

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) **READ INSTRUCTIONS** REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM . REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER MSM TR - 210 5. TYPE OF REPORT & PERIOD COVERED TITLE (and Subtitle) A Goodness-of-Fit Test for a Class of Nonhomogeneous Poisson Processes . 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(=) 8. CONTRACT OR GRANT NUMBER(#) David L./Clark 200 PERFORMING ORGANIZATION NAME AND ADDRESS . PROGRAM ELEMENT, PROJ US Army Materiel Systems Analysis Activity Aberdeen Proving Ground, Maryland 21005 DA Project No. 1R765706M541 1. CONTROLLING OFFICE NAME AND ADDRESS Commander REPORT DATE Dece 977 US Army Materiel Development and Readiness Command UMBER OF P 5001 Eisenhower Avenue, Alexandria, VA 22333 25 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) UNCLASSIFIED DECLASSIFICATION/DOWNGRADING SCHEDULE N/A 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; unlimited distribution. stered in Block 20, if different from Report) JAN 6 1978 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Goodness-of-fit Cramér-von Mises Statistic Reliability Growth ye Parametric Exponent Nonhomogeneous Poisson Process 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This paper discusses a goodness-of-fit test for a class of nonhomogeneous Poisson processes. This class of processes has been used to describe the phenomena of reliability growth and of the occurrence of failures in a complex, repairable system. Improved tables of percentiles of the small sample distribution of the Cramér-von Mises statistic in which a parametric exponent is estimated are provided for use in the test. The test can also be used to test the hypothesis that a random sample comes from a cumulative distribution function which can be expressed as an unknown positive power of a specified cdf., DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

CONTENTS

1.	INTRODUCTION	1
2.	THE CRAMER-von MISES TEST IN THE	PARAMETRIC CASE · · · · · 1
3.	NONHOMOGENEOUS POISSON PROCESSES	
4.	THE RELIABILITY GROWTH PROCESS .	9
5.	DISTRIBUTION OF THE STATISTIC $c_{\rm m}^2$	11
6.	CONCLUSION	13
7.	REFERENCES	19
8.	DISTRIBUTION LIST	21
	LICT OF	TADI ES

LIST OF TABLES

1.	PERCENTILES FOR THE DISTRIBUTION OF C_m^2
2.	INTERVAL ESTIMATES OF THE PERCENTILES OF THE DISTRIBUTION
	OF c_m^2
3.	MOMENTS OF THE DISTRIBUTION OF C_m^2

NTIS	White Section V.
DDC	B II Section
NANNOUNC	0
ES 1 9 CTP	1
RICT 213	23°CN 711 757 111 70°ES

Page

i

A GOODNESS-OF-FIT TEST FOR A CLASS OF NONHOMOGENEOUS POISSON PROCESSES

1. INTRODUCTION

The problem addressed here is that of testing the goodnessof-fit of certain integer valued stochastic processes. The hypothesis to be tested is that a set of waiting times are from a nonhomogeneous Poisson process which is a member of the class of processes with mean value function of the form

 $M(t) = \lambda t^{\beta} \quad t > 0. \tag{1.1}$

The occurrences of failures in military systems undergoing refinement in a test-fix-test-fix development process and in complex systems which are repaired upon failure are known to follow such processes. Crow (1) has discussed this application and shown how to use the Cramér-von Mises statistic to test the goodness-of-fit hypothesis. A table of the small sample distribution of the Cramér-von Mises statistic for the case in which an exponentially-appearing parameter is estimated also appeared in (1). Some percentiles of that table are inaccurate because of sample sizes used in the simulations which generated them. The objectives of the present work are to provide a more accurate table and to verify convergence to the asymptotic distribution. In addition various proofs were omitted from the previous work. Some of those proofs are included here for completeness.

The procedures presented here can also be used to test the hypothesis that a random sample from a continuous distribution has a cumulative distribution function $F(X;\theta)$ of the form

 $F(X;\theta) = (R(X))^{\theta}$ (1.2)

for some positive value of the parameter θ and for a specified cumulative distribution function R(X). Tables of the small sample distribution of the Cramér-von Mises test are provided to implement the test.

2. THE CRAMER-VON MISES TEST IN THE PARAMETRIC CASE

Cramér (2), von Mises (3), and Smirnov (4) developed a test of the hypothesis that a random sample X_1, X_2, \ldots, X_N from a continuous distribution G(X) is drawn from the completely specified distribution function F(X). If the cumulative distribution function F(X) contains a parameter Θ , then the hypothesis to be tested is that G(X) = F(X; Θ for some specified Θ_0 . The statistic employed in the test is given by

$$W_{n}^{2} = n \int_{-\infty}^{\infty} \left[F_{n}(X) - F(X;\theta_{o})\right]^{2} dF(X;\theta_{o}), \qquad (2.1)$$

where $F_n(X)$ is the empirical distribution function. The empirical distribution function is defined as $F_n(X) = k/n$ if k of the X_i are less than X. It can be shown that the statistic above can be written as

$$W_{n}^{2} = \frac{1}{12n} + \sum_{j=1}^{n} \left[F(X_{j}^{\prime}; \theta_{0}) - \frac{2j-1}{2n} \right]^{2}$$
(2.2)

where X_j is the j-th order statistic of the random sample. The hypothesis that $G(X) = F(X; \theta_0)$ is rejected if W_n^2 is extraordinarily large. Smirnov derived the limiting distribution for W_n^2 as the sample size n becomes large. Anderson and Darling (5) tabulated this distribution.

Following a suggestion of Cramér, Darling (6) extended this test to the case in which the parameter θ is estimated by a statistic $\hat{\theta}_n$ calculated from the data. This test assumes that there exists a nondegenerate interval I on the real axis such that for every θ contained in the interior of I, F(X; θ) is a cumulative distribution function. The hypothesis tested is that the cdf from which the sample is drawn is a member of the parametric family F(X; θ) for some unknown value θ_0 in I.

For the parametric case the test statistic is

$$C_{n}^{2} = \frac{1}{12n} + \sum_{j=1}^{n} \left[F(X_{j}; \hat{\theta}_{n}) - \frac{2j-1}{2n} \right]^{2}, \qquad (2.3)$$

in which the estimate θ_n is substituted for the unknown parameter. Darling (6) investigated the limiting distribution of C_n^2 and found that there are essentially two distinct cases. The first case is that of a superefficient estimator $\hat{\theta}$, such that

$$\lim_{n \to \infty} nE\left\{ \left(\hat{\theta}_n - \theta \right)^2 \right\} = 0, \qquad (2.4)$$

where Θ is the true value of the unknown parameter. In this case the asymptotic distribution of C_n^2 is the same as that of W_n^2 . In the second and more general case the limiting distribution of C_n^2 is different from that of W_n^2 . Thus it is inappropriate to use the tabled critical

values for W_n^2 to test the goodness-of-fit hypothesis in this case. If certain regularity conditions are satisfied and \sqrt{n} ($\hat{\theta}_n - \theta$) is asympotically normal with mean zero and finite nonzero variance, then the limiting distribution of C_n^2 is the same as that of $\int_0^1 Y^2(t) dt$ where Y(t) is a Gaussian stochastic process with zero mean and a covariance kernel which depends upon the unknown true distribution G(X). Thus the C_n^2 test is not distribution free; however, in important special cases the distribution depends only upon the form of the family f(X, θ) and not upon the true value θ_0 . Fortunately, for the case of an exponential parameter which is of concern in this report, the test has this property of being parameter free.

3. NONHOMOGENOUS POISSON PROCESSES

Parzen (7) defines the concept of a nonhomogeneous Poisson process. This is an integer valued process which has independent increments and unit jumps and which consists of the random variables N(t), the number of events occurring in the interval [0,t]. It follows from this definition that for any t>0, the random variable N(t) has the Poisson distribution with an expected value given by some function M(t). The mean value function M(t) is nondecreasing and is usually assumed to be continuous and differentiable. The derivation of the mean value function is denoted by

 $v(t) = \frac{d}{dt} M(t)$ (3.1)

and is called the intensity function of the process. For a small increment of time h the quantity v(t) h is approximately equal to the probability of the occurrence of an event in the interval (t,t+h).

In the special case for which the mean value function is directly proportional to the observation time t, that is,

 $M(t) = \lambda t \tag{3.2}$

BEST AVAILABLE COPY

the process is the ordinary homogeneous Poisson process. Such a process has a constant intensity function.

In the general case of the nonhomogeneous Poisson process . use of the characteristic function along with the property of independent increments reveals that for any interval (a,b) the number of events occurring in the interval has a Poisson distribution. The characteristic function of N(t) is

$$\phi_{N(t)}(u) = \exp[M(t) \{e^{iu} - 1\}] \qquad (3.3)$$

Since the numbers of events occurring in nonoverlapping intervals are independent we have

$$\phi_{N(b)-N(a)}^{(u)} = \frac{\phi_{N(b)}^{(u)}}{\phi_{N(a)}^{(u)}} = \exp \left\{ [M(b)-M(a)][e^{iu}-1] \right\} . \quad (3.4)$$

Thus the random variable N(b)-N(a) has the Poisson distribution with expected value M(b)-M(a).

A pair of well known theorems describe the relationship between the order statistics of a random sample from a uniform distribution and the waiting times to the occurrence of events in a homogeneous Poisson process. The proof of the first is given by Parzen. The statements of both theorems and the proofs are presented here to clarify this relationship.

Theorem 1. Let { N(t), t>0 } be a Poisson process with constant intensity λ . Under the condition that N(T)=n, the times t_1, t_2, \ldots, t_n in the interval (0,T] at which events occur have the joint probability density function

$$f(t_1, t_2, \cdots, t_n | N(T)=n) = \frac{n!}{T^n}$$
 (3.5)

in which $0 < t_1 < t_2 < \cdots < t_n \leq T$. Note that this joint conditional density is the same as that of the order statistics of a random sample size n drawn from a uniform distribution defined on the interval (0,T].

Proof: The probability that exactly n events occur in the interval (0,T] is

$$P[N(T)=n] = \frac{(\lambda T)^n e^{-\lambda T}}{n!}$$
 (3.6)

Let $\{t_i\}$ be a set of times such that $o \neq_1 < t_2 < \cdots < t_n < T$ and choose a set of increments $\{h_1, h_2, \cdots, h_n\}$ such that the intervals $[t_1, t_1 + h_1]$, $[t_2, t_2 + h_2], \cdots [t_n, t_n + h_n]$ are nonoverlapping. Since the increments are nonoverlapping the number of occurrences in each interval and the number occuring elsewhere in (0,T] are independent. Thus the probability that exactly one event occurs in each interval $[t_i, t_i + h_i]$ for i=1,2...,nand no events occur elsewhere in (0,T] is

$$\exp\left[-\lambda\left(T-\prod_{i=1}^{n}h_{i}\right)\right]\prod_{j=1}^{n}\lambda h_{j}e^{-\lambda hj}$$
(3.7)

The conditional probability of this event given that N(t) = n is

$$\frac{n!}{T^{n}} \prod_{i=1}^{n} h_{i} \qquad (3.8)$$

By allowing the h_i to decrease to infinitesimal increments, it follows that the conditional density of t_1, t_2, \ldots, t_n given that N(t)=N is as stated in the theorem.

<u>Theorem 2</u>. Let $\{N(t), t \ge 0\}$ be a Poisson process with constant intensity $\overline{\lambda}$. Let t_n be the time of occurrence of the nth event. Under the condition that $t_n = T$, the n-1 waiting times $t_1, t_2, \ldots, t_{n-1}$ have the joint probability density function

$$f(t_1, t_2, \dots, t_{n-1} | t_n = T) = \frac{(n-1)!}{T^{n-1}}$$
 (3.9)

Note that this point conditional density is the same as that of the order statistics of a random sample of size n-1 drawn from a uniform distribution defined on the interval (0,T].

Proof: Define $t_0=0$ and let $s_i=t_i-t_{i-1}$ be the i-th interarrival time of the Poisson process. It is known that the interarrival times are independently identically distributed random variables with the exponential distribution with mean $1/\lambda$. Thus the joint density of the first n interarrival times is

$$f(s_1, s_2, \dots, s_n) = \prod_{i=1}^n \lambda e^{-\lambda s_i} = \lambda^n \exp[-\lambda \sum_{i=1}^n s_i]$$
(3.10)

for which $0 < s_1, s_2, \ldots, s_{n-1}, < \bullet$. The transformation mapping $(t_1, t_2, \ldots, t_{n-1})$ into $(s_1, s_2, \ldots, s_{n-1})$ has a Jacobian identically equal to unity. Therefore the joint density of the waiting times is

$$g(t_1, t_2, \dots, t_n) = \lambda^n e^{-\lambda t_n}$$
(3.11)

5 BEST AVAILABLE COPY

with $0 < t_1 < t_2, \dots < t_n$.

Since t is the convolution of n random variables from the same exponential distribution, it has the gamma density

$$g_n(t_n) = \frac{\lambda e^{-\lambda t_n (\lambda t_n)^{n-1}}}{(n-1)!} t > 0$$
 (3.12)

It follows that the conditional density of t_1, \ldots, t_{n-1} given that $t_n = T$ is as in the statement of the theorem.

A nonhomogeneous process with a continuous mean value function M(t) can be transformed into a homogeneous Poisson process. Because M(t) is continuous and nondecreasing its inverse function $M^{-1}(X)$ can be defined for all X>0 as the minimum value of t such that M(t)>X. Define the stochastic process $\{K(X), X>0\}$

$$K(X) = N(M^{-1}(X))$$
 (3.13)

This is a Poisson process with an intensity function identically equal to one. This transformation will be used in the proof of the two subsequent theorems.

<u>Theorem 3.</u> Let $\{N(t), t\geq 0\}$ be a Poisson process with continuous mean value function M(t). Under the condition that N(T) = n, the n waiting times t_1, t_2, \ldots, t_n in the interval (0,T] at which events occur are random variables having the same distribution as the order statistics of a random sample of size n from the probability density

$$h(X) = \frac{v(X)}{M(T)} \quad 0 \le X \le T$$
 (3.14)

where v(X) = dM(X)/dx is the intensity function of the Poisson process. That is,

$$g(t_1, t_2, \dots, t_n | N(T) = n) = \frac{n!}{[M(T)]^n} \prod_{i=1}^n v(t_i)$$
 (3.15)

with $0 < t_1, < t_2 < \ldots < t_n < T$.

BEST AVAILABLE COPY

Proof: Define the inverse of the mean value function and the stochastic process $\{K(X), x \ge 0\}$ as in the preceding paragraph. It follows that the quantities $M(t_i) = X_i$ for i = 1, 2, ..., N are the first N waiting times from a Poisson process with intensity identically equal to unity and occurring in the interval (0, M(T)]. By theorem 1 the joint conditional density of $X_1, ..., X_N$ given that N[M(T)] = n is

$$\mathbf{f}(X_{1}, X_{2}, \dots, X_{n} \mid N(M(T)) = n) = \frac{n!}{[1(T)]^{n}} \stackrel{0 \leq X_{1} \leq X_{2} \leq \dots \leq X_{n} \leq !(T)}{(3.16)}$$

The absolute value of the Jacobian of the transformation which maps (t_1, t_2, \ldots, t_n) into (X_1, X_2, \ldots, X_n) is given by

 $\begin{array}{c} n & \partial X_{i} \\ \pi & \underline{-1}_{i} \\ i=1 & \partial t_{i} \end{array} , which is$

 $\left|J\right| = \prod_{i=1}^{n} v(t_i) \qquad (5.17)$

It follows that the conditional density $g(t_1, t_2, \ldots, t_n | N(t)=n)$ is as given in the theorem. Note that the distribution function corresponding to the density h(X) is given by

$$H(X) = \frac{M(X)}{M(T)} \qquad 0 \le X \le T$$
 (3.18)

<u>Theorem 4.</u> Let {N(t),t>0} be a Poisson process with continuous mean value function M(t). Under the condition that the waiting time to the nth event, t_n , is equal to T, the n-1 waiting times $t_1 < t_2 < \ldots < t_{n-1}$ in the interval (0,T) at which events occur are random variables having the same distribution as the order statistics of a random sample of size n-1 from the probability density

$$h(X) = \frac{v(X)}{M(T)} = \frac{0 < X < T}{0 < X < T}$$
 (3.19)

where $v(X) = \frac{dM(x)}{dx}$ is the intensity function of the Poisson process. That is.

7 BEST AVAILABLE COPY

$$g(t_1, t_2, \dots, t_{n-1} | t_n = T) = \frac{(n-1)!}{[M(T)]^{n-1}} \prod_{i=1}^{n-1} v(t_i)$$
 (3.20)

with $0 \le t_1 \le t_2 \le \ldots \le t_{n-1} \le T$.

Proof: The proof is the same as that of theorem 3 except that theorem 2 is applied instant of theorem 1 and the Jacobian is given by

$$\left|J\right| = \prod_{i=1}^{n-1} v(t_i) \qquad (3.21)$$

Theorems 3 and 4 provide the basis for testing hypotheses concerning the mean value function of a Poisson process. Define the parameter m as follows

$$m = \begin{cases} n & \text{for the condition } N(T) = n \\ n-1 & \text{for the condition } t_n = T \end{cases}$$
(3.22)

in which n is the number of events observed in the interval (0,T] of a stochastic process $\{N(t), t \ge 0\}$. Consider the hypothesis $H_0: N(t)$ is a Poisson process with continuous mean value function M(t). If H_0 is true the waiting times t_1, t_2, \ldots, t_m have the same distribution as the order statistics of a random sample of size m from the distribution H(X) = M(X)/M(T). Define $H_m(X)$ to be N(X)/N(T). Then the statistic

 $W_{m}^{2} = m f_{0}^{T} [H_{m}(X) - H(X)]^{2} dH(X)$ (3.23)

has the same distribution as the Cramér-von Mises statistic for a sample of size m from H(X). The statistic can be written in the form

$$W_{\rm m}^2 = \frac{1}{12m} + \sum_{j=1}^{\rm m} \left[\frac{M(t_j)}{M(T)} - \frac{2_{j-1}}{2m}\right]^2 , \qquad (3.24)$$

BEST AVAILABLE COPY s

which is more suitable for computation.

If the mean value function contains an unknown parameter θ , then it is desirable to estimate the parameter from the data by calculating a statistic $\hat{\theta}_m$. If the estimator $\hat{\theta}_m$ satisfies the properties listed by Darling, then the statistic

$$C_{m}^{2} = \frac{1}{12m} + \sum_{j=1}^{m} \left[\frac{M(t_{j}; \hat{\theta})}{M(T, \hat{\theta}_{m})} - \frac{2_{j}-1}{2m} \right]^{2}$$
(3.25)

may be used to test the hypothesis H_1 : {N(t)t>0} is a Poisson process with mean value function M(T; θ) for some θ . The test is truly usable if the statistic C_m^2 is parameter-free.

4. THE RELIABILITY GROWTH PROCESS

Crow (8) has shown that the improvement in reliability of a complex system undergoing development in a test-fix-test-fix environment can be modeled by a certain family of nonhomogeneous Poisson processes. Crow (1) uses this same family of processes to represent the occurrences of failures in complex repairable systems. For this class of processes the mean value function is of the form

$$M(t) = \lambda t^{P} \qquad \lambda > 0; \beta > 0; t > 0 \qquad (4.1)$$

in which $\lambda>0$ can be interpreted as a scale parameter and $\beta>0$ as a shape parameter. The corresponding intensity function is

$$v(t) = \lambda \beta t^{B-1}$$
 t>0. (4.2)

This family includes the homogeneous Poisson processes as the special case in which β equals unity.

The results of the preceding section can be used to derive a goodness of fit test for this class of processes. With the index m defined as in Section 3, it follows from theorems 3 and 4 that with

application of the appropriate condition the random variables t_1, t_2, \ldots, t_m have the same distribution as the order statistics of a random sample for the cumulative distribution function

$$H(X) = \left(\frac{X}{T}\right)^{\beta} \qquad 0 \le X \le T \quad . \tag{4.3}$$

With the appropriate choice of a estimator β the statistic

$$C_{m}^{2} = \frac{1}{12m} + \sum_{j=1}^{m} \left[\frac{t_{j}}{T} \right]^{\overline{\beta}} - \frac{2_{j}-1}{2m} \right]^{2}$$
(4.4)

can be used to test the hypothesis that the observations $\{t_j\}$ are from Poisson process with mean value function of the form $M(t) = \lambda t^{\beta}$. Darling has shown that the distribution of this test statistic is independent of the true value of the parameter β . In fact it is distribution free over the class of distributions such that

$$F(X;\beta) = \left[R(X) \right]^{\beta} \qquad \beta > 0 \qquad (4.5)$$

for some cumulative distribution function R(X).

As Crow has shown conditional maximum likelihood estimates of β can be derived from equation (3.15) for the case N(T) = n and from equation (3.20) for the case t = T. These conditional maximum likelihood estimates are given by

$$\hat{\beta} = \frac{m}{\min T - \sum_{i=1}^{m} \ln t_i}$$
(4.6)

in which m = n for conditioning on N(T) = n and m = n-1 for conditioning

on $t_n = T$. This is a biased estimator for β with expected value

$$E(\tilde{\beta}) = \frac{m}{m-1} \beta \qquad (4.7)$$

An unbiased estimate can thus be provided by

$$\overline{\beta} = \frac{m-1}{\min T - \sum_{i=1}^{m} \ln t_i}$$
(4.8)

It can be shown that the estimator $\overline{\beta}$ given in equation (4.8) should be used in equation (4.4) to calculate the statistic C_m^2 . This must be done in order to satisfy the conditions needed for C_m^2 to have the limiting distribution described by Darling. In particular, the condition

$$\lim_{m \to \infty} \mathrm{mE}(\overline{\beta} - \beta) = 0 \tag{4.9}$$

is satisfied since $\overline{\beta}$ is unbiased. This condition is not met by the estimator in equation (4.6).

5. DISTRIBUTION OF THE STATISTIC C_m^2

In order to use the statistic C_m^2 to test the goodness of fit hypothesis it is necessary to establish a table of critical values for selected significance levels. The small sample distribution of the statistic C_m^2 given in equation (4.4) is not analytically tractable. Moreover, the limiting distribution has only been defined in terms of its characteristic function. The distribution of C_m^2 has been determined through Monte Carlo simulation for values of m from 2 to 20 and for m equal to 30, 60, and 100.

The Monte Carlo simulation consists of repeated samples of

size m from the uniform distribution on the interval (0,1) and computation of

$$\overline{\beta} = \frac{m-1}{\underset{j=1}{\overset{m}{\longrightarrow}} 1n \ U_{j}}$$
(5.1)

and

$$C_{m}^{2} = \frac{1}{12m} + \sum_{j=1}^{m} \left[\left(u_{j}^{\prime} \right)^{\overline{\beta}} - \frac{2j-1}{2m} \right]^{2}$$
 (5.2)

in which $\{u_j\}$ is the random sample and $\{u_j'\}$ is the corresponding set of order statistics. For each value of the index m there are 150,000 replications of this sampling.

Selected percentage points of the distribution of C_m^2 are presented in Table 1. The 1- α percentile of this distribution is to be used for a goodness of fit test with level of significance α . The accuracy of these percentage points can be determined by using the fact that any percentile of a random sample is asymptotically normal. Each sample of 150,000 actually consists of ten independent samples of size 15,000. The sample variance of estimate \hat{C}_p . of the p-th percentile is used to estimate the precision of the p-th percentile of the combined sample. Table 2 contains interval estimates of the percentiles of the distribution of C_m^2 with a confidence coefficient of .90.

The sample moments from the simulation can be used to determine how rapidly the distribution of C_m^2 is converging to the limiting distribution. Darling provided a means for calculating the moments of the limiting distribution. The mean, variance, and third central moment, μ_3 , of the sampling distribution of C_m^2 and of the limit distribution are given in Table 3. The sample moments indicate the distribution for m equal to 100 matches the limiting distribution quite closely. The mean, variance, and third central moment from the simulation for m equal to 100 are each within one percent of the respective true moment of the limiting distribution. Hence the percentiles appearing in Table 1 for m equal to 100 can be used for larger values of m. Figure 1 contains plots of the empirically obtained density function for m equal to 5 and m equal to 100.

6. CONCLUSION

The percentiles in Table 1 provide a set of critical values for the Cramér-von Mises goodness of fit statistic for the case in which an exponential parameter is estimated. This table can be used to test the hypothesis that a random sample of size m comes from a parametric family in the class of distribution of the form

$$F(X;\theta) = \left(R(X)\right)^{\theta} \quad \theta > 0 \quad (6.1)$$

in which R(X) is some cumulative distribution function. The parameter θ is to be estimated from the data by an appropriate statistic.

The distribution of the Cramér-von Mises statistic can also be used to test hypotheses on the goodness of fit for certain stochastic processes. In particular, the hypothesis that a stochastic process is a member of the family of nonhomogeneous Poisson processes with mean value function of the form

$$M(t) = \lambda t^{\beta}$$
 (6.2)

can be tested through use of the statistic.

P	. 80	. 85	.90	.95	.99
1		000			
2	.138	.149	.162	.175	.186
5	.121	.135	.154	.184	.23
•	.121	.134	.155	.191	.28
5	.121	.137	.160	.199	. 30
5	.123	.139	.162	.204	. 31
7	.124	.140	.165	.208	. 32
3	.124	.141	.165	.210	. 32
)	.125	.142	.167	.212	. 32
0	.125	.142	.167	.212	. 32
1	.126	.143	.169	.214	. 32
2	.126	.144	.169	.214	. 32
13	.126	.144	.169	.214	.33
4	.126	.144	.169	.214	. 33
15	.126	.144	.169	.215	.33
16	.127	.145	.171	.216	. 33
17	.127	.145	.171	.217	.33
18	.127	.146	.171	.217	.33
19	.127	.146	.171	.217	.33
20	.128	.146	.172	.217	.33
30	.128	.146	.172	.218	. 33
0	.128	.147	.173	.220	.33
00	.129	.147	.173	.220	. 34

		TAB	LE 1			
PERCENTILES	FOR	THE	DISTRIBUTION	OF	c_m^2	

14

the second s

8

es the

P	. 80	.85	.90	.95	.99
M					
2	.13721378	.14851493	.16131618	.17481753	.18631866
3	.12031212	.13461356	.15411548	.18281843	.22932320
4	.12041211	.13371346	.15391552	.19011924	.27612819
5	.12021212	.13591372	.15881605	.19842006	.29232978
6	.12201232	.13841395	.16091633	.20182054	.30293115
7	.12331242	.13961406	.16391652	.20622096	.31283202
8	.12331245	.14001414	.16441663	.20842106	.31433238
9	.12451253	.14191428	.16671683	.21092130	.31913261
10	.12431257	.14161429	.16631684	.21082136	. 3208 3264
11	.12531263	.14291439	.16811691	.21282160	, 3249-, 3302
12	.12601268	.14311441	.16791697	.21242151	.32153276
13	.12631272	.14401451	.16951711	.21402164	. 3230 3312
14	,12591269	.14351445	.16861697	.21302154	.32613322
15	.12561270	.14331451	.16801707	.21382164	.32573301
16	.12661278	.14401454	.17011714	.21462174	,32163291
17	.12681281	.14461455	.16971713	.21522181	. 3288 3351
18	.12711278	.14501462	.17021721	.21512184	. 3258 3344
19	.12661281	.14431462	.16991721	.21542184	.32923359
20	.12711280	.14511461	.17061725	.21622188	.32963358
30	.12751286	.14511470	.17151733	.21722197	.32873355
60	.12761290	.14591475	.17271742	. 2200 2219	.33103357
100	.12841297	.14621479	.17201742	.21822212	.33323392

INTERVAL ESTIMATES OF PERCENTILES OF THE DISTRIBUTION C²_{II} 90% CONFIDENCE COEFFICIENT

TABLE 2

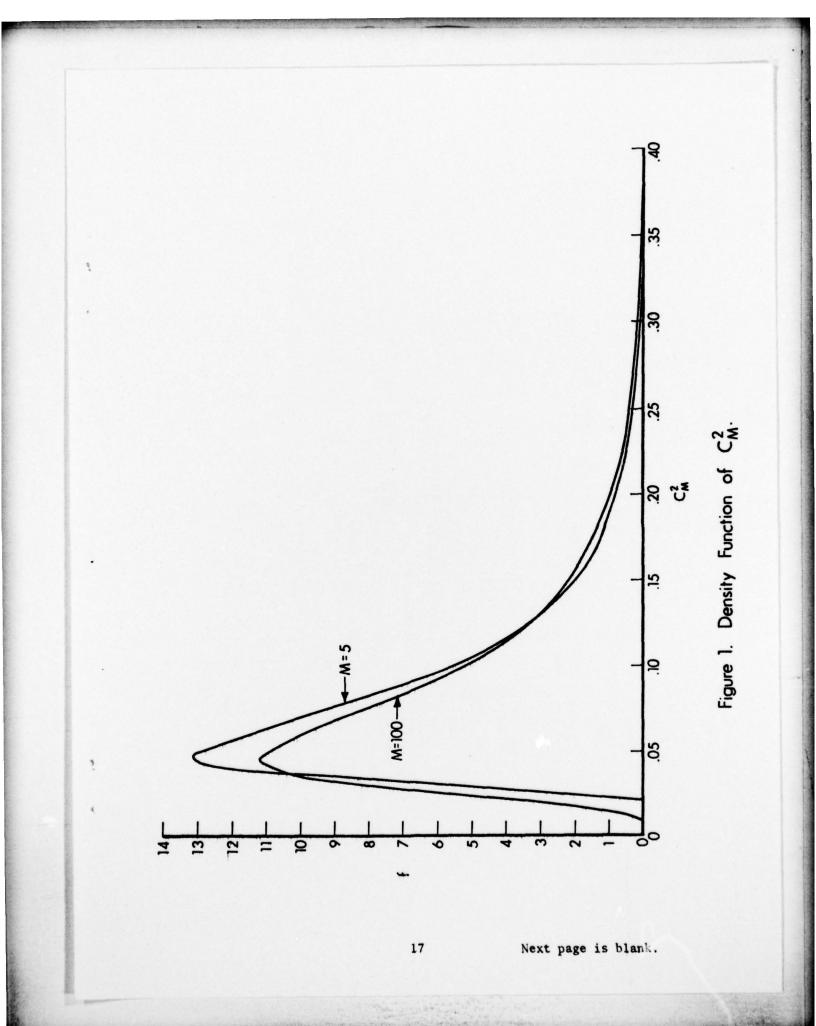
М	Mean	Variance	μ
2	.1124	.00082	.000026
3	.0929	.00179	.000107
4	.0898	.00267	.000281
5	.0892	.00319	.000409
6	.0894	.00347	.000471
7	.0899	.00375	.000550
8	.0897	.00383	.000565
9	.0903	.00393	.000550
10	.0902	.00391	.000546
11	.0906	.00405	.000599
12	.0506	.00405	.000602
13	.0910	.00410	.000609
14	.0908	.00409	.000603
15	.0909	.00411	.000619
16	.0911	.00411	.000599
17	.0914	.00418	.000643
18	.0915	.00421	.000639
19	.0914	.00418	.000617
20	.0914	.00424	.000625
30	.0917	.00425	.000632
60	.0920	.00429	.000629
100	.0922	.00432	.000644
	.0926	.00436	.000640

TABLE	3	
-------	---	--

MOMENTS OF THE DISTRIBUTION OF C²

16

and a superstant of the design of the super-super states



REFERENCES

- CROW, L. H, 1974 Reliability analysis for complex, repairable systems. <u>Reliability and Biometry</u>, F. Proschan and R. Serfling, eds. SIAM, <u>Philadelphia</u>.
- 2. CRAMER, H., 1928 On the composition of elementary errors. II Skand. Aktuarietids. (1928) 11:141-180.
- 3. VON MISES, R., 1931 Wahrscheinlichkeitrechnung. Deuticke, Leipzig and Wien.
- 4. SMIRNOV, N., 1936 Sur la distribution de W². <u>C. R. Acad. Sci.</u> Paris (1936) 202:449-452.
- ANDERSON, T. and DARLING, D., 1952 Asymptotic theory of certain 'goodness of fit' criteria based on stochastic processes. <u>Ann.</u> Math. Stat. (1952) 23:193-212.
- 6. DARLING, D., 1955 The Cramér-Smirnov test in the parametric case. Ann. Math. Stat. (1955) 26:1-20.
- 7. PARZEN, E., 1962 Stochastic Processes. Holden-Day, San Francisco.
- CROW, L. H., 1974 Reliability growth estimation from failure and time truncated testing. Proc. 19th Conf. on the Design of Experiments in Army Research Development and Testing 1974: 225-232.

Next page is blank.

DISTRIBUTION LIST

No. of Copies Organization 12 Commander Defense Documentation Center ATTN: TCA Cameron Station Alexandria, VA 22314 1 Commander US Army Materiel Development and Readiness Command ATTN: DRCCP 5001 Eisenhower Avenue Alexandria, VA 22333 1 Commander US Army Materiel Development and Readiness Command ATTN: DRCDE-F 5001 Eisenhower Avenue Alexandria, VA 22333 1 Commander US Army Materiel Development and Readiness Command ATTN: DRCRE-I 5001 Eisenhower Avenue Alexandria, VA 22333 1 Commander US Army Materiel Development and Readiness Command ATTN: DRCBSI-L 5001 Eisenhower Avenue Alexandria, VA 22333 1 Commander US Army Materiel Development and Readiness Command ATTN: DRCPA-S 5001 Eisenhower Avenue Alexandria, VA 22333 1 Commander US Army Materiel Development and Readiness Command ATTN: DRCDE-DW 5001 Eisenhower Avenue Alexandria, VA 22333

Organization Commander and Readiness Command ATTN: DRCQA 5001 Eisenhower Avenue Alexandria, VA 22333 Commander and Readiness Command ATTN: DRCBSI-D 5001 Eisenhower Avenue Alexandria, VA 22333 Commander and Readiness Command ATTN: DRCDE-R 5001 Eisenhower Avenue Alexandria, VA 22333 Commander and Readiness Command ATTN: DRCPA-P 5001 Eisenhower Avenue Alexandria, VA 22333

> Commander US Army Materiel Development and Readiness Command ATTN: DRCDE-D 5001 Eisenhower Avenue

Alexandria, VA 22333 Commander US Army Armar nt Research

and Development Command ATTN: DRSAR-SA Rock Island, IL 61201

No. of Copies 1

1

1

1

US Army Materiel Development

US Army Materiel Development

US Army Materiel Development

US Army Materiel Development

1

No. of	
Copies	Organization
1	Commander
	US Army Armament Materiel Readiness Command
	ATTN: DRSAR-QA
	Rock Island, IL 61201
1	Commander
	Rock Island Arsenal
	ATTN: Tech Lib
	Rock Island, IL 61201
1	Commander
	US Army Armament Research and Development Command
	ATTN: DRDAR-QA
	Dover, NJ 07801
1	Commander
	Harry Diamond Laboratories
	ATTN: DRXDO-SAB
	2800 Powder Mill Road
	Adelphi, MD 20783
1	Commander
	US Army Armament Research
	and Development Command
	Dover, NJ 07801
1	Chief, Analytical Sciences Office
	USA Biological Defense
	Research Laboratory
	ATTN: DRXBL-AS
	Dugway, UT 84022
2	Commander
	US Army Aviation R&D Command
	ATTN: DRDAV-D
	DRDAV-LR
	PO Box 209
	St. Louis, MO 63166
2	Commander
	US Army Electronics Command
	ATTN: DRSEL-SA
	DRSEL-PA-R
	Fort Monmouth, N.I 07703

No. of Copies	Organization
copies	
2	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SA ATAA-T
	White Sands Missile Range, NM 88002
2	Commander US Army Missile R&D Command ATTN: DRSMI-C DRDMI-QR Redstone Arsenal, AL 35809
1	Commander US Army Missile Materiel Readiness Command ATTN: DRSMI-QS
	Redstone Arsenal, AL 35809
2	Commander US Army Troop Support & Aviation Materiel Readiness Command ATTN: DRSTS-F DRSTS-Q 4300 Goodfellow Blvd St. Louis, MO 63120
2	Commander US Army Tank-Automotive Research and Development Command ATTN: DRDTA-JR DRDTA-V Warren, MI 48090
1	Commander US Army Tank-Automotive Materiel Readiness Command ATTN: DRSTA-QR Warren, MI 48090
2	Commander USA Mobility Equipment R&D Command ATTN: DRDME-O DRDME-TQ Fort Belvoir, VA 22060

No. of	
Copies	Organization
2	Commander US Army Natick R&D Command ATTN: DRXNM-0 DRXNM-EP Natick, MA 01760
1	Commander US Army Operational Test and Evaluation Agency ATTN: DACS-TET-E 5600 Columbia Pike Falls Church, VA 22041
2	Chief Defense Logistics Studies Information Exchange US Army Logistics Management Center ATTN: DRXMC-D Fort Lee, VA 23801
1	HQDA (DAMA-RAC/MAJ Jones) WASH DC 20310 <u>Aberdeen Proving Ground</u> Cdr, USATECOM ATTN: DRSTE, DRSTE-CS-A, DRSTE-RM Bldg 314
	Ch, Tech Lib, Bldg 305
	Dir BRL, B1dg 328
	Dir HEL, Bldg 520