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ABSTRACT

\y

This study is concerned with detailed expansions for the renewal
function H(t) and various of its generalizations. Our assumptions
concerning the growth rate of the tail of the underlying lifetime
distribution F(x) are of the form {m va(x)dF(x) < =, where
v 20 and M(x) belongs to an appropgiate class of monotone functions.

When F(x) has a finite variance, it is shown that (for t > 0)

H
o) = & -1 Eo v L,
" 2]

where ' denotes the ith moment of F(x), F(z)(x) is the second
derived distribution of F(x), and L(t) is a function of bounded
variation such that, in particular, L(t) = o(1/tM(t)) as t » =, A
similar expression for H(t) involving a finite number of derived
distributions is derived for the infinite variance case. In addition
our approach yields refined expansions for the factorial moments and
cumulants of the number of renewals in the time interval (0,t). By

developing estimates for the moments of the forward recnrrence-tiq?z-ggﬂ

.

we can also evaluate the variance of the number of rénewals in an &

3 ¥ 8]
interval of time away from the origin. P*i eaAn
i !
Our main task throughout is to demonstrate that various remainder-¢

vy

terms are functions B(x) of bounded variation beléﬁging'to SOpe
moment class B(M; v) defined by the property fm j;fﬁ'ﬂilxl)fdgtx)}- ®,
For this purpose we prove an extension of a theor;; due Wienef, Pitg,
Lévy, and Smith concerning analytic functions of FoufT!ffStiettyLs»--;

This research was supported in part by the Office of Naval Research under
Contract No. N00014-76-C-0550.
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Ffi&ran@fohmﬁ'of’iﬁhfknons in B(M; v); our version is the most general

' which can be obumutﬂ with respect to M(x). We also demonstrate that
certain convolutions which might be presumed to belong to B(M; 0) are
actually in B(M; 1). In conjunction with the Wiener-Pitt-Levy-Smith
result this unexpected property (referred to as "smoothing magic")
yields renewal theoretic results which are stronger than can be
achieved using the former alone.

Several of these theorems are applied in a discussion of the time-
dependent behavior of the superposition of identical independent
renewal processes. Aspects considered include the distribution of the
number of events in a time interval near the origin, as well as the
variance-time and covariance-time functions.
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CHAPTER T: INTRODUCTION

The purpose of this study is to develop detailed expansions for
the renewal function and various of its generalizations. The renewal
function (which we write as H(t)) 1is defined as follows: Suppose
that {Xj};.o=1 is a sequence of positive iid random variables with
distribution function F(x). The random variables Xj may be regarded
as the lifetimes of similar objects which are successively and instan-
taneously replaced; in other words, renewals take place at ''times"

X;, X *X

1’ l 2)
by time t, is the largest integer k such that

X1+X2+X3, ..., and so on. Then Nt’ the number of renewals

X1 + X2 o PR Xk S

and H(t) = ENt by definition. It is not difficult to show that

H(t) = ] P{X#X,* ... #X < th
n=1

The renewal function occurs in a variety of useful probability
models and has been studied extensively by many authors. The most
fundamental and earliest result concerning H(t) is the Elementary

Renewal Theorem which states that

where ¥ " EXj and the limit 1/u, 1is interpreted as zero if

My =, The first rigorous proof of the Elementary Renewal Theorem

B L o SES
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is due to Feller (1941) who made use of a Tauberian theorem for Laplace
transforms.

The development of renewal theory since 1941 has proceeded along
two parallel lines, depending on whether the randqm variables X. are
assumed to be lattice or non-lattice. Feller (1949) introduced the
theory of recurrent events for the situation in which the random variables
Xj are restricted to (say) the integers; a recurrent event E is said
to occur at times xl, X1+X2, sevy and u, is defined as the expected
number of occurrences of E at time n. Erdas, Feller, and Pollard

(1949) proved that

(1.0.1) u +~5— as n » «

under an aperiodicity condition. Using (1.0.1) Feller (1949) showed

that
n s
1) 2 "1
(10.2) Z o - as n *» o,
j=o U3 ¥y zuf
2

provided My = EXj < », Various generalizations of (1.0.1) and (1.0.2)
have been obtained since 1949, each involving some assumption about the
sequence fn = P{Xj-n). n=20,1,2,.... These results are too numerous
to review here; for a1 thorough discussion of the theory of recurrent
svents based on a unified approach we refer the reader to the study
by Smith (1976).

The present work is concerned with the theory of renewals which
differs from that of recurrent events only in that the random variables
Xj are not restricted to a lattice of values. There uy corresponds

to the expected number of renewals in the time interval (t, t+1]; this




can be written as H(t+l) - H(t) and is known as the Blackwell dif-
ference. Blackwell (1948) proved the following analogue of (1.0.1):

For any fixed o > 0,

(1.0.3) H(t+a) - H(t) - %— as t -,
1

Later we shall refer to the following important generalization of

(1.0.3):

KEY RENEWAL THEOREM (Smith, 1961; page 498) Suppose that the distri-

bution F(x) 1is non-lattice and that k(x) 1is Riemann-integrable in

every finite interval and

) max  |k(x)| < =,
n=-o n<x<n+l

Then

rk(x-z)cﬂ(z) o 3% rk(z)dz
o Y1 Jo

as X + =, where the right-hand eide is interpreted as zero if

"1

A consequence of the Key Renewal Theorem is the following extension

of the Elementary Renewal Theorem:

SECOND RENEWAL THEOREM (Smith, 1954) Suppose F(X) is continuous and

-} xzdF(x) < ®,
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Then
t "2
(1.0.4) H(t) = e + {-—-—2 = l] + o(l)
1 2u
1
as t » o,

The Second Renewal Theorem is a prototype of the results which we
shall derive; our concern will be to develop approximate formulae for
H(t) (and several of its extensions) involving remainder terms which
tend to zero as t » «. The rate of convergence for such temms
typically follows from the analytical properties imposed on F(x), and
we shall make two kinds of assumptions concerning the underlying distri-
bution.

First, for technical reasons, it will be necessary to assume that
F(x) possesses a certain amount of smoothness, although certainly not
as much as absolute continuity. In fact, we shall merely require that
some iterated convolution of F(x) possess an absolutely continuous
component .

However our main assumptions will deal with the growth rate of the
tail of the distribution F(x). This rate can be expressed in various

ways involving, for example, 'o'" or '"0" terms of functions of slow
growth. (A detailed discussion of such conditions in the recurrent
events situation is given by Smith (1976).) Here we choose to measure
growth rate by allowing for the existence of moments of a fairly
general nature as follows:

(1.0.5) rx“M(x)dF(x) < =,

o




Note that (1.0.5) implies, in particular, that

1

l1-Fx =o0
x"M(x)

]asx-»m.

It will be necessary to restrict the choice of M(x) to one of two
classes of monotone functions; we refer to these families as M and
M*. Roughly speaking, functions in M* grow like polynomials. The
class M contains M* and is, in a sense, the most inclusive family
with which we can deal. Apparently Smith (1967) introduced the
systematic use of mament classes in renewal theory, and since then
other authors have employed slightly different families of monotone
functions.

Our two basic results concerning the renewal function are given in
Chapters 2 and 4. The first (Theorem 2.4) provides an expansion for
the renewal function in the finite variance case, i.e., when (1.0.5)
can be assumed for v 2 2 and M(x) ¢ M. Theorem 2.4 sharpens the
Second Renewal Theorem by replacing the remainder term ''o(1)" with
a known function and a new remainder term which is of the order
o(1/tM(t)). The latter is, in fact, shown to be a function of bounded
variation satisfying a condition similar to (1.0.5). The form of the
expansion in Theorem 2.4 is not new; an ancestival version is disguised
in the addendum to the paper by Smith (1967). However our result is
slightly more general in terms of the moment class used and is actually
the best which can be achieved via our particular approach.

Our second result (Theorem 4.6) concerning the renewal function
deals with the situation where F(x) possesses an infinite variance

but satisfies (1.0.5) for v=1+ 6§ with 0 < 6§ < 1. The expansion
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for H(x) 1in this case is far more complicated than in the previous
one, and the analysis required is likewise more detailed. The main
task in proving Theorem 4.6 is (again) to demonstrate that a certain
remainder term is a function of bounded variation satisfying an
integrability property like (1.0.5). Theorem 4.6 is the renewal
theoretic analogue of a result due to Stone and Wainger (1967) and
considerably generalizes subsequent work by Dubman (1970).

In Chapters 5 and 6 we extend our investigation to higher moments
of the renewal counting process N_. Chapter 5 is concerned with

t
detailed expansions for the factorial moments

8, (1) = E{(Nt+1)(Nt+z) (Nt+k)},

defined for k = 1,2,3,.... These, in turn, yield information about

the cumulants of Nt’ thus refining results obtained by Smith (1959),
as well as allowing for more general moment conditions. Our expressions
for the second and third cumulants of Nt are presented in closed form,
and we indicate an approach for dealing with higher order cumulants.
However further work (perhaps of a cambinatoric nature) will be required
in order to evaluate in a direct fashion the constants involved in the
higher order situations. :

An interesting question related to the problem of finding the
variance of Nt is that of evaluating the variance of the number of
renewals in an interval of time away from the origin. This involves
the moments of the forward recurrence-time Ces which is defined as
the time measured forward from t to the next renewal. Estimates for

E[c?] are discussed in Chapter 6, and specific results obtained for




E[gt] and E[Li] are used to study variance-time and covariance-time
functions.

The mathematical tools which we use throughout our work are
described in Section 2.1. Theorem 2.1 (due to Smith (1967)) provides
detailed information about the remainder term in the Taylor expansion
for characteristic functions. In order to deal with functions of
characteristic functions Smith (1967) developed a modification of a
well-known result due to Wiener, Lévy, and Pitt which, in its original
form, states that the reciprocal of a non-vanishing function with an
absolutely convergent Fourier series possesses an absolutely convergent
Fourier series. Theorem 2.2, which is an extension of Smith's theorem,
concemns analytic functions of functions in the class B+(M; v), which
is defined as the Banach algebra of Fourier-Stieltjes transforms of

functions B(x) of bounded variation such that
r Ix]¥ M()x]) [dB(x)| < =

for fixed v 2 0 and M(x) ¢ M. The proof of Theorem 2.2 (which is
largely based on recent work done by Smith (1976)) is contained in the
Appendix. The key element in both the proof and the application of
Theorem 2.2 is a device referred to as a smooth mutilator function,
which bears some resemblance to the test functions used in the theory
of generalized distributions.

In order to establish certain results in renewal theory via the
"Wiener-Pitt-Levy-Smith approach’ we must frequently demonstrate first
that some Fourier-Stieltjes transform belongs to a particular class

B*(M; v). Suppose, for instance, that F(x) is a distribution function
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satisfying (1.0.5) for v =2 and some M(x) « M. Then its Fourier-
Stieltjes transform (which we write as F*(n)) belongs to B*(M; 2}

[f we form the first derived distribution of F(x), defined as

y _ [* 1-F)
(1.0.6) [(])(x) = Jo ™ du,

where o is the first moment of F(x), then Ftl)(ﬂ) is a member
of 5#(M; 1) rather than B#CW; 2). In transformm notation (1.0.6)

1S written as

4 _ 1-F¢e)

‘UllO

and we can interpret the "loss'" of one whole moment as the price to be
paid for dividing by -i6. (In fact, this effect is generally a conse-
quence of applying the ''integration operator'' 1/(-i6) to a Fourier-
Stieltjes transform.) Now suppose we convolve U(x) - F(l)(x) with
itself, where U(x) is the Heaviside unit function; clearly

- Ey@1 - F @) cstes b,

and one might naturally conclude in view of the above that

2
{1 - F},y(0)]
(1.0.7) (L) < 8tow; 0).
-ig

Surprisingly it can be shown (see Lemma 2.3) that the transform (1.0.7)
belongs to the class B+(M; 1); in other words, the convolution in the
numerator of (1.0.7) has the unexpected effect of causing a "'lost"

moment to ''reappear.'
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This property, which we refer to as smoothing magic, plays a vital
role throughout Chapters 2, 4, 5, and 6. In conjunction with the
Wiener—Pitt-Lévy-Smith theorem,smoothing magic yields renewal theoretic
results which are much stronger than can be obtained by using Theorem
2.2 alone. Two extensions of the smoothing magic effect are discussed
in Sections 4.3 and 5.2. We suspect, moreover, that these may them-
selves be special cases of some even more general property of convolu-
tions such as (1.0.7).

An application of one of our main results (Theorem 2.4) is given
in Chapter 3 which deals with an aspect of the time-dependent behavior
of the superposition of identical independent renewal processes. This
problem originally provided the motivation for studying detailed
expansions for the renewal function. Suppose that the sources in the
superposition consist of N renewal processes, each with underlying
distribution F(x) and corresponding first moment by Then the
probability that no event in the (scaled) superposition occurs during

(to, L At] is given by

by CEPAEI/N ty*ot

N/u1

Po = {1 =
ulto/N i

185 F[ ~ (ﬂl(u)}N -

Assuming N 1is small, if the superposition has not reached equilibrium
by time ty then Po involves the behavior of the renewal function
H(x) for only moderately large values of x. By using Theorem 2.4 it
is possible to obtain fairly sharp estimates for PO and related
probabilities. The discussion of the superposition application is
resumed in Chapters 5 and 6, where we derive approximations for the

corresponding variance-time and covariance-time functions. The variance-




time curve has been used for statistical analysis of superposition
(see Cox and Lewis (19660)), and it is conceivable that our work may

lead to improved results in this direction.




CHAPTER IT1: SOME PRELIMINARY REHNEWAL THEORY

The purpose of this chapter is to review some ideas and techniques
related to the problem of characterizing the remainder term in a parti-
cular type of expansion for the renewal function. Our basic model is a
sequence {Xn}:=1 of iid random variables with distribution function
F(x) and corresponding renewal function defined as

H(x) = nogl P{)(1 e Xn s x}.
For the applications we propose in Chapter 3, it is entirely reasonable
to assume )(n is non-negative, although the discussion that follows
below will extend to unrestricted random variables. In Section 2.2 we
examine the asymptotic behavior of H(x) as x + » when F(x) has a
finite variance; a study of the infinite variance situation will be

taken up in Chapter 4.

2.1 Some Basic Tools

The notation and methods which we follow are largely based on a
lengthy paper by Smith (1967) which appeared in the Proceedings of the
Fifth Berkeley Symposium. The systematic approach developed in this
work incorporates a number of features which are essential to our
discussion in subsequent chapters.

Although a density is often assumed for F(x) in applications, we
shall obtain results under considerably weaker conditions. Consequently

we shall refer to the following classes of distribution functions:

‘ st LA

o



T: distributions with a nonnull absolutely continuous component,
C: distributions F(x) such that, for some k, the kth
iterated convolution of F(x) is in T,
U: distributions F(x) whose Fourier-Stieltjes transform
F*(e) satisfies Cramer's Condition C: TiT inf]l-F*(e)l S ),
8| » =
It is not difficult to show that T ¢ C ¢ (.
The growth rate of the tail of ihe distribution F(x) will play a
critical role in our results. A key concept employed by Smith (1967)
is the notion of a moment class of monotone functions. Smith introduced

the class M* of functions M(x) satisfying the following conditions:

(1) M(x) is nondecreasing in [0,x),

(2) Mx) 21 forall x =20,

(3) M(x+y) < M(x)M(y) for all x, y 20,
(4) M(2x) = 0(M(x)) for all x 2 0.

P(M;v) will be used to denote the class of distribution functions F(x)

such that for some moment function M(x) and some v 2 0,

[ 1xl® HilxDarco < .

A typical M* function is M(x) asymptotically equal to x/°

log x;
a special M* function is I(x) = 1. Note that if M(x) ¢ M*, then so
is x™(x) where o = 0. Condition (3) ensures that  D(M; v)

will be closed under convolusion. Note that Condition (4)

excludes functions which grow exponentially fast, such as M(x)
asymptotically equal to exp{x/(log x)} and exp{xﬁ} for 0<§ < 1.

In fact, if M(x) ¢ M* then M(x) = 0(x8) as x » o for some large B8.
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Various authors have introduced similar classes of monotone functions;
see, for instance, Stone and Wainger (1967), Smith (1969), Essen (1973),
Chover, Ney, and Wainger (1973), and Smith (1976). In a recent study of
the theory of recurrent events Smith (1976) replaced Condition (4) with

the less restrictive requirement
(4') For every fixed h > 0, M(x+h) ~ M(x) as x + =,

Functions in this class, which we shall denote by M, are referred to by
Smith as right moment functions.

A function T(x) (not necessarily in M) which satisfies (4') is
said to be a function of moderate growth and has the canonical representa-

tion
X
(2.1.1)  T() = b(x) exp{ Il alu) du} B xe,

where a(u)/u+ 0 as u-+~ and b(x) -1 as x + . Recall that
functions of slow growth have the Karamata representation (2.1.1) where
a{u) + 0 as u~+ «; functions of regular variation are characterized by
the requirement that a(u) + p as u + =, where p is positive and
finite. T(x) is a function of moderate growth iff T(log x) is a
function of slow growth.

The advantage to be gained by adopting M rather than M* is that
we are able to include functions which grow asymptotically like
exp{xl/z} and exp{x/(log x)}. However our approach will necessitate
what Smith (1976) has labelled the Umbreila Condition U:

rjm.%)_]»dx<w.
1

1+ x

This excludes functions which grow asymptotically like e .
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The membership requirements for M are essentially asymptotic.
Smith (1969, 1976) pointed out that M may be extended to the class of
functions N(x) such that for some M(x) satisfying (1) through (4')
above, both N(x)/M(x) and M(x)/N(x) are bounded as x -+ .

Throughout our work we shall write L(M; v) for the class of
functions f(x) such that for some v = 0 and M(x) in some specified
class, i
[l M=l €00 ax < .

Likewise B(M; v) will denote the class of functions B(x) of bounded

variation satisfying

[ 1 Mty 1B | < -

Equivalently, functions in B(M, v) are finite (complex) linear combi-
nations of distributioms functions in D(M; v).

If f(x) 1is in an L-class we write f"'(e) =r; eiex f(x)dx for its
Fourier transform. If B(x) is in a B-class we write B*(e) =
r;eiex dB(x) to denote its Fourier-Stieltjes transform. This ''dagger"
notation will be applied in an obvious way to classes of fphctions; for
example, the class of characteristic functions of distributions in 0(M; v)
will be written as D+(M; V).

A main feature of the Smith (1967) approach is a theorem which
provides detailed information about the remainder term in the Taylor
expansion for a characteristic function. This result is adumbrated b; a
similar result of Smith (1959) concerning the Taylor expansion for the
Laplace-Stieltjes transform of a distribution function, and it has found

applications elsewhere in probability theory. Because we shall need to

refer to the later result, the relevant portion is reproduced here:




15

THEOREM 2.1 (Smith, 1967; page 270) Let F(x)e D(I; £) for some £ > 0,
and let k 2 0 be the greatest integer not exceeding £.
(a) When £ <is not an integer, we can choose any real congtant
¢ agnd have
% X o £ _ic sgn 0_t
FT(8) =1+ ) (ie)? + |8|* e s (0)
j=1 j!
whe re 4 ig the jth moment of F(x) and sf(e) € LJr(I; 0).
(b) If £21 and r is any integer, 1 <71 <&, for any
Flo) « ot &) we have

r-1 : ] :
fte) =1+ 7 S (ig)d « GO 11(q
j=1 j! TR

where t:(e) € B+04; £-r) 18 the Fourier transform of some

function t (x)eL(130) such that t.(0) = u, and

[m |t () |dx = fm |x|T dF(x).

When 1 1ig even, or if r is odd and F(X) refers to a non-
negative random variable, t'(0) = urFtr)(e), -

Ftr) (e) cv+(M; £-r). In any case, t.:(e) i8 expressible as
the linear combination of two characteristic functions, ome of

which corresponds to a positive random variable and the other
7~

to a negative onme.

We note that the original proof of Theorem 2.1 given by Smith (1967) uses
only conditions (1) through (3) for M(x) ¢ M* and consequently suffices
for M(x) ¢ M.

The distribution function F(r) (x) referred to in Theorem 2.1 is

e e ARG e s

vt
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known as the r'" derived distribution and can be written explicitly in
terms of F(x). A crucial consequence of Theorem 2.1 is that r whole
moments are ‘'lost'' in going from F(x) to F(r) {x). Ii(r) (x) is
absolutely continuous, and we shall write f(r) (x) for the corresponding
rt‘h derived density. Derived distributions are strikingly appositc to
renewal theory; they were first used by Smith in his 1953 Cambridge Ph.D.
dissertation, and Theorem 2.1 was foreshadowed in results obtained by
Smith (1959).

Authors have typically analyzed the behavior of the renewal function
by assuming a particular moment condition for F(x) and deriving an
expression for H(x) which involves a remainder term of the "o or "0"
type or a function of slow growth. The methods employed are generally
ad hoe. A well known example is the Second Renewal Theorem which states
that if F(x) is continuous and has a finite variance, then

H(x) = X~ + [—u% 1} +0(1) as x>,

"1 2
"

Following the systematic approach developed by Smith (1967), we
shall be concerned with proving that remainder temms belong to specific
B-classes. A number of results, including the more familiar kinds of
estimates, can then be deduced from this stronger type of conclusion.

The cornerstone of this approach is a variation of a well-known
theorem due to Wiener, Pitt, and Levy. In its simplest form the original
result states that the feciprocal of a nonvanishing function with an
absolutely convergent Fourier series possesses an absolutely convergent
Fourier series; see page 91 of Wiener (1933). Smith (1967) sharpened the
Wiener-Pitt-Lévy theorem in order to deal with functions of Fourier-

Stieltjes transform of functions of bounded variation. Following a
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functional analytic approach Chover, Ney, and Wainger (1973) modified the
Wiener-Pitt-Levy theorem to obtain results with applicatibns in the
theory of branching processes.

Both these modifications are included in a very comprehensive version
of the Wiener-Pitt-Lévy result developed by Smith (1976) for Fourier
series. Much of our work will depend on the Fourier-Stieltjes analogue
of a portion of Theorem 3.1 of Smith (1976). Since absolute continuity
will be an issue, some additional notation is required: If ¢(8) is a
characteristic function, write 1 - 3[¢(6)] for the total weight of
probability in the absolutely continuous component of the corresponding

distribution. Define

o[6(8)] = iﬂf O IAR

In particular o¢(8)] <1 if ¢(8) « C*.
We now state the version of the Wiener-Pitt-Leévy theorem which will

be invoked later.

Theorem 2.2 (Wiener-Pitt-Levy-Smith) Suppose that ¢(8) and V(8)
belong to B*(M; v) for some M(x) ¢ M and some v > 0, and assume
that Y(8) vanishes identically outside an interval J. Furthermore,
suppose that as © rune through J, the point z = ¢(8) maps out an
are C in the complex plane and that ®(z) <is analytic at every point
C.
(A) If J ie a compact interval then Y(6)®{$(6)) ¢ B+(M; V).
(B) If J 1is an infinite or semi-infinite interval and 4

o) « o1M; v), then w(8)0(e(8)) ¢ BY(M; v), provided no

Wl B = bl 2

singularity of ©(z) is within a distance p[¢(8)] of the

origin.

‘,...,m.,
| S
|
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The proof of Theorem 2.2 is essentially contained in the two papers
by Smith (1967, 1976), obviating a detailed discussion at this point.
Theorem 2.2 differs from Theorem 2 of Smith (1967) only in that we have
replaced M* by the broader class M. The (non-trivial) changes in the
proof required by this generalization are given for the Fourier series
situation by Smith (1976¢), and since the task of carrying out these
modifications for uie Fourier-Stieltjes case is lengthy albeit straight-
forward, we refer the reader to the Appendix for a complete proof of our
version of the Wiener-Pitt-Lévy-Smith result.

One important modification does, however, merit special comment.
Both proofs given by Smi<h (1967, 1976) involve the construction of
a smooth mutilator function, abbreviated SMF. Given four real constants
a < B <y< & the SMF q+(xs a,8,y,8) based on these points has the
following properties: It vanishes when x < a or when x 2> § and has
the value unity on the interval g < x < y. It is monotonically

increasing on a < x < 8 and monotonically decreasing on y < x < §.

The SMF is infinitely differentiable, and each derivative is bounded,

vanishing identically, except when a < x < 8 or y < x < §. Write

Q(-x:: QpenYaG) » % r e-iex qf(e; G:B-Y:‘S)de'

The SMF constructed by Smith (1967) has the property that q(x; a,B8,Y,6)
e L(M; v) for any M(x) and any v = 0. However when M* is replaced
by M a much smoother SMF is required; for a construction see pages 47-
48 of the paper by Smith (1976). We shall refer to this particular SMF
in subsequent applications of Theorem 2.2.

It is interesting to note that the amount of smoothness that can be

built into a SMF is restricted by the fact that it has a compact support.
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Smith (1971) proved that a necessary and sufficient condition for the
existence of a probability density function p(x) with compact support
such that pf(e) € L+(M; 1) 1is that M(x) satisfy the Umbrella Condition;
this is a consequence of Theorem XII of Paley and Wiener (1934). Since
the construction of such a density is the essential step in the derivation
of a SMF, we cannot hope to improve Theorem 2.2 to include functions

M(x) which grow faster than the rate permitted by the Umbrella Condition.
Of course when F(x) ¢ P(M, v) and M(x) grows like ex, it is still
possible to deal with renewal theoretic questions (and this has been

done by various authors), but this situation requires the use of ad hoc

techniques.

2.2 Smoothing lMagic

We now use the Wiener-Pitt-Lévy-Smith approach to prove a result
(Theorem 2.4) which describes the asymptotic behavior of the renewal
function when F(x) has a finite variance. Although Theorem 2.4 is
foreshadowed in the addendum to the paper by Smith (1967), several novel

features will emerge from our proof, as well as a slight generalization
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of the preliminary version.

Assume that F(x) ¢ D(M; 2 C for some M(x) « M. Since the renewal
function H(x) 1is not a function of totally bounded variation, it does
not possess a Fourier-Stieltjes transform. ithen dealing with positive
random variables corresponding to renewal lifetimes, this difficulty
can be avoided by using Laplace-Stieltjes transforms. However we would
then be forced to recast Theorems 2.1 and 2.2, thus losing the capability
for possible future extensions to unrestricted random variables.

Instead we shall deal with a modified renewal function Hc(x)
which is bounded, nondecreasing and absolutely continuous. Let Aa(x)

be the triangular density function

il J.gl ¥
Aa(x) a . s le < a

= 0, otherwise,

-
so that A;(e) = Elﬂ—ngéZl . For 0 <g <1 define (suppressing the
(a8/2)

dependence on a)

b n
(2.2.1) Ho(x) = nzoc r 6, (x-2)dF (2),

where Fo(x) = P{0 < x} and Fn(x) = P{X1 ot K S B, BB e s

Then +
H' (6) ——T—A‘(e)
& 1-zF'(8) :
By Theorem 2.1

M
o) = 14wy d0+ 22 (007 7, (0,

so that if we write B8 = (1-g) - GHy i6, then




¥

745

: AT(O)
(2.2.2) HC(G) -
B+ 5" 0%z FT,)(O)
Therefore
‘ A" (0) e 0%c Af(0)F ., (6)
HT(e) = = i a (2}
4 B

(6 + 22 0% #, (0]

Let I be a small open interval containing the origin. For 6 ¢ I it

is not difficult to show that

H M
I8+ 52 0% By @] > 32 clel,

and for all 6, |[B] > u1C|6|- Consequently for 6 ¢ I
WO

e a -
(2.2.3) |HC(9) (Mo e | =0(),

wuniformly with respect to . Write Ht(e) for the Fourier transform
of the modified renewal function corresponding to the negative exponential

distribution with mean My Clearly

. 87 (8) (1 - uyi6)
Rf(e) - a 1 ,
& 1= ulie =

and for 6 ¢ I, there exists a positive constant C such that

3 | lewie u go?
@] |3 - —— | s C | ——
l-ulle'c B(l-ulie-c)
(2.2.4)
Cuy o] Cuy 6]
- 1 & 1 6
~uqi6- S SN b
|1 Ulle Cl /(I'C) + Ule
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(2.2.3) and (2.2.4), together with the Triangle Inequality, imply that,
for 8¢ 1,

IHZ(G) - @] = o)

untformly for 0 < ¢ < 1.
Since we are assuming that F*(B) belongs to C*, it follows

that  sup |F+(8)] < 1. This implies that IH;(O) - Hz(e)l is bounded
B¢1 ’

as ¢+1 for 0 ¢ I. Furthermore (2.2.2), (along with the fact that
A;(B) is integrable,) can be used to show that HE(O) is integrable for
6 ¢ I, and, of course, the same claim may then be made for Fi(e).

Consequently we may legitimately apply the Fourier inversion formula

(2.2.5) H () - WC(X) = %; ] e'iex{HZ(o) - HZ(e)}de,

since the integral in (2.2.5) is absolutely convergent. Setting

H(x) = lim H (x) and A(x) = lim A (x),
41 L

it follows by bounaed convergence that

N : / .lw-iex’r 1-’-—14»_
(2.2.6)  H(x) - H(x) za'J-m I { 1-F (8) ‘;plle l_l}de'

Using the expansion F*(e) e “lie Ftl)(e) which is a consequence

of Theorem 2.1, we may formally write

=

- Sk 1 1 { 1
1FT(8)  -uiFl (0)  pyie U-[1-F])(9)




& #)

-1 5 pAyek
'ulie k=0
£t > 2
(2.2.7) P (L : Fil)(e) N 11 F(1)(6)]_
i i 1 - FT (o)
Therefore
1 1 b2 o 4
¥ - Fl,,(8) + L'(e),
1-F (8) 1,6 E;f (2)

-F (@12
4 3 [1-F 1 (¢]
say, where L'(8) = ————L—l;-————.
1 - F'(0)

Our objective is to show that L*(e) is the Fourier-Stieltjes
transform of a function of bounded variation in a particular B-class, and
we shall employ Theorem 2.2 for this purpose. First we prove the

following auxiliary result:

LEMMA 2.3 (Smoothing Magic) Let F(x) ¢ D(M;2) for some M(x) ¢ M.
Then
. gt 2
-10

(2.2.8) cston; 1).

PROOF. We want to show that

2
21-- #p @1 1 - (7 @)

-16 -10

(2.2.9) cstow; 1).




Write U(x) for the unit function P{0 < x}, and define
FE () = UX) - Fpqy (X)
(1) (1)

00

c = - - N
F(l)Z(x) U(x) [-m F(l)(x z)d}(l)(z).
Then proving (2.2.9) is equivalent to showing that
it c _ g .
(2.2.10) ZF(U(x) F(I)Z(x) c L(M; 1).

The following respresentation for F'El)z(x) requires no proof, having

an obvious interpretation:
2 x/2 - -
C o« 1£C (X " > 4= 1-F(z)
F(l)z(x) {F(l)(f)} ZJO F(l)(x Z)'—-”l sz.

Consequently showing (2.2.10) amounts to proving that

2 x/2 - -
c o Lo 1=F(z '
2] () - {F(l)(f)} . Jo Fe) (x-2) _——é—l-_\dz ¢ LM; 1).

Since I—U—F-g’-()- e L(M; 1) and
1

X
I M(u)du = xM(x),
0

we have

X
I"’J M) LFX) gudx < o,
0’0 "1

By Fubini's theorem for nonnegative functions it follows that

&
EM(x)F(l) (x)dx < o,




On the other hand, since

[ 220
X - Tl -

as x » =, we have xM(x)F%l)(x) + 0. Therefore

) 2 2
x(M(x)FL (x)}%dx < o,
| x0u00rG,
Consequently by a change of variable
0
and since M(x) < M(iz‘-)r-i(g), it follows that

(2.2.11) [F?l)(-;-)]z c LM; 1).
Since F(x) has a finite variance,

r; Flyy Ghdu < =,

and since u M(u)F‘(:l) (u +0 as u + =, we obtain

(2.2.12) F((:l)(;—)F‘(:l) (x) e L(M; 1).

Finally a second application of Fubini's theorem yields

E 00 I:/z (Fyy 0oy 01| 5L faafor

< J:xM(x) J:/Z z [I-Fﬁ)lgz) ] [ lu:@] dzdx
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2z

p—-
C'ﬂ

—
=)

x M(x) l%(i‘-—zl duds
]

{2.2.15)

m "“e
™~
s—-
'ﬂ
™
St
8

(y+2)M(y+z) ‘—592 dydz.
1

Over the range of integration y = z we have M(y+z) < M(y)M(z).

Consequently the integral in (2.2.13) is less than or equal to
o ) BEQ [y LEO) e
0 1 z 1

1-F(x

which is finite, since =
1

¢ L(M; 1). Consequently

x/2
(2.2.14) I [F((:l) (x-z)-F((:l)(x)][I_‘;—;:-(-ﬂ] dz « L(M; 1).

; 0
(2.2.11), (2.2.12) and (2.2.14) together imply (2.2.10), proving the

lemma.

We note at this point that the result of Lemma 2.3 is quite
remarkable. In view of the fact that [1 - Ftl)(e)]2 is in the class
8'(M, 1), we might reasonably conclude that (1 - Ftl)(e)lzl(-ie) is
in the class B*(M; 0); i.e. we would expect to lose one whole moment
as the price to be paid for dividing by -i6. The convolution in the
numerator of (2.2.8) apparently causes the '"'lost' moment to ''reappear',
and we refer to this surprising efficacy as smoothing magic.

Now write qr(e) for the special SMF qT(e; -2, -1, 1, 2) and
define

26
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e - d@ the

ad U@ -0 - @ite.

Clearly
[1-F*1 (e)I2

t o)) "o
MOR .4;-£-l~
1 "Iy Fly(0)

Set J= (-2, 2] and ¢(z) = %. Since Ftl)(e) is continuous at the
origin, |F(1)(9)’ is bounded away from zero in a neighborhood of the

origin say (-6, §). On the other hand

inf |1 - F*(e)l x>0,
§<0<52
-2<0<-68

since otherwise F(x) would be a lattice distribution. Consequently

.t
inf 1 F9)|.A__>0'
§<0<2 I'“llel g
-2<0<-6

Thus for 6 ¢ J, z = Ftl)(e) maps out a continuous curve that lies
outside the circle

A
|z| = = .
¥

Using Part A of Theorem 2.2 we conclude that q+(e)/F+ (8) is in 8+(M; 1).

(1

It then follows by the smoothing magic of Lemma 2.3 that Lt(e) € 8+0W; 1)

It is somewhat easier to deal with
.ot 2
[1 - Fly(0)
1 - F1(0)

e - 1 - 4@

Here take J = (-=, 2) (2, ®) and 6(z) = {& . Since o) e ot it
is not difficult to see that p[F+(e)] < 1. As 6 runs through J,




iF*(e)l is bounded away from unity. By Part B of Theorem 2.2

f'

Loa () gt v,
1 - F'(9)
and it follows that L;(e) € B+(M; 1). Consequently
Lt = i@ + Lhe « stos; 1.

We have shown that

1 hclbs
1-FT(0)  -uie
*y
is the Fourier-Stieltjes transform of F,,,(x) + L(x) where
PRANC)
1

L(x) ¢ B(M; 1). Consequently

: 5 1 1
a.(8) - -1
» {1-F*(e) -upie }

is the Fourier transform of

o
I:’ Aa(x°2) d{ -2?1 F(Z)(Z) + L(z)} - I:, Aa(x-z)dU(z).

From (2.2.6) it follows that

2
H(x) - J:n Aa(x-z) d{ -2? F(Z) (z) + L(z)}
1

= A(x) - I“ A, (x-2)du(2)

dz
But H(x) = EAa(x-z) L-i- + Aa(x), so that

J:b b8, (x-2) d{ n:fl Fn(z)}
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. dz , 4" "2 s L) | - au!
Jl a,(x Z){ u(z) ™ d_z—u-f F(Z)(Z) L(Z)_ dU(Z)).

Aa(x) may be replaced by linear cambinations of triangular densities,
and these, in turn, may be used to approximate characteristic functions
of intervals by a "sandwiching' process described by Smith (1964). By a
standard extension argument we then obtain
X 2

H(x) = qU(x) + Z—Jf F(Z) (x) + L(x) - U(x) +C.
Since b >0 it follows from the Strong Law of Large Numbers that
H(x) » 0 as x + - . ‘Therefore C = -L(- =) = 0.

We now state the renewal theorem which has been the aim of the

preceding discussion:

THEOREM 2.4 Suppose that {Xn}:‘l i8 a sequence of iid positive random
variables with distribution function F(x) ¢ D(M; Z)n C for some M(x) ¢ M.
Then

H(x) nzl P(x1 ...t Xn < X} = (-JI - 1DU(x) + Z" F(z) (x) + L(x),
where L(X) s a function of bownded.variation in the clase BM; 1),

L(- =) = 0, aud, in particular i

L() = o gy

ag X * @,
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Reference to renewal theorems of this type (involving a derived
distribution term in the expansion) appears to have been made first by
Smith (1967); see the addendum to that paper. The version stated above
seems to be the most general result with respect to the moment class M
that can be obtained via the Wiener-Pitt-Levy-Smith approach. The proof
of Theorem 2.4 does suggest extensions in other directions which will
be taken up in subsequent chapters. In Chapter 4 we shall discover some
smoothing magic in an investigation of the renewal function, assuming
F(x) ¢ D(M; 1 + a), 0 < a < 1. This will involve adding more terms to
the expansion in (2.2.7). In Chapter 5 we shall examine cumulants of
the renewal process (and, in particular, the variance,) when more than

a second moment is assumed for F(x).




CHAPTER I1I: AN APPLICATION TO
SUPERPOSITION OF REHEWAL PROCESSES

Having examined a fundamental problem in renewal theory in the
previous chapter, we shall now apply the main result (Theorem 2.4) of
that discussion in a brief study of superposed renewal processes. The
literature concerning superposition is quite extensive, and consequently
we have confined the review in Section 3.1 to a small number of references.
Section 3.2 deals with the probabilistic behavior of superposition under
transient conditions, an aspect which has largely been ignored by

previous authors.

3.1 A Selective Review

Suppose that ~ independent sources each give rise to a series of
events and that the outputs of these sources are superimposed into a
single pooled output. The superposition process is thus a series of
events in which an event occurs at time t iff an event occurs at t in
at least one of the N component processes. This model was first studied
by Cox and Smith (1953) in connection with a problem in neuro-physiology;
however, it has also arisen in a number of other diverse areas of appli-
cation, including the theory of congestion in telephone traffic,
investigations of computer failure patterns, and studies of multi-stage
industrial processes involving similar machines operating in parallel.

Cox and Smith (1953) dealt with the superposition of strictly periodic

sequences of events, i.e., when the events from the ith source occur
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exactly at times € 28i, 36i, ..., where 8, is the period of the ith
source, (i = 1,2,...,N,) and the periods are mutually irrational.
Although this is a deterministic situation, it can be shown that
asymptotically as N becomes large, the pooled output (viewed over a

long period of time) becomes indistinguishable from a Poisson process with
parameter A = ‘§ (1/6,). Mild assumptions are made to ensure that as N
tends to infini:;{ the time scale is dilated so that no small group of
periods CH is comparable with the mean interval between events in the
superposition.

A consequence of this rather surprising result is that for large W
the analysis of local behavior of the superposition yields little infor-
mation regarding the individual sources. It is well known (and easy to
demonstrate) that the superposition of p independent Poisson processes
each of parameter A 1is icself a Poisson process of parameter pai.
Therefore no firmm conclusions can be drawn from the analysis of a pooled
output which does not differ significantly from a Poisson process.

For small N it is possible, at least in principle, to estimate the
ei‘s accurately, provided the pooled series available for analysis is
long. The procedure consists of decomposing the frequency distribution of
the intervals between successive events. For larger values of N, Cox
and Smith (1953) proposed an analysis based on the variance-time curve
Vﬁ(t)- Var{number of events occurring in the superposition during [0,t]}.
Vy(t), which can be estimated fram observations on the superposition,
oscillates about N/6 for large t iff the series is the pooled
outlet of « periodic sources.

More generally we wish to study the behavior of the superposition
when the sources form independent renewal processes. The superposition
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will not, in general, be a renewal process, since the intervals between
events are not necessarily independent random variables. (In fact, if
the superposition of two independent renewal processes with the same
interoccurrence distribution F(x) having mean u < = 1is also a
renewal process, then all three processes are Poisson; see, e.g., Karlin
and Taylor (1975, page 226 ).)

Cox and Smith (1954) assumed that for each source the intervals
between successive events fom a sequence of iid positive random
variables with distribution F(x). (We shall refer to this as the

identically distributed case.) They considered the equilibrium behavior

of the superposition a long time after the start of the process as follows:

For 1i=1,2,...;N let Yi be the time measured back from a fixed
sampling point to the preceding event on the ith source. Define Y

as the corresponding random variable for the superposition. Then
Y = min (Yl,...,YN).

For renewal processes in equilibrium the Key Renewal Theorem can be

used to show that

b 4 u

provided that u = fm xdF(x) < =, (Note that (3.1.1) does not depend
o

on the choice of the sampling point.) Then by independence
PIY >y} = [1 - F oy ()Y
y (1) y .

The density corresponding to the backward delay distribution for the

superposition is given by

e - g §

PSR
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(3.1.2) % [1 - F(y)]l - F(l)(y)]N'I

Now let G(x) denote the (equilibrium) distribution of the interval
between events in the superposition, and let g(x) be the corresponding
density. Clearly the mean interval between events in the superposition
is p/N. Suppose we take a sampling point chosen at random over a very
long time interval and define Z as the time measured back to the last
event in the superposition. If X denotes the length of the inter-
event interval in which the sampling point lies, then X has the length-
biased density xg(x)/(u/N). The conditional density of Z given that

X=x, is uniform cver (0, xo). Thus the unconditional pdf of Z is

X

x g(x)
(3.1.3) !w B o RS O
y "o u/N ° uN

Because the renewal processes are in equilibrium, the expressions (3.1.2)

and (3.1.3) are equivalent, and consequently

(3.1.4) 1-6Gy) = [1-FyI - F(l)(y)]N'l.

Write L for the length of an interval between consecutive events in the
pooled output under equilibrium. (Note that dividing L by E(L) = u/N
corresponds to a dilation of the time scale.) Then assuming F(0) = 0

(3.1.4) implies that as N » =,

- = % e Uy N-1
P{m y} (- FEHII - F gy ()

- - rgen {1

Yy

(6] ]

' W' . B ALt o " e
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Cox and Smith (1954) showed equivalently that as N tends to infinity
the limit distribution of the number of events occurring in an interval
of length ut/N 1is Poisson with parameter 1. They made the mild
assumption that there exists £, 0 < g < 1, such that F(t) = O(tB)
for small t. It can be shown more generally that in the limit the
numbers of events in non-overlapping intervals are independent, i.e., the
superposition is a Poisson process. Such results provide a theoretical
basis for making a ''Poisson assumption'' in a number of applications, just
as the Central Limit Theorem is frequently invoked to justify assumptions
of normality.

Cox and Smith (1954) pointed out the difficulty of analyzing a
superposition when N is large, noting that the sources might equally
well be strictly periodic or renewal processes. They suggested a variance-
time curve analysis for situations in which N is small and unknown. (cf.

Cox and Lewis (1966, page 215).) Let Hpr O and Mg refer to F(x).

Then
v -MCE L f1,ef U3
N P Nt | % s
My up 3y

for very large t. Camparison with the empirical variance-time curve
yields estimates for the four unknown parameters. However these are
based on sample estimates of higher moments which tend to be unreliable.
Cox and Lewis (1966) additionally noted that this approach is likely to
be inefficient because transient effects are not taken into account,
suggesting an area for further investigation. We shall return to several
related issues later in Sections 5.3, 5.4, and 6.2.

Since 1954 very few authors have dealt with the inferential aspect

of superposition. On the other hand, limit theorems have received
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increasing attention, and most recently there has been a surge of interest
in the superposition of very general types of point processes.

Khintchine (1960, Chapter 5) observed that the process describing
the arrival of calls in a telephcne exchange often apprcoximates a Poisson
process more closely than might be expected. He explained this phenomenon

by showing that the superposition of indefinitely many uniformly sparse

but not necessarily identical renewal processes tends to a Poisson process.

Since the statement of this result in the English translation of
Khintchine's monograph is somewhat awkward, we quote the following recent
version due to Karlin and Taylor (1975, Chapter 5):

PFor n=1,2...., and for 1 = l,...,kn, where kn + @ gs qn + o,
let Nni(t) be a renewal counting process with underlying distribution
Pni(t). (For every n the processes {an(t)},...,{Nnkn(t)} are
assumed to be independent.) The superposition process Nn(t) is defined

as

kn

Nn(t) = izl Nni(t), t = U.

Then according to Khintchine's theorem,

~ Wi od
lim PIN_(1)=j} = &8 < 0,1,...)
n-oe il
if and only if
k
i 121 F .(t) = At
lim AL} = 4
nwe j=1 M

provided that 1lim max F_.(t) = 0.

e lsisk =

Franken (1963) proved a refinement of this result for the iid case.

B R —



Let

tni = Npi(uott) - Nyiug)
for i =1,...,n and n=1,2,..., where the underlying distributions

F .(t) are for i=1,...,n identically equal to Fn(t). Define

and assume that an(t) = ii(t) for all n and t, where Hn(t) is the
renewal function corresponding to Fn(t), and H(t) 1is an arbitrary

renewal function. Franken (1963) showed that if Fn(+0) < 1/2, then

) P{cn=k) = E w(k)[l i '§ Qiik) J ® 0(—;%1} N
U<k<x 0<k<x i=l n
where the Qi(k) are certain calculable polynomials in k, r = 0,1,...
If Fn(+0) < 1/3, then the estimates so obtained are uniform in x.
Franken's proof (which is quite complicated) is based on a generating
function approach which makes use of a Charlier Type B series.
Unfortunately the condition “Nin(t) = H(t)" 1is unrealistic, ruling out
use of the expansion in many applications. This restriction has apparently
been overlooked by authors quoting Franken's result; see, for example, the
review by Cinlar (1972).
Ambartzumian (19605) discussed two "inverse problems' related to the
superposition of renewal processes: (1) determining N and F(x) when
the sources consist of N identical renewal processes, and (2) determining

F(x) and ) when the component processes consist of a Poisson process

with parameter A and a renewal process with underlying distribution F(x).

Ambartzumian's results are stated vaguely, and no numerical examples are

LA BB s

=
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L presented. [iis "general method" for the first problem does not go beyond
the work of Cox and Smith (1954), nor is it clear that his "method of
moments'’ answers the second question satisfactorily in a statistical sense.
In a second paper Ambartzumian (1909) discussed the correlation
properties of the intervals in the superposition of N not necessarily
identical renewal processes in equilibrium. Let Xo' Xl’ Xz,... denote
the lengths of consecutive intervals between events in the superposition,

and let

¢(z) = | o ",
n=1 "

where pp = Corr(XO,Xk). Also let Fi(x) denote the underlying distri-
bution for the ith renewal process. Assume that (A) for 1 = 2,3,...,

N the Laplace transforms

2,(s) = Ee's" dF, (x)

converge in the strip -a < Res < 0 for some a > 0, and (B) each

Fi(x) possesses an absolutely continuous component. Then (in the some-
what confusing notation of Ambartzumian)

C
3=+ (e -De(1) = § - ;
K=1 2

where " Exg, My = f: X dFy (x), and oil = J: xdFk(x).
Ambartzumian did not, however, extract closed expressions for the serial
correlations.

Blumenthal, Greenwood, and Herbach (1968) considered the rate of
convergence to the exponential form of the inter-event distribution for

the superposition, both as a function of time and as a function of N,
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the number of component processes. They examined both the iid and

the non-identical cases, assuming that the unc¢erlying distributions are
members of the gamma family with selected shape parameters. By making
such concrete assumptions, Blumenthal, Greenwood, and Herbach were able
to generate a number of interesting plots which enabled them to rate the
effects of factors such as system age, system size and shape of the
distribution on deviation from the exponential limit. The most important
conclusion was that system age can cause very large deviations from the
limit,and that these can extend over a relatively long time span. The
work of Blumenthal, Greenwood, and Herbach is apparently the first to
deal with the transient aspects of superposition from a practical stand-
point.

Lawrance (1973) studied the dependence of intervals between events
in the superposition of independent (not necessariity identical) stationary
point processes. In particular he obtained the joint distribution of any
number of adjacent inter-event intervals following an arbitrary event in
the superposition. Although this distribution can be stated in a closed
form, the result is notationally intractable. In fact Lawrance found it
necessary to restrict his study to the joint distributions and serial
correlations of at most three adjacent intervals. His work includes some
interesting numerical results based on superpositions of Erlang renewal
processes.

Recently Coleman (1976) dealt with a special type of superposition
involving dependence. Suppose we start with a renewal process in equili-
brium and choose independently a sampling point. The distances from this
point measured forward and backward to renewal points define two new
renewal processes. Their superposition constitutes a folding over of the

past of the original process onto its future, and these are independent

e i
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only in the Poisson case. Coleman obtained the joint distribution of k

adjacent intervals for this rather unusual example of superposition.

3.2 The Transient Behavior of Superposition: A Renewal Theoretic Approach

The studies reviewed above have, for the most part, dealt with
probabilistic aspects of superposition of renewal processes. We
believe that one goal of such work should be to provide insights which
lead to improved statistical methodology, and there is clearly a lack of
results which are useful in this sense. Inference about the source
processes based on observation of the pooled output is feasible only when
the superposition differs significantly from a Poisson process. This
suggests the need for further investigation of superposition of a relatively
small number of processes under time dependent (rather than equilibrium)
conditions.

Although we shall not attempt to develop statistical techniques for
dealing with data arising from superposition, Theorem 2.4 can be used to
derive certain results for the transient case which may well lead to more
precise statistical work in the future. Specifically we shall consider
the relatively simple problem of finding the probability that k events
occur in an aribitrary interval of time for a superposition of N
independent, identical renewal processes {xi}:=1‘
issue has been overlooked by previous authors, including Blumenthal,

(Apparently this

Greenwood, and Harbach (1968).)
Let F(x) = P{Xi < x}, and write H(x) for the corresponding

renewal function. We shall assume that
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? (1) N, the number of sources, is fixed and relatively small, (so
that it cannot be regarded as tending to infinity),
(2) the first renewal lifetime X1 for each component process
begins at time t = 0,
and (3) by time t = t, the component renewal processes have not yet
reached equilibrium.
Furthermore we shall assume that F(x) ¢ D(M; 2)n C for some moment
function M(x) ¢ M, using My and Wy, to denote the first two moments
of E(x).
Let At > 0 be a fixed increment of time, and for j = 0,1,2,...,

and k = 0,1,2,..., define

% P * P{exactly j renewals occur in (t , t +At]

for given component process}

and Pk = P{exactly k renewals occur in (to, to+At]

for the superposition}.

Studies of tne limiting behavior of superposition as N becomes
large typically involve a standardization which can be thought of as a
dilation of the time scale for the sources. Specifically the process
{Xh}:_1 is replaced by (WX /uj}7 ). We shall follow this procedure here
for the sake of comparison with the limiting Poisson distribution which

. * o
we shall write as {P},_
The probability that no event occurs in (to. t°+At] for the process

{an/ul}n-l is

e * &

{3,2:1) P ®

it /N = t_+AL
3 I 1% ) & F[ 0

t +Aty—
] - F[ . ]
i 0o e N/Ul

2 uJ:'dH(u) :

v

PR S X
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Note that the first term on the right-hand side of (3.2.1) is the
probability that the first renewal takes place after time t, * At the
second term is the probability that a renewal occurs in (0, tO] such
that the next renewal takes place after time t, *+ At

For convenience write
' = ! =
tS ”lto/'q and § b (at)/N .

Using the independence of the sources

té+6
Po = {l - F(té + 6) + H(té) - JO F(té + § - u)dH(u)
[3-2.2) t""d N
+ f s u)dH(u)}.
t! "

(0]

(3.2.2) can be simplified by applying the integral equation of renewal

theory; consequently

(3.2.3) Po B {1 - Jté*é

'
t0

N
[1- F(tl+ 6 - u]dl{(u)} :

(3.2.3) is a particularly revealing expression which does not appear to
have been studied elsewhere. It involves both the behavior of F(x)
near the origin and the behavior of !i(x) for moderately large values of
X.

We shall deal with the former by assuming that there exist positive

constants ) and p such that

(3.2.4) F(x) = axP e 0(xp*1) as x -+ 0.
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This is a fairly mild condition, in view of the fact that (3.2.4) is
satisfied by a number of useful lifetime distributions, including the
uniform negative exponential, gamma, and Weibull families.

To handle the transient behavior of H(x) we apply Theorem 2.4 of

the previous chapter. Substitution into (3.2.3) yields

t'+§ u N
; & . 0 ! g du + 2 3 +
f it o) Po {1 Ité (1 F(to § u)][EI- E;f-dr(z)(u) dL(u)]} .

where the remainder function L(x) belongs to B(M; 1). Note that the

bounded variation property of L(x) is essential to this application.

Now by assumption (3.2.4),

t'+§ p*l
1 o - ' - = §_ - AS + 0 60+2
-;Tf It' [1 F(to"'d u) Jdu “1 m ( ) o
o]

Since the second derived density is given by
£ : fm (v-u)dF(v)
= v-u V),
|t S

it follows that

o B : :
~ Jt' {1 - F(tj+é-u)]dF 5y (u) =
]

(3.2.6)

t'+§
= lz [ v f” (1 - F(t)+s-u)] (v-u)dF(v)du.
My té u

After interchanging the order of integration, simplifying and collecting
terms, (3.2.6) reduces to
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g 5
o [ u dF(U"'t(;) s e r UdF(U" t:))
2“1 0 Y )

2 6p*l
~— [1 - F(t] 8] =

r\mluut)+ 0(s”*%) .
2u1 u1 (p*1)

The most intractable term in (3.2.5) 1is

t'+§
0 ek, - P " '
[t' {1 - F(t*6 u) JdL (u) L(t[+6) L(to)
o}
(3:2.7)

- A Js (6-v)PdL(v+t') + 0[ Iéfc-v)°+1 dL(v+t')
0 o (o] 4 "

The difference L(té+6) e L(t(;) is not amenable to a Taylor expansion
unless F(x) possesses additional smoothness. We prefer instead to

assume that

(3.2.8) el Lk B
t'
o

M(té)
which should not be unnecessarily restrictive, especially in applications
where F(x) may well have more than a second moment.
We shall use (3.2.8) in connection with the following lemma which
implies that
' X o 1
L(to*é) L(to) 0[‘—'7—-——"-] ’

t M(t')

0 o
provided that M(x) is, additionally, a special type of function of
moderate growth.
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LEMMA 3.1 Let M(x) e M and suppose that

(3.2.9) o R T e
M(x) -

for every constant c > 0. Then

(3.2.10) L(x*+8) - L(x) « B(M; 2).

PROOF. By a change of variable,

fw xM(x)d{L(x+6) -L(x)} = [Q {u’M(u-8) -uM(u) }dL(u)
8

(o}
(3.2.11)

~ LS r" uM(u-§)dL(u) + §? rM(u-é)dL(u) -
§ $

Using the facts that L(x) « B(M; 1) (by Theorem 2.4), M(x) is a

function of moderate growth, and

u2 M(u-§8) - uZM(u) = uM(u){u[M - 1]} .
M(u)
we can apply dominated convergence to conclude that the integrals on the
right-hand side of (3.2.11) are finite. Thus L(x+8) - L(x) ¢« B(M; 2)
and, in particular, as x » e,

|xZM(x) [L(x+8)-L(x)]]| = J uZM(u)ld[L(u+6)-L(u)]] > 0.

X
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N.B. Various authors have obtained estimates for the function

H(x+1l) - H(x), which is sometimes referred to as the '""Blackwell difference';

-

see, for example, Theorem 3 of Stone (1965). We can modify Theorem 2.4

oo

in an obvious manner to obtain an expansion for the Blackwell difference,

and the remainder term L(x+1) - L(x) then belongs to &(M

T
y &~

according

to Lemma 3.1, provided, of course, that F(x) ¢« D(M, 2) and M(x)

satisfies (3.2.9). Lemma 3.1 thus improves the result of Stone (1965)

who showed that

2
X

] as xow
log x’

L(x+1) - L(x) = o

if F(x) e D(I; 2). We suspect, moreover, that (3.2.10)is true for all

M(x) ¢ M.

Returning to (3.2.7), assumptions (3.2.8) and (3.2.9) imply that

t'+6 o i A
I g dl - 0 F(té*é-u)]dL(u) = 0(s 2).
t'

o)

By expanding the right-hand side of (3.2.3) and collecting temrms

of the same order of magnitude we obtain the following estimate:

For fized N and to, as At + 0,

o 5 -
-1 - = : t
{3:2.12) PO 1 (At)‘_l + ™ f: udF(u + Ol‘

1+p Aup - @ e
oS08 [__1_] l 1% .LJ udF(u+tc'))’
NP 1+p W Jg -

2 s ¥
F 07 ) - B | dare)
2N i 2“1 °
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OO R l 1+ %1— Jé wdF(uet}) |+ 0(at)?*? .

The approximation (3.2.12) may be too complicated for practical purposes;
however (3.2.12) does, in fact, simplify to

o0

+ 0((At) 1*0} .

= ) =
= - — t
P0 1 (At)‘_? : m [ udF (u+ 01

§
so tpat by comparison with the limiting Poisson case,

{3.2.13) P =P -— J udF(u*té) + 0[(At)1+p]
§

Expression (3.2.13) is particularly interesting, since it reveals that N
and t, (rather than the behavior of F(x) at the origin) determine the
rate of convergence to the Poisson limit. Furthermmore, the ''correction
term'' in (3.2.13) is specifically related to the first moment of the
distribution F(x).

The approach outlined in this section can be used to derive
approximations such as (3.2.12) for Pl, Pz, P3, and so forth. The
algebraic {etails become increasingly complicated, and for convenience

we simply note that
= x é_E R ' 1#‘)
P1 Pl # ™ j: udP(u+to) * 0((At) ]
and for k z 2,
b 1+p
P, o[(m;) ]

These estimates demonstrate that the '‘smoothing magic' of Section 2.2 can
lead to detailed results concerning superposition. We shall resume our

discussion of this application in Section 5.3.

R & o




CHAPTER IV: A REPRESENTATION FOR THE
RENEWAL FUNCTION WHE{ THE VARIANCE IS INFINITE

In this chapter we resume our study of the asymptotic behavior of
the renewal function H(x). We shall develop an expansion for H(x)
assuming that F(x), the underlying distribution, has an infinite
variance and, furthermore, that F(x) ¢ D(M; 1+6)n C, where M(x) ¢« M*
and 0 < § < 1. Some previous work related to this problem is reviewed
in Section 4.1L The methods used to prove Theorem 2.4 are relevant to
the present situation, although, as we show in Section 4.2, a different
kind of "smoothing magic'" is necessary. Our main result (Theorem 4.6)

is contained in Section 4.3.

4.1 A Theorem of Stone and Wainger

In a study of the theory of recurrent events Stone and Wainger (1967)
dealt with a lattice distribution {fn}:_ ., defined on the integers

and with the corresponding renewal measure {un}:= -+ (In the more

familiar situation where fn =0 for n <0, fj is interpreted as the
probability that an aperiodic event takes place for the first time at
time j, and Uy is interpreted as the probability that a recurrent

" @« " w
event occurs at time k.) Note that {fn}n= . and {un}n= O -

the analogues of the probability density and renewal intensity functions
which arise when F(x) is assumed to be absolutely continuous. Specifi-
cally Stone and Wainger considered the problem of estimating U

assuming that {fn}:- .. has at least a finite nonzero first moment .
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A brief description of their work is appropriate here, since the theories
of recurrent events and renewals are parallel to a great extent.
Stone and Wainger introduced a class of moment functions M(x)

defined by the following properties:

(1) 2 sMx) <= for 0 < X < =,
(i1) M(x) 1is nondecreasing,
(iii) ygl log M(y) < x 1 log M(x) for 0 <x <y < m,

(iv) x1 log M(x) + 0 as X » =,
We shall refer to this class as M'. For part of their work Stone and
Wainger required additional restrictions, including the condition M(2x) =

0(M(x)) for all x z 0. M' 1is homologous to the classes M and M*
used in Chapter 2, although the latter seem to be more natural; conditions
(i11) and (iv) are not obvious and were needed by Stone and Wainger for

purely technical reasons. M' does include functions such as

§
xa(log x)8 e* .

where 0 < § <1, and either y >0 or y=0 and a > 0.

Two additional sequences are defined as follows: Let

and . Wed- E £, for. k> D
j- §1
Also set

;P E g, for k=20,
j- +]

Since Hy is finite, the sequence (qk)i-o is summable. Note that if

we assume, in addition, the existence of the second moment of {fn}:=

-0
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then when f =0 for n < 0, the sequences {q };_, and {rk};;l
correspond to the first and second derived distributions, respectively.

. (m)

Write « for the m-fold convolution of {qk}:=0 with itself.

For the one-sided case where {fj }30: .., 1s concentrated on the non-

negative integers, Stone and Wainger obtained the following result:

THEOREM 4.1 (Stone and Wainger, 1967) Asswne that

ISR O R AT
j=0
for some &, 0 < § < 1, and some M(X) ¢ M'. Then for n sufficiently
large, as k + =,
(4.1.1) Ty ) R T 0(p(k)),
1 m=1 )
where for k > 0,
2k M) £.
1 1
o(k) = .m— + _—._aL_

KOMK) M) jek/z 1+ |k-j| 1t

In fact,

1

(4.1.2) plk) = Olm] as k » «,

Based on such minimal conditions the estimate (4.1.2) for the
remainder term in the expansion is surprisingly sharp. Unfortunately the
meaning of Theorem 4.1 is not entirely clear; the statement begs the

question of the precise number n of terms to be included in the expansion
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for a particular choice of &, and this issue is not resolved in the
rather sketchy proof given by Stone and Wainger.

Results similar to Theorem 4.1 were later obtained by Essen (1973),
(although he, too, failed to specify n). Whereas Stone and Wainger used
ad hee techniques to obtain (4.1.1), Essen showed that a relatively simple
proof is possible if certain commutative Banach algebras are first intro-

duced. In particular, Essen derived approximations to Uy in which

LA PN A )

the remainder term is shown to be of "o or '"0" type, depending on

corresponding assumptions made concerning the distribution (fj}?= -
The Banach algebra method also yields results in renewal theory, but in
this context 1t appears that no significant advantage is to be gained
over the approach discussed in Chapter 2; (cf. the remark by Smith (1976;
page 16)).

Theorem 4.1 does suggest an expansion representation for the renewal
function H(x), although we do not believe (as conjectured by Stone and
Wainger) that the techniques used to obtain (4.1.1) can be readily adapted
to the non-lattice case. Of course we have already established such a
result for H(x) when F(x) has a finite second moment (see Theorem
2.4), and clearly the expansion in that case consists of a single term.
Therefore we now consider the consequence of assuming that F(x)

D(M; 1*6)n ¢ for 0 < & <1 and some appropriate moment function M(x),
and assuming, further mcre, that F(X) has an infinite second moment.

This problem was, in fact, the subject of a Ph.D. dissertation written
by Dubman (1970) under the direction of Stone at the University of
California at Los Angeles. Dubman made rather specialized assumptions

concerning F(x), such as




T

b

1 - F(x) ~ ™ gy % - w,
where C 1is a constant and 1 < a < 2, and,
F(x+1) - F(x) = O(X_I'G) as x » o,

Using Fourier analytic methods he obtained results of the form
° 1
H(x) = )] == Tm(x) + 0(l) as x + «w,

m
m=1 Y1

where for x 2 0, Tl(x) = x and

T, () = T 1) - T G)* [1-F()].

-~

The number n of terms is specified to be such that n 2 Z and
(n*1)/n < a < n(n-1). uvubman did not allow for more general moment
conditions. It is interesting to note that his techniques resemble
methods used by Stone (1%65) rather than the approach followed later by

Stone and Wainger (1967).

4.2 A Preliminary Look at the ilon-Lattice Case

Let n 21 be some positive integer and consider the following

formal expansion:

! 1 1 1
= . - . *
1-F+(e) -ulleﬁ('l)(e) -y i0 1-[1-F(1)(6)]
¥ n+1
n [1-F}.,(6)]
L. § o e e —8

4,10 j=1 1- (1-F}y, (8]

52
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st (e
n {1-F},,(8)]
(4.2.1) . e # ) ki ¢ - el SR Lz(e).

-upi0 j=1 “u, 16

say, where

. R
[1-F} (0)]"
1 - Flo)

(4.2.2) Li(e) -

This expansion is simply an extension of (2.2.7). In Section 2.2 we
showed that LI(O) € 8+(M; 1); here we do not hope for such a big
dividend. It seems reasonable (in view of Theorem 4.1) to expect that
Lz(o) : B*(M; §) for some n =z 2 depending on 6. Also note that
since F(x) has an infinite second moment, we can no longer write
(1-F}y @1/Cupie) as uprty) (0)/22.

Before proceeding to study the integrability properties of Ln(x),
we derive an interesting alternate expression for Li(e). Recall that
part (a) of Theorem 2.1 deals with Taylor expansions of characteristic
functions when moments of non-integral order are known to exist. Using

this result (and setting N = n+1 for simplicity) we obtain

&N-1, +,..N N z
[1-??1)(9)1N - 18] e (&)1 exp{inN - (sgn o) | Q-Lliw Nicl}
U‘l - & o

Choose n so that N is even and &N = 1. (This can be accomplished
without loss of generality; if 6§ = % + ¢ for some small ¢ > 0, then

replace the moment function M(x) by M'(x) = x*M(x).) Since ¢ can

4

be any real constant, take c = (N-1)n/2N. Then e'™ =1 and

n-etp @ isfer

-i6 ublI '
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so that
; [s" (0™
(4.2.3) L) = —
Ul F(l) (8)

(4.2.3) provides a particularly transparent representation for L:(e) .
in addition to relating n and ¢ in a surprising simple manner.
However since it is easier to deal with F(l) (x) than s(x) we shall
take (4.2.2) rather than (4.2.3) as our starting point.

Because we are now assuming that F(x) has an infinite variance,
the moment function M(x) must necessarily grow slowly, for example, like

1-6
o
X log x.

Generally speaking, xl'd/M(x) cannot be bounded; otherwise

erdF(x) . I"’xm M(x)
(o] (o]

For convenience we shall assume (throughout this section only) that

xl-d

Mx)_

dF(x) < .

xl-é/M(x) is, in addition, a nondecreasing function.

Previous studies of the infinite variance case have yielded ''o'' or
"0" type estimates of the remainder function Ln(x). Here our goal is
samewhat more ambitious, we want to show that Ln(x) belongs to some
appropriate moment class, and for this purpose we shall utilize the
approach presented in Chapter 2. In other words, we shall attempt to
develop some additional ''smoothing magic' in order to cope with
transforms such as (4.2.2)

Consider once more the remainder Ll(x) , assuming now that

F(x) ¢« D(M; 1+§). Since M(x) is nondecreasing,

e & TR
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X

( o1 M) du M)
‘o 1)

A

and therefore
I“" r‘ -1
u M(u)dudf (x) < o,
0’0 1)

By Fubini's theorem it follows that
§-1
(4.2.4) [w X M(x)[1~F(1)(x)]dx < w,
o

(4.2.4) is equivalent to writing
én

. f* 5-1
Z J X M(x)ll'}‘(l) (x)]dx < @,
n=1 26(n-1)

and using the monotonicity of M(x) and F(l)(x) we can deduce the
absolute convergence of the series
% 2

g

m28 (@D JEG), (2%
n=1 "

Consequently

@ 2 2
2né 6(n-1) é6n L
17 {M(z ) K@ )} < =

and this, in turn, implies that
" 26(n+1) ik 2
) I X {M(x) Flo) (x)} dx < .

n=1 26n

Therefore

2
rxu-l { M(x) F‘(Zl) (x)} ax < »,

o}




and since M(x) = O(M(%)), we can conclude that

- -2
e ] P
(4.2.5) _F(l)(ia_l e L(M; 26-1)
and
(4.2.6) (1)(2) F(l)(x) e L(M; 26-1).

Furthermore, since xl'G/M(x) -is nondecreasing,

X x/2 .
J: 51 pae0? | Jo [F{y) x-2) = ¥y (0] £(g) (2)defdx

x/2
< f: 1 Me)? [ 2£ 1) (x-2) £ 1) (2)dzdx

o

26-1 R o8 §
X [M(x) ] J (x-z)z" M(z)}f (z)dzdx
J: o M(z) (1) (1)

x/2
< (constant) fw (35)6 M(%) f(l)(%) I 29 M(2) £} (z)dadx < = .
(8] (o]

Therefore

x/2
(4.2.7) I {F?l)(x-z) . F?l)(x)} £y (2)dz € LOM; 26-1).

0

(4.2.5), (4.2.6), and (4.2.7) together imply that

ZF%I)(X) . Ffl)z(x) e L(M; 26-1);
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(cf. the aerivation of (2.2.10) in Section 2.) Using Theorem Z.2 we can

!
&
=
—————— R U p—
-

e e g, e s




then conclude that LI(O) ! 8*(M; 28§-1). However this result is not as

strong as might be expecteud, clearly 28§ - 1 < 6§ for 0< 8§ <1 and

furthermore, 2§ - 1 is negative unless 0 < § < % -

Theorem 4.1 seems to suggest that if more terms are added to the
expansion for 1/[1-F+(e)] the remainder Li(o) will be a member of
B*(M; 5§) provided n (depending on &) is large enough. Unfortunately
the methods we have used to analyze L*(e) do not appear to be adequate

1
for dealing with transforms of the type

# n+1
1 - F/,(0)]
(4.2.8) : (1)

- 38

when n 2 2. One apparent drawback is that F(x) must possess a
derivative of order (n-1). Although it may be possible to overcome such
obstacles by more refined analysis, we shall follow a different approach

in the next section.

4.3 Two Auxiliary Functions: £, (x) and £,(x)

Let us return to (4.2.2) and rewrite Lﬁ(e) as

teo) =
(4.3.1) LT(o) = 1

! _ ¢t
[1 F(l)(e)] {l f(l)(e)}n .
% Ftl)(e)

(-i8)

Clearly neither (-ie)'l/n nor le)(e)/(-ie)lln is the Fourier
transform of an integrable function. However we can express their dif-
ference as the transform of the difference of two appropriately chosen

integrable functions. This device will, in fact, enable us to avoid the

difficulties mentioned above and obtain the desired analogue of Theorem 4.1.

B RS
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First we need to introduce two auxiliary functions. For x > 0

define
1=F .. (X)
zl(x) = (%)
x ¥
® 1 ]
and L,(x) = J { — } f ,,(y)dy,
2 % (k_y)l R (1)

wiere Yy = 1/k and k 2 2 is the smallest integer such that

xl/k = 0(x6 M(x)) as x =+ =,

(Since we are dealing with positive random variables, we may take Cl(x)
fz(x) = (0 for x < 0; otherwise this definition must be extended.)
These £-functions faintly resemble the g-functions which appear in the
proof of Lemma 2 of Smith (1967; page 275).

Notice that

(4.3.2) 4 - L) = g - J

X f 1) (Y)d
xY

= ¥
o (x-y) Y
and this difference is integrable, since both El(x) and Zz(x) belong
to L(I, 0). (We shall not prove that ll(x) and lz(x) are integrable,
since this is a consequence of Lemmas 4.2 and 4.4 given below.)

Consequently the Fourier transform of (4.3.2) exists and is given by

o + -
1- flll(e)

r(y)
3 (-i0) "

so that the expression in braces on the right-hand side of (4.3.1)

corresponds to the n-fold convolution

(6,0 - 4,1

AL S0 e

———— |
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Therefore we may deal with (4.3.1) by performing a binomial expansion

and studying the integrability properties of convolutions of the type
*®3 * il
(e 0ol * 16% 9 001

*
for j = 0,1,...,k, where lim denotes the mth iterated convolution
of (i with itself.
Before proceeding to the main result of this chapter, we establish

the following four lemmas:

LEMHA 4.2 If F(x) ¢ D(M; 1+6) for 0 < 6 <1 and M(x) € M*¥, then
Zl(x) e L(M; 6-v).

PROOF. The symbol K will be used (here and throughout this section) to
denote a generic positive constant. Theorem 2.1 implies that f(l) (x) e

L(M; &), consequently by Fubini's theorem

c -y L
1 (x) x

[“’fu_I_.__ M(x)dx=rx5-1M(x)J £\ (u)dudx
" i ] o X 1)

X

u
- r I x(s.1 M(x)f(l)(u)dxdu < K r u6 M(u)f(l) (w)du < 0 .
o

o} 0

LEMMA 4.3 If F(x) ¢ D(M; 1+48) for 0 < § <1 and M(x) € M*, then
for all 2z 2 0,

I x" M(x) | £, (x-2)-£; (x) |dx < K 2"
22

W -
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PROOF. Clearly for 0 < z < x/2
[fltx-z) - El(x)l = Wl(x,z) + ¥, (x,2),

say, where

g - S 1 1 1
N = Foy ) {(x_z)l-y T }

. 1 %
and ¥,(x,z) = ——= £ ..y (y)dy.
2 (x-2)""7 Jx-z )

Since
(x)z Kll(x)z

KFS
Y, (x,2) < —32
X Y X

it follows by Lemma 4.2 that

fw de(x) Wl(x,z)dx < K Jm 2x871 M(x)Zl(x)dx
2z 22

< Kz' [w x5y M(x) £, (x)dx < Kz¥ .
2z

Similarly since

K £..083
1H'2
non « P22,

Lemma 4.2 and the fact that M(2x) = O0(M(x)) imply that

I xGM(x) ¥,(x,2)dx < K r 2x5*Y1 M(X)f(l)(%)dx
2%

22

00

< K2’ [2 xGM(x)f(l)(gadx < Kz¥ .
Z

...M*‘
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The next result is included for the sake of completeness, since it
parallels Lemma 4.Z. Actually we shall only need to use the fact that

£, (x) e L(I; 0).

LEilMA 4.4 Suppose F(x) ¢ D(M; 1+8) for 0 < 8§ <1 and M(x) « M*.
Furthermore assume that there exists some positive constant € <1 - 6

such that ye/M(y) i8 increasing. Then Zz(x) e L(M; 8-v).

PROOF. Zz(x) = /\l(x) * /\Z(x), where

s 1 1
A (x) = : £ d
Lob M e e R
and oo = [ LA e o
x/2 ‘(x-y) =F L (1)

Since f(l)(x) is nonincreasing, it is not difficult to see that
X b §
Az(x) < K f(l)(f) x' .

Therefore (using the fact that M(2x) = O(M(x)),)

f” XG-Y M(x)Az(x)dx < K [w XGM(x)f(l)(%)dx < o,
0

o

For 0 sy s x/2,

1 Skl SR 1 1 |
)Y XY Y | abt |
= 1 5 [k'Y](X)k £ T oghin

oY kg k |"x K27y
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Consequently by Fubini's theorem

717 £ 1y O7) dydx

X

) o 4 e r2
r xé Y M(x)/\l(x)dx s K [ x(&' Y M(x) J
0 Q o

"
o
N
8
>
On
|
| 2¥)
=
~
ke
~—
| R

y f(l) (y)dydx

- §-2
y t..1(y) r x © M(x)dxdy
(1) 2y

Y M@ [ xS dxay
2y

IA
e
o] 8

IA

: $
K {w y M(@2y)f ., (y)dy < =
= SO

Therefore both Al(x) and Az(x) belong to L(M; &-v)» proving the

lemma.

LEMMA 4.5 Suppose F(x) ¢ D(M; 148) for 0 < 6 <1 and M(x) « M*.
Furthermore assume that there exists some positive constant € <1 - &

such that y /M(y) is increasing. Then for all 2z > 0,

} xéM(x)|£2(x-z) - L(x)|dx < K 2.
2z W

PROOF. It is easily verified that

[£,(x-2) - £,(2)| = J,(x) + J,(x),

where




v

Since

(

and z <

Therefore

Likewise

f l)(x)

0

Xid;

p - f(l)(DX)

We can write

1

X-Z
J,(x) = {
@ ==

and Jz(x) = tx {

( (X'Z
J X) = {
11 ]px

(Ax-z)Y -

1

I+ % T = I l £
g Y 2t )ty k¥
— Ly - T—} fip Oay-
(x-y)
is decreasing and M(2x) = O(M(x)),
(m ) N .{m —ZY 2~_‘
| xM(x)J,(x)dx s | X M(x)f 1 - = | &
J : Ja ( ) | il 5 |
It is more difficult to deal with Jl(x): For 0 < p < 1/2,
1 REE 1 .
Kozl x-pTY et Y
e PR :
(Ax-2) _ () e (Ax-2)xY s AX
Y Y Y (x-2
Y y v [ i {_z)’
00" = o’ 3 (Y] end [,
j=1 J AX
where the series converges absolutely, since |z/ix| < 1 for
|x-2)Y - (x| K zx'1
% (i __Aé:z . (Z'XX)XY-I X ( Y*%-l
(x-2) j= J

-
“

} f(l)(Y)dY

. 2 7 A
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so that

b (Ax-2)x""* - E—~‘;]T§q < K zx
X-z

y-1

It is not hard to show that f(l)(gx) € L(M; 8) for M(x) « M*;

consequently, it follows fram the above that

[ x5 ME)J, (0dx < K 2,
‘O

Now let le(x) = Jl(x) - Jll(x). Over the range of integration

0 <y > px, we can write

where the series converges unifomly in y, since 0 < o < 1/2, and
(z¢y)/x < p + 1/2 < 1. Therefore termi-by-temm integration of the series
Is permissible, and

: o j=1 - be welod § IPR cals
ST R JGoxr-1-d o [ - £y dy.

j=2 =1 U J Jo

Let v be a positive integer; by assumption

o

Py v {© v ( §-v~1
Y £, ()dy = o [ £, () x5V 1 e
fo fo ) i L8

b
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|}

ué-v ( yV f(l)(y) J ‘quﬁglflxé-v-loL dxdy
» )'/u—(_.

< ';\XA'\)*[ [ y\"—(— M(%}) f(l)(y) ( Xl\s-")_l+" dxd)’
(o] J

Jyto

™ & ...y
SEa WL y® M(%) £y Oy < =
v-€-6 }Q 8

In other words,

;- {DX
i (v-€-68) |

v B

This implies that

[~ .6
Pl gt s

< @ J'l . . 1 - L) R oxX =3
P i<y Yy iy [ &*i-1-j [ -
5 Z gz iZI ( J J(i)(z) o X M(x) : y f(l)(y)dy

T 55t S o j-i-é
sk 5 1[I |dett =—
=2 i=1 5-i-e-8

A
=
~N
e~ g

R e . B g
[JY} I D@t
l-e-y j=2

!

1-¢-6 j [ j;Y ]I_(% * D)j - (%)j -

2

1 PRI
-y’ o' @

1 -
I-y




Therefore
X A(x)Jl,(x)Jx £ K 2T
0 i

completing the proof of the lemma.
R(x) = U(x) Frindx) and

For X 0 define

S(x) = RS - St 7Y

" B _* 0 (\'4
RT(6) = 1 - Fiq,(8). S(x)

however, is an increasing function of unbounded variation, (since the
’ 1

(Take R(x) = S(x) = 0 for x < 0.) Clearly

variance of F(x) 1is infinite), and therefore does not possess a

Fourier-Stieltjes transform. Even so we may formally identify S(x) with

and S(x) play a role in the

the quotient [l - PT

1)(0)]/(".11i"). l"ﬁ.x

following representation for the renewal function:

THEORE!T 4.6

Suppose that
D(M; 1+8

iriables with dietribution function F(X)

md M(x) ¢ M*

|

foRie
{ % ar(x) = o
‘0

Suppose, furthe more, that there exists son t it S

such that y /M(y) is increasing. Let k = 2 3t

; R ArG
such that X / = 0(x' M(x)) as x +» = Ther




g f
H(x) = z P{xl * ot x < x}=
n=1
(4.3.3) K
®(3-
=[x ‘}“‘x) ¢ 3 oserreIIY v 0,
W j=1
J
where L]\(x) t8 a function of bounded variation in the class B(M; &)
; md, in particular,
Lk(x) = o[ 3 3 }
X M(x)
a X + x
*
N.B. Theorem 4.6 does not cover the subclass of M consisting of
; functions M(x) which grow "almost'' as fast as a fractional power of x.

For example, choose &§ = 1/2 and let M(x) grow asymptotically like

xl/z/log Xx. Then the variance of F(x) can be infinite, but there exists
s i
no constant ¢ < 1/2 such that y° 2 /log y 1is increasing. This

"boruerline” situation can be dealt with, although the details would

require extensive digression; we refer the reader to the discussion of the

subclass M;(p) in the paper by Smith (1967).

Secondly we note that both & and M(x) have a bearing on the size
of k. We implied in Section 4.2 that k should be chosen as the smallest
positive integer such that 1/k < §, and this choice will, in fact yield a
valid expansion. dowever M(x) might conceivably by asymptotically equal to

1/4

(say) x log x, and in such cases it is possible to reduce the number

of terms used in the expansion.

Finally, it should be pointed out that when & = 1 expression (4.3.3)

reduces to the expansion given in Theorem 2.4.
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PROOF _OF THLOREN 4.6 As we have noted in Section 2.2, the renewal
function H(x) does not possess a lourier-Stieltjes transform. Con-

sequently we shall study the transform of the modified renewal function

H_(x) defined by (2.2.1) for 0 < ¢ < 1. By Theorem 2.]
1 "-l‘*(l;’) = (1-7) “]",i‘) & r_|,;!1+,u; S:(‘”'
where s (6) « L' (I; 0) and s (8) = 0. Writing (as before) = (1-¢) -
uliﬁ, it 1s not difficult to show that
ST
B (l_‘,’) + “102 ’
and consequently [6| = 0(|g|) for all ¢ in a small open interval I
centered about the origin, wniformly with respect to . Together these
facts imply that if 6 ¢ I, then
}
L AL(8)
|H,(8) | = 0(1)
g g

uniformly for 0 < ¢ < 1. (Recall that A;(O) is the characteristic

function of the triangular density A _(x).) Defining H(x) and H(x) as

"
in Section 2.2 no additional changes in the proof of Theorem 4.2 arc
needed to conclude that

N

(4.3.4) HEO - A0 = 3 | e 160X A;(o){l }%(0)- . L lie . 1*’} o .
. 3 2
1

-

However we now use the formal expansion (4.2.1) as opposed to (2.2.7), where
the number of terms is chosen to be Kk as defined in the statement of the
theorem. Our goal will be to demonstrate that the remainder term Lt(o)
given by (4.3.1) is a member of the class B*(M; §). (Since the many-

valued function z* for non-integer values of « occurs here, we
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establish the following convention to avoid ambiguity: Slit the complex
plane along the negative real axis from 0 to -«, and define 2z in
the open slit plane when |arg z| < » by analytic continuation from the
positive real axis.)

As before write y = 1/k. Since F_ . (x) 1is absolutely continuous

(1)
‘ with density f(l)(x)’

| ) , A 0)il1-f T (8 - . f‘" k
(4.3.5) A"(a)L;(q) - 291 Li)( )] e . Lf') (1)(9"
g (4] (-i6) " (-ie)¥ |

We recognize the right-hand side of (4.3.5) as the Fourier transform of a

constant times

A (x) AL () - L. (x)] K YRE, ()L (x)-2,(x)] K
8,()* [ (x)-L,(x)] © - Aa(x 1) & (£, (x) 2(X)]

Il o~ %

i, I QeI Glarg% Vg - 1, il De).

j=0
d : ; ) *(k-j)
For convenience denote the k-fold convolution 81 (x)*L., (x) as

"5

£ "(x). Then it will suffice to prove

£Xx) - £, )%k LM; &
X ) X (x) ¢« L(M; §).

x
The convolution ¢ k(x) can be rewritten as the multiple integral

(4.3.6) Iu; ; ;f i (U @ () & (e duy e dy

where u* = up teeetu and ij can be either 1 or 2 for j =1,
., k. Without affecting the value of the integral itself, the range

of integration for (4.3.6) can be replaced by the union of k sets,
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where Sx 1s the set of (k-1) - dimensional points (ul,...,uk_l)
sucih that

u* # max u. s X and u* Xa

15j<k-1 J
aid for 1= 1,....k1, Ti is the set of (k-1) - dimensional points
(Upseeanty 1) sucn that
u* + max . > x, uw* g x, and u; MaAx M.
l<j<k-1 J 1<j<k-1 J

(Notice that although the sets Ti

form sets of measure zero.)

Consider a typical set Ti' ey 1% TE (u1

1

(4.3.7) D Sx = a2

Set % " Xx-a* and vj =u. for j =2,...,k-1. The inequality {(4.3.7)
1s equivalent to
’ Su*
max (x-u*, uh""’uk»l) ul,
or, iin other words
k-1
¥i ¥ YRRy X
i=1 J  1<j<k-1 J
Therefore
[ Lol ,
J : J (il(x u )(iz(ulj ‘ik(uk ])du1 V% duk-l
i
1
k- T ]
(4.3.8) = f B vkl 1% o N 1. TV Lo oW )Y v GV
J ¢ 1 1 i jo3 41 13" 2 Ly k-1 1 1
X
y
; ki S

are not disjoint, their intersections

""'uk-l) ’ 71, then
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Consequently we may write

k
* -
(4.3.9) K = ] W,
Pl
where
W . - r * 3 d
ul(x) = } . J £j1(x~u )(i,(ul) e Eik(uk_l)dul e uk-l’
Sx
: ( (
W,(x) = ‘ ) } Zi (u1)£i (x-u*)fii 1T ei (uk_l)du1 A duk
i " g 1 2 ‘. k
X

ana so forth.

1€ (ul""’uk-l) € Sx’ then
X - u* 2o
i
for i=1,2,...,k-1. Therefore (by adding all (k-1) inequalities)
(k-1)x - (k-1)u* = uy

and this implies

X

*
K.~ uE 2
K

Consider now a typical integral wj(x), say Wl(x), and the

corresponding integral

x/ 2k {

(4.3.10) [ Wl(x-z)—wl(x)} f(l)(z)dz v

(o)

Clearly we can rewrite

W, (x-2) - Wl(x) = (x2) - Ty(x,2),




~1
{ o]

where

: ( R *-g. (x-ut) e, o )du,...d
rl(x,_ por IE 0 J eif(x-z)-u ) - il(x-ul Li,(ul)"‘lik(uk-l U Wy

u* max u.,<x-j G
l<j<k-1J
3 o S 1i ]
anda Fz(x,&] f gt . J €j1(x u )(iz(uj)...(ik(uk_l)dul...duk_l .
X-z<u® max u,<x
1<j<k-1J

By Fubini's theorem (using X to denote the indicator function)

( xS M(x)rl(x,z)dx =
‘o

f... { { f xﬁM(x) —k. {(x—:)-u*J-ﬁ. (x-u*)
u. 29/ o - 1ll ;

% {u* + . max. u. < x-z}dx}(iz(ul) St [i (uk—l)dul s duk

1=j<k-17J k

( T ™ 6 2 o
(4.3.11) = )... ) { J (y+u*) ™ M(y+u*) Ei (y-z) - £ ()}

u. 20 0 - 71 1 -

J

x{lg?g§~luj < y-z}dy}(iz(ul) it (ik(uk_l)du1 s duk—l' {

If max u. s y-z, then Max W. sy, sothat u* s (k-1)y.
l<jsk-1 J l<j<k-1 J |

Consequently on the range of integration for the integral in (4.3.11),

(y+u*)6 M(y+u*) < K yls M(y) .

T A AN W b it




3

Furthemore, since we are working with 0 < z < x/2k (see (4.3.10),) we

have
2kz sy + u* sy + (k-1)y = ky.
Therefore we may apply Lemma 4.5 or 4.5 (depending on whether i1 =1 ‘or
il = 2) and conclude that the inner integral in (4.3.11) is dominated
by Kz'. On the other hand,

r i o
Jut;.OJ £iz(u1) s Eik(uk_l)uu1 At duk_l < o,

since both Kl(x) and Ez(x) are integrable. It follows that (for

0 <2 % x/2k,;)
P ol e 8
J p M(x)rl(x,z)dx < Kz" s K(1 + z2°M(z2)) .
0

Next we show that rz(x,z) satisfies a corresponding inequality:

By Fubini's theorem (recalling that =z < x/2k)

Jm xaM(x)rz(x,z)dx =

o}

(4.3.12) = f... J{I xéM(x)Z. (x-u*) x{x-z<u*+ max u.<x}dx}
u. 20/ U2kz by | 1<j<k-1J

. Ziz(ul) Y (Lik(uk_l)du1 -y duk_1 .

Let y = x - u*. Then on the range of integration for the inner integral,

u* s (k-1)y, so that

(utey) M(urey) 5 KyOM(y).
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Consequently the inner integral in (4.3.12) is dominated by

(\l) ”
(4.3.13) K | yMy)L, (y)xly-z< max u, < yldy
) s l<j<k-1 J
2kz-u®

Since u* < (k-1) max u., it follows that
1<j<k-1

y > 2kz - (k-1) 'max - u.

1sj<k-1
on tne range of integration for (4.3.12). But y < z + max u., S0
1<j<k-1
that
. (2k-1)z
max u. > -——==

1sjsk-1 k
ana for k= 2,3,..., we have

max u. > 2/Z .

o E = (") 4
“i.(x) = (’i_()\)/J ti.(u)du.
J J S

Let Ui PAlL | TR be independent random variables with density

Ay k-1
functions g. (X}, 8. (X} s.v 48z (x), respectively, and let q(x)
i i i
2 3 k-1
denote the density function of max U, Thus (using (4.3.13)) it is

2<j<k-1 1y
easy to see that the multiple integral (4.3.12) is dominated by

@0 w+ Z s
(4.3.14) K fs /2 { J Y M(y)(il(y)dy} q(w)dw.
z w




~
¥

Now if i, = 1, then it is not difficult to verify that

1
(4.35.15) £, (x) =0 5 e 88 R =+ oo
o Y Mex)
To show the same when i1 = 2 write

EZ(XJ = A(x) o+ Ay (x),

as in the proof of Lemma 4.2. Since f(l)(x) < L(M, 8) 1is nonincreasing

*
and M(x) ¢e M ,

X

148 g 8
X M(x)f(l)(x) K Jx/z u M(u)f(l)(u)du
(4.3.10)
< K J uéM(u)f(l)(u)du » 0 as x > o,
x/2
Furthermore
(4.3.17) A, () <K xéf(l) 3,

and both (4.3.16) and (4.3.17) imply that

x3*8-Y M(x)A,(x) » 0 as x » =
For Al(x) we can write

Al(x) s K{All(x) * Alz(x)} »
say, where for fixed A > 0,

A
Ay () = -%:; Io yE 1y (dy

X




F and
: AT W mpin ST
| A () = == | ¥ £qy ().
X
!
Clearly
\1‘ B H(x)-ll(x) AX L M(x) - 0 as x
For Xx A
R s L X 3 ( ’ )
xl’ " M(X)A,,(x) = x : M(x) { y 5“)»"ﬁ“}"'> f (y)dy
12 J A W N\ Y (1) :
A y ‘1('\]
'IM» \ 1 r
| Yy ML 4y ()dy,

which is bounded (and, in fact, can be made arbitrarily small

(4.3.14) is dominateu by

i ol N
{ { ; y' ldy} q(w)dw
3%/ 2 W

il RTRG ErE

K (wez)'! - w f q (w) dw

J3:/2
K J wy(&) qw)dw < K 2’ [ q(w)dw
32/2 )32/2

Kz' < K(1 + z°M(2))

Therefore we have shown that (for 0 s z < x/2k),

k

7 . g s s = e :
choosing A sufficiently large.) Thus (4.3.15) is valid for either
1 = 1 = 7
4 1 or 1 .

Returning to the main argument, (4.3.15) can be used to show that
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initially




-

| xO MEOT,(x,2)dx < K(1 + 2M(2)).
g ¢

Now by Fubini's theorem,

= ; (X/l.k
| x"M(x) J

:Wl(x-z)-wl(x)I’ (z)dzdx
‘0

5 k1)

A cabpen 45 : :
= [ { X M(x) W, (x-2) - W (x)idx} f (z)dz
0 IZkz : : (1)

{Z)dg < o,

In other words, for z < x/2k,

(4.3.

(4.3.

.3.18)

rX/: e 5 =
Wy (x-2) - W () ]f(2)dz e LOM; 6).

.18) can be shown for W,(x), WS(X)""’ and Wk(x). It follows

the representation (4.3.9) that

{x/Zk K *) ,
19) (£ TEx=2) = & T{(x)}1 {z)az ¢ L(M; &)
JO (1)

Recall that our goal is to demonstrate that

X
20) Z*k(x) - J (*k(x»z)fv (z)dz
& (1)
e X/2K; an ,
- "k J £qy (2)dz - [ {E*k(x~z)~(*k(x)}f 1
x/2k 0 (1)
(X

*k y ]
- J £ (x~z)t(1)(z)dz
x/2k




belongs to the class L(M; §). Since
Ky . 1
x M(x)[1 - F(l)(x)] +J as x =+ o,
*k . .
and ¢ “(x) 1is integrable,

o o]

(4.3.21) f M2 ¥ 0 J duidkx < o,
(8]

£t 7)
,/Zk (1)
Also,

5 L
wahﬂﬂ f E(wzﬂiu(ddmm
o) x/2k

X

RVt ol *k )
(4.3.22) < K JO % M(x)f(l)(x/Zk) [O £ “(u)dudx < o,

Together (4.3.19), (4.3.21), and (4.3.22) imply (4.3.20), and

consequently
G+ Ftl)(0)1k+l ;
(4.3.23) e B'(M; ).
-ulle

This "'smoothing magic'" is in itself quite remarkable, since
ik # FTl)(U)] ¢ 8*(M; §) and division by -i6 ordinarily entails the
"loss'" of one whole moment. Apparently the additional k-fold convolution
in the numerator of (4.3.23) has the effect of making the "lost' moment
"reappear''!

By introducing the special SMF q“(o) and applying Theorem 2.2, we
can use (4.3.23), (together with the fact that PT]'l“} ' S*(N; §) ) Eo

concluue that
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T NOINS

R e
u118 I(l)(O)

€ B+(M; &)

anGa hence that Li(e) € B+(M, §). We omit the details here, since the
argument is precisely the same as given in Section 2.2 for L*(e). Note,
however, that aivision by a function in the class B+(M; §) precludes
the possibility of showing that Lt(e) is in a higher moment class, even
if this could be demonstrated for the transform (4.3.23); in other words,
it appears that we cannot improve on (4.3.24), at least via the Wiener-
Pitt-Levy-Smith approach.

We have shown that

o (G 5 1)

appearing on the right-hand side of (4.3.4) is the Fourier transform of

z A,
R()* U(2) - Fp,(2)] L (@ }

I o

{Q)
J Aa(x-z)d{ :
- 00 J 1
- [w Aa(x~z)dU(z)
Proceeding as in Section 2.2 we then obtain the relationship

me Aa(x~z)d{ n§1 Fn(z)} -

=ik E
_ d _ #h

}

* Lk(z) - U(zl

RS— . e~ ey ——— SRR e ——————

---..——-bJ
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The result (4.3.3) follows by the "sandwiching'" process used previously,
together with a standard extension argument. As a by-product of our

discussion it is evident that the series

is finite for every Xx.

A T T T




CHAPTER V: HKIGHER MOMENTS OF THE NUMBER OF BENEWALS

Let {Xn}:=l be the renewal process introduced in Chapter 2, and
define Nt’ the number of renewals by time t, as the largest integer

k sucnh that

Xl % XZ e Xk < .

[t is well known that all the moments of Nt are finite. The familiar
renewal equation asserts that H(t), the renewal function, is, in fact,

the expectation of Nt. To show this let

i ( Q- df Xl Rt Xr <UL

A s S STS SR R S
1 i

Then Jt ol R W
Ir=
BN, = ] EZ = ] PIX +...¢ X st} = H(t).

In Chapters 2 and 4 we dealt with the behavior of I[N the first

t’
moment of the number of renewals. We now extend our study to higher

moments and, in particular, *o the second and third cumulants of Nt.

9.1 _Preliminary Background

W.L. Smith (1954) proved the following result for the variance of

the number of renewals:




THEOREN 5.1 (Smith, 1954) If F(x) e D(I; 2), then as t » o,
Bl IJ2
- i 9

Var Nt = - + alt).

Y
Theorem 5.1 is a consequence of the Key Renewal Theorem and the identity

“”i = H(t) + 21(D)*I(L).

Apparently this type of argument does not generalize to higher moments.
Using a different approach based on factorial moments and expansions for
the Laplace-Stieltjes transform of F(x), Smith (1959) showed that the

nth cumulant of Nt has a linear asymptotic form:

THEOREM 5.2 (Smith, 1959) If F(x) ¢ D(I; n#p+1) C, p 2 0, then there

exist constants a, and bn such that the nth cwmlant of N,_ 1is

t
given by
(5ol 1) 3 h1 +# 4,}£E% ,
n 1 (1+1)

where A(t) is a fumetion of bounded variation, i o(l) as t » =,

satisfies the condition

1

A(t) - A(t-a) = o(t )

ag t » o for every fizxed o > 0, and when p 2 1 has the additional

property that A(t)/(1+t) ¢ L(I, 0).

The constants a and bn are difficult to evaluate; Smith (1959)
listed their values for n = 1,2,...,8. a 1s a function of the first
n moments of F(x), whereas bn is determined by the first n+l
moment. Since the numbers of renewals in adjacent intervals viewed over

a long period of time are approximately independent, a cumulant of the
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b § nunber of renewals in the entire time span is, roughly speaking, the
sun of the cunulants of the numbers of renewals in the individual
intervals. Consequently the asymptotic linearity of (5.1.1) is not
surprising.

A familiar special case of this result is the following:

COROLLARY 5.3 (Smith, 1959) ZIr5 PBx} e UCL; 3)n C, then ae T + o,

2 2
UZ = Ul 5“2 2“3 Uz
L M. gl WS o Buleer St o A
Hy y 3wy Ay

An extension of Theorem 5.2 allowing for the existence of fairly

general moments was obtained by Smith (1967):

THEOREI 5.4 (Smith, 1967; page 271) Suppose F(x) « D(M; £) C  for
some M(X) ¢ M*and some £ > 1. Assume further that by > 0. Then zf k
18 the integer part of L, there exist constants AI(K), Az(ﬁ), sty

Ak(C) such that

T [n+e-2 3 &
(5.1.2) HZO ( < ] PIX; +..0+ X s x} =
k. A0 e-j
=] -—~J—--[—3% U(x) + A(x),
j=1 r(e-j+1) ¥1

where A(X) ¢ B(M; 0).

Theorem 5.2 follows from Theorem 5.4 by using the fact that every cumulant

of Nt can be written as a linear combination of sums like (5.1.2) .

s T T

- - R
e W
5 '
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Expansions for cumulants of Nt have been used for statistical
analysis of the superposition of a relatively small number of renewal
processes. As in Section 3.1 write VN(t) for the variance of the
number of events occurring by time t in a superposition of N

renewal processes. Cox and Smith (1954) originally proposed a

variance-time curve analysis bascd on the expansion.

2 4 u
SR B Ny
Witk = i e 80
Hy .y
; A 7R 2 - :
as t -+ o, where o = Wy = My - VN(t) can be estimated from experi-

mental observations of the superposition; see Cox and Smith (1953). By
equating observed and theoretical values for the mean rate of occurrence
and for the asumptotic slope and intercept, one can obtain three equations
in four unknowns: N, Hy» 02, and Mz Cox and Lewis (1966; page 215)

suggest using the asymptotic slope of the third cumulant-time curve,

o |

to obtain a fourth equation.

We shall investigate the time-dependent behavior of the second
and thira cumulants of N¢ in Sections 5.3 and 5.4. In Section 5.3 we
shall prove a result (Theorem 5.8) which extends Corollary 5.3 in two

directions, allowing for F(x) « D(M; 3) C and replacing the remainder
term "o(1)" by a known function and a much sharper remainder. A
similar treatment for the third cumulant will be given in Section 5.4
However before pursuing these objectives we find it expedient to resume

our discussion of smoothing magic.




&5

9.2 _iore Smoothing Magic

In Sections 5.3 and 5.4 we shall encounter Fourier-Stieltjes trans-

forms of the fomm

(5.2.1) m

=16

»

where S(x) is absolutely continuous for x - 0, and both A(x) and
S(x) vanish for x < @ and belong to the class B8(M; 1) for some M(x)

M. Ve have already dealt with a version of (5.2.1) in Section Siai

where
* - * - = >
At(g) = s (8) =1 r?l)(e).

In that situation we discovered via the smoothing magic of Lemma 2.3 that
the convolution (5.2.1) is in the (unexpected) class B*(M; 1). We note

that lim {1 - Ftl)(o)] =, or equivalently,
6+0

jo~ d[U(x) - F(l)(x)] =0 .
If, more generally,
iS5 2. 2) I dA(x) = 0,
0-
can we conclude that A*(e) S+(0)/(-18) « B*(M; 1)? Theorem 5.5

provides an affirmative answer subject to a certain growth restriction on

the right moment function M(x) .
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THEOREM 5.5 Let M(x) € M, and suppose A(x) and S(X) are functions
X

of bounded variation in the class K([ M(u)du; 0), such that both
0

A(x) and S(x) vanish for x < 0,

rﬂ')
S(x) = | s(udu, x 20,
/X
X
for some function s(x) € L(| M(u)du; 0), and
(6]
[ dA(x) = 0.
o-

Then

X
t‘jl@_éi(ﬁ ¢ Y J M(u)du; 0)

-10 (]

PROOF. For convenience we shall write
>
MI(X) = J M(u)du, x = 0.
0
It is not hard to show that if M(x) ¢ M, then M](x) 1s equivalent
to a right moment function in the asymptotic sense mentioned in Section 2.1.

Consequently Ml(x) ¢ M, and the moment classes in the statement of

Theorem 5.5 are well-defined. We want to prove that
x

S(x)*A(x) = J S(x-z)dA(z) ¢ L(MI; 0).
0

We can write this convolution as the sum of three integrals,
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LX) + 1,00 + 15(x),

where
) 2
L) = ( {S(x-z) - S(x)} dA(2),
‘0
(X
[z(x} = J S(x-z) dA(z),
x/2
X
and 13(X) = -5(x) ( dA(z).

)x/Z

We shall deal with each integral separately.

Clearly

x/2 (x
1, (x)] < ( [s(y)[dy [dA(z)].
,0 7

X-2

By a change of variables followed by an interchange of order of integration,

[ /2 (x .
| j M. (x) |s(y) |dy|dA(z) |dx
8] (8] J)(‘Z I

o X/2 (Z
= f j J My (x) |s(y+x-2z) [dy[dA(z) |dx
Q<0 o

{'L) v w0
= | J I M, (u*v) | s(u+w) [dudw|dA(V) |.
Jo ) :

Note that for Xy 2 0 and X, 2 0,

i
M[(xl*xz) = MI(XI) + Ix M(u)du
1

< Ml(xl) + M(xl)MI(XZ) -




Consequently for v = 0,

vV (@
{ J MI(u+v)|s(v+w)|dudw <
‘o

vV (o
f ] {MI(v—w) + M(v~w)MI(u+w)}|s(u*w)]dudw :
o

However
V (o vV (@
[ J bH(v-w)!s(u+w)|dudw < MI(V) I J |'s (u+w) | dudw
o’v o’v
< MI(v) f uls(u) |du = O(MI(V)) as v -+ »,
v
Similarly

Vuo
J J H(v-w)MI(u+w)|s(u*w)|dudw
0

" JVJ Mv-w)M; (2) | (2) | dzdw
0 ‘V¥w

v
sJ r M(v-w)My (2) | (2) | dzdw
(¢}

Vv

v
b f [ M(v-w)M, (2) | (2) | dwdz
Y 79

= MI(V) Jm MI(z)ls(z)|dz = OCJI(V)) as v > o,
v

Consequently 11(x) € L(MI, 0).

88




L For the second integral we have

00 X
[ meo [ Iseeal 1 fax
(6}

72

= J J MI(x)IS(x—z)]dxldA(z)[
0

2z
< [w J {MI(x-z) + M(x-z)MI(z)} 'S(x-~2z) |dx|dA(z) |
0]

22
- fw I Ml(x-z)ls(x-z)ldx|dA(Z)|
o’z

© (22
. I J M(x-z)MI(z)IS(x-z)IdedA(z)l
o’z

Z
= r J M (<) [S (x) | dx|dA(z) |
0]

o}

Z
[ @ [ M Iseo laxda |
0

(0]

<[ @[ selad |
o) )

a0

SRCIRSIESINEIYO]
(6] (6]

X
Since Im J M(u)du|s(x) |dx < = , it follows by another application of
o’0

Fubini's theorem for nonnegative functions that

Im M(u) |S(u) |du < =
0

89
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Consequently lz(x) ¢ LM 0).

1’

Note that A(x) ¢ B(I; 1), since x - H](x) and A(x) e B(H](x); 0);

therefore
(5.2.:3) J [dA(u) | = 0(%) as X + o,
%
M, (x)
Also, since - S M(x) and

Jw M(u) |S(u) |du < e,

(o)

it follows that

MI(x)
(5.2.4) fw [S(x)|dx < = .
0

X

Combining (5.2.3) and (5.2.4) we get

[ 1aawmeolselax <«
Q 2 X

which implies that Is(x) € L(MI; 0). This completes the proof of

Theorem 5.5.

Suppose that the right moment function M(x) « M of Theorem 5.5
satisfies, in addition, the conditon
(5.2.5) M(2x) = O(M(x)) as x » o,

(Recall that this growth restriction was used in the definition of the

class M*®.) Then for some constant A > 0,
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X X _ : M(
| M(u)du = I M(u)du é M) § -Kﬁl
‘o x/ 2

[hus in the proof of Theorem 5.5 we can conclude that the integrals
I](x), I.(x), and IS(X) belong to the class L(M; 1), vyielding the

following result:

= ’ " * , L
COROLLARY 5.6 ret M(x) € M®, and suppose A(X) and S(x) are
functions of bounded variation satisfying the following conditions:

(4} Af{x) and S(x) wvanish for x < 0,

(B) For some function s(x) ¢ L(M; 1),

([
S(x) = | s(u)du, x 20,
) x
A(x) ¢ 3(M; 1),
[~ .
md (D j dA(x) = 0
o
en
o5t
A (.‘?Lé_.(&'_), 3 B#(M 1)

~10

Corollary 5.6 is an extension in one direction of Lemma 2.3, although
the smoothing magic in that special situation applied when M(x) was
right moment function in the larger class M. If M(x) = exp(vx
example, then M(x) « M, but

(.\
xM(x) M(u)du,

4l
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so that the conclusion of Corollary 5.6 does not necessarily follow from
Theorem 5.5. This drawback may be due to an analytic debility in the
proof of Theorem 5.5. We suspect, however, that in dealing with situations
involving smoothing magic which are more general than that of Lemma 2.3,

one can not hope to do better than the class M*.

5.3 The Variance of the ilumber of Renewals

E
t

and kr(t) for the corresponding rth cumulants. Smith (1959) introduced

In what follows we write mr(t) = EN, for the rth mament of Nt
certain unconventional moments and cunulant which are advantageous for
studying cumulants of the number of renewals. The factorial moments

$k(t), defined for k =1 as
@k(t) = E{(Nt*l)(Nt*Z) Nt (Nt+k)),

are, in fact, the coefficients of ck in the expansion for the generating
function
0. (2) = E{“”J‘N;:T
(1-2)
It is possible to write the factorial moments in terms of the conventional
moments by using Stirling's numbers of the first kind, and, conversely,

the conventional moments can be expressed in terms of the factorial

maments by using Stirling's numbers of the second kind:

n+1 n 1
6,(1) = |SpIm (8) + [Sh . m  (8) +...+ |S- |
and
n+1 _ph i al
m (1) = Copy 0,(t) = Corpy 61 (1) +euut (17 Cpyy -

‘ i ——
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We shall require only the simplest cases of these identities.

Smith (1959) adopted the use of factorial moments, because the
Laplace-Stieltjes transform of ¢n(t) has a particularly convenient
form. Throughout our discussion we have employed Fourier-Stieltjes
transforms, bearing in mind the possibility of extending our results to
unrestricted random variables. Unfortunately ¢n(t) (for n2>21) is
not a function of bounded variation, so that the Fourier-Stieltjes
transform ¢i(e) does not exist. To avoid this difficulty we introduce

the modified tactorial moment function

o0

(6@ = T D0 Gem{ [~ o 0@ [ o enan, @),

where 0 <z <1 and Aa(x) is the triangular density function defined
in Section 2.2.

For fixed n, ¢, and a > 0, ¢n(t; ¢, a) 1is bounded, nondecreasing,
and absolutely continuous. The following lemma (analogous to Lemma 6 of
Smith (1959)) shows that the Fourier transform of ¢n(t; z, a) has a

familiar structure:

n! A:(e)

; f
LEiMA 5.6 ¢ O; ¢, 8) =
L (- cete)

PROOF. Transforming term by term we have

@0 = T GeD) .. O WO OO T OV

. il A+(6){1 : CF+(6)} § Oel)...0on) pteg) )k,
a k=0

n!
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By applying Newton's formula to sum the series expansion,the lemma follows

immediately.

In order to determine Var Nt we shall first find mz(t) and then
apply Theorem 2.4. Lemma 5.6 suggests that the transform approach of

Section 2.2 can be extended to prove the following result:

THEOREN 5.7 Let F(x) ¢ O(M, S)n C for M(x) ¢ M*. Then ¢2(_t) =

L-‘{(Nt*l) (Nt*z)}
u( )l—‘z ZuZt_] as RO y (O, (t) + K(t)
= t + - - F t) + F t)*F €] * KT},
R e e

where K(t) ¢ B(M; 2), K(t) vanishes for t <0, %K*(O) i8 given by
the right-hand side of (5.3.3) below, and

1

K(t) = o[m] as t + o,

PROOF. Setting n = 2 in Lemma 5.6 yields

*.
a,(0)

(1-crt )12

7 65(65¢,a) =
If we write B = (1-7) - culie and apply the expansion
u U
Fle) = 1+ uie + 2(i0)% + 3(ie)® ., (o)
1 5 6 (3)

given in Theorem 2.1, then




————
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o 85(0)
(5.3.1) 5 9,085 ¢, a) =

¥
(B-¢ e | (10) - r-—— (i0) F* (0)]2
2 (3)
Let I be a small open interval containing the origin. For 6 ¢ I,

122 92

: (1-0)° + C2uf57 ’

and it follows that [6/g|% < (1/u) + 6% unifomly for 0 < < L.
Consequently for 6 ¢ I, |8] = 0(|B]) wniformly with respect to ¢.

By expanding the right-hand side of (5.3.1) and using the fact that
6] = 0(|8]) we obtain

A1 (6) tu,(i0) —-2

7 ¢2(9 g, a) = —*jr- -—;;;———— 0(le] )

N
A, (8) Ty, (i6)
-3 {1+ 2 +0(lelz)}
B

(1 ;) UZ 2(1';)“2 UZ

- (e){ s R } Lo,
e Cul Cu f Bzr Cufiﬁ

since 16 = [(1-¢) - B]/ty; .
For » >0 and n > 0 let

~Ax _n-1
en(x;A) P S i X% 0
r'(n) ?

= (0, otherwise.

. —--_......“
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(See the proof for Theorem 5 of Smith (1967; page 294).) The
corresponding Fourier transforms are e:(e; A =1/(0) - ie)“. If we

set A = (l-c)/(Cul), then gjui/ﬂj is the transform eg(e; A).

Write
E(tv C) - —2—3' el(ta A) + 2 2 * T ] ez(t: )\)
g u =Gl & H -
1 1 1
-0,
+ —T-S'— es(t; A).
9
Clearly if 0 ¢ I,
B P RO,
(5.3.2) | 3 6,005 ¢, @) - 8, (8)E'(6; O)| = 0(1)

uniformly for 0 < g < 1.

For 8 ¢ 1 the difference (5.3.2)is bounded as ¢ t+ 1, since the
assumption F*(e) € C+ implies that sup|F+(0)| < 1. Both % @2(9;;,3)
and A:(e) ET(O,Q) are integrable fgﬁl 8 ¢ 1, since A;(e) is

integrable. Therefore we may write
%%(‘i G, a) - B (V)*E(L; ¢) =

-5 [':-iex{ 2 05(032,8) - A;(e)s*(e;g)}de.

Setting ¢,(t; 1,a) = lim ¢,(t; ¢, a) and E(t; 1) = lim E(t; ¢), it
1l ctl

follows by bounded convergence that

Re——
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7 0,(ti 1, @) - 8, (D%E(E; 1) =

=i redex a7 (0){—1 R | S e e e
wha o {II-F*(e)J2 (-uyie) uf(-ie)}

A formal expansion of 1/[1 - F(0)]% yields

1 N 1
L-F@1” (win? n-a-, @)1

it 205 501-¢}
- Ejgi;gsz.{l + Z(I-Ftl)(e)) 3 (lli(%):ii)F%:)i;;)iél)(e))}
R | — + 29 _E_§_F+ (e)*Sug l*F+ (9;|2+K*(e),
Cwi®)®  w-ie) 3z 3 ;;f L AD,
where
; (5.3.3) ctee) = [1-Ftl)(e)]2 { l*ZFtl)(e)-S[Ftl)(e)]z } :
’ -ulie[?{n(e))2 i

)

Note that we have used the facts (see Theorem 2.1) that

t
1-Fl.. (6)
th) '} e ? ! el

i ) NS

[x s
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As in Section 2.2 write q+(0) for the special SMF q'f(o; -2, =1,

1, 2) and define

MORRHONIO)
ORENOIYOR

Clearly we may write Kt(e) = KII(G)KiZ(e)KT3(e)’ where

(1-k} ) (017

o N5 TRl ! et R
-uliO
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