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A GOODNESS-OF-FIT TEST FOR A CLASS OF NONHOMOGENEOUS

POISSON PROCESSES

1. INTRODUCTION

The problem addressed here is that of testing the goodness-
of-fit of certain integer valued stochastic processes. The hypothesis
to be tested is that a set of waiting times are from a nonhomogeneous
Poisson process which is a member of the class of processes with mean
value function of the form

M(t) At~ t>0. (1.1)

The occurrences of failures in military systems undergoing refinement
in a test-fix-test-fix development process and in complex systems which
are repaired upon failure are known to follow such processes. Crow (1)
has discussed this application and shown how to use the Cramer-von Mises
statistic to test the goodness-of-fit hypothesis. A table of the small
sample distribution of the Cramer-von Mises statistic for the case in which
an exponentially-appearing parameter is estimated also appeared in (1).
Some percentiles of that table are inaccurate because of sample sizes used
in the simulations which generated them . The objectives of the present
work are to provide a more accurate table and to verify convergence to
the asymptotic distribution . In addition various proofs were omitted
from the previous work. Some of those proofs are included here for
completeness.

The procedures presented here can also be used to test the
hypothesis that a random sample from a Continuous distribution has a
cumulative distribution function F(X;0) of the form

F(X;0) = (R(X))0 (1.2)

for some positive value of the parameter 0 and for a specified cumulative
distribution function R(X). Tables of the small sample distribution of
the Cramdr-von Mises test are provided to implement the test.

2. THE CRAMER-VON MISES TEST IN THE PARAMETRIC CASE

Cramer (2), von Mises (3), and Smirnov (4) developed a test
of the hypothesis that a random sample X1, X2,. . . ,X~ from a continuous
distribution G(X) is drawn from the completely specified distribution
function F(X). If the cumulative distribution function F(X) contains a

. parameter 0, then the hypothesis to be tested is that G(X) = F(X;0 
~

for some specified 0
~
. The statistic employed in the test is given by

n j ’° [F (X)-F(X ;0)]2 dF(X;00), (2.1)

— 
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where F~ (X) is the empirical distribution function . The empirical

distribution function is defined as F (X) = k/n if k of the are less

than X. It can be shown that the statistic above can be written as

= + 

~ 

- 

2 
(2.2)

where X . is the j-th order statistic of the random sample. The hypothesis
2

that G(X) = F(X;Q ) is rejected if W is extraordinarily large. Smirnov

derived the limiting distribution for as the sample size a becomes
large. Anderson and Darling (5) tabulated this distribution.

- Following a suggestion of CramCr, Darling (6) extended this test
to the case in which the parameter 0 is estimated by a statistic

0 calculated from the data. This test assumes that there exists a

nondegenerate interval I on the real axis such th~~ for every 0 contained
in the interior of I, F(X 0) is a cumulative distribution function. The
hypothesis tested is that the cdf from which the sample is drawn is a
member of the parametric family F(X;0) for some unknown value O

o 
in I.

For the parametric case the test statistic is

C
2 

= 
~~~~~~~~ 

+ ~~[Pcx;;~~) - ~
j.’]

2 
(2.3)

in which the estimate is substituted for the unknown parameter. Darling (6)
investigated the limiting distribution of C~ and found that there are

essentially two distinct cases. The first case is that of a superefficient

estimator 0, such that

lIrn nE {(O~_0)2}=0~ (2.4)

where 0 is the true value of the unknown parameter. In this case the

asymptotic distribution of C
2 
is the sane as that of W

2
. In the second

and more general case the limiting distribution of C~ is different
from that of W~. Thus it is inappropriate to use the tabled critical

2 
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values for to test the goodness-of-fit ~i~~othesis in this casL- . ~f

certain re~u1ari~v conditi~n.3 .~re satisfi~d m d  •~E -
~~~~ is

n
asv~ip otical  1 r~or~ a ~itri :~e~in :~ ro •i.~d fini ~-.c.:~ r -an ~~~~ :h~~
the l imit ing distribution of C~ is the same as that ~f 

1 , 2 ~~~~~~ S dt

where Y ( t )  is a Gaussian stochastic pr~ c.~ss .~i th :~ ro n~ an ~~~ a
covariance kernel which depends upon the unkno~~ tr ue  d i stn i h ~ t i~ r.

G ( X ) .  Thus the C test is not d i s t r ibu t ion  free;  however , in important
special cases the~’distribution depends onl y upon the form of the family
f(X,Q) and not u~on the true value Fortunate l ’. . f~ r the case •~f an

exponential parameter which is of concern in this report , the test has
this property of being parameter free.

3. NONHOMOGENOUS POISSON PROCESSES

?ar:en (7) defines the concep t of a non oaog~ neous i~oisson
process. This is an integer valued process which has independent
increments and unit jun-os and which consists of the random variables
N (t) , the number of .~ on~s occurnin; in the inter’:al [O ,r~ . it foi1~ w~
from this definition that for any t>O , the random variable N (t) has
the Poisson distribution ;~ith an expected value given by some function
M (t). The mean value function M (t) is nondecreasing and is usually
assu.:cd to be continuous and differentiable. T~ e .leni ;aticn of the
nean value function is denoted by

u(t) = ~~- M ( t )  (3.1)

and is called the intensity function of the process. For a small in-
crement of time h the quantity v(t) h is approximately ecual to the
probability of the occurrence of an event in the interval (t,t+h).

In the special case for which the mean value function is
directly proportional to the observation time t , that is ,

M(t) = Xt (3.2)

the process is the ordinary homogeneous Poisson process. Such a pro-
cess has a constant intensity function.

In the general case of the nonhomogeneous Poisson process
use of the characteristic function along with the property of indepen-
dent increments reveals that for any interval (a,b) the number of events
occurring In the interval has a Poisson distribution . The characteristic
function of N(t) is

= exp[M (t)(e
lU 

-1}] . (3.3)

3
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Since the numbers of events occurring in nonoverlapping intervals are
independent we have

(u)

~N(b)-N(a) 
= ~N (b1 = exp [M(b)~?4(a)J[e

iu
~l] . (3.4)

- (u)
N(a) -

Thus the random variable N(b)-N(a) has the Poisson distribution with
expected value M(b)-M (a) .

A pair of well known theorems describe the relationship
between the order statistics of a random sample from a uniform
distribution and the waiting times to the occurrence of events in a
homogeneous Poisson process. The proof of the first is given by Parzen,
The statements of both theorems and the proofs are presented here to
clarify this relationship.

Theorem 1. Let { N(t), t>O} be a Poisson process with constant intensity
X. Under the condition that N(T)=n , the times t1, t2 , . .  .t~ in the

interval (O,T) at which events occur have the joint probability density

function

f(t11 t2,...,t N(T)=n) = . (3.5)
- 

T

in which 0 < t
1 

< t, <...<t~ <T . Note that this joint conditional

density is the same as that of the order statistics of a random sample
size n drawn from a uniform distribution defined on the interval (0,1].

Proof: The probability that exactly n events occur in the interval
(O,T] is

,. n -XT
P(N(T)=nJ ~ e (3.6)

Let {t.} be a set of times such that o~~1
<t
2
< • c t  < T and choose a

set of increments 1h11h2, •,h }  such that the intervals [t1,t1 
-4.h
1],

[t2,t2+h2],
..•[t ,t+h ] are nonoverlapping. Since the increments are

nonoverlapping the number of occurrences in each interval and the
nthnber occuring elsewhere in (0,T] are independent. Thus the probability
that exactly one event occurs in each interval [t.,t.-4.h.] for i~i1 ,2...,n
and no events occur elsewhere in (O,T1 ~~~ 

1 1 1

4 
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The conditional nrobabilin of this event given that ~ (t) = n is

1 h. . ( 3 . 8 )
T 1=1

dv i~~~~in~ the t .  to decrease to infinItesimal ir.arenents, it fo l lows

that  the condit ional  densi ty  of t1,t,,. ..,t given that N(t)=~’J is as
stated in the theorem .

r: lco re .n 2. LOt :~~tj , t~ -~~: bo i k’oisson ~rocess ~~ t a c tn ~ z~ nz intensity
Let  t oe the t ime  of o~ currence of tne ath event . dnder the

condition that t = T , the n-i  wa i t i ng  t imes t1,t 2,. . . ,t~~~1 have the jo int

~robabilitv d e n s i ty  function

f(t1,t,,... ,t~~~1 i~~~~~

=

~~~ 

= . (3.9)

Note that this point conditional densit’-- is the same as that of the
order statistics of a random sample of size n-I drawn from a uniform
distribution defined on the interval (0,1].

Proof: Define t =0 and let s.=t. -t . be the j-th interarrival time
0 1 1 i—i

of the Poisson process. It is known that the interarrival times are
independently identically distributed random variables with the ex-
ponential distribution with mean l/~ . Thus the joint density of the
first n interarrival times is

n -Xs . Ti

f ( s 1, s2,. . .,s )  = 1! Xe 1 
= ~ exp{-X Y s~) (3.10)

i=l i=l

for which 0< S 1, S, , . . . , s~~ 1, <.. . The transformation mapp ing

(t 1,t 2,.. . , t 1) into (s 1, s2 , . . . , n - i~ 
has a Jacobian iden t i ca l ly  equa l

to uni ty .  Therefore the jo in t  densi ty  of the wa i t i ng  t ines is

- xt
g(t1,t2,. . . , t~ ) = Xne ri (3.11)

~~ 

~~~~~~~~~~~~~~~~ 
~~~~~
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-~i th  0~ t 1
-ct~~, .  . .

S~ :’~.c t th-~’ c:--’.-:-c -~ti c-’. c~~n r :’Jc-~
s~ime e x mo n en t i a i  d i s t n i h u t ~~cri , it h as t ie ga:::m~

- • _ t n-in ( .\t )
~ it ) = - - t>0 . ( 3 . l~~
~n n (n-l)!

It fcllows taat the condition.d density of t ,t - -- :1~~~~~ ;lv en t cct

t =T is as in the statement of the theorem .
n

A nonhomogeneous process with a continuous mean value function
ftc can cc :rans :crme ~ a a c zem -~cus ;o i ~~scn - ‘rocc ss 

‘1 t )  is cont inuous  and :ior1aecreas~ nz i ts  liv. ~rso f a n c t i c a  cat be
def ined  for al l  X>0 as the min imum va lue  of t SUCc.  tnat M(t)>X . Def ine
the s tochas t i c  process -

~~~~
‘-:) ,X> o:- —

- — l _ __ ~• —K (X)  = •~(M 1~ .) 
. (~~~~. ~~~~~

Th is is a Poisson ~rocess with an intensity f~cnction iJe~ tica ilv eouai
to one . f1i i~ transformation will be used in the proof f the two sub-
sequent theorem s. -
Theorem 3. Let ~~(t),t>0} be a Poisson process with c:-ntlauous mean
value function ~‘I(t). Under the condition that N(T) = n , the n waiting
times t

1
,t2,. . .,t in the interval (0,1] at which events occur are

random variables having the same distribution as the order statistics
of a random sample of size n from the probability density

h(X) 0<X<T (3.14)

where v(X) = dM (X)/dx is the intensity function of the Poisson process.
That is,

g(t1,t2,. . . ,t = 
n! v(t.) (3.15)n [M(T) } 1=1

with 0<t ,<t <...<t <T.— 1  2 n—

- 6
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Proof:  De f i ne  the inverse of the mean v a lu e  funct ion and the
s tochas t ic  process - K ( X ) , x > O }  as in the  nrecedtnd paracraoh . It follo~ s
:h:l t th~ :U 1 l t t i t~~ -~ 5 ~!(t .) = N. f;r i = I , 2 , . . . ,N ire t h e  f i r s t  N w a i t —

t i a c s  ~ro:i -
~ ‘-isson ith ~ut.~n.~it- - id t~~c -~I l v  ecua l  to

an d cccurr:n~ in t:ao :n:erva~ (.~,
‘-!i ~~~) 1 . dv tneor -~m 1 the

condi t iona l  dens i ty  of N 1 
‘(
\ 

-given th a t  N[ M( T) ] = n is 

,Y ‘
~(T~~ = _________ 

- -

The abso lute value of the J a cob i an  of the t r ans fo rm at ion  which  maps
(t ,, t ,,. . . , t )  in to  (X 1, X , , . .  ., X )  is g ivemi b y -

- ‘  — - -  I

i~ l t
1 

‘ 

~~~~~~~~~~~ 

-

~~

Jj = ~~~t~~) . ( 3 . l )
i=l

It follows that the conditional densit’: ~ (t1,t ,,. . . .t N it~ =~ ) is  as -

g iven in tao theorem. Note that the  d i s t r i bu t ion  f u n c t ion  cor r e smonc in ~z
t~ t i~ dens i ty  :~(~ is given b y

M (X)H ( X )  = M( T) 0<X < T • (5 .18)

Theorem 4. Let {N(t),t>0} be a Poisson process w i t h  continuous mean
value function M(t). Under the condition that the waitin 7 tine to the
nth event , t , is equal to 1, the n- i waiting tines t1

<t ,< . . . <t~~ 1 
in

the interval (0,T) at which events occur are random variables having
the same distribution as the order statistics of a random sample of
size n-i from the probability density

h(X) = 0<X < T (3.19)

where V (X )  = is the in tens i ty  funct ion of the Poisson process.

That is,

- ._

~g1IILL. 
______________ 
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n - i  for  th e  condition t = T

4 ln whIch fl 15 t t C  numner 0 c- e at s  o b s e r ’e c  an ~hO ttCl”.tj (3,TJ e~ a
st o c h a s t i c  ar ace ss  (N ~ :I ,t:- T . Ccr~si 0:10 2.-not es:s H~ :~~~t~ is a
Poisson process with  continuous mean value function ‘1(t~~. If H0 is
true the wai t ing  tine s t ,t ,,...,t have the same d ist r ibu tion  as the

in
order s ta tis t ics  of a rand om samp le of si:e m from the d is t r ibut ion
H(X ) =M (X) /M( T) . Define H (X) to be N (X) /N(T )  . Then the s t a t i s t i c

= in f~ [H (X) -H( X) }~~dH(X)  (3 .2 5)

has the same dis tr ibut ion as the Cramer-von Mises s t at i s t i c  for a
sample of size in from H(X) . The s t a t i s t i c  can be wr i t t en  in the form

in ~!(t ) 2 -,

= _~~~_ 
N 1 

- 
-

~~ (3  

~~- 
a 12m - ~~~

(_ _
~~ ~
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which is more suitable for computation.

If the mean value function contains an unknown parameter Q,
then it is desirable to estimate the parameter from the data by calculat-

ing a statistic If the estimator 0m satisfies the properties

l isted by Darling , then the statistic

m 1M~t ~ ) 2 i 12
~2 = _ ~i~ + v i  ~ j’m j _ J  (3.25)
m 12m L. 2m

~~ L~1~~~m)

may be used to test the hypothesis H
1
: CN(t)t>0} is a Poisson process

with mean value function M (T;Q) for some Q . The test is truly usable

if the statistic C~ is parameter-free.

4. THE RELI~LBILITY GROWTH PROCESS

• Crow (8) has shown that the improvement in reliability of a
complex system undergoing development in a test-fix-test-fix environment
can be modeled by a certain family of nonhomogeneous Poisson processes.
Crow (1) uses this same family of processes to represent the occurrences
of failures in complex repairable systems . For this class of processes
the mean value function is of the form

M(t) = Xt~ X>0;8>0;t>0 (4.1)

in which X>0 can be interpreted as a scale parameter and ~>0 as a shape
parameter. The corresponding intensity function is

v(t) = ~~~~~ t > O . (4.2)

This family includes the homogeneous Poisson processes as the special
case in which B equals unity.

The results of the preceding section can be used to derive a
goodness of fit test for this class of processes. With the index m
defined as in Section 3, it follows from theorems 3 and 4 that with

9
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app lication of the appropriate condition the random variables 
~~~~~~~~~~~

have the same distribution as the order statistics of a random samp le
for the cumulative distribution function

I \B
H(X) 

~~~~~~~ 
O<X<T . (4.3)

With the appropriate choice of a estimator 0 the statistic

B 2

c~ = ffl ÷~~~[~~) 
2~~ i] (4.4)

can be used to test the hypothesis that the observation s {t~ } are from
Poisson process with mean value function of the form M(t) = xtB. Darling
has shown that the distribution of this test statistic is independent

,— of the true value of the parameter 8. In fact it is distribution free
over the class of distributions such that

F(X;B) = [R(X)] 
B 

8>0 (4.5)

for some cumulative distribution function R(X).

As Crow has shown conditional maximum likelihood estimates of
B can be derived from equation (3.15) for the case N(T) = n and from
equation (3.20) for the case tn = T. These conditional maximum

likelihood estimates are given by

m
m (4.6)

minT - ~~lfl t~
i=l

in which m = n for conditioning on N(T) = n and m = n-i for conditioning

10
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on t~ = T. This is a biased estimator for B with expected value

E(~) = -llI-j - B  . (4.7)

An unbiased estimate can thus be provided by

rn-i 
• (4 .8)

minT -
1=1

It can be shown that the estimator 8 given in equ%tion (4.8)

should be used in equation (4.4) to calculate the statistic C~ . This must

be done in order to satisfy the conditions n~cded for C~ to have the
limiting distribution describe4 by Darling. In particular, the
condition

Urn mE (1-B) = 0 (4 .9)

is satisfied since ~ is ~inbiased . This condition is not met by the
estimator in equation (4.6).

5. DISTRIBUTION OF THE STATISTIC

In order to use the statistic C~ to test the goodness of fit

hypothesis it is necessary to establish a table of critical values for
selected significance levels. The small sample distribution of the

statistic C~~given in equation (4.4) is not analytically tractable.

Moreover, the limiting distribution has only been defined in terms of

its characteristic functipn . The distribution of C~ has been det~-rmined
through Monte Carlo simulation for values of m from 2 to 20 and :-~rin equal to 30, 60, and 100.

The Monte Carlo simulation consists of repeated samples of

11
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size m from the uniform distribution on the interval (0,1) and
computation of

rn-l (5.1)

-~~ ln U .
j=l ~

and

= - 
2i~1] (5.2)

in which (u
5

} is the random sample and {u }  is the corresponding set of
order statistics. For each value of the index m there are 150,000
replications of this sampling.

Selected percentage points of the distribution of C~ are
presented in Table 1. The 1-a percentile of this distribution is to be
used for a goodness of fit test with level of significance a. The
accuracy of these percentage points can be determined by using the fact
that any percentile of a random sample is asymptotically normal. Each
sample of 150,000 actually consists of ten independent samples of size
15,000. The sample variance of estimate ~~ of the p-th percentile is

used to estimate the precision of the p-th percentile of the combined
sample. Table 2 contains interval estimates of the percentiles of the

distribution of C~~~ with a confidence coeff icient of .90.

The sample momen ts from the simul ation can be used to determine
how rap idly the dis tribution of C~ is converging to the limi ting
distribution . Darling provided a means for calculating the moments
of the limiting distribution . The mean, variance , and third central

moment, u3, of the sampl ing distribution of C~ and of the limi t
distribution are given in Table 3. The sample moments indicate the
distribution for in equal to 100 matches the limiting distribution quite
closely. The mean , variance, and third central moment from the simula-

H tion for m equal to 100 are each within one percent of the respective
true moment of the limiting distribution . Hence the percentiles appearing
in .~able 1 for m equal to 100 can bc used for larger values of m. Figure
1 contains plots of the empirically obtained density function for m equal
to ! and in -qual to 100.
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6. CONCLUSION

The percentiles in Table 1 provide a set of critical values
for the Cramdr-von ?4ises goodness of fit statistic for the case in which
an exponential parameter is estimated. This table can be used to test
the hypothesis that a random sample of size rn comes from a parametric
family in the class of distribution of the form

/ \O
F(X;Q) = (~R(X)) 0>0 (6.1)

in which R(X) is some cumulative distribution function. The parameter
9 is to be estimated from the data by an appropriate statistic.

The distribution of the Cram6r-von Mis~s statistic can alsobe used to test hypotheses on the goodness of fit for certain stochastic
processes. In particular, the hypothesis that a stochastic process is
a member of the family of nonhomogeneous Poisson processes with mean
value function of the form

M(t) = Xt~ (6.2)

can be tested through use of the statistic.
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TABLE 1

PERCENTILES FOR THE DISTRIBUTION OF C~

.80 .85 .90 .95 .99

2 .138 .149 .162 .175 .186

3 .121 .135 .154 .184 .23

4 .121 .134 .155 .l9~ .28

5 .121 .137 .160 .199 .30

6 .123 .139 .162 .204 .31

7 .124 .140 .165 .208 .32

8 .124 .141 .165 .210 .32

9 .125 .142 .167 .212 .32

10 .125 .142 .167 .212 .32

11 .126 .143 .169 .214 .32

12 .126 .144 .169 .214 .32

13 .126 .144 .169 .214 .33

14 .126 .144 .169 .214 .33

15 .126 .144 .169 .215 .33

16 .127 .145 .171 .216 .33

17 .127 .145 .171 .2l~ .33

18 .127 .146 .171 .217 .33

19 .127 .146 .171 .217 .33

20 .128 .146 .172 .217 .33

30 .128 .146 .172 .218 .33

60 .128 .147 .173 .220 .33

100 .129 .147 .173 .220 .34

14
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TABLE 2
INTERVAL ESTIMATES OF PERC ENTILE S OF ThE DISTRIBUTION C2

90% CONFIDENCE COEFFICIENT I]

.80 .85 .90 .95 .99

2 .1372- .1378 .1485-.l493 .16l3- .1618 .1748-. 1753 .1863-.l866

3 .1203- .1212 .1346- .1356 .154l- .1548 .1828- .1843 .2293-.2320

4 .l204- .1211 .1337- .l346 .1539- .1552 .1901- .1924 .2761- .2819

S .1202— .1212 .1359-.1372 .1588- .1605 .1984— .2006 .2923— .2978

6 .1220- .1232 .1384-.1395 .1609-.1633 .2018- .2054 .3029-.3115

7 .1233- .1242 .1396- .l406 .1639- .1652 .2062- .2096 .3128- .3202

8 .1233- .l245 .1400-.14l4 .1644-.1663 .2084-.2l06 .3143- .3238

9 .1245- .1253 .1419- .1428 ,1667-.1683 .2109- .2130 .3l91-.3261

10 .1243- .1257 .1416- .l429 .1663-.1684 .2108- .2136 .3208-.3264

11. .1253— .126 3 .1429— .1439 .1681- .169l .2128- .21 60 .3249 .3302

12 .1260- .1268 .1431- .1441 .1679-.l697 .2124 .2151 .3215- .3276

13 .1263- .1272 .1440- .1451 .1695— .1711 .2140— .2164 .3230— .3312

14 .1259- .1269 .1435-.1445 .1686-.1697 .2130- .2154 .3261-.3322

15 .1256- .1270 .l433- .1451 .l680— .l707 .2138— .2164 .3257- .3301

16 .1266- .1278 .1440- .1454 .1701- .1714 .2l46- .2174 .3216- .3291

17 .1268- .12 81 .1446- .1455 .1697- .17l3 .2152- .2181 .3288- .3351

18 .l271- .1278 .1450- .1462 .1702- .1721 .2151- .2184 .3258- .3344

19 .1266— .1281 .1443- .1462 .1699- .1721 .2154- .2184 .3292-.3359

20 .127l— .1280 .1451- .1461 .1706-. 1725 .2162- .2188 .3296- .3358

30 .1275— .1286 .1451- .1470 .1715- .l733 .2172- .2197 .3287- .3355

60 .1276- .1290 .1459- .1475 ,1727- .1742 .2200- .2219 .3310-.3357

100 .1284- .1297 .1462- .1479 .1720-. 1742 .2182- .2212 .3332-.3392
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TABLE 3

MOMENTS OF ThE DISTRIBUTION OF C2

M Mean Variance

2 .1124 .00082 .000026

3 .0929 .00179 .000107

4 .0898 .00267 .000281

5 .0892 .00319 .000409

6 .0894 .00347 .000471

7 .0899 .00375 .000550

- 
8 .0897 .00383 .000565

9 .0903 .00393 .000550

10 .0902 .00391 .000546

11 .0906 .00405 .000599

12 .u~06 .00405 .000602

13 .0910 .00410 .000609

14 .0908 .00409 .000603

15 .0909 .00411 .000619

16 .0911 .00411 .000599

17 .0914 .00418 .000643

18 .0915 .00421 .000639

19 .0914 .00418 .000617

20 .0914 .00424 .000625

30 .0917 .00425 .000632

60 .0920 .00429 .000629

100 .0922 .00432 .000644

.0926 .00436 .000640
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