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PREFACE

The work covered by this report was accomplished by the Department of
Electrical Engineering, Texas A&M University, College Station, Texas, under
Air Force Contract F33615-75-C-1011. The effort was documented under
Project 7662, Avionic Data Transmission and Reception, Task No. 766204,
Anti-Jam Processing Techniques for Multifunction Application, Work Unit
No. 76620424, Low Cost Anti-Jam Digital Data-Links Techniques Investigations. 5
The contract monitor was John W. Mayhan (AFAL/AAD) of the Air Force Avionics }
Laboratory, Wright-Patterson Air Force Base, Ohio. ‘

From 1971 through 1973, the Principal Investigator developed a new sampled-
data processing technique for anti-multipath reception of aeronautical data-

link signals. The research, which was performed at NASA Langley Research Center,
included development of a Monte Carlo computer simulation for testing the pro-
cessing algorithms, as well as performance of a flight experiment to verify

the multipath mathematical model. The multipath perturbations, for a diffuse
Doppler-spread channel, took the form of complex multiplicative noise in the
complex signal domain.

The anti-multipath research yielded a new type of detection algorithm
which works by tracking and cancelling the multiplicative noise. A patent was
eventually obtained on the new receiver.l After some experience was gained
through simulation of the anti-multipath detector, it became obvious to the
Principal Investigator that the same basic processing approach would probably
work for channels characterized by colored additive interference. Such
channels occur in the presence of Radio Frequency Interference or Jamming.

In 1974, a proposal was made to the Air Force Avionics Laboratory for the
research presently being reported. The scope of the proposed effort was essen-
tially to (i) extend the NASA multipath model; (ii) derive detection algorithms
for multipath and additive colored interference; and (iii) produce an upgraded
Monte Carlo simulation program for testing the new algorithms.

1 John H. Painter, "Anti-multipath Digital Signal Detector,” United States
Patent # 3,984,634, October 5, 1976.
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PREFACE (Continued) |

The present report is on the outcome of the effort from July 1974 through
October 1976. In short, the research was successful. New anti-multipath,
anti-jamming algorithms have been derived. First simulation tests show that
they work well. A follow-on effort has been defined for pursuing the reduction
of the detection theory to practice. The follow-on effort has been funded by
AFAL for a period ending in December 1977. The present report forms the base-
line for the follow-on effort.
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SECTION I
INTRODUCTION

This is a report on the first phase of an investigation into new tech-
niques for communicating digital data between aircraft and other terminals.
The impetus behind the research is the necessity to develop low-cost, high
performance digital data-links for a variety of aircraft operating in a
variety of interference environments. Currently there exists no standard
aeronautical data-link system which combines Tow-cost and high-performance.
Presently, systems which require high (60 db.) protection against intentional
interference use signalling techniques which result in high cost receivers.
Systems requiring less protection result in lower cost receivers but are not
standardized. The lack of a standard system contributes somewhat to higher
cost for both high protection and low protection hardware.

The goal of the investigation is to develop real-time, sampled-data
processing techniques to combat both natural and intentional interferences
on aeronautical radio navigation and data-link channels. Such processing
techniques, if not overly complex, offer the potential for low-cost imple-
mentation. In order not to make A Priori assumptions which would force
high cost implementation, a processing approach is sought which is relatively
independent of signal modulation type. Thus, the thrust is toward signal
processors which operate essentially as modems on the output of standardized,
unsophisticated radio receivers.

Although, the investigation is primarily receiver oriented, some inferences
are drawn on the signal design and coding aspects of system optimization. The
orientation is also toward recursive (real-time) data processing receivers.
Although the analyses and simulations are for sampled-data (discrete-time), the
results also have implications for continuous-time systems. The choice of
sampled-data analyses and design is because of the immediate implementability
(for restricted bandwidths) in digital hardware. Also, the ease of Charge
Coupled Device (CCD) implementations for sampled data algorithms influences
the choice of sampled-data.

Other influences on the investigation are the desirability to use digital
signalling for aircraft which cannot carry directive antennas. The use of




simple antennas insures that the signals are always subject to multipath inter-
ference, resulting from Earth surface reflection. To assume directive

antennas not only increases cost but also evades the issue of dealing with the
interference. Also, additive colored interference, intentional or otherwise,
is assumed to be present.

A certain amount of the investigative effort concerns mathematical model-
ing of the multipath perturbations and of possible additive interfering signals.
Advantage is taken of prior NASA work in anti-multipath reception. In the
present effort, the restricted NASA multipath channel model is generalized
sufficiently to be realistic for narrow or wideband signal modulations.

Next, the detection of digital signals in the postulated channel is considered
in the most fundamental framework of probabilistic decision theory. Finally,

a Monte Carlo simulation program is designed and tested, for exercising the
detection algorithms. Primarily, the present investigation examines whether
the same processing approach which was successful for multipath channels will
also be successful in the presence of intentional additive colored interference.
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SECTION II

FORMULATION OF THE INVESTIGATION

2.1. MOTIVATION AND DIRECTION

Figure 2.1.-1. The Communication Problem.

This report gives results of a new investigation into the problem of
digital communication for aircraft in the presence of ground reflections and
other additive interference. Figure 2.1.-1 depicts the type of channels
which are dealt with. The aircraft are taken to be relatively unsophisticated,
such as Remotely Piloted Vehicles or light tactical aircraft. For reasons of
cost and maneuverability, directive antennas are not assumed. Thus, the air-
craft are always subject to radio reflections from the Earth's surface. At
times during its missions, the aircraft may also be subject to intentional
additive interference from other signal sources.

State of the art digital data-links for aircraft which give protection
g against multipath and intentional additive interference are based on communi-
3 cation theory from the early 1960's. Although current avionics may use new




device technologies, the underlying theories are not new. The new device
technologies have increased data processing capabilities many fold over those
of the '60's. Thus, it seems timely to re-examine the communication theory
to see if the new device technologies can be exploited for aeronautical data-
link purposes. The present investigation makes just such a re-examination.

It has lTong been understood that there are three ways to deal with addi-
tive interference in a radio channel. These may be loosely characterized as
(1) averaging; (ii) avoidance; and (iii) cancellation. 1In the case of multi-
path, signal information may be transmitted simultaneously at two different
frequencies and the received signals summed after demodulation. This averages
the interference over frequency and is a type of "Diversity" reception [1].

In the case of intentional additive interference, Phase-Shift-Keying may be
used for transmission employing a binary Pseudo-Noise (PN) code. Upon recep-
tion, the interference is spread in frequency and is essentially averaged.
This is a type of "Spread Spectrum" technique [2, 3, 10, 12].

In the PN scheme, the last step in generating the transmitted message
signal is to perform a multiplication with a two-level (+1) PN waveform. The
transitions between +1 and -1 Tevels are generated in a random-appearing, but
known sequence. The bandwidth of the PN waveform is much larger than that of
the transmitted message signal. Because multiplication in the time domain
yields convolution in the frequency domain, the resulting spectrum has
essentially the width of the PN waveform.

In detection, the spread signal is multiplied by a replica of the same PN
waveform used for generation. This multiplication restores the basic message
signal. If the additive interference is due to an undesired signal, the re~
ceiver multiplication spreads its spectrum. Because the detector bandwidth
need only be as wide as the basic message signal, only a small portion of the
additive interference power enters the detector. To the detector, the spread
interference looks like additional white noise and is treated accordingly. If
the additive interference is due to delayed multipath versions of the desired
signal, the PN-reception scheme also rejects the interference to a certain
degree, provided the interfering signals lag the desired signal by at least one
symbol of the PN sequence.

The chief difficulty with the PN scheme is that of synchronizing the re-
ceiver's PN sequence generator to the sequence inherent in the received signal.




In the PN scheme the receiver sequence, which is to multiply the received sig-
nal, must be synchronized to the received sequence to within a fraction of a
PN symbol. For a 10 Megabit per second PN waveform, synchronization is re- °
quired to within tens of nano-seconds. Moreover, the received sequence clock
rate is not constant, due to changing Doppler conditions. Thus, active
synchronization processing is required. The PN synchronization problem is a
direct result of spreading the spectrum of the transmitted signal over that
which is required to just carry the message information. If the spectrum is
spread by six orders of magnitude, then the required synchronization accuracy
is increased by six orders of magnitude. It is the synchronization problem
for highly spread signals which drives the hardware cost up and out of the Tow-
cost arena.

Interference Avoidance techniques may lead to the diversity method of rejec-
tion of the interfering signal through adaptive steering of antenna pattern
nulls. This technique can be applied, provided the sources of désired signal
and undesired signal, or multipath reflection, are not nearly co-linear, with
respect to the receiver. Another avoidance method is that spread-spectrum
technique known as “"Frequency-Hopping" (FH).

In the frequency-hopping scheme, the basic message signal is shifted
in frequency over a collection of spot frequency assignments. The sequence of
frequencies appears random but is known. The same kind of random sequence
generator is used for FH as was used for PN. In the receiver, the local
oscillator is controlled by a replica sequence so that the receiver is in-
stantaneously tuned through the proper set of frequencies. This tuning does
not, however, spread the spectrum of an incident additive interfering signal.
If the interference is narrow-band, with respect to the width of the set of
frequency-hop assignments, then only a few of the transmitted symbols will be
affected. Error correcting coding of the basic message signal may be employed
to restore the affected symbols. Multipath interference is also avoided by
hopping the signal so rapidly that the receiver has left any given frequency
before the delayed reflected signal has arrived at that frequency.

Fast FH schemes using many frequency slots encounter synchronization
problems similar to those for PN systems. High performance FH systems or
hybrid FH/PN systems have not demonstrated lTow cost to date.

The third method for dealing with interference is that of cancellation.
Essentially this means tracking the interference with a filter and, for additive




cases, subtracting the tracked estimate from the received waveform. No docu-

mentation or other information has been found during the present investigation
which indicates that the Interference Cancellation Strategy has ever been
applied to the aeronautical communication problem. There is a good reason for
this. Prior to the developmént of recursive, least-squares estimation (Kalman
filter) theory, there was no theoretical basis to support such a cancellation

strategy. Thus, interference averaging and avoidance, in the form of spread-
spectrum techniques, continue to form the present state-of-the-art in aero-
nautical data-link and navigation systems [4].

This investigation does not set out to employ cancellation methods, A
Priori. What occurs below is that a first principles derivation of optimum
recursive digital detection algorithms produces the interference cancelling
solution. Thus, interference cancellation is proved to be the optimum scheme
under quite general performance criteria. This is perhaps the most interesting
result of the entire effort.

It is shown in following sections that interference cancellation requires
estimation of the waveform of an additive undesired signal. For multipath
interference (in the diffuse case), cancellation requires estimation of the
waveform of an equivalent multiplicative interference process. When both
types of interference are present, simultaneous estimation of two waveforms
is required. Such estimation can only be done jointly with detection of the
desired (digital) signal. A useful implementation of such a joint ‘estimator/
detector will be shown which employs "Decision-Direction" of the interference-
cancelling estimators. In general, only recursive, state-variable filters
with resettable states can satisfy such requirements. Thus, a second reason
why cancellation techniques have not been applied to the aeronautical problem,
other than lack of theory, is Tack of hardware and device technology to
support such theory. Estimation of wide bandwidth interfering signals requires \
wide-bandwidth resettable filters. To date, such filters have only been used
for relatively narrow band filtering. This is because implementations have
used digital Togic, with its inherent processing speed limitations. It is
only with the advent of new signal processing device technology, such as the |
Charge-Coupled-Device, and Acoustic-Surface-Wave-Device, that the possibility
of wideband interference-cancelling estimation becomes attractive.

The motivation and direction of this investigation, then, is to re-
examine the digital detection theory for the aeronautical channel with a




view toward replacing high-cost sub-optimum techniques with more nearly
optimum techniques which can take advantage of new low-cost device technology
for signal processing.

2.2. THE TECHNICAL APPROACH

The approach for this investigation is, first, to mathematically model
the transmitted signal, multipath channel, and additive interfering signals
in as general a form as is practically useful. Next, the mathematical models
are used to derive detection algorithms for the transmitted signal symbols.
These algorithms are to be independent of signal modulation type. The algo-
rithms are to be derived according to particular performance criteria, such as
minimum probability of error. Because the algorithms are expected to be
algebraically difficult to evaluate in closed form, a Monte Carlo simulation
program is to be developed for testing purposes. The simulation is to be
capable of evaluating detection algorithm performance over a wide selection of
channel conditions, interfering signal types, and transmitted signal types.

The models for the transmitted signal, channel perturbation, and inter-
fering signals are initially models wherein time is a continuous parametér,
since this is their physical nature. However, these models are next converted
to discrete-time models, for two reasons. First, the simulation must be done
in discrete time, since that is the nature of a digital computer. Second, this
investigation is initially to obtain optimum interference-cancelling receivers
in sampled-data (discrete-time) form. Such algorithms are amenable to imple-
mentation using digital logic of C.C.D. device technology. A successful develop-
ment of interference-cancelling algorithms in discrete-time form would naturally

imply an extension of the investigation to continuous-time algorithms.

The continuous-time signal and channel models are developed using complex
function notation. There are two reasons for this. First, rough surface
scattering theory has been extensively developed using complex notation.
Second, the complex signal leads naturally to a two-vector state variable sig-
nal formulation where the vector components are the in-phase and quadrature
components of the complex signal. The interference-cancelling processor then
processes the "I-Q" low-pass components of the received signal.




The mathematical model used for the multipath perturbations is a postulated,
or heuristic, one. An exact channel model, derived from first principles of
electro-magnetic propagation theory, has never been obtained. Since statisti-
cal detection theory is used to derive the optimum detector, an exact channel
model is not required. Only a channel model which is statistically equivalent
to the multipath perturbations is required. The model used here is of the
same type as is used in Sonar work [5], and is a generalization of the model
used in previous NASA aeronautical work [6].

The interfering signal model is taken to be a band-pass stochastic pro-
cess whose carrier frequency is fixed, but arbitrary. Two versions of the
signal are available, onein polar form (envelope-phase modulation) and one in
quadrature form (quadrature amplitude modulation). Stochastic modulation is
employed. By controlling the parameters of the modulation components, any
desired type of interfering signal may be realized. For example, using a
binary 0-1 sequence in the envelope term and a parabolic sequence in the phase
term yields a pulse-modulated, frequency-swept carrier. Using zero-mean
Gaussian quadrature component processes yields a noise-modulated carrier.

The desired transmitted signal model is taken first in polar form for
generation, and then in quadrature form for reception. Various modulation
formats are obtained in the same manner as for the interfering signal.

The technical approach to optimum (interference-cancelling) detection
is the following. Based on the mathematical model of the received signal, as
perturbed by multipath and interfering signals, the recursive form for the
conditional probability density function of received data, given transmitted
signal waveform, is computed from the input data. The functions (also loosely
called "Likelihood Ratios") are computed separately for each waveform which
occurs in the signalling alphabet. The computation begins at the start of a
symbol interval and is complete at the end of the same symbol interval.

During any symbol period only one of the several possible signal waveforms is
actually present in the input data. At the end of the symbol period, the wave-
form truly present in the input data reveals itself by causing the correspond-
ing density function to be greater than the others which were computed with a
false signal waveform assumption. This method of symbol detection is called
"Maximum Likelihood."

It is shown in following sections that the detection statistic contains a
convex functional of the "Innovations Process" [7]. This process is developed
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as the error functions of linear filters which are in feed-back canonical

form and are attempting to track the stochastic components of the input data.
If it is desired that the operation be optimum from the instant the detection
is initiated, or if the stochastic interference is highly non-stationary, then
the linear filters must be of the Kalman type. If the interference is nearly
stationary and an initial lock-up or learning period can be tolerated, then the
linear filters may be stationary, of the Wiener type. Each linear filter is
imbedded in the algorithms for computing the Maximum-Likelihood density func-
tions. Each filter is given a different reference waveform, representing the
desired signal present. Only the filter having the reference waveform of the
signal truly present during the interval "successfully" tracks the stochastic
components of the input data. This successful linear filter, produces a
tracking error signal (Innovations Process) which is minimum in the mean-
squared sense. The filter having mianimum error reveals which signal waveform
was truly present during the interval.

The stochastic components which the filters attempt to track consist of
the additive interfering signal process and any diffuse multiplicative noise
due to multipath. The Innovations Process is formed by subtracting the Kalman
filter's conditional mean estimates of the stochastic components from the input
data stream (predicted estimates in the sampled-data case). Thus, the filter
which minimizes the Innovations Process (variance) is the filter which most
nearly tracks and, by subtraction, cancels the stochastic interferences.
Therefore, the optimum detection strategy (Recursive Maximum Likelihood) is
the cancellation strategy.

In the manner of state-variable-type estimators, the optimum detector
requires many pieces of subsidiary information. Chief among these are knowl-
edge of the bandwidths and strengths of the interfering signal and of the
diffuse multipath perturbations. Also required is knowledge of the strenth
of desired signal and additive white noise. Finally, synchronization of the
detector with the received symbol interval is required.

It should be noted that, by assuming a general (arbitrary) modulation
waveform, spread-sprectrum modulation is not assumed, A Priori. Thus,
initially the synchronization problem is only that of synchronizing with a
waveform whose time variation is commensurate with that of the information
rate itself. Such inherently narrow-band modulation is all that is required,




unless the additive colored interference waveforms are likely to be highly
correlated with the desired signal waveforms. In such a case some resort

to signal coding of symbols and waveforms may need to be made. This is dealt
with below. However, A Priori wide-band spreading of the transmitted signal
is not necessarily required.

Because synchronization and the various statistics of desired and inter-
fering signals are not known, A Priori, they must be estimated. These esti-
mations need not be made during a single symbol interval, but may be made
over many intervals. In general, the estimates are also made according to
the Maximum Likelihood principle. That is, for each statistic, an array
of several differing values is tested against the input data, using conditional
probability density functions. The array is shifted in a systematic manner
to search for the true value of the statistic which is present. Once its
true value is bracketed by the array, periodic testing, with shifting of
the array keeps the estimate of the statistic up-dated.

The necessity to obtain estimates of the various required statistics be-
fore the interference-cancelling detector can be operated in its optimum
fashion dictates that the receiver go through a "learning" phase prior to
good data detection. Having learned or "acquired" the initial values of
the various statistics of the communication environment, the receiver then
operates in the interference-cancelling mode, meanwhile "adapting" to changes
in the environment statistics. Thus, the interference-cancelling receiver
must also employ the learning and adaptive features.

Because of the Integrated Detection Estimation, and Identification (IDEI)
employed by the processing algorithms, closed form analytic evaluation of
algorithm performance is difficult except in some simplified cases. Thus,
Monte Carlo evaluation of the algorithms is a necessity. Properly executed,
the simulation is useful for developing and simplifying individual algorithms,
as well as for testing overall performance.

The remainder of this report consists of five more major sections.
Section III, following, produces the mathematical models for the channel and
interferences, culminating in the actual received sampled-data waveform and
an equivalent canonical state-variable model.

Section IV presents the derivation of the discrete-time, recursive IDEI
algorithms. A simplified example is explained. Then previous related recults
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from the literature are covered. Next are presented the linear tracking
algorithms and the standard detector algorithms for comparison. Finally,
some work on signal design and coding is presented.

Section V considers the problem of identifying the statistics of the
interfering processes as well as some unknown parameters. This section

examines previous work in the area and defines needed work in the follow-on
extension to the present contract.

Section VI gives details on the Monte Carlo simulation program. The
main routine and subroutines are documented to the minimum extent necessary
to understanding and running the simulation. Also, some preliminary simula-
tion results are given.

The final major portion of the report consists of Appendices and
References.




SECTION III
SIGNAL AND CHANNEL MODELING
3.1 THE CONTINUOUS-TIME REAL AND COMPLEX MODELS
The transmitted signal is taken in complex function form as
°t(t) = mt(t) exp(jwct) (3.1.-1)
where mt(t) is a complex, low-pass "modulation" function and exp(jwct) is the
complex form for the unmodulated "carrier" wave. The constant, We s is the

carrier frequency in radians per second. The modulation function 1is written
in terms of a real "envelope" function, At(t), and "phase" function, ¢t(t), as

me(t) = A(t) exp(iey(t)); 0 < A(t) (3.1.-2)

The physical, or realizable, transmitted signal, st(t), is taken as the real
part of the complex ot(t).

st(t) = Re {ot(t)}

1

A, (t) cos (w t + o,(t)) (3.1.-3)

Any conceivable modulation format may be represented by a suitable choice
of the functions At(t) and ¢t(t)' For example, if At(t) is unity and ¢t(t) is
non-zero, the signal is phase (or frequency) modulated. If ¢t(t) is zero and
At(t) is non-zero, the signal is envelope (or amplitude) modulated. Both the
above cases yield signals whose power spectrum is even-symmetric with respect

-to the carrier frequency. If At(t)cos¢t(t) and At(t)sin¢t(t) are a Hilbert

Transform pair, then the signal, st(t), has single-sideband structure and the
complex modulation function, mt(t), is analytic. Intermediate (or residual
sideband) cases are also possible. (See Reference [8]).

The complex function which is received at the vehicle is denoted z(t).
It is the sum of the transmitted signal, as received over direct line-of-sight

.(t), plus a white noise

path and reflected path, plus an interfering process, 05
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process, n(t). The received function is normalized in amplitude with respect

to the transmitted signal Ot(t)’ to write

(t) = o4 (t) + 0. (t-2) + o;(t) + n(t) (3.1.-4)

In (3.1.-4) ot(t), the transmitted signal, is taken as the component of
signal received via the line-of-sight path. cr(t-A) is the component of
desired signal received via a set of paths reflected from the Earth's surface.
(See Figure 3.1.-1). or(t-A) is normalized in time by the positive constant,
A, which represents the minimum path differential delay time through the spec-
ular reflection point. (See Ref. [6]).

The received function, z(t), is written in polar form as

o(t) = [me(t) + m.(t-a) +m,(t) + s(t)] exp(ju t) (3.1.-5)

where mt(t), mr(t), and mj(t) are the complex modulation functions (sometimes
called complex "envelopes" - Ref. [8]) for the transmitted, reflected, and
interfering signals, respectively. Equation (3.1.-5) normalizes frequency
with respect to wes which is taken to be the carrier frequency of the trans-
mitted signal, o(t), as received via the line-of-sight path. Thus, .
includes the direct path Doppler shift between transmitter and vehicle. In
general, the reflected component, mr(t), has slightly different Doppler offset
than the direct path. This must be accounted for in formulation of the m.(t)
modulation function, as the function of the transmitted mt(t). Also, the
carrier frequency of the interfering signal, oj(t), is not generally received

equal to w. Thus, the modulation function, mj(t), is generally one which
yields non-symmetric spectra with respect to w.. The function, §(t), repre-
sents complex white Gaussian noise in "baseband" form.

By splitting the modulation functions into their real and imaginery parts,

the physical form of the received function may be written as

Re {z(t)}

Z{(t)

q(t) sin wc(t) (3.1.-6)

cl(t) cos w.t - ¢

where

T

oy

i i




g, (t) =y (t) + y () + yji(t) + n,(t)

Cq(t) = Y£q(t) + y;q(t) * yjq(t) * nq(t) (3.1.-7)
and

y%i(t) = Re {mt(t)} : yéq(t) = Im {mt(t)}

Ypi(t) = Re {m.(t)} b Ypg(t) = Im (m ()}

yj;(t) = Re {my(t)} 5 Yiq(t) = Im (my(t)}

n; (t) = Re {8(t) } $ ng (t) = Im {&(t) } (3.1.-8)

Equations (3.1.-6) - (3.1.-8) define the physically received data process,
as it exists in bandpass form at the frequency we in in-phase, quadrature (I-Q)
form. This is the form which is convenient for derivation and simulation of
the optimum detection algorithms. However, before approaching those tasks, it
is necessary to do some detailed modeling of the modulation functions for the
transmitted, reflected, and interfering signals.

3.2. THE TRANSMITTED SIGNAL MODELS

The envelope, phase function pair, At(t), ¢t(t), are sufficient to cover
any desired modulation format. A1l symmetric-sideband amplitude modulations
are obtained by setting ¢t(t) = 0. A1l symmetric-sideband angle modulations
(FM, PM) are obtained by setting At(t) = 1. Single-sideband amplitude modula-
tions are obtained by setting

At(t) sin ¢t(t) =+ H {At(t) cos ¢t(t)} (3.2.-1)

where H{} is the Hilbert transform and the + signs give upper and lower side-
bands, respectively. Single sideband angle modulations are obtained by setting

At(t) = exp {-H {¢t(t)} } (3.2.-2)
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Of particular interest to this investigation are the digital modulations.
For an M-ary alphabet, a code waveform, c(t), is used, which takes on only M
values and switches values at well-defined switching times. Also, an alpha-
bet parameter, m, is used to relate the value of the code to the member of the
alphabet. Thus, for the binary, ternary, and quaternary cases, on the time
interval, [0, T]

c(t,m) = -1 3 m=20 : t e [0,T], me (0,1}
c(t,m) = +1 : m=1

c(t,m) = -1 : m=20 3 t e [0,T], me {0,1,2}
c(t,m) = 0 - m=1

c(t,m) = +1 3 =2

clt,m) = =2 s m=20 - t  [0,T], me {0,1,2,3}

c(t,m) = -1 . m=1
c(t,m) = +] 3 m=2
c(t,m) = +2 5 m= 3 (3.2.-3)

Using the code waveform c(t,m), a binary phase-shift-keyed (PSK) signal
is obtained as

I
—

A(t) =

n/2 c(t,m) (3.2.-4)

04 (t)
Binary FSK is obtained as
At(t) =]

04 (t) = duy = c(t,m) - t (3.2.-5)
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where LI is the desired frequency shift in radians per second. The quaternary
amplitude-minimum-shift-keyed signal used by airlines [34] is obtained as

Ag(t) =1 +a - sinlc(t,m) -+ Ft] (3.2.-6)

where a is modulation index and T is digit duration in seconds.

Given the alphabet symbol, m ¢ {0,1,2,...,M-1}, the set c(t,m), At(t),
¢t(t) is sufficient to write the complex modulation function, m(t), for any
M-ary digital signal.

3.3. THE REFLECTED SIGNAL MODEL

Appendix A gives a qualitative description of multipath propagation due
to surface reflection and reviews published research in reflection modeling for
the period from 1956 to 1976. Summarizing the results of the past twenty years,
there still does not exist an exact reflection model for modulated signals be-
tween moving terminals, derived from first principles of electromagnetic (e.m.)
propagation theory.

The model which is used in this investigation is heuristic, or postulative,
as are all other multipath models to date. It is quite similar to Van Tree's
"Doubly-Spread" model which was postulated for the under-water acoustic channel
[5]. The e.m. reflection channel and the underwater acoustic channel are
closely related since the propagation equations for reflection of horizontally
polarized e.m. waves are the same as the equations for reflection of acoustic
(compression) waves. Thus, many effects encountered in under-water sonar work
have analogs in e-m scattering. The model is a special case of those discussed
by Bello in [9].

3.3.1. The Densely Tapped Delay-line Model

Figure 3.3.-1 shows the geometry used for the formal derivation of the
complex modulation function of the reflected signal. The transmitted signal,
ot(t), is as defined in (3.1.-1). It is propagated to the receiving point via
a direct path of length d meters and via sets of paths of lengths r + 85 meters,
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for i =1, 2,..., N. The distance, r, is the minimum path length through the
specular reflection point. For each i =1, ..., N, there results a received
signal

r+é r+§

Dexpljug (t - =] (3.3.-1)

o5 (t) = ag(t, s)m(t - —

c = speed of light in meters/sec.

where °i(t’ 5i) is a complex reflection coefficient for the set of paths of
length r + 85 Note that, in general, oi(t) is received from a locus of points
on the rough reflecting surface which all yield a path length of r + &

]
4

o, (1)

L
ERpr.

Rough Earth Surface

Figure 3.3.-1. Reflection Geometry.
Equation (3.3.-1 is expanded into the form
Oi(t) = pi(t, ri)m(t . e ri)exp(-jmcrr)exp(jwct) (3.3.-2)
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In (3.3.-2), 1. 1is the delay time through the specular point. t; is the addi-

tional delay time through the ith set of paths. The reflection coefficients,

pi(t, ri) fori=1, 2, ..., are, in general, correlated as T approaches -

This correlation occurs because the locus of points on the reflecting surface

yielding T converges to the locus of points yielding T; as T3 approaches -
The variation of pi(t, ri) with t occurs because the ith locus of points moves
across the reflecting surface due to aircraft movement, thus changing the net

reflection coefficient with time.

The signal received over all paths is

N
Ur(t) [Z Di(t, T.i )mt(t = tY‘ ] Ti)]‘EXP('jwcTr)eXp(jwct)

i=1

N
[iz] pi(t, iAT)mt(t e iAT)exp(—jwcrr)exp(jwct)
(3.3.-3)

where equal-increment delay paths are indicated by setting L iaT, with AT
a constant. An equivalent modulation function is defined for the set of re-
flected paths as

N
’“r(t - tr) =1_Z] pi(t, 1AT)mt(t - tr - iAT) (3.3.-4)

Note that (3.3.-4) has the interpretation of a tapped delay-line with complex
time-varying tap weights, as per Figure 3.3.-2.
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Figure 3.3.-2: Delay-Line Interpretation.

It is assumed that the reflection coefficients are correlated according
to

* » 5 :
E{pi(t +T, Ti)pj (tg Tj)} = h_ihj R(T [y (1 o J)AT) (3-3-'5)
where R(0) = 1 and the h1. are constants. This definition implies that the
correlation varies uniformly over the surface. The power associated with a
particular set of paths, say the ith, is proportional to (hi)z. Using
(3.3.-5), the autocorrelation function for mr(t - tr) is found to be

*
E{mr(t ol tr)mr (t - tr)} Rrr(T)

N N » %
= 121 JZ] E{pi(t+T,Ti)pj L4 <18 TJ)}E{mt(t +z = tr - ri)m t(t - tr - Tj)}

o S hih; R(t - (i - §)AT)R (- (i - j)aT) (3.3.-6)

where Rtt(r) is the autocorrelation function for mt(t). In (3.3.-6) it is
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assumed that the pi(t, ri) and mt(t) are independent.
Now, (3.3.-6) is just a discrete convolution equation. Thus, as N » «
and the partitioning of the sets of reflected paths becomes fine, the auto-

correlation function for mr(t) is formally defined as

*
RY‘Y’(T) = R(1) - Rtt(r)*h(r)*h (-1) (3.3.-7)
where h(t) is an impulse response defined by the h;. Equation (3.3.-7) implies
that for the purpose of deriving the autocorrelation function of mr(t), an
equivalent model may be used

m(t) = [o(t) - me(t)] * h(t)] (3.3.-8)

In (3.3.-8), p(t) is a complex multiplicative noise process having autocorrela-
tion, R(t). The impulse response, h(t), is defined from the density of re-
flected power versus delay. Note that in the model of (3.3.-4), if the
pi(t, ri) are Gaussian then the conditional density of mr(t), given mt(t), is
also Gaussian, and mr(t) is characterized by mean and autocorrelation functions
only. Thus, (3.3.-8) is an equivalent model, for p(t) Gaussian and h(t) deter-
ministic.

Now, the sum of direct-path and reflected-path signals at the receiving
point is given by

d
¥(t) = or(t) + ot(t - Td) F RS
= [m(t') + m(t' - a)exp(-Jucs)lexp(ju t') ]
il R TER Differential Delay Time
t'=t -1

(3.3.-9)

If it is assumed that the time (phase) reference is the direct-path signal, then
the channel may be modelled as in (3.1.-5) with

m(t = &) = [ [p(t) + my(t - 8)]*h(t)Jexp(-ju n) (3.3.-10)
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3.3.2. Special Cases.

i) The Doppler-Spread Case.

When the reciprocal of the delay time across the effective reflection area
is large compared to the highest frequency present in the modulation function,
the Doppler-Spread case occurs. When the transmitted carrier is unmodulated,
there results

I
—

mt(t) =

h(t)

§(t) (3.3.-11)
and the resulting reflected modulation function is

m.(t) = o(t) (3.3.-12)
The complex function, p(t), is the Doppler-spreading multiplicative noise

function.
ii) The Delay-Spread Case.

When the reflection area moves slowly across the reflecting surface and
when the reciprocal of time delay across the area is small compared to the
highest frequency present in the modulation function, the Delay-spread case
occurs. When the transmitted modulation is a sharp pulse, there results

mt(t) = §(t)

o(t) =1 (3.3.-13)
and the resulting reflected modulation function is

m.(t) = h(t) (3.3.-14)

The real function, h(t), is the Delay-spreading impulse response function.
iii) The Doubly-Spread Case.

In general, the reflected modulation function, mr(t), is both Doppler-
spread and delay-spread. In this case, a time-varying impulse response for
the channel is defined by letting the transmitted modulation be a sharp pulse
at time t = t',
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mt(t) = §(t - t') (3.3-15)
Then, the reflected modulation function is
mr(t) = p(t')h(t - t') = hv(t, Y (3.3-16)

and hv(t, t') is the time-varying impulse response.

3.3.3. The Doppler-Spreading and Delay-Spreading Functions.

Because of the manner in which the delay-spreading impulse response,
h(t), was defined, it may be determined from the spectrum of power versus
delay, when the transmitted sinusoidal signal is unmodulated. That is, if
a spectrum P(t) is known, where the dimension of P is watts and t is delay
time in seconds with respect to minimum (specular) delay time, then

h(t) = P5(c) (3.3.-17)

Such determinations of P(t) are available, either in closed form, as in Bello
[9], or as the results of numerical computations, as in Peake [11]. The form
P(t), as given in Bello [9], is

P(t) ~ exp(-ar)Io(br) t0zxx
0<a,b (3.3.-18)

where Io() is the modified Bessel function. The delay power spectra, as com-
puted from Peake's [11] solution appear to decay roughly exponentially. For
purposes of designing adaptive receivers, h(t) must be modeled using a Tumped
linear filter having finite numbers of poles and zeroes. Thus, the exponential
model seems more desirable.
The complex stochastic multiplicative noise, p(t) may be characterized

from determinations of the Doppler power spectrum, S (w), when the transmitted
sinusoidal signal is unmodulated. Since p(t) is modeled as a complex station-

ary Gaussian process, it is completely characterized by mean and autocovariance
function. In general, power spectra Spp(w), may be calculated, as in Peake [11],

for the Doppler spectrum as it exists at the radio frequency.
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If the multiplicative noise, p(t), is defined as

p(t) = o5(t) + jog(t) (3.3.-19)

q
and the spectrum Sp(w) is the spectrum of
s(t) = Re{p(t)exp[jwct]} (3.3.-20)

then the equivalent low-pass spectra are

pipi(w) = Sp(wc + m)U(wc + w) + Sp(wc - m)U(wC - w)
Spqpi(w) = j[sp(mc - m)U(wc - @) - Sp(wC + w)U(wc + w)]
Wx) =1 : 0<%

=0:x<0 (3.3.-21)

where the additional properties hold that

wn
—
e
~
i

S -w S w) =S -w
i pipi( ) pqpq( ) pqpq( )
-S (-w) (3.3.-22)

S () =S (-w)
PP PiPq N

The covariance functions are then given by the Fourier Inverse Transforms as

o)
—
~
~
1}

-1
F {S (w)}
i P4P3

-1
R (w) = F (S (a)} , (3.3.-23)
Pefi PePi

The multiplicative noise, p(t) is zero-mean when the reflection is en-

tirely diffuse. This case obtains at L-band frequencies when the angle between

reflecting surface and incident ray is greater than, say, 10° and when the

mean surface roughness is large in terms of wavelength. When the reflection

has a specular component, such as at VHF, then o(t) is non-zero-mean. When
‘ the mean is non-zero, it may be taken as real.
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3.3.4. The Final Complex Signal Model.

With respect to (3.3.-10), it can be shown that when h(t) represents a
filter which has non-zero "d.c. response" (H(0) # 0), and when the differential
delay time is constant or very slowly time-varying, then mr(t - A) may be
represented by

m.(t - 4) = [exp(-ju.a)e(t)m (t - a)]*h(t) (3.3.-24)

Thus, the final rotation of the complex modulation function given by exp(—jch)
in (3.3.-10) is made equivalent to an initial rotation of the complex noise
po(t). The final complex signal received over the direct and reflected paths

is then given by

y(t) = [mt(t) + mr(t - A)]exp(jwct) (3.3.-25)

where mr(t - A) is given by (3.3.-24).

It should be noted at this point that when the reflection is quasi-specu-
lar, the multiplicative noise has a non-zero mean function which is real.
Under these conditions the rotation, exp(-jwcA), acts upon the real mean to
produce an equivalent complex mean which is, in general, slowly time-varying.
It is this effect which produces the slow envelope fades of the real signal.
For completely diffuse reflections, the rotation effects may just be lumped
into the stochastic p(t), itself.

3.4. THE INTERFERENCE MODELS

The complex formulation of the additive interference signal, oj(t), of
(3.7.-4) is

oj(t) = mj(t) exp(jwct) (3.4.-1)

where mj(t) is the equivalent complex modulation function for the interference.

Note that since we is the radian frequency of the carrier of the desired signal,

as received over the direct path, then oj(t) is explicitly referred to that

24




frequency. However, in general, the carrier frequency of the interference,
w5 will not equal We+ Thus, the frequency offset of the additive interference
must be generated in mj(t).

In particular, the equivalent modulation function for the interference is
written as

"

mj(t) Aj(t) exp[J d;j(t)] exp(J ijt)

Amj = Wy - e (3.4.-2)
where ij is the radian frequency difference between carrier frequencies of
interference and desired signal. Aj(t) and ¢j(t) are the non-negative envelope
function and the phase function, respectively. Then, the in-phase and quadra-
ture, low-pass components of mj(t) are

yii(t) = AL(t) COS(ijt A ¢j(t))

ji J

yjq(t) = Aj(t) sin(Amjt + ¢j(t)) (3.4.-3)

Given the offset frequency, ij, the set Aj(t), ¢j(t) is surficient to
write the complex modulation function, mj(t). Deterministic signal structures
may be formed, as was done in Section 3.2. for the desi =d signal. Also,
stochastic signal structures may be formed.

It is desirable to model three types of additive interference signals,
at this point. The first is a continuous-wave, unmodulated carrier (possibly
offset in frequency). The second is a pulse-modulated (on-off) carrier
(possibly with swept center frequency). The third is a purely stochastic
Gaussian process with power spectrum which is even-symmetric with respect to
the (possibly offset) carrier frequency.

The unmodulated carrier is obtained by setting

]
=

As(t)

n
o

¢j(t) (3.4.-4)

where Aj is a constant which is chosen to set the level of the additive inter-
ference, relative to the desired signal.
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The pulse-modulated carrier is obtained by setting

Aj(t) = Aj . cj(t, n)
¢>j(t) o t2 (3.4.-5)

where P is the carrier frequency sweep rate in radians per second squared.

The function cj(t, n) is a code waveform, as in Section 3.2., where now

O:n=10
13:n=1 (3.4.=6)

(t, n
cJ( )

The duration and recurrence rate of the puises are controlled by a sequence
of binary symbols, n, as in (3.4.-6). By a proper choice of the constants,
ij and e the pulsed carrier may be caused to sweep across the frequency
band of the desired signal at any arbitrary sweep rate. Sweeps up in fre-
quency are obtained by choosing the sign of i to be positive or negative,
respectively.

The purely stochastic Gaussian process is obtained by generating two
independent, zevc-mean, low-pass processes, p..(t) and p. (t), having identi-

a7 Jq
cal auto covariance functions, and setting
AJ(t) cos ¢J(t) = pji(t)
Aj(t) sin ¢j(t) = qu(t) (3.4.-7)

The exact method for implementing (3.4.-7) and (3.4.-3) is made clear in
Section 3.5.

3.5. THE DISCRETE-TIME RECEIVED SIGNAL MODEL.

Equation (3.1.-6) gave the band-pass form of the continuous-time received
data process in I-Q form. It is more convenient in notation and in simulation
to deal with low-pass, or "baseband," data. So, an I-Q product demcdulation is

assumed in the form
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2z(t)cos (w t + ¢o(t))

N
—_
—+
~—

|

o(t) = -2z(t)sin(u t + ¢,(t)) (3.5.-1)

where it is understood that the resulting terms in frequency ch are discarded.

(3.5.-1) does not necessarily denote a coherent phase demodulation process
(coherent amplitude detection), since the arbitrary phase term, ¢0(t), has
been taken in the demodulation reference signals. The I-Q product demodula-
tion translates the I-Q components, Ci(t) and z (t), to baseband with a
possible phase rotation due to the presence of ¢o(t).

Thus, define a 2-vector data process, z(t), as

zi(tﬂ z;(t)
2(t) - i = H(t) -
Zq(t)_, cq(t)
= Ho(t)[_x't(t) g )+ x'j(t) +n(t)] (3.5.-2)
where
[cose,(t)  sing(t) [y (0)]
HO(t) =; . s ’x't(t) o
L—sm%(t) coso, (t) L'y'tq(t)“
ik [ -
Y pi(t) y's5(t)
y' . (t)= ] x'j(t) =
L‘)"rq(t) _y'jq(t)d
—n,-(t)
n(t) = (3.5.-3)
an(t)

Equations (3.5.-2) and (3.5.-3) describe the baseband data vector, pro-
vided the receiver did not perform any pre-filtering operation on the signal

as it existed at the fiequency, W - However, in the event that the optimum
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detector operates as a modem, say, at the receiver's intermediate frequency

output, such pre-filtering may be present. Thus, equation (3.5.-2) should be
modified as

where

h. (t) (3.5.-5)

is the vector equivalent I-Q impulse response functions, due to pre-filtering.
Note that in the general case when the bandpass filter transfer function is not
even symmetric with respect to Wes then hei(t) and heq(t) will be different low
pass filter functions. Only in the case where the bandpass filter has even
symmetry with respect to w. are hei(t) and heq(t) identical.

The optimum receiver operates on samples of the received continuous-time
waveform. The samples are taken at uniformly spaced time intervals. The
basic time reference is taken as the duration, T, of a basic message symbol
(bit, in the binary case), as received over the direct path. This implies
that the optimum detector has achieved synchronization with the bit timing in
the direct-path signal. Ultimately, the detector will employ self-synchron-
ization, using "early-late," Maximumn-Likelihood Synchronization.

The sampling rate is taken as a fixed, but arbitrary number, K samples
per each signal symbol of length T seconds. Thus, the rate is K/T samples
per second. The samples are taken uniformly in time, but symmetrically with
respect to the end-points of each symbol interval. This insures that no
samples are taken at the end-point of an interval. Thus, the continuous time
parameter, t, in the models, is replaced by a discrete time parameter, tk’
where k is sample number and

-k—}’ . . = -
t = < K 2) R S S (3.5.-6)
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In derivations and simulation, the actual value of tk is not important in
many of the functions. Thus, wherever possible, tk, is simply replaced by
sample number, k. The actual value of tk, as given by (3.5.-6), is used, for
example, in the amplitude and phase functions, At(tk)’ ¢t(tk).

In order to make the notation more descriptive, the dependence of the
transmitted and reflected signal vectors on message symbol, m =0, 1, 2, ..., M,
is specifically noted by letting

¥ k) — y' .k, m)

¥'o(k) — y' (k, m) (3.5.-7)

In the event that a non-linear quantizing function, Q{}, is employed, due to
an analog to digital convertor, the discrete-time version of equation
(3.5.-4) becomes

z(k, m) = QCH (K)[hg (K)*[y' 4 (k, m) + y'\ (k, m) + y';(k) + n(k)]1]}
(3.5.-8)

where (*) denotes discrete convolutions.

It should be noted from (3.5.-8) that although the discrete-time data
stream is quantized upon entering the detector, the signal and noise processes
are generated without quantizing in the computer simulation. Thus, x't(k, m),
etc., have the fidelity inherent in the digital word length of the simulation
computer. The coarseness of the quantizing function, Q{}, is fixed, but
arbitrary, so as to allow determination of the required quantization Tlevel
for accurate operation of the optimum detection algorithms.

The direct path signal vector is generated from the algorithms

1] [ f(k,m) 0
y'p(ks m) = Hi(k, m) 3 Hilk, m) =
| 1 0 g, (k, m)
.
ft(k, m) = At(k, m)cos¢t(k, m)
gt(k, m) = At(k’ m)sin¢t(k, m) (3.5.-9)
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where At() and ¢t() are implicit functions of the code waveform, ct(k, m).
The reflected signal is generated from

¥'p(ks m) = [Ho(ks ms a)o(k)I*h(k)

o(k) = H (ks 2) [y, (k) + u (k)]

f

‘”cos(ch) sin(ch)w
Hp(k; a) =|
-sin(wcA) cos(ch)

(ft(k; m;y a) =gy (ks m; 8) |
Ht(k; m; A) = ‘ :
Lgt(k; m a)  folks msa) |

folks ms a) = Ag(t, - a5 m) coso (t, - 45 m)

gy (ks ms a) = Alty, - 85 m) singy(t, - 43 m)

Yp(k) = A X, (k)

Xo(k + 1) = o, X (k) + 1w, (k) (3.5.-10)

In (3.5.-10), y'r(k; m) is the reflectad signal 2-vector which incorpo-
rates the transmitted signal 2 X 2 matrix, Ht(k; m; A), as delayed by the
differential delay time, A, and the multiplicative noise 2-vector, p(k).

The multiplicative noise, p(k) is formed by the 2 X 2 rotation matrix, Hp(k; A),
operating on the sum of a zero-mean stochastic 2-vector, xr(k), plus a deter-
ministic mean function 2-vector, Er(k)- The zero-mean stochastic 2-vector,
xr(k), is generated from azero-mean, white, Gaussian 2-vector, ﬂr(k)’ using

an Nth-order filter structure defined by the set {Fr’ LI Ar}' Thus, xr(k)

is assumed to be Markov-N. The desired covariance function for p(k) (and o(t))
is obtained through proper choice of the elements of {Fr’ Ops Ar}'

The additive noise 2-vector, n(k), is modeled as
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(k)

n(k) = c W (k) =] | (3.5.-11)
L"atk)

where En(k) is a zero-mean, white, Gaussian 2-vector of unit variance whose

two elements are independent. The constant - is chosen to realize the desired

ratio of direct-path signal power to white noise power at the radio frequency.

In terms of the continuous-time RF model, the real signal and noise are

s(t) = A (t) cos[uct + ¢,(t)]

n(t) cnni(t) cosw.t - cnnq(t) sinu t (3.5.-12)

where ni(t) and nq(t) are zero-mean, unit variance, white and Gaussian. The
signal to white noise power ratio for the direct-path signal only is then

S & E{sz(t;} ECHAZ(t))
N = E{n4(t)} =—c-2——— (3.5.-]3)
n
The constant < used in (3.5.-11) is then
. | E{AZ(t)} E
& 1= /lE St (3.5.-14) |

B W e

Cc = S . PSK, FSK (3.5-]5)

The variance matrix for n(k) is then

<<
]

nn

En(K)n" (k) = c2 | 0] - e (3.5.-16)
0 1
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The additive interfering signal, xj(k), which is a 2-vector, is generated
according to

v 5(K) = H (ko (K) (3.5.-17) -',

where Hj(k) is a rotation matrix due to the frequency offset of the inter-
ference.

COS(ij . tk) -S1n(ij . tk)

sin(Awj . tk) COS(ij . tk) (3.5.-18)
where t, is given by (3.5.-6). The vector, gj(k) is generated differently,
depending on which of the three additive interference signals of Section 3.4.
is desired.

For the unmodulated continuous-wave carrier, or for the pulse-modulated
swept-frequency carrier, gj(k) is generated according to

Q_J(k) = 5
qu(k) qu(k) = Aj(k) s1n¢j(k) (3.5.-19)
where
Aj(k) = Aj
3 Unmodulated C.W. g
¢j(k) =0 (3.5.-20) ‘
and
Aj(k) = Aj . cj(k, n) Pulse-modulated
¢j(k) =% o tk2 Swept-frequency (3.5.-21)




For the purely stochastic Gaussian process, gj(k) is generated according

to
e5(k) = y (k) + u;(k)
xj(k) = Ajlj(k)
lj(k +1) = oX (k) + Tyu; (k) (3.5.22)

In (3.5.-22), the 2-vector, gj(k), is generated from the sum of a zero-mean
stochastic 2-vector, xj(k), plus a deterministic mean function 2-vector, Ej(k)-
The stochastic X-(k) is generated from a zero-mean, white Gaussian 2-vector,
wj(k), using the Mth-order filter structure defined by the set {Tj, ¢j’ Aj}.
Thus, xj(k), is assumed to be Markov-M. The desired covariance function for
gj(k) and mj(t) is obtained through proper choice of the elements of
T, ¢j’ Aj}i

The mean vector, Ej(k)’ is included in the model of (3.5.-22) for generality.
Practically, the occurrence of such a mean in the interference would imply a
component analogous to the specular component in the reflected signal. Such a
component could occur, for instance, if the interference contained a carrier

component, phase-locked to the direct-path signal.

3.6. THE CANONICAL STATE-VARIABLE MODEL.

The adaptive receiver-processor, which is to implement the detection
algorithms, utilizes Kalman filters for tracking and canceling of the stochas-
tic elements of the additive and multiplicative interferences. It is well
known that Kalman filters require a state-variable model of the generators of
the processes which are to be tracked. Until recently it was assumed that
knowledge of the model of the true generator was required. Intuitively, this
required wealth of detail did not seem reasonable. Since the stationary Wiener
filter, derived from the Orthogonal Projection Property of Gaussian Expectation
[13], requires only knowledge of the output covariance functions of the pro-
cesses, it seems reasonable to expect that such knowledge would also suffice for
the Kalman filter.
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Anderson and Moore [14] and Son and Anderson [15], in 1971 and 1973, re-
spectively, showed that, in fact, only the process correlation functions are
required for construction of the Kalman filter, rather than complete knowledge
of the structure of the process generator. Athans [16] had shown in 1967 that
the Kalman filter structure was not unique to within a Similarity Transforma-
tion on the filter (or generator) states. However, the later results [15, 16]
were much stronger in showing that assumption of any generator structure
capable of producing the given output covariance function for the process
yields the same process tracking error variance in the Kalman filter.

The problem of realizing a generator model which, when driven by white
noise, produces a process having a given output covariance function is the
problem of "System Identification." This problem is examined in Section V
below.

The adaptive receiver-processor, which is to implement the detection
algorithms, has no knowledge of the detailed received data model, as given in
equations (3.5.-8) - (3.5.-22), except for the waveforms of the transmitted
signals, xﬁt(k, m) form=0, 1, ..., M-1. There is freedom to assume a some-
what simpler model, provided it is statistically equivalent to the true model.
The assumed model is that which may generate the sum of the three terms,
[y'¢(ks m) + v (ks m) + ' 5 (k)]

It is instructive to view the actual structure by which the three terms
are generated. Dropping arguments for the sake of brevity,

Vet ¥t ¥ty = (HHoyd*h + Heys + Houy
+ (HtAHp“r)*h + Hj“j {3.6.<1)
where HtA represents Ht(k; m; 4). Now, Hp just represents a slow rotation of

the vectors y,. and p,.. Since y,. is stochastic, Hp may be absorbed by the time
variation of Yo to good approximation. B represents the real mean function
for the reflection which is non-zero only if the reflection is quasi-specular.
Hp may be absorbed into By under the assumption that u, represents a complex,
slowly time-varying mean. With the above simplifications, the canonical state-

variable model, for the received data is inferred as in equation (3.6.-2).
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z(k) = Ho(k) [Hy(k) Y(k; m) + Hu(k; m) u(k) + n(k)]

cos¢°(k) s1n¢o(k)<

Ho(k) =]
t'Sin¢o(k) cos¢o(k):
;1 o]|
Hy(k) =s; | Hj(k);
o 1]l
L = 3
T(He (ks ms a)y,(K))*h(k)
Y(k; m) = ] ----- 23(27 '''''''' *
. Praie o]
H (k9 m) = LHt(ka m)llL_O 1 !I Hj(k)_‘
| ut(k) ;
u(k) = (Ht(k’ m; 8) p.(k)*h(k) !
uJ(k) |
r C U Yy
ug (k) = uﬂ 3 pelk) = | u:ﬂ s ouy(K) =§ :j;j (3.6.-2)

In (3.6.-2), xr(k) and yj(k) are given by (3.5.-10) and (3.5.-22), respectively.
The impulse response, h(k), is produced by a filter operating according to

vo(k) = AhES(k)

Eh(k) = °h5h(k -1) + Fhvi(k) (3.6.-3)

The filter is diagrammed in Figure 3.6.-1.
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Figure 3.6.-1: Canonical Filter Form.

Note that the filter form of equation (3.6.-3) and Figure 3.6.-1 is not quite
the same as that used in the stochastic process generators of equations
(3.5.-10) and (3.5.-22). The prior filters produced colored processes from
white noise. They inherently produce a one-sample delay from input to output.
The filter of equation (3.6.-3) and Figure 3.6.-1 does not produce such a
delay between input and output.

The solution to (3.6.-3) is given by

k

vo(k) = Apafx, (0) + z]Ah¢k‘" v, (n) (3.6.-4)
n:

The impulse response, h(k), is obtained from (3.6.-4) as follows

h(k)
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Canonical State-Variable Model.

Figure 3.6.-3:
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The desired impulse response, h(k) is realized by proper choice of the set
{rh, s Ah}.

The overall configuration of the assumed canonical state variable model
is diagrammed in Figure 3.6.-2. The figure combines the elements of equations
(3.6.-2), (3.6.-3), (3.5.-22) and (3.5.-10). The upper branch of the model i
generates the signals and disturbances received via the reflected paths. The
Doppler-spreading process, xr(k) is generated from the white noise !r(k)’
using the R-Filter. The quasi-specular mean, Er(k)’ if present, is added to
xr(k) and the sum is multiplied by the modulation matrix, Ht(k; m; A), which
is delayed by the process differential delay, A. The resulting process is then
passed through the Delay-spreading H-Filter.

The second branch of the canonical model generated the colored additive
noise process, Xj(k), by passing white noise, yj(k), through the J-Filter.

The quasi-specular mean, Ej(k) of this interfering signal, if present, is
added to xj(k). The sum is then multiplied by the rotational matrix, Hj(k).
Note that for modeling purposes, the additive colored disturbance may be taken
as stochastic, even though specific occurrences may be deterministic, as in
Section 3.4. This modeling practice is commonly used.

The third branch of the canonical model generates the white additive
noise. The level of the white noise, yn(k), is simply adjusted to realize
the desired signal to noise ratio, S/N, as in (3.5.-15). The fourth branch
of the model generates the direct-path signal. An assumed mean vector,

Ht(k)’ is multiplied by the modulation matrix, Ht(k; m), to form the signal.
The outputs of the four branches are summed and the sum is multiplied by the
rotation matrix, Ho(k), to form the received data vector, z(k).

The assumed canonical model of Figure 3.6.-1 contains many parameters
which are, A Priori, unknown. First among these are the parameters, {I, ¢, A}, g
for the R-Filter, H-Filter, and J-Filter. In practice, these parameters for
the model must either be set according to prior knowledge of the channel be-
havior or according to measurements made on the true received data, z(k).

The problem of determining the elements, {I', ¢, A}, from measurements on z(k)
is the Identification problem, which is dealt with below.

Other elements of the canonical model which are A Priori unknown include
the mean value functions, u ., My and . The function, u., is essentially
the "strength" of any specular reflection which is present. b is the strength
of any component of the colored interference which is phase-locked to the
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the desired carrier wave. y, is the strength of the direct-path signal
component. These, possibly siowly time-varying, signal vectors must also
be identified during the detection process.

The remaining unknowns in the canonical model are the scalars, 2, m, ‘u.,

S/N, and ¢0(k). A is the differential delay between the direct path and min;mum—
time reflected path as per Figure 3.3.-1. m is the transmitted symbol (integer),
which is to be detected. ij is the offset frequency between the desired
carrier frequency, wes and the interfering carrier frequency, w., as per equa-
tion (3.4.-2). S/N is the power ratio of direct-path signal to additive white
noise, as per equation (3.5.-13). ¢0(k) is a possibly slowly time-varying phase
perturbation process which is generated in the data receiver in the I-Q product
detection of the received radio-frequency waveform. The identification treat-
ment of these scalar processes is detailed below.

There is another A Priori unknown element, which is not explicitly
modeled, either in equations (3.5.-10), (3.5.-22), (3.6.-2), (3.6.-3) or
in Figure 3.6.-2. This element is denoted tr and represents the timing parameter
of the symbols, m, as received over the direct path. The sample timing of
equation (3.5.-6) and the following timing of the detector is dependent on bit
synchronization with the direct path signal. In the present report, synchron-
ization is assumed. While the study of a self-synchronizing detector is not any
more difficult theoretically, the simulation of such is considerably more de-
tailed. Ultimately, the self-synchrcnization feature should be dealt with.
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SECTION IV

RECURSIVE INTEGRATED DETECTION, ESTIMATION, AND IDENTIFICATION
4.1 MAXIMUM A POSTERIORI PROBABILITY DETECTION

4.1.1. The Recursive, Decision-Directed Algorithms

The problem of M-ary detection in channels subject to colored additive
and multiplicative noises, as well as additive white noise, is examined below.
Detection algorithms are obtained, based on a sub-optimal simplification of
the Maximum A Posteriori Probability (MAP) strategy for symbol sequences,
using recursive sampled-data processing. The resulting detection algorithms
require simultaneous estimation of the colored channel disturbance waveforms,
as well as identification of the statistics governing the channel model. The
estimation and identification features are, thus, integrated within the detec-
tion algorithms.

Early theoretical work on detection in channels perturbed by more than just
additive white Gaussian noise [17, 17, 19] led to such developments as the
"RAKE" receiver [20] and diversity reception [21]. The idea of adjusting the
detector to changing channel conditions led to adaptive detection [22, 23],
wherein channel ﬁérameters are estimated. An idea dual to adaptive detection,
that of estimating the waveférm of a signal whose presence is uncertain, was
explored in [24, 25]. A related idea, that of differentiating between several
possible signals, and simultaneously estimating some signal parameters was
explored in [26, 27]. The first recursive sampled-data algorithms for M-ary
detection in colored multiplicative noise and white additive noise, using the
MAP strategy, were presented in [28]. Simulation results for those algorithms,
plus an ad hoc treatment of the required identification problem were given in
[29].

The present work extends that of [28] and [29] to include colored additive
noise along with colored multiplicative noise, and white additive noise. Also,
the identification problem is formally imbedded into the detection/estimation
problem by applying the composite detection strategy. The resulting formal
solution to the integrated detection/estimation/identification (IDEI) probiem
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extends the "Marginal Estimation" approach of [30] to the detection problem
and employs decision-directed estimation [21] to combat the problem of ex-
ponentially growing processor memory. The formal solution presented in this
report is-a sub-optimal one based on assumed availability of sufficiently good
identification estimates. For identification estimates not satisfying the
assumption, an extended solution based on the "partitioning" approach of [16]
is indicated.

The general M-ary detection problem requires the consideration of detec-
tion of a sequence of symbols (or data word) of arbitrary length. Thus, the
symbol notation, m, introduced in equation (3.2.-3), is subscripted to indi-
cate the position of each symbol in a sequence. In particular, consider the
detection of a J-sequence of message symbols, Mys Moy wovs My, where the mj
are elements of the M-ary alphabet,

ms e 10 1 23 2o M=k Vj =iliztd s sd st d (4.1.-1)
The mj are imbedded in a sequence of received vector-data samples, z(k), for
sample times, k = 1, 2, 3.... The number of components of the z() vector is
determined according to the assumed data generating model, discussed above.
A fixed number, K, of data vectors, z(), are measured for each transmitted
message symbol, mj. Thus, the data sample number, k, and message symbol
number, j, are related by

k - %

j=1+Int ( 2 ) : Int () is "integer part" (4.1.-2)
K

Under the Maximum A Posteriori Probability (MAP) decision strategy, deci-
sion statistics, S', are computed for each of the MJ possible message sequences.
The statistics, S', are proportional to the A Posteriori Probability of
message sequence, given the received data sequence.

For the purpose of forming the decision statistics, two vectors are

defined.
m
= T J
My = [mys my_qs coenmy, m1' = i
N
By % oy £5q0 o0 Bpo Ly R (4.1.-3)
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In (4.1.-3), the m; are the individual symbols in the message J-sequence. The

Zj are vectors of received vector-data samples corresponding to each message
symbol, m, . For K samples per symbol, each Zj vector contains K of the z()
data vectors. Figure 4.1.-1 illustrates the partitioning for scalar data
z(), for a binary symbol sequence.

The individual decision statistics are all of the form
S'v p(Myl2;) (4.1.-4)

where p() denotes the conditional probability density. The MAP decision rule

is to choose the particular symbol sequence MJ which maximizes the density p().

m.= m2=0 m3 = mJ=|
K |K#l 2K 2§+|L47}K (J-DiK+ JK .
| 2 3 45 6 7 8 9
z2) z(3)
I I : :
U L O =
1 1 1 | WP Al | 1 i : l. ) K
- N ——~ N~
Z Zz Zs Zd
\ v—\_____/

Figure 4.1.1: Partitioning of Sampled-Data Vector

It is assumed that there is associated with the data process, z(k), another
process 8(k), which in a manner to be specified below, represents some unknown
elements of the generator producing z(k). The vector process, g(k), is assumed
to be of finite dimension. In the same manner as in (3) above, the 8() samples
are grouped to form a partitioned vector, §J. where
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In (4.1.-5), gj contains K of the g() sample vectors which occur during the
time of the jth message symbol.

A joint density of MJ, §J, and gd is now postulated. Then, the decision
statistic is written formally as

ks P(M%é %J) £ f... P(MJ, By, 2;)d B,
p _
£ p(z,) (4.1.-6)
SEE Feank pligs Bye My g By s £ 16, DI 5185 00 Byd
P8y q12;4) a8y, (4.1.-7)

where the multiple integration is over all the unknown elements of process
s(), at every sample time, k. The averaging implicit in (4.1.-7) is essen-
tially the application of the composite detection strategy. The practical
implementation of (4.1.-7) would require increasing the order of the multiple
integral with increasing numbers of data samples and/or increasing length of
the message sequence. Because this implies a signal processor of expanding
size, such a result is not practically useful. An alternative is to employ
decision-directed processing.

Now, it is assumed that at the end of the (J-1)st symbol period, a condi-
tional-mean estimate of B, ; is available as éJ_]. Furthermore it is assumed
that both p(m;, Bj, ZJIMJ_], By q» gd-]) and p(MJ_1I§J_], gd_]) do not vary
appreciably in the neighborhood of §J_] for which p(§d_1lgd_]) is significant.
Then the integral of the product of the three probability functions in (4.1.-7)
simply evaluates the product of the first two at §J:1 = éd—]’ analogous to
sifting with a Dirac delta function. Next, p(MJ_]|§J_], gd_]) reduces to
p(My_q[2;_q) since B,y ; is a function of the Z; ;. Then, maximization of S'
with respect to MJ_] is accomplished by choosing the MJ_] which maximizes
p(MJ_]Igd_]). It follows that S' may be maximized sequentially, over each
succeeding message symbol, Mys Moy wovy My Thus to reduce the order of the
integral in (4.1.-7), decision on the sequence as a whole is replaced with
symbol by symbol decision.
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At the end of an arbitrary symbol period, say the jth, the cumulative

statistic, S', is maximized by maximizing the jth period statistic, Si’ over
i=0,1,2, ..., M-1, where

~ N

S'I = Fasil p(‘B’J’ -Z-JImJ =1, M‘\]'.l’ E\]_]’ E_J_'l )d_B_J p(m3=1|MJ_])

(4.1.-8)

The statistic Si is the statistic used for making the decision on the jth
symbol. Note that this decision is dependent on previous decisions through
p(mjlﬁj_1), in case the transmitted symbols are not independent. The ch
symbol decision is also dependent on previous data through the use of §j-1’
the sequence of previous identifications of the g(k) from the sequence of
previous data z(k).

To pursue the formation of the decision statistic, Si’ during the jth
symbol period, it will be helpful to write gj and Zj as explicit functions
of the sample number, k. Thus, define

[ =l
b
Z.=2.(k) =] -d--eee ; 2:(k) = z(jk)
J J ;j(k—]) J
B. = B.(K) —'B‘i(k) : (k
.= B, = | —feeeen 3 : = g(jk 4.1.-9
B; = B, B (-1} 85(k) = g(3k) ( )

Then, by straight-forward manipulation, (4.1.-8) is placed in the form

iK e .
S, = f...r % p(z(k), 8(k)|m.=i, M, ,, B.(k-1), B. 1, Z.(k-1, Z. ;)
1 k-‘-’(j-])K‘H o J _J"'] = "J‘] 3 _J']

dEJ(k) 2 p(mj=ilﬂj_]) (4-]-']0)

The signal processor implied by (4.1.-10) is still not practical because
of the increasing number of integrations as the sampling rate per symbol, K,
increases. It is possible, by extending the previous assumptions to do away
with the integrals entirely. First, however (4.1.-10) is taken into the
following form
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- b ]
S. = fou.s 37 plz(k)|mi=i, M. 7, B,(K), B. ., Z.(k=1), Z. ;) =
i k=(3-1)K+1 3 el =3-1" = —3-~1

. p(g(k)lm3=1, MJ—]’ BJ(k’]), EJ']’ ‘Z"J(k‘])’ ‘Z‘J'] )dEJ(k) i

~

» plmy=i[M; ) (4.1.-11)

Now, two more key assumptions are made. Suppose that at sample time k-1
(within the prodgct) and for each i, a conditional-mean estimate for gj(k-l)
is available as §j(k']’ i). Also suppose that at that gime and for each i
a conditional-mean prediction is available for g(k) as 8(k|k-1, i). Provided
that both of these estimates have sufficiently small variances, the jth symbol
statistic of (4.1.-11) reduces to

_ K g : o i
S-‘ = m p(Z(k)lm.—'l, Mj-]’ jﬁ_(klk']s 1), EJ(k—.!Q 1)9 BJ‘

k=(j-1)k+1 9 [

~

Z;(k-1), Z5q) « p(ms=i|M; ) (4.1.-12)

Equation (4.1.-12) represents the practical IDEI detection algorithms under
the assumption that suitable conditional-mean identification estimates are

-available . As the variances of the identification estimates increase it can

be expected that the performance of the detection algorithms will degrade.
If sufficiently good identification estimates cannot be obtained, then the
algorithm of (4.1.-11) should be used, with the integrations performed using
the Partitioning Theorem of [32].

When the data, z(k), is generated as in equations (3.5.-10), (3.5.-22),
and (3.6.-2), then the vector, g(k) represents all the included parameters
which may be A Priori unknown. Thus, g(k) includes all the structural elements
in the sets {r, &, A} for the R-Filter, H-Filter, and J-Filter. Also included
in (k) are u., ys Hes By dugs and S/N.

Since many of the parameters may be time varying, g(k) is taken as a
stochastic process, rather than just a random vector. In the present case, it
is assumed that ¢o(k) is created in the data receiver. Thus, Ho(k) is measure-
able and need not be included in g(k)
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With the data generated as assumed above and under the above assumptions
on the composition of g(), the density, p(z(k)|() ), required in the detection
algorithm of (4.1.-12) is conditionally Gaussian, of the form

p(z(k)[() ) =
- ;—n[det Vw(klk-l)]';zexp[-!;g(k)v;l(k|k-1)2(k)]

(k) = z(k) - z(k|k-1)

|<

2(k[k-1) = E(z{k)| ()}

v (k[k-1) = ECu(k)yT (k)] ()) (4.1.-13)

When z(k) is conditioned on the mj truly present, v(k) is the Innovations
Process [7]. In computing the M statistics Si’ as in (4.1.-12), the true mj is
used in only one of the v(k). Thus, v(k) is called here the Pseudo-Innovations.
Since z(k) is conditionally Gaussian, both v(k) and Vvv(klk-1) may be obtained
from Kalman filters. In the Kalman filter, v(k) is the dynamic feedback track-
ing error, formed in the filter. Each of the M different filters actually
attempts to track the colored interference processes, xr(k) and xj(k). Note
that in a practical implementation of the receiver, Kalman filters may not be
used, due to the computational complexity involved in on-line solution for the
Kalman gain function. If it is assumed that the statistics of the interfering
processes are, at most, slowly time-varying with respect to symbol time, T, then
the processes, xr(k) and xj(k), are almost stationary. Thus, the elements of
the various filters in the sets {r, ¢, A} are constant over periods of time,
long with respect to symbol time, T. Thus, in practical implementations, the
Wiener steady-state version of the Kalman filter may be used. To use the
Wiener filter in the practical case will require the use of an "acquisition" or
"Tock-up" mechanization to initialize the filter. This is discussed below,
with respect to the Identification problem.

The theoretically optimum receiver is based on the Kalman filter. For
purposes of bounding the best possible performance of sub-optimum (Wiener)
implementations, the Kalman mechanization is assumed. The physical operation
of the optimum detection algorithms is now explained with reference to Figures
4.1.-2 and 4.1.-3.
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Figure 4.1.-2: Decision-Directed MAP Detector (IDEI)

During the jth symbol period, M unique detection statistics Si are com-
puted in parallel, one for each of the possibly present mj. Each separate
statistic generator contains its own Linear (Kalman) Filter, Gaussian
Function Generator, Conditional-Mean Predictor/Filter, and Product Accumulator.
At the end of the jth symbol period, the non-negative statistics,ﬂsi, are com-
pared in magnitude. If Sn is largest, then the decision is made mj = n.

At the end of the jth symbol period, the decision direction feature is
employed as follows. . n, it is inferred that
the nth detection statistic generator has been processing the data using the
true value of mj. Thus, it is inferred that the Kalman filter and Conditional-
Mean Identifying filter in the nth statistic generator contain good final
filtered estimates, ir(jK), ij(jK), and é(jK), respectively. These final
filtered estimates are then routed to the other M-1 statistic generators to
reset their initial predicted estimates for the (j+1)st symbol period.

Some observations about the physical operation of the data processor are

First, note that the data model of (3.6.-2) is stochastic at

When the decision is made, mj =

now in order.
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two levels. At the first level, stochastic interferences, xr(k) and y.(k), have
been postulated. At the second level, the usually fixed elements of t%e data
generating model, such as mean and Markovian filter structure, have themselves
been modeled as stochastic. In the optimum processor, the first-level inter-
ference processes are estimated in the linear filter. These processes are
actually tracked by the filter. In the formation of the Innovations Process,
the interference estimates are subtracted from the incoming data in an attempt
to cancel the interferences. It is the conditional-mean predictor/filter

which attempts to track the second-level stochastic processes representing

the various identification elements of the data model. Note that for those
identification elements which admit to Gaussian models, the conditional-mean
estimators are also linear. However, for those elements which cannot be modeled
as Gaussian, the conditional-mean estimator will be non-linear.

4.1.2. Example

Figures 4.1.-4 and 4.1.-5 relate to a highly idealized example, presented
here to clarify some of the preceding ideas. Assume binary phase-shift-keying
with +90° phase shift in the presence of an additive colored interference pro-
cess and white noise. No multiplicative channel disturbance is assumed. Also,
postulate phase coherent translation of the band-pass data to baseband, using
an unperturbed phase reference (a highly idealized case). Under the assumptions,
the desired signal is resident in the quadrature channel only, and the data is
scalar, continuous time, taken here as z(t). Instead of Kalman filters, sub-
optimum stationary Wiener filters may be postulated in the feed-back canonical
form of Figure 4.1.-5. If Charge Coupled Device1 implementation is assumed for
these filters, then the conversion from continuous time to discrete time is
inherent in the filter structure.

]The recursive structure indicated in Figure 4.1.-5 is not the usual CCD

transversal filter structure common to the CCD art. The state-variable feed-
back structure is required so that the states may be reset at the end of each
symbol period. The design of such a CCD device is being investigated presently
at Texas A&M University.
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Figure 4.1.-4:
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For this example, the components of (3.6.-2) are

Ho(k) =1

HY(k; mj) =1

Y(k) = yj(k) : a scalar function

Hu(k; m; = 0) =+A : 0 <A

Hu(k; m; = 1) = -A

u(k) =1

n(k) = n(k) : a scalar function (4.1.-14)

The required identification for this example includes the carrier refer-
ence level, A, the symbol timing (synchronization), and the set of constants
in {r(), (), A()}. Identifying {r(), (), A()} is essentially identifying
the power spectrum of the colored additive interference and then synthesizing
a suitadle minimum-phase recursive filter for tracking yj(k).

In Figura 4.1.-4, the upper filter is for mj = 0. The Tower filter 1s
m. = 1. In the upper channel, A is subtracted from the scalar data to produce
yj(k) + n(k) when mj = 0. In the Tower channel (—A) is subtracted from the
scalar data to produce yj(k) + n(k) when mj 1. Each filter then attempts to
track yj(k) under the differing assumptions on m, . For this case the sum of
the squares of the pseudo-innovations forms a sufficient statistic for detec-
tion. Thus, the sum of squares is accumulated recursively using the scheme
shown in Figure 4.1.-4. After each symbol decision the final states in the
incorrect filter are reset using the final states in the correct filter.

It can be seen from this example that the error properties of these detec-
tion algorithms are affected by the transient responses of the linear filters.
Thus, closed form expressions for the probability of detection error must be

evaluated numerically for particular interference cases. For this reason,

the initial approach to algorithm evaluation is through computer simulation

as described below. Some closed form resuits will be available in a subsequent
report on Phase II of the present contract.
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4.1.3. Previous Related Results.

(i) Lainiotis' Results.

Lainiotis solved a simpler version of the problem in 1969-71 [25].
The problem was detection of a binary "on-off-keyed" (00K) colored Gaussian
process, generated by a given state-variable model. The generating model had
unknown (random)imbedded parameters. The detection strategy was "one-shot."
That is, only one symbol was to be detected, with no consideration of a se-
quence of symbols. His work was an extension of previous work by Middleton
and Esposito [26], on simultaneous detection and estimation.

Lainiotis' solution was a continuum (over the unknown structural parameters)
of likelihood ratios in which were imbedded estimators for the colored signal
process. The result was similar to that obtained by Fredriksen, Middleton,
and Vandelinde [27] in 1972. The present work of the author extends Lainiotis'
work to M-ary aiphabets, sequence of symbols, colored interference, and
stochastic generating structure. The resulting algorithm is also in a natural
form for adaptive implementation. Lainiotis' work culminated in publication
of his Partitioning Theorem in 1976 [32]. The partitioning approach to the
problem addressed in this report has been mentioned in 4.1.1., above.

(ii) Kailath's Results.

The present results on discrete time detection theory are also
quite analogous to some previous continuous-time work of Kailath [33], con-
cerning the Likelihood Ratios (LR) for detection of binary random signals in
Gaussian noise. The probelm analyzed by Kailath was initially that of detec-
tion of an "on-off-keyed" (00K) colored stochastic signal in white Gaussian
noise. The continuous-time formulation for the LR was

T 3 =
LR = exp j: zl(t) x(t)dt - % j’ 212(t)dt (4.1.-15)
0 0
where x(t) was the observed data process on the time interval [0,T] and i](t)
was the causal conditional-mean estimate of the colored signal, under the addi-
tional conditioning that the signal was present. The barred integral denoted

the stochastic Ito integral.
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There is a close correspondence between the discrete-time detection
algorithms of the present paper and those given by (4.1.-15). To show this
correspondence, the discrete-time version of the detection problem for 00K
signal in white Gaussian is formulated below.

The signal model is

z(k) = n(k) m, =0

N
—
~
~

1l

n(k) + y(k) : m; = 1 (4.1.-16)

where n(k) is zero-mean white Gaussian noise with variance, Vnn' y(k) is
colored zero-mean Gaussian noise with known statistics. Then

z(k|k-1, mg = 0) = E(z{k)|Z (k-1), m; = 0} = E{n(k)} = 0
z(k|k-1, ms = 1) = Ez(K)|Z(k-1), my = 13 = Ely(k)|Z(k-1), m; = 1} =
= y(k|k-1) (4.1.-17)
Also,
v(ksmy = 0) = 2(k) - z(k|k-T, m; = 0) = z(k)
v(kimg = 1) = z(k) - 2(k|k-1, m = 1) = 2(k) - y(k|k-1)
(4.1.-18)
.é Next,
; v, (klk=1, mg = 0) = Efv(ks my = 0)v' (ks m; = 0)|Z(k-1), m; = 0
{} = E{z(K)z' (K)|Z(k-1), m, = 0}
'% = Von
| Vo kI, my = 0) = ECo(ks my = v (ks mg = 1)[2(k-1), my = 1

(continued)
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E([z(k) - y(k|k-1)1[z(k) - y(k|k-1)1"|Z(k-1),

. =1} =
mJ }

ECLY(K[k-1) + n(k)ILV(k|k-1) + n(k)]T[Z(k-1),

"

mj =1}
= V;y(k[k-l) 2N (4.1.-19)
where
Y(k]k=1) = y(k) - y(k|k-1) (4.1.-20)

The conditional densities analogous to (4.1.-13) are formed as

1

p(2(K)[2(k-1), my = 0) = 3= [det ¥ 1% exp[-5 2'(k) V™" 2(K)]

J

|

nN

i

p(z(k)[Z(k-1), m; = 1) = %; [det (V_
- expl-% (z(k) - y(k|k-1))T (Vg (kk-1) + o

- (z(k) - y(k|k-1)] (4.1.-21)

=
o * Vs klk-1)T7E

From (4.1.-21) the product required in (4.1.-12) yields the compound densities
p(Z(K)lmj = 0) and p(Z(K)lmj = 1). Then the likelihood ratio is formed

1]
-
~—

5 p(l&K)Imj
P(Z(K) |,

LR

1
o
~

K det V S %1 K ) ;
= ke det(vnn + Vyy(klk-1)) . exp -2[_kzl (z(k) - y(k|k=1))" -

¢ (Vg (k] k-1) + vnn)" . (2(k) - y(k|k=1)) - zT(k)vnn“ z(k)]
(4.1.-22)
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Since all quantities are scalar, the determinant and transpose notation may
be dropped. Also (4.1.-22) is manipulated into the following form

K v 3 K .

LR ={ 1 nn 2« exp{ ) y(klk-1) -
B Nkk_ =

" vyy( [k-T) k=1

U V;}(k[k-]))']z(k) "

K . )

) Ly, + v, (klken) U y(kk-1) + :

eox 1 awfv,? o, kkl))"—i k]4123
s 1200 VT VKl | )_] 1.-23)

The LR of equation (4.1.-23) is similar in form to the continuous-time
LR of equation (4.1.-15), with the finite summa;éoﬁ/glaying the part of the
integral. The dissimilarities are/ﬁi}-a/hga—unity multiplier of the expo-
nential term, (ii) a third term in the exponential, and (iii) a weighting
which is not just the/inVékse of the additive noise variance (assumed unity
in [33]).

It is noted that Vvv(klk—1, mj = 1) is the variance of the Innovations
process associated with the hypothesis, m; = 1. As noted in [33], as the
sampling becomes dense in the interval [0,T], to approach the continuous-
time case, the white noise variance, Vnn’ dominates the predicted error
variance, V;;(k]k-]). Thus, in the 1imit for dense sampling, (4.1.-23)
becomes

J

LR = exp[:kz] }(k[k-i)vnn‘1 z(k) - & kz] }(k[k-])vnn" y(k|k-1)
(4.1.-24)

The LR formulation for discrete-time dense sampling of (4.1.-24) is certainly
a counterpart of the continuous-time LR of (4.1.-15).




(iii) Painter's Results.

Recently, Painter [29] has obtained Monte Carlo simulation re-
sults in a preliminary NASA-sponsored investigation of the optimum detector
of Figures 4.1.-2 and 4.1.-3. A quaternary alphabet was used, with indepen-
dent occurrence of successive symbols. The interference process consisted
of colored multiplicative noise and white additive noise. No colored addi-
tive noise was implemented. The signal modulation format was an AMSK
form, proposed by Aeronautical Radio, Incorporated for an industry-standard
airline digital data-link [34].

In the simulation, the optimum algorithms of (4.1.-12), and (4.1.-T3)
were used, with the exception that ﬁo(k) wasAnot included in the Kalman filter
algorithms. For the first simulation runs, g() was given to the Kalman filter,
exactly, by hardwiring the various elements directly from the data process
generator. In these runs Ho(k) was set equal to the identity matrix, both
in the data generator and in the Kalman filters. Thus, the first simulation
runs were with perfect identification. From simulation results, measured
symbol error rates were plotted. The error rate curves, so derived, dis-
plated the desired exponential decrease with decreasing white noise level.

See Figure 4.1.-6.

Standard receivers, having no knowledge of the multiplicative noise, were
run in parallel with the optimum iffterference tracking algorithms, for the
purpose of comparison. The standard error rate curves displayed the expected
saturation of error rate with decreasing white noise level. See Figure
4.1.-7.

The final set of Monte Carlo simulation runs employed suboptimum estima-
tion of some of the required identification elements in g(k). In particular, {
Vnn(k) and u(k), the white noise variance and channel mean value function,
respectively, were estimated. During these runs the g(k) process was held
stationary. In particular, Vnn(k) and u(k) were held constant. Also, symbol
timing was provided to the data processor. For some of the runs, Ho(k) was
held to the jdentity matrix. In some runs, a "phase-jitter" process, ¢0(k),
based on phase-locked Toop carrier phase synchronization, was inserted into
Ho(k)' However, for these runs, ﬁo(k) was not inserted into the Kalman filter
algorithms. The resulting inaccuracy appeared to have little effect on the
resulting error rate curve. See Figure 4.1.-8.
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In 1mp]ement1ng the subopt1mum identification estimators, it was found
that the triple {F(), ¢() A()} could be set into the Kalman filter a]gor1thms
in a fixed configuration. A1l that was necessary was that {F(), @(), A()} repre-
sent a filter structure which creates a process of "wider" power spectral
density than that actually presented by Y( ). It is clear from work of Son
and Anderson [15] that the triple {I(), ¢() A()} is not un1que For the
optimum identification problem, the identified triple {r() Q() ()} need
only be capable of recreating the autocovariance function Vyy(k,J), for the
interference process, Y(k). However, in the simulation, it was found that
the measured error rate was not highly sensitive to the values of
{f(), &(), R()}, so long as the bandwidth constraint, mentioned above, was
met. See Figure 4.1.-9.

The suboptimum estimators for n(k) and Vnn(k) were not conditional-mean.
They were maximum-1ikelihood sample-mean and sample-variance estimators
respectively. Moreover, they were not absolutely recursive. Since V (k)
and u(k) were known, A Priori, to be constant, the estimates V ()

E(), obtained by decision-direction at the end of the (J-1)st symbol interval,
were used for each k in the Jth symbol interval. It was found that the sub-
optimum estimator for u(k) performed satisfactorily, in terms of the error
rate measure. The error rate for the adaptive optimum detector saturated at
a value lower than that for the standard detector, but at a level too high to
be useful. See Figure 4.1.-10.

4.2. THE LINEAR TRACKING ALGORITHMS.

For the assumed data generating model of equation 3.6.-2 and Figure
3.6.-2, it is assumed that the rotational process which produces the unitary
matrix, Ho(k)’ is generated in the receiver itself. Thus, Ho(k) is measure-
able and its inverse may be computed. Therefore, the first step in the detec-
tion process is to multiply the z{(k) of 3.6.-2 by H;](k). If, in practice
this is not done, the prior results of [29] indicated that the effects of
Ho(k) are absorbed into the multiplicative noise, xr(k), itself.

Under the assumptions concerning Ho(k), the data model for use with the
Kalman filter is
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z(k) = Hy(k) Y(ksm) + H (ksm)u(k) + n(k) (4.2.-1)

where the various elements of (4.2.-1) are as in (3.6.-2).

The Kalman filter corresponding to equation (4.2.-1) is depicted in
Figure 4.2.-1. Because the multiplicative noise, xr(k) and the additive
colored noise, xj(k), are generated independently the Kalman filter may be
split into two parallel branches which are coupled only in formation of the i
tracking error function, the Innovations. However, because of the coupling
through the Innovations, the Kalman gain equations, from which Gr(k) and Gj(k)
are computed, are coupled. |

The Kalman filter equations are

X (k[k=1) = o X (k-1) 3 X.(0) = 0
Xj(klk=1) = o 5X;(k-1) 5 X;(0) = 0
E Y (kK1) = & X, (k[k-1)
| Y5 (k[k=1) = X (k[k-1) A
A H, (ks m; A (k]k=1))*h(k)
Y(k|k-1, m) = E-E----T---Z-%f--l __________
.;'j(k,k'l)

w(k) = z(k) - Hy(k) Y(k|k=1, m) - H (k; m) u(k)

(k) = X (k[k=1) + G.(K) w(K)

X;(k) = X (k[k=1) + Gy (k) w(k) (4.2.-2)

The equations of (4.2.-2) are also the Wiener filter equations when the
asymptotic steady-state values are used for the Kalman gain functions, Gr(k)
and Gj(k). Note that the filter algorithms require many of the A Priori
unknown elements of the g() vector, such as u(k), A, etc. This shows the
practical significance of the Identification problem.
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For the case of additive colored interference only, with no multiplicative
noise, the Kalman gain equations for G.(k) are straight-forward. They are

J
Vy g (kIK=1) = ogus 5 (k-1)od + 1,11 = Wy 5 (0) =V, (0)
3% 3% 254 3 3%
' 00 S A i
6;(k) = V5 (K[k-1)ag Hi(k) = DV o+ Ha (DAY 5 necnyal Wl 7!
JJ JJ J
Vi, () = (1 - 65(k) Hy(k) 4] v;j;j(uk-n (4.2.-3)

where Vnn is the 2 x 2 variance matrix for the additive white noise, n(k),
as given in (3.5.-16).

The Kalman gain equations for the case of multiplicative noise only are
not straight-forward for the general case when h(k) is not equal to the delta
function (Kroneker delta). In place of the term of form HAVQQATHT in equa-
tion (4.2.-3), the corresponding term in Gr(k) is

T T Hlkei, m, A Vy % (k=i, k-3)AL Hi(k=3, m,a)h(i)h(3)
i=0 i=0 s

which is essentially a double discrete convolution. It is clear from this
result that the gain function, Gr(k) can not be computed on line. If used

at all, the Kalman filter for the delay-spread signal would require a pre-
computed and stored Kalman gain function, Gr(k)‘ This is another reason

for using the stationary Wiener filter in practice. For the Doppler-spread
channel only, without delay-spreading, however, the gain function, Gr(k), may
be computed on-line, analogous to Gj(k).

For the case of no delay-spreading but with both colored additive inter-
ference and colored multiplicative noise (Doppler-spreading), the Kalman gain
functions may be obtained by solving the partitioned matrix equations analo-
gous to (4.2.-3) for the compound state-vector obtained as X(k) = [Xl(k):
xS (07".

As mentioned above, the stationary Wiener filter is obtained using the
Kalman filter structure of Figure 4.2.-1 and the steady-state values for the
Kalman gain functions. In general this requires solving the three gain
equations for the steady-state value of the tracking error variance matrix
and computing the gain functions using the steady-state error variance.
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For colored additive interference or for the Doppler-spread multiplicative
noise channel without delay-spreading, the gain equations have the general form

V(k|k-1) = oV(k-1)s' + TT'
V(k) = [I - G(k)H(k)A]V(k!k-])
6(k) = V(ATH (k)v] (4.2.-4)

In (4.2.-4), V(k|k-1) and V(k) are the predicted and filtered error variance
matrices, respectively. H(k) is a unitary matrix representing signal modula-
tion in the Doppler-spread case or the offset carrier effect for colored
additive interference. Note that the equation for G(k) is the alternate
expression which is not used for recursive on-line computation.

In the steady-state, V(k|k-1)and V(k) are not equal but V(k) and V(k-1)
are equal. Thus, (4.2.-4) may be manipulated to obtain

V(k) & v =[I- VATHT(k)v;lH(k)A][¢V¢T + 1117 (4.2.-5)

where V is the constant value of the tracking error variance matrix. Equation
(4.2.-5) is quadratic in V and may be solved for V. Note that a requirement
for V to be constant is that H(k) be unitary so that the term HT(k)V;lH(k) is
constant. Given the steady-state solution for V(k) = V, the Wiener gain
function is

6(k) = vaTHT (kv (4.2.-6)
Note that G(k) is not constant, since it contains the time-varying term, HT(k).

However, the inner product GT(k)G(k), which may be interpreted as the "power"
of G(k) is constant.

4.3. STANDARD DETECTION ALGORITHMS.
It is desired to compare the performance of the optimum detection algo-

rithms of (4.1.-12) with the performance of standard sampled-data detectors.
For comparison purposes, binary phase-shift-keying (PSK) and frequency-shift-
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keying (FSK) are chosen. The standard algorithms may be derived from considera-
tion of Figure 4.3.-1, which shows the In-phase/Quadrature Carrier Demodulator.

0— LPF 4<=Zﬂ1)
?’

sit;m) +n(t) 2 cos[wet +Py(t)]
()— LPF o Zq(f)
-2 sin[at + (1]

Figure 4.3.-1. I-Q Carrier Demodulator.
The continuous time input signal and noise processes are modeled as
s(t; m) = A(t; m)cos[wct + ¢(t;m)] : m=0,1
n(t) = n%(t) cos w.t - né(t) sin w.t (4.3.-1)
In (4.3.-1), A(t; m) and ¢(t; m) are envelope and phase functions for the
modulated signal, as detailed in Section 3.2. The processes n%(t) and né(t)

are independent, zero-mean, white noise, with equal variances.
The output I-Q data vector is defined by
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r2(en)
z2(t) = |, (t)é = Hy(t) s(t; m) + n(t)
2o (t)
[ cose, (1) sin¢0(t)} U A(ts m) cosg(t; m) |
Ho(t) = L-singy(t) cos (t) s(t; m) = _A(t; m) siné(t; m)_
g {‘ni(t)] [ ny(t) coss(t) + na(t) sing (t) ]
R nger] T nt () singg(e) + ni(e) coseg(t) |

(4.3.-2)

In (4.3.-2), ¢o(t) is a phase perturbation which in this model is intro-
duced in the I-Q demodulation reference. However, in general, such a phase
perturbation, which results in a rotation of the signal vector, could be in-
troduced by the channel itseif. The effect on the detection algorithms will be
the same, regardless of the physical origin of ¢0(t). The good practical
approximation is made that ¢o(t) is independent of n%(t) and né(t). Then
n.(t) and n_(t) are zero-mean and have the same variance as n:(t) and n'(t).

n:(t) and nZ(t) are taken as Gaussian, since for the given va;iance, aq

Gaussian process has maximum entropy. Hence, n(t) is Gaussian.
Sampled-data detection is accomplished by accumulating K samples of the

data vector, z(t), during the symbol period of length, T. Then, the 2K-

vector, Z(K) is formed as

[ z(k) 7
Z(K) = Ezk‘:ﬂ‘ (4.3.-3)
i Earn
z(1) J

It is assumed that the symbols are equally likely. That is
p(m) =% : m=0,1 (4.3.-4)

Thus, the Maximum A Posteriori Probability detection strategy and the Maximum
Likelihood detection strategy are identical and the symbol decision which is
obtained by comparing the densities, p(m|Z(k)), is also obtained by comparing
the densities, p(Z(K)|m) for m = 0, 1.

In general, the required density may be obtaired as the marginal density

69




<«

PE(K)M) = 7....0 p(E(K), 2 (K)) de_(K) (4.3.-5)

where the indicated formal integration is over each value of the process,
¢o(k), that is, over ¢o(1), ¢o(2), e ¢0(K).

4.3.1. Coherent Detection of Angle-Modulated Signals.

Coherent detection algorithms are obtained by assuming that
¢ (k} =0 ¥ k=1, 2, ...5 K (4.3.-6)

This is equivalent to assuming perfect phase-coherent demodulation references
for the I-Q demodulator. Under this assumption, the 2K data vector is

Z(K) = S(K; m) + N(K) (4.3.-7)
where for angle-modulated signals,

S(K; m) = [cos¢(Ks m), sing(K; m) ... cos¢(1; m), sing(1; m)]T

N(K) = [y (K)s ng(K), -.ey (1), mg (DT (4.3.-8)
The required density, p(Z(K)|m), is Gaussian and is given by

p(Z(K)[m) =

- g b (-~ [Z(K) - (6 mITTZ(K) - Sk m)]) :

(2m) (On) 20n

(4.3.-9)

where c% is the variance of ni(k) and nq(k). A Likelihood Ratio (LR) test is
defined as
=0
p(Z(K)[m =0) »

e e 1 (4.3.-10)
P(2(K)[m = 1) <

m=1 1

LR
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Substituting (4.3.-9) into (4.3.-10) yields the Likelihood Ratio,

R = exp (- = [ -2 2T (K)IS(Ks 0) - (ks 1)] +

20
n

ST(Ks 0)S(Ks 0) - ST(Ks 1)s(K; 1)1 (4.3.-11)

For angle-modulated signals s(t: m = 0) and s(t: m = 1) are equal power
signals. Thus

sT(K30)5(K;0) = ST(KsT)S(K3 1) (4.3.-12)

and the Likelihood Ratio test of (4.3.-10) becomes

T m=0 T
2 (K)s(K;0) 27 (K)S(K;1) (4.3.-13)
m=1

The test of (4.3.-13) is actually in the form of a correlation test, since
the inner product, gT(K)§(K: m), is a measure of the correlation between the
signal waveform and the data waveform.

The test of (4.3.-13) may be rewritten as

m=0
T cos¢(ks;0) - cos¢(ks1)y >
: 2 (K ging(k:0) - sing(ks1)d < ©

<
n
I~

(4.3.-14)
k

m=1

where v is a "sufficient statistic" for detection.

The probability of error, P(e), for coherent detection may be obtained as

P(e) P[0 < v, m= 1JU[v<0,m=0]}

350 p(vim=1) dv + s° p(v|m = 0)dv] (4.3.-15)
0

-

where p(v|m) is the density of the sufficient statistic, conditioned on the
symbol, m. The variable, v, is Gaussian, when conditioned on m,
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The means

Then, the

where the

signal are

K

¥ = kz]{[cos [4(k30) - ¢(k31)T - 1] + ny(k)[cos¢(k;0)-cos¢(k;1)]
+ nq(k)[sin¢(k;0)-siné(k;1)]}:m =
K
v= ] {1 - cos[s(k;0) - ¢(k31)1] + ny(k)[cos¢(k;0)-cosé(ki1)]
k=1 + nq(k)[sin¢(k;0)-sin¢(k;1)]}:m =0
(4.3.-16)
and variances are

K
EQv|0} = -EQv[13 = ) D1 - cosle(ks0) - o(ks))]) €y,

K
var{v|0} = var{v|[1} = 262 } [1 - cos[4(k;0) - ¢(k;1)]1] 4 o2
k=1

(4.3.-17)
probability of error is
" f=rar s
e - v é ;’”E(] = P o
P(e) = %[1 -erf ( . )1 =301 - erf [ &1 11 (4.3.-18)

\

implicit definition is used

Q 5 =
<N <

_ E(:l - p) (4.3.-19)
0

(i) Results for PSK.

For PSK, the envelope and phase functions for the modulated

A(k;0) = A(k;1) = 1 ; a¢ is phase deviations in radians

#(k;0) = -¢(ks31) = a4 (4.3.-20)
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Then

2
E¥ K[1 - cos(2a¢)]2 _ sin2(a¢)
% 202 K[1 - cos(2a4)] o2/K (4.3.-21)

The term, p, is correlation coefficient between the two transmitted signals.

For PSK,
o = -1 (4.3.-22)
Thus, for PSK

_ % sin?(a¢)
0 oﬁ/K (4.3.-23)

z.m

(i1) Results for FSK.

For FSK, the envelope and phase functions for the modulated

signal are
A(k;0) = A(k;1) =1 ; Aw is frequency deviation in
radians/second
6(k;0) = -¢(ks31) = Bu-t, T is symbol period
o= k- B (4.3.-24)
k =4l e |

wr = ¥ (4.3.-25)
Then, the equivalent phase deviation for FSK is
A = (4.3.-26)

Aw
w-l-
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and
o s t, = 86 wr o (k- %)%~ = g%(k - %)8¢ (4.3.-27)
Then,
} 2sin2(aut, )] L5 o
2sin? (Aw-t - sin?(Aw-t, )
2
N § . Lk By
2 K 2
% 202 ] 2sin?(sw-t,) % /K
k=1
1 K . 27
¥ Y sin?[ X (k - %)a¢]
. K
/K (4.3.-28)

Provided that the equivalent phase deviation (or frequency deviation is chosen
so that p = 0, which is standard practice in the non-coherent case.

K K
s 1 en
T]( Iosin?( 5F (k - ¥)ag) 1 -¢ k; cos?( &% (k - %)ne)

2 2
0 o /K on/K

(4.3.-29)

(111) The Recursive Coherent Detection Algorithm.

Since generally it is preferable to have the detection processing
recursive, the Likelihood Ratio test of (4.3.-13) is now converted to recursive
1 form. From (4.3.-14), the recursive Likelihood Ratio test may be written
as
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3 LR(0) = 0
; LP(k)=gT(k) r(k) + LR(k = 1) : k=1,2, ..., K
1 (continued)
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(cos¢(k;0) - coso(ks1) 0
1 r. J 5 PSK

£(k) = Lsing(k;0) - sing(k;1) ~ [2 sin(as)
1"0]
" L2 sin(aut,)] FSK
m=20
R(K) 7 0 (4.3.-30)
m=1

Note that the reference signal, r(k), contains zero as the in-phase
channel reference. This means that the standard detector uses only the
quadrature channel signal component to make the symbol decision. This is not
the case for the optimum detector for multiplicative noise (Doppler-spread
channel). There, generally, a component of the signal is rotated into the
in-phase channel by the multiplicative noise. Note that the same comment
would apply if the I-Q carrier demodulator phase reference, ¢o(k), were non-
zero.

4.3.2. Non-Coherent Detection of Angle-Modulated Signals.

Non-coherent detection algorithms are obtained by assuming that

¢o(k) =i V= il o2y oy K (4.3.-31)
where 9 is a random variable which is uniformly distributed over the interval,
[0, 2n]. This is equivalent to assuming that the reference phase for the
coherent I-Q demodulator is completely unknown, but is constant over the symbol
period. Then, the required density is obtained as

p(2(K)|m) = 7% ofz" p(Z(K)[m, o )de, (4.3.-32)

where Z(K) is defined by (4.3.-3) and
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2(k) = H(¢,)s(ksm) + n(k)

™ cose, sin¢o-1 cosg(k;m) ]
H(e ) t L-s1n¢ cos¢o_j s s(ksm) = _sing(ksm) |
n. (k)
n(k) = n‘(k); 3 k=D 2y oiaes B (4.3.-33)
.._.q et
Now,
P(2(K)[m,6,) =
: 1 . 7(
S @0 (ol (20 - ZKinug,)] "T2(k) - Z(Kin.s, ﬂ
n n
= ————1—————- exp {;—l— E [z(k) - z(k|m ; )]T[Z(k) - z(k|m,¢ )jl
(2m) (02)" ST Sl
(4.3.-34)
where
z(klm,e ) = E{z(k)[m,o}
= H(¢o)§(k;m) (4.3.-35)
Then
K
| P(Z(K)[m,4,) = —L—K exp (- T [2'(k)z(k)
(27) (oﬁ) 20% k=1

2 2 (K)H(o,)s (ksm)

D R T e T s
-+

s (ksm)HT (o JH (4 )s(k;mn}

-

Q (K;m) exp[ Z H(9y)s (kim)]

=ho|_a

(continued)




%4 1 b ko | PR |
QKsm) = ———— exp ¢- Y [z (k)z(k) + 5" (ksm)s(ksm)]
(2m) " (o2)K L 202 k=1 J
(4.3.-36)
Next, (4.3.-36) is manipulated into the form
P(Z(K)[m,6,) = Q(Ksm) exp[a(Ksm) cos¢, + b(Ksm) Sin¢0]
K "cos¢(ks;m)
T T(k) |
il kZ] 2 )| sing(ksm) |
n
K Tsing(ksm) |
afie b T ’
b(K;m) = " kZ] 2 (k) |_cosg(ksm) | (4.3.-37)
n

Finally the integral of (4.3.-32) may be performed to obtain

p(Z(K) m) 5%— szTT Q(Ksm) exp[a(K;m) cos¢, + b(K;m) sin¢o]d¢o

Q(Ksm) IO[ Yac(K;m) + bZ(K;m) ] (4.3.-38)

i where IO() is the Modified Bessel Function.
i Because s(k;0) and s(k;1) are equal power signals

Q(K;0) = Q(K;1) (4.3.-39)

Because Io() is monotonically increasing for positive increasing agrument, and
because of (4.3.-39), the Likelihood Ratio test for non-coherent detection of
angle-modulated signals becomes

m=0
a2(K;0) + b2(K;0) ~ a2(K;1) + b2(K;1) (4.3.40)
m=1

- Sl Sl st W g e T

| (i) Recursive Detection of FSK.

For FSK, ¢(k;m) are as given in (4.3.-24) for m = 0, 1. The
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recursive algorithm is defined by

T cos (Awtk)}
a(k;0) = z (k) L (Awtk)? + a(k-1; 0)
T rsin (Awtk)j,:
b(k;0) = z (k);L_cos (Amtk)j + b(k-1; 0)
- " cos (Awtk)j
a(ks1) = 2 (k)| _osp (Awtk)J + a(k-1; 1)
. 5
b(k;1) = ;T(k)[:(s:;rsl gﬁﬁ:kg [ + b(k-1; 1)
a(0;0) = b(0;0) = a(0;1) = b(051) =0

0 (4.3.-41)

4.4. IMPLICATIONS ON SIGNAL DESIGN AND CODING.

The Integrated Detection, Estimation and Identification (IDEI) algorithms
represent a new and different approach to Maximum A Posteriori Probability
detection of M-ary signals. The algorithms provide "gain" against "Doppler-
spreading colored multiplicative noise and colored additive processes by i
tracking the interference waveforms, themselves. Since the detection gain
depends on tracking the interference (in the presence of receiver generated
additive white noise), the narrower the interference spectrum is, the better
the tracking and detection performance will be. This observation is based on
the assumption of fixed white noise spectral density, fixed colored inter-
ference power and fixed sampling rate. In the case of intentional colored
interference, game theoretic considerations imply that the interference
spectrum width should be commensurate with the signal spectrum width. This
and the tracking requirement imply that spread spectrum signalling may not be
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the best choice, A Priori, for use with IDEI reception. Thus, the question is,
"How can Detection, Estimation, Identification, and Signal Design and Coding
be integrated in a rigorous yet natural manner? The answer lies in the area
of "Probabilistic Decoding" [35], as opposed to "Algebraic Decoding" [36].

The distinction between algebraic and probabilistic decoding is described
below, with reference to Figure 4.4.-1. The coder is a deterministic mapping
of sequences of source symbols, mj* e DQ, to sequences of modulator input

symbols, mj € DM’ where DQ and D,, are Q-ary and M-ary alphabet sets, respec-

tively. The modulator is a memogyless device which, for each symbol, mj, of
the input sequence, produces at its output a waveform, yt(t; mj), on the time
interval, [(j-])TS, J Ts]' Data transmission is accomplished by transmitting
into the channel a sequence of waveforms corresponding to the modulator input

sequence. Let the jth N-sequence of modulator input symbols be denoted

N

. N 5
Then the corresponding modulator output waveform is
5 2 A N
y(ts W?) = {yg(ts myg)s ((-1) + G-1N)Tg < t < (I+(-1N)T
(4.4.-2)

The compound modulator output waveform of (4.4.-2), on passing through
the channel, produces a compound received waveform, z(t; w?), which may be
viewed as a sequence of waveforms as

N

g(t; wj) = {z(t; mji) -

((i-1) + G-1INT, < t < (+E-DNTH, (4.4.-3)

The z(t; mji) are produced in accordance with the probabilistic mapping implied
by the particular channel model being used.

The demodulator processes the individual members, z(t; mji)’ of the
received waveform sequence, to produce a sequence of numbers, {di)?fl,
di ¢ D. The specification of n, N, and D depends on the particular decoding
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strategy employed, and is made clear, below. The decoder processes the se-

*
quence, {di}?yl’ to produce decisions, or estimates m. on the corresponding

In algebraic decoding, the sequence, {di}?gl, produced at the demodulator

:

input symbols, {mji}?=1' In this case, D = D
case, D = {0, 1}, and the di are binary symbols. An algebraic decoder attempts
to exploit redundancy introduced in the coder my mapping the demodulator output

J
M

and n=1.

output, is an N-sequence of estimates, {ﬁ-i}§=], of an N-sequence of modulator

In the usual binary

sequence {d;};_;, into an admissible coder input sequence, (ﬁji*}?.].

Massey [37] illuminates some of the limitations that algebraic decoding

places on overall communication system performance.
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modulator produces only a decision estimate, mji’ of the modulator input, mji’
then any available information on the quality of the decision is not utilized.
Thus, the algebraic decoder must necessarily treat each of the elements of a
sequence of demodulated symbols, {&ji}?=1’ as being of equal quality. This
loss of information, due to the demodulator's implementation of a "hard
decision" strategy, limits the performance of the total system formed of the
coder/modulator/demodulator/decoder. For the case of transmission through a
discrete, memoryless channel, such as an additive white Gaussian noise channel,
Massey [37] shows that the overall system performance is improved by probabil-
istic decoding using a demodulator having an output alphabet larger than the
modulator input alphabet. The limiting case of an infinite output alphabet
results when the demodulator output consists of a vector of outputs from a set
of filters matched to the channel waveform set, {z(t; mji); i-T1,N}.

Chase [38] discusses the use of channel quality information in probabil-
istic decoding of block codes for channels with memory due to correlated fading
(such as the aeronautical data-Tink example). Block encoding of data produces
binary word sequences, {mji}?=1’ which phase-shift-key a set of N orthogonal
FDM tones in a Kineplex [39]-type modem. In addition to binary decisions,
{&ji}?=1’ theNdemodulator provides the decoder with a reliability measure se-
quence, {“ji}i=]’ which allows the decoder to weight certain demodulator symbol
decisions more heavily than others in the decoding process. Chase [38] shows
that this probabilistic decoding provides a significant performance improve-
ment for both simulated and physical channels. Unfortunately, Chase's system
exhibits a saturation of the error rate curve for large signal-to-noise ratios,
which he calls, an "irreducible" error rate due to time and frequency-selective
fading. Such saturation was also reported in [29] for demodulators which did
not properly process the multiplicative noise (which causes time-selective fading).
A key question is to what extent the IDEI algorithms are subject to error rate
saturation and to what extent such saturation can be reduced using probabilistic
decoding.

The IDEI algorithms derived above as equation (4.1.-12), provide a rigor-
ous, yet naturai, means for integrating the function of single-symbol probabil-
istic decoding with those of detection, estimation and identification. Block
coding and convolutional codina are treated below.
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4.4.1. Block Coding.

Suppose that the coder uses block encoding, mapping a source symbol se-
quence of length L into a modulator input symbol sequence of Tength N. Since
there are Q symbols in the source alphabet, it follows that there are QL
possible sequences, each, for the source and for the modulator input. Let
the Jth modulator input sequence, wj, be as in (4.4.1). Let the resulting
channel output waveform, z(t; wj), be reduced to a discrete-time sampled-data
vector, z.(k) by sampling at a fixed uniform rate of K samples per symbol,
mji’ as per (3.5.-6). The vector, z.(k), then contains KN sample vectors, z(k).
Now, define a vector of code words, @j(k), as

where the elements of Qj() are vector representations of the block sequences
of symbols. That is

N B O | miy(k) 1
Yk) = meg(K)y o..s mao(k), miq(k L
wj( ) ;mJN( ) mip(k)s myq {4 | wﬁ‘T(k)J e

~

5 modulator input sequence.

and the mji(k) are the M-ary symbols in the j
Corresponding to gj(k) is the total data veﬁtor, gj(k), containing jNK
sample vectors, z(k), or j "block data vectors" gi(k) for 1= Ty 25 <oss 3o
MAP detection of the entire vector of code words is performed by computinq a
statistic, S, proportional to the A Posteriori probability p(W |Z
The same development of the present statistic, S, may be fol]owo* a
was previously for symbol by symbol detection. Only now, major decisi
made at the end of each code word, wN(k). In particular assume that
(3- 1)5t dec151on state, the probab1]1ty p( IZJ . (k)) is
J ](k) J ](k) Also assume at that stage that a very good
mean estimate of the identification parameter vector, . [}
B, 1(k). Then, the statistic, S, is decision-directed
vector, and becomes
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(4.4.-6)

where, now, NN(k) is given by (4.4.-5) and the ;g(k), gg are "block vectors”
defined by

Z..(k) B..tk ]
Zg(k) - -?iy;---- , gg(k) - -iﬁﬂ;-z-- (4.4.-7)
2 ) k) |

and the Zji(k)’ gji(k) each contain K sample vectors z(k), 8(k), respectively.
Now, by straight-forward repeated application of Bayes rule, (4.4.-6) is trans-
formed to

N . . ’
2 i-1 i-1 i-1
s= [l L p(Z;4(K), By (0| mys 0, 237100, BV (), W k),

 OR s (k) Wit , N
=1 Sy §J_1) p(mﬁ(k)‘wJ (%}, @J_]) d B;(k)

(4.4.-8)

which is equivalent to (4.1.-8), above. Equation (4.4.-8) is further trans-
formed as

w
1]

- i-1 i-1 i-1
foorof ) P(Zy4 (k) [By (k) myy(K)y Z5™ (k) By~ (k) wy™ (KD,
1=

2 : j=1 i-1 i-1
T ne W oy B o) R 1K) 2o o B W .
231 Wy By q) - e8Iy (), 237 (), BT, wyT (k)
: - i-1 - N

(4.4.-9)

Equation (4.4.-9) implies an averaging type algorithm consisting of QL parallel
branches, one for each unique modulator input code word.
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To minimize demodulator complexity, it is assumed that at the end of the
(1'-1)St symbol processing period, in the jth word, a good filtered estimate of
the identification vector, 53‘](k) is available as é}'](k). Then, equation
(4.4.-9) transforms to

N

i-1 ni-1 i-1
S = 1 Z..(k)|B..(k), m..(k), Z. , B! st o
= S Pz (00185 (k) s myy(k)s 27 (k) By (k) s W7 (k) 25 4
y & i-1 ~i-1 i-1
Qj_]’ §J_'|) & p(BJ‘I(k)lmj'l(k)’ ;\] (k), EJ ) wj (k)9 _Z_j_]a
-~ - 1'_" PN

Equation (4.4.-10) is a general averaging algorithms which requires a one-symbol
conditional-mean prediction density on the identification vector, gni(k). The
algorithm is not, however sample recursive, but, rather, processes the received
data in symbol blocks.

To obtain a fully recursive form, it is assumed that good estimates are
available for filtered and one-sample-stage predicted identification vectors,
g (k) and g{k|k-1). Then, (4.4.-10) yields

N N : :
- a5 _ 5 " pi=1 i-1 _ .
S = 11l 8(k]k1), Byg(e1), BT myy (k) wy™ 2y (k 1}

3 =l
£O-1’ gj-]’ Bj-]) ’ p(mJ1(k)|ﬂJ ’ Qj_] (4.4.-11)

Equation (4.4.-11) is a fully recursive algorithm which represents QL
parallel branches, one for each word reference y?(k). For relatively short
code words, (4.4.-11) is a feasible algorithm. For long code words, it is
probably more sensible to make a "soft" decision on the symbol sequence, as it
progresses. This soft decision is used only for the purpose of reinitializing

the filters after each symbol. The resulting algorithm yields M parallel
decision-directed branches. However, the word decision statistic still con-
tains QL points. The QL points are the reduced set obtained from the MN
possible products of the symbol-by-symbol outpout statistic, using only ad-
missible modulator input code words.
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In (4.4.-11), the p(z(k)|() ) are conditionally Gaussian. Thus, the basic

structure of the parallel branches consists of paired linear (Kalman) filters

and conditional mean identifier predictor-filters, as in Figure 4.1.-3. Follow-

ing the paired filters is the same multiplicative accumulator for building up
the statistic at the end of each symbol period. A new feature, now, in the

soft decision case, is a subsequent product accumulator, following the paralleled

branches, for building up the statistic at the end of each subsequence of
symbols, composing the code word.

4.4.2. Convolutional Coding.

In the previous section, above, has been shown a method for integrating
the block coding, decoding function into the detection/estimation/identifica-
tior problem. The algorithm, so developed, utilizes probabilistic decoding in
a natural, yet rigorous, way. It is conjectured with high confidence that
convolutional coding, decoding may be integrated in a similar manner. It is
further conjectured that the generic minimum form for IDEI Receiver/Decoder
will be of the form of Figure 4.4.-2. The generic Receiver/Decoder will
process input data, one sample at a time. The parallel branches will deliver
decision statistics to a decoder at the end of each symbol. Soft symbol deci-
sions will be used to reinitialize each parallei branch. The decoding algo-
rithm will make a word decision at the end of each N-symbol sequence. The
last symbol of the hard word decision will be used to reinitialize the parallel
branches and the decoder for processing the next word.

4.4.3. Waveform Design.

It is not enough to just implement coding and probabilistic decoding.
Maximization of IDEI receiver performance requires that special attention be
paid to the selection of the transmitted waveform, yt(t; mji)’ corresponding
to mji’ which is the ith symbol in the jth N-sequence. Since bandwidth expand-
ing modulation is not necessarily required, it may be desirable to use narrow-

band signalling with finite bandwidth waveforms (See Reference [40]). To
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circumvent the possibility of intentional interference by waveforms correlated
with the transmitted waveform, a selection of waveforms may be necessary, with
different waveforms corresponding to different symbols in the DM alphabet.
The trade-off between minimization of correlated interference and the size of
the DM alphabet should also be examined.

Although no effort in the signal design area was made during the period
of the Contract reported herein, the area is one which must be investigated
if IDEI reception is to be developed for practical use. More is said on this
below where initial simulation results are detailed.
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SECTION Vv

THE IDENTIFICATION PROBLEM
5.1. IDENTIFICATION FOR THE DETECTION PROBLEM.

Equation (4.1.-12), above, presented the algorithm for formation of the
MAP detection statistic, using Decision-Directed Interference Cancellation
and Channel Identification. In derivation of that algorithm, it was seen that
an estimation algorithm was required for g(k), the vector of channel compo-
nents to be identified. In particular, recursive estimates, éjklk-l) and
é(klk), were required, which were, respectivelv, a one-stage conditional-mean
predicted estimate, and a subsequent filtered estimate. The fact that condi-
tional-mean estimates were specified by the optimum detection algorithm
implies that the optimum identification algorithms are of the type which mini-
mize the mean of the square of the estimation error.

The precise forms of the estimators, é(k|k-1) and é(k[k),are dictated by
the probabilistic models chosen to represent the various components to be
identified. With respect to the canonical model of Figure 3.6.-2, the Identi-
fication components are partitioned as in Table 5.1.-1.

Now, all of the components listed in Table 5.1.-1, except A and Aw. are
needed in order to optimize (in the Kalman-Wiener sense) the linear filtering
algorithms of Section 4.2. The linear filters, in turn, attempt to recreate
the Doppler-spreading, Delay-spreading, and additive colored interference. The
parameters, A and ij, are needed to recreate the deterministic parts of the
received signal envelopes. The first question to be asked about the Identifi-
cation Problem is, "How accurately need the components be identified?" The
second question to be asked is, "How is the received I-Q data to be processed
to identify the components?"

iaiakits.




Identification Components Relation to Channel Model

(i) ir o 800 A Filter structure for generating
AP Bs Ay} Doppler-spreading, Delay-spread-
{rj, Qj’ Aj} - ing, and additive colored inter-
ference.
(i1) up.» Bys My : The strengths of the coherent

parts of the direct path, re-
flected path, and interfering

signal.
(iii) S/N ;  Additive white noise level.
(iv) a : Differential delay time between

direct path and minimum-delay
reflected path.

(v) Aw, H Frequency offset between direct-
path signal and colored inter-
fering signal.

Table 5.1.

1. Identification Components.

5.1.1. Sensitivity of Detection to Identification.

The Kalman and Wiener filters are minimum-mean-squared error filters.
That is, when the set {r, ¢, A, u, S/N} are correctly identified and the
filter gain function, G, is correctly computed, the Innovations variance is
minimized. If {r, &, A} are set in to the filter slightly in error, the
effect is analogous to implementing a filter whose bandwidth is slightly in
error. This increases the mean-squared filtering error and Innovations
variance above its minimum value. If S/N is incorrectly set in to the filter,
the gain function, G, is in error. If u is incorrectly set into the filter,
the "d.c. response” of the filter is in error. When such errors are slight,
the effect is to just increase the filter tracking error above its minimum
value. When such errors are gross, the filter may diverge or become "un-locked,"

to borrow a phase-locked Toop analogy.




The performance criterion for the linear tracking filters in mean-squared-

error. However, the performance criterion for the detection algorithms is
symbol error rate, or probability of error. The detection statistic, formed
in (4.1.-12), is a functional of the sample variance of the tracking error
(Innovations). In the example of Section 4.1.2, the detection statistic was
the sample tracking error variance, itself. Thus, identification error, and
resulting sub-optimum implementation of the tracking filters, affects the
error rate performance measure indirectly. It is not known, based on rigorous
analysis, which of the various identification components has the greatest
effect on the detection error rate. Consequently, it is not known which of
the identifications need to be made most accurately, and to what level of
accuracy.

An attempt will be made, in the follow-on to the present contract, to
answer some of the questions about the sensitivity of the detection algorithm
performance to identification accurancy. The mode of analysis will be mostly
through Monte Carlo simulation, although some mathematical analyses will be
made, where feasible. Also, various identification algorithms will be investi-
gated for use with the interference tracking detection algorithms.

5.1.2. Implementing Icentification with Detection.

It is well known that the conditional-mean predictors and filters, for
those components admitting to Gaussian models, are linear, and are, in fact,
obtainable from a Kalman filter. However, A Priori, some of the components
seem far removed from Gaussian processes. For example, the signal to noise
ratio, S/N, for the additive white noise, contains only positive numbers which
are as likely to be of the order 10'] as of the order of 10'6. Thus, Tlacking
any prior knowledge of S/N, its natural model seems more likely to fit a uni-
form distribution than a Gaussian distribution. A similar comment also applies
to ﬁ(k), the vector of coherent component levels.

The fact that some of the Identification components in g(k) do not fit
Gaussian models, A Priori, implies that some of the associated optimum condi-
tional-mean estimators are non-linear. The general problem of non-linear,
conditional-mean recursive estimation is one of current interest. (See Sage
and Melsa [41] for a bibliography.) The problem is also one which has yielded
few solutions to date.
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A two-pronged approach seems indicated for the problem of Recursive

Conditional-Mean Identification. The first, or frontal approach, is that of
modeling the various components of g(k) and seeking true conditional-mean
recursive estimators for the components thereof. The second, or flanking
approach, is described as follows.

The process of identification may be partitioned into two sequential
processes, or modes. The first is a Learning, or Acquisition, mode. The
second is an Up-dating, or Tracking, mode. During the Learning mode, Maximum
Likelihood estimators are used to estimate those Identification components

which are, A Priori, non-Gaussian distributed. In parallel with each ML esti-
mator is a2 second ML estimator for the variance of the ML estimate, itself.
For example an ML (vector) estimator would process the data vector, z(k),

in a manner analogous to that described in [16], to produce an ML estimate,
ﬁ(k). Also, in parallel, a second ML (matrix) estimator would process the
data vector, z(k), and the estimate, ﬁ(k), to produce the variance matrix for
u(k).

As the Learning mode progresses, the ML variance estimates should con-
verge to a minimum. This minimization of the estimate may be anticipated,
even if the Identification vector is not stationary. When the absolute rate
of decrease of the variance estimate is suitably small, it may be inferred
that the non-Gaussian components of B(k) have been "learned" to the best
extent possible, using ML estimators. When the last component has been so
learned, the Identification mode passes from Learning to Up-dating.

For the Up-dating mode, those ML estimators for non-Gaussian components
of g(k) are replaced by Tinear (Kalman) conditional-mean estimators. The
linear estimators are based on Gaussian models for the A Priori non-Gaussian
distributed components, using the mean and variance obtained from the ML
estimators. The ML estimators continue to operate in parallel with the Tinear
estimators, in case the mean and variance change, due to non-stationarity of
g(k). The above is a heuristic, sub-optimum method, reminiscent of the Linear-
ized Kalman filter [41]. However, its performance may be quite satisfactory,
in terms of the basic detection problem.

The measure for evaluating the performance of the combined ML-Linear
Identifiers, proposed above, is the Error Rate produced by the Integrated
Detection/Estimation/Identification algorithms. It was reported in [29] that




improper performance of identification estimators resulted in saturation of
the Error Rate at an "irreducible" level. It is conjectured that such irre-
ducibility is partially caused by the identifier algorithm not being properly
matched to the underlying stochastic model which produces the component to be
identified. Thus, it is conjectured that the proposed combined ML-Linear
Identifier, though sub-optimum, should reduce the saturation level of the
Error Rate from that previously reported. A sufficient reduction of the
saturation level, to, say ]0'6, would be practically equivalent to removing
the saturation entirely, in view of the possibility of coding implementation
described above.

5.2. IDENTIFICATION FOR KALMAN-WIENER FILTERING.

The Identification problem, which has been encountered as a natural
adjunct to the interference-tracking detection technique, is a special case
of a more general discipline called System Identification [42-45]. The
broad definition of Identification is simply the determination of physical
models which could produce observed random data. Such physical models may
not even be unique. The discipline finds application not just in communica-
tions or electrical engineering, but in all branches of modern science and
engineering dealing with the analysis of data.

Identification has become important in electrical engineering with the
advent of the Kalman filter. Unlike the Wiener filter, synthesis of a Kalman
filter requires knowledge of a model for the generation of the observed data
in the general canonical form of Figure 5.2.-1. The Wiener filter does not
require such specific knowledge, in general. Rather, all that is required is
knowledge of the signal mean (d. c. value), u(k), and auto-covariance function,
vyy(j)’ where

v () = Efy(k +§) y (k) (5.2.-1)

Also required is knowledge of the white noise variance, Vnn(o)'
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The reason that more specific knowledge of a signal generating model is
required as in Figure 5.2.-1, is that the Kalman filter is, in general, a time-
varying filter for random signals which have time-varying statistics. Thus,

the matrices, r(). (), A(), are all generally functions of time, and knowledge
of their variation with time is required. If T(), (), and A() are constant,
a- in the underlying detection problem above, and if all that was desired was
to track the signal y(k), or y(k) + p(k), then a standard Wiener filter would
suffice. However, the detection statistic requires the Innovations process,
v(k). Thus, the Wiener filter must be in negative feedback canonical form.
Hence, the steady-state version of the Kalman filter might as well be usa#

for the Wiener filter.

Fortunately, knowledge of a unique generating model for the data is not
required for the Kalman filter. It is easy to show that any set of generator
functions {r, &, A} which are obtained by a similarity transformation (in-
vertible Tinear transformation) on the state vector, x(k), will generate the
same output covariance function, Vyy(j). From this follows Athans' result
[16] that the generator model needed for the Kalman filter is not unique.
Stronger results by Anderson and Moore [14] and Son and Anderson [15] showed
that, only the non-stationary mean, u(k), and covariance function, Vyy(k+j, kls
along with the noise variance, Vnn(k), are needed to synthesize the non-sta-
tionary Kalman filter. Given the covariance function, Vyy(k+j, k), the problem
of finding a canonical model which can generate it is one of Covariance
Factorization [46]. However, in the problem at hand, the covariance function
is not given.

The general Identification problem for synthesizing optimum linear filters
is, therefore, to determine directly from the observable data, z(k), the
various structural components required in the Kalman filter. These elements
are shown in Figure 5.2.-2, which is the Kalman (or Wiener) filter corres-
ponding to the data denerator of Figure 5.2.-1. It is seen from Figure 5.2.-2
that the filter elements which must be identified are A(k), &(k+1, k),
and the filter gain function, G(k). Note that r(k+1, k) is not necessarily
identified directly. Actually, as can be seen from the Kalman gain equations
of (4.2.-3), r(k+1, k) is only used to compute G(k) and enters the computation
as FFT, rather than directly.
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The Identification problem is most easily attacked when the signal genera-
tor of Figure 5.2.-1 represents a Single-Input-Single-Output (S.I1.S.0.) filter.
That is, the white scalar input is w(k) and the correlated signal output is
y(k). The data is then a scalar, z(k). Much of the earlier theoretical work
on Identification was for the S.I.S.0. case.

The problem which arises in identification for IDEI processing is that of
identifying a generator structure which is Multi-Input-Multi-Output (M.I.M.0.).
In particular, the processes to be identified are the low-pass I-Q processes
which are derived from the bandpass additive colored interference or from the
low-pass complex Doppler-spreading process. Thus, in Figure 5.2.-1, the white
w(k) is a 2-vector and the correlated signal output, y(k), is a 2-vector, as
is the data vector, z(k). The M.I.M.0. identification problem is considerably
more difficult than the S.I.S.0. problem, as is detailed below.

5.3. IDENTIFICATION OF I-Q PROCESSES.

5.3.1. The I-Q Statistics.

To examine the statistical relations for the In-phase and Quadrature
low-pass processes, consider the band-pass formulation, thereof. Define a
bandpass Gaussian process, r(t), as

r(t) = ri(t) cos w.t - r (t) sin wet (5.3.-1)

q
which has power spectral density, Srr(“)’ as sketched in Figure 5.3.-1.

The power spectral density is the Fourier transform of an autocorrelation
function, RPF(T)’ and is therefore real, positive, and an even function of

w. However, note that the density need not be Tocally symmetric with respect
to the frequency, We -

Now , ri(t) and r_(t) are the lTow-pass Gaussian In-phase and Quadrature
components of r(t), respectively. Assuming that r(t) is zero-mean, then ri(t)
and rq(t) are zero-mean and are completely described by their autocorrelation
and cross-correlation functions, Rii(T), qu(r), and qu(r). For r(t) to be
stationary it is necessary and sufficient for [47]
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That is, Rii(T) and qu(r) are even functions and qu(r) is an odd func-
tion. Note that it is not required for ri(t) and rq(t) to be orthogonal (or

independent).
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The power spectral densities for ri(t) and rq(t) are defined by the

Fourier transforms

Sii(w) = F{Rii(T)}
Sqq(w) = F{qu(T)}
Sqi(w) = F{qu(r)} (5.3.-3)
/\ srrb) A
- o 5 - 20, =
| 1 . | 1
-2, —~We We 2w, e
U (we—w)
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{ } } "’?”/.\\\\\>~aj
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Figure 5.3.-2: Spectral Relations
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Since Rii( t) and R (r
positive. Since R (r
Now, S..(w), (

) are real and even, Sii(“) and S (w) are real, even, and
) is real and odd, Sqi(&) is imaginery and odd.
w), and Sqi(w) may be determined directly from Srr(“) by

[47]
S;i(w) = Srr(wc t o) U (o, +w) +S (0-0)U (v, - )
sqi(w) = S, p(w - we) U (o, - w) - Spploe + @) U (ug + )]
(5.3.-4)
where U() is the Unit-Step function defined by
U(x) =1 3 0<x
=0 ;3 x<0 (5.3.-5)

Figure 5.3.-2 shows the various spectral relations from (5.3.-4) for a
hypothetical non-symmetric bandpass power spectral density. Note that if
Srr(w) were locally even symmetric with respect to the frequency, wes then
Sqi(w) would be identically zero. Hence, R i(T) would be identically zero
(1imiting case of an odd function). Thus, ri(t) and rq(t) would be orthogonal,
uncorrelated, and independent (since they are Gaussian).
Lf ri(t) and rq(t) were independent, they could then be identified inde-
pendently, using S.I.S.0. identification techniques. Unfortunately, in general,
the Doppler spectra or additive colored interference spectra are not locally
even symmetric. Thus, in general, r; (t) and r_(t) are correlated, and M.I.M.O. {

q
identification must be used.

5.3.2. The I-Q Generator Model.

For the present problem, the I-Q Generator Model is the stationary version

of that of Figure 5.2.-1, for which {r(k+1, k), o(k+1,A(k), u(k)} are either

l’ constant or so slowly time-varying that they may be taken as constant for the
purposes of recursive identification. This means that the elements would be i
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constant over the interval of time corresponding to the memory of the :
identifying algorithms.

Thus, the I-Q model is defined by the equations

X(k + 1)
y(k)

z(k)

Now, y(k), n(k), z(k), and w(k) are all 2-vectors. In terms of the I-Q formu-
lation, they are defined by

oX(k) + rw(k)
AX(k) + u(k)

y(k) + n(k) (5.3.-6)

208 k) g (k)
y(k) = | 3 nlk) = ‘ 3 u(k) =
| Yq(k) | (k) k)
-i_"z,.(k)"g ; ;’wi(k) |
L Bl e
L Zqtk) | [ wg (k) | (5.3.-7)

Both n(k) and w(k) are independent, zero-mean, white and Gaussian. It is |
assumed that yi(k) and yq(k) are each Markov-N. Thus, the state-vector, X(k), xi
must have 2N states, and the obvious definitions follow:

’ X. (k) [ ¥ |¢. h
= :1 - . & 1 -11- -lg 13
o “-—lq(ﬂ] e Il-%q J ¢
0 | T
Y. | Ysn Ass AL
Sipda o Silgc (5.3.-8)
. 91" —qq

where the X, (k), gq(k), Yii Yig® Yqi* Yqq* Mi* dig® g and Aqq 2T€ all

N-vectors. The °ii’ ¢iq’ °qi’ and °qq are each N x N matrices.
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Identification of the I-Q model involves three interacting steps:

(i) Selection of a structure for {r, ¢, A} which contains a minimum number of
non-zero elements; (ii) Identification of the order, N, of the model; (iii)
Identification of the individual non-zero elements in the set {r, ¢, A}. Note
that in the general model of (5.3.-8) the number of elements to be identified
is (2N)2 + 4(2N). The question is, "How many of the elements can be set to
zero, A Priori, in selecting a minimum structure for {I, ¢, A}?"

M.I.M.0. Identification has been investigated in general, but not for the
specific model which results for the I-Q case. Popov [48] has developed a
complete set of invariants for a controllable pair. Weinert and Anton [49],
Denham [50], and Sinha and Rozsa [51] have extended Popov's work to develop
invariant canonical forms suitable for M.I.M.0. Identification. Mehra [52]
and Tse and Weinert [53] have shown methods of identifying the order, N,
using the Innovations process (see Kailath and Frost [54]).

Results for M.I.M.0. Identification algorithms are few. Tse and Weinert
[53] have used given output covariance functions to identify ¢, A, and Vone
but not I, using the Luenberger canonical form. Their resulting algorithm
was not recursive. Graupe, et al., [55] have identified the order, N,
using Autoregressive Moving Average (ARMA) formulations. The resulting algo-
rithm has very complicated structure. Kashyap [56], has used ARMA models for
Identification, as have Rowe [57] and Mayne [58], who have also transformed
the results into a state-variable canonical form. Martin and Stubberud [59]
have also identified parameters and covariances using the Innovations process.

The chief difficulties with previous M.I.M.0. Identification results are
that (i) they do not apply directly to the I-Q case; (ii) they are not
recursive; and (iii) they are overly complex. What is first necessary is to
determine the minimum model for the I-Q case, given order, N. Having the
minimum model, then, recursive Identification algorithms must be developed.

The covariance relations for the general model are

Efz(k+3) - Z(k+3)Iz(K) - Z(0)TTH & v, (ked, k) =
2 Vyy(k+j, k) + Vnn(k+j, k)
;

Vyy (kHi k) = Ay Tked, k)

continued
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Vyy(kti, k) = ¢vax(k, k)

_ T T
Vxx(k+1, k+1) = °Vxx(k' k)¢ + IT

vnn(k+j, k) = vnn . Goj (5.3.-9)

where z(k) is the mean of z(k) given as

Z(k) = E(z(K)} = y(k) (5.3.-10)

I
=
1
)
r T
a =
e}

In (5.3.-9), Vnn(k+j, k) is the covariance of white stationary noise,
which is the constant Vnn matrix times the Kroneker delta, 60j. It is assumed
that w(k) has unit variance. It is assumed that the generator has reached
steady state and that X(k) is stationary. Under these conditions, equations
(5.3.-9) become

Va(kHs k) =V, (3) = ¥ () + V8,

S T
Vyy(J) = Ad VXXA

T

2 T
vXx = ¢VXX¢ +IT (5.3.<11)

Now, the requirements of equation (5.3.-2) are that for yi(k) and yq(k)
to be Tow-pass I-Q components, it must be satisfied that

ECTy(ked) - wlly(0) - w1 2V (3) =

Ty (kr)y; (K) (ke (K) ‘g\

= E\
L_yq(k+j)yi(k) yq(k+j)Yq(k) J
: V;(3) V4,00
ti(j) qu(j) continued
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qu(J) ; an even function

<
—
.
~
I

(j) s an odd function (5.3.-12)

-
_—
.
N

]

‘V.iq('j) =] 'ti

The structure of {r, ¢, A}, as given in (5.3.-8) must be chosen to satisfy
(5.3.-12) with a minimum number of non-zero elements. The search for such a
structure, along with recursive algorithms for identifying it is a part of
the follow-on extension to the present contract.

5.4. IDENTIFICATION OF THE MEAN.

5.4.1. Modeling the Mean as Gaussian.

When the mean, p, of equations (5.3.-6) and (5.3.-10) is non-zero, it must
be supplied to the optimum linear filter (Kalman or Wiener). The reason for
this is that the mean plays the part of a "constant d.c. level” in waveform
it is not

filtering. Although the optimum linear filter has "d.c. gain,
generally unit gain. Therefore, the mean value, p, is not recovered exactly
by the filter. More importantly for the detection problem, an unknown mean
results in a non-zero mean, or bias, in the Innovations process. Since the
Innovations process is used to form the detection statistic, an unknown mean,
u, affects the detection error rate immediately by biasing the Innovations.

A common way out of this dilemma is to treat the mean u as a slowly time-
varying Gaussian vector and to augment the state vector, X(k), with another
state vector from which u(k) is assumed to be generated. The optimum linear
filter then attempts to track both y(k) and u(k). This procedure results in
a modeling error in the case where u is constant, and is therefore sub-optimal.
Also, the dimension of the filter's state vector is increased, which is also
not desirable.

A better result by Friedland [60] is based on the augmented state-vector
approach where u is modelled as constant Gaussian. This Teads to two esti-
mators. The first is the standard linear filter for a zero-mean signal. The
second is a linear filter, driven by the biased Innovations process, which
produces an optimal estimate of the mean u. Using Friedland's scheme the un-
biased true Innovations process may then be recovered for use by the detector.
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This technique will be pursued in the follow-on extension to the present
contract.

5.4.2. Maximum-Likelihood Mean Identification.

A Maximum-Likelihood mean estimator was reported in [29], based on sample-

mean averaging of the Innovations process. This was an Ad Hoc estimator, not 4
based on any rigorous analysis. The performance of the estimator itself was
not measured. Rather, the estimator performance was inferred from error rate
performance of the detection algorithms simulation with the mean estimator
running. In retrospect, it not obvious whether the ML mean estimation
algorithms performed well or whether one state of the Kalman filter itself

was tracking the mean.

It may be that a good practical approach to the Mean Identification
problem will be to augment the state vector with two additional states, one
for each component of the mean. The closed loop filter gain for these two
states may be set close to unity. This will give an ML-like estimate
of the mean. The performance of this kind of Mean Identifier will be examined
in the follow-on extension to the present contract.
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SECTION VI

THE MONTE CARLO SIMULATION

6.1. PROGRAM DESCRIPTION

6.1.1. Overview

The overall simulation program operates as shown in Figure 6.1.-1. A
randem Message Generator produces pseudo-random symbols in the {0, 1} alphabet.

The occurrence of successive symbols is independent in the statistical sense.
The symbols are routed to a Modulation Generator where the appropriate I-Q
modulation waveforms are generated as per equations (3.2.-3), (3.2.-4),
(3.2.-5) and (3.2.-9).

An E. M. Reflection Routine, developed by Peake [11], produces the delay-
spread function, P(t), used in (3.3.-17), and the Doppler-sreading spectrum,
Sp(w), used in (3.3.-21). The outputs of the E. M. Reflection Routine and
Modulation Generator are used in the Channel Processor to produce the compo-
nents of signal received via the direct and reflected paths. At the present
state of development of the Monte Carlo simulation program, the use of the
E. M. Simulation Routine outputs is not automated. That is, the components
for the structure of the H-filter and R-filter, in Figure 3.6.-2, are not
calculated automatically from the outputs of the E. M. Reflection Routine.
Rather, the filter components are set into the Channel Processor manually.
Such automation is actually a part of the Identification Problem, as discussed
in Section V.

A Jamming Generator and White Noise Generator complete the formation of
the received data process. The Jamming Generator produces the colored inter-
ference signal, as per equations (3.5.-17) through (3.5.-22). The White Noise
Generator produces the receiver-generated white noise, as per equations (3.5.-11)
through (3.5.-15).

The received data is processed by the Optimum Receiver Algorithms and by
; the Standard Receiver Algorithms. These algorithms are detailed in Sections

\ 4.1, 4.2, and 4.3. The detected message symbols from both the optimum re-
i ceiver and standard receiver are then routed to the Error Rate Generator and
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Statistical Significance Estimator. There, the detected symbols are compared to
the transmitted symbols and errors are recorded. From the errors, error rates are
computed, as are the statistical means and variances of the error rates,
also.

The above overview of the Monte Carlo simulation program is strictly func-
tional. A detailed description of the actual program and all its elements
follows. Program listings are in Section 6.2.

6.1.2. Main Program Description

The flow diagram for the main program is given as Figure 6.1.-2. It is

seen that the main program is built around a single DO-LOOP which operates on
data sample number. Thus, the total Monte Carlo simulation program operates
recursively, sample by sample, just as do the optimum and standard receivers.
In this way, statistically valid runs at lower error rates are achieved by
running the simulation for a longer time, rather than by increasing the re-
quired machine storage. This simulation strategy was adopted originally at
NASA Langley Research Center, where long run times on the 6600 were easy to
obtain, but large storage was not. Also, this is the obvious strategy for
simulation on storage-limited minicomputers.

The following description of the operation of the Main Program is keyed
to the flow diagram in Figure 6.1.-2. See also the listing for the Main Program,
which is given below in Section 6.2.

The first operations are dimensioning variables and setting up a common
block of variables. These variables are described below. Also, there is
associated BLOCK DATA, which is detailed below. Next, some housekeeping func-
tions are done for the PDP 11/40, assigning system units to the Teletype key-
board, Card Reader and CRT Control Console. Also, tabulation of elapsed real
time as the program executes is facilitated.

The first subroutine to be called is INPUT. This subroutine accepts all
the input data to the program such as symbol period, modulation type, signal to
noise ratios, etc., and computes the structural elements of the H-filter, R-
filter, J-filter, etc. Also, INPUT formats the data print-out page which
describes the case being run. Next, formatting and writing is done for the
final statistics at the end of the simulation run. Also, the start time is
recorded and written.

106




Jojownys3y J8A1920Y JojDIBUBS) J0}018U89
80UDIIIUBIS psopun}S 8SION  8JIUM Bulwwor
|DO}SHOIS
8
JOjDIBUBS JPAIBI8Y 10559901d JOjDIBURY
8|0y Jou3 wnuydo |8uuoyd UoyDINPOW
auljnoy 5.808@
uolo8yey ‘W'3 abossap

Computer Simulation Structure.

-“
1
—_—
o
@
A
3
(=]
Sy
[*S

107




Dimension
Variables
2
Define
Common
Block
¢
PDP 11/40
Housekeeping

!

Call
INPUT

!

Format &
Write Final
Qutput Stx

:

Format Final
Output Stx

*

Call & Write
Start Time

Sample Number
(O oo-tooe
Call SIG
Call MODUL

Call RHOFLT
Call HFILTR

Call
GEN

Fiqure 6.1.-2:

Call
NOISE

i

Call
INT2

i

Call
DATA

[

Call
REFGEN
"0" Filter

!

Call REFGEN
1" Filter

i

call
KALFLT "0"

1

Call
KALFLT "1"

1

Call
pCIDM "O"

i

Call
DCIDM "1"

|

Call
STDCIM

Is
This Last
Sample in
Symbo1?

B

Call
CERKAL

1

Call
CERSTD

Increment
Symbol No.

Are
Results Printed
for this Symbol
Number?

Call & Write
Symbol Time

Format & Write
Output Stx
Current Symbol

Is
This Last
Sample in
Run?

No

Format & Write
Case Description
.& Final Results

Main Program Flowchart.
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The run-time of the simulation is controlled by the DO-LOOP on sample
number, KS. The generation and processing of data samples is terminated at
sample number, NDS, which is an input number. The main body of operations in
the DO-LOOP consists of calls to data generating and processing subroutines.
These subroutines are takne in order below.

SIG generates the sample value of the direct path symbols, BB, at sample,
number KS, in the binary alphabet {0, 1}. SIG also generates the sample value
of the differentially delayed symbol, BBR, on the reflected path.

MODUL converts the symbol sample to the alphabet {+1, -1} and then forms
the samples of the modulation waveforms in I-Q form, for both the direct path
and the differentially delayed refi_cted path. XST is the I-Q vector corres-
ponding to x%(k, m) of equation (3.5.-9). FR and GR are the scalars corres-
ponding to f(k; m; A) and gt(k; m; A) in equation (3.5.-10).

RHOFLT creates the multiplicative noise, as in (3.5.-10). The output of
RHOFLT is RHO, which is the I-Q two-vector corresponding to xr(k) in (3.5.-10).
The variable XKRHO is the state-vector (array) corresponding to lr(k) in
(3.5.-70). NRHO is the dimension of either the I state-vector or the Q state-
vector (they are the same dimension). HNRHO2 is the dimension of the total
state vector for the I-Q generator and is equal to twice NRHO.

In the present version of the main program, the next call is to HFILTR
which is the H-filter of Figure 3.6.-2. This version of the program is
obsolete and has not yet beeh up-dated to represent the filtering used in
(3.5.-10). The model described by the present program is one wherein the
differentially-delayed modulation was first filtered in the H-filter and then
multiplied by the multiplicative noise. The model which has finally evolved
into (3.5.-10) does the multiplication first and the H-filtering second. The ,
effect of the required modifications to the program will be to reverse the order Y
of the calls to HFILTR and to GEN, which is next in the present version.

As long as no delay-spreading is used, the present program and the modi-
fied program will operate identically.

Subroutine GEN performs the matrix multiply to give to give the term,
Ht(k; m; A)p(k), in (3.5.-10). The output, XSR, is the I-Q vector correspond-
ing to the above product.

Subroutine NOISE generates the I-Q samples of zero-mean white additive
noise, n(k), as per (3.5.-11). The output I-Q vecto is XN.
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Subroutine INT2 generates the colored stochastic additive interference,
xj(k), according to (3.5.-17), (3.5.-18) and (3.5.-22). The I-Q vector output,
XJ, corresponds to X&(k) in (3.5.-17). The state-vector for the generator is
XKJ of dimension NJ2, where NJ2 is twice NJ, which is the dimension of the I

and of the Q state-vector.

Subroutine DATA forms the I-Q data vector, Z, from the outputs XST, XSR,
XJ, and XN. At this point the received data has been formed. What follows
next are the receiver processing operations and the error-rate calculations.

The subroutine REFGEN is called twice. The first time, it generates
Ht(k; m=0) and Ht(k; m=0, A). The second time, it generates Ht(k; m=1) and
Ht(k; m=1, A). These matrices are the linear filter references required in
(4.2.-2). The outputs of REFGEN are FTR, GTR, FRR, and GRR. These are the
counterparts of XST, FR, and GR, which were generated by MODUL.

Next, the Kalman filtering routine, KALFLT, is called twice, once for m=0
and once for m=1. The outputs are XEST, VEST, AINOV, VINV, and DET. XEST and
VEST are the filtered state estimate and variance respectively which are re-
quired in the filter and gain equations as per (4.2.-2) and (4.2.-3) respec-
tively. AINOV is the Innovations process, VINV is the inverse of the Innova-
tions variance and DET is the determinant of the Innovations variance, as re-
quired for the detection algorithms of (4.1.-13). Note that in KALFLT, the
dimensions of the multiplicative and additive colored noise state-vectors
are set as NYRR and NYJR, respectively. These dimensions may be different
(due to identification) than the corresponding dimensions, NRHO2 and NJ2, in
the respective noise generators.

Following the linear filter, the symbol decision statistics are formed
recursively for m=0 and m=1 by two calls to DCIDM. The outputs of DCIDM are
SUM and S. For PSK and FSK modulation, the product on k in (4.1.-12) may be
converted to a sum, since the Gaussian density function is exponential in form.
The running sum is output at each sample time as SUM. At the last sample time
in each symbol period, the cumulative sum is output as the final devision
statistic, S.

The next step in the program is to call the decision sub-routine for the
standard receiver, STDCIM. The standard PSK detector is extremely simple. The
detection statistic, SPSK, is simply the cumulative sum of the Q-channel
samples. For FSK, the standard detector is somewhat more complicated. The
running statistics outputs at each sample time are AFSK and BFSK, which are
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the counterparts of a(k; m) and b(k; m) in (4.3.-41). At the last sample time

in each symbol period, the final cumulative detection statistic, SFSK, is out-
putted, corresponding to a2(k; m) + bZ(k; m) in (4.3.-30). It is seen that the
PSK detection sub-routine also uses the waveform references, FTR and GTR.

Next, the sample number, KS, is tested to see if it represents the last
sample in a symbol period. If it is not, the main program returns and re-
enters the DO-LOOP on KS. If KS is the final sample number for a symbol, the
main program calls CERKAL.

Sub-routine CERKAL takes in the detection statistics, S, from both calls
to DCIDM, and decides which symbol has been received. From this and the actual
transmitted symbol, BB, CERKAL forms a cumulative count, ERR, of detection
errors for the optimum detector. CERKAL also provides as output, the raw
error rate, ERRATE, an exponentially smoothed mean error rate, ERMEAN, and an
exponentially smoothed error rate variance, ERRVAR. Also produced is a measure
of confidence in the smoothed error rate, DATSNR, which is the square of
ERMEAN divided by ERRVAR. Finally, having decided on the correct symbol,
CERKAL resets the final state variable filtered estimate, XEST, and tracking
error variance, VEST, in the "incorrect" tracking filter.

Next, subroutine CERSTD is called to make the symbol decision for the
standard detector. It also calculates a cumulative error, ERRS, error rate,
ERATES, smoothed mean error rate and variance, ERMENS, ERVARS, and data
condition, DATSNR. Now, the symbol number in the transmitted sequence is
incremented and tested to determine if results are to be printed for this
symbol. If not, the program returns and re-enters the DO-LOOP on KS. If
results are to be printed (every NPRNT symbols), then GTIM is called to print
out clock time. Also printed out are symbol number, IB, and the various error
rate statistics.

The main program may be terminated in several different ways, one of which
is when the DO-LOOP on sample number, KS reaches sample number, NDS. The other
methods of termination are explained below in description of second-level sub-
routine, ESTERR.

Following termination, the final data output is written, according to
FORMAT statement 200.

Tables 6.1.-1 and 6.1.-2, below describe the DIMENSIONed and COMMON
variables, respectively for the Main Program. Additionally, STRNG is an 8-bit
(1 byte) logical variable. JTIME is Integer *4. Both are required for calling
clock time during print-out.
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6.1.3. Block Data (BLKDAT)

This subroutine-like program component stores and/or initializes all common
block variables. The SEED integers are required for the random number generating
subroutine, RANC, which drives the white Gaussian generator, MARSA. Various
initializing seed numbers are stored which have been found, experimentally, to
give quick statistical convergence of RANC.

The variables stored under ZPWUP are the {I, ¢, A} parameters for the H-filter,
R-filter, and J-filter of Figure 3.6.-2. The variables stored under ZPWKAL are
the identified versions of the {r, ¢, A} parameters which are used to structure
the Kalman filter of Figure 4.2.-1. Also stored under ZPWKAL are the identified
strengths (amplitudes) of the specular (coherent) components of the reflected
signal and jamming signal. Stored under SIGCON are the delayed binary signal
samples when differential delay exists between direct and reflected paths, as
per equation 3.3.-9.
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6.1.4. Subroutine INPUT

This subroutine first computes the various noise generator amplitude gain
constants stored in BLKDAT under GDB. These constants are calculated from
corresponding input values for decibel signal to noise ratios. Next, the various
parameters of the {r, ¢, A} matrices are calculated for the R, H, and J-filters.
Then the equivalent noise bandwidths are calculated for R and J-filters. This
sets the noise bandwidths of the corresponding multiplicative noise and jamming
noise processes. Finally, the corresponding {r, ¢, A} parameters for the Kalman

filter are calculated.

At the present time the {r, ¢, A} parameters for the Kalman filter are set
equal to the true {r, &, A} used in the R, H, and J-filters. This is the "Per-
fect Identification" case. The theory supporting the above calculations is given
below, in the description of Subroutine LPF.
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6.1.5. Subroutine SIG

This subroutine produces sampled data waveforms at each sample number, KS,
for the pseudo-random transmitted symbol in the alphabet {0, 1}. Symbol wave-
forms, BB, are produced for the direct path signal and waveforms, BBR, are pro-
duced for the differentially delayed reflected path.
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6.1.6. Subroutine MODUL

Subroutine MODUL accepts the outputs of Subroutine SIG, the zero-one
symbol samples of BB and BBR, and converts them to the code symbols C and CR,
respectively, in the {1, -1} alphabet, corresponding to C() of equation (3.2.-3).
Next, the direct and reflected path sample times, TK and TR, corresponding to
sample number KS are computed. Also, a modular time, TKMOD, referenced to the
beginning of each new symbol is computed. Next, the envelope and phase functions,
AT and PHEET, are computed, corresponding to equations (3.2.-4) and (3.2.-5).
Finally, the I and Q modulation components of the transmitted signal are computed
as XST(1) and XST(2), corresponding to equations (3.5.-9). Also computed are
the differentially delayed I-Q componerts, FR and GR.
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6.1.7. Subroutine LPF

At the present time, all of the colored I-Q noise processes are generated
with no coupling between the in-phase and quadrature components. This yields
band pass spectra which are even-symmetric with respect to the carrier fre-
quency. Presently the I and Q scalar processes are obtained by filtering
independent white scalar noise processes. The discrete-time filter routine
which is presently used is a three-pole filter called LPF.

The discrete-time filter algorithms are obtained by assuming a continuous-
time filter which is driven by a sampler and Zero-Order-Hold (ZOH). The
output is then sampled synchronously with the input to produce a discrete-
time filter. The reason that such an approach to discrete-time filtering is
used is that for high sampling rates, the performance of the sampled system
converges to that of the continuous system. Thus, all the engineering insight
into continuous-time filtering may be directly applied to the discrete-time
filtering.

Let the input waveform be w(t) and the output waveform be z(t). The
operation of the filter is defined by

2(kT) = A" x(kT) oK il b Bl
x(t) = Ax(t) + bm(t)
m(t) = w(kT) : kKT <t= (k+1)7 (6.1.-1)

where T is the time interval between samples and k is the sample number. In
(6.1.-1), x(t) is the filter state vector of dimension N x 1. 1 and b are also
N-vectors. A is an N x N matrix. In particular

¥
A ‘[)\]’ )\2’0-9 )\N] | p] O==10
T
B' % [y Bavves Bad s ’ ‘
- ) i N ¥ 0 Py
R = | \ { (6.]'2)
i \ 0
\
0---0 PN
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Now it is well known that

= (sI - A) b

Ay b A, b A, b

2 2 33
—+ + : N=3 % (I
§-D0, S5-P, 5-Pg N (6.1.-3)

G(s)

For the diagonal A matrix, we see that the Aibi are the residues of G(s)
at the poles s = p;-

The equations (6.1.-1) may be solved for a difference equation in sample
number k as

2(k) = A"x(K)

x(k + 1) = aox(k) + yw(k)

o = exp(AT)
o 7 ™
= [ exp(Aq) dg b = (o - I)b (6.1.-4)
0
Solving (6.1.-4) for the diagonal A form yields
T opT 5
| e 0--20
| pT |
| 2 {
P ; 0 e ’ !
|‘ S e ‘
|
puT
Lo----a%e"]
ps F T by Pl
1T=[—]—(e1 1)s 2(e o Wainon mie ¥~ 4] 165.8)
P P2 PN

For the present version of LPF, we simply choose a general formulation for
G(s) as
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g k(s - z)
6ls) = = P I(s - P,)(5 - p,)

2= -vaz (6.1.-6)

where the fz and fi are the 3-dB "break" frequencies in the corresponding Bode
Plot. The 3 poles and single zero are all on the negative real axis of the
S-plane. Under the assumption that the sampling rate is sufficiently high

so that

v

M(s) = W(s) WieY - G(s) (6.1.-7)

then the behavior of the discrete-time filter of (6.1.-4) may be well char-
acterized by simply choosing the break frequencies fi’ fz and the gain
constant, K.

When used to generate colored noise, it is desired that the output variance
of LPF be unity when the input variance is unity. Then the desired variance is
achieved by multiplying the output wave form by the gain constants, GJ or
GRHO. When used to provide delay-spreading it is desired that LPF have unity
low-frequency gain.

Unity low frequency gain for the discrete filter is obtained when the
continuous time transfer function, G(s) has unity Tow-frequency gain. Thus,
in (6.1.-6) the filter gain constant is solved for as

e Y
K= (2r) —‘?2——3- . Unity Gain (6.1.-8)
Z

To set the filter for unity output variance requires analysis of the
filter's transient variance. In general the output variance at sample k is

E(z(k)z' (K)} = EC(x"x(k)) (L Tx(k))

sz(k)

(6.1.-9)




where Vxx(k) is the N x N variance matrix for the filter's state-vector. In
general,

T T
V. lk*1)= ¢vxx(k)¢ + vy (6.1.-10)

Let Vxx be the steady-state value of the variance matrix, Vxx(k). Then, for
the diagonal ¢-matrix, (6.1.-10) may be solved for Vxx as

¥a¥e
= ___Lgl*_i . 1 I = -
Vi | T=08; | ° Tsd = Ty 2oeens B (6.1.-11)

where i denotes column position and j denotes row position. Then the steady-
state value of the output variance, sz’ is

N N y.A.y:rs
. y § L4l (6.1.-12)

i=1 j=1 1 - 4%

The G(s) of (6.1.-6) may be expanded in normal form as

E K(pz = Z)
r2 b (p2 | p])(pz b5 P3)

g K(pz - 2)
37 Toy - p)(py - Py) (6.1.-13)

From (6.1.-3), the residues, rys are

| A.bi it=1,2, 3 (6.1.-14)

ne




Since Ai and bi enter as a product, we may just set bi to unity to get

Ao =P, (6.1.-15)

Thus, finally, we have

¢; = exp(-2nf.T)
¥ 2nf,
T
Py = p; = -2m
i 3 i i
BAp; - p,)
L AL
i#d
.7t
K = (21r)2 _l_%_§_ : Unity Gain
z
K= Al : Unity Variance (6.1.-16)
E - LT UL U
"
4 qi -K_

Equations (6.1.-4) and (6.1.-16) define the operation of the discrete-time
filter, LPF.

It is also desired to compute the one-sided equivalent noise bandwidth,
BN, for the filter LPF. This is done from the formulation

—,
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sl Residues of G(s)G(-s) in the
8 Left Half S-plane } (6.1.-17)

N 262(0)

After much arithmetic manipulation it can be shown that BN is given by

§ 2
P (1)(f]f2f3) | (F2 - £2)(F5 - L) + 45 - fi)(fg - f?)(f]f3)
N2 2 l (F2 - F2)(£2 - F2)(f2 - )
z 1™ 2 = Tty T R

AR AN

J (6.1.-18)

Subroutine LPF simply implements equation (6.1.-1) using values for
{y, @, A} which are computed in subroutine INPUT. The arithmatic in LPF is
done in vector-matrix form using a special package of vector-matrix sub-
routines written for this simulation. The subroutine LPF is actually structured
to do the indicated filtering twice, once on an in-phase input and once again
on a quadrature input. Thus, LPF processes a two-vector and produces a two-vector.
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6.1.8. Subroutine RHOFILT

This subroutine generates the low-pass multiplicative noise two-vector,
p(k), of equation (3.5.-10). At the present time, p(k) is generated for the
purely diffuse reflection case, without specular component. Also, the R.F.
spectrum resulting from p(k) is taken as even symmetric with respect to the
carrier frequency. Thus, the I and Q components of p(k) are uncorrelated.
RHOFLT simply calls MARSA twice to obtain two independent, white, Gaussian,
zero-mean, unit-variance noise samples. Then LPF is called to filter the noise
samples. At each iteration the state-vector, XKRHO is stored so as to keep the
filter running from sample to sample. The produced unit-variance output vector
RHO is multiplied by gain constant GRHO to set the final desired multiplicative
noise variance.




J0323A 3sLou *3|ny

40308A 9383S 3SLOU “F|NK
OHYN 3dLM|

403237\ ) 40 [ JO uoLsuauwL(q
J4aqunu 3 dwes

380

2 Yyabus|
‘fedue [eUOLSUBWLP-| “py LEOY

0L y3bua|
‘feade |eUOLSUBWLP-| by |B3Y

px 483633u]
px 49633U]
px 49633u]

3dAl

sa|qetaep 1740HY

‘8-"1°9 @lqel

OHY

OH¥XX
COHYIN
OHYN
SA

133




j

6.1.9. Subroutine HFILTR

This subroutine provides delay-spreading filtering for the diffentially-
delayed, reflected signal. This filter corresponds to the h(k) of equation
(3.5.-10). The inputs to HFILTR and the I and Q components, FR and FR, created
by MODUL. HFILTR calls LPF to filter these inputs to create an output two-
vector FHGH. The HFILTR may be turned on or off according to the option NOH
equals Q or 1. For NOH = 0, the filter is employed. For NOH = 1, the input
is hard-wired directly through to the output.
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6.1.-10. Subroutine GEN

This subroutine combines the output of HFILTR and RHOFLT to produce
the doubly-spread reflected signal. From the two-vector, FHGH, is produced
the rotation matrix, Ht()’ of equation (3.5.-10) which is called S00K. The
multiplicative noise vector, RHO, is then multiplied by SOOK to produce
the doubly-spread I-Q vector, XSR corresponding to x;(k; m) of equation
(3.5.-10). The multiplication is done by calling MATVEC which is a special
routine for doing matrix times vector multiplication.
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6.1.-11. Subroutine INT2

This subroutine produces the stochastic jamming signal and is one-half
of what will eventually be the total generator for deterministic or stochastic
jamming, called INT. This subroutine, INT2 calls MARSA twice to obtain two
independent, white, zero-mean, unit-variance, Gaussian noise samples. Then
LPF is called to filter these samples to produce p.(k) of equation (3.5.-22)
as YJ. Next, the rotation matrix, Hj(k), of (3.5.-18) is formed as HJ. This
is the rotation due to a possible frequency offset of the jamming signal from
the desired signal. Next, Hj(k) is multiplied by gj(k) to produce the output
I-Q vector, XJ, which corresponds to x&(k) in (3.5.-17). The output XJ is
given the correct variance by multiplying by the gain constant, GJ.

138



J40303A -1 3siou butwwep
A0309A-9303S dsLou buLrwwep

PN ®0LM]

jJuauodwod butwwel {) 40 [ 40 uoLsuauwLq
J9qunu 9| dues

3sn

2 Yyibus| “Aeause “wLp-
0l yabus| ‘Aedaue -wip-

3dAL

S9|qeldeA ZINI  "LL-"L"9 °lq9el

L Wpx|e3Yy
L “pxLe3y
p*a9ba3u]
px48b33U]
pxa9b23U]

rX
X
¢CN
CN
A

JWYN




s s b =

6.1.-12. Subroutine NOISE

This subroutine forms the I-Q two-vector which is the zero-mean, white
Gaussian additive channel noise. The output is XN, which corresponds to n(k)
of (3.5.011). This routine simply calls MARSA twice and then muliplies the
result by the variance-setting gain constant, GN. The only variable which is

passed is XN, the output I-Q vector which is Realx4, a one-dimensional array
of length 2.

6.1.-13. Note on setting the Gain Constants

In generating the stochastic colored multiplicative noise for multipath,
colored additive noise for jamming, and white additive noise for the receiver,
three gain functions are used to set the variances of the stochastic process
generators. It is convenient to set these variances according to the various
signal to interference ratios which exist at the R.F.

From Chapter Three, the various continuous-time signals and interferences
may be written as

st(t) = At(t) cos[wct + ¢t(t)] : Direct-path signal

5.(t) = oy (t) A(t) cosluct + 6y (£)] = o () Ay(t)sinluct + 6, ()]s

Reflected Signal

sj(t) = pji(t) cos[(mc + ij)t] - qu(t) sin[(mC + ij)t];
Jamming Process

n(t) = ni(t) cos wct - nq(t) sin wct ; White Noise (6.1.-19)

For constant-envelope signals (PSK, FSK, DPSK)

At(t) = (6.1.-20)
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and the direct-path signal power is

S = E{si(t)} = 1/2 (6.1.-21)

For the completely diffuse reflection, without modulation (¢t(t) = 0),
the reflected-path autocorrelation function is

Rr_r(r) = RH(T) cos W, T + R‘iq(T) sin 0T
Rii(T) = E{pi(t + T)pi(t)} : even function
Riq(r) = E{pi(t + T)pq(t) : odd function (6.1.-22)

under the condition that pi(t) cos mct - pq(t)sin wct is a weakly stationary
process. The reflected signal power is then

= = = 2 = 2 = 2
M=R..(0) = R..(0) = E{p3(t)} E{pq(t)} o (6.1.-23)

Likewise, the jamming power and white noise power are

= 2 = 2_ = 2.
J E{pji(t)} E{pJq(t)} F

-
n

2 Y 2 %
E{n; (t)} = Eln ()} = o2 (6.1.-24)

Thus, signal to noise power ratios may be defined as

% = E%Y-= SNR ; Direct-path to White Noise
n

Srar b o . DY i

e SJR 3 Direct-path to Jamming
J

% - 5%7- ; Direct-path to Reflected Path (6.1.-25)
o]
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Actually, the simulation uses the "Muitipath Ratio,"

M
MPR = §-=_2a§ (6.1.-26)

Now, because of the manner in which the various stochastic processes are
generated, the gain constants are defined by

= 52
Gn cn
G;:oz
G2 = o2 (6.1.-26)
o o e
Thus
_ (SNRDS,
g =t L g 1T oy
" /ZSNR V2
SJRDB
- (BR08,
G =__l__=.]_.'|0 :GJ
b /2SR V2
e +(MERDB,
PR _ 1 20
6 =/TF =L .10 = GRHO (6.1.-27)
V2

In the case of the white additive noise, it is more convenient for graph-
plotting purposes to set GN according to the ratio of symbol energy divided
by noise spectral density, E/No. The E/N0 ratio is computed only for that
energy actually used for signalling, and does not include any energy in
residual unmodulated carrier components. Thus, in general, E/No and GN
must be computed separately for each modulation case. From (4.4.-23) and
(4.3.-29) result

_(ENODB)

20
« 10 ; PSK

GN =V/§'- [sin(ag)

b (continued)




SE ket (ENODB)
/2 sin’ A“’T(k - ¥f23) . FSK (6.1.-28)

6.1.14. Subroutine DATA

This subroutine simply adds the I-Q vector outputs of MODUL, GEN, INT2
and NOISE to produce the received data vector Z. Z is realx4, a one-
dimensional array of length 2.

6.1.15. Subroutine REFGEN

This subroutine generates the signal references for the linear filter.
In particular, it generates the references for the transmitted and reflected
components XST, FR, and GR, respectively. Each reference signal FTR, GTR,
FRR, and GRR, is generated twice, once for a transmitted symbel, m = 0, and
once for a transmitted symbol, m = 1. Each time REFGEN is called the desired
symbol, m, is specified. The time reference, TKMOD, is time since beginning
of the current symbol. This is the same time reference used in MODUL. The
direct-path signal references, FTR and GTR, have a gain constant AEST, repre-
sentive identification of direct-path signal strength.
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6.1.-16. Subroutine KALFLT.

This is the subroutine which actually performs the linear filtering and
tracking of the colored channel interferences in the presence of white noise.
The diagram of Figure 4.2.-1 shows that the filter may be separated into
two parallel paths coupled only through the Innovations process, one path
for jammer-tracking and one path for multipath-tracking. However, as noted
in Section 4.2., the Kalman gain equations are coupled and cannot be split
into two parallel computations. Thus, the present version of KALFLT employs
a state-vector which is a partitioned vector made up of the jamming and
multipath state vectors. Thus, for the case where the I and Q component
state vectors for jamming and multipath were all of dimension 3, the parti-
tioned state vector for KALFLT is of dimension 12. The error variance
matrices in the gain computation are 12 x 12.

The first steps in KALFLT are to set up the structure of the filter in
terms of identified values for the {r, &, A} matrices for both the jamming
and multipath processes. These correspond to the {Fr’ L Ar} and {rj, ¢j’
Aj} of equation (4.3.-2). Also, the signal reference matrices, Ht() and Hj()’
are set up using the I-Q components FTR, GRT, FRR, GRR provided by REFGEN
as well as the identified estimates of the parameters, GN, GRHO, GJ, and
others.

After the setting up of the Kalman filter structure, the filter equations,
themselves, are implemented. These are the partitioned version of (4.2.-2)
plus the partitioned gain equations. These equations are presently for
the case of colored multiplicative and additive noises plus white noise.

The equations for delay spreading have not been implemented.

The reason that the setting up of the Kalman filter structure has been
included in KALFLT, rather than in INPUT, is to cover the possibility that
the multipath or jamming processes are (slowly) non-stationary. In that
case the Identification algorithms would be continuously adjusting the
Kalman filter structure. Under an assumption of stationarity or for a
fixed filter configuration (sub-optimal), the setting up of the filter
structure could be done in INPUT, thus speeding up the execution of KALFLT.

An even greater increase in execution speed can be obtained by using the
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steady-state (Wiener) version of the Kalman filter. Then the gain equations
(12 x 12) themselves may be moved to INPUT, leaving only the filter equations
in KALFLT. This modification is presently being pursued.

It can be seen from the KALFLT listing (Section 6.2) that both the
gain and filter equations are executed in vector-matrix arithmetic. The
applicable subroutines are described below.
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6.1.-17. Subroutine DCIDM

This is the subroutine which forms the IDEI decision statistics, Si’

of equation (4.1.-12) using the arguments of the Gaussian density of equation
(4.1.-13). The inputs are the Innovations process, its inverse covariance
matrix, and the determinant of its covariance matrix. Instead of comparing
the products of (4.1.-12) at the Kth (NSPB) sampie time, the natural loga-
rithms of the products are compared. Since the 1oge() function is monotonic,
non-decreasing, and positive, this also gives a sufficient statistic. Since
the desity is Gaussian, the cumulative product is computed as a cumulative
sum of the logarithms.
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6.1.-18. Subroutine STDCIM

This is the subroutine which computes the decision statistics for the
standard PSK coherent detector and FSK incoherent detector as in equations
(4.3.-30) and (4.3.-41), respectively. The PSK test of (4.3.-30) is equiva~
Tent to simply sunming the Q data samples, Z(2), over the symbol period and
then testing for positiveness or negativeness. This equivalent test is
actually done. Thus, the PSK statistic is simply the sum of the Z(2) data
samples. For FSK, the exact operation of (4.3.-41) is implemented.
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6.1.19. Subroutine CERKAL

This subroutine is called by the main program after the last data sample
has been processed in each symbol interval. The decision statistics, SO,
and S1, produced by DCIDM are compared to make the symbol decision. The
true symbol is BB. The detected symbol is BBHAT. Based on the symbol
decision, the final state estimates, XEST, in both Kalman filters are set
equal to the estimate in the "correct" filter. Also, the estimation error
variance matrices are symmetrized and set equal. This latter step is to
combat the cumulative effects of round-off error in the 12 x 12 matrix
computations. If BB does not equal BBHAT, an error counter is incremented.
A cumulative raw error rate, ERRATE, is also computed. Finally, subroutine
ESTERR is called to compute smoothed mean error rate and error rate variance
from the raw error rate.
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6.1.20. Subroutine CERSTD

This is the counterpart of CERKAL which is used to compute error rates
and variances for the standard detector. The operation and variable list is
completely analagous to that for CERKAL.

6.1.21. Subroutine ESTERR

This subroutine smooths the raw ERRATE to generate a mean error rate
for either CERKAL or CERSTD. Also, ESTERR generates the smoothed error rate
variance and data signal to noise ratio, DATSNR. This routine also tests

the simulation results to terminate the simulation run. Three tests must

be met simultaneously to terminate. First, the computed DATSNR must be
greater than a set-in value, DSRLMT. Second, the number of symbols processed
must be greater than a set-in limit, NIB. Third, the smoothed error-rate
mean must satisfy a Cauchy convergence criterion. This criterion is that

the absolute difference of the two most recent ERMEAN values, divided by

the most recent, must be less than a set-in value, CAVAL. When the errors
occur in bursts, it is generally this Cauchy criterion which controls the
simulation termination. The ESTERR variables are described in Table 6.1.-16,
for CERKAL.

6.1.22. Subroutine MARSA

This subroutine generates independent Gaussian numbers having zero mean
and unit variance. It is due to Marsaglia [105] and is faster than the
Box-Muller [106] method. Input to the subroutine are pairs of independent
numbers which are uniformly distributed on the interval, [-1, 1]. These
numbers are obtained from a version of the IBM-360 library routine, RANC,
which has been rewritten for the PDP-11/40. For remote simulation on the
CDC-6600, its library routine, RANF, is used in lieu of RANC. The CDC
routine requires two other subroutines, RANSET and RANGET, which supply
seed numbers to RANF. The subroutine MARSA is simple and self-explanatory.
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6.1.23. The Matrix-Vector Subroutines

Rather than rely on unknown matrix-vector algebra library subroutines
on host machines, the few routines needed were written specifically for this

simulation. These routines are simple and self-explanatory from their listings
in Section 6.2. They are

MATMUL : Matrix multiplication

MATVEC : Matrix times vector

VECAS : Vector addition (or subtraction)
MATAS : Matrix addition (or subtraction)
MATINV : Matrix inverse
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6.3. INITIAL SIMULATION RESULTS

6.3.1. Overview

The simulation program, documented above, has been run sufficiently to

demonstrate its performance. The program was debugged locally on the PDP-11/40.

Production runs were made remotely on the CDC-6600 at Aeronautical Systems
Division, Wright-Patterson AFB, Ohio.

The program is run in an overlay configuration on the PDP-11/40, in order
to not exceed the available core memory of 16 K-words (Octal, 8-Bit). In
the overlay mode, the program is considerably slowed and processes at a rate
of one data sample every seven seconds. At ten samples per symbol, the local
rate is 51 symbols per hour of run time. To simulate error rates of 10'3
requires running at least 3000 symbols. Locally, this would take 59 hours
per run. Clearly this is not feasible. To speed up the Tocal simulation
will require modifications to the program like those outlined in Section
6.1.-11, plus the acquisition of more real memory (core) for the Minicomputer.

When run remotely on the CDC-6600, the program is not overlayed. It
occupies 17,920 words, octal, in core. It processes samples at a rate of
4.65 per second. Thus, to run a 10'3 error rate simulation with 10 samples
per symbol requires 6,500 seconds or 1.8 hours CPU time at a cost of $111
per CPU hour. To date, the Principal Investigator has not been successful
in persuading the CDC-6600 operators to allow a run in excess of 4000 seconds.
These 4000 second runs are allowed only on Tuesday, Thursday, or Saturday
mornings between midnight and 4 a.m. Thus, presently, remote simulations
of error rates Tess than 10'3 appears impractical on the ASD machine.

It is estimated that by procuring additional core memory for the PDP-
11/40, the local execution time of the simulation routine can be improved
by a factor of 5. Then simulation runs at 10-3 error rate could be accom-
plished locally in 12 hours or only 7 times slower than on the CDC-6600.
Given the continuous access to the Minicomputer, this latter method of
simulation is clearly the most practical.
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6.3.2. Detailed Results

Reported herein are the first simulation results for the optimum binary
detection algorithms for Frequency-Shift-Keying (FSK) and for Phase-Shift-
Keying (PSK). By optimum is meant in the decision-directed, Integrated
Detection, Estimation, and Identification (IDEI) sense.

For the presently reported cases, the symbol rate was chosen to be
2500 per second, which is the same rate as for the previously reported
simulation for a quaternary hybrid modulation in multipath [29]. The PSK
phase deviation was chosen at 0.785 radians, for a reason to be discussed
beTow. The equivalent phase deviation for FSK was also taken at 0.785
radians, so as to be comparable with the PSK case. Thus, the frequency
shifts, with respect to the carrier frequency, were plus and minus 1962.5
Hz., for m = 0 and 1, respectively.

The present results were obtained for two particular channel conditions.
Either colored multiplicative noise with white additive noise were present
or colored plus white additive noises were present but simultaneous colored
additive and multiplicative noises were not used. For the multipath case,
zero differential group delay was assumed between the direct and reflected
paths. This is equivalent to an assumption of non-frequency-selective fading.
The I1/Q low-pass components of the multiplicative noise were obtained by
passing independent scalar white noise processes through two separate
un-coupled low-pass filters, each having the same transfer function. This
is equivalent to an assumption that the Doppler spectrum of the unmodulated
carrier displays even symmetry about the carrier frequency. The discrete-
time filter algorithms were obtained by driving a continuous-time filter
with a sampler and Zero-Order-Hold. The continuous-time filter has three
adjustable real pole frequencies and one adjustable real zero frequency. For
the present results, the pole frequencies were selected as 250 Hz., 625 Hz.,
: and 2500 Hz. The zero frequency was selcted as 10,000 Hz., giving the
| filter an equivalent noise bandwidth (one-sided) of 275.7 Hz. For the

present multipath case, no delay-spreading filtering was assumed. {
For the colored additive noise case, the same filter structure was

used as for multipath, driven by two independent scalar white noise processes.

Thus the colored additive spectrum was assumed to be even-symmetric about the

carrier frequency with an equivalent width at radio frequencies of 551.4 Hz.
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