly. In avionic software programs this support is
critical since errors could result in inadvertent armament rzlease or
impact with the ground in terrain following modes.

The software development process is typically oriented toward
minimizing the total development time ~r maximizing the program's efficiency.
In a study on the relative amount of time spent on software maintenance it
was shown that most software facilities spent somewhere between 20 and 30
percent of their time on software maintenance, but some installations
spent 90 to 100 percent of their time maintaining software. Air Force
avionics software is much like the latter and "currently it costs something
like $75 per instruction to develop the software, but the maintenance of
the software has cos? up to $4,000 per instruction." (Reference 20).
Further noted by Judith A. Clapp (The MITRE Corp) in "A Review of Software
Cost Estimation Methods" (Reference 18) was the fact that 54 percent of
all errors were found after acceptance tests were conducted and of these
84 percent were design errors; also, of the total number er+ors found,
64 percent were attributed to mistakes in design. Throughout the development
phase relatively little thought is usually given about what will happen
after development is completed. According to the CCIP-85 Report (Reference 5),
three things are likely to happen after development:

(1) Another organization will want to use all or part of the software
for its application, (2) the user will upgrade eventually to a new machine
and will wish to convert the software, and (3) users will quite frequently
want the programs changed to meet new requirements, produce new reports,
accommodate new inputs, clear up inconsistencies, add new options, etc.

60

AFAL-TR-77-66

Software transferability involves addressing the ease with which the
first two points mentioned above can be accomplished. Maintainability,
quite simply stated, involves the capabilities to satisfy the last point.
Both the transferability and maintainability aspects involve considerable
costs and inconveniences. A couple of prime examples of the costs involved
with transferability and maintainability were given in the CCIP-85 Report:
Strategic Air Command (SAC) estimated it would take three years for 200
programmers to convert the SAC Control System (SACCS) software to the
upcoming SAC Worldwide Military Command and Control System computer. This
is equivalent to three years worth of delays and roughly $30 million in
costs. It took 150 programmers one year to convert software for Electronic
Intelligence (ELINT) and Minuteman application onto the IBM 360/85;
currently the 360/85 has about 75 maintenance programmers. The PACER
software cost $8 million to develop and is maintained by about 50 pro-
grammers, which is an annual software maintenance cost of about 25 percent
of development costs. Conversion and maintenance expenses could be
reduced by such things as: machine-independent, problem-oriented pro-
gramming languages; use of structured programming techniques; development
of computer software maintenance and transfer aids; maintenance of an
Air Force software library; and formulation of a standard for computer
hardware, software, terminology and documentation. "Reduction in
proliferation of different computer hardware and software styles would
reduce the high cost of retraining, particularly considering Air Force
officer rotation policies: The Keesler Training Center spent $9.6 million
in training computer analysts, programmers, operators, and maintenance
personnel in FY69." (Reference 5)

A search of current literature results in very little in the way of
predicting support and maintenance cost for computer software. Unlike
hardware operation and support (0&4S) models, where the cost of spares,
maintenance manhours, materials, training, etc., can be estimated based
on some physical characteristics of the system, software maintenance is
strictly a function of manhour: to perform the necessary actions. Thus
far, maintenance costs for software seem to be primarily an engineering
estimate by an expert, someone familiar with the changes to be made to

61

AFAL-TR-77-66

a program, rather than putting certain parameters into an CER or formula
and calculating annual maintenance casts. The effects of the structured
programming or chief programmer approaches on maintenance costs can only
be subjectively estimated as of this time.

The "Aerospace Model", was discussed in Section V-7, is a tota! life
cycle cost model. The procedure permits costs for design and development
(D&D), investment, and operations and maintenance (0&M) to be determined
in a series of prearranged steps. "The model first calculates hardware
(CPU) costs, then applies factors for estimating the other D&D, investment,
and 0&M costs, and finally summarizes the total program costs." (Reference
21). Most of the factors in the mode! were developed based on a report
entitled, "“Investment Costs for Flight Area Defense Systems," also referred
to as the FADS study. The primary maintenance equations for software

appear as follows:
Software training costs during production phase:
Initial Civilian = number of men X 27,200
Initial Contractor = number of men X 35,598

Initial Military = number of men X 17,400

b. During the depioyment phase:

Personnel contractor support cost = (number of men) X $48,000 X
(number of years 0&M or deployment)

Military support cost = (number of men) X $18,000 X (number of
years 0&M or deployment)

These equations should only be used if the estimator has no prior basis
for determining costs of any of his data-processing system elements. The
model, as mentioned above, calculates hardware and software costs, and is
referred to as a "Data Processing System Cost Model".

62

AFAL-TR-77-66

In the past, software support has been performed by the contractor
long after transition to the user. Because of the nature of most airborne
software systems, the contractor alone had the expertise and equipment to
perform these follow on maintenance actions and modification. '"Large
operational flight programs (OFP's) usually are never absolutely debugged,
and errors can remain undetected for long periods of time due to the
extremely large number of logic paths." (Reference 5). Interesting to
note at this time is that currently the largest program which has been
mathematically proven correct has about 400 instructions; on the other
hand, experience with the SAC Controi System (SACCS) program, with about
2.7 million instructions, indicates that about one software error per day
is discovered (Reference 5). Figure 3 summarizes current experience in
software meantime between failure (MTBF) in days as a function of program
size in instructions.

[
(4]

o

%
(=]

SAC

2 REQUIREMENTS
~ 5
g
“ |0
210
3

10°

w:t 0w 0* w0 0% 10

PROGRAM SIZE, INSTRUCTIONS

Figure 3. Program Size vs Reliability

63

AFAL-TR-77-66

The Air Force has recognized the dependence upon contractors for
maintenance support and has taken steps to develop in-house capabilities
to support current and future OFP's. Two recent studies of software
management, F-111 and A-10, show promising results of Air Force in-house
capabilities.

To combat the maintenance costs in 1974 work began on an Avionics
Integration and Support Facility (AISF) at the Sacramento Air Logistics
Center (ALC). A1l ALC's software programs are to be supported by AISF.
The AISF facility will provide hardware/software integration support as
well as a dyramic simulation facility. The purpose of the dynamic
simulator is to execute the OFP's in a hit by bit fashion to debug the
software functions,

The large computer at AISF will make it easier, safer, and less
expensive than flight tests to validate OFP's. Not only will the AISF
facility support OFP data processing, technical data, and procedure
verification, but also provide air crew familiarization and training.

The AISF is costing approximately $20 million for development and
implementation. There are presently 40 contractors amd 60 Air Force
military and civilian engineers working at the AISF facility. Estimated
annual recurring costs for the facility are about $3 million (Reference 15).

Since there is a lack of fully validated 0&M predictive models for
software programs, (Aerospace, and the forthcoming GRC "LCC software
model" are the only "existing" models at the present time), this AISF
facility can hopefully provide a point of contact to supply 0&M cost
estimates for software programs under development.

64

T

AFAL-TR-77-66

APPENDIX A

This appendix contains the computer program listing of the Modified
Wolverton model. The next two pages contain the listing with the remaining
pages containing an example output listing. The following inputs are
required:

NC = Number of control routine instructions

NIO = Number of input/output instructions

NP = Number of Pre- or Post- algorithm processor instructions
NA = Number of algorithm instructions

ND = Number of data management instructions

NT = Number of time critical processor instructions

The above siX\inputs were defined in Section V-1, and utilized the
following format statement: 12 FORMAT(615)

For the example the following values were used:

NC=0 NIO=0 NP=4964 NA=5702 ND=7155 NT=1450

65

'}A‘ ,‘ TE

BEST

AFAL-TR-77-66

‘‘‘‘‘‘ !1 S oN3
2NNILNOD
TN LISOD(T949) 311w
L1SNDONDL(L2%9) 311k
. (9E“9) 3L 1un
LN INSNID(H249) AL un
ONEON*INCENGD(G249) AL T Hn
VNOUNCSILENYI(92¢Y) 31T
dNSaN*ONI*NdD (E2¢9) J4len
INCOINCSIA*NID(22*Y) 3Ll
* (2°014°xST*SI*x942°2141
¢S SISATYNY HIT*XET* m3N TOULNQD HST*Z°0T14* < HESXS*//) Lvmnald
L e - X INSINSINYENDD(TE*Y) L lwe
1S0Jet11°=J03
1S0Jefw2*®=54}
1S03et12°=00L)
1SUdeiwl*=53)
1S0J007 =Ine
b Il=L50)
N =4 FER -1
N1J*NOIeNYI*NetDeNT = NIDENIL
INde"Si=NL)
NUODesUNBENUG)
NYDeYNB=NT)
NeJodNNENg)
NIDeOlINm=NT)
NDDeINNE=ND)
*S4=1N
ik Epad . 2 NGI=QN
. NYO=V)
Nad=da
NIJ=11
N23=01
e*1
TOTIRSUFEI*XHE® TTTTTTINITT VIV REZFZC014¢ «© MEeXS) lwwbod
(C0a()e99999919000° +0e99999(%0E" S2°1e=nNU)
T (22aQ)n 100°%+Qa 8O°* . 00°€2=ny)
(CeaQ)e 9B2CY1LOT00° +Q» G21%+6291L0°G2=nNa)
(CooaQ)a1LSEZ91L000° +Qe 000r02°+62%12%°€E2=N1)
(Caa0)0lS60BE2500° +QoELECEEEEFEL =E9TLS SE=ND)
D U SNOTIONHLSNI HeT “9I¥ HOJ HG €2°214¢S 1SnD WL *///) Luymaus
I+*1S02(19*vy)3Linn
SR i TS T R TR R TR o (Z°2ta* §%
IVLI0L HULCXSENOILINAHLSNI A8 IVLIOL HE2*Z°014% « HESXS lvwbl s
S . 1S024001(22y) 31]an
(s===z=zz==z==x{(¢Xlet=zzss==cz=n0 | *X3) LV¥NNUAS
o Ay T, T (9E*9) d1lae
1IN IN*0L3(BE20Y) 3 TaN
(2°0T4exST*S1oxye2°2143 11
NINNJ0U HIT*xG* INIWNIOUNVYR VIVQ HEZ*Z"0T1 4% « HE*XS Jivraud
o i Gneanedna*0Q3(s2*9 3ilen
(2°0TdexGr*GIex9e2 2l 1
T WNAITBO9IV REZ*C 0T 4% ¢ HESXS) IVwa0 4

e e et ettt AR SR S——

i AR RN I LA BE A SN T TR ¢ L G L Rk,

4 39vd 6S°LT*0l LL/01/90 9lees®y NI 1=1d0 Y/l

oy

)1 WyavoNa

sot

oot

Ss

se

St

0r

<3

0s

66

Ny

8LE (0

AVIATTE
A

1

¥
1Ye(

AFAL-TR-77-66

H3D 3¥VMLL0S

TR e b g R e e I S FRFR R

L2e1

I2°UBI88L — % IVIOXI ~ NOTIOMEISNI A3 7viDL

=zz=======
G R LR T R Iy, S ey T o el [L SN e 3AIl W3y
€E*vE SSlL L1°Gv268 $ IN3IwNJ0Q IN3W3OVNVA viVO
H BRRE . N s R A | TN L e | R S wW411¥39Y
€v*92 ¥96% 2E*CBETLT 34092 Néd (S3d 34d
R - A 0 T6°889LY1 NOH1S30 T 10d1N071%aN]
9L°€EE 0 §0°956.61 $ SISATYNY m3N J0HLINOD

. i = S R R Y P N SNDTLIONHISNI 12261

T T29°E2eL1S S VLI0L T T NOTIONBISNI A3 elDl

%ﬂ“""”ﬂ“““
00°SL 0se1 e 3AIL 3N
8g 02 SslL L8°8998S $ IN3IWND0Q JRRIEDLAT I 38 14}
19°21 20LS g8 0E2991 1531 w4189 Y
s2*9t *96% 26°082211 3002 Nd2 1504 3ud
09°+1 0 22°E4L96 NOIS30 1NdLN07LaN]
*E€°8l 0 2L°vuoE01 $ SISATIVNY a0 0%INDD

A SNOTLONBLISNT — 160443 3«1 e ALINIT 310 %0t

Z

404 [2%0GLb8L

12 9wlbul

Es=z=sSsS=z==
00*o0siBuUl

V0*S595%2

Oe*2Le9t1

€y iotiet

00°*9

g0*¢

904 29°eevLls

29*e2oL1s
S==z==SsSz=s
00°0SLvwOT
"9 10LSYl
detsecdy
12°FS9009
0oy

0o

3

v

LR Y

-

e wn

.- T

1502

1500

67

1500

AFAL-TR-77-66

,
(-
hdd
R |
wy
o
e v
S
<. ‘l
- »3) 3YvmL40S
Bmoiniacn B PPl SO PRI TEEROUIL (- Joap oty TS Be* S i bt
SNOTLONHLISNT (L6l 404 2L*s29vE8 s
2L°12%9€8 S Wiol NOILONELSNI A3 Ivl0L 2L°L1299E8 §
v LR : e e R D S i sz=== s=ze=
00°S¢L £ 0se1 3AIL V38 00°0%L80T $
= 0S"1Et SSTZ EE°9T1S%6 % INIWNI0T IN3IW3IOVNvA viv0 0S5°21Ew32 3§
00°se 20Ls 20°60L9€2 1531 h41IH¥I2IV 000952l %
00°8e P B . SN e i1) 3 R NdJ 1S04 3de U0°266Bel 3
0s*2L2 0 86° 119951 NOIS30 1NdLY0/7LY4ENI 00°0 s
{0 IR SNSRI S SERCTIGOEERE fs G g B Tk 7oA, M T A3N A0HINDD 200 3
SNNTLONMISNI Tu281 404 S0°12L095 3
S0° 121698 $ Wil NOILONHASNT A3 Ivl0l H0°*12L69S
= R TR R S TR N b v - A S R T R R < zz=zz==sz=s=
00°SL 0S*1 AN1Ll V38 00°05L801 %
si*te SSTL B9°8LEYY § IN3wNJ00 INIW3OVNYA ¢iva w2°1€869T1 §
00°s1 20LS 90°1e2lol 1531 W4LIHIITY BB beony >
0oLt &y i v Y8y L9°629€21 3002 Ndd 1504 38d E0°veevd)
0s*L1t 0 M LESSOT NolS30 4NalN07172NT 00°0 Y
st ie i i 0 2 12996t 11 3 SISATVNY (e [V] A241NDDY 000)
1500 LINN SNOTLINHLSNI 180443 3l ALNIT 10 902

68

Qo
O
[
oy
~
0
o
—
'
-
<
[
<<

SNOTLONELSNI 12261

29°1€9988 § 17101 NOTLONNLISNI A3 19101
=== =I=T=S
BERE | i N e oset iR, et Py 3AIL v3n
SL*0Y ; SS1L LE®68T1001 & IN3WNJ0Q ININ3VUNTA 7ivT
THEYSE T R 2048 GL*916052 1531 W41IHIBY
6L°62 %969 90°66€261 3000 R _Nd) 1524 3dd
98°62 < [r*oeesyl NDIS30 i 1Nd170/71VdN1
62°EE 0 2€*92€eLLl $ SISATUNY M3IN 104LV0D
i SR TR LT e e 5 T T T SNDILONMASNI 12261
ST T e TR T 20°#18S8T9 T T $ WI0L NOILONHISNI A3 vIO0L
=== ===a
00°SL P e e e e e e e e N Y 3all v3n
89°92 SS1L 86°989569 $ IN3WNJ00 IN3W3YVNYA VIVO
TSR |) 20Z8 LE*GI29IT 1531 3 W411%327v
6L°L1 %969 ©99* [E9EET 3002 NdJ 1504 38d
v0°02 0 22°LS1SIT NGIS30 1Nd11071 Nl
9L°€2 0 0B*291ed! $ SISATUNY ¢10 0%1NOD
SO IINN T SNUIIONEISRY . Iy W1 T ALMIrae %acat

804 29°1£99%8

€9°1E9998
=s==z=zsSxss=
00°05L8D!
w2*9y9slise
09*29yotyl
6Z°9%uivl
00°0

Lo*o

404 20°%1lunly

cu*vlusie
TSz
00 0uLndt
wl*Suelsl
sh EESTS
LL"EceBy
vo*e

vo*n

> 1500

Ve

$ 1500

S

Vv vvwve

69

r!\f‘f

T AVAILABL

AFAL-TR-77-66

00°26E£0%6 s

IVI0L
o T S A S Rl i . “wsFESEREEY -
00°SL 0se1
80° vy SSlL 0E° 992901 $ IN3IWND00
og*L2 204LS £6°0E1992 1831
8L g R - 90°S%0902 3000
9€°2¢€ o 0E*ESESLT N9IS30
a9 L T A T 0v*sl089l $ SISATWNY

05°2045%9 $ 10l
ZEZsg=szs===z
00°sL 0se1
9162 5 Sste HE*9609L $ IN3wn200
19°81 20LS 18°E96%H1! 1534
€981 296% AN TLA R 3002
0222 0 LE®*9192¢1 NO[S30

ToBw*e2 i 0 0S°0vllel § SISAuny

1S02 LINN SNOILINHLISNI 180443 3wy

SNOTLONYLISNT 12251

NOILIONHISNI A3 r.

34I1 vy
INZwLVNYA vivD

14114390
1804 3ne

Nd)
1Nal1ND/71VaNn]
LEL] A0HINDD

SNOTLINMLISNT 12201

NOI! "PaISNT A3 J101
dall V3

INImiUV YA 7LVO

LRS- BN

NdaJd 1504 3n¢
iNal071enl
o FIMANDD

ALMNIT 41U %00

LEt26C0%8
iszszss=s==z==
1TesdLet
*9ivSie
"slafsgl
LR T34

Ve

404 0S°70is%y

06°204559
TSzzzsszry
votoSLELt
€Y ESwn02
CETLEYIGT
"9t 0y*es
veo

000

i 00°26LVYS 3 1500

$

Y wneve

70

$ 1500

>
>
>
]
3
>

LABLE (7™

!

v

SR T AR 1 \

A

. SHROILINMISNI Tiest 404 E6°00LL65 $ 1503

“EBYUULIEE $ IVIOI NOTIDNGEISNT A3 V10l €8°80Lcs6 §

T=IT=TT=Z=S s=z=sSs=z=zs

AFAL-TR-77-66

TSR T e T e IR RN AN e 3All ¢34 00°0%4BOT §
0s*Ly SSlL orcteL2tll $ LIN3wNJ00 IN3WIYVNOA (LVC 0G°2906EiE 5 °
0562 . T R “TevIsERRT Lo | e e wW411¥297V 00°*6UZEST §
00°*€ %969 2er20s912 3000 Nad 1504 3¥d 00°9LLEST §
00°SE", g T e TR, No1S30 R INd11071 NI GO0 i g
00°LE 0 LL*19S661 $ SISATVNY 3N 1051NDD 00°0 s
gl - r i SNNTL1INNISNTI tr201 404 I5°9wtébyy 3 150D
I i o 15°98E689 ~ § Iwvliol TUONOILONELSNI A3 IvLi0L 1S°9v¥E6wSe &
=TT ===T S=sss==z=szs
00°SL 0se1 3 4A11 938 00°0SLBOT S
02°1¢e SSTL g9°*006LL $ IN3wWNJ0Q INIWIOVNYA ¢IVO OQu°wtlEz2? §
L e o 7 TN < TR <) SRR n41I%237V 00°0%0%(T S
0561 v969 19°9656%1 3000 . Nd) 1504 38d t0°¥6L9y §
00°%2 5 G 92°Gl69eT NOIS30 1NalN0/71eNT 000 >
0922 0 OE*LLYLEL $ SISATVNVY a0 J0NLNDD OutO s
IS0y N SN L DI - I8UFAT IRy . AL IIITG %S T

7

AFAL-TR-77-66

#
.

f

|

%8 MIAN ADIT rA-

00°SL 0S%1
— g0°1S (1) V.
0%° 1€ 20LS
€Y' 9ET STy, T 9969
6L°LE 0
5 e e 2y 0
00°SL 0S¥t
6L°2¢€ SSTL
oo0*te 20LS
19°02 996%
£€v°*s2 0
o e L e,
15020 LINN SNOILONYLSNI

#3) 3INvmML40S

SNOILINUISNI 12261

21°2858S01 s vioL NOILINHLSNI A3 vi0lL
====sS=====
; R it S T
GL°6196TT § INIWNJOd IN3w39vvuAd ¢iv0
9L°8L56062 1831) CEIS ERERL]
cE*elLeee ~ 3002 : Ndd 1S24 34d
98 vs6L61 NOIS30 INd1N071dN]
29°*91L112 $ SISAITUNY i m3N 10%1N0D
- : _ SNNILONHISNI 12261
S0°998914 $ wiod NOILJONYLISNI A3 7101
=s========2
3AILl V3N
98°S0018 S IN3WNJO00 IN3IW3OvNyA viva
60°€LB202 1S31 LETRE R AL
€6°65585851 37202 Ndd 1524 3ud
G6°ESOvET NOIS30 4Nd110711dN]
T Ve ELEGYT B SISAUNY = U JIMINDGD

1804343) ALINDTATU %03

404 21°2u5d501

¢l*2usts01
ESEzzxs=s=T=
CU*05¢m01

00°500%9¢

e 2yustLl

£ [Eu0dl

oo

000

404 SO0°w9uylyL

So*9y9u9lL
00°0SLE0l
oH2EYYE2
co*eZeenll
sy tlol
ov*p

00*o

§ 1500

v

VvV vy

s 1500

VWV

72

1ADIE T

AV AL

cT
\

%

AFAL-TR-77-66

Sssss===ss=
00°SL “06YT g
85° %S (139 vE* 006921 $ IN3IANJ00
0G°€EE T 20L8 gErIIFINE - ISl
L0°6€ ”969 8S°E€69E%2 3002
L0y o 22°E00012 “NGIS30
06° %y 0 ge°209%¢2 ‘a‘m~m>4<z<
= TItvIsEs - 8 vant
sssS==ss==ss
00°SL 0891~ i
"6°EE S6TL S6°60%€Y S 1N3IwNJ0Q
912 o - Bede = EGceEens, - 1S3
Le* 12 v969 29°9L1091 3002
6%°92 0 6£*2€08E] NaIS30
S8°62 0 22929471 $ SISATVNY
1502 1LINN . SNOLLONEISNIL - T 180443 Ml

T BBTTITIUER T S AT NOTIONHISNI

3D 3¥VYMLI0S

SNOTLONHISNI 11261

A3 Wwi0L
3411 934
IN3Iw3vTNYA ¢ivO
n4LI%IZ Y

Ndd 1504 3ud
INdi071aN]

LR LY II¥1INDOD

SNATLIONHLISNI Ti¢esl

NOTIJNMISNT A3 vi0L
341t 93H
INIndvvNYN VivE
n4115232Y

NdJ 1504 3ud
1Na11071YaN]
a0 NO%INDD

ALNIT 410 % *0L

404 gH T10e21Y

du* TTUEZLTY

VO 0SLEOT
SL*EYS0SE
Go*LTulst
L9 05nEs1
vwi®y o}
000

404 TI°telaEl’

Tr*t»1l8cL

ZT=Tzz=s=3z==®
00° 054801

(RS2 1 LFE Fd

CISA S 192 ¢

65°5L0501

vo*o

0o0°0

$ 1500

Ll

§$ I50D

s

SV

73

*
L. e
- 35 3MVmL40S
L
- -
- SNNILONJLSNI Tiebl 404 01°#66U61T1 3 1>
- - oS RSO L S MO e =
= ~
L or*e660611L $ viol NOILONHISNI A3 vi01 Cl°goonsiy $
00°SL 0s%1 3all 93H 00054801 >
G2*8s A A T C T 6L°26S%EY § IN3IWND0A INIWIOVNYA PLVO SL°wilivle 8
gg°st 2aLs 99 250LEE 183! R41I4297Y 09°1¢(%02 ¥
€6°1é *96% 65°9v9BSe 30402 NdJ 1804 34d ELe-tElnde »
6L °EY 0 S9°91L22¢2 N9IS30 INd110.71149ND 00°¢ $
€v°0S 0 29°6018¢E2 § SISATUNY 3N A%LINDD Qo0 $
SNNTLINHLSNT T2261 404 69°T12kseL $ 1>
69°112ES¢ $ V104 NOTLINHLISNI A Ivi0L >
e Bl F= = T e R o T R R e T EESSSEE2ES
00°SL 0Sv1 dall Yv3x $
99°4¢ SSlL 26°211sw s 3nNJ00 ININIOVNVA ¢iv0)
00°22 20LS 16*8S51EL2 1531 w4114932 W 3
9t ée %96¢ 26°9%%E9T 34C Nagd LS04 3Nd Ay
81°Le 0 6G°05R0Y] N9 1530 INALI0/7174NT s
LEOE . —— ¢ e 2Y90S TS STSXIYNY c1o JI41INDD >
1502 LINN SNOIL1ONYLSNI 1HU 443 3wl ALDT4IU %03
©o
)
r~
~
o
—
'
-
<
(V8
=4
. =

74

AFAL-TR-77-66

\y

6L°0%52921 § vliol

1) e Sy e L O T S T
00°29 SSTL . T1°L992%1 § IN3WNDOQ
o e R L o e)
00°SY 7964 SE*1L6ELZ 3009
TTTo0TLY O E1*5609€2 No1S30
00°LS = 0 91°B0S252 § SISAIVAY
R S R Y LT S ST

B e e e) AT R
06° 7€ SSTL 6L°%1195 § IN3IWNJ0Q

S o 2025 i o 1)

0v°€2 9969 BY*ULESYT <3009
05°.2 0 $5°805291 N91S30
05*0€ Tl _ 9S°S14251 § SISATUNY

1S0J3LINN . SNOTLONYLSNI 140443 3ul

SNOILINELSNT Tr261

NOTLONYISNT A2 vi0L

3aILl V3N
IN3w39vNvA Viva
n41I4I2Y

Ndd 1504 34d
INd170717dN]
M3N J041NDD

SNNTLINHLISNI TLesl

NOILONHLISNI A3 vloL

4AI1 v3d
IN3W39VYNYA VivD
T w41I4I9Y
NdId 1504 3ud
401d1N071YdN]
are 294LN0D

ALINDT TG Y0008

404 6L°09$2921

6L 0va2321
==z==s=S=zcs
00°0SL801

GO*01vESY

09*yuewl2

0o0*09e€22

00°*0 ,

00°0

404 08°220292

Og*LL029L
00*0SL%01
UStolLEn?
91 9wvS21
L9 151911
00°0

000

[

e e

R

1509

1302

75

|

AFAL-TR-77-66

10.

Ll

iz

135

14.

REFERENCES

Nelson and Sukert, RADC Software Data Acquisition Program, Rome
Air Development Center, Griffiss AFB, NY, 20 November 1975.

Boehm, B. W., The High Cost of Software, "Strategies for Developing
Large Software Systems," 3-14, E. Horowitz, Ed., Addison-Wesley
Publishing Company, Reading, MA, 1975.

Dummer and Winton, An Elementary Guide to Reliability, Pergamon
Press, Headington Hall, Oxford, England, 1968.

Newsweek. "Rising Costs of Computer Software", June 1976.

Information Processing/Data Automation Implications of Air Force

Command and Control Requirements in the 1980's (CCIP-85), Space

and Missile Systems Organization, Los Angeles, CA, (DDC Number-
AD-742292), February 1972.

Current results from the Analysis of Cost Data for Computer
Programming, ETectronic System Division, Hanscom AFB, MA,
DOC Number AD 637-801, August 1966.

Aircraft Avionics (Digital Avionics Study) Cost Trade Analysis,
ASD-TR-73-18, Volume IV (Appendix C), Aeronautical Systems Division,
Wright-Patterson AFB, OH, April 1973.

Government/Industry Software Workshop Summary Notes. Electronic
Systems Division, Hanscom Air Force Base, Mass., January 1975.

Interim Guidance for Preparation of Cost Estimates for Tactical
Software Programs, Hydrospace-Challenger, Inc., October 1974.

Wolverton, R. W., "The Cost of Developing Large-Scale Software,"
IEFE Transactions on Computers, Vol. C-23, No. 6, 615 -636,
June 1974.

Balkovich, E. E., A Method of Estimating the Cost of Avionics
Software, RM-1982, General Research Corporation, May 1975.

Taback and Ditmore, Estimation of Computer Requirements and
Software Development Costs, RM-1873, General Research Corporation,
March 1974,

Buck, F., et al, A Cost-By=Function Model For Avionic Computer
Systems, Vol. I, NADC-SD-7088, Naval Air Development Center,
arch 1971.

Bourdon, G. A., A Proposed In-House Research Program for
Improving Software Cost Estimations at ESD (Draft), Electronic
System Division, Hanscom Air Force base, Mass., April 1976.

76

AFAL-TR-TT7-66

REFERENCES (Cont)

15. Gaumer, W. F., A Preliminary Cost Analysis of the Communications
Processor For the F-15 Joint Tactical Information Distribution
System, Thesis GSM/SM/76S-8, Air Force Institute of Technology,
Wright-Patterson AFB, OH: September 1976.

16. Frederic, B. C., A Provisional Model For Estimating Computer
Program Development Costs, TM-7/REV 1, Tecoloti Research Inc.,
December 1974,

17. Malone, J. L., Estimating Software Life Cycle Costs, International

Business Machines Corporation, Federal Systems Division, Westlake
Village, Calif., April 1975.

18. Working Notes providec by Capt. Gerald A. Bourdon, Cost Analysis
Division, Electronic Systems Division, Air Force Systems Command,
Hanscom AFB, MA. Source not identified but believed attributable
to Aerospace Corporation report dated April 1975.

19. Nelson, E. A., Management Handbook for the Estimation of Computer
Programming Costs, System Development Corporation, DDC Number
KD-%1§-750, March 1967.

20. Trainor, W. L., Software - From Satan to Saviour, Air Force
Avionics Laboratory, Wright-Patterson AFB, Ohio, presented at
the National Aerospace Electronics Conference, May 1973.

21. Getz, S., et al, A Cost-By-Function Model for Initial Navigation
Systems, Vol. I, NADC-73080-50, Naval Air Development Center,
pril T1973.

77

