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PREFACE

The work covered by this report was accomplished by the Department of
Electrical Engineering , Texas A&M University , College Station , Texas, under
Air Force Contract F33615-75-C-lOll. The effort was documented under
Project 7662, Avionic Data Transmission and Reception , Task No. 766204,
Anti-Jam Processing Techniques for Multifunction Application , Work Unit
No. 76620424, Low Cost Anti—Jam Digita l Data-Links Techniques Investigations.
The contract mon itor was John W. Mayhan (AFAL/AAD) of the Air Force Avionics
Laboratory, Wright-Patterson Air Force Base, Ohio.

From 1971 through 1973, the Principal Investigator developed a new sampled-
data processing technique for anti-multipath reception of aeronautical data-
link signals. The research, which was performed at NASA Langley Research Center ,
included development of a Monte Carlo computer simulation for testing the pro-
cessing algorithms , as well as performance of a flight experiment to verify
the multi path mathematical model . The multipath perturbations , for a diffuse
Doppler-spread channel , took the form of complex multiplicative noise in the
compl ex signal domain.

The anti-multi path research yielded a new type of detection algorithm
which works by tracking and cancelling the multi plicative noise. A patent was
eventually obtained on the new receiver.1 After some exper i ence was ga ined
through simulation of the anti-multipath detector, it became obvious to the
Principal Investigator that the same basic processing approach would probably
work for channels characterized by colored additive interference. Such
channel s occur in the presence of Rad io Frequency Interference or Jamming .

In 1974, a proposal was made to the Air Force Avionics Laboratory for the
research presently being reported. The scope of the proposed effort was essen-
tially to (i) extend the NASA multipath model ; (ii) derive detection algorithms
for multipath and additive colored interference; and (iii) produce an upgraded
Monte Carl o simulation program for testing the new algorithms .

1 John H. Pa inter , “Anti -multipath Digital Signal Detector,” United States
Patent # 3,984,634, October 5, 1976.
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PREFACE (Continued)

The present report is on the outcome of the effort from July 1974 through
October 1976. In short, the research was successful . New anti-multipath ,
anti-jamming algorithms have been derived . First simulation tests show that
they work well. A follow-on effort has been defined for pursuing the reduction
of the detection theory to practice . The fol low-on effort has been funded by
AFAL for a period ending in December 1977. The present report forms the base-
line for the fol low-on effort.
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SECT ION I

INTRODUCT ION

This is a report on the first phase of an investigation into new tech-
niques for communicating digita l data between aircraft and other terminals.
The impetus behind the research is the necessity to develop low-cost , high
performance digital data-links for a variety of aircraft operating in a
variety of interference environments. Currently there exists no standard
aeronautical data-link system which combines low-cost and high-perfo rmance.
Presently, systems which require high (60 db.) protection against intentional
interference use signalling techniques which result in high cost receivers .
Systems requiring less protection result in lower cost receivers but are not
standardized. The lack of a standard system contributes somewhat to higher
cost for both high protection and low protection hardware .

The goal of the investigation is to develop real-time , sampled-data
processing techniques to combat both natural and intentional interferences
on aeronautical radio navigation and data-link channels. Such processing
techniques , if not overly complex , offer the potential for low-cost imple-
mentation. In order not to make A Priori assumptions which would force
high cost implementation , a processing approach is sought which is relatively

independent of si gnal modulation type. Thus , the thrust is toward signal
processors which operate essentially as modems on the output of standardized ,

unsophisticated radio receivers .
Although , the i nvestigation is primaril y receiver oriented , some inferences

are drawn on the signal design and coding aspects of system optimization . The

orientation is also toward recursi ve (real—time ) data processing receivers .
Al though the analyses and simulations are for sampled-data (discrete-time), the

results also have implications for continuous-time systems. The choice of

sampled-data analyses and design is because of the immediate implementabi lity

(for restricted bandwidths ) in digital hardware. Also , the ease of Charge

Coupled Device (CCD) implementations for sampled data aigorithn’~ influences

the choice of sampled-data .
Other infl uences on the investi gation are the desirability to use digita l

signalling for aircraft which cannot carry directive antennas. The use of

• ~~~~~~~~~~~~~~~~~~~~ -. 
• 
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_____________



simple antennas insures that the signals are always subject to multipath inter-
ference, resulting from Earth surface reflection. To assume directive
antennas not only increases cost but also evades the issue of dealing with the
interference. Also , additive colored interference , intentional or otherwise ,
is assumed to be present.

A certain amount of the investigative effort concerns mathematical model-
• ing of the multipath perturbations and of possible additive interfering signals.

Advantage is taken of prior NASA work in anti-multipath reception . In the
present effort, the restricted NASA multi path channel model is generalized
sufficiently to be realistic for narrow or wideband signal modulations .

Next, the detection of digita l signals in the postulated channel is considered
in the most fundamental framework of probabilistic decision theory . Finally,

a Monte Carl o simulation program is designed and tested , for exercising the

detection algorithms . Primarily, the present investigation examines whether

the same processing approach which was successful for multipath channels will
also be successful in the presence of intentional additive colored interference.

~~ ~~~ • . .~~~~~~~~ _______________
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SECTION II

FORMUL ATION OF THE IN V EST IGATION

2.1. MOTIVATION AND DIRECTION

\~~~~ 
_\ N  

_ _  _____

IP4TERFER$NG
_ _ _ _ _ _ _ _ _ _  
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—

— -.__—REFLECTION — _________

~~~-~~~~~--— ZONE 
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Figure 2.1.-i . The Communication Problem.

This report gives results of a new investigation into the problem of

digital communication for aircraft in the presence of ground reflections and

other additive interference. Figure 2.1.-i depicts the type of channels
which are dealt with . The aircraft are taken to be relatively unsophisticated ,

such as Remotely Piloted Vehicles or light tactical aircraft. For reasons of

cost and maneuverab ility, directive antennas are not assumed . Thus , the air-

craft are always subject to radio reflections from the Earth ’s surface. At

times during its missions , the aircraft may also be subject to intentional
additive i nterference from other signal sources.

State of the art digita l data-links for aircraft which give protection

against mul tipath and intentional additive interference are based on communi-

cation theory from the early 1960’s. Although current avionics may use new

k 3
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device technologies , the underlying theories are not new. The new device
technologies have increased data processing capabilities many fold over those
of the ‘60’s. Thus , it seems timely to re-examine the communication theory
to see if the new device technologies can be exploited for aeronautical data-
link purposes . The present investigation makes just such a re-examination.

It has l ong been understood that there are three ways to deal with addi-
tive interference in a radio channel . These may be loosely characterized as
(i) averaging ; (ii) avoidance; and (iii) cancellation . In the case of multi-
path , si gnal information may be transmitted simultaneousl y at two different

• frequencies and the received signals summed after demodulation. This averages
the interference over frequency and is a type of “Diversity ” reception ~ij.

In the case of intentional additive i nterference, Phase-Shift-Keying may be
used for transmission employing a binary Pseudo-Noise (PN) code . Upon recep-
tion , the interference is spread in frequency and is essentially averaged.
This is a type of “Spread Spectrum” techni que [2, 3, 10, 12].

In the PN scheme, the last step in generating the transmitted message

signal is to perform a multiplication wi th a two-level (+1 ) PN waveform . The
transitions between +1 and -1 levels are generated in a random-appearing, but
known sequence. The bandwidth of the PN waveform is much larger than that of
the transmi tted message signal . Because multiplication in the time domain

yields convolution in the frequency domain , the resulting spectrum has
• essentially ~he width of the PN waveform.

In detection , the spread signal is multiplied by a replica of the same PN

waveform used for generation. This multiplication restores the basic message

signal . If the additive interference is due to an undesired signa l , the re-
ceiver multi pli cation spreads its spectrum . Because the detector bandwidth
need only be as wide as the basic message signal , only a small portion of the

additive interference power enters the detector. To the detector, the spread

interference looks like additional white noise and is treated accordingly. If

the additive interference is due to delayed multipath versions of the desired
signal , the RN-reception scheme also rejects the interference to a certain
degree, provided the interfering signals lag the desired signal by at least one

symbol of the PN sequence.
The chief difficulty with the PN scheme is that of synchronizing the re-

ce i ver ’s PM sequence generator to the sequence inherent in the received signal .

4
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In the PM scheme the receiver sequence , which is to multiply the received sig-
nal , must be synchronized to the received sequence to within a fraction of a
PM symbol . For a 10 Megabit per second PN waveform , synchronization is re-
quired to within tens of nano-seconds. Moreover, the received sequence clock
rate is not constant , due to changing Doppler conditions. Thus , active
synchronization processing is required . The PN synchronization problem is a
direct result of spreading the spectrum of the transmi tted signal over that
which is required to just carry the message information. If the spectrum is
spread by six orders of magnitude , then the required synchronization accuracy
is increased by six orders of magnitude . It is the synchronization problem
for highly spread signals which df’ives the hardware cost up and out of the low-
cost arena.

Interference Avoidance techniques may lead to the diversity method of rejec-

tion of the interfering signal through adaptive steering of antenna pattern
nulls. This technique can be applied , provided the sources of desired signal
and undesired signal , or multipath reflection , are not nearly co-linear , with
respect to the receiver. Another avoidance method is that spread-spectrum
technique known as “Frequency-Hopping ” (FH).

In the frequency—hopping scheme , the basic message signal is shifted
in frequency over a collection of spot frequency assignments . The sequence of
frequencies appears random but is known . The same kind of random sequence
generator is used for FU as was used for PN. In the receiver, the local
oscillator is control led by a repl i ca sequence so that the receiver is in-
stantaneously tuned through the proper set of frequencies. This tuning does
not , however , spread the spectrum of an incident additive interfering signal.
If the interference is narrow-band , with respect to the width of the set of
frequency-hop assignments , then only a few of the transmi tted symbols will be
affected. Error correcting coding of the basic message signal may be employed
to restore the affected symbols. Multipath interference is also avoided by
hopping the signal so rapidly that the receiver has left any given frequency
before the delayed reflected signal has arrived at that frequency.

Fast FH schemes using many frequency slots encounter synchronization
problems similar to those for PM systems. High performance FH systems or
hybrid FH/PN systems have not demonstrated low cost to date .

The third method for dealing with interference is that of cancellation.

Essentially this means tracking the interference with a filter and , for additive

1. 
_ _  _ _ _  
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cases , subtracting the tracked estimate from the received waveform . No docu-
mentation or other information has been found during the present investigation
which indicates tha t the Interference Cancellation Strategy has ever been
appl ied to the aeronautical communication problem. There is a good reason for
this. Prior to the development of recursive , least-squares estimation (Kalman
filter) theory, there was no theoretical basis to support such a cancellation
strategy. Thus , interference averaging and avoidance , in the form of spread-
spectrum techniques , conti nue to form the present state-of-the-art in aero-
nautical data-link and navigation systems [4].

This investigation does not set out to employ cancellation methods , A
Priori . What occurs below is that a first principles derivation of optimum
recursi ve digita l detection algorithms produces the interference cancelling
solution . Thus , interference cancellation is proved to be the optimum scheme
under quite general performance cri teria. This is perhaps the most interesting
result of the entire effort.

It is shown in followi ng sections that interference cancellation requires

estimation of the waveform of an additive undesired signal. For multipath
interference (in the diffuse case), cancellation require s estimation of the
waveform of an equivalent multiplicative interference process. When both
types of interference are present , simultaneous estimation of two waveforms

is required. Such estimation can only be done. jointly with detection of the
desired (digital) signal. A useful implementation of such a joint estimatorf

detector will be shown which employs “Decision-Direction ” of the interference-

cancelling estimators . In general , only recursive , state-variable fil ters

wi th resettable states can satisfy such requirements . Thus , a second reason
why cancellation techniques have not been applied to the aeronautical problem ,

other than lack of theory , is lack of hardware and device technology to
support such theory. Estimation of wide bandwidth interfering signals requires

wide-bandwidth resettable fil ters. To date , such fil ters have only been used

for relatively narrow band fi l tering . This is because implementatio ns have

used digital logic , with its inherent processing speed limitations. It is
only with the advent of new signal processing device technology , such as the

Charge-Coupled-Oevice , and Acoustic-Surface-Wave-Device, that the possibi lity

of wideband interference-cancellin g estimation becomes attractive .

The motivation and direction of this investigation , then , is to re-

examine the digita l detection theory for the aeronautical channel with a
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view toward replacing high-cost sub-optimum techniques wi th more nearly
optimum techniques which can take advantage of new low-cost device technology
for signal processing.

2.2. THE TECHNICAL APPROACH

The approach for this investigation is , first , to mathematically model
the transmitted signal , multipath channel , and additive interfering signals
in as general a form as is practically useful . Next , the mathematical models
are used to derive detection algorithms for the transmitted signal symbols.
These algorithms are to be i ndependent of signal modulation type . The algo-
rithms are to be derived according to particular performance criteria , such as
minimum probability of error. Because the algorithms are expected to be
algebraically difficult to evaluate in closed form, a Monte Carlo simulation
program is to be developed for testing purposes. The simulation is to be
capable of evaluating detection algorithm performance over a wide selection of
channel conditions , interfering signal types, and transmi tted signal types.

The models for the transmitted signal , channel perturbation , and inter-
fering signals are initially models wherein time is a continuous parameter ,
since this is their physical nature . However, these models are next converted
to discrete-time models , for two reasons. First , the simulation must be done
in discrete time , since that is the nature of a digital computer. Second , this
investigation is initially to obtain optimum interference-cancelling receivers
in sampled-data (discrete-time) form. Such algorithms are amenable to imple-
mentation using digital logic of C.C.D. device technology . A successful develop-
ment of interference -cancelling algorithms in discrete-time form would naturally
imply an extension of the investigation to continuous—t ime algorithms.

The continuous-time signal and channel models are developed using complex
function notation . There are two reasons for this. First , rough surface
scattering theory has been extensively developed using complex notation .
Second , the complex signa l leads naturally to a two-vector state variable sig-

nal formulation where the vector components are the in-phase and quadrature
components of the complex signal. The interference -cancelling processor then
processes the “I-Q” l ow-pass components of the received si gnal.

7

•~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~:_ 
~~~~~~~~~ • 

•—. - . — —



The mathematical model used for the multipath perturbations is a postulated ,
or heuristic , one. An exact channel model , derived from first principles of
electro-magnetic propagation theory , has never been obtained. Since statisti-
cal detection theory is used to derive the optimum detector , an exact channel
model is not required . Only a channel model which is statistically equivalent
to the multipath perturbations is required . The model used here is of the
same type as is used in Sonar work [5], and is a generalization of the model
used in previous NASA aeronautical work [6].

The interfering signal model is taken to be a band-pass stochastic pro-
cess whose carrier frequency is fixed , but arbitrary . Two versions of the
signal are available , one in polar form (envelope-phase modulation) and one in
quadrature form (quadrature amplitude modulation). Stochastic modulation is
employed. By controlling the parameters of the modulation components , any
desired type of interfering signal may be realized . For example , using a
binary 0-1 sequence in the envelope term and a parabolic sequence in the phase
term yields a pulse-modulated , frequency-swept carrier. Using zero-mean
Gaussian quadrature component processes yields a noise-modulated carrier.

The desired transmitted signal model is taken first in polar form for
generation , and then in quadrature form for reception . Various modulation
formats are obtained in the same manner as for the interfering signal.

The technical approach to optimum (interference-cancelling) detection
is the following. Based on the mathematical model of the received signal , as
perturbed by multipath and interfering signals , the recursive form for the
conditional probability density function of received data , given transmitted
signal waveform, is computed from the input data . The functions (also loosely
called “Likelihood Ratios ”) are computed separately for each waveform which
occurs in the signalling alphabet. The computation begins at the start of a
symbol interva~ and is complete at the end of the same symbol interval.
During any symbol period only one of the several possible signal waveforms is
actually present in the input data . At the end of the symbol period , the wave-
form truly present in the i nput data reveals itsel f by causing the correspond-
ing density function to be greater than the others which were computed with a
false signal waveform assumption. This method of symbol detection is called
“Maximum Likelihood .”

It is shown in following sections that the detection statistic contains a
convex functional of the “Innovations Process” [7]. This process is developed

8
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as the error functions of linear filters which are in feed-back canonical
form and are attempting to track the stochastic components of the input data .
If it is desired that the operation be optimum from the instant the detection
is initiated , or if the stochastic interference is highly non-stationary , then
the linear filters must be of the Kal man type. If the interference is nearly
stationa ry and an initial lock-up or learning period can be tolerated , then the
linear fil ters may be stationary , of the Wiener type . Each linear fi l ter is
imbedried in the algorithms for computing the Maximum -Likelihood density func-
tions. Each filter is given a different reference waveform, representing the
desired signal present. Only the fi l ter having the reference waveform of the
signal truly present during the interval “successfully ” tracks the stochastic
components of the input data . This successful linear fi l ter, produces a
tracking error signal (Innovations Process) which is minimum in the mean-
squared sense. The filter having mi ,’timum error reveals which signal waveform
was truly present during the interval.

The stochastic components which the filters attempt to track consist of
the additi ve interferi ng signal process and any diffuse multiplicative noise
due to multipath . The Innovations Process is formed by subtracting the Kalman
filter ’s conditional mean estimates of the stochastic components from the input
data stream (predicted estima tes in the sampled-data case). Thus , the fi l ter
which minimizes the Innovations Process (variance) is the filter which most
nearly tracks and , by subtraction , cancels the stochastic interferences .
Therefore , the optimum detection strategy (Recursive Maximum Likel i hood) is
the cancellation strategy.

In the manner of state-variable-type estimators , the optimum detector
requires many pieces of subsidiary information. Chief among these are knowl-
edge of the bandwidths and strengths of the interfering signal and of the
diffuse multipath perturbations. Also required is knowledge of the strenth
of desired signal and additive white noise . Finally , synchronization of the
detector with the received symbol interval is required .

It should be noted that , by assuming a general (arbitrary ) modulation
waveform , spread-sprectrum modulation is not assumed , A Priori. Thus ,

initially the synchronization problem is only that of synchronizing with a

waveform whose time variation is commensurate with that of the information

rate itself. Such inherently narrow-band modulation is all that is required ,
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unless the additive colored interference waveforms are likely to be highly
correlated with the desired signal waveforms . In such a case some resort
to signal coding of symbols and waveforms may need to be made . This is dealt
with below . However , A Priori wide-band spreading of the transmitted signal
is not necessarily required .

Because synchronization and the various statistics of desired and inter-
fering signals are not known , A Priori , they must be estimated . These esti-
mations need not be made duri ng a single symbol interval , but may be made
over many intervals. In genera l , the estimates are also made according to

• the Maximum Likelihood principle. That is , for each statistic , an array
of severa l differing values is tested against the input data , using conditional
probability density functions. The array is shifted in a systematic manner
to search for the true value of the statistic which is present. Once its
true value is bracketed by the array , periodic testing, with shifting of

• the array keeps the estimate of the statistic up-dated .
The necessity tO obtain estimates of the various required statistics be-

fore the interference-cancelling detector can be operated in its optimum
fashion dictates that the receiver go through a “learning ” phase prior to
good data detection. Havi ng learned or “acquired ” the initial values of
the various statistics of the communication environment , the receiver then
operates in the interference -cancelling mode , meanwhile “adapting ” to changes
in the environment statistics . Thus , the interference-cancellin g receiver
must also employ the learning and adaptive features.

Because of the rntegrated Detection Estimation , and Identification (IDEI)
employed by the processing algori thms , closed form analytic evaluation of
algorithm performance is difficult except in some simplified cases . Thus ,
Monte Carlo evaluation of the algorithms is a necessity . Properly executed ,

the simulation is useful for developing and simplifying individual algori thms ,

as well as for testing overall perfOrmance.
The remai nder of this report consists of five more major sections.

Section III , fol l owing, produces the mathematical models for the channel and

interferences , culminating in the actua l received sampled-data waveform and

an equivalent canonical state-variable model .

Section IV presents the derivation of the discrete-time , recurs i ve IDEI

algori thms . A simplified example is explained. Then previous related results
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from the literature are covered. Next are presented the linear tracking
algorithms and the standard detector algori thms for comparison . Finally ,

some work on signal design and coding is presented.

Section V considers the problem of identifying the statistics of the
interfering processes as well as some unknown parameters . This section

exami nes previous work in the area and defines needed work in the follow-on
extension to the present contract.

Section VI gives details on the Monte Carlo simulation program . The

main routine and subroutines are documented to the minimum extent necessary

to understanding and running the simulation . Also , some preliminary simula-

tion results are given .
The final major portion of the report consists of Appendices and

References.
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I

SECT iON I l l

• SIGNAL AND CHANNEL MODELING

3.1 THE CONTINUOUS -TIME REAL AND COMPLEX MODELS

The transmitted signal is taken in complex function form as

= mt (t) exp( jw ct ) (3 .1. - l)

where mt(t) is a complex , low-pass “modulation ” function and exp (jw
~
t) is the

complex form for the unmodulated “carrier ” wave . The constant , w~~, is the
carrier frequency in radians per second. The modulation function is written
in terms of a real “envelope ” function , At(t), and “phase ” function , q t(t), as

mt(t ) = At(t) exp(Jq~(t)); 0 < A ~(t) (3.1.-2)

The physical , or realizable , transmitted signal , st(t), is taken as the real
part of the complex 

~t
(t).

st(t) = Re {cr
t

(t )}

= At(t) cos (~~
t + 

~~
(t)) (3.1. -3)

Any conceivable modulation format may be represented by a suitable choice
of the functions At(t) and ~t

(t). For example , if At(t) is unity and ~t
(t) is

non—zero , the signal is phase (or frequency ) modulated. If c
~ t

( t )  is zero and
At(t) is non-zero , the signal is envelope (or amplitude ) modulated. Both the
above cases yield signals whose power spectrum is even-symmetric with respect
-to the carrier frequency . If At(t)cos~t

(t) and At(t)sinq t(t) are a Hu bert

• Transform pair , then the signal , s
~
(t)
~ 

has single-sideband structure and the
complex modulation function , mt(t), is analytic. Intermediate (or residua l
sideband) cases are also possible. (See Reference [8]).

The complex function which is received at the vehicle is denoted ~(t).

It is the sum of the transmitted signal , as received over direct line-of-si ght

path and reflected path , plus an interfering process , a~(t)~ plus a wh i te noise

~j 
‘
\

...
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process , ~(t). The received function is normalized in amplitude with respect
to the transmitted signal a

~
(t), to write

~(t) = at (t) + ar(t-~
) + ~~(~t)  + n ( t) (3.l.-4)

In (3.1.-4) c
~t

(t) , the transmitted signal , is taken as the component of
signal received via the line-of-sight path. ar

(t_
~
) is the component of

desired signal received via a set of paths reflected from the Earth ’s surface .
(See Figure 3.1.— i). ar(t_L~

) is normalized in time by the po :itive constant ,

~~~, which represents the minimum path differential delay time through the spec-
ular refl ection point. (See Ref. [6]).

The received function , ~(t), is written in polar form as

~(t) = [mt(t) + mr(t_ ~
) + m~ (t )  + ~(t ) ]  exp (jw~t) (3.l. — 5)

where mt ( t ) ,  mr(t), and m~(t) are the complex modulation functions (sometimes
cal led complex “envelopes ” - Ref. [8]) for the transmitted , reflected, and

interfering signals , respectively. Equation (3.1. -5) normalizes frequency
with respect to W c~ 

which is taken to be the carrier frequency of the trans-
mitted signal , at (t),  as received via the line-of -si ~~~~ Thus , W c
includes the direct path Doppler shift between transmitter and vehicle. In
general , the reflected component , mr(t),  has slightly different Doppler offset
than the direct path. This must be accounted for in formulation of the mr (t)
modulation function , as the function of the transmitted mt (t).  Also , the

carrier frequency of the interfering si gnal , ~~(t)~ is not generally received
equal to 

~~ 
Thus , the modulation function , m~(t)~ is general ly one which

• yields non-symmetric spectra with respect to The function , ~~t) ,  repre-
sents complex white Gaussian noise in “baseband” form.

By splitting the modulation functions into their real and imaginery parts ,
the physical form of the received function may be written as

z (t) = Re {~ ( t )}

= c 1 (t) cos Wct 
— ~q(t) sin wc(t) (3.l.-6)

where

13 
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~ 

= y~~(t) + y,~~
(t) + y~~(t) + n~ (t)

~q(t) = y~q(t) + Y~q (t) + Y~q (t) + nq~t)

and

y~~(t) = Re 
~

mt (t ) }  ; Y~q (t) = In tmt ( t )}

y
~u (t) = Re 

~
mr (t ) }  ; y~~(t) 

= Im {Iflr(t)}

y~1 (t) = Re {m~ ( t ) }  ; y~~(t) 
= Im

n
~ 
(t) = Re {~(t) } ; nq (t) = Im { 6 (t )  } (3.l.—8)

Equations (3.l. —6) - (3.l. -8) define the physically received data process ,
as it exists in bandpass form at the frequency Wc in in-phase , quadrature (I-Q)
form. This is the form which is convenient for derivation and simulation of
the optimum detection algorithms . However, before approaching those tasks , it
is necessary to do some detailed modeling of the modulation functions for the
transmitted , reflected , and interfering signals.

3.2. THE TRANSMITTED SIGNAL MODELS

The envelope , phase function pair , At(t), c
~t

( t ),  are sufficient to cover
any desired modulation format. All symmetric-sideband amplitude modulations
are obta i ned by setting 

~~
(t) = 0. All symmetric-sideband angle modulations

(FM, PM) are obtained by setting At(t) = 1. Single -sideband amplitude modula-
tions are obtained by setting

At(t) sin c
~~
(t) = + H {At(t) cos ~t

(t)} (3.2.-i )

where H{} is the Hu bert transform and the + signs give upper and l ower side-
bands , respectively. Single sideband angle modulations are obta i ned by setting

At(t) = exp {-H f
~t
(t)} } (3.2.-2)

14
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Of particular interest to this investigation are the digital modulations.
For an M-ary alphabet , a code waveform , c(t), is used , which takes on only M
values and swi tches values at well-defi ned switching times. Also , an alpha-
bet parameter , m , is used to relate the value of the code to the member of the
alphabet. Thus , for the binary , ternary , and quaternary cases , on the time
interval , [0, 1]

c(t,m) = — l ; m = 0 ; t c ~O ,TJ, m c (O ,l}

c(t ,m) = +1 ; m = 1

c(t ,m) = —1 ; m = 0 ; t c [0 ,1], m E {0 ,l,2}

c( t ,m ) =  0 ; m = l

c(t ,m) = +1 ; m = 2

c(t ,m) = -2 ; m = 0 ; t ~ [O ,T], m c {0 ,l,2 ,3}

c(t ,m) = —l ; m = 1

c(t,m) = +1 ; m = 2

c(t,m) = +2 ; m = 3 (3.2.—3)

Using the code waveform c(t,m), a binary phase-shift-keyed (PSK) signal
is obtained as

At (t) = 1

• 
~t
(t) = ¶/2 c(t,m) (3.2.-4)

Binary FSK is obtained as

At(t) = l

= . c(t,m) • t (3.2.-5)

15



where is the desired frequency shift in radians per second. The quaternary
ampl i tude-minimum -shift-keyed signal used by airl i nes [34] is obtained as

At (t) = 1 + a . sin[c(t ,m) . 

~ tJ (3.2.—6)

where a is modulation index and T is digit duration in seconds .
Given the alphabet  symbol, m ~ {O ,l,2 ,...,M- 1} , the set c (t ,m), At (t),
is sufficient to wri te the complex modulation function , m(t), for any

M—ary digital signal.

3.3. THE REFLECTED SIGNAL MODEL

Appendix A gives a qualitative description of multi path propagation due
to surface reflection and reviews published research in reflection modeling for
the period from 1956 to 1976. Summarizing the results of the past twenty years ,
there still does not exist an exact reflection model for modulated signals be-
tween moving terminals , derived from first principles of electromagnetic (e.m.)
propagation theory.

The model which is used in this investigation is heuristic , or postulative ,
as are all other multipath models to date . It is quite similar to Van Tree’s

F! “Doubly-Spread” model which was postulated for the under-water acoustic channel
[5]. The e.m. reflection channel and the underwater acoustic channel are
closely related since the propagation equations for reflection of horizontal ly
polarized e.m . waves are the same as the equations for reflection of acoustic
(compression) waves. Thus , many effects encountered in under-water sonar work
have analogs in e-m scatteri ng. The model is a special case of those discussed
by Bello in [9].

3.3.1. The Densely Tapped Delay-line Model

Figure 3.3.-l shows the geometry used for the formal derivation of the
compl ex modulation function of the reflected signal. The transmi tted signal ,

is as defined in (3.1.—i). It is propagated to the receiving point via

~~~~

,

~

,

~~~~~~~a direct pa h of length d 

rnTTe
~ :nd1:1~~~::1Tt

~ 

of lengths r + ó.~ meters ,



- ~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for I = 1 , 2,..., N. The distance , r, is the minimum path l ength through the
specular reflection point. For each i = 1 , ..., N , there results a received
signa l

r+ó . r+,S.
a1 (t) = c~1

(t , o
~

)m(t — -_~---i)exp[jw~(t - ~E_!~)] (3.3.-i)

c = speed of light in meters/sec.

where a1 (t, o.~) is a complex reflection coefficient for the set of paths of
length r + Note that , in general , c~.(t) is received from a locus of points
on the rough reflecting surface which all yield a path length of r + 5~.

-
~~~ d

a~ (f ) r(t)

a’1(t)

Roug h ~~~~~~~~~~~~~~~~~~~~~~[

Figure 3.3.-i . Reflection Geometry.

Equation (3.3.-i is expanded into the form

~u (t) = p
i
(t , t

~
)m(t tr 

- Tl )exp(_Jw~
T )exp(Jw

~
t) (3.3.-2)

tr c ’ ti C
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In (3.3.—2), Tr is the delay time through the specular point. 
~ 

is the addi-
tional delay time through the ith set of paths. The reflection coefficients ,

~~~~ 
t

~~
) for i = 1 , 2, ..., are, in general , correlated as approaches T1.

This correlation occurs because the locus of points on the reflecting surface
yielding converges to the locus of points yielding T

i 
as t,j approaches T i.

The variation of ~~~~ T i
) with t occurs because the ith locus of points moves

across the reflecting surface due to aircraft movement , thus changing the net
reflection coefficient with time .

The signal received over all paths is

crtt) = 

~i~1 
p
1
(t , T

~~
)mt (t - tr - Ti )]exp(~

jwcTr)exp (jwct)

N
= [ 

~ 2.(t, i~
T)mt(t - t - i~T)exp(-jw T r )exp( J w t)

i=l 1 r c c
(3.3.—3)

where equal—increment delay paths are indicated by setting t
~ 

= iAT , wi th  t~T
a constant. An equivalent modulation function is defi ned for the set of re-
flected paths as

mr(t - tr ) =
i~l 

p
~
(t, iAT)mt(t - t - 1AT ) (3.3 . -4)

Note that (3.3.-4) has the interpretation of a tapped delay-line with complex
time-varying tap weights , as per Figure 3.3.-2.
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o~ 

~~~~~~~~~~~~ p2(t)°~~~~ 

~~~r ( t t r)

Figure 3.3. -2: Delay—Line Interpretation .

It is assumed that the reflection coefficients are correlated according
to

E{p
1
(t ~~T , T

~~~
)P

~~ 
(t , T~~~) }  h

1
h R(i - (I - j ) A T ) (3.3. -5)

where R(0) = 1 and the h~ are constants . This definition implies that the
correlation var ies uniformly over the surface. The power associated with a
particular set of paths , say the ith, is proportional to (h

~
)2 . Us ing

(3.3 . -5), the autocorre lation function for mr(t - tr) is found to be

*E{mr(t + T - t ) m  ~ — tr)} = Rrr(t)

N N * *= 

i~l ~~ 
E{oi

(t+T
~
TI )Pj ~~ + T - tr - T 1 )m t (t - tr - t~~) }

N N 
*

= ~ h1h. R(T - (i - j)AT)Rtt(T - (i - j)t~T) (3.3 -6)
i= l j=l 3

where Rtt ( r)  is the autocorrelation function for mt (t) . In (3 .3. — 6 ) It is
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assumed that the p 1
(t , r 1 ) and mt(t) are independent.

Now , (3.3.-6) is just a discrete convolution equation. Thus , as N -
~

and the partitioning of the sets of reflected paths becomes fine , the auto-
correlation function for mr(t) is formally defined as

Rrr (T) = R(T) Rtt (T)*h(T)*h (
~
T) (3.3.-7)

where h(T) is an impulse response defined by the h 1. Equation (3.3.-7) implies
that for the purpose of deriving the autocorrelation function of mr(t), an
equivalent model may be used

mr(t) = [p(t) . mt(t)] * h(t)] (3.3.-8)

In (3.3. -8), p (t) is a complex multiplicative noise process having autocorrela-
tion , R(T). The impulse response , h(t), is defined from the density of re-
flected power versus delay . Note that in the model of (3.3.-4’j, if the

~~~ 
ti) are Gaussian then the conditional density of n1r(t)~ 

given mt(t), is
also Gaussian , and mr(t) is characterized by mean and autocorrelation functions
only. Thus , (3.3.-8) is an equivalent model , for p(t) Gaussian and h(t) deter-
ministic.

Now, the sum of direct-path and refl ected-path signals at the receiving
point is given by

‘i’(t) = Gr (t) + 
~t 

t - T
d
) : Td 

= 
C

= [mt ( t ’ )  + mr(t’ 
- A)exp(_jwcA)]exp (jwc

t’)

A = t r 
- td .  : Di fferential Delay Time

t’ = t - T
d

(3.3.-9)

If i t  is assumed that the time (phase) reference is the direct-path signal , then
the channe l may be modelled as in (3.l. -5) wi th

mr(t - ~) = [ [p(t) . mt (t — A ) ] * h ( t ) ] exp(_j u~ A ) (3.3. - b )
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3.3.2. Special Cases.
i) The Doppler-Spread Case.
When the reciprocal of the delay time across the effective reflection area

is large compared to the highest frequency present in the modulation function ,
the Doppler-Spread case occurs . When the transmitted carrier is unmodulated ,
there results

mt(t) = 1

h(t) = ~(t ) (3.3.-li)

and the resulting reflected modulation function is

mr(t) = p(t) (3.3.-l2)

The complex function , p(t), is the Doppler-spreading multiplicative noise
function.

ii) The Delay-Spread Case.
When the reflection area moves slowly across the reflecting surface and

when the reciprocal of time delay across the area is small compared to the
highest frequency present in the modulation function , the Delay-spread case
occurs . When the transmitted modulation is a sharp pulse, there results

mt(t) 
= ~s (t )

p ( t )  = 1 (3.3.-l3)

and the resulting reflected modulation function is

mr(t) = h(t) (3.3.-l4)

The real function , h(t), is the Delay-spreading impulse response function .
iii) The Doubly-Spread Case.

In general , the reflected modulation function , mr(t), is both Doppler-
• spread and delay-spread. In this case , a time-varying impulse response for

the channel is defined by letting the transmitted modulation be a sharp pulse

at time t = t’
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mt (t) = ~(t 
— t’) (3.3—15)

Then , the reflected modulation funct ion is

mr ( t )  = p (t’)h(t — t’) = h
~
(t, t’) (3.3—16)

and hv (t~ 
t’) is the time—varying impulse response.

3.3.3. The Doppler-Spreading and Delay-Spreading Functions.

Because of the manner in which the delay-spreading impulse response ,
h(t), was defined , it may be determined from the spectrum of power versus
delay , when the transmitted sinusoidal signal is unmodulated. That is , if
a spectrum P(r) is known , where the dimension of P is watts and ~ is delay
t ime in  seconds wi th  respect to m i n i m u m  (specular ) delay t ime , then

h ( T )  = p½ ( T )

Such determinations of P(r) are available , either in closed form, as in Bello
[9], or as the results of numerical computations , as in Peake [11]. The form

as given in Bello [9], is

P(t) “U. exp(-ar)10(bt) : 0 < t

0 < a , b (3.3.-l8)

where I
~
() is the modified Bessel function. The delay power spectra , as com-

puted from Peake ’s [11] solution appear to decay roughly exponentially. For
purposes of designing adaptive receivers , h(t) must be modeled using a lumped
linear filter having finite numbers of poles and zeroes. Thus , the exponential
model seems more desirable.

The complex stochastic multiplicative noise , p(t) may be characterized
from determinations of the Doppler power spectrum , S (w), when the transmitted
sinusoidal signal is unrnodulated . Since p ( t )  is modeled as a complex station-
ary Gaussian process , it is completely characterized by mean and autocovariance

function. In genera l, power spectra 5 (w ),  may be ca lculated , as in Peake [11],
for the Doppler spectrum as it exists at the radio frequency .
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If the mu lt i p l i c a t i v e  noise , p(t), is defined as

p(t) = p
1 (t) + JP q (t) (3.3.—l9)

and the spectrum S~(w )  is the spectrum of

s (t) = Re{~ (t)exp[jw~t]} (3.3. -20)

then the equiva lent low-pass spectra are

= Sp (W~ + w )U (w c + w )  + S
~
(w
~ 

- w)U (w
~ 

-

S~~~
1
(w) = i [S~

(c
~ 

- w)U(wc - - 
~p~~ c 

+ w )U( w c +

U(x) = 1 : 0 < x
= 0 : x < 0 (3.3.—21 )

where the additional properties hold that

S (w)  = S (-u) = S (w )  = S (-~)
p
i
p i PqPq PqPq

5~ ~~~ = S ( -w )  = -S (-w) (3.3.-22)
q l  i q  q i

The covariance functions are then given by the Fourier Inverse Transforms as

R (t )  = F ’{S (~ )}
p
i
p
1 

p 1p 1

R (w) = F 1(S (w)} (3.3.-23)

The multiplicative noise , p (t) is zero-mean when the reflection is en-
tirely diffuse. This case obtains at L-band frequencies when the angle between
reflecting surface and incident ray is greater than , say, 100 and when the
mean surface roughness is large in terms of wavelength. When the reflection
has a specu lar component , such as at VHF , then i- (t) is non-zero-mean. When

the mean is non-zero , it may be taken as real.
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3.3.4. The Final Complex Signa l Model.

With respect to (3.3. — b ), it can be shown that when h ( t ) represents a

filter which has non—zero “d .c. response ” (H(O) ~ 0), and when the differential

delay time is constant or very slowly time -varying , then mr(t - A )  may be

represented by

mr(t - t~) = [exp( _jw
~

A) p ( t )m t (t - A)]*h(t) (3.3.-24)

Thus , the final rotation of the complex modulation function given by exp( _j w
~

A)
in (3.3. - b )  is made equivalent to an initial rotation of the complex noise
p(t). The final complex signal received over the direct and refl ected paths
is then given by

‘~(t) [m
~

(t) + mr(t 
- A)]exp(jw~t) (3.3 . -25 )

where mr(t - t~) is given by (3.3 . —24 ).
It should be noted at this point that when the reflection is quasi-specu-

lar , the multiplicative noise has a non-zero mean function which is real .
Under these conditions the rotation, exp (_j w cA ) ,  acts upon the rea l mean to
produce an equiva lent complex mean which is , in general , slowly time -varying.
It is this effect which produces the s low envelope fades of the real signal .
For complete ly diffuse refl ections , the rotation effects may just be lumped
into the stochastic p (t), itself.

3.4. THE INTERFERENCE MODELS

The complex formulation of the additive interference signal , o~(t)~ of
(3 .T . -4) is

ci~(t) = m~ (t) exp (jw~t) (3.4. -i)

where m~(t) is the equivalent complex modulation function for the interference.
Note that since is the radian frequency of the carrier of the desired signal ,
as received over the direct path , then o~ (t ) is expl ic i t ly referred to that

24



frequency . However , in general , the carrier frequency of the interference ,
wi ll not equal Wc • Thus , the frequency offset of the additive interference

must be generated in m~(t) .
In particular , the equivalent modulation function for the interference is

written as

m~(t) = A~ (t) exp [j  ~~(t)] exp(j Aw~~t )

= w~ - (3.4.-2)

where is the radian frequency difference between carrier frequencies of
interference and desired signal. A~ (t) and ~~(t)  are the non-negative envelope
function and the phase function , respectively. Then , the in -phase and quadra-
ture, low-pass components of m~(t ) are

y~1(t) = A~ (t) cos( i~w~t +

Y~jq (t) = A~ (t) s in( Aw ~t + ~~(t)) (3.4.-3)

Given the offset frequency , Aw~~ the set 4A~(t)~ ~~( t )  is su rficient to
write the complex modulation function , m~(t) .  Deterministic signal structures
may be formed , as was done in Section 3.2 . for the des~ ~d signal . Also ,
stochastic signal structures may be formed.

It is desirable to model three types of additive interference signa ls ,
at this point. The first is a cont inuous-wave , unmodu lated carrier (possibly
offset in frequency). The second is a pulse-modulated (on-off ) carrier
(possibly with swept center frequency). The third is a purely stochastic
Gaussian process with power spectrum which is even-symmetric with respect to
the (possibly offset) carrier frequency .

The unmodulated carrier is obtained by setting

A~(t) =

= 0 (3.4.-4)

where A.  is a constant wh ich is chosen to set the level of the addit ive inter-
3

ference, relative to the desired signal.

25

-~ ---—-~~~~~~-~ - • - ~~~-~~~~~
- - - _  . , , .

~~~~- -  --~~~~. — -~~~~~-- -  .-~~~ - _~~~~~~~



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

The pulse -modulated carrier is obtained by setting

A~ (t )  = A . c~ (t~ n)

= ½ r (3.4.-5)

where r is the carrier frequency sweep rate in radians per second squared .
The func ti on c~ (t. n) is a code waveform , as in Sect i on 3.2., where now

c~ (t~ n)  = 0 ; n 0
= 1 ; n 1 (3.4.-6)

The duration and recurrence rate of the pulses are controlled by a sequence
of bi nary symbols , n , as in (3.4.-6 ).  By a proper choice of t he constan ts ,

and r , the pulsed carrier may be caused to sweep across the frequency
band of the desired signal at any ar bi trary swee p rate . Swee ps up i n fre-
quency are obtained by choosing the sign of r to be positive or negative ,
respectively.

The purely stochastic Gaussian process is obtained by generating two

independent, zerc_mean , l ow-pass processes , ~~1 (t) ~nd Pjq(t)~ having iden ti-
cal auto covariance functions , and setting

A~(t) cos ~~(t ) =

A~(t) sin ~~(t) = Pjq(t) (3.4.-7)

The exact method for implementing (3 .4 . -7 ) and (3 .4 . -3) is made clear in
Section 3.5.

•1

3.5. THE DISCRETE -TIME RECEIVED SIGNAL MODEL .

Equation (3.l. -6) gave the band-pass form of the continuo us- t i i~ received

data process in I-Q form . It is more convenient in notation and in simulation
to dea l wi th low-pass , or “baseband ,” data . So , an I-Q product denx,lulation is

assume d in the form
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z 1(t ) 2z( t )c os (w
~
t +

Zq (t) = -2z( t )s i n (w
~
t + ~0

(t )) (3 .5. -b )

where it is understood that the rest:~ti ng terms i n fre quency 2u~ are discarded .

(3.5.-I) does not necessaril y denote a coherent phase demodulation process

(coherent amplitude detection), since the arbitrary phase term , ~0 ( t ) ,  has

been taken in the demodulation reference signals. The I-Q product demodula-
tion translates the I-Q components , 

~~
(t) and iq (t)~ to baseband wi th a

possible phase rotation due to the presence of
Thus , define a 2-vector data process , z(t), as

[z~
(t )1 [~1 t)

I = H0(t)
.

[Zq (t)~ ~~q(t)

= H0(t)[y~
’~~(t ) + Y ’ r(t) + ~‘~ (t) + n(t)] (3.5.-2)

where

[cos~0(t) sin
~o(t)1

H0(t) ; 
~

‘t~
t
~

i-si~~0 (t) cos~0 ( t )j  ~Y ’ tq (t)j

ry ’ ri (t ) 
1

= I
~Y’rq (t) J ~y ’jq(t)

[n 1 (t)

n(t) = I (3.5. -3)
[nq(t)

Equations (3.5. -2) and (3.5. -3) describe the baseband data vector , pro-
vided the receiver did not perform any pre-filterin g operation on the signal
as it exis ted at the f,t~ uency, wc . However , in the event that the optimum
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detector operates as a modem , say , at the receiver ’s intermediate frequency

output , such pre—filtering may be present. Thus , equation (3.5. -2) shoul d be

modified as

z ( t )  = H0(t)[~~(t) * ‘ t(t) + y ’r(t) + ~‘~ (t ) + n( t ) )]
(3.5.-4)

where -

hei (t)
=

heq (t) (3.5.—5)

is the vector equivalent I-Q impulse response functions , due to pre-filtering.

Note that in the general case when the bandpass filter transfer function is not
even symmetric with respect to w~~, then hei(t) and heq (t) will be different low

pass filter functions. Only in the case where the bandpass filter has even
symmetry w i th respect to are hei (t) and heq (t) ident ical .

The optimum receiver operates on sa mples of the received continuous-time

waveform . The samples are taken at uniformly spaced time intervals. The

basic time reference is taken as the duration , T, of a basic message symbol
(bit, in the binary case), as received over the direct path. This impl~ es

tha t the optimum detector has achieved synchronization with the bit timing in

the direct-path signal. Ultimately, the detector will employ self-synchron-
ization , using “early-bate ,” Maximu m -Likelihood Synchronization .

The sampling rate is taken as a fixed , but arbitrary number , K samples

• per each si gnal symbol of length T seconds . Thus , the rate i s K/T samples
per second . The samples are taken uniformly in time , but symmetrically with
respect to the end-points of each symbol interval. This insures that no
samples are taken at the end-point of an interval. Thus , the continuous time
parameter , t, in the models , is replaced by a discrete time parameter , tk~
where k is sample number and

— k — ½  -
~
- .

K .
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In derivations and simulation , the actual value of tk is not important in

many of the funct ions. Thus , wherever poss ib le , tkl is simply replaced by

sample number , k. The actua l value of tk, as given by (3.5 . -6), is used , for
example , in the amplitude and phase functions , At(tk), ~t

(tk).
In order to make the r,otation more descriptive , the dependence of the

transmitted and reflected signal vectors on message symbol , m = 0, 1 , 2, ..., M ,

is specifically noted by letting

~
‘ t (k) 

~
‘ t (k , m)

~
‘ r~~’ 

m ) (3.5 . -7)

In the event that a non— linear quantizing function , Q { } ,  is employed , due to
an analog to digital convertor , the discrete-time version of equation
(3.5. -4) becomes

z(k , m) = Q{Ho(k)[~~(k)*[y.
t
t(k, m) + Y~

’r~~’ 
m) + ~‘~ (k) + r i(k)] ]}

(3.5. -8)

where (*) denotes discrete convolutions.
It should be noted from (3.5.-8) that although the discrete-time data

stream is quantized upon enteri ng the detector , the signal and noise processes

are generated without quantizing in the computer simulation. Thus , 
~

‘ t(k, m),

etc., have the fidelity inherent in the digita l word l eng th  of the sim u l a t i o n

computer. The coarseness of the quantizing function , Q{}, is fixed , but
arbitrary , so as to al low determi nation of the required quantizatiori level
for accurate operation of the optimum detection algorithms .

The direct path signal vector is generated from the algori thms

1 ’ ft(k~ 
m) 0

~
‘ t (k , m) = Ht (k , m) ; Ht(k~ 

m) =

1 
- 

0 gt (k , m )

ft(k, m) = At(k, m)cos~~(k. m)

gt (k , m) = At(k, m)sin~t
(k, m) (3.5. -9)
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where At() and &
~~

( )  are im plic i t func ti ons of the code waveform , ct(k, in).
The ref lected signal is generated from

~
‘r0~ 

m) = [Ht(k; in; A)p(k)]*h(k)

p (k) = H (k; A)  [Y~r
(k) +

cos(wcA ) sin(w cA)l
H (k; A )  =

_ s in ( w cA ) cos( w c A )

ft(k; m; A) -g t (k; m; A )
Ht(k; m ;A ) = 

-

in; A )  ft (k; in; A)  
-

-

ft(k; m; A )  = At(tk 
- A;  m) cos

~t
(tk - A ;  m)

m; A) = At~
tk - A;  m ) s in4

~
(t k - A;  m)

y~,(k) =

+ 1) = 

~r ~~~~ 
+ rr ~~~~ 

(3.5. - b )

In (3.5.-b ) ,  
~~~~ 

in) is the ref 1ect~d signa l 2-vector which incorpo-
rates the transmitted signal 2 X 2 matrix , Ht(k; m; A ) ,  as delayed by the
differential delay time , A , and the multiplicative noise 2—vector , p(k).
The multiplicative noise , p(k) is formed by the 2 X 2 rotation matrix , H (k; A),
operating on the sum of a zero-mean stochastic 2-vector , y~(k), plus a deter-
ministic mean function 2-vector , j.L,.(k). The zero-mean stochastic 2-vector ,

y
~
, (k), Is generated from a zero-mean , wh i te, Gaussian 2-vector , w~.(k), using

an Nth_order fi l ter structure defined by the set {rr, ~r’ ‘~r
1
~ 

Thus , y~,(k)
is assumed to be Markov-N. The desired covariance function for p(k) (and r(t))
is obta ined through proper choice of the e l ements of 

~
‘r ’ ~r ’ ~‘r~The additive noise 2-vector , n(k) ,  is modeled as
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I

• n 1 (k) 
—

n(k) = cn~~
(k) = (3.5. -li )

• 
nq(k)

where ~~(k) is a zero-mean , white , Gaussian 2-vector of unit variance whose
two elements are independent. The constant c~ is chosen to realize the desired
ratio of direct-path signal power to white noise power at the radio frequency .
In terms of the continuous-time RE model , the real si gnal and noise are

s( t ) = At(t) cos[wct +

n(t) = Cn fl i (t) COSW c t — cnnq(t) sinw ct (3.5.-l2)

where n1 (t) and nq(t) are zero-mean , unit variance , white and Gaussian. The
signal to white noise power ratio for the direct—path signal only is then

S A Efs 2(t } E{½A~(t)}N = E~n2(t } = 
c~ 

(3.5.-13)

• The constant c~ used in (3.5.-li) is then

cn 
= 

E{A~(t)} (3.5.-b4)

• N

For angle-modulated signals (PSK , FSK)

c~ = 

~~~ 
PSK, FSK (3.5. -15)

The variance matri x for n(k) is then

V = E{n(k)nT(k)} = c2
1 0

1 = c2 12 (3.5.-l6)nn — n 0 b~ 
n
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The additive interfering signal , ~~(k)~ which  is a 2—vector , is generated

according to

= H~(k)~~(k) (3.5.—l7)

where H~(k) is a rotation matrix due to the frequency offset of the 
inter-

ference.

cos (Aw~ tk) 
_sin (Aw~ tk)

H~ (k) =

sin (Aw~ tk) co s (Aw ~ tk ) (3.5. -18)

where tk is given by (3.5.-6). The vector , ~~
(k) is generated differently,

depending on which of the three additive interference signals of Section 3.4.

is desired.
For the unmodulated continuous-wave carrier , or for the pulse -modulated

swept-frequency carrier , ~~(k) is generated according to

= A~ (k) cos~~ (k)
= ;

Pjq(k) = A~ (k) sin c~~(k) (3.5 . -l9)

where

A~(k) = A~

; Unmodulated C.W.
= 0 (3.5.-20)

and

A~ (k) = A~ c~(k~ n) Pulse-modulated

= ½rw • tk
2 Swept-frequency (3.5.-21)

A _ _  
________ 
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For the purely stochastic Gaussian process , 1~~(k) is generated according

to

= ~~(k) +

= A~X.(k)

x . ( k  + 1) = ~.x.(k) + r.w.(k) (3.5.22)
—J 3—i 3—i

In (3.5.-22), the 2-vector , ~~(k)~ is generated from the sum of a zero-mean

stochastic 2-vector , ~~(k). plus a deterministic mean function 2-vector , p.(k).
The stochastic y.(k) is generated from a zero-mean , white Gaussian 2-vector ,

using the M -order fi lter structure defined by the set {‘r~~ 
~~~~

, A~}.

Thus , y.(k), is assumed to be Markov-M. The desired covariance function for
and m~(t) is obtained through proper choice of the elements of

{rr. ~~~ 
A~}:

The mean vector , ~~(k). is included in the model of (3.5. -22) for generality .

Practically, the occurrence of such a mean in the interference would imply a
component analogous to the specular component in the reflected signal . Such a
component coul d occur , for instance , if the interference contained a carrier
component , phase-locked to the direct—path signal.

3.6. THE CANONICAL STATE-VARIABLE MODEL.

The adaptive receiver-processor , which is to implement the detection
algorithms , utilizes Kabman filters for tracking and canceling of the stochas-
tic elements of the additive and multiplicative interferences. It is well
known that Kalman filters require a state-variable model of the generators of
the processes which are to be tracked . Until recently it was assumed that

knowledge of the model of the true generator was required . Intuitively, this

required wealth of detail did not seem reasonable. Since the stationary Wiener
filter , derived from the Orthogonal Projection Property of Gaussian Expectation
[13], requires only knowledge of the output covariance f u n c t i o n s  of the pro-
cesses , it seems reasonable to expect that such knowledge would also suffice for

the Kalman fi l ter.



Anderson and Moore [14] and Son and Anderson [15], in 1971 and 1973, re-
spectively, showed that , in fact , only the process correlation functions are
required for construction of the Kal man filter , rather than complete knowledge

of the structure of the p rocess genera tor . A thans [16] had shown in 1967 that
the Kalman filter structure was not unique to wi th i n a Similarity Transforma-
tion on the filter (or generator) states. However, the later results [15 , 16]

were much stronger in showing that assumption of any generator structure
capable of producing the given output covariance function for the process
yields the same process tracking error variance in the Ka l man filter.

The problem of realizing a generator model wh ich , when driven by wh i te
noise, produces a process having a given output covariance function is the
problem of “System Identifi cation. ” Thi s problem i s exam ined i n Section V
below.

The adaptive receiver—processor , wh ich is to implement the detection

al gorithms , has no knowledge of the detailed received data model , as given i n
equations (3.5.-8) - (3.5.-22), except for the waveforms of the transmitted
signals , y

~
’
t(k. m) for m = 0, 1 , ..  ., M-l . There is freedom to assume a some-

what simpler model , provided it is statistically equivalent to the true model .

The assumed model is that which may generate the sum of the three terms ,

~~~~~~~~ 
m) + 

~
‘r~~’ 

m) +
It is instructive to view the actual structure by which the three terms

are generated . Dropping  arguments for the sake of brevity ,

y ’
~ 

+ y ’,, + y ’~ = (H~~Hy ~)*h + H~y~ + Ht~
J t

+ (HtA H U r)*h + ~~~ (3.6.-b)

where HtA represents Ht(k; m; t i ).  Now, H just represents a slow rotation of

the vectors y~. and ~~~ Since is stochastic , H may be absorbed by the time
variation of y~,, to good approximation . ~~~~, represents the real mean function
for the reflection which is non-zero only if the reflection is quasi-specular.
H may be absorbed into Mr under the assumption that ~~~ , represents a complex ,
slowly time-varying mean. Wi th the above simplifications , the canonical state-

variable model , for the received data is inferred as in equation (3.6.-2). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - 
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~(k) = H0
( k ) [Hy(k) i(k; in) + H1~

(k; m) ~(k) +~~(k)]

cos~ (k) sine (k)
H0(k) 

= °

-sin4, (k) cos~0(k) 
-

J I b 0~
Hy(k) =~ H H~(k)

0 l j l

r(Ht (k; m; A)~.,,(k))*h (k)1
V (k; m) = L 

r l oll
H (k; in ) = 

L
Ht~

( ; in ) 1 , 0  l i i 
H. (k) 1

~t(k)

p (k) = (Ht(k; m; A) ~~ k)*h(k)
- 

p.(k) 
-

~t
(k) = ; ~~(k) 

ri 
~~(k) J (3.6.-2)

rq.• L 3q--~

In (3.6.-2), y4..(k) and y~(k) are given by (3.5.- b )  and (3.5.-22), respectively.

The i m p u l s e  response , h(k),  is produced by a fi l ter operating according to

v0(k) 
=

~~(k) = - 1) + rhv .(k) 
(3.6.-3)

The filter is diagrammed in Figure 3.6.-i.
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ii.

x~(k)

Figure 3.6.-b : Canonical Filter Form .

Note that the filter form of equation (3.6.-3) and Figure 3.6.-b is not quite

the same as that used in the stochastic process generators of equations

(3.5.- b )  and (3.5.-22). The prior filters produced colored processes from
wh i te noise . They inherently produce a one-sample delay from input to output.

The filter of equation (3.6. -3) and Figure 3.6.-b does not produce such a
delay between input and output.

The solution to (3.6.-3) is given by

v0(k) = A h~h~~
(o ) + 

n~i
A
~~ 

v~(n) (3.6.-4)

The im pulse response, h(k), is obtained from (3.6.-4) as follows

h(k) = v0(k); v
~
(l) = 1; 

~~~~ 
=

v~(n) = 0; 1 < n

= A h~h 
Fh; k = 1 , 2 (3.6.-5)

Li
_ _ _ _  _ _  
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Figure 3.6.-3: Canonical State-Variable Model.
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The desired impulse response , h(k) is realized by proper choice of the set

~~~ ~h’ 
A h }.

The overall confi guration of the assumed canonical state variable model

is diagramed in Figure 3.6. —2. The figure combines the elements of equations

(3.6.-2), (3.6. 3), (3.5.-22) and (3.5.-b ) .  The upper branch of the model

generates the signals and disturbances received via the reflected paths. The

Doppler-spreading process , y~..(k) is generated from the white noise
using the R-Filter. The quasi-specu lar mean , j~~(k), if present , is added to

and the sum is mul ti pl ied by the modula ti on matri x , Ht(k; in ; A ) ,  wh i ch
is delayed by the process differential delay , A. The resul ti ng process is then
passed through the Delay-spreading H-Fil ter.

The second branch of the canonical model generated the colore d addi tive
noise process , ~~(k)~ by passing white noise, w~(k)~ through the J-F ilter .

The quasi-specular mean , ~~(k) of th is interfering signal , i f present , is
added to ~~(k). The sum is then multiplied by the rotational matrix , H~(k).

Note that for modeling purposes , the additive colored disturbance may be taken
as stochastic , even though specif ic occurrences may be determi nis tic , as in

Section 3.4. This modeling p ract i ce i s commonly use d.

The thir d branch of the canonical model generates the white additive

noise. The level of the white noise , ~~(k), is simply adjusted to realize
the desired signal to noise ratio , S/N , as in (3.5.-is). The fourth branch
of the model generates the direct-path signal. An assumed mean vec tor ,

is multi pl ied by the modulat i on ma trix , Ht(k; i n ) ,  to form the signal .

The outputs of the four branches are summed and the sum is multiplied by the

rotation matr ix , H0(k), to form the received data vector , z(k).

The assumed canonical model of Fi gure 3.6.-i conta ins many parameters

which  are, A Priori , unknown . First amon g these are the parameters , {I’, ~~~, A } ,

for the R-Filter , H-Filter , and J-Filter. In practice , these parameters for
the model must either be set according to prior knowledge of the channel be-
havior or according to measurements made on the true received data , z(k).
The problem of determining the elements , {r , 

~~~, 
A}, from measurements on z ( k )

is the Identification problem , which is deal t with below .

Other elements of the canonical model which are A Priori unknown include

the mean value funct ions , Mr~ 
P and The function , u4,, i s essentially

the “strength” of any specular refl ection which is present. i s the s trength
of any component of the colored interference which is phase-locked to the
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the desired carrier wave . 
~ 

is the strength of the direct -path signal

component . These , possibly slowly time-varying, signal vectors must also

be identified during the detection process.

The remain i ng unknowns i n the canon i cal model are the scal ars , t .  in , ~~~~~~~~

S/N , and ~0(k). A is the differential delay between the direct path and m inimum-

time reflected path as per Figure 3.3.-i . m is the transmitted symbol (inte~9r),

which is to be detected . is the offset frequency between the desired

carrier frequency , Wc~ 
and the interfering carrier frequency , 

~~~
, as per equa-

tion (3.4.-2). S/N is the power ratio of direct-path signal to additive wh i te

noise , as per equation (3.5. —l3). ~~(k) is a possibly slowly time—varying phase

perturbation process which is generated in the data receiver in the I-Q product

detection of the received radio-frequency waveform. The fdentification treat-

ment of these scalar processes is detailed below .
There is another A Prior i unknown element , which is not explicitly

modeled , either in equations (3.5.—b ), (3.5.-22), (3.6.-2), (3.6.-3) or

in Figure 3.6. -2. This element is denoted T and represents the timing parameter

of the symbols , m ., as recei ved over the d i rect paTh. The sample timing of

equation (3.5.-6) and the following timing of the detector is dependent on bit

synchronization with the direct path signal. In the present report , synchron-
iza tion is assumed . Whi le the study of a self-synchronizing detector is not any
more d i fficult theoretically, the simulat i on of such i s consi derably more de-
tailed . Ultimately, the self-synchronization feature should be dealt with.

_  ~----
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SECTION IV

RECURSIVE INTEGRATED DETECTION , ESTIMATION , AND IDENTIFICATION

4.1 MAXIMUM A POSTERIORI PROBABILITY DETECTION

4.1.1 . The Recursive , Decision-Directed Algorithms

The problem of M-ary detection in channels subject to colored additive

and multiplicative noises , as well as addit ive wh i te noi se, is examined below .

• Detection algorithms are obtained , based on a sub-opti al simplification of

the Maximum A Posteriori Probability (MAP) strategy for symbol sequences ,

usin g recursive sampled-data processi ng. The resulting detection algorithms

require simu l taneous estima ti on of the colore d channel di sturbance waveforms ,

• as well as i dentification of the statistics governing the channel model . The

es t ima tion and identi f ica ti on fea tures are , thus , integrated within the detec-
• ti on algorithms .

Early theoretical work on detection in channels perturbed by more than just

additive white Gaussian noise [17, 17 , 19] led to such developments as the

“RAKE ” receiver [2O] and divers i ty reception [21]. The idea of adjusting the

detector to changing channel conditions led to adaptive detection [22, 23],

wherein channel parame ters are estimated. An idea dual to adaptive detection ,

tha t of estimating the waveform of a si gnal whose p resence i s uncer ta i n, was
explore d in [24, 25]. A related i dea , tha t of differen ti at i ng between several
poss ib le  s i g n a l s , and simultaneously estimating some signal parameters was
exp lored in [26 , 27 ]. The first recurs ive sampled-data algorithms for M-ary
detection in colored multipl i cative noise and white additive noise , using the
MAP strategy , were presented in [28]. Simulation results for those algorithms ,

plus an ad hoc treatment of the required identification problem were given in

[29].
The present work extends that of [28] and [29] to include colored additive

noise alon g with colored multiplicative noise , and white additive noise. Also ,

the identification problem is formally imbedded into the detection/estimat ion

problem by applying the composite detection strategy . The resulting forma l

• solution to the integrated detection/estimation/identification (IDEI) prob em
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extends the “Marg i nal Estimation ” approach of [30] to the detection problem

and employs decision-directed estimation [21] to combat the problem of ex-

ponentially growing processor memory . The forma l sol ut ion p resente d i n thi s
report is a sub-optima l one based on assumed availability of sufficiently good

identification estimates . For identification estimates not satisf ying the

assum ption , an ex tended solu tion based on the “partitioning ” approach of [16]

is indicated.

The general M-ary detection problem requires the consideration of detec-

tion of a sequence of symbols (or data word) of arbitra ry length. Thus , the

symbol notation , in , in troduced in equition (3.2.-3), is subscripted to indi-

cate the posit ion of each symbol i n a sequence . In particular , consider the
detection of a J-sequence of message symbols , m1, m2, ... , m,~, where the
are elemen ts of the M-ary alphabet ,

~ ~O , 1 , 2, ..., M-l } = 1 , 2, ..., J (4.1. -b)

The m~ are imbedded in a sequence of received vector-data samples , z(k). for
sample times , k = 1 , 2, 3.... The num ber of components of the z() vector is

determ i ned accor di ng to the assume d data genera t i ng mouel , discussed above .

A fixed num ber , K, of da ta vectors , zQ, are measured for each transmitted

message symbol , m~. Thus , the data sam p le number , k , and message symbol
number , j, are rela ted by

j = 1 + m t  k - ½ 
~ : Int ( )  is “integer part ” (4.l.-2)

Under the Maximum A Posteriori Probability (MAP) decision strategy , deci-

sion statistics , S , are computed for each of the M3 possible message sequences.

The statistics , S’ , are proportional to the A Posteriori Probability of

message sequence, given the received data sequence.
For the pur pose of formin g the decis i on statis ti cs , two vectors are

defined .

T m~
= [mj. rn~~1~ ..., m~ , m1

] =

= 
~~~~~‘ ~~-1 ’ ~~~~~ ~2’ ~~ ~~~~~ 

(4.b. -3)

— - •



In (4.b. -3), the m~ are the individual symbols in the message J-sequence. The

are vectors of received vector-data samples corresponding to each message

symbol , m~. For K samples per symbol , each vector contains K of the z()

data vectors . Figure 4.1.— i illustrates the partitioning for scalar data

zO, for a bi nary symbol sequence .
T he indi v id ual dec i s i on sta tis ti cs are all of the form

S’ ’~ P(!1~l~~
) (4.l.-4)

where p() denotes the conditional probabilit y density . The MAP decision rule

is to choose the particular symbol sequence ~ wh ich maximizes the density p ().

m ,~ I m 2=O m3 1 mj I

K K+~ 2K 2K+I 3K (J -~)j(+~ JK
m , , k

2 3 4 5 6 7 8 9

&) z(3)

ITT
~~~~~~~~}  L~~~-~-~~~~

Fi gure 4.1.1: Partitioning of Sampled-Data Vector

It is assumed that there is associated with the data process , z(k), another

process ~(k), which in a manner to be specified below , rep resen ts some unknown
elements of the generator producin g z(k). The vector process , B(k). i s assume d

to be of finite dimension . In the same manne r as in (3) above , the ~
( )  samples

are grouped to form a partitioned vector , ~~~~, where

~~~ 42 
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In (4.l. -5), conta i ns K of the ~ ( )  sam ple vectors which occur during the
time of the jth message symbol .

A joint density of ~~~~, ~~~~, and is now postulated . Then , the deci sion
stati~ tic i s written formally as

p(M~ , ~~
) 

- 

I...! p(~~, 
~~~~ ~~)d ~-_____ - 

p(~~
) (4.l .-6)

S = I...! p(m,~. ~~~~~~ ~.J
1
~ J l ’  ~-J- b’ ~3-l )d~~ P(!~j~ 1 I~~-i’ ~~~~~

~~-~~-i ~~ -~~
) d~~~1 (4.1 .-7)

where the multiple integration is over all the unknown elements of process

~
( ) ,  at every sample time , k. The averaging implicit in (4.l.-7) is essen-

tially the application of the composite detection strategy. The practical
implementation of (4.l.-7) would require increasing the order of the multiple
integral with increasin g numbers of data samples and/or increasing length of

the message sequence . Because this implies a signal processor of expanding

size , such a result is not practically useful . An alternative is to employ
decision-directed processing.

Now , it is assumed that at the end of the (J-l)st symbol peri od , a condi-
tional-mean estimate of is available as Furthermore i t is assumed

• that both p (m~. P\J’ ~ l!!~~’ ~J-l ’ ~~~~ 
and p(N~ ~~~ 1, ~~ 

do not vary
appreciably in the neighborhood of for wh ich p(

~~~~l~~~~
) is si gnificant.

Then the inte gral of the product of the three probability functions in (4.l. -7)

simply evaluates the product of the fi rst two at = 

~~~l’ 
analo gous to

sifting wi th a Dirac delta function. Next , p (~~~1~~~~1, ~~~~~ reduces to
since is a function of the 

~~~~~~~~~~~ 

Then , maximization of S’
wi th respect to is accomplished by choosing the M~~1 which max imizes

It follows that 5’ may be maxim i zed sequentially, over each

succeeding message symbol , m1, in2,  .... rnj . Thus to reduce the order of the
integral in (4.l.-7), decision on the sequence as a whole is replaced with
symbol by symbol decision.
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At the end of an arbitra ry symbol period , say the jth , the cumulative
statistic , S’ , is maximized  by maximizing the jth period statistic , S~., over

= 0, 1 , 2, ..., M-l , where

= 1...! P (Pj. •~ l1n~ = ~ ~j - l’ !j _ l ’ Z~~1 )dB~ ~(m~=i l~~_ 1 )

(4.l. -8)

The statist ic S.~ is the statistic used for making the decision on the jth
symbol . Note that this decision is dependent on previous decisions through

in case the transmitted symbols are not independent. The jth
symbol decision is also dependent on previous data through the use of

the sequence of previous identifications of the s(k) from the sequence of
previous data z(k).

To pursue the formation of the decis ion statist i c , S~., during the jth

symbol period , it w il l  be helpful to write and as expl ici t func ti ons
of the sample number , k. Thus , define

[.(k)
Z. = Z . ( k )  ; z.(k) = z ( j k )

—J —

B. = B. (k)  = A ; 
~.(k) = ~(jk) (4.l.-9)—J —J B.(k— l ) 

—

3 -~

Then , by straight-fo rward manipulation , (4.1. -8 ) is placed in the form

• S. = I...! ‘~~ p(z(k), ~(k)Im .=i , M. 
~ 

B.(k - l ) ,  S. F Z . (k-l , 
~~~

.
1 k (j—l)K+ b ‘~ ~ —J ~ — 3—

db~(k) 
. P(m~= i IM ~~1 ) (4.1.— b )

The signa l processor implied by (4. 1. — b )  is still not practical because
of the increasing number of integrations as the sampling rate per symbol , K ,
increases . It is possible , by extending the previous assumptions to do away

wi th the integrals ent irely. First , however (4.1. - b )  is taken into the

following form
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S. = I...! ~~ p(z (k ) l m . =i , M. 
~~
, B.(k), 6. 1’ Z.(k-l), Z. )

k= (j—1)K+l ~ 3 — —3 —-3 — —3 —j—l

p(~ (k)Jm .=i , 
~j..l’ 

B~(k_l). 
~j b ’  ~~(k_l) . ~~_ 1 )d~~(k)

P(mfifti~_ 1 ) (4.l.— l l)

Now , two more key assumptions are made . Suppose that at sample time k -b
(within the product) and for each i, a conditional-mean estimate for B~ ( k _ b )
is ava i lab le  as 8~ (k_ l . i). Also suppose that at that time and for each i
a conditional -mean prediction is availabl e for ~(k) as ~(klk-l , i). Provided
that both of these estimates have suffici ently small variances , the jth symbol
statist ic of (4.l. -ll ) reduces to

S. = ~~ p(z(k)lm .=i , M. , ~(k~k-l , i), B.(k-l , i), B.
• 1 k=(j-l)K+l 3 j 1  

~3 j-1

~~(k_ l ) .  
~j- l~ 

P(mfil!~~1 ) (4.l. -12)

Equation (4.l.-12) represents the practical ~DEI detection algorithms under
the assumption that suitable conditional-mean identifi cation est imates are
available . As the variances of the identification estimates increase it can
be expected that the performance of the detection algorithms will degrade .

If sufficiently good identification estimates cannot be obtained , then the
algorithm of (4.1.-li) should be used , with the integrations performed using
the Partitioning Theorem of [32].

When the data , z(k), is generated as in equations (3.5.-b ), (3.5.-22),
and (3.6.-2), then the vector , B (k) represents all the included parameters
which may be A Priori unknown . Thus , ~(k) includes all the structura l elements

• in the sets 1r , ~~, A } for the R-Filter , H-Filter , and J-F ilter. Also included

in ~(k) are ~r’ ~~~~ ~-r 
~~~ A~~., and S/N.

• Since many of the parameters may be time va rying, i~(k) is taken as a
stochastic process , rather than just a random vector. In the present case, it
is assumed that ~0(k) is created in the data receiver . Thus. H0(k) is measure-
able and need not be included in 6(k)
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With the data generated as assumed above and under the above assumptions
on the composition of 

~
( ) ,  the density , p(z(kfl () ), required in the detection

algor ithm of (4.l.-12) is conditionally Gaussian , of the form

p(z (k ) I ( )  ) =

= ~— [det V~~
(kIk_l)]

~~
exp[_½vT( k )V

~~
(klk_ l)v (k)]

v(k) = z(k) - z(klk-b)

z(klk-l ) = E{ z ( k ) I O }

V
~~

(klk-l ) = E{v(k)VT(k)lQ } (4.l.-l3)

When z(k) is conditioned on the m~ truly present , v(k) is the Innovations
• Process [7]. In computing the M statistics S1 , as in (4.l.-12), the true m~ is

used in only one of the ~(k). Thus, -~(k) is called here the Pseudo-Innovations.
Since z(k) is conditionally Gaussian , both v(k) and V

~~
(k!k-l ) may be obtained

from Kalman fi l ters. In the Kal rnan fil ter, v(k) is the dynamic feedback track-
ing error , formed in the filter. Each of the M different fi l ters actually
attempts to track the colored interference processes , y~,(k) and ,y~(k). Note
that in a practical implementation of the receiver , Kal man fi lters may not be
used , due to the computational complexity involved in on-line solution for the

Kalman gain function. If it is assumed that the statistics of the interfering

processes are , at most , slowly time-varying with respect to symbol time , T, then
the processes , 

~r
(k) and ~~(k). are almost stationary . Thus , the elements of

the various fi l ters in the sets {r, ~~, M are constant over periods of time ,

long with respect to symbol time , 1. Thus , in practical implementations , the
Wiener steady-state version of the Kalnian filter may be used. To use the
Wiener filter in the practical case will require the use of an “acquisition ” or
“lock-up ” mechanization to initialize the filter. This is discussed below ,
with respect to the Identification problem.

The theoretically optimum receiver is based on the Kalman filter. For
purposes of bounding the best possible performance of sub-optimum (Wiener)

implementations , the Kalman mechanization is assumed . The physical operation
of the optimum detection algorithms is now explained with reference to Figures
4.l.-2 and 4.l.-3.
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Figure 4.l.-2: Decision-Directed MAP Detector (IDEI)

During the jth symbol period , M unique detection statistics S~ are com-
puted in parallel , one for each of the possibly present m~. Each separate
statistic generator contains its own Linear (Kalman) Filter , Gaussian
Function Generator, Conditional -Mean Predictor/Filter , and Product Accumulator.
At the end of the jth symbol period , the non-negative statistics , ~~ are com-
pared in magnitude . If S~ is largest , then the decision is made m~ = n.

At the end of the jth symbol peri od , the decision direction feature is
employed as follows . When the decision is made , m~ = n , it is inferred that
the nth detection statistic generator has been processing the data using the
true value of m~. Thus , it is i nferred that the Kalman filter and Conditional-
Mean Identifying filter in the nth statistic generator contain good final
fi l tered estimates , ~~ jK), ~~(iK)~ and ~(jK), respectively. These final
fi l tered estimates are then routed to the other M-l statistic generators to
reset their initial predicted estimates for the (j+l)st symbol period .

Some observations about the physical operation of the data processor are
now in order. First , note that the data model of (3.6. -2) is stochastic at
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two levels. At the first level , stochastic interferences , ~,(k) an d y.(k), have
been postulated . At the second level , the usually fixed elements of t~e data
generating model , such as mean and Markovian filter structure , have themselves
been modeled as stochastic. In the optimum processor , the first-level inter-

ference processes are estimated in the linear filter. These processes are
actually tracked by the filter. In the formation of the Innovations Process ,

the i nterference estimates are subtracted from the incoming data in an attempt •
1

to cancel the interferences. It is the conditionab-m~an predictor/filter
which attempts to track the second-level stochastic processes representing
the various identification elements of the data model . Note that for those
identification elements which admit to Gaussian models , the conditional-mean
estimators are also linear. However, for those elements which cannot be modeled
as Gaussian , the conditional -mean estimator will be non-linear.

4.1.2. Example

Figures 4.l.—4 and 4.l.-5 relate to a highly idealized example , presented
here to clarify some of the preceding i deas. Assume binary phase-shift-keying

wi th ÷900 phase shift in the presence of an additive colored interference pro-
cess and white noise . No multiplicative channel disturbance is assumed. Also ,

postulate phase coherent translation of the band-pass data to baseband , usin g
an unperturbed phase reference (a highl y idealized case). Under the assumptions ,

the desired signal is resident in the quadrature channel only, and the data is
scabar , continuous time , taken here as z(t). Instead of Kalman fil ters , sub-

optimum stationary wiener fi lters may be postulated in the feed-back canon i cal
form of Figure 4.1.-S. If Charge Coupled Device 1 implemen tation is assumed for
these f il ters , then the conversion from continuous time to discrete time is
inherent in the filter structure .

1The recursive structure indicated in Figure 4 . b . -5 is not the usual CCD

transversa l fi lter structure common to the CCD art. The state-variable feed-
bac k structure is required so that the states may be reset at the end of each
symbol period. The design of such a CC D device is being investigated presently
at Texas A&M Univers ity .
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For th is example , the components of (3.6. -2) are

H (k)=l
0

H~(k; m .) =

V(k) = y~(k) : a scalar function

H ( k ; m~ = 0) = +A : 0 < A

H (k; m~~~~l ) = ~~A

~(k) =

n(k) = n( k ) : a scalar function (4.l. -l4)

The requi red ident ification for this example includes the carrier refe r-
ence level , A , the sym bol timing (synchronization), and the se t of constants
in {rQ, ~~~~~ nQ}. Identifying { rO ,  ‘~( ) ,  ~~~ is essentially identify i ng
the power spectrum of the colored additive interference and then synthesizing
a suita ble minimum -phase recursive filter for tracking

In Fi gure 4.l.-4, the upper f i l t e r  is for m~ = 0. The l ower fi l tc r is
= 1. In the upper channel , A is subtracted from the scabar data to p roduce

y~ (k) + n(k) when m~ = 0. In the l ower channel (-A) is subtracted from the

scalar data to produce y~(k) + n(k) when m. = 1. Each fi lter then attemp ts to
track y~(k) under the differin g assumptions on m~. For this case the sum of

the squares of the pseudo-innovations forms a sufficient statistic for detec-

tion . Thus , the sum of squares is accumula ted recursively using the scheme

shown in Figure 4 .b . -4. After each symbol decision the final states in the
incorrect filter are reset using the final states in the correct filter.

It can be seen from this example that the error properties of these detec-
tion algorithms are affected by the transient responses of the linear fi l ters.

Thus , closed form expressions for the probability of detection error must be
evaluated numerically for particular interference cases. For this reason ,

the initial approach to algorithm evaluation is through computer simulation

as described below. Some closed form results will be available in a subsequent

~~ report on Phase II of the present contract.
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4.1.3. Previous Related Results.

(I) Lainiotis ’ Results.

Lainiotis solved a simpler version of the problem in 1 969-71 [25].

The prob lem was detection of a binary “on-off-keyed” (00K) colored Gaussian

process , generated by a given state-variable model. The generating model had

unknown (random)imbedded parameters . The detection strategy was “one-sho t.”

That is , onl y one symbol was to be detected , with no consideration of a se-

quence of symbols. His work was an extension of previous work by Middleton

and Esposito [26], on simul taneous detec ti on and est imat ion .
Lainiotis ’ solution was a continuum (over the unknown structural parameters )

of likelihood ratios in which were imbedded estimators for the colored signal
process. The result was similar to that obtained by Fredriksen , Middleton ,
and Vande linde [27] in 1972. The present work of the author extends Lainiotis ’
work to M-ary alphabets , sequence of symbols , colored interference , and

• stochastic generating structure . The resu lting algorithm is also in a natura l
form for adaptive implementation. Lainioti s ’ work 5ulmi nated in publication
of his Partitioning Theorem in 1976 [32]. The partitioning approach to the

problem addressed in this report has been mentioned in 4.1.1., above .

(ii) Kailath ’s Results.

The present results on discrete time detection theory are also

quite analogous to some previous continuous -time work of Kailath [33], con-
cerning the Likelihood Ratios (LR) for detection of binary random signals in
Gaussian noise. The probelm analyzed by Kailath was initially that of detec-

tion of an “on—off-keyed” (00K) colored stochastic signal in white Gaussian

noise. The continuous -time formulation for the LR was

LR = exp ;
T 
z1 (t) ~(t)dt 

- ½ 1
T 

z1
2(t)dt (4.l.-15)

where k(t) was the observed data process on the time interval [O,T] and z1 (t)
was the causal conditional-mean estima te of the colored signal , under the add i-

L 

tional conditioning that the signal was present. The barred integra l denoted

the stochastic Ito integral.
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There is a close correspondence between the discrete-time detection

algori thms of the present paper and those given by (4.l.-15). To show this

correspondence , the discrete-time version of the detection problem for 00K
si gnal in white Gaussian is formulated below.

The signa l model is

z(k) = n(k) m~ = 0

z(k) = n(k) + y(k)  : m~ 1 (4.1 .-16)

where n(k) is zero-mean wh i te Gaussian noise with variance , Vnn~ y(k) is

colored zero-mean Gaussian noise with known statistics. Then

z(klk-l , m~ = 0) = E~z(k)IZ (k-l), m~ = O} = E~n(k)} = 0

z(klk-1 , m~ = 1) = E{z(kflZ(k-l), m~ = b} = E{y(k)~Z(k-l), m~ = l } =

= y (k lk- l ) (4 .l.- l7)

Also ,

v(k;m~ = 0) = z(k) — z ( k j k - l , m~ = 0) = z ( k )

v (k;m~ = 1) = z(k) - z(ktk-l , m~ = 1) = z(k) - y(k~k-l)

(4. l . -l8 )

Next ,

V (k jk - l , m~ = 0) = E~v(k; m~ = O)VT(k; m~ = O)~Z(k-b ) ,  m~ = 0

= E~z(k )z T ( k ) I Z ( k - 1 ) ,  m~ = 0}

= V

V (klk- l , m . = 0) = E{v(k ;  in. = l)vT(k ; m. = l )IZ(k -b ), m 4 = 1
vu 3 3 3

(continued )
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= E{[z(k) - y(klk-l)][z(k) - y (k Ik- l ) ] T
~Z (k - l ) ,

m. = l} =
3

= E f [ 3 (k l k - l )  + n(k)][~ (kJ k-b) + n(k)]T!Z(k~l),

m~~~~l}

= V~~(k~k—l ) + V (4.l. 19)

where

~(k!k-l) 
= y(k) - y(k lk-l ) (4.l.-20)

The conditio nal densities analogous to ( 4 . b . - 13) are formed as

p ( z ( k ) IZ ( k - l ) ,  m~ = 0) = ~~
— [det 

~~~~~ 
exp[-½ zT (k) V nn~ z(k)]

p ( z ( k ) IZ ( k - l ) ,  m~ = 1) = 
~~

— [det (Vnn + V~~(kIk-l)]~~

exp[-½ (z (k )  - y ( k I k - l ) ) T (V~~(k I k - l )  + Vnn)~~
(z(k)  - y(kjk-l)] (4.l.-2b)

From (4.l. -21 ) the product required in (4.l. - l2) yields the compound densities
= 0) and P (~( K) I m~ 1). Then the likelihood ratio is formed

,
~ p(~ (K)Im . = 1)

LR = 

P(Z(K)Im~ 
= 0) 

=

[K det V 1½ K

[k=l 
det (V nn + V~~(klk-l))J 

exP

t~
½ [

~~l 
(z(k) - y ( k j k~ l ) ) T

(V
~~(kIk-l ) + V ) ~ • (z(k) - ~( k I k - l ) )  - zT (k ) V 1 z (k)] ~

(4.l. -22)

L -• _ •~~~~~• - . • •~
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Since all quan tities are scalar , the determ i nant and transpose notat i on may
be dropped. Al so (4.b .-22) is manipulated into the following form

K K~~LR V
nn 2 exp ~ y(k~k-l )k~l V nn + V~~(k l k _ l)j  k—b

(V nn + Vj~ (k ! k-b )Y 1z ( k )  +

K~~+ (-½) 
~ 

y (kIk-l)(V~~ + Vyy(k!k~l)Y
1 y(k~k- b )  +

+ ½ 
k~1 

z(k)[V
1 

-~~V + V~~( k I k - l ) ) 1l  z (k)]j 4 . l .~ 23)

• The LR of equation (4.l. -23) is similar in form to the continuous-time
LR of equation (4.l. - 15), with the finite summat~ioTr(~laying the part of the

• integral . The dissimilarities are (i •) a non-uni ty multiplier of the expo-

nential term , (i-i ) a third term in the exponential , and (iii) a weighting

wh ich is not just the-inverse of the additive noise variance (assumed unity

in [33]). 
-

It is noted that V (k lk- l , in. = 1) is the variance of the Innovations• vv 3
process associated with the hypothesis , m~ = 1 . As noted in [33], as the
sampling becomes dense in the interval [0,T], to approach the continuous-

time case , the wh ite noise variance , Vnn~ dominates the predicted error

variance , V~’\ (kJk-l ) . Thus , in the limit for dense sampling . (4.l. -23)
becomes

i c o  -
• LR = exp j y(k~k-l)V z(k) - y(k~k-l)V -l y(k~k-1)~L.k=l n k=l nn

(4.l. -24)

The LR formulation for discrete-time dense sampling of (4.l.-24) is certainly

a counterpart of the continuous -time LR of (4.b . -l5).



(iii) Painter ’s Results.

Recently, Painter [29] has obta i ned Monte Carlo simulation re-

sul ts in a preliminary NASA-sponsored i nvestigation of the optimum detector

of Fi gures 4.b.-2 and 4.l.-3 . A quaternary alphabet was used , with indepen-

dent occurrence of successive symbols. The interference process consisted

of colored multiplicative noise and white additive noise . No colored a~di-
tive noise was implemented . The signal modulation format was an AMS K

• form , proposed by Aeronauti cal Radio , Incorporated for an industry-standard
airline digital data—link [34].

In the simulation , the optimum algorithms of (4.l. -l2), and (4.l. -T3)

were used , with the exception that H0 (k) was not inclu ded in the Kalman filter
algorithms . For the firs t simulation runs , 

~
( )  was given to the Kalman fi lter ,

exactly, by hardwiring the various elements directly from the data process

generator. In these runs H0(k) was set equal to the identity matrix , both
in the data genera tor and in the Kalman f i lters . Thus , the fi rs t s imulation

• runs were with perfect identification. From simulation results , measured
symbol error rates were p lotted . The error rate curves , so derived , dis-
plate d the desired exponential decrease with decreasing white noise level .

See Figure 4.l.-6.
Standard receivers , hav i ng no knowle dge of the mul tip li cat i ve noise , were

run in parallel w i th the opt imum i~(terference tracking algorithms , for the
• pur pose of comparison . The stan dard error rate curves displayed the expected

saturation of error rate with decreasing white noise level . See Figure

4.l .-7.

The final set of Monte Carlo simulat ion runs employed suboptimum estima-

tion of some of the required identification elements in ~(k). In particular ,

V nn
(k) and p ( k ) ,  the whi t e  noise variance and channel mean va lue function ,

respect ively, were estimated. During these runs the ~(k) process was held

stationary . In particular , V~~(k) and ~(k) were hel d constant. Also, symbol
timin g was provided to the data processor. For some of the runs , H0

( k ) was
hel d to the identity matrix. In some runs, a “phase-jitter ” process , •: 0(k),

based on phase-locked loop carrier phase synchronization , was i nser ted into
H0(k). However , for these runs , H0(k) was not inserted into the Ka l man fi l ter

algor i thms . The resul ting inaccurac y appeared to have l i t t le effect on the
resulting error rate curve . See Figure 4.l. -8.
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In implementing the subopt imum identification estimators , it was found

that the triple {r(), ‘~
( ) ,  A Q }  could be set into the Kalman fi lter algorithms

in a fixed confi guration . All that was necessary was that {i’O, ~
( ) ,  

~~~~ re p re-
sent a fi l ter structure which creates a process of “wider ” power spectra l
density than that actually presented by Y(k). It is clear from work of Son
and Anderson [15] that the triple {r(), i~() ,  ~( )}  is not unique. For the
optimum identifi cation problem , the i dentified triple {r~~, ‘~‘(), A 0}  need
only be capable of recreating the autocovariance function Vyy(k~~)~ for the
interference process , Y(k). However , in the simulation , it was found that
the measured error rate was not hi ghly sensitive to the values of
{ rQ ,  t ( ) ,  A~~}, so long as the bandwidth constraint , mentioned above , was
met. See Figure 4.l. -9.

The suboptimum estimators for p (k) and Vnn (k) were not conditional-mean.
They were maximum — likelihood sample-mean and sample-variance estimators
respectively. Moreover , they were not absolutely recursive. Since V nn (k)
and 1~(k ) were known , A Pr ior i , to be cons tan t , the estimates V nn O~
p0, obtained oy decis ion-direction at the end of the (J-l)st symbol interval,
were used for each k in the Jth symbol interval . It was found that the sub-
optimum estimator for p (k) performed satisfactorily, in terms of the error
rate measure . The error rate for the adaptive optimum detector saturated at
a value l ower than tha t  for the standard detector , but at a level too high to

be useful . See Figure 4.1. - b .

4.2. THE LINEAR TRACKING ALGORITHMS.

For the assumed data generating model of equation 3.6. -2 and Figure

3.6.-2 , it is assumed that the rotational process which produces the unitary
matrix , H0(k), is generated in the receiver itself . Thus , H0(k) is measure-
able and its i nverse may be computed. Therefore , the first step in the detec-

tion process is to multiply the z(k) of 3.6.-2 by H~~(k). If , in practice
this is not done, the prior results of [29] indicated that the effects of

H0(k) are absorbed into the multiplicative noise , y,,.(k), itself.

Under the ass umptions concerning H0 (k) ,  the data model for use wi th the

Kalman filter is
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z(k )  = H~ (k) Y(k;m) + H ( k ; m )p( k )  + ri(k) (4 .2. - l)

where the various elements of (4.2.-b) are as in (3.6.-2).
The Ka lman fi lter corresponding to equation (4.2. -b ) is depicted in

Figure 4.2.-b. Because the multipl icative noise , ~,(k) and the addi tive

colored noise , y~(k), are generate d i nde pendently the Kalman f i lter may be
split into two parallel branches which are coupled only in formation of the

tracking error function , the Innovations. However , because of the coupling
through the Innovat ions , the Kalman ga i n equat ions , from wh i ch Gr(k) and G~(k)
are computed , are coupled.

The Kabman filter equations are

= 

~~~~~~~ ~ ~~~~ 
=

X~ ( k I k — l )  = ~ X~(k _ l )  ; X~(O) 0

y~,(kjk-b) = A r~r I~~b)

~~( k J k _ l ) = A~X~ (kIk-b )

(H (k; m; A) y~(klk ~l))*h(k)
v(k l k b , m) =

.~~(ki k_ l )

v (k) = z(k)  - H~(k) Y(k lk-l , m) - H (k; in) p( k)

= 

~~~~~~~ 
+ Gr(k) v(k)

x~(k) = x~ (k Ik-l ) + G~(k) v(k) (4.2 . -2)

The equations of (4.2 . -2) are also the Wiener fi lter equations when the
asymptotic steady-state values are used for the Kalman gain functions , Gr(k)
and G~(k). Note that the filter algorithms require many of the A Priori

unknown elements of the 
~

( )  vector , such as p (k), A , etc . This shows the

practical significance of the Identifica tion problem .
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For the case of add itive colored interference only, with no mul ti p l ica tive
noise, the Ka lman gain equations for G~(k) are stra ight-forward . They are

V~~~~(k I k -b ) = ~~V~~~~(k- l )~~ + r~ F~ : V~~~~(0) 
= V

~~~~
(0)

G~ (k) = V~~ (k[k-b)A ~ H~(k) [V~~ + Hj(k)AjV~~~ ( k j k  l) AT H~(k)]~~

V~~~~(k) = [I - G~ (k) H~ (k) A~] V~~~~(kIk-l ) (4.2.-3)

where V
nn 

is the 2 x 2 var iance matri x for the add i tive wh ite noise , n(k),

as given in (3.5. - l6).
The Kabman gain equations for the case of multi p l icative noise only are

not straight-forward for the genera l case when h(k) is not equal to the del ta
function (Kroneker delta). In place of the term of form HAV ~~A THT i n  equa-
tion (4.2.-3), the corres pondi ng term in Gr(k) is

~ 
Ht (k- i , in, A ) A ~V~ ~ (k-i , k-j )A~ H~ (k-j , m,A ) h ( i ) h ( j )

i~ O i 0  r r

which is essentially a double discrete convolution . It is clear from this

result that the ga i n function , Gr(k) can not be computed on line . If used

at all , the Kab man filter for the delay-spread signal would require a pre-

computed and stored Kabman gain function , Gr(k)• Th i s is ano ther reason
for using the stationary Wiener filter in practice. For the Doppler-spread

channel only, without delay-spreading , however , the ga i n func ti on , Gr (k)
~ 

may
be computed on-line , analogous to G~(k).

For the case of no delay -spreading but with both colored additive inter-
ference and colored multiplicative noise (Doppler-spreading), the Kalman gain
functions may be obtained by solving the partitioned matrix equations analo-

gous to (4.2.-3) for the compound state-vector obtained as X(k) =

4(k)]1.
• As mentioned above , the stationary Wiener filter is obtained using the

Kal man filter structure of Figure 4.2. -l and the steady-state values for the
Kalman gain functions. In general this requires solving the three gain

equations for the steady-state value of the track ing error variance matrix

and computing the gain functions using the steady-state error variance .
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For colored additive interference or for the Doppler-spread multiplicative

noise channel wit hout delay-spreading, the gain equations have the general form

V (kjk-l ) = ~V(k~b)~
T + rr T

v ( k )  = [I - G(k)H(k)A ]V(klk-l)

• G(k) = V(k)ATHT(k)V~~ (4.2 .-4)

In (4.2.-4), V(k l k—l ) and V(k) are the predicted and fi l tered error variance

matri ces , respectively. H (k) is a unitary matrix representing signal modula-

tion in the Doppler-spread case or the offset carrier effect for colored
additive interference. Note that the equation for G(k) is the alternate
expression which is not used for recursive on-line computation .

In the steady—state , V(k l k-l )and V(k) are not equal but V(k) and V(k-l)

are equal . Thus , (4.2.-4) may be manipulated to obtain

V(k )  ~ V = [I - V ATHT(k)V H(k)A][~V~
T + rr T ] (4 .2 . -5 )

where V is the constant value of the track ing error variance matrix. Equat ion

(4.2. -5) is quadratic in V and may be solved for V. Note that a requirement
for V to be constant is that H(k) be unitary so that the term HT(k)V~~H(k) is

cons tant. Given the -steady-state solution for V(k) = V , the Wiener gain

func ti on i s

G(k) = V A THT (k )V ~~ (4.2.-6)

Note that G(k) is not constant , since it contains the time—varying term . HT(k).

• However , the inner product GT (k )G(k ) ,  which may be interpreted as the “power ”
of G(k) is constan t.

4.3. STANDARD DETECTION ALGORITHMS .

It is desired to compare the performance of the optimum detection algo-

rithms of (4.l. -b2) with the performance of standard sampled-data detectors.
For comparison purposes . binary phase-shift-keying (PSK) and frequency-shift-
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keying (FSK) are chosen . The standard al gorithms may be derived from considera-

tion of Figure 4 .3 . —l , which shows the In-phase/Q uadrature Carrier Demodulator.

f
LPF [

s(t;m)+ n(t) 2 cos[w~
t+
~~0(t)]

LPF~ ozq(t)

-2 sin[w
~
t + 1~(t)]

Figure 4 .3 .-l . I-Q Carrier Demodulato r.

The continuous time input signal and noise processes are modeled as

s(t; m) = A(t; m)cos[wct + c~(t; m)] : in = 0, 1

n ( t ) = n ’.(t) cos W t  — n~ (t) sin W t  (4.3.-b)

In (4.3.-l), A(t ; m) and c~(t; m) are envelope and ph ase func ti ons for the
modulated signal , as detailed in Sectio n 3 .2. Th~ p rocesses n~(t) and nc~

(t)

are independent , zero—mean , white noise , with equal variances.

The output I-Q data vector is defined by
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r (t )
z( t )  

~ (t) 
= H ( t )  s(t; m) + n(t)

¶ cos4~(t) sin~ (t )1  A C t ; in) cosq (t; m )
H0(t) 

= L-sin~0 (t ) cos~0 (t)J : s(t ; in) = L A (t; in) sin~(t ; rn) I

n(t) = 
[n.(tY 

= 
T n.(t) cos~0(t) + n~ (t) sin~0(

t)T
— Lnq(tL L-~~~~~~~~

t sin~0(t) + n~(t ) cos~0 (t )~
(4.3.-2)

In (4.3.-2), ~0(t) is a phase perturbation which in this model is intro-

duced in the I-Q demodulation reference. However , in general , such a phase
pertur bation , which results in a rotation of the signal vector , coul d be i n-
troduced by the channel its~ if . The effec t on the de tec t ion algor ith ms w i ll be
the same , regardless of the physi cal orig in of ~0(t). The good practical
approximation is made that ~0(t) is independent of n~(t) and n~(t). Then

n~(t) and nq(t) are zero-mean and have the same variance as n~ (t) and n~ (t).

n~(t) and nq (t) are taken as Gaussian , since for the given variance , a

Gaussian process has maximum entropy . Hence , n(t) is Gaussian.
Sampled- data detection is accomplished by accumulating K samples of the

data vector , z(t), durin g the symbol period of length , T. Then , the 2K-
vector , ~(K) is formed as

E z(K) T
~(K) = (4 .3 . -3 )

-i
L~~~

( b )  J
It is assumed that the symbols are equably l ikely. That is

p(m)  = ½ : m = 0, 1 (4.3.-4)

Thus , the M a x i m u m  A Posteriori Pro ba bi lity detection s trate gy an d the Max imum
Like liriood detection strategy are identical and the symbol decision which is

obtained by comparing the densities , p(ni I~ (k)), is also obtained by comparing

the densities , p (Z(Kflm) for in = 0, 1 .

In genera l , the required density may be obtained as the marginal density 

~~~~- ..
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p(Z (K)lm ) = f . .~~.f  p(~(K), ~~(K) )  d~~( K)  (4 .3. -5)

where the i ndica ted formal integra ti on is ove r each value of the p rocess ,

that i s , over 
~~

(l), q 0(2), ... ,

4.3.1. Coherent Detection of Angle -Modulated Signals.

• Coherent detection algorithms are obtained by assuming that

= 0 V k = 1, 2, . . . ,  K (4. 3.-6)

This is equ ivalent to assuming perfect phase-coherent demodulation references

for the I-Q demodulator. Under this assumption , the 2K data vec tor i s

Z(K) = S(K; in) + N(K) (4.3.-7)

• where for angle-mo dulated signals ,

S(K; m) = [cosq (K; m), sin~(K; m) . .. cos~ (l; in), s inq (b ;  rn)]1

N(K) = [n
~
(K). nq (K)~ ...~~~ n~ ( l) .  nq ( b ) ] T (4.3. -8)

The required density , p(Z(K)Im), is Gaussian and is given by

p(Z(K)!m) =

= 
1 

2 exp ~-—- ~-2—- [Z(K) - S(K;  m)] T [Z ( K)  - S(K; m)] }
2~i an n (4.3.-9)

where is the variance of n
~
(k) and nq (k). A Likeliho od Ratio (LR) test is

defined as

m= 0
p (-~(K)Im = 0 )

LR = -_
-- 

----—— 1 (4.3. — b )
p(Z(Kflm = 1)

m= 1



SUbstituting (4.3.—9) into (4.3.- b )  yields the Likelihood Ratio ,

LR = exp {-  —
~
—- [ -2 ZT(K)[S(K; 0) - S(K;  1)] +

2a2 
— —

n

ST(K 0)S(K; 0) — ST(K; l)S(K; b)]~ (4.3.— li)

For angle-modulated signals s(t: in = 0) and s(t: m = 1) are equal power

signals. Thus

ST(K;O)S(K;O) = sT(K.1)s(K~l) (4.3.-1 2)

and the Li keli hood Rat io tes t of (4 .3.- b )  becomes

m= 0
aT ( K)s (K o) > z~( i ) s (~~b ) (4 .3. - l3)

m= 1

The test of (4.3.-13) is actuall y in the form of a correlation test , since
the inner product , LT (K)S(K:  i n ) ,  is a measure of the correlation between the

si gnal waveform and the data waveform.

The test of (4.3.-l3) may be rewritten as

= 

k~l 
~~~~~ 

~~~~~~~ 
: ~~ :~~~~~ 

~~ (4.3 . -14)

where v is a “sufficient statistic ” for detection.
The probability of error , P(e), for coherent detection may be obtained as

P(e) = Pr([0 < v , in = 1] U [v < 0, in = O]}

= ½[ r~ p(v lm = 1) dv + f 0 p(v~m = 0)dv] (4.3.-b5)
0

where p(v lm) is the density of the sufficient statistic , conditioned on the
symbol , in. The variable , v , is Gaussian , when conditioned on in .
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K
v = ~ {[cos [p(k;0) - ~(k;l)]  - 1] + n~ (k)[cosp (k ;O)—cos~ (k;l)]k~l

+ nq Ck)[sin c~(k;0)—sin~ (k;b)]}:m =

K
v = ~ {b - cos[q(k;0) — ~(k; l)] ]  + n 1 (k)[cosq (k;0)-cosp (k;b)]

k b  
+ nq (k)[sin~(k;O)-s in~(k;l)]}:m 0

(4 .3. -16)

The means and variances are

• K
E{vjo } = -E~vj l} = ~ [1 - cos[~ (k;0) - ~(k;l) ] ]  

~k=
K

var{vIO } = var~v I b } = 2c~ [1 - cos[~ (k;0) - ~(k ;b) ] ]
k=

(4.3.-b7)

Then , the p roba bi lity of error is

P(e) = ½ [l -erf (~~~~~~~~
)] ~ ½ [l - erf ~ 

/~E(l - P ] ]  (4 .3 . -18)
V

v

where the implicit defin ition is used

2
= 

- p (4.3 . -19)N0

(i) Results for PSK.

For PSK , the envelo pe and phase functions for the modulate d
signa l are

A(k;O) = A (k;l) = 1 ; A~ is phase deviations in radians

~(k;O) = -~ (k ; b )  = A~ (4.3.-20)
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Then

= 
K[l — cos (2A~)]2 = 

sin 2 (Aq )

2a~ K[l  - cos (2Aq )] ax/K (4.3.-21 )

The term, p , is correlation coefficient between the two transmitted signals.

For PSK ,

= — l (4.3.—22)

Thus , for PSK

E = ½ sin 2 (Ac ~)
N0 ag/K (4.3.-23)

(ii) Results for FSK.

For FSK , the envelope and phase func tions for the modulated
s ig nal are

A(k;O) = A ( k ; l )  = 1 ; A~ is frequency deviation in
radians/second

~(k;0) = -~ (k;i) = Aw
~
tk T is symbol period

tk 
= (k — ½)~ - (4.3.—24)

Now , define the FSK tone frequency , WT, as

• U
T 

= (4.3.-25)

Then , the equivalent phase deviation for FSK is

= (4.3. -26)WI

:i ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



and

tk 
= WI (k - ½)~~ 

= ~~(k - ½ )A~ (4.3.-27)

Then , 
K K

2 ~
‘ 2sin 2(Aw .tk)]2 ~~

- 

~~ 
sin 2(&,~.t~)

= 
k=l 

= 
k=l 

=

av 2a2 
k~l 

2sin 2 (Aw.tk) 
a2/K

K
-

~~ 

sin 2[ (k -
k=l

(4.3. -28)

Provi ded that the equivalen t phase deviation (or frequency deviation is chosen
so that p 0, whic h is standard practice in the non—coheren t case.

K K
~ sin~( ~

-
~~
- (k - ½)A~) 1 - -

~~ ~~ cos 2( ~~~~~ (k -
E k= b k=l
N0 a~/ K

(4.3.-29)

(iii) The Recursive Coherent Detection Algorit hm .

Since génerablj it is preferable to have the detection processing
recursive , the Likelihood Ratio test of (4.3.-l3) is now converted to recursive
form. From (4.3. -14), the recurs ive Likelihood Ratio test may be written
as

LR (0) = 0

LP(k) = zT(k) r(k) + LR(k  - 1) : k = 1 , 2, ..., K

(continued)

• 
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-~~~~~•1~1

~cos~(k;0) - cos~ (k;l)fl f 0 1
r(k) = 

Lsin~(k;0) — sin~(k;l)J 
= 

L2 sin(A~)J 
; PSK

0 1
I ;  FSK

L 2 sln(AUt k)J

m =  0

LR(K) 0 (4.3.-30)

m =  1

Note that the reference signal , r(k), contains zero as the in-phase
channel reference. This means that the standard detector uses only the
quadrature channel signal component to make the symbol decision . This is not
the case for the optimum detector for multip licative noise (Doppler-spread
channel). There , generally, a component of the signal is rotated into the
in-phase channel by the multiplicative noise. Note that the same comment
would apply if the I-Q carrier demodulator phase reference , ~0(k), were non-
zero.

4.3.2. Non-Coherent Detection of Angle -Modulated Signals.

Non-coherent detection algorithms are obtained by assuming that

= &.~, V k = 1 , 2 , . .., K (4.3.-3l )

where is a random variable which is uniformly distributed over the interva l ,

[0, 2n]. This is equivalent to assuming that the reference phase for the

coherent I-Q demodulator is completely unknown , but is constant over the symbol
period . Then , the required density is obtained as

p (~(K)Im) = 
~~

-
~
- 

0f~ p(Z(K)lm , ~0)d~0 (4.3.-32)

where Z(K) is defined by (4.3.-3) and



_~ _ -_- —“—- __ - -_ -  ---_-_ -•_ __
~

_._ •.____ i i_ i_ • _ ___ _v_ _ __ — ---- .-- 

z (k) = H(~0)s(k;m) -- n(k)

E cos~ sin~ T ~cos~(k;m) ~
= L-sin~ 

cosq~j 
; s(k;m) = sin~(k;m) -~~

n.(k)
r i ( k )  = n

1
( k )  ; k = 1 , 2, . . .,  K (4.3.-33)

Now ,

p(Z (Kflm ,~0) 
=

1 ( 1  — T —

K K exp ~- — [Z(K) - Z (KIm ,~ )]  [~(K) - Z(KIm ,~ ]~~(2,r) (o~) L. 2a~ 
— — — — 

° J

• 1 K

K K exp ~i~
_]_ 

~~ [z(k) - ~(k~m ,q )] T [ z ( k )  -
(2ir) (ag) L 2a~ k=I °

(4.3.-34)

where

= E{z(k)lm ,c1 0}

= H(~~)s(k;m) (4.3.-35) -

•

Then

p(~(K)I m ,~ ) = 
K exp - -~~-- ~ [~

T(k) (k) 4
— 

(2~i) (a~~) L 2a~ k 1  —

- 2 T(k)H(,~~)s(k )

+ T(k )HT~~~~H~~~~ (k )]~

L 

= Q (K;m) exp[ ~~ 
k~l 

zT(k)H(~0)s(k;rn)]
(continued)
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K
Q(K;m) = 

K exp ~~~— ~~~~~~~ 

~ 
[J(k)z(k) + sT (k;m)s(k ;m)]

(2~ ) (~2)K L 2~2 k=l - •n n (4.3. — 36)

Next , (4.3.-36) is manipulated into the form

p (~ (K)~m ,q 0) 
= Q(K;m) exp[a(K;m) cos~0 + b(K;m ) sin~0]

1 K T ~cosq(k;m)1a(K;m) = 

~~~ k~l 
~ (k) sin~(k;m)j

1 K T sin4’(k;m) l
b(K;m) = 

~~~ k~l 
~ (t~ L—cos~ k;m (4.3.-37)

Finally the integral of (4.3. -32) may be performed to obtain

p(~ (K) in) = J f
2~T Q(K;m) exp [a(K;rn) cos~0 

+ b(K;m) sin~0]dq 0

= Q(K;m) I
~
[ 1a2 ( K ; r n )  + bz(K;m) ] (4.3.—38)

where I
~
() is the Modifi ed Bessel Funct ion .

Because s(k;0) and s(k;l) are equa l power signals

Q(K;0) = Q(K;l) (4.3.-39)

Because I
~
() is monotonicalby increasing for positive increasing agruinent , and

because of (4.3.-39), the Likelihood Ratio test for non-coheren t detection of

angle-modulated signals becomes
m= 0

a2(K;0) + b2(l(;O) > a2 (K;l) + b2 (K;l) (4.3.40)
m= 1

(i) Recursive Detection of FSK.

L 

For FSK , ~~k;m ) are as given in (4.3.-24) for m = 0. 1. The
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recurs ive algorithm is defi ned by

-r COS (Awt k)a(k;0) = z (k ) sin (~ ~ 
+ a(k—b ; 0)

L~

sin (Awt )1
b(k;O) = z (k) (Aw tk )j 

+ b(k-l ; 0)

cos (~wt )~a(k;b) = zT(k k 
+ a(k-b ; 1)

~ sin U k’—

b(k;l) = ZT ( k )  [Sif l  
~~~~~ + b(k-l; 1)

a(0;O) = b(0;O) = a ( 0 ;l)  = b( O ; l )  = 0

k = 1 , 2 , ..., K

LR(k) = a2(k;O) — a2 (k;l) + b2 (k;O) — b2 (k;l)

m=O

LR(K) ~ 0 (4.3.-41)
m= 1

4.4. IMPLICATIONS ON SIGNAL DESIGN AND CODING .

The Integrated Detection , Estimation and Identification (IDEI) algorithms
represent a new and different approach to Maximum A Posteriori Probability

detection of M-ary signals. The algorithms provide “gain ” against “Doppler-
spreading colored multiplicative noise and colored additive processes by
tracking the interference waveforms , themselves. Since the detection gain

depends on tracking the interference (in the presence of receiver generated
addit ive white noise), the narrower the interference spectrum is , the better
the tracking and detection performance will be. This observation is based on
the assump tion of fixed white noise spectral density , fixed colored inter-
ference power and fixed samplin g rate . In the case of intent ional colored

interference , game theoretic considerat ions imply that the interference

spectrum width should be commensurate with the signal spectrum width. This

and the tracking requirement imply that spread spectrum signalling may not be

~ 
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the best choice , A Pr iori , for use with IDEI reception. Thus , the ques ti on i s ,
“How can Detection , Estimation , Identification , and Signal Design and Coding
be integrated in a rigorous yet natural manner? The answer lies in the area
of “Probabilistic Decoding ” [35], as oppose d to “Al gebra ic Decodin g ” [36].

The distinction between algebraic and probabilistic decoding is described

below , with reference to Figure 4.4.-b. The coder is a deterministic mapping
of sequences of source symbols , in,j’~ ~ D~, to sequences of modulator input
symbols , m,~ ~ DM, where DQ and DM are Q-ary and M-ary alphabet sets , respec-
t i vely . The modulator is a memoryless device wh i ch , for each symbol , ~~ of
the input sequence , produces at its output a waveform , y~(t; m~)~ on the time

interval , [(j—l )T5, j Ta]. Data transmission is accomplished by transmitting
into the channel a sequence of waveforms corre spondi ng to the modula tor input
sequence. Let the ~th N-sequence of modulator input symbols be denoted

= fm
~~
}
~ =1 (4.4.-b)

Then the correspon d ing modula tor output waveform i s

yt(t; w~) 
= {y~(t; m 4~

); ((i-b) + ( j - l ) N ) T 5 
< t (i+ (j-l)N)T5}~~1

(4.4.-2)

The compound modulator output waveform of (4.4.-2), on passing through
the channel , produces a compound received waveform , ~(t; w~), which may be
viewed as a sequence of waveforms as

~(t; w~) = {~ (t; m
~~

)

( ( i - b )  + ( j -1 ) N)T 5 < t < ( i+( j - l)N)T 5 }~~1 (4 .4. -3)

The t (t; m~1 ) are produced in accordance with the probabilistic mapping implied

by the particular channel model being used.
• The demodulator processes the individual members , r~(t; in ..), of the

received waveform sequence , to produce a sequence of numbers .

d 1 c D. The specification of n , N , and D depends on the particu lar decoding
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Fi gure 4 .4 .-b: Communication System Block Diagram.

strategy employed , and is made clear , below . The decoder processes the se-
quence , 

~~~~~~ 
to produce decisions , or estimates rn * on the corresponding

• source symbols ,

In algebraic decoding , the sequence , {d1 }~~1, produced at the demodulator

output , is an N-sequence of estimates , [rn
~~
}
~~l~ 

of an N-sequence of modulator
input symbols , {m .~}~~1. In this case , D = DM and n 1 .  In the usual binary
case , 0 = {O , 1 ), and the d

~ 
are b inary symbol s. An a ’gebraic decoder attempts

to expl oi t  redundancy introduced in the coder my mapping the dem odula~o , ou tpu t
sequence {d1 }~L1, into an admissible coder input sequence ,

Massey [373 illuminates some of the limitations that algebraic decoding

places on overall communication system performance. Intuitivel y, i f  the  de-

L _ _ _ _  
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modulator produces only a decision estimate , rn~1~ of the modulator input ,
then any available information on the quality of the decision is not utilized.
Thus , the algebrai c decoder must necessarily treat each of the elements of a
sequence of demodulated symbols , {m~~}~~1. as being of equal quality . This
loss of information , due to the demodulator ’s implementation of a “hard

-

• 
decision ” strategy , limits the performance of the total system formed of the
coder/modulator/demodulator/decoder. For the case of transmission through a
discrete , memoryless channel , such as an additive white Gaussian noise channel ,
Massey [37] shows tha t the overall system performance is improved by probabil-
ist ic decoding using a demodulator having an output alphabet larger than the

modulator input alphabet. The limiting case of an infinite output alphabet
results when the demodulator output consists of a ve’~tor of outputs from a set
of fi l ters matched to the channel waveform set , ~~~ in .1 ); i—l ,N}.

• Chase [38] discusses the use of channel quality information in probabil-
istic decoding of block codes for channels wi th memory due to correlated fading
(such as the aeronautical data-link exampl e). Block encoding of data produces
binary word sequences , {m

~~
}
~~1. 

which phase -shift-key a set of N orthogonal
FDM tones in a Ki neplex [391-type modem . In addition to binary decisio ns ,
{ m.. }~~_ , the demodulator p rov ides the deco der w i th a reliability measure se-
quence , 

~ j i~i= 1’ which allows the decoder to weight certain demodulator symbol
decisions more heavily than others in the decoding process. Chase [38] shows
that this probabilistic decoding provides a significant performance improve-
ment for both simulated and physical channels. Unfortunately, Chase ’s system
exhibits a saturation of the error rate curve for large signal -to-noise ratios ,
which he calls , an “i rreduci b le ” error rate due to time and frequency-selective

fading. Such saturation was also reported in [29] for demodulators which did
not properly process the multiplicative noise (which causes time-selective fading).

A key question is to what extent the IDEI algorith iiis are subject to error rate

saturation and to what extent such saturation can be reduced using probabi l ist ic
decodin g.

The IDEI algor thms derived above as equation (4.l.-b 2). provide a rigor-

ous , yet naturai , means for integrating the function of single-symbo l probabil-

istic decoding with those of detection , estimation and identification. Block

cod ing and convolutional codina are treated below .
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4.4.1. Block Coding .

Suppose that the coder uses block encoding , map pi n g a source symbol se-
quence of len gth L into a modulator input symbol sequence of length N. Since

there are Q symbols in the source alphabet , it follows that there are QL

possible sequences , each , for the source an d for the modulator input. Let
the ~th modulator input sequence , w~, be as in (4 .4 .1 ) .  Let the resulting
channel output waveform , c~(t; wi). be reduced to a discrete -time sampled-data
vector , z~(k) by sampling at a fixed uniform rate of K samples per symbol ,

~~~ as per (3.5 . -6) .  The vector , z~ (k)~ then c o n t a i n s  KN sample vectors , z(k).
Now , define a vector of code words , W~(k )~ as

1~
— -

~

N N N 1 ~ w 1 (k)
= w~(k), . . - , ~~(k,, w1 (k) -—

~~ 

L. 
• 

I 
-j w.  (k) - (4 .4. —4)

-:
where the elements of W~ ()  are vector representations of the block sequences
of symbols. That is

~1

N T m.N (k)
w . ( k )  = in .ri (k), ..., m.,, (k ) ,  m . 1 (k )  ~~~~~~w. ’ ( k )  (4.4 . -5)

j

and the m
~~
(k) are the M-ary symbols in the ~th modulator input sequence .

Correspon ding to W. (k) is the total data vector , ~.(k), containing jNK
Nsample vectors , z(k), or j “block data vectors ” Z~(k) for i = 1 , 2,... . j.

MAP detection of the entire vector of code words is performed by computing a
statistic , 5, proportional to the A Posteriori probability

The same development of the present s tat is t ic , S , may be fo l lowed ~i~-

was previously for symbol by symbol detection . Only now , major ~
made at the end of each code word , w~ (k) .  In part i cula r , asc u~~ th,i ’ ‘ -

(j_ 1)St decision state , the probability , P(~~~1 (k)iZ~_ 1 (k)) is .
w . 1 (k) = W . 1 (k) .  Al so assume at that stage that. a Vi~’ y  qnnd • •

~

mean estimate of the identification pa rameter vector . - -

8~~1 ( k).  Then , the stat ist ic , 5, is decis ion-d irec t _ •

vector , and become s
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S = f . . . . f  p(Z~(k), B~(k), ~~(k) ~j-1’ ~~~~~~~
‘ ~~ 1 )d ~~(k)

(4.4.-6)

where , now , WN(k) is given by (4.4.-5) and the Z~(k), B~ are “block vectors ’~3 3 —J
defined by

N rZ. (k) N r B. (k) 1
z . ( k )  = ~N 

, B.(k) =~ 
—~N (4.4.-7)

I N i  N iL z~ (k) L ~ 
(k)

and the Z~~(k)~ B~~
(k) each contain K sample vectors z(k), ~(k), respectively.

Now , by straight-forward repeated application of Bayes rule , (4.4 -6) is trans-

formed to

S = f....f it p(Z~~(k), ~~~~~~~~~~ 
Z~~~(k), B~~

1 (k), W~~~(k),

• 
~j— i’ ~j— 1’ ~j_~) p(m~1 (k)~W~

_1
(k), 

~j—1~ 
d ~~(k)

(4.4.-8)

which is equivalent to (4.1.—8), above. Equation (4.4.-8) is further trans-

formed as

S = 
~~~~

• • • •
~~~ 

ii ~~~~~~~~~~~~ m~~(k)~ Z~~~
(k), B~~~(k), w~~~(k),

• !j1’ ~j-l’ ~j-l~ 
. 

~~~~~~~~~~~~ ~~~(k), B~~~(k), 
w~~~(k) •

j i  ~j— i’ !j.1) P(m~~(k)I~~~
1 (k)1 

~j—i~~ 
d B~(k)

(4.4.-9)

Equation (4.4.—9) implies an averaging type algorithm consisting of QL parallel

branc hes , one for each uni que modulator input code word .



To minimize demodulator complexity , it is assumed that at the end of the
(1_ 1) st symbol processing period , in the ~th word , a good fil tered estimate of

the identification vector , B~~
1 (k) is available as B~~~(k). Then , equation

(4.4.-9) transforms to

S = fP(Z.1 (k)IB~1 (k). m.~(k), Z~~~(k), B~~~(k), W~~~(k), ~j-l’

• 
~j l’ ~j—l~ 

P(B~1 (k)Im~~(k)~ Z~~~(k), ~~~~ 
w~~~(k), z.~~,

• 
~j — l ’ !.~...i) d ~~ (k) • P(rn~~ (k) (k),

Equation (4.4.- b )  is a general averaging algorithms which requires a one-symbol

conditional-mean prediction density on the identification vector, B..(k). The

algorithm is not, however sample recursive , but , rather , processes the received

data in symbol blocks.
To obtain a fully recursi ve form, it is assumed that good estimates are

available for filtered and one-sample-stage predicted i dentification vectors ,

~ (k) and ~(klk-l). Then , (4.4.- b )  yields

N N
S = II it p(z(k)I~ (kjk— l ), B..(k—l), ~~~ m..(k), w’.~~, Z..(k—l ),1=1 k=l 3 1

• 
~j— l’ ~j— l’ ~~~~~~~~~~~ 

. p(m .1 (k) 
~~~~~~~~~~~~~ ~j—l 

(4.4.— i l)

Equation (4.4.-il) is a fully recursi ve algorithm which represents QL

parallel branches , one for each word reference w~(k). For relatively short

code words, (4.4.-il) is a feasible algorithm . For long code words , it is

probably more sensible to make a ni softll decision on the symbol sequence , as it

progresses. This soft decision is used only for the purpose of reinitia 1i~ing

the fi l ters after each symbol. The resulting algorithm yields M parallel

decision-directed branches. However, the word decision statistic still con-
tains QL points. The QL points are the reduced set obtained from the M

N

possible products of the symbol-by-symbol outpout statistic , using only ad-

missible modulator input code words.
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In (4.4.-li), the p(z(k)I() ) are conditionally Gaussian. Thus , the basic
structure of the parallel branches consists of paired linear (Kalman) fil ters
and conditional mean identifier predictor—fi l ters , as in Figure 4.i.-3. Follow-
ing the pa i red fi l ters is the same multiplicative accumulator for building up
the statistic at the end of each symbol period . A new feature, now, in the
soft decision case, is a subsequent product accumulator , fol l owing the paralleled
branc hes , for building up the statistic at the end of each subsequence of
symbols , composing the code word .

4.4.2. Convolutional Coding .

In the previous section , above , has been shown a method for integrating
the block coding, decoding function into the detection/estimation/ident ifica-
tior. problem . The algorithm , so developed , utilizes probabilistic decoding in
a natural , yet rigorous , way. It is conjectured wi th high confidence that
convolutional coding, decoding may be integrated in a similar manner. It is
further conjectured that the generic minimum form for IDEI Receiver/Decoder
will be of the form of Figure 4.4.-2. The generic Receiver/Decoder will
process input data , one sample at a time . The parallel branches will del i ver
decision statistics to a decoder at the end of each symbol . Soft symbol deci-
sions will be used to reinitialize each parallel branch. The decoding algo-
rithm will make a word decision at the end of each N-symbol sequence. The
last symbol of the hard word decision will be used to reinitialize the parallel
branches and the decoder for processing the next word .

4.4.3. Waveform Design.

It is not enough to just implement coding and probabilistic decoding.
Maximization of IDEI recei ver performance requires that special attention be
paid to the selection of the transmi tted waveform, y (t; m..), corresponding

to m~1~ which is the i symbol in the j N-sequence. Since bandwidth expand-

ing modulation is not necessarily required , It may be desirable to use narrow-
band signalling with finite bandwidth waveforms (See Reference [40]). To
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circumvent the possibility of intentional interference by waveforms correlated
with the transmitted waveform, a selection of waveforms may be necessary, with
different waveforms corresponding to different symbols in the DM alphabet.
The trade-off between minimization of correlated interference and the size of
the DM alphabet should also be examined .

Although no effort in the signal design area was made during the period
of the Contract reported herein , the area is one which must be investigated
if IDEI reception is to be developed for practical use. More is said on this
below where initial simulation results are detailed .



I

SECTION V

THE IDENTIF ICATI ON PROBLEM

5.1. IDENTIFICATION FOR THE DETECTION PROBLEM.

Equation (4.l.-l2), above , presented the algorithm for formation of the
MAP detection statistic , using Decision—Directed Interference Cancellation
and Channel Identification . In derivation of that algorithm , it was seen that
an estimation algorithm was required for B(k), the vector of channel compo-
nents to be identified . In particular , recursive estimates , 8 (kl k-l) and

were required , which were, respectivel” , a one-stage conditional -mean
predicted estimate , and a subsequent filtered estimate. The fact that condi-
tional-mean estimates were specified by the optimum detection algorithm
implies that the optimum identification al gorithms are of the type which mini-
mize the mean of the square of the estimation error.

The precise forms of the estimators , ~(kjk-1) and ~(kIk), are dictated by
the probabilistic models chosen to represent the various components to be
identified . Wi th respect to the canonical model of Figure 3.6.-2, the Identi-
fication components are partitioned as in Table 5.1.-i.

Now , all of the components listed in Table 5.1.-i , except A and Aw~ are
needed in order to optimize (in the Kal man-Wiener sense) the linear filtering
algorithms of Section 4.2. The linear fi l ters, in turn , attempt to recreate
the Doppler-spreading, Del ay-spreading, and additive colored interference . The
parameters, ~ and Aw~ , are needed to recreate the deterministic parts of the
received signa l envelopes . The first question to be asked about the Identifi-
cation Problem is , “How accurately need the components be identified? ” The
second question to be asked is , “How is the received I-Q data to be processed
to identify the components?”
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Identifi cation Components Relation to Channel Model

(1) {rr~ 
‘p r’ A r} Filter structure for generating

{rh~ ~r’ 
A h} Doppler-spreading , Delay-spread-

{r~~ 
~~~

, A~~} ; ing, and additive colored inter-
ference.

(ii) 
~~~~~~~ ~~~~~~ ~ 

; The strengths of the coherent
parts of the direct path , re—
flected path , and interfering

signal .
(iii) S/N ; Additive white noise l evel .

(iv) A ; Differential delay time between
direct path and minimum-delay

reflected path .
(v ) Aw~ ; Frequency offset between direct-

path signal and colored inter-
fering signal.

Table 5.1.-b. Identification Components.

5.1.1. Sensitivity of Detection to Identification.

The Kairnan and Wiener fil ters are minimum -mean-squared error fil ters.
That is , when the set {r , ~ , A , ~ , S/N} are correctly identified and the
fi l ter gain function , G , is correctly computed , the Innovations variance is
minimized . If {r, ~, A} are set in to the fi l ter slightly in error, the
effect is analogous to imple !nenting a filter whose bandwidth is slightly in
error. This increases the mean-squared filteri ng error and Innovations
variance above its minimum va l ue . If S/N is incorrectly set in to the filter ,
the gain function , G, is in error. If ~ is incorrectly set into the fi l ter,
the “d.c. response” of the filter is in error. When such errors are slight ,

the effect is to just increase the fil ter tracking error above its minimum
value . When such errors are gross, the fi l ter may diverge or become “un-locked ,”

to borrow a phase-locked loop analogy . 
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The performance criterion for the linear tracking filters in mean-squared-
error. However, the performance criterion for the detection algorithms is
symbol error rate, or probability of error. The detection statistic , formed
in (4.l.-12), is a functional of the sample variance of the tracking error
(Innovations). In the example of Section 4.1.2, the detection statistic was
the sample tracking error variance , itself. Thus , identification error, and
resulting sub-optimum implementation of the tracking filters , affects the
error rate performance measure indirectly. It is not known , based on rigorous
analysis , which of the various identification components has the greatest
effect on the detection error rate. Consequently, it is not known which of
the identifications need to be made most accurately, and to what level of
accuracy.

An attempt will be made , in the follow-on to the present contract , to
answer some of the questions about the sensitivit y of the detection algorithm
performance to fdentific ation accurancy . The mode of analysis will be mostly

through Monte Carl o simulation , although some mathematical analyses will be

made , where feasible. Also , various identification algorithms will be investi-
gated for use with the i nterference tracking detection algorithms .

5.1.2. Implementing Ic~entification with Detection.

It is well known that the conditional-mean predictors and filters , for
those components admitting to Gaussian models , are linear , and are, in fact,

obtainable from a Kalman filter. However, A Priori , some of the components
seem far removed from Gaussian processes. For example , the signal to noise
ratio , S/N, for the additive white noise , contains only positive numbers which
are as likely to be of the order 10

_i 
as of the order of io 6. Thus , lacking

any prior knowledge of S/N, its natural model seems more likely to fit a uni-
form distribution than a Gaussian distribution. A similar comment also applies

to ~(k), the vector of coherent component levels.
The fact that some of the Identification components in 8(k) do not fit

Gaussian model s, A Priori , implies that some of the associated optimum condi-
tional-mean estimators are non-linear. The general problem of non-linea r ,

conditiona l-mean recursive estimation is one of current interest. (See Sage
and Melsa [41] for a bibliograp ’iy.) The problem is also one which has yielded

few solutions to date.
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A two-pronged approach seems indicated for the problem of Recursive
Conditional-Mean Identification. The first , or frontal approach , is that of
modeling the various components of 8(k) and seeking true conditional -mean
recursi ve estimators for the components thereof. The second , or flanking
approach , is described as fol lows.

The process of identification may be partitioned into two sequential
processes, or modes. The first is a Learning , or Acquisition , mode. The
second is an Up-dating , or Tracking , mode . During the Learning mode , Maximum
Likelihood estimators are used to estimate those Identification components
which are, A Priori , non-Gaussian distributed. In parallel with each ML esti-
mator is ~ second ML estimator for the variance of the ML estimate , itself.
For example an ML (vector) estimator would process the data vector , z(k),
in a manner analogous to that described in [16], to produce an ML estimate ,

p (k). Also , in parallel , a second ML (matrix) estimator would process the
data vector,z(k), and the estimate , ~(k), to produce the variance matri x for

As the Learning mode progresses , the ML variance estimates should con-
verge to a minimum. This minimization of the estimate may be anticipated ,
even if the Identification vector is not stationary . When the absolute rate
of decrease of the variance estimate is suitably small , it may be inferred
that the non-Gaussian components of 8(k) have been “learned” to the best
extent possible , using ML estimators . When the last component has been so
learned , the Identification mode passes from Learning to Up-datin g.

For the Up-dating mode , those ML estimators for non—Gaussian components
of 8(k) are replaced by linear (Kal man ) conditional -mean estimators . The
linear estimators are based on Gaussian models for the A Priori non-Gaussian
distributed components , using the mean and variance obtained from the ML
estimators . The ML estimators continue to operate in parallel with the linear
estimators , in case the mean and variance change , due to non-stationarity of
8(k). The above is a heuristic , sub-optimum method , reminiscent of the Linear-
ized Kal man filter [41]. However , its performance may be quite satisfactory ,
in terms of the basic detection problem.

The measure for evaluating the performance of the combined MI-Linear
Identifiers , proposed above , is the Error Rate produced by the Integrated
Detection/Estimation/Identification algorithms . It was reported in [29] that
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improper performance of identification estimators resulted in saturation of
the Error Rate at an “irreducible ” level . It is conjectured that such irre-
ducibility is partially caused by the identifier algorithm not being properly
matched to the underlying stochastic model which produces the component to be
identified. Thus , it is conjectured that the proposed combined MI-Linear
Identifier , though sub-optimum , should reduce the saturation level of the
Error Rate from that previously reported. A sufficient reduction of the
saturation level , to, say io 6 , would be practically equivalent to removing
the saturation entirely, in view of the possibility of coding implementation
described above .

5.2. IDENTIFICATION FOR KALMAN-WIENER FILTERING .

The Identification problem , which has been encountered as a natura l
adjunct to the interference-tracking detection technique , is a special case
of a more general discipline called System Identification [42-45]. The
broad de finition of Identification is simply the determination of physical
models which could produce observed random data . Such physical models may
not even be unique . The discipline finds application not just in communica-
tions or electrical engineering, but in all branches of modern science and

engineering dealing with the analysis of data .
Identification has become important in electrical engineer ing with the

advent of the Kalman fi l ter. Unlike the Wiener fi lter, synthesis of a Kalnian
fi l ter requires knowledge of a model for the generation of the observed data
in the general canon i cal form of Figure 5.2.-l . The Wiener fi l ter does not
require such specific knowl edge , in general. Rather , all that is required is

knowledge of the signal mean (d. c. value), ~(k), and auto-covariance function ,
where

Vyy(J) = E{y(k + j) ~
T(k)} (5.2.-i)

Also required is knowledge of the white noise variance , Vnn (0)•

92 

~~~~~~~~-— . --—~~~~~~~~~~~ -.— - -—--~~-——-—-.. -~ ~~~~~~~~~~ . ~. . - .~~~
_ _ _



—~~~-- -.-

0
w

N~0

+
I w -

~I

N~~
— +

~~~C O

U) >’1

*1
( f ) CI) >

E

o

+

.4.
-~~~

C

..~~~ u,~~~~

Lr.

2.I. Data ~~nerat0r for Ka lman Hlte~ 

-

~~~~~~~~~~~~~~ 

- -

~~~~~~~~~~~~ 

--



-~~~-— ----
~
-. “-~~~~~~

, — .--- ‘,-—--,-
~ ~ -‘- --,—-- - . — ---.-.- — ‘ .

The reason that more specific knowledge of a signal generating model is
required as in Figure 5.2.—l , is that the Kalman fi l ter is , in genera l , a time-
varying filter for random signals which have time-vary ing statistics. Thus ,
the matrices , rO . ~t ( ) ,  A Q ,  are all generally functions of time , and knowledge
of their variat ion with t ime is required. If r(), ~

() ,  and A ( )  are constant,

as in the underlying detection problem above , and if all that was desired was
to track the signal y~(k), or y (k) + p (k), then a standard Wiener filter would
suff ice . However , the detection sta ti stic requires the Innovations process ,
v (k ) .  Thus , the Wiener filter must be in negative feedback canonical form .
Hence , the steady-state version of the Kalman fi l ter might as well be us~-
for the Wiener filter.

Fortunately, knowl edge of a unique generating model for the data is not
required for the Kalman filter. It is easy to show that any set of generator
functions {r, ~, Pd which are obta i ned by a similarity transformation (in-
ve~’tible linear transformation) on the state vector , x(k), w i l l  generate the -

same output covariance function , Vyy(~)~ From this follows Athans ’ result
[16] that  the generator mode l needed for the Kalman fi l ter is not unique .
Stronger results by Anderson and Moore [14] and Son and Anderson [15] showed
tha t, only the non—stationary mean , p (k), an d covariance funct ion , Vyy (k+~~ k) ,
along with the noise variance , Vnn (k)~ 

are needed to synthesize the non-sta-
tionary Kalman fi l ter. Given the covariance function , V~~(k+i~ k), the problem
of finding a canonical model which can generate it i s one ’ of Covariance

Factorization [46]. However , in the problem at hand , the covariance function
is not given.

The general Identification problem for synthesizing optimum linear fi l ters
is , therefore , to determine directly from the observable data , z(k), the
various structural components required in the Kalman fi l ter. These elements
are shown in Figure 5.2. -2, which is the Kalman (or Wiener) filter corres-
ponding to the data generator of Figure 5.2.-l. It is seen from Figure 5.2.-2
that the filter elements wh ich must be identified are A (k), t’(k+l , k),

and the filter gain function , G(k). Note that r (k+l , k) is not necessarily
identified directly. Actually, as can be seen from the Ka l man gain equations

of (4.2.-3), r(k+l , k) is only used to compute G(k) and enters the computation

as rrT, rather than directly.
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Figure 5.2.-2: Kalman Filter.
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The Identification problem is most easily attacked when the signal genera-
tor of Figure 5.2.-i represents a Single -Input -Single—Output (S.I.S.O.) filter.

That is , the white scalar input is w(k) and the correlated signal output is
y(k). The data is then a scalar , z(k). Much of the earlier theoretical work
on Identification was for the S.I.S.O. case.

The problem which arises in identification for IDEI processing is that of
identifying a generator structure which is Multi -Input -Multi-Output (M.I.M.0.).
In particular , the processes to be identified are the low-pass I-Q processes
which are derived from the bandpass additive colored interference or from the
low-pass complex Doppler-spreadi ng process. Thus , in Figure 5.2.-I , the white
w (k) is a 2-vector and the correlated signal output , ~(k), is a 2-vector , as

is the data vector, z(k). The M .I.M.O. identification problem is considerably
more difficult than the S.I.S.0. problem , as is detailed below .

5.3. IDENTIFICATION OF I-Q PROCESSES.

5.3.1. The I-Q Statistics.

To examine the statistical relations for the In-phase and Quadrature
l ow-pass processes, consider the band-pass formulation , thereof. Define a

bandpass Gaussian process , r(t), as

r(t) = r1 (t) cos - rq(t) sin ~c
t (5.3.-b)

which has power spectral density , Srr(w)~ 
as sketched in Figure 5.3.-l.

The power spectral density is the Fourier transform of an autocorrelation
function , Rrr(’r), and is therefore real , positive , and an even function of

~~~. However, note that the density need not be locally symmetric with respect
to the frequency , W

c~
Now , r1 (t) and rq (t) are the low-pass Gaussian In-phase and Quadrature

components of r(t), respectively. Assumi ng that r(t) is zero-mean , then r1 (t)
and rq (t) are zero-mean and are completely described by their autocorrelation
and cross-correlation functions , R~~ (t)~ Rqq (r)~ and Rqj (T)~ For r(t) to be

stationary it is necessary and sufficient for [47]
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Figure 5.3.-l/ Bandpass Spectral Density

R11 (T) = R~ 1
(_ ’r) = Rqq (T) 

= Rqq (_T)

Rqj (T) 
= R

jq (~ T) 
= 

~Rqj (~ T)  (5.3. -2)

That is , R. .(~ ) and R (,) are even functions and R .(T) is an odd func-
11 qq qi

tion . Note that it is not required for r1 (t) and rq (t) to be orthogonal (or

independent ).
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The power spectral densities for r1 (t) at~J rq (t) are defined by the

Fourier transforms

= F{ R 11
(t ) }

S
qq

(w) = F~ R
qq

(T ) }

Sqj ((~)) 
= F {R qj ( t ) }  (5.3.-3)

rr

2w~ 0
U(w~ C~)5rr ~~~~

-2wC -Ic 0 2~~ 
W

U(u.~-o.,)

1 
srr(w>#.f.

N

_ _ _  

s (w) = S~~(w)

Re{ S  .(w)}

CL)

Figure 5.3. -2: Spectral Relations
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Since R
~~

(’r ) and Rqq (T) are real and even , S11 (~) and Sqq (w) are real , even , and
positive. Since Rq i (t) is real and odd , Sqj (~i) is imaginery and odd.

Now , ~~~~~ Sqq (w)~ and Sqj (t~)) may be determined directly from Srr(w) by
[47]

S11 (w) 
= Srr (wc + ~) ~ ~ c + ~) + Srr(w - wc) ~ ~ c -

Sqj (w) = ~[S~~((i) wc
) U 

~ c 
- U)) - Srr (wc + ~) U (~ + w )]

~5 .3 .-4)

where U() is the Unit-Step function defined by

U(x)= l ; O < x

= 0 ; x < 0 (5.3. -5)

Figure 5.3.-2 shows the various spectra l relations from (5.3.-4) for a
hypothetical non-symmetric bandpass power spectral density . Note that if

Srr(w) were l ocally even symmetric wi th respect to the frequency , 
~c’ 

then
Sqj(w) would be identically zero. Hence , Rqj(T) would be identically zero
(limiting case of an odd function). Thus , r1 (t) and rq(t) would be orthogonal ,

uncorrelated , and independent (since they are Gaussian).
If r~(t) and rq(t) were i ndependent , they could then be identified inde-

pendently, using S.I.S.O. identification techniques . Unfortunately, in general ,

the Doppler spectra or additive colored interference spectra are not locally

even symmetr ic. Thus , in general , r~(t) and rq (t) are correlated , and M.I.M .O.
identification must be used .

5.3.2. The I-Q Generator Model.

For the present problem , the I-Q Generator Model is the stationary version

of that of Figure 5.2.-i , for which {r(k+l , k), ~(k+l.A (k), ~(k)} are either
constant or so slowl y time-varying that they may be taken as constant for the
purposes of recurs ive identification. This means that the elements would be
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constant over the interval of time corresponding to the memory of the
identifying algorithms .

Thus , the I-Q model is defined by the equations

X(k + 1) = ~x (k )  + rw(k)

= A X(k)  + ~(k)

z (k )  = y(k) + n(k) (5.3.-6)

Now, y1(k), n (k), z(k), and w(k) are all 2-vectors . In terms of the I-Q formu-
lation , they are defined by

y~(k)l n
~
(k) p 1 (k)

= ; n(k) = ; jj(k) =

Yq ( k )j  flq (k) ; ~q
(k)

r zi(k) 1, ; r~~ (ki’

w(k)= I

LZ q~~ 
wq(k)j (5.3.-7)

Both n(k) and w(k) are i ndependent , zero-mean , white and Gaussian. It is
assumed that y

~
(k) and Yq(k) are each Markov—N. Thus , the state-vector , X(k),

must have 2N states, and the obvious definitions follow :

x . ( k ) T  _
‘t’ ..

X(k )  = =

F . F I T ’
r = [~~~ _~~9 ~; A = ~~Lj_~~9 (5.3.-8)

L.1qi 1 1qq . ~
T 

A
T

• —qi —qq

where the X 1 (k), Xq(k)~ ~~~~~~~~~ 1iq ’ 1qi’ 1qq’ ~ii’ Aiq ’ ~~~ 
and are all

N-vectors. The nI
~~.j ,  ‘

~iq ’ 
‘
~qi ’ 

and 4’qq are each N x N matrices .
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Identification of the I-Q model involves three interacting steps:

(1) Selection of a structure for {r , ~, Pd which contains a minimum number of
non-zero elements ; (ii) Identification of the order , N , of the model ; (iii)
Identification of the individua l non-zero elements in the set {r, ~ , Pd. Note
that in the general model of (5.3. -8) the number of elements to be identified
is (2N)2 + 4(2N). The question is , “How many of the elements can be set to
zero, A Priori , in seiectino a minimum structure for {F , ‘~‘, A ) ?”

M.I.M.O. Identification has been investigated in genera l , but not for the
specifi c model which results for the I-Q case. Popov [48] has developed a
complete set of invariants for a controllable pair. Weinert and Anton [49],
Denham [50], and Sinha and Rozsa [51] have extended Popov ’s work to develop
i nvariant canonica l forms suitable for M.I.M.O. Identification . Mehra [52]
and Ise and Weinert [53] have shown methods of identifying the order, N ,
using the Innovations process (see Kailath and Frost [54]).

Results for M.I.M.O. Identification algori thms are few. Tse and We i nert
[53] have used given output covariance functions to identify 4~, A , and Vnn~
but not r, using the Luenberger canonical form. Their resulting algorithm
was not recursi ve. Graupe , et al., [55] have identified the order , N ,
using Autoregressive Moving Average (ARMA ) formulations. The resulting algo-
rithm has very complicated structure. Kashyap [56], has used ARMA models for

Identification , as have Rowe [57] and Mayne [58], who have also transformed
the results into a state—variable canonical form. Martin and Stubberud [59]
have also identified parameters and covariances using the Innovations process.

The chief difficulties wi th previous M.I.M .O. Identiffcation results are
that (1) they do not apply directly to the I-Q case ; (ii) they are not
recursi ve; and (iii) they are overly complex. What is first necessary is to
determine the minimum model for the I-Q case, given order , N. Having the
minimum model , then , recursive Identification algorithms must be developed.

The covariance relations for the general model are

Ef[z(k+j) - ‘i(k+j)][z(k) - ~( k )]T} 
~ 

V2~
(k+j, k) =

= V~~ (k+i . k) + V (k+j , k)

k) AV xx Ck+j , k)A
T

continued
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V xx (k+j , k) = 

~
V xx (k , k)

Vxx (k+l , k+l ) = 

~
V xx (k , k)~

T + rrT

Vnn (k+j~ 
k) = Vnn ~oj 

(5.3. 9)

where ~(k) is the mean of z(k) given as

i(k) = E{z(k)} = p (k) = p (5.3.- b )

In (5.3.-9), Vnn (k+j~ 
k) is the covariance of white stationary noise ,

which is the constant Vnn matrix times the Kroneker delta , S.~~. It is assumed
that w (k) has unit variance. It is assumed that the generator has reached
steady state and that X(k) is stationary . Under these conditions , equations
(5.3.-9) become

V2~
(k+j , k) = V

~~
(j) = V~~,(j )  +

Vyy(J) =

= + rrT (5.3. -Il)

Now, the requirements of equation (5.3.-2) are that for y1 (k) and Yq (k)
to be low-pass I-Q components , it must be satisfied that

E{[y(k+j) - ~][~(k) - ]T } ~ Vyy (i) =

~~~~~~~~ YjO~ i)Yq (k )~~
= E~

L YqO(~J)YjOo) yq(k+j)yq (k~j~

= 
v~~(j) V iq (i)~

Vqj(J) V qq
(i)j continued
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V~1 (j) = Vqq (i) ; an even function

V jq (~) = _V
j q (_j ) = _V

qi (i) ; an odd function (5.3.-b2)

The structure of (r , ~ , A } ,  as given in (5.3.-8) must be chosen to satisfy
(5.3.-l2) with a minimum number of non-zero elements. The search for such a
structure , along with recurs i ve algorithms for identifying it is a part of
the follow-on extension to the present contract.

5.4. IDENTIFICATION OF THE MEAN.

5.4.1. Modeling the Mean as Gaussian.

When the mean , p. of equations (5.3.-6) and (5.3.- b )  is non-zero , it must
be suppl ied to the optimum linear filter (Kabman or Wiener). The reason for
this is that the mean plays the part of a “constant d.c. b evel” in waveform
fil tering. Although the optimum linear filter has “d.c. gain ,” it is not
generally unit gain. Therefore, the mean value , p , is not recovered exactly
by the filter. More importantly for the detection problem , an unknown mean
results in a non—zero mean , or bias , in the Innovations process. Since the
Innovations process is used to form the detection statistic , an unknown mean ,
p. affects the detection error rate immediately by biasing the Innovations.

A common way out of this dilemma is to treat the mean p as a slowly time-
varying Gaussian vector and to augment the state vector , X(k), with another
state vector from which p (k) is assumed to be generated . The optimum linear
fi l ter then attempts to track both ~(k) and p (k). This procedure results in
a model i ng error in the case where ~ is constant , and is therefore sub-optimal .
Also , the dimension of the filter ’ s state vector is increased , which is also
not desirable.

A better result by Friedland [60] is based on the augmented state-vector
approach where p is modelled as constant Gaussian. This leads to two esti-
mators. The first is the standard linear filter for a zero-mean signal . The
second is a linear filter , driven by the biased Innovations process , which
produces an optima l estimate of the mean p. Using Friedland ’s scheme the un-
biased true Innovations process may then be recovered for use by the detector.
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This techni que will be pursued in the follow-on extension to the present
contract.

5.4.2. Maximum-Likelihood Mean Identification.

A Maximum -likelihood mean estimator was reported in [29], based on sample-
mean averaging of the Innovations process. This was an Ad Hoc estimator , not
based on any rigorous analysis. The performance of the estimator itself was
not measured. Rather , the estimator performance was inferred from error rate
performance of the detection algorithms simulation with the mean estimator
running. In retrospect, it not obvious whether the ML mean estimation
algori thms performed well or whether one state of the Kalman filter itself

was tracking the mean.
It may be that a good practical approach to the Mean Identification

problem will be to augment the state vector with two additional states, one
for each component of the mean. The closed loop filter gain for these two
states may be ~et close to unity. This will give an ML- like estimate
of the mean. rhe performance of this kind of Mean Identifier will be examined
in the follow-on extension to the present contract.
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SECTION VI

THE MONTE CARLO SIMULATION

6.1. PROGRAM DESCRIPTION

6.1.1. Overview

The overall simulation program operates as shown in Figure 6.l. -l . A

random Message Generator produces pseudo-random symbols in the {O, l} alphabet.
The occurrence of successive symbols is independent in the statistical sense.
The symbols are routed to a Modulation Generator where the appropriate I-Q
modulation waveforms are generated as per equations (3.2.-3), (3.2.-4),
(3.2.-5) and (3.2.-9).

An E. M. Reflection Routine , developed by Peake [11], produces the del ay-

spread function , P ( T ) ,  used in (3.3.-17), and the Doppler-sreading spectrum ,
S p (U) ) ,  used in (3.3.-21). The outputs of the E. M. Reflection Routine and
Modulation Generator are used in the Channel Processor to produce the compo-
nents of signal received via the direct and reflected paths. At the present
state of development of the Monte Carlo simulation program , the use of the
E. M. Simulation Routine outputs is not automated. That is , the com ponents
for the structure of the H-filter and R-fi i ter , in Fi gure 3.6 .-2, are not
calculated automatically from the outputs of the E. M. Reflection Routine .

Rather , the filter components are set into the Channel Processor manually.
Such automation is actually a part of the Identification Problem , as discussed
in Section V.

A Jarning Generator and White Noise Generator complete the formation of
the received data process. The Jamming Generator produces the colored inter-
ference signal , as per equations (3.5.-17) through (3.5.—22). The White Noise
Generator produces the receiver-generated white noise , as per equations (3.5.-il)

through (3.5.-15).

The received data is processed by the Optimum Receiver Algorithms and by
the Standard Receiver Algorithms . These algorithms are detailed in Sections
4.1 , 4.2, and 4.3. The detected message symbols from both the optimum re-

ceiver and standard receiver are then routed to the Error Rate Generator and
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Statis tical Significance Estimator. There , the detec ted sym bols  are com pare d to
the transmitted symbols and errors are recorded . From the errors , error rates are
computed , as are the s tat i st ical means and var i ances of the error rates ,

also.
The above overview of the Monte Carlo simulation program is strictly func-

tional. A detailed description of the actual program and all its elements

follows . Program listings are in Section 6.2.

6.1 .2. Main Program Descrjption

The flow diagram for the main program is given as Figure 6.l .—2. It is
seen that the main program is built around a single DO-LOOP which operates on
data sample number. Thus , the total Monte Carlo s imula ti on p rog ram opera tes
recursively, sample by sam p le , just as do the optimum and standard receivers .

In th is way , statistically valid runs at l ower error rates are achieved by

running the simulation for a longer time , rather than by increasing the re-
qu i red machine storage. This simulation strategy was adopted originally at

NASA Langley Research Center , where long run t ir~es on the 6600 were eas y to
obtain , but large storage was not. Al so, this is the obv ious strategy for
simulation on storage —limi ted minicomputers .

The following description of the operation of the Main Program is keyed
to the f low diagram in Figure 6. l . —2.  See also the listing for the Main Program ,
which is given below in Section 6.2.

The first operations are dimensioning variables and setting up a common
block of variables . These variables are described below. Also , there i s
associated BLOCK DATA , which is detailed below. Next , some housekeeping func-
tions are done for the PDP 11/40, assi gning system units to the Teletype key-
board , Card Reader and CRT Control Console. Also , tabulation of elapsed real
time as the program executes is facilitated.

The first subroutine to be called is INPUT. This subroutine accepts all
the in put data to the program such as symbol period , modulation type , signal to

noise ratios , etc., and computes the structural elements of the H-filter , R-

filter , J-filter , etc. Also , INPUT formats the data print-out page which
describes the case being run. Next , formatting and writing is done for the
final statistics at the end of the simulation run. Also , the start time is

recorded and written.
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Figure 6.1 .-?: Ma in Program Flowchart .
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The run-time of the simulation is controlled by the DO-LOOP on sample

num ber , KS. The generation and processing of data samples is terminated at

sample number , NDS , which is an input number. The main body of operations in

the DO—LOOP consists of calls to data generating and processing subroutines .

These subroutines are takne in order below.

SIG generates the sample value of the direct path symbols , BB , at sam p le ,

number KS , in the binary alphabet {O, l}. SIG also generates the sample value

of the d ifferen tiall y dela yed symbol , BBR , on the reflected path.

MODUL conver ts the symbol sample to the alphabet {+l , -l } an d then forms

the samples of the modulation waveforms in I-Q form , for both the direct path

and the differentially delayed refLcted path. XST is the l-Q vector corres-

ponding to Q(k, m) of equation (3.5. -9). FR and GR are the scalars corres-

ponding to ft(k; m; A) and g~(k; m; A) in equation (3.5.- b ) .

RHOFLT creates the mul tip licat i ve noise , as in (3.5.-b ). The ou tput of

RHOFLT i s RHO , which is the I—Q two—vector corresponding to y,.(k) in (3.5.- b ) .

The variable X~KRHO is the state-vector (array) corresponding to ~,,(k) in

(3.5.-0 ). NRHO is the dimension of either the I state-vector or the Q state-
vector (they are the same dimension). NRHO2 is the dimension of the total

state vector for the I-Q generator and is equal to twice NRHO .

In the p resent ve rsion of the ma i n pro gram, the next call i s to HFILTR
which is the H-filter of Figure 3.6.-2. This version of the program is

obsolete and has not yet been up-dated to represent the filtering used in
(3.5.-b ). The model described by the present program is one wherein the
different ially-delayed modulation was first filtered in the H-filter and then

multiplied by the multiplicative noise. The model which has finally evolved
into (3.5.- b )  does the multiplication fi rst and the H-fi l tering second. The
effect of the required modifications to the program will be to reverse the order

of the calls to HFILTR and to GEN , which is next in the p-esent version.
As long as no delay-s preading is used , the p resen t p rog ram an d the mo d i-

f ie d prog ram w i l l  operate i de n t i c a l l y .

Subroutine GEN performs the matri x multiply to give to give the term ,

Ht(k; m; A)p (k), in (3.5.-b ) .  The output , XSR , is the I-Q vector correspond-

ing to the above product.

Subroutine NOISE generates the I—Q samples of zero-mean white additive

noise , n(k), as per (3.5.-lb) . The out put I-Q vecto - is XN .
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Subroutine INT2 generates the colored stochastic additive interference ,

according to (3.5.-b7), (3.5.—l8) and (3.5.-22). The I—Q vector output ,

XJ , corresponds to y~(k) in (3.5.-l7). The state-vector for the generator is

XKJ of dimension NJ? , where NJ2 is twice NJ , which is the d imension of the I
and of the Q state-vector.

Subroutine DATA forms the I-Q data vector , Z, from the out puts XST , XSR ,

XJ , and XN. At this point the received data has been formed . What follows
next are the receiver processing operations and the error-rate calculations .

The subroutine REFGEN is calle d twice . The f i rst time , it generates
Ht(k; m=0) and Ht(k; m=O , A ) .  The second time . it generates Ht(k; m=b ) and

Ht(k; m=l , A). These matrices are the linear filter references required in
(4.2.-2). The outputs of REFGEN are FTR , GTR , FRR , and GRR. These are the
counterparts of XST, FR , and GR , which were generated by MODUL.

Nex t, the Kalman filteri ng routine , KALFLT , i s called tw i ce , once for m 0
and once for m=b. The outputs are XEST , VEST , AINOV , VIN y , and DET. XEST and
VEST are the filtered state estimate and variance respectively which are re-

quire d in the fi l ter and gain equations as per (4.2.-2) and (4.2.-3) respec-

tively. AINOV is the Innovations process , VINV is the inverse of the Innova-

tions variance and DEl is the determinant of the Innovations variance , as re-
quired for the detection algorithms of (4.b.-b3). Note that in KALFLT , the
dimensions of the multiplicative and additive colored noise state-vectors
are set as NYRR and NYJR , respectively. These dimensions may be different
(due to ident ifi cation ) than the corresponding dimensions , NRHO2 and NJ? , in
the respective noise generators .

Following the linear fi l ter , the symbol decision statistics are formed
recursively for m=O and m=b by two calls to DCIDM . The outputs of DCIDM are
SUM and S. For PSK and FSK modulation , the product on k in (4.1.-l2) may be
converted to a sum , since the Gaussian density function is exponential in form .
The running sum is output at each sample time as SUM. At the last sample time
in each symbol period , the cumulative sum is output as the final devision
statistic , S.

The next step in the program is to call the decision sub-routine for the

standard receiver , STDCIM. The standard PSK detector is extremely simple. The

detection statistic , SPSK , is simply the cumulati v c sum of the Q—channe l
samples. For FSK , the standard detector is somewhat more complicated . The
running statistics outputs at each sample time are AFSK and BFSK , which are
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the counter parts of a(k; m) and b(k; m) in (4.3.—4b) . At the last sample time

in  each symbol period , the final cumulative detection statistic , SFSK , is ou t-
putted , corres pon di ng to a 2(k; m) + b2(k; m) in (4.3.-3D). It is seen that the

PSK detection sub-routine also uses the waveform references , FIR and SIR.
Next , the sample number , KS, is tested to see if it represents the last

sample in a symbol period. If it is not , the ma in  p rogram returns  and re-
enters the DO-LOOP on KS. If KS is the final sample number for a symbol , the

main program calls CERKAL .
Sub-routine CERKA L takes in the detection statistics , S, from both cal ls

to DCIDM , and decides which symbol has been received . From this and the actual

t ransm i tted symbol , BB , CERKA L forms a cumulat ive count , ERR , of detect i on
errors for the optimum detector. CERKA L also provides as output , the raw

error rate , ERRATE , an exponentially smoothed mean error rate , ERMEAN , and an
exponentially smoothed error r~te variance, ERRVAR. Also produced is a measure
of confidence in the smoothed error rate , DATSNR , which is the square of
ERMEAN divided by ERRVAR. Finally, havin g dec ided on the correct symbol ,
CERKAL resets the final state variable fi l tered estimate , XEST , and tracking
error variance , VEST , in the “incorrect” tracking fi l ter.

Next , subrout ine CERSTD is called to make the symbol decision for the

standard detector. tt also calculates a cumulative error , ERRS , error rate ,
ERATES , smoothed mean error rate and variance , ERMENS , ERVARS , and data
condit i on , DATSNR . Now , the symbol number in  the t ransmit ted sequence i s
incremented and tested to determine if results are to be printed for this

symbol. If not , the program returns and re-enters the DO-LOOP on KS. If
results are to be printed (every NPRNT symbols), then Gu M is called to print
out clock time . Al so printed out are symbol number , IB , and the various error
rate statistics.

The main program may be terminated in several different ways , one of which
is when the DO-LOOP on sam p le number , KS reaches sample number , NDS . The other

methods of termination are explained below in description of second-bevel sub-
routine , ESTERR.

Following termination , the final data output is written , according to

FORMAT statement 200.
Tables 6.1.-b and 6.l.-2, below describe the DIMENSIONed and COMMON

variables , respectively for the Main Program. Additionally, STRNG is an 8-bit

(1 byte ) logical variable. JTIME is Integer *4• Both are required for calling

clock time during print -out.
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6.1.3. Block Data (BLKDAT)

This subroutine-like program component stores and/or initializes all comon
block variables. The SEED integers are required for the random number generating
subroutine , RANC , which drives the white Gaussian generator, MARSA . Various
initializing seed numbers are stored which have been found , experimentally, to
give quick statistical convergence of RANC.

The variables stored under ZPWUP are the {r, ~~, A }  parameters for the H-filter ,

R-fi b ter, and J-fi l ter of Figure 3.6.-2. The variables stored under ZPWKA L are
the identified versions of the ~r, ~~, A} parameters which are used to structure
the Kalman fi l ter of Figure 4.2.-i. Also stored under ZPWKA L are the identified
strengths (amplitudes ) of the specular (coherent) components of the reflected
signal and jaming signal. Stored under SIGCON are the delayed binary signal
samples when differential delay exists between direct and reflected paths , as
per equation 3.3.-9.
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6.1.4. Subroutine INPUT

This subroutine first computes the various noise generator amplitude gain
constants stored in BLKDAT under GDB. These constants are calculated from
corresponding input values for decibel signal to noise ratios. Next, the various
parameters of the fr , ~ , A) matrices are calculated for the R , H, and J-filters .
Then the equivalent noise bandwidths are calculated for R and J-filters . This
sets the noise bandwidths of the corresponding multiplicative noise and jaming
noise processes. Finally, the corresponding {r, ~~, A )  parameters for the Kalman
fi l ter are calculated .

At the present time the {r, c~ , A} parameters for the Kalman fi l ter are set
equal to the true {r, ~~, A) used in the R , H, and J-filters . This is the “Per-
fect Identification ” case. The theory supporting the above calculations is given
below , in the description of Subroutine LPF.
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6.1.5. Subroutine SIG

This subroutine produces sampled data waveforms at each sample number , KS,
for the pseudo-random transmitted symbol in the alphabet {0, U. Symbol wave-
forms , BB , are produced for the direct path signal and waveforms , BBR , are pro-
duced for the differentially delayed reflected path.

I

-I.
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6.1 .6. Subroutine MODUL

Subroutine MODUL accepts the outputs of Subroutine SIG , the zero-one

symbol samples of BB and BBR , and converts them to the code symbols C and CR ,
respectively, in the {l , -l} alphabet , corresponding to Co of equation (3.2. -3).
Nex t, the d irec t an d ref lec ted path sample  t imes , 1K and IR, corresponding to

sample number KS are computed . Also , a modula r  t ime , TKMOD , reference d to t he
beg inning of ea ch new symbol i s computed . Next , the envelo pe and phase func tions ,
AT and PHEET , are computed , corresponding to equations (3.2.-4) and (3.2.-5).

Finally, the I and Q modulat i on componen ts of the transmi tted signal are compu ted
as XST(1) and XST(2), corresponding to eQuations (3.5.-9). Also computed are
the differentially delayed I-Q components , FR and GR.
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6.1.7. Subrou tine LPF

At the present time , all of the colored I-Q noise processes are generated
with no coupling between the in-phase and quadrature components . This yields

band pass spectra which are even-symmetric with respect to the carrier fre-
quency. Presently the I and Q scalar processes are obtained by filtering
independent white scalar noise processes. The discrete-time filter routine
which is presently used is a three-pole filter called LPF .

The discrete—time fil ter algorithms are obtained by assuming a continuous-

time fil ter which is driven by a sampler and Zero—Order—Hold (ZOH). The

output is then sampled synchronously with the input to produce a discrete-
time filter. The reason that such an approach to discrete-time fi l tering is
used is that for high sampling rates , the performance of the sampled system
converges to that of the continuous system. Thus , all the engineering insight

into continuous-time filtering may be directly applied to the discrete-time
fi l tering.

Let the input waveform be w(t) and the output waveform be z(t). The

operation of the filter is defi ned by

z(kT) = xTx(kT) : k = 0, 1 , 2,•..

• ~(t~ = Ax(t) + bm(t)

m(t) = w(kT) : kT < t (k + 1)1 (6.1.—i)

where T is the time interval between samples and k is the sample number. In
(6 .L— 1) ,  x(t) is the filter state vector of dimension N x 1. A and b are also

N-vectors . A is an N x N matrix. In particular

T - -

x = [x 1~ ~‘.2 ’ ’  A N] p1 
0 - — 0

= [b 1, b2,.., bN] ‘ 0 p I

A = 
2 (6.1-2)

I 
~ 0
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Now it is well known that

G ( s )  = 

x 1 b1 

AT(:I -A) 1b 

b
= 

s——— + 
~ 

— 
+ 

- 
: N = 3 (6J.-3)

~ p
3

For the diagonal A matrix , we see that the X .b. are the residues of G(s)
at the poles s = p

~
.

The equations (6.1.-i) may be solved for a difference equation in sample
number k as

z( k ) = xTx (k )

x(k + 1) = ~x ( k ) + -yw(k)

= exp(AT)

~~ 1
T exp(Aq ) dq b =  (~~ 

- I)b (6.l.-4)
0

Solving (6.l. -4) for the diagonal A form yields

n p lT 
~1

0- - 0

p T ~~~~~~
- 0 e 2 I

‘~~~0

L 0 - - - - 0 e
b p T  b p 1  b p 1

= [ i (e 1 
- 1), 2 (e 2 - 1),..., —~ e N - 1)] (6 L-5)p1 p2

For the present version of LPF , we simply choose a general formulation for
G(s) as
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— k ( s — z )G(s) - (s - p1
)(s - p2)(s - p3)

p 1 -2-irf. : 1 = 1 , 2, 3

z = -2i~f (6.l.-6)

where the and are the 3-dB “break” frequencies in the corresponding Bode
Plot. The 3 poles and single zero are all on the negative real axis of the
S—plane . Under the assumption that the sampling rate is sufficiently high
so that

M(s) ~ W (s)  : 

~-f~-~-~ 
G(s) (6.l. —7)

then the behavior of the discrete-time fi l ter of (6..l.-4) may be well char-
acterized by simply choosing the break frequencies f1, f

~ 
and the gain

constant , K.
When used to generate colored noise , it is desired that the output variance

of LPF be unity when the input variance is unity . Then the desired variance is
achieved by multiplying the output wave form by the gain constants , GJ or
GRHO . When used to provide delay-spreading it is desired that LPF have unity
low-frequency gain -

Unity low frequency gain for the discrete fi l ter is obta i ned when the
continuous time transfer function , G(s) has unity low-frequency gain. Thus ,
in (6.l.-6) the filter gain constant is solved for as

2
K = (2ir ) 

~ 
: Unity Gain (6.l. -8)

To set the filter for unity output variance requires analysis of the
fi l ter ’s transient variance. In genera l the output variance at sample k is

V
~~
(k) = E{z(k)zT(k)} = E{(xTx(k)) (~

Tx (k)T}

= x T V
~~

(k)x (6.1.-g)
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where V
~~

(k) is the N x N variance matrix for the filter 1 s state-vector. In
general ,

V ( k  + 1) = ~V ( k )~T + 
I (6.1.- b )

Let Vxx be the steady-state va l ue of the variance matrix , V x(k)• Then , for
the diagonal ~-matrix , (6.1.- b )  may be solved for Vxx as

= 
1 ~~, ~ = 1 , 2,..., N (6.1.-li)

where i denotes column position and j denotes row position. Then the steady-
state value of the output variance , V , is

N N y .A.y.A .
V zz = 

~ ~~
—

~~
- (6.l.-12)

i=l j=i ~i~j

The G(s) of (6.L-6) may be expanded in normal form as

3 r•
1

i=l S

K (p1 -z)
r1 

= 
- 

~~~~ 
- p~~

K(p2 - z)
= (~ - p ) ( ~ -

K (p3 - z)
r3 

= (P 3 - P
1

)(
~~3 

- 

~2
) (6.i. -13)

From (6.l.-3), the residues , ~~ are

r
1 

= x .b. i = 1 , 2, 3 (6.l. -14)

~



Since and b 1 enter as a product , we may just set b~ to unity to get

A
1 

= r. (6.L-15)

Thus , finally, we have

= exp (-2~rf~T)

l I ~I~
— 

2irf j

1 1

K(p. - z)
r. = 1 : p. = -2-rtf.
1 3

(~~ ~~) 1 1

i=l 1 3
i,j

f f f
K = (2n)2 ~ : Unity Gain

z

K = 
2_ff : Unity Variance (6.l.-l6)• 

~
J 3  

3 (1

i=l .j =l 1 3 1 3

Equations (6.l.-4) and (61.-l6) define the operation of the discrete-time

fi l ter, LPF.
It is also desired to compute the one-sided equivalent noise bandwidth ,

BN) for the filter LPF. This is done from the formulation
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‘C,

B = v{Residues of G(s)G(—s) in the) (6 1 17
N 2G2(o) 

L. Left Half S-plane .-

After much arithmetic manipulation it can be shown that BN is given by

B = 
f
1
f
2
f
3 

(f~ - f
2)(f~ - f~ )(f

2f3) + (f~ - f
2)(f~ - f~)(f1f3)

N 2 
~

2 (f2 - f2)(f2 - f2)(f2 - f2)

+ (f~ 
- - f~ )(f

1
f
2) 

1
J

Subroutine LPF simply implements equation (6J.-l) using values for
{y, c~, A )  which are computed in subroutine INPUT. The arithmatic in LPF is
done in vector-matrix form using a special package of vector-matrix sub-
routines written for this simulation. The subroutine LPF is actually structured
to do the indicated filtering twice , once on an in-phase input and once again
on a quadrature input. Thus , LPF processes a two-vector and produces a two-vector.

~ 

—--- - • - - _ -  • - - ---— - -—- — --- -~_ _ _



_ _

5-
0
4)
U
a)
>

4) U, ~~
‘V 4) C’)
4-’ C
U, a)

C E
CD 0 ~~0. V

5- 5.-
a) 0 0 a 5-
.0 5- U) U U) 5.- 0
E — 0 4-’ 4 ) 0 4 - ’

4-’ C — C 4-.) C.)
C 4— U U ‘ V U  U a)

LU) 0 U C C C a) >
C/) ~~ > 0 0 0 >

a) - 0 . 0 ) 0.  4)
.— C a) 4-’ E CC ~ a) =
0. a) C.) = 0 -.- 0 4-’ 0.
E E 0. 0 V C.) (0 4-)

~ C 4-)
(I) CD I— .—. ?-I ~ .-<I U) 0 i

CD
C’) U) L~) U) C’)

~C .C ~C4) 4-.) 4.) 4-.) 4-.) 4-)
0) 0) 0) 0) 0) 0)
C C C C C C
a) a) U a) a) a)

> 4 > 4 >4 > 4 > 4 > 4
(0 ‘V (0 (0 (0 (0
5- 5- 5- 5- 5— 5..
5- 5- 5- 5- 5- 5-.
(0 ‘V (0 (0 (0 (0

LU)
ci- ~~ E ~~ E

~C- •P~ C- -— -r
I- V V V V V V

‘0- ‘0 ‘0- — C- C-
-K -K 4C
5- 5- 5- a a a a a a
a) a) U ‘0 ‘0- ‘0 ‘0 ‘0
0) 0) 0) -K -K -K -K -K -K
Cl) Cl) a) C r r- — C-
4-’ 4-’ -4-’ (0 ‘0 (0 (0 (0 (0
C C C U a) a) a) U a)— — — ~~ U)

a)

~0CC

5-.
‘V

U-.
0-
-J

I-
;-

14:;

a)

LU
x

(/) C’) -. — — I-
~~ (0 0- C-) )< >-

_ _ _ _ _



- - —~~~ ---.--------- - — - — — - --- 
~~~~~~~~~~~~~~~ 

—_

6.1.8. Subroutine RHOFILT

This subroutine generates the low-pass multiplicative noise two—vector ,
p(k), of equation (3.5.-lU). At the present time , p(k) is generated for the
purely diffuse reflection case, without specular component. Also , the R.F.
spectrum resulting from p (k) is taken as even symmetric with respect to the
carrier frequency • Thus , the I and Q components of p (k) are uncorrelated .
RHOFLT sim ply calls MARSA twice to obtain two i ndependent , wh i te , Gaussian ,

zero—mean , unit—variance noise samples. Then LPF is called to filter the noise
samples . At each iteration the state-vector, XKRHO is stored so as to keep the
fi l ter running from sample to sample. The produced unit—va riance output vector
RHO is multi plied by gain constant GRHO to set the final desired multiplicative

noise variance.
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6.1.9. Subroutine HFILTR

This subroutine provides delay-spreading fi l tering for the diffentially-
delayed , reflected signal . This filter corresponds to the h(k) of equation
(3.5.-b ). The inputs to HFILTR and the I and Q components , FR and FR , created
by MODUL. HFILTR cal’s LPF t~ fi l ter these inputs to create an output two-
vector FHGH. The HFILTR may be turned on or off according to the option NOH
equals 0 or 1. For NOH = 0, the filter is employed. For NOH = 1, the in put
is hard-wired directly through to the output.
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6.1.- b .  Subroutine GEM

This subroutine combines the output of HFILTR and RHOFLT to produce
the doubly-spread reflected signal. From the two-vector , FHGH , is produced
the rotation matrix , H

~
Q, of equation (3.5.- b )  which is called SOOK. The

multiplicative noise vector , RHO , is then multiplied by SOOK to produce
the doubly-spread I-Q vector , XSR correspon ding to ~~(k; m ) of equation

(3.5.-b ). The mult iplication is done by calling MATVEC which is a special

routine for doing matrix times vector multiplication. 
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6.1 . — l i .  Subroutine INT2

This subroutine produces the stochastic jamming signal and is one-half
of what will even tually be the total generator for deterministic or stochastic

jamming, called INT . This subroutine , INT2 calls MARSA tw i ce to obta i n two
independent, white , zero—mean , un it-variance , Gaussian noise sam p les . Then
LPF i s called to f i lter these sam p les to produce ~~(k) of equation (3.5. -22)
as YJ. Next , the rotat i on ma tri x , H.(k), of (3.5.-l8) is formed as HJ. This
is the rotation due to a possible frequency offset of the jamming signal from
the desi red signal. Next , H~(k) is multiplied by ~~(k) to produce the output

I—Q vector, XJ , which corresponds to y~(k) in (3.5.-l7). The output XJ is

given the correct var i ance by mult ip ly ing by the ga i n cons tant, GJ.

~~~~~~~~

- 
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6.l. -l2 . Subroutine NOISE

This subroutine forms the I-Q two-vector which is the zero-mean , whi te
Gaussian additive channel noise. The output is XN , which corresponds to ~(k)
of (3.5.011). This routine simply calls MARSA twice and then muli plies the
result by the variance—setting gain constant , GM . The only variable which is
passed is XN , the output I-Q vector which i s Real *4 , a one-dimensional array

of length 2.

6.l.— l 3 . Note on setting the Gain Constants

In generating the stochastic colored multiplicative noise for multi path ,
colored additive noise for jamming , and white additive noise for the receiver ,

three gain functions are used to set the variances of the stochastic process
generators . It is convenient to set these variances according to the various

si gnal to interference ratios which exist at the R.F.

From C hapter Three , the various continuous-t ime signals and interferences

may be written as

st(t) 
= At(t) cos[c~c

t + 4t(t)] : Direct-path signal

5r~
t) = p

1
(t) A

~~
(t)  cosI

~c
t + 

~~
(t)]  - Pq

(t ) At(t)sin[w ct 
+ 

~t (t ) 1;
Reflected S ignal

s~(t) = 
~~~

(t) cosr (w
~ 

+ &~ )t] — Djq (t) sin[(w
~ 

+

Jammin g Process

n(t) = n 1 (t) cos u ct 
— nq (t ) s i n W c t ; White Noise (6.l. -l9)

For constant-envelope signals (PSK, FSK , DPSK)

At(t) 
= 1 (6J. -2O )
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and the direct—path signal power is

S = E{s~(t)} = 1/2 (6.l. -2l )

For the completely diffuse reflect ion , w ithout modulation (
~~

(t) = 0),

the reflected-path autocorrelation function is

Rrr(T) 
= R

~j (-r ) cos Lict 
+ R

jq
(T) sin WcT

R1~
(T) = E{p.(t + -t ) p

~~
( t) }  : even function

R iq (T) = E{ P
~

(t + T)P
q
(t) : odd function (6.1.-22) -

under the condition that p
1
(t) cos W

c
t - 

~q~(t)sin Wct is a weakly stationary
process. The reflected signa l power is then

M = Rrr(O) = R
~1 (O) = E{p~~(t)} 

= E{p~(t)} = 
(6.l. -23)

Likewise , the jamming power and white noise power are

J = E{~~~~(t)} = E~ P~jq (t) =

N = E{n~ (t)) = E~n~(t)} = (6.l.-24)

Thus , signal to noise power ratios may be defined as

= ~~~~ -~~- = SNR ; Direct-path to White Noise

= = SJR ; Direct-path to Jamming

= 
~~

-.
~

—
~~

- ; Direct-path to Reflected Path (6. l . -25 )
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Actually , the simulation uses the “Muitipath Ratio ,”

MPR = = 2o~ (6.L-26 )

Now , because of the manner in which the various stochastic processes are
generated , the gain constants are defined by

G2 =n n

=

G 2 
= ~2 (6.l.-26)

Thus
,SNRDB~

G = 
1 

= . 10 20 = GNn /2SNR v2~ ,SJRDB
‘ 20

G. = 1 
= . 10 = GJ

‘~ v’~SJR v2
MPRDB

G — • 10 = GRHO (6.L-27)

In the case of the white additive noise , it is more convenient for graph-
plotting purposes to set GN according to the ratio of symbol energy divided
by noise spectral density , ELM0. The E/NQ ratio is computed only for that

energy actually used for signalling, and does not include any energy in
residual unmodulated carrier components. Thus , in genera l , E/M 0 and GM
must be computed separately for each modulation case. From (4.4. -23) and

(4.3.-29) result

( ENODB
i
-.— ‘ 20

GM . sin(&~) I  
. 10 ; PSK

(continued )
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- - (ENODB)[K 20
GN = /~ 

sin 2 (4*—(k - 1/ 2)) . 10 ; FSK (6.l.—28)
‘
~ k=l

6.1.14. Subroutine DATA

This subroutine simpl y adds the I-Q vector outputs of MODUL , GEN , INT2
and NOISE to produce the received data vector Z. Z is real*4 , a one-
dimensional array of length 2.

6.1.15. Subroutine REFGEN

This subroutine generates the signal references for the linear filter.
In particular , it generates the references for the transmitted and reflected
components XST, FR, and GR , respectively. Each reference signal FTR , GTR ,
FRR , and GRR , is generated twice , once for a transmitted symbol , m = 0, and

once for a transmitted symbol, m = 1. Each time REFGEN is called the desired
symbol , m , is specified. The time reference, TKMOD , is time since beginning
of the current symbol . This is the same time reference used in MODUL. The
direct-path signal references, FTR and GTR , have a gain constant AEST , repre-
sentive identification of direct-path signal strength.
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6.1.-l6. Subroutine KA LFLT.

This is the subroutine which actually performs the linear fi l tering and
tracking of the colored channel interferences in the presence of white noise.
The diagram of Figure 4.2.-i shows that the filter may be separated into
two parallel paths coupled only through the Innovations process , one path
for jammer—tracking and one path for multipath -track ing. However , as noted
in Section 4.2., the Kabman gain equations are coupled and cannot be split
into two parallel computations. Thus , the present version of KALFLT employs
a state-vector which is a partitioned vector made up of the jamming and
multipath state vectors. Thus , for the case where the I and Q component
state vectors for jamming and multipath were all of dimension 3, the parti-
tioned state vector for KALFLT is of dimension 12. The error variance

matrices in the gain computation are 12 x 12.

The fi rst steps in KALFLT are to set up the structure of the fi lter in
terms of i dentified values for the {r, ~~, A }  matrices for both the jamming
and multipath processes. These correspond to the {rr~ ~r’ 

Ar} and {r~~ 4~ ,

A~} of equat *on (4.3.-2). Al so, the signal reference matrices , Ht() and H~O~
are set up using the I-Q components FTR , GRT , ERR , GRR provided by REFGEN
as well as the identified estimates of the parameters , GM , GRHO , GJ , and
others.

After the setting up of the Kalman filter structure , the filter equations ,
themselves , are implemented. These are the partitioned version of (4.2.-2)
plus the partitioned gain equations . These equations are presently for

— the case of colored multiplicative and additive noises plus white noise.
The equations for delay spreading have not been implemented.

The reason that the setting up of the Kalman fi l ter structure has been
included in KALFIT , rather than in INPUT, is to cover the possibilit y that

the multipath or jamming processes are (slowly) non—stationary . In that

case the Identification algorithms would be continuously adjusting the
Kalman filter structure . Under an assumption of stationarity or for a

fixed fi l ter configuration (sub-optimal), the setting up of the filter
structure could be done in INPUT , thus speeding up the execution of KALFLT.
An even greater increase in execution speed can be obtained by using the
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steady-state (Wiener) version of the Kalman filter. Then the gain equations

(12 x 12) themselves may be moved to INPUT , leaving only the fi l ter equations

in KALFLT. This modification is presently being pursued .

It can be seen from the KA LFLT listing (Section 6.2 ) that both the

gain and fi l ter equations are executed in vector-matrix arithmetic. The

applicable subroutines are described below.
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6.L-17. Subroutine DC~DM

This is the subroutine which forms the IDEI decision statis tics , S~ ,

of equation (4 .l .-l2) using the arguments of the Gaussian density of equation

(4.l. -l3). The inputs are the Innovations process , its inverse covariance
matrix , and the determinant of its covariance matrix. Instead of comparing
the products of (4.l.-12) at the Kth (NSPB) sample time , the natura l loga-
rithms of the products are compared. Since the log~() function is monotonic ,

non-decreasing , and positive , this also gives a sufficient statistic. Since
the des i ty is Gaussian , the cumulative produc t is computed as a cumulative

sum of the logarithms .

4
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6 .l. -l8. Subroutine STDC IM

This is the subroutine which computes the decision statistics for the

standard P5K coherent detector and FSK incoherent detector as in equations

(4.3.-30) and (4.3.-41), respectively. The PSK test of (4.3.-30) is equiva-

lent to simply sunn-riing the Q data samples , Z(2), over the symbol period and

then testing for positiveness or negativeness. This equivalent test is

actually done. Thus , the PSK statistic is simply the sum of the Z(2) data

samples. For FSK , the exact operation of (4 3. -41 ) is implemented.
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6.1 .19. Subroutine CERKA L

Th i s su brouti ne is called by the ma i n program af ter the last data sam p le -

has been processed in each symbol interval. The decision statistics , SO ,

and Sb , produced by DC1DM are compared to make the symbol decision. The

true symbol is BB. The detected symbol is BBHAT . Based on the symbol

decision , the f i n a l  state estimates , XEST , in  both Kalman f i lters are set
equal to the est imate in the “correct ” filter. Also , the estimation error -
variance matrices are symmetrized and set equal . This latter step is to

comba t the cumulative effects of round-off error in the 12 x 12 matrix

compu tations. If BB does not equal BBF$AT , an error coun ter i s i ncremen ted .
A cumulat ive raw error rate , ERRATE , i s also compute d. Finall y, su brout i ne
ESTERR is called to compute smoothed mean error rate and error rate variance

from the raw error rate . -
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6.L20. Subroutine CERSID

This is the counterpart of CERKA L which is used to compute error rates

and variances for the stan dard detector . The operation and variable list is

completely analagous to that for CERKAL.

6.1.21. Subroutine ESTERR

This subroutine smooths the raw ERRATE to generate a mean error rate

for either CERKA L or CERSTD . Also , ESTERR generates the smoothed error rate

variance and data signal to noise ratio , DATSNR . This routine also tests

the s imula ti on resul ts to terminate the simula tion run. Three tests mus t
be me t s imul taneously  to terminate . First, the computed DATSNR must be
greater than a set-in value , DSRLMT . Secon d , the number of symbols processe d

mus t be greater than a set-in limit , NIB . Thir d , the smoothed error-rate
mean must satisfy a Cauchy convergence criterion . This criteri on is that

the absolu te di fference of the two mos t recent ERMEAN values , d ivi ded by
the mos t recent , mus t be less than a set-in value , CAVAL . When the errors
occur in bursts , it is generally this Cauchy criterion which controls the
simu lation termination , The ESTERR variables are described in Table 6.l. -l6 ,

for CERKAL.

6.1.22. Subroutine MARSA

This subroutine generates independent Gaussian numbers having zero mean
and unit variance. It is due to Marsaglia [lO5~ and is faster than the
Box-Muller Cl06] method. Input to the subroutine are pairs of independent

numbers which are uniformly distributed on the interval,  [-1 , 1]. These
- t numbers are obtained from a version of the IBM-360 library routine , RANC ,

wh ich has been rewritten for the PDP-bb/40. For remote simulation on the
CDC-6600 , its library routine , RANF , is used in lieu of RANC . The CDC
routine requires two other subroutines , RANSET and RANGET , which supply

seed numbers to RANF . The subroutine MARSA is s imple and self-explanatory .
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6.1.23. The Matrix-Vector Subroutines

Rather than rely on unknown matrix-vector algebra library subroutines
on host machines , the few routines needed were written specifically for this
simulation . These routines are simple and self-explanatory from their listings
in Section 6.2. They are

MATMUL : Matrix multiplication

MATVEC : Matrix times vector

VECAS : Vector add ition (or subtraction )

MATAS : Matrix addition (or subtraction )

MATINV : Matrix inverse
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6.3 , INITIAL SIMULATION RESULTS

6.3.1. Overview

The simulation program , documen ted above , has been run suff ic iently to
demonstrate its perfor s’-ance , The program was debugged locally on the POP—ll/40.

Production runs wp r~ made remotely on the CDC-6600 at Aeronautical Systems

Division , Wright -Patterson AFB , Ohio.

The program is run in an overlay configuration on the PDP-ll/40 , i n or der
to not exceed the avai l ,~ble core memory of 16 K-words (Octal , 8-Bit). In

the overla y mode , the program is considerably slowed and processes at a ra te
of one data sample every seven seconds. At ten samples per symbol , the local
rate is 51 symbols per hour of run time . To simulate error rates of lO~~
requires running at least 3000 symbols. Locally, thi s woul d take 59 hours
per run. Clearl y this i s no t feas ib le . To spee d up the local simula ti on
w ill requi re modi f i ca ti ons to the prog ram li ke those outli ned in Sec ti on
6.1.-li , plus the acquisition of more real memory (core) for the Minicomputer.

When run remotely on the CDC-6600, the program is not overlayed. It

occu p ies 1 7 ,920 wor ds , octal , in core . It processes samples at a rate of

4.65 per second . Thus , to run a bO ’
~ error rate simula ti on w i th 10 sam p les

per symbol requires 6,500 secon ds or 1.8 hours CPU time at a cos t of $111

per CPU hour. To date , the Principal Investigator has not been successful

in persuading the CDC-6600 operators to allow a run in excess of 4000 seconds .

These 4000 second runs are allowed only on Tuesday , Thursday , or Saturday
mornings between midnight and 4 a.m. Thus , presently, remote simulat ions

of error rates less than lO~~ appears impractical on the ASD machine.

It is estimated that by procuring additional core memory for the PDP-
11/40 , the local execut ion time of the simulat ion rou tine can be improved
by a factor of 5. Then simulation runs at lO~~ error rate coul d be accom-
pbished locally in 12 hours or only 7 times slower than on the CDC-6600.
Given the continuous access to the Minicomputer , this latter method of
simulation is clearly the most practical.
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6.3.2. Detailed Results

Reporte d here i n are the f i rs t s imula ti on resul ts for the opti mum bi na ry
detection algori thms for Frequency-Shift-Keying (FSK) and for Phase-Shift-

Keying (PSK). By optimum is meant in the decision—di rected , Integrated

Detect i on , Estimation , and Identification (IDEI) sense.

For the presentl y repor ted cases , the symbol ra te was c hosen to be
2500 per secon d , w hi ch i s the same ra te as for the prev iousl y repor ted
simulation for a quaternary hybrid modulation in multipath [29]-. The PSK

phase deviation was chosen at 0.785 radians , for a reason to be discussed

below. The equivalent phase deviation for FSK was also taken at 0.785

radi ans , so as to be comparable with the PSK case. Thus , the frequency
shifts , with respect to the carrier frequency , were plus and minus 1962.5

Hz., for m = 0 and 1, respectively.
The p resen t results were obtaine d for two par ti cular channel con diti ons .

Either colored multiplicative noise with white additive noise were present

or colored plus whi te additive noises were p resen t but s imultaneous colore d

additive and multi plica tive noises were not used . For the multipath case ,

• zero differential group delay was assumed between the direct and reflected

paths . This is equivalent to an assumption of non-frequency-selective fading .

The I/Q bow-pass components of the multiplicative noise were obtained by

passing independent scalar wh i te noise processes through two separate

un-coupled low- pass fi l ters , each havin g the same transfer function . This
-

• 
is equivalent to an assumption that the Doppler spectrum of the unmodu lated
carrier displays even symmetry about the carrier frequency . The discre te-

time fi l ter algor ithms were obtained by driving a continuous-time filter

wi th a sampler and Zero-Order-Hold. The continuous-time filtcr has three

adjustable real pole frequencies and one adjustable real zero frequency . For

the present results , the pole frequencies were selected as 250 Hz., 625 Hz.,
and 2500 Hz-. The zero frequency was sebcted as 10 ,000 Hz., giving the

fi l ter an equivalent noise bandwidth (one-sided) of 275.7 Hz. For the
present mubtipath case , no delay-spread~ng f i lteri ng was assume d. 4

For the colored additive noise case , the same filter structur? was

used as for mubt i path , driven by two independent scalar white noise processes .

Thus the colored additive spectrum was assumed to be even-syimietric about the

carrier frequency with an equivalent width at radio frequencies of 551.4 Hz.
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The additive white noise consisted of two scalar white noise processes of

equal variance wh i ch were i ndependen t of each other and all the other wh i te
noise driving functions.

In order to cal ibrate the simulation , runs we re fi rs t made us i ng PSK
modulat ion and white no i se onl y. Resul ts of four runs were p lo tted i n Fi gure
6.3 —l upon the theoretical error rate curve , given by

P. (e) = ½ [l - erf (
~ 

E(i -  ~ (6.3.-b )

where -
~~

--- is given separately for PSK and for FSK by equations (4.3.-23) an d

(4.3.—29), res pec ti vel y. The term , p, is correla ti on coeff i cien t between
the si gnal waveforms for m = 0 and m = 1. For PSK , p = -l and for FSK ,
p 0. For the cali b ration runs , usin g PSK , the phase deviat i on was chosen to
be n/2 radians. Not only did the simulated error rates fall on the theoret-

ical PSK curve , but the standard PSK detector and the IDEX detector made

p rec i sely the same errors , symbol for symbol . Thus , it appears that for wh i te
noise only, the IDEI algor it hms operate p rec i sel y as the sim p ler standard
al gorithms .

In attempting to obtain simulation results for PSK in multiplicative

noise , using 90° phase deviation , it was observed that the error rate was 0.5
for all values of E/N0. In retros pect , this behavior may be predicted ana-

lytically. To remedy this situation , the signal phase deviation was reduced

from ir/2 radians in order to produce an unmodulated carr ier componen t in the
transmi tted signal. Such a component serves as a channel probe and enables

the optimum detector to track the multiplicative noise , Figure 6.3.-2

shows the minimization of the error rate as a function ‘f phase deviation .

Simulation runs were made for both PSK and FSK with either multipli-

cative noise or additive colored noise interference. For these runs , the
IDEI detection algor ithms were used without us 4ng the Identification Predictor !

Filter shown in Figure 4.l. -3. Rather , the Kalman fi l ter was implemented
with the exact components , r(), ‘~Q, ~

() ,  
~(), H~,(), HO ,  and used to

generate the data as per Figure 3.6.-2. Thus , the IDEI detector was furnished

w ith “perfect identification” of the s ta t is t ics  of the channel . For thrse

I
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• Figure 6.3. -i. Simulated Error Rate Check Case-White Noise Only
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runs , H o  was set to the 2 x 2 identity matrix. Thus, the data was generated
without any phase perturbations in the I-Q demodulator. Perfect symbol
synchronization and no quantization of the data waveforms were assumed. These
runs served to determine the greatest l ower bound for the error rate of the
IDEI detector, without possible degradation due to imperfect i dentification
estimators .

Results for PSK with multiplicative noise are shown in Figure 6.3.-3.
The multi plicative noise level is set as though the diffuse reflected path
were equal in strength to the direct path . Additive colored noise is set 53
dB below the direct path signal level. The standard detector error rate
saturates at an irreducible level approximating lO~~. The IDEI detector error
rate decreases exponentially with increasing E/N0. For the multiplicative
noise runs it was observed that the errors occur in bursts and the smoothed
error rate converges slowly. In these runs it was generally the Cauchy
convergence criterion which terminated the runs.

Figure 6.3.-4 shows results for PSK wi th colored additive noise. The
multipath is set 47 d~ below the direct path signal . The colored noise is
set equal to the direct path signal. The standard detector operates at an
i rreducible error rate l evel , similar to the multipath results . The IDEI
detector error rate decreases exponentially wi th increasing E/N0, however
the penalty in E/N0 is not as large as in the multipath case. The slope of
the optimum error rate curve appears to approach that of the white noise
only case.

Figure 6.3.-5 shows the results for FSK wi th multi path of the same
strength as for the PSK case. It is apparent that FSK is a more robust
modulation than PSK in multiplicative moise , since both the standard detector

and optimum detector perform markedly better than in the PSI( case. For error

rates greater than ~~~ the standard detector performs almost as well as
the optimum detector. Divergence in performance between the two detectors
can be seen beginning for error rate3 less than ~~~

Figure 6.3.-6 shows the results for ISK with additive colored noise of
the same strength as for the PSK case. Here again the standard detector

performs considerably better than in the PSK case. However, the optimum
detector comparison is much more impressive . For PSK at lO~~ error rate,

the additive colored noise was equivalent to a 12 dB increase in the white
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noise level . For FSK at lO~~ erro r rate , the same colored noise is equivalent
to only a 1 dB incre3se in white noise level . Part of the explanation for
the better performance of FSK over PSK in this simulation is that the 550
Hertz wide additive interference sits between the two FSK tones . If the
colored noise were wider the FSK performance would decrease. For PSK , the
interference sits in the maximum portion of the PSK signal spectrum . It
should not be necessarily expected that FSK will outperform PSK when the
bandwidth of the additive colored noise (jaming ) is commensurate with the
signal bandwidth.
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CONCLUSION

This report documents work done on Integrated Detection , Estimation , and
Identification under the subject contract , through the final quarter of
Calendar Year 1976. All of the specific tasks in the statement of work were
accomplished. The work concerning Identification (See Section V) led to
proposal and acceptance of a follow-on Phase II to the present contract.

It was found that the straight-forward application of recursive , sampled-
data detection theory , using the Minimum Probability of Error criterion , led
to signal processors which attempt to track additive jamming signals or
multiplicative disturbances. The latter is a good model for signal (I—Q
vector) rotations induced by either diffuse mult ipath or phase-detector refer-
ence jitter. The abstract , general processing algorithms appear complicated ,
mainly because of the discrete-time , state-variable mathematics employed .
However , these general algorithms can be simplified and it is to such simpli-
fication that further effort must be applied .

Beyond simplifying the present algorithms , however, effort must now be
devoted to applying the tracking idea to finding other algorithms which are
perhaps slightly sub-optimal but more easily realizable in hardware . The
present algorithms seem to imply that the jammer waveform must be tracked
even if the jammer spectrum exceeds that of the desired signal . An imediate
question is whether or not such wide-band tracking is really necessary .
It would seem that, at least for finite-bandwidth signal designs such tracking
might not be necessary.

The entire question of signal waveform design now seems to be reopened ,
due to the different performances of PSK and FSK in both jamming and multi -
path. Beyond waveform design lies the questi on of the appl i cability of
coding to tracking-type detection . Non-bandwidth expanding codes seem
particularly attractive , since the tracking technique does not require
spectrum spreading to produce detection gain.

The present contract has set the stage for a detailed investigation of

the IDEI technique . A flexible simulation tool now exists which can be used

to probe those signalling cases for which closed form mathematical results

are difficult or practicall y impossible to obtain. In the case of jamming
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it appears (due to the efforts of the USAF Project Engineer , Mr. Mayhan)
that closed-form error-rate results may be obtained. In this case , the
simulation and closed-form result~ will be complementary . Investigation of
new waveforms, closed-form results , identification , and new algorithms will
be carried on in Phase II.

Finally, in order to reduce the IDEI algorithms to practice , the hard-
ware design problem must be attacked . This problem is closely coupled with
and dependent on the jamer-tracking problem . The type of hardware required
will be determined only after the question of wide-band tracking is resolved.
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APPEN~~X A

MULTIPATH

A.l. A QUALITATIVE DESCRIPTION OF MULTIPATH

Before detai ling the past work in the multipath area , it is desirable to
describe the aeronautical multipath mechanism ~nd environment. Figures A.l. -l
and A. l .-2 show the two distinct geometries involved .

In the figures , two propagation paths are shown between an aircraft and a
second terminal. One is the line-of-sight , di rect path. The other is a path ,
or set of paths , reflecting from the Earth’ s surface. When the surface is
smooth , the waves traveling via the reflection make equal angles of incidence
and reflection with the Earth’ s surface. The point upon the surface at which
the angles are equal is called the specular reflection point , with the reflec-
tion angle , q~ .

A specularly reflected signal arrives at the aircraft (or at the other
terminal), attenuated in amplitude and delayed in time , but otherwise as a
faithful replica of the direct path signal . The vertically polarized component
may also be reversed in phase , depending on the angle of reflection . The
attenuation factor is a deterministic function involving the conductivity and
dielectric constant of the surface . The time delay is calculable from the
geometry. The amplitudes of the reflected and direct path signals may also be
affected by the differential antenna gains in the directions of the two paths.

Note that as the angular separation between the two paths becomes small
at a particular terminal , it becomes increasingly difficult to suppress the
reflected path signal by shaping of that terminal ’s antenna gain pattern . Thus ,
for the air-air or air-satellite cases , where the two terminals are near each
other ’s horizon , antenna discrimination becomes practically impossible. In the
air—satellite case, the angular separation between paths is small at the satel-
lite . If the satellite is communicating with many distinct aircraft , it be-
comes practically impossible to use antenna discrimination at the satellite .
In the air-ground case, the angular separation between paths is small at the
aircraft , and a similar conclusion is reached. In this case only directivity
in the ground antenna can help.
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Figure A.l. -l: Geometry for Air to Ground Multipath .
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Figure A. 1 .-2: Geometry for Air to Satellite or Air to Air Multipath .
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As the reflecting surface becomes rough , and depending on the scale of
roughness with respect to wavelength , slopes may occur on the surface at other
than the specular point which are of proper size and orientation to reflect
waves between the two terminals. In this case , many reflected si gnals are re-
ceived with different amplitudes , phases , and time delays . As the terminals
move with respect to the Earth or to each other , the locations of the properly
oriented slopes change and the amplitudes , phases and time delays of the re-
flected waves change with time . The terminal antennas sum these various
“random ” reflections. This type of reflection is called diffuse. However , for
the case of slight roughness , all the reflections still appear to originate in
the immediate vicinity of the specular point. However , as roughness increases ,
reflections occur at points farther removed from the specular point.

The qualitative effects of the two different types of reflection are, as
expected , different. For specular reflection of a modulated signal whose
bandwidth is not too great , the differential time delay between direct and
reflected paths may not be significant in terms of the modulation waveform .
That is , a bit transmitted through the reflected path may arrive at the re-
ceiver at essentially the same time as a bit propagated along the direct path .
This yields what is called a non—frequency selective multipath channel . How-
ever , the differential path delay may be appreciable in terms of the phase
difference between the two received carriers . As the geometry of the situation
changes , the phases of the two carriers may become reversed. Under this con-
dition the reflected path signal s’ibtracts directly from the direct path si gnal ,
giving what is termed a specular fade .

On the other hand , a diffusely reflected signal may appear noiselike , even
in the non-frequency selective case , and cannot be properly said to either add
or subtract with the direct-path signal . If the transmitted signal bandwidth
is not too great , then the differential time delay between all the diffusely
reflecting slopes may not be significant in terms of the modulation waveform.
Such a reflected signal then appears to be composed of the product of the orig-
inal signal times a random low-pass noise process. This is called a Doppler-
spread signal. However , if a bit refl ected from one slope is received at
an appreciably different time than a bit reflected at another slope (say 0.1
bit-time or greater), then the reflected signal is termed Del ay-spread. The
most general case is that of a Doubly-spread , frequency selective multipath
channel .
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For non-selective specular reflection , the only noise present is the addi-
tive receiver noise. The multipath effect is simply to reduce signal amplitude .
Thus , this type of multipath may be combatted by increasing transmitted power
to give a suitable margin. If the specular fades occur rapidly, the net effect
is akin to a l ow—frequency ampl i tude modulation , which may or may not cause
interference with signal modulation. With selective specular reflection , the
reflected signal is out of synchronization with the direct-path signal and
definitely acts as interference.

For non-selective , diffuse reflection , when the time variation of the re-
flected channel is commensurate wi th the time variation of the modulation , the
deleterious effects on the receiver are directly proportional to the ratio of
power received through the reflected path to that through the direct path.
Since this ratio does not change with transmi tted power level , increasing
transmitted power does not increase performance. The qualitative effects are
that the detection bit error rate curve , versus additive signal to noise ratio ,
saturates at some i rreducible rate. This minimum bit error rate increases as
reflected power increases .

A.2. PREVIOUS RESEARCH IN MULTIPATH COMMUNICATION .

With the availability of statistical communication theory , as made popular
by Davenport and Root [61], investigators began trying to model the effects of
multipath on various signals and detection schemes. In 1956 , Turin [17]
investigated the Maximum A Posteriori Probability continuous detection of
digita l signals in multipath. However, his postulated multipath channel
model was very mechanistic. It consisted simply of a finite set of possible
gain and delay factors which were assumed non-varying during any bit detection
interval.

In 1957, Masonson [62] examined on and off keying and frequency-shift-
keying under the assumption that the channel faded according to Rayleigh
statistics. His channel model was also fixed duri ng detection intervals. In

1958, Price and Green [20] reported on “A Communication Technique for Multi-
path Channels. ” This was the so-called RAKE system, which was actually built

in a laboratory model. This system utiliz .”d wide-band waveforms to represent
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the binary ones and zeros and employed Minimum Probability of Error detection .

A great portion of the hardware was devoted to measurin g the multipath channel

parameters. The entire concept was based on a Turin -like model of a finite
number of discrete multipaths , which did not change during the bit detection
interval.

During the years from 1958 to 1966, many analyses on multipath effects
were made [21-23, 63-68]. Various types of divers i ty were introduced and
studied. Self adaptive systems were postulated . Coherent and non-coherent
detections were compared. Bounds were placed on error probabilities. All of
these investigations employed artificial channel models , not related to
Earth-surface reflection. The most used models allowed no time-variation of
the rnultipath disturbance during the bit detection interval. All assumed
either Rayleigh (diffuse) or Rician (diffuse reflection plus direct-path)
fading statistics.

In 1963, the first widely promulgated textbook treating electromagnetic
wave reflection from rough Earth surfaces was published by Beckmann and
Spizzichino [69]. This book made available to comunication engineers a
self-contained treatment of the theory and applications of rough surface
propagation . Unfortunately, the reflection model was for an unmodulated
carrier , non-moving terminals , and no relative movement of the reflecting sur-
face. Also , the focus was on reflected power levels , rather than on waveforms .
However, this was the first widely available work to be applied in the multi-
path communication area .

Applications of the Beckmann and Spizzichino models to multipath communi-
cation began to be seen after 1966. Further works using the older discrete
path and Rician models continued to be seen also [70-79]. One of the inter-
esting results in Beckmann and Spizzichino , which has apparently escaped wide
notice among comunication engineers , was that a reflected radio wave can never
take on a Rician distribution [80]. Verify ing experimental measu--enients were
made [81]. It is possible , of course , with a totally diffuse r~ lection , for
the direct path component to give the total received signa l a Rician distri-
bution . However , in the case of a slight to medium rough reflection , where

there is a specular component , the total signal should not be expected to be

Ri clan .
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In 1968, Durrani and Staras [72] extended the Beckmann and Spizzich ino
model to exami ne, in effect, the time variation of a received unmodulated
carrier at a termi nal moving over a rough surface. This was done in the
context of a signal from a satellite , as seen by a descending spacecraft
over a planetary surface. However , this is essentially the same geometry
which occurs in the air-satellite or air-air cases. It is interesting that
prior to Durrani and Staras , a Russian paper had appeared in 1965, in the same
area [82].

A.3. REFLECTION MODELING AND VALIDATION

A rigorous mathematical model for rough surface reflection of an arbitrarily
modulated radio wave still does not exist. That is , no solution to this problem ,
derived from the first principles of e.m. wave propagation has ever been pub-
lished. Heuristic models have been published [1, 6, 9] which appear intuitively
to encompass the solution to be expected from rough surface reflection. How-
eve r, these Ad Hoc models , wh i ch were ori ginally postulated for transmission
through dispersive media such as the ionosphere (or water for sonic waves),
are, by their probabilistic natu re, incomplete , and require the insertion of
paramete”s to relate them explicitly to the rough surface problem. Al so, the
Ad Hoc models have not been completely validated by flight experiment.

It appears that the necessary parameters for a heuristic model can be
i nferred from the properties of rigorous models for unmodulated reflection ,

V 
at least in the Doppler-spread , but non—Dela y-spread case. Work to obtain
rigorous unmodulated reflection models has been done by many investigators ,
including Beckmann and Spizzichino. It started in the early 1950’s, largely
under the impetus of developments in the radar field. See Barrick and Peake
[83] for an excellent review .

There have been two distinct approaches to modeling rough surfaces . In
the first , called the geometrical model , the surface is assumed to be corn-

- - posed of deterministic shapes , such as sections of cylinder , which are ran-

domly placed on the surface. In the second , called the statistical model ,
the surface is assumed to be a sample function of a two-dimensional stochastic
process. In the statistical model , surfaces are classified , according to the
ratio of r.m.s. surface height to wavelength as slightly rough , intermediate ,
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or very rough. At the present time , only the slightly rough or very rough
cases admi t to closed form approximate mathematical solution , using the statis-
tical model [83]. Results for the intermediate roughness case are inferred from
extrapolation - between the other two boundary cases . Results have been obtained
for the intermediate case using the geometrical model [84]. However , due to
digital computer storage limi tations , these results were restricted to reflect-
ing surfaces less than 60 wavelengths long.

For the aeronautical cases, the refl ecting surfaces may be thousands of
wavelengths long, since at L-band (1500 MHz) a wavelength is approximately
8 inches. Thus , the statistical treatment of rough surfaces is usually
employed . Thus slightly rough and very rough cases are treated separately
and results are inferred by extrapolation for the intermediate case.

For the slightly rough case, two statistical approaches have been used.
The first , the so-called Perturbation model , was formulated by Rice [85] in
1951 and developed by Peake [86] in 1959, Valenzuela [87] in 1967, and Barrick
and Peake [83] in 1967. The second , called the Ki rchoff model , was formulated
by Davies [88] in 1954, and developed in very readable form by Beckmann and
Spizzichino [69]. The Perturbation model is less restrictive than the Ki rchoff
model . However, both give similar results for small roughness and high
grazing angles . Painter et. a]. [6] have applied the Ki rchoff model to the
problem of simulati ng the direct aircraft to ground station channel .

For the very rough surface, three optical models have appeared in the
literature . These are called Physical Optics [69, 88-91], Ray Optics [92, 93],
and Geometric Optics [94, 95]. The first Physical Optics model s were scalar
(polarization insensitive), using the Ki rchoff approximation . Later works
employed vector notations. The Ray Optics model was physically appealing, but
not as mathematically ri gorous as the Physical Optics model . The Geometric
Optics approach applies the principal of stationary phase to evaluate the
Ki rchoff version of the Helmholtz integral for the complex reflected field.
It provides essentially the same results as the two previous models.

Much of the impetus for deriving more and more exact models for the power
reflected from rough surfaces has stemmed from the use of radar back-scatter
measurements to determine the characteristic of surfaces not readily accessible
to man. Examples of such surfaces are the ocean and other planets. For this
reason, most of the theory cited above in the references has dealt with back-
scattered and forward-scattered (bi-static) power measurements. The problem

196



- V.~~ V.~ V~~V . V V . V~ 

~~~~~ 
-

~
.-u—

~.---V. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V.~~

of character izing the spatial correlation above the surface has not received
nearly so much attention , as mentioned previously [72, 73, 82]. It is inter-

esting that th~ Russians apparently had the earliest documented interest in

this area [96]. Another way of viewing spatial correlation is as Doppler-
spreading of the back-scattered radar signal . Papers in this area are also

rare [9, 97-99].
Experiments are required , both for validating precise or heuristic models ,

and for gatheri ng data on which to postulate heuristic models. Several of the

more recent experiments are described below .
The literature of experiments for measuring rough earth forward-scattering

is sparse. The experiment by Clarke and Hendry [81], in 1963 was performed at
37.5 GHz and , thus , was more of a scaled simulation , with respect to L-band
over-ocean measurement. The Russian experiment [82] in 1964 was performed
using radar back-scatter. The correlation measured was that due to surface

movement, rather than that due to position change above the surface. The ex-

periment was also performed for the l ower grazing angles .
A 230 MHz experiment was performed between a jet aircraft and the LES-3

satellite in 1966 [100]. Both reflected power and Doppler spreading were
recorded for horizontal and vertical polarization. Both diffuse and specular

multipath effects were noted . ~4n experiment to measure specular effects was
performed at L—band and S-band in 1969, using aircraft to fixed ground station
transmission [101]. The reflection was from the sea at the l ower grazing

angles. The recorded data was matched successfully to a computer program
prediction.

An interesting experiment was reported in 1970 [102]. This used data
taken at UHF between aircraft and the LES-5, LES-6, and TACSAT satellites.
The signals were digitally modulated . An attempt was made to fit the data
fades to a two-ray smoothe earth multipath model . However , fading rates
were recorded much in excess of those predicted by the model. Fading from
bit-to-bit was observed. The report stated that the fading model to account
for such fading was not evident. The addition of a diffuse fading mechanism

to the model might have better accounted for the observed data .

Two other recent experiments are of interest here. Both were run at 1-

band (1550 MHz). One was for a channel between the ATS-5 satellite and a

high altitude jet aircraft [1O3J. The other experiment was for a channel

between aircraft and a high-altitude balloon , simulatin g a satellite [104].
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The portions of the experiments which are of interest here are those
measuri ng the diffuse reflection variance and bandwidth for an unmodulated

signal . Unfortunately, the results of the balloon experiment have not been
published , formally, yet. It was learned from a private communication that
much difficulty was being encountered in reducing balloon data . Fortunately,
the interim published data from the ATS-5 experiment appears to be of
excellent quality .

An L-band (1463 MHz) Air-Ground multipath experiment was performed and

reported by Painter , et. al. [63 in 1971 . Results were very similar to those
of Pidgeon [101]. These results have been used to verify Pai nter ’s heuristic
model at low grazing angles.

In summary , the status of the mathematical modeling of reflected signals
is as follows . Much theoretical and experimental work has been done for un-
modulated sine waves. No rigorous model has been produced for modulated
waves. Heuristic models have been postulated and some experimental validation
performed. A validated heuristic model for the general multipath case is
lacking
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APPENDIX B

THE GFE MIN ICOMPUTE R FACIL ITY

B.l . INTRODUCTION

When the original Monte Carlo simulation was developed and used at NASA ,
the Principal Investigator had access to the NASA Langley CDC-6600 through a
research-dedicated remote terminal. The simulation ran on the NASA machine at
approximately $112 per CPU hour. At Texas A&M Univers i ty, a research-dedicated
remote terminal was not available connecting to the TAMU computer facility ,
wh i ch employs an Amdah l 470V/6 machine. Also , usage rates run considerably
high than $100 per CPU hour. Thus , the Principal Investigator requested that
a minicomputer remote terminal be placed at Texas A&M as Government Furnished
Equipment.

The facility was procured for the USAF , through the Texas A&M Research
Foundation. Due to initial funding limitations , the facility was configured
first to be optimum for local use in developing the Monte Carlo routines.
Sufficient hardware was procured or leased to give sufficient Remote Job Entry
(RJE) capability for validating the simulation , using the CDC-6600 facility at
Wright-Patterson AFB . The initial facility cost was less than $50,000. During
the follow-on effort to the present contract, the facility will be up-graded
sufficiently to be optimum for both local use and for RJE.

The Minicomputer Facility is structured around a basic PDP-ll/43 macnine.
as augmented for interactive graphics , manufactured by Digital Equipment Corpo-
ration as the GT-44. Also , the system is augmented for remote job entry (RJE)
communications with large host sites .

The system is used in two modes . Firs t, local program development is
accomplished , generally wi th the aid of graphics. Second , routines requiring
large computer resources, of the CDC-6600 class , are processed remotely, using
the system as an RJE port.

In order to increase the efficiency of local computation , the machine in-

cludes the hardware options , Extended Instruction Set, and Floating Point In-
struction Set. The initial configuration of 16K , 16 bit words of 900 ns. core

memory is being up-graded by the addition of 44K of monolithic memory. This
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will enable the machine to do RJE and local usage simultaneously, or run local
simulation and do local program development simultaneously. A mass storage
capability of two 1.2 M—byte magnetic disks is also integral to the system.
System control is via a DEC-writer with 30 character , 132-column output print
format. A 300-card per minute card reader is also used for program i nput. 

V

The graphics subsystem serves the important functions of editing , pre-
viewing, and plotting of program listing and output data . Graphics functions
are accomplished using the 17-inch refreshed display , which is driven by a
separate graphics system processor. This processor provides for character and
vector generation with variable intensities , blinking modes , and light-pen
sensitivity . For listing display , an 80-column format is provided.

Remote communications are available in two modes with four speed options.
Synchronous communications , at 2000 baud , utilizes a leased 201-A compatible
modem and dial -up telephone lines. Also available is 4800 synchronous communi—
cation , using a leased 208 modem and dial -up telephone lines . Asynchronous
communications , at 300 or 1200 baud , utilize owned Vadic 3405 and GSC-l08
(103-compatible) modems , respectively, and dial -up telephone lines. Present
communications software includes the Amd-200-UT simulator for CDC-6600 machines
and Program TERMINET for the DEC-10 machine at Air Force Avionics Laboratory .

The Minicomputer System presently conta i ns three operating systems. These
are the DOS/BATCH, RI-il , and RSX-llM operating systems. DOS is the older sys-
tem, currently in Version 10, which is used strictly for support of communica-
tion software and operations. RI-li is a real-time , single—user , operating
system which supports substantial graphics capabilities . FORTRAN and BASIC
Compilers are supported under RI-il , each of which are used in the graphics
mode . RSX— llM is a Multi — tasking, Multi-programming operating system . Con- V

templated usage of RSX-llM is for simultaneous RJE communications and local
graphics-oriented program development.

The configuration of the present Minicomputer Terminal has been chosen to
give a cost-effective trade-off between local and remote computer processing .
The combination of sophisticated graphics and relatively inexpensive communica-
tions allows an optimum balance between local program development and remote,

large volume , compute-bound operations. The system is expandable into an
ultimate form to include 96K words of core memory , a high-speed line printer ,

and an industry-compatible 9-track magnetic tape transport. Such hardware
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increments would each yield an increase in the efficiency of the combined local-

remote processing function .

8.2. THE BASIC SYSTEM PACKAGE

The basic system is the DEC GT-44 multi—purpose , computer—based , graphic

display system. This system package was specified because its major components
were required for the remote terminal and were less expensive when procured as
a package. The basic package includes:

(1) PDP 11/40 CPU W/l6K word Core
(2) RK11-DE Disk Drive and Control (l.2M-byte Mag. Disk Memory)
(3) RKO5-AA Disk Drive (1.2 M-byte Mag. Disk Memory)
(4) BM 873-VA Disk Bootstrap Loader
(5) VTl l —AA Display Processor/Monitor W/Light Pen
(6) LA36 Keyboard/Printer Console (30 Char. per second)
(7) RT11/GT Operating System (Single User)
(8) RSX-ilM Operating System (Multi User)
(9) FORTRAN /GT Compiler
(10) Installation plus 4 Training Cred ts

The two magnetic disks (with replaceable disks ) provide memory for both
the operating system software and for data . The Display Processor/Monitor with
17-inch CRT and Light Pen provide the interactive graphics capability required
for program development , and for data preview , verification , and editing . The
Keyboard/Printer Console is used for entering data and for system monitoring.
The printer accommodates standard 132 column paper and is capable of teletype-
rate output at 30 characters per second. This is equivalent to 12 lines oer
minute printout rate, wh i ch is too slow for efficient long production runs. The
Bootstrap Loader hardware facilitates start-up of the entire system. The

RT1 l /GT Operating System with FORTRAN/GT Compiler is the standard graphics-on-

ented software. The RSX-l lM with FORTRAN/GT Compiler allows multiprogram appl i-

ca ti ons.
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B.3. AUGMENTATION PACKAGE

The basic graphics terminal was initially augmented to handle the RJE
function and will be further augmented duri ng the follow-on effort to provide
the fol lowing total additional hardware and software:

(11) KE11-F Floating Point Hardware
(12) KE11-E Extended Instruction Set
(13) DOS/BATCH-il Operating System
(14) KT11-D Memory Management Hardware (access 60K)
(15) Add-on/Add-in Monolithic Memory (44K)
(16) Printronix 300 Line Printer (300 lines/minute )
(17) CR1 1 Card Reader (300 cards/minute)
(18) DLll-E Asynchronous Line Interface (2 each)
(19) DPll-DA Synchronous Line Interface
(20) 108 Modem and Coupler
(21) 2OlA Modem and Coupler
(22) VA-3405 Modem and Coupler
(23) 208 Modem and Coupler
(24) Cab inets

The Floating Point Hardware Package is to increase the system computational
capability , to aid the program development function. The Extended Instruction
Set increases system computational flexibility , giving the system an instruction
set more comparable to those of the large remote host machines . The Disk Oper-
ating System handles the communications between the GT-44 and the remote host
machines. The KT-ll-D is control and management hardware for the additional
memory. This additional memory is used to make the running of simultaneous
programs possible. 

- 

I

The line printer provides 300 Line Per Minute Output Capability , and is
used for documentation of results of long production runs of simulations. The

CR-il Card Reader is used for inputting programs or data to the GT-44 disk

memory or directly to the remote host machine . The DL-ll-E and DP-11-DA Line
Interfaces and Modems are hardware i tems required to coupl e the GT-44 to the
dial-up telephone line for remote use.
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8.4. OPERATIONS

For program development , the terminal is used as a stand-alone minicomputer
with CRT display , input via keyboard or card reader , and output to magnetic disk
memory, or high speed line printer (300 LPM). For simulation production runs ,
the terminal communicates , via inexpensive dial -up telephone lines , with the
government—owned host computer. The simulation program and input data are
loaded into the host machine from the terminal ’s disk memory, card-reader , and/or
keyboard . After processing, simulation results are transmitted over the phone
line from host computer to the terminal ’s magnetic disk memory for storage . The
stored data is then previewed on the terminal ’s CRT. A selected portion of the
data , or all of it , is then routed to the line-printer for documentation of the
simulation results . Prior to procurement of the line printer , the LA-36 key-
board printe r was used in lieu .

For operations to CDC-76 00 computer systems , the 11 /40 minicomputer is
configured to look like a CDC-200 User Terminal . Such a term i nal is a standard
hard wired terminal which is used for RJL to CDC ~ s~ems . The 11/40 simulates
the 200 User Terminal by use of a software simulator whic~ is available from
DECUS for a small charge . This software simulator is designed to run under the
DOS—08 operating system. Operation under a later release of DOS (i.e. DOS-b A)
requires some modification.

The hardware required for CDC-200 User Termina l simu lation includes :

(1) either a DP— ll or DU—l i synch’ ~no~s interface
(2) 12K memory
(3) LA-30 or LA-36 Terminal , and
(4) 2OlA Modem.

Additional flexibility is afforded if th~ ~nfigurat ion includes :

(1) a CR-li card reader
(2) one or two RK-05 disks (to provide mass storage), and

(3) a 300 LPM line printer.

The use of the CDC-200 User Termitial simulator allows 2000 Baud half-duplex

synchronous data comunicati -rns. This proves to be quite adequate for most of
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the needs . However , it is possible to communicate at ~3OO Baud by the use of
a 200 User simulator which is a proprietary software package written by Oregan
Research Institute. This software requires an additional 4- 12K of memory and
the use of a 208 Modem. It will run without modification under DOS-1OA .

There are two points to note about this communication:

(1) it can run at speeds up to 4800 Baud , and
(2) it can support formatted file-structured devices.

The present communication to the DEC-10 is somewhat more limited.
Presently, a program called TERMINET is used to perform the data link. This
program simply makes the PDP-ll/40 look as if it is a 120 character/sec tele-
type. There is no current provision for use of file-structured devices . How-
ever, there is a mode of operation which allows the use of a VT- ll/VR1 7 graphics
system as the terminal display.

The hardware required for this communication mode includes :

(1) a DL-llE asynchronous interface
(2) 16K memory
(3) an LA-30 or LA-36 Terminal
(4) a VT- ll/VR17 graphics system , and
(5) a Vadic 1200 Baud modem .

This software is designed to rcn under both~0OS- l0A and R1-llVO2B. It
should be noted that RT-ll is a much simpler operating system to use.

The two points noted about the 200 User Termi nal System are countered in
the DEC-10 communications software.

(1) the maximum transfer speed is 1200 Baud (too slow for any major data
transfer), and

(2) file-structured devices , as well as card readers and line printers ,

3 are not supported .

These two facts reduce the usefulness of this software for serious RJE.

However , an alternative does exist. Digital Equipment Corporation is currently

• bringing out an extensive communications package which is called DECNET . One of
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the possible configurat ions of this software allows communication between an
-

V 11/40 running under the RSX- llM operating system and a DEC-10. All RJE capa-
bilities are supported . In addition , the data rate is even better than that
provided by a 4800 Baud CDC-200 simulator since the protocol used is the newly
developed DDCMP . DDCMP is more efficient than the BYSYNC protocol used for

t CDC and IBM communications.
The use of DECNET is being investigated . At present , it looks like the

best solution to the DEC.-10 communications problem .

B.5. EXPERIENCES WITH THE FACILITY

The following observations are based on experience with the facility
accrued since July 1975.

1. For performing detailed simulation work , the Graphics is invaluable.
The flexibility and insight accruing from being able to “see” into the workings
of the many simulations routines make the different between success and failure
of the overall simulation task.

2. 16K words memory is just not enough. Operations are greatly hampered
by having to overlay programs in and out of the magnetic disks. This not only
greatly slows computations , but causes accelerated wear of the disks and leads
to more failures and maintenances .

3. For any amount of printout at all , a line printer is required. Havin g
:~ to use only the LA-36 keyboard printer greatly slows operations. Also, it

wears out the keyboard rapidly.
4. A 9-track , industry -compatible tape drive would rapidly pay for it-

self in terms of magnetic disk usage. Tape reels cost approximately $10. Mag.-
netic disks cost approximately $100. A reel of tape holds the equivalent of 2½
disks worth of data . Half the disks are presently used for back-up storage . A
tape drive would markedly reduce the requirement for disks in total numbers and
in replacement.

5. A full maintenance contract is a must.
6. In operating an RJE Graphics Terminal , it is imperative that at least

one engineer be hi ghly conversant with both the machine and with the problems
being run on the machine . The PDP 11/40, GT-44 is a magnificent machine . But ,

it is two levels more sophisticated than most graduate electrical engineers are
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used to, in terms of routine batch-type computer usage . The hardware and main-

tenance support is excellent , but software maintenance is a problem . To fully
utilize the machine means that at least one of the responsible engineers must
“get into ” and “live with” the machine and all its software . These engineers
should also be well versed in the technical aspects of the problems being run
on the machine. This is a “Do It Yourself” computer , in the best sense of the
phrase.
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