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A GOODNESS-OF-FIT TEST FOR A CLASS OF NONHOMOGENEQUS
POISSON PROCESSES

1. INTRODUCTION

The problem addressed here is that of testing the goodness-
of-fit of certain integer valued stochastic processes. The hypothesis
to be tested is that a set of waiting times are from a nonhomogeneous
Poisson process which is a member of the class of processes with mean
value function of the form

M(t) = at?

t>0. (1.1)

The occurrences of failures in military systems undergoing refinement

in a test-fix-test-fix development process and in complex systems which
are repaired upon failure are known to follow such processes. Crow (1)
has discussed this application and shown how to use the Cramér-von Mises
statistic to test the goodness-of-fit hypothesis. A table of the small
sample distribution of the Cramér-von Mises statistic for the case in which
an exponentially-appearing parameter is estimated also appeared in (1).
Some percentiles of that table are inaccurate because of sample sizes used
in the simulations which generated them. The objectives of the present
work are to provide a more accurate table and to verify convergence to

the asymptotic distribution. In addition various proofs were omitted

from the previous work. Some of those proofs are included here for
completeness.

The procedures presented here can also be used to test the
hypothesis that a random sample from a continuous distribution has a
cumulative distribution function F(X;0) of the form

FOG0) = RO (1.2)

for some positive value of the parameter @ and for a specified cumulative |
distribution function R(X). Tables of the small sample distribution of |
the Cramér-von Mises test are provided to implement the test. i

2. THE CRAMER-VON MISES TEST IN THE PARAMETRIC CASE

Cramér (2), von Mises (3), and Smirnov (4) developed a test |
of the hypothesis that a random sample Xl, XZ" : .,XN from a continuous

distribution G(X) is drawn from the completely specified distribution
function F(X). If the cumulative distribution function F(X) contains a
parameter O, then the hypothesis to be tested is that G(X) = F(X;0 )

o

for some specified 00. The statistic employed in the test is given by

4 )
W n[ [Fn(X)-F(X;Oo)]2 dF(X;0,), 2.1

1




where Fn(x) is the empirical distribution function. The empirical
distribution function is defined as Fn(X) = k/n if k of the Xi are less
than X. It can be shown that the statistic above can be written as

n 2
2°°°) - 21-1]
W mimprieo ] [F(xj'go’ n (2.2)

j=1

where X; is the j-th order statisti; of the random sample. The hypothesis
that G(X) = F(X;Oo) is rejected if Wn i; extraordinarily large. Smirnov
derived the limiting distribution for W as the sample size n becomes
large. Anderson and Darling (5) tabulated this distribution.

Following a suggestion of Cramér, Darling (6) extended this test
to the case in which the parameter @ is estimated by a statistic
0 calculated from the data. This test assumes that there exists a

nondegenerate interval I on the real axis such thst for every 0 contained
in the interior of I, F(X,0) is a cumulative d1str1bution function. The
hypothesis tested is that the cdf from which the sample is drawn is a
member of the parametric family F(X;0) for some unknown value 00 in I.

For the parametric case the test statistic is

3. <d n : 1 2
C =1 * jgl[pcx 0) —-an—] : (2.3)

in which the estimate 0 is substituted for the unknown parameter. Darling (6)
investigated the 11mit1ng distribution of C and found that there are

essentially two distinct cases. The first case is that of a superefficient
estimator @, such that

Lin nE {0 -0)2}=o, (2.4)
n+>e« n

where @ is the true value of the unknown parameter. In this case the
asymptotic distribution of C2 is the same as that of wz. In the second
and more general case the 11m1t1ng distribution of C2 is different

from that of W Thus it is inappropriate to use the tabled critical
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values for wi to test the gocdness-of-fit hypothesis in this case. If
certain regularity conditions are satisfied and /n 35q -8) is

asympotically normal with mean zero and finite nonzero var
the limiting distribution of Ci is the same as that of |

where Y(t) is a Gaussian stochastic process with zero mean and a
covariance kernel which depends upon the unknown true distribution

o
G(X). Thus the C_ test is not distribution free; however, in important
. n,. . . - .
special cases the distribution depends only upon the form of the family
f(X,9) and not upon the true value QO. Fortunately, for the case of an

exponential parameter which is of concern in this report, the test has
this property of being parameter free.

3. NONHOMOGENOUS POISSON PROCESSES

Parzen (7) defines the concept of a nonhomogeneous Poisson
process. This is an integer valued process which has independent
increments and unit jumps and which consists of the random variables
N(t), the number of events occurring in the interval [0,t]. 1t follows
from this definition that for any t>0, the random variable N(t) has
the Poisson distribution with an expected value given by some functicn
M(t). The mean value function M(t) is nondecreasing and is usually
assumed to be continuous and differentiable. The derivation of the
mean value function is denoted by

Vi) * %E-M(t) (3.1)

and is called the intensity function of the process. For a small in-
crement of time h the quantity v(t) h is approximately equal to the
probability of the occurrence of an event in the interval (t,t+h).

In the special case for which the mean value function is
directly proportional to the observation time t, that is,

M(t) = At (S.2)

the process is the ordinary homogeneous Poisson process. Such a pro-
cess has a constant intensity function.

In the general case of the nonhomogeneous Poisson process
use of the characteristic function along with the property of indepen-
dent increments reveals that for any interval (a,b) the number of events
occurring in the interval has a Poisson distribution. The characteristic
function of N(t) is

SNy W = expM(e) L™ -13] . (3.3)
3




Since the numbers of events occurring in nonoverlapping intervals are
independent we have

(u)
5
(u) N(b) _ iu
*NY-N(a) © o [M)-M(a)][e""-1]} . (3.4)
*N(a)

Thus the random variable N(b)-N(a) has the Poisson distribution with
expected value M(b)-M(a).

A pair of well known theorems describe the relationship
between the order statistics of a random sample from a uniform
distribution and the waiting times to the occurrence of events in a
homogeneous Poisson process. The proof of the first is given by Parzen.
The statements of both theorems and the proofs are presented here to
clarify this relationship.

Theorem 1. Let { N(t), t>0} be a Poisson process with constant intensity

X. Under the condition that N(T)=n, the times ul,uz,...tn in the
interval (0,T] at which events occur have the joint probability density

function

n

£(t),ty, 0 .t |N(T)=n) =0l (3.5)
T

in which 0 < t) <t Serest, < T. Note that this joint conditional

density is the same as that of the order statistics of a random sample
size n drawn from a uniform distribution defined on the interval (0,T].

Proof: The probability that exactly n events occur in the interval
(0,T] is

n -AT
PIN(T)=n] = —QT—’;!—-— (3.6)

Let {t } be a set of times such that 0<¢1<t2<---<t < T and choose a

set of increments’ {hl hz,--o,hn} such that the intervals [tl, 1 +h1],
[tz,t2+h2],---[tn,tn+hn] are nonoverlapping. Since the increments are

nonoverlapping the number of occurrences in each interval and the
number occuring elsewhere in (0,T] are independent. Thus the probability
that exactly one event occurs in each interval [t % +h ] for i=1,2...,n
and no events occur elsewhere in (0,T] is




The conditional probability of this event given that N(t) = n is
300 : (3.8)

By allowing the h. to decrease to infinitesimal increments, it follows
t .o

that the conditional density of tatysee T given that N(t)=N is as

-

stated in the theorem.
Theorem 2. Let {N(t),t>0r be a Poisson process with constant intensity
Let tn be the time of occurrence of the nth event. Under the
condition that t_=T, the n-1 waiting times t.,t,,...,t have the joint
n A2 n-1

probability density function

(n-1)!

£ =T) =
£(t),thseenty 4 ltn T) S

% 01

(3.9)

Note that this point conditional density is the same as that of the
order statistics of a random sample of size n-1 drawn from a uniform
distribution defined on the interval (0,T].

Proof: Define t0=0 and let si=ti—ti 1 be the i-th interarrival time

of the Poisson process. It is known that the interarrival times are
independently identically distributed random variables with the ex-
ponential distribution with mean 1/X. Thus the joint density of the
first n interarrival times is

n =\S, %" n
£(S)s8,,00058.) = T de o expl-r ] s, ] (3.10)
i=1 i=1

for which 0<s e« . The transformation mapping

12535+ 25, 10 ¢
(tl’tz""’tn-l) into (51’52""’ n-l) has a Jacobian identically equal

to unity. Therefore the joint density of the waiting times is

# -th (S
g(ty.tys. st ) = Me

(o<1}




with 0<t R PTERR
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same exponential distribution, it has the gamma density

~

AL . n-1
\ n(.\tn)

8, 8,) = = t>0 . (3.12)

It follows tnat the conditional density of t

[eH

“n-1 given that

tn=T is as in the statement of the theorem.

A nonhomogeneous process with a continuous mean value function

M(t) can be transformed into 4 homogeneous Poisson process. pecause
1
~ . ‘ N . . . ~ . =4 .y -
M(t) is continuous and nondecreasing its inverse function M ~(X) can be

defined for all X>0 as the minimum value of t such that M(t)>X. Define

the stochastic process K(X),X> 0}
KOO = NOOTOO) (3.13)

This is a Poisson process with an intensity function identically equal
to one. This transformation will be used in the proof o>f the two sub-
sequent theorems,

Theorem 3. Let N(t),tzp} be a Poisson process with continuous mean
value function M(t). Under the condition that N(T) = n, the n waiting

times tl,tz,...,tn in the interval (0,T] at which events occur are

random variables having the same distribution as the order statistics
of a random sample of size n from the probability density

\Y

—

X)

hX) = WTT O_<_X_<_ T (3.14)
where v(X) = dM(X)/dx is the intensity function of the Poisson process. g
That 13,
n! o
g(tl,tz,...,tn N(T)=n) = — = 1 V(ti) (3.15)
MM] i=1
with 0<t,,<t.<...<t_<T.
-1 2 n—
i 6
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Proof: Define the inverse of the mean value function and the
stochastic process {K(X),x>0} as in the preceding paragraph. It follows

L§]

that the quantities M(t.) = X, for i = 1,2,...,N are the first N wait-

S 3 - = A DAy 2anT 2 Y
ing times rrom a Polsson pr

> .
unity and occurring in t
conditional density of X

3+ 2t -3 | ,
ity identical 1t °ﬂva‘ to

S -0
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3
ot
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joint

313 0 S e NMTYY=n) = ———— A

The absolute value of the Jacobian of the transformation which maps
(tl’t"""tn) into (XI,X,,...,XT) is given by
- - i

J N
n —=| , which is
i=lat
. n
|.J[ = T vty (3.17)
=l

It follows that the conditional density glt, t,,...,tn;N(t)=n) 35 as

given in the theorem. Note that the dlstrloutlon function corresponding
to the density h(X) is given by

0<X<T i (3.18)

Theorem 4. Let {N(t),t>0} be a Poisson process with continuous mean
value function M(t). Under the condition that the waiting tlme to the

nth event, LA is equal to T, the n-1 waiting times t1<t < el in

the interval (0,T) at which events occur are random variables having
the same distribution as the order statistics of a random sample of
size n-1 from the probability density

_ Vv(X)
- M(T)

h(X)

0<X<T €3 19)

_ dM(x)
TG

where v(X) is the intensity function of the Poisson process.

That is,

bl




. : N =
Z’tl.fj,...,t“ ,|t.‘=TA £ xfrpry oy i (3.20)
. il ks Uity 15 e
Nith Oer st <. <€ L <F
Proo that 2 ept that theorem
2 c siven by
(Jl = X :(:i, 3.21)
7 i=1
Theorems 3 and 4 provide the basis for testing hvnotheses
concerning the mean value function of a Po DTOCesSsS Define the
parameter M as follows
[ £or the condition N(T)=n (3.22)
m =
n-1 for the condition tn=T
in which n is the number of events observed in the interval (0,T] of a
stochastic process {N(t),t>0}. Consider the hypothesis HO:N{:} is a

Poisson process with continuous mean value function M(t). If HO is
true the waiting times tl,t7,...,t have the same distribution as the

m
order statistics of a random sample of size m from the distribution
HX)=M(X)/M(T). Define Hm(X) to be N(X)/N(T). Then the statistic

w
5%}
(2]
~—

2 T 2
W= m S [H(X)-HOO ] dH(Y) (

has the same distribution as the Cramér-von Mises statistic for a
sample of size m from H(X). The statistic can be written in the form

m M(t,) 2.
2 ot o2
Wom o= Tl - L0 (3.29)
m 12m 1.;l"'(T) Y

RLC AN RSV &
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which is more suitable for computation.
If the mean value function contains an unknown parameter 9,
then it is desirable to estimate the parameter from the data by calculat-
ing a statistic @ . If the estimator @ satisfies the properties
listed by Darling, then the statistic

m [me;8) 2.1 ]2

2m

(3.25)

@]
N
n
—
+
i o~

3=H mcr, om)

may be used to test the hypothesis H,: {N(t)t>0} is a Poisson process

with mean value function M(T;0) for some 0. The test is truly usable
if the statistic Ci is parameter-free.

4. THE RELIABILITY GROWTH PROCESS

Crow (8) has shown that the improvement in reliability of a
complex system undergoing development in a test-fix-test-fix environment
can be modeled by a certain family of nonhomogeneous Poisson processes,
Crow (1) uses this same family of processes to represent the occurrences
of failures in complex repairable systems. For this class of processes
the mean value function is of the form

M(t) = AtB A>0;B>0;t2_0 (4.1)

in which A>0 can be interpreted as a scale parameter and B>0 as a shape
parameter. The corresponding intensity function is

v(t) = apt?! 0 . (4.2)

This family includes the homogeneous Poisson processes as the special
case in which B equals unity.

The results of the preceding section can be used to derive a

goodness of fit test for this class of processes. With the index m
defined as in Section 3, it follows from theorems 3 and 4 that with




application of the appropriate condition the random variables tl.tz.-~-.t

have the same distribution as the order statistics of a random sample
for the cumulative distribution function

X 8
H(X) = ?) 0<X<T . (4.3)

With the appropriate choice of a estimator @ the statistic

. B 2
2 1 m < {) 2.-1
Cm = m + J.Zl T - —l'—zm (4.4)

can be used to test the hypothesis that the observations {t.} are from

Poisson process with mean value function of the form M(t) = atB. Darling

has shown that the distribution of this test statistic is independent

of the true value of the parameter B. In fact it is distribution free
over the class of distributions such that

F(X;8) = [R(X)] B o 4.5)

for some cumulative distribution function R(X).

As Crow has shown conditional maximum likelihood estimates of
B can be derived from equation (3.15) for the case N(T) = n and from
equation (3.20) for the case tn = T. These conditional maximum

likelihood estimates are given by

N - (4.6)

in which m = n for conditioning on N(T) = n and m = n-1 for conditioning

10

m

e ey
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ont =T, This is a biased estimator for @ with expected value
= A -
EH) « Brs . 4.7

An unbiased estimate can thus be provided by

[ 4 FLEE ; (4.8)

mnT - § sy
i=1

It can be shown that the estimator 8 given in equation (4,8)
should be used in equation (4.4) to calculate the statistic Ci. This must
be done in cerder to satisfy the conditions needed for Ci to have the

limiting distribution described by Darling. In particular, the
condition

lim mE(B-8) = 0 (4.9)
oo

is satisfied since B is unbiased. This condition is not met by the
estimator in equation (4.6).

5. DISTRIBUTION OF THE STATISTIC Ci

In order to use the statistic Ci to test the goodness of fit

hypothesis it is necessary to establish a table of critical values for
selected significance levels. The small sample distribution of the

statistic Ci‘given in equation (4.4) is not analytically tractable.
Moreover, the limiting distribution has only been defined in terms of
its characteristic function. The distribution of C; has been det<rmined
through Monte Carlo simulation for values of m from 2 to 20 and [or

m equal to 30, 60, and 100,

The Monte Carlo simulation consists of repeated samples of

11
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size m from the uniform distribution on the interval (0,1) and
computation of

. -._'“nl:l__. (5.1)
-3 In v,
=1/
and
2 B 2
5 2_ 1 2j-1
Ca® 1o 521 (“3) T om (5.2)

in which {u.} is the random sample and {us} is the corresponding set of

order statistics. For each value of the index m there are 150,000
replications of this sampling.

Selected percentage points of the distribution of Ci are

presented in Table 1. The 1-o percentile of this distribution is to be
used for a goodness of fit test with level of significance a. The
accuracy of these percentage points can be determined by using the fact
that any percentile of a random sample is asymptotically normal. Each
sample of 150,000 actually consists of ten independent samples of size

15,000. The sample variance of estimate Cp. of the p-th percentile is

used to estimate the precision of the p-th percentile of the combined
sample. Table 2 contains interval estimates of the percentiles of the

distribution of Ci with a confidence coefficient of .90.

The sample moments from the simulation can be used to determine
how rapidly the distribution of Ci is converging to the limiting

distribution. Darling provided a means for calculating the moments
of the limiting distribution. The mean, variance, and third central

moment, u,, of the sampling distribution of Cﬁ‘and of the limit

distribution are given in Table 3, The sample moments indicate the
distribution for mequal to 100 matches the limiting distribution quite
closely. The mean, variance, and third central moment from the simula-
tion for m equal to 100 are each within one percent of the respective

true moment of the limiting distribution. Hence the percentiles appearing
in “able 1 for m equal to 100 can be used for larger values of m. Figure
1 contains plots of the empirically obtained density function for m equal
to 5 and m e¢qual to 100.

12
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6. CONCLUSION

The percentiles in Table 1 provide a set of critical values
for the Cramér-von Mises goodness of fit statistic for the case in which
an exponential parameter is estimated. This table can be used to test
the hypothesis that a random sample of size m comes from a parametric
family in the class of distribution of the form

0
F(X;0) = (R(X)) >0 (6.1)

in which R(X) is some cumulative distributjon function. The parameter
@ is to be estimated from the data by an appropriate statistic.

The distribution of the Cramér-von Mises statistic can also
be used to test hypotheses on the goodness of fit for certain stochastic i
processes. In particular, the hypothesis that a stochastic process is |
a member of the family of nonhomogeneous Poisson processes with mean
value function of the form

M(t) = atb (6.2)

can be tested through use of the statistic. t




TABLE 1
PERCENTILES FOR THE DISTRIBUTION OF C%

s .80 .85 .90 .95 .99
: - 0. ,

2 .138 .149 .162 .175 .186
3 .121 .135 .154 .184 .23
4 .121 .134 <155 .191 .28
5 121 .137 .160 .199 .30
6 .123 .139 .162 .204 oIl
7 .124 .140 .165 .208 .32
8 .124 .141 .165 .210 +92
9 .125 .142 .167 .212 «32
10 .125 .142 .167 .212 - 32
11 .126 .143 .169 .214 <32
12 .126 .144 .169 .214 «32
13 .126 .144 .169 .214 .33
14 .126 .144 .169 .214 .33
15 .126 .144 .169 .215 .33
16 +127 .145 171 .216 «33
17 .127 .145 171 sy .33
18 «121 .146 171 .217 O3
19 327 .146 w171 .217 .33
20 .128 .146 172 217 «33
30 .128 .146 w172 .218 .33
60 .128 .147 173 .220 .33

100 .129 .147 173 .220 .34




TABLE 2
2

INTERVAL ESTIMATES OF PERCENTILES OF THE DISTRIBUTION Cn
90% CONFIDENCE COEFFICIENT

.80 .85 . . .95 .99

.1372-.1378 .1485-.1493 .1613-.1618 .1748-.1753 .1863-.1866
.1203-.1212 .1346-.1356 .1541-.1548 .1828-.1843 .2293-.2320
.1204-.1211 .1337-,1346 .1539-.1552 .1901-.1924 .2761-,2819
.1202-.1212 .1359-.1372 .1588-,1605 .1984-,2006 .2923-.2978
.1220-,1232 .1384-,1395 .1609-.1633 .2018-.2054 .3029-.3115
.1233-.1242 .1396-.1406 .1639-.1652 .2062-.2096 .3128-.3202
.1233-,1245 .1400-,1414 .1644-.,1663 .2084-.2106 .3143-,3238
.1245-,1253 .1419-.1428 .1667-.1683 .2109-.2130 .3191-,3261

W ® NV A LN :{q

10 .1243-.1257 .1416-.1429 .1663-.1684 .2108-.2136 .3208-. 3264
11 .1253-.1263 .1429-.1439 .1681-.1691 .2128-.2160 .3249-.3302
: 12 .1260-.1268 .1431-.1441 .1679-.1697 .2124-.2151 +3215-.3276
g 13 .1263-.1272 .1440-.1451 .1695-.1711 .2140-.2164 .3230-.3312
14 ,1259-.1269 .1435-.1445 .1686-.1697 .2130-.2154 .3261-.3322
15 .1256-.1270 .1433-.1451 .1680-.1707 .2138-.2164 .3257-.3301
16 .1266-.1278 .1440-.1454 .1701-.1714 .2146-.2174 +3216-.3291
17 .1268-.1281 .1446-.1455 .1697-,1713 .2152-.2181 .3288-.3351
18 .1271-,1278 .1450-,1462 .1702-.1721 .2151-.2184 .3258-.3344
19 ,1266-,1281 .1443-.1462 .1699-.1721 .2154-.2184 +3292-,3359
20 .1271-.1280 .1451-,1461 .1706-.1725 .2162-.2188 .3296-.3358
30 .1275-,1286 .1451-.1470 .1715-.1733 .2172-.,2197 .3287-.3355
60 .1276-.1290 .1459-,1475 .1727-.1742 .2200-.2219 .3310-.3357

100 .1284-,1297 .1462-.1479 .1720-.1742 .2182-.2212 .3332-.3392
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MOMENTS OF THE DISTRIBUTION OF C2
n

TABLE 3

M Mean Variance by

2 .1124 .00082 .000026
3 .0929 .00179 .000107
4 .0898 .00267 .000281
5 .0892 .00319 .000409
6 .0894 .00347 .000471
7 ,0899 .00375 .000550
8 .0897 .00383 .000565
9 .0903 .00393 .000550
10 .0902 .00391 .000546
11 .0906 .00405 .000599
12 VY06 .00405 .000602
13 .0910 .00410 .000609
14 .0908 .00409 .000603
15 .0909 .00411 .000619
16 .0911 .00411 .000599
17 .0914 .00418 .000643
18 .0915 .00421 .000639
19 .0914 .00418 .000617
20 .0914 .00424 .000625
30 .0917 .00425 .000632
60 .0920 .00429 .000629
100 .0922 .00432 .000644
L .0926 .00436 .000640
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