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ABSTRACT

Understanding informal descriptions of proccsses rcquires access to a body of
knowledge about the process domain, and the ability to use that knowledge appropriately.
A great deal of effort has been spent in developing methods for organizing and using
domain knowledge; relatively little has bcen done to automate acquisition of such
knowledge.

Since English process descriptions reflect the underlying structure of the process
domain, knowledge about that structure may be inferred from the description itself. A
categorization of important structural knowledge classes is presented, and a production
system described which interprels English-like statements on the basis of existing
structural context. A sample of the rules from this syslem is examined. By assuming
conditions required in the rule patterns when a linguistic structure is not interpretable, it
is possible to infer a great deal of structural knowledge about a process domain. This
incremental growth of domain structure presents an alternative to constructing
process-understanding syslems applicable only to very restricted domains, or requiring
extensive additions of domain-specific knowledge by human experts for each new task.
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1. INTRODUCTION

People can acquire an understanding of a proccss from a variety of sources -- for
example, from repeated execution of the process under another person’s guidance or from
observation of another person carrying it out. Understanding is then a result of
generalization from experience. An understanding of a process may also be acquired from
a description, encoded in spoken or writlen English (the back of a parking ticket), in
pictures (the back of a box of Minute Rice), or in a formal description language (the
“algorithms" section of Communications of the ACM).

Process understanding can be measured along several dimensions. One measure is
the ability to execute the process on actual "dala,” or to simulate it on "symbolic data."
Ability to describe the process is another mcasure. Understanding may also be measured
by the ability to prove thcorems about the process, to give a rationale for its organization,
or to modify it to meet altered goals.

The SAFE (Spccification Acquisition from Experts) project at ISI has been
investigating process understanding by translating a process description written in an
informal, imprecise language with English-like semantics (hereinafter referred to as
English) into a process specification language with formal syntax and semantics. A special
interpreter exists for the latter language, so processes specified in its notation may be
executed on appropriately encoded data.

The nature of English makes it unreasonable to define any mathematical measure of
how well a process description is understood; this is solely within the competence of
human judges--in particular, the human(s) who produced the English description. The
formal specification itself, as well as observable behavior produced by its execution, may
be used to make this judgment.

We have built an operating prototype process-understanding system, SAFE, which
has “"understood” three short (under 200 words) process descriptions. In this report no
attempt is made to describe this entire system [3]. We confine our attention to linguistic
aspects of the understanding problem, focusing on the use of a process domain mode! to
interpret English statements.

Although some hiph level correspondence exists between our investigations and the
issue of representation for episodic memory [1], our concern is not with the human ability
to store process representations and exccute them; rather, what we are attempting to
automate is the ability to translate the ability to translate from one observable
representation (English) into another obscrvable representation (a formal operational
specification) which we are atlempling to automate. This translation is a central part of

This report presented as a paper ai the Workshop on Pattern-Directed Inference Systems, Hawaii, May
1977, and published in the SIGART Newsletter 63, June 1977,




computer programming; the molivation for automating the task has beer; outlined
elsewhere (3]

2. DOMAIN KNOW LEDCE

A compiler understands a formal process specification, such as an Algol program, at
the level of "“abihty to execute,” which requires no model of the process domain’s
structure. If a statement EMPLOYEE [N,3] <- EMPLOYEE [N,3] + 30 increases an
employee’s Social Security number by 30 when it was intended to give him a raise, the
program will produce incorrect resulls, but we do not blame this on the compiler. Nor
should we, for the compiler has insufficient information to sce anything wrong with this.

If the compiler is a human, however, and the specification is informal, more
intelligent behavior is expected. If | ask the computer operator to “"Logout Goldman" | do
not expect as a reply "Goldman is not a job number". Rather, | expect the operator to
convert the user name "Goldman" to the job number associated with that name, and logout
that job number. Only if that conversion is ill-defined would | expect problems. If | ask
someone to “"delete my .TMP files” | expect him to fill in the implicit relation and delete
files whose extension is ".TMP".

English descriptions of processes are infarmal in a variely of ways. Consider some
examples from the TENEX Execcutive Manual [14]:

LOGOUT . .. clears the user’s job and returns it to the
available job pool.

To understand this, we necd to know (or infcr) that an association can exist between a
"user” and a "job", whence “clear” can indicate breaking that association. It also helps to
view “"available job pool” as a set of “jobs”, whence “return” indicates an addition to that
set, and "it" can sensibly refer to the "job" which was cleared.

T1YPF ... 7o print symbolic files on your tcrminal . . .
Since terminals are output devices, it makes sense to print information on them. However,
in a clause like "to list the names of files on directory SUBSYS . . .", the phrase "on
directory SUBSYS" makes more scnse when treated as a refincment to "tiles” than as the

target location of "hst".

LINK ... causes each of two users to be able to sce output
which is being typed on the other's terminal.

If our model of the underlying domain indicates that each user is associated with a
particular terminal, this makes sense. But, if we have a more accurate model of TENEX, and
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know that terminals are associated with attached jobs, in a one-to-one fashion, and that
jobs are associated with users, possibly many-to-one, then the “"terminal for a user"” is not
well defined unless the user happens to have exactly one attached job. (In fact, the
document proceeds to explain the action taken by LINK in the ill-defined cases.)

These examples demonstrate some of the ways in which the structure of a process
domain can affect the interpretation placed on English descriptions. In this paper we shall
consider domain knowledge only as it applies to interpreting semantic relationships
between connected, intersentence linguistic consiructs. towever, the same knowledge
must be used to analyze relationships between linguistically unconnected information in
English process descriptions [3].

3. REPRESENTING A PROCESS

Many abstractions are available for specifying processes (e.g., Turing machines and
Algol programs). While formally equivalent, the various representations have proved
useful for different purposes. We have chosen an abstraction designed to limit the task of
understanding English descriptions to one of removing informality, which consists primarily
of the following:

® Resolving ambiguities.
() Filling in unspecified, but required, information.,
®  Explicitly linking information distributed in the description.

We view a process as the controlied application of ACTIONs to OBJECTs. The effect
of applying an ACTION to OBJECTs may be to directly invoke further ACTIONs, to create
new OBJECTs or destroy existing ones, and to create or destroy ASSOCIATIONs between
OBJECTs. The environment in which the process operates consists of a data base of
these associations, some of which may exist prior to its initiation. The control of the
process consists of conventional programming language control structures: sequential
invocation of actions, conditional invocation of actions based on the content of the data
base, demonic invocation of actions based on additions to the data base, and iteration over
sets of objects.

Objects, associations, and aclions are primitive in this view. Issues of object and
relationship representation are not addressable in this formalism, for we believe such
issues rightfully belong in the task of process implementation, not process specification.

It was shown above how interpretation of informal statements about a process
depends on a context of various types of objects interacting in particular ways. We call
this context a domain model. In this report we are primarily concerned with the use of

ot e g S S s A TR i £

| —




this model in understanding process descriptions and with techniques for inferring pieces
of the model from the description itself. We begin by examining the components of a
domain model.

4. COMPONENTS OF DOMAIN MODELS

An essential part of a domain’s structure is the categorization of objects into types.
TENEX, for example, manipulales jobs, users, files, 1/O devices, directories, and many other
object types. Virtually all the information we use about a domain is parameterized by the
domain types.

The objects manipulaled by a process are instances of these types. Most objects
manipulated by a process are data to that process, that is, the objects themselves are not
mentioned in a specification of the process. However, domains may contain distinguished
objects which are explicitly mentioned in process descriptions. In the TENEX manual, for
example, we find references to the 1/0 devices PIR and LPT, to the directory SUBSYS, and
to access modes READ, WRITE, EXECUTE; these are all instances in the process domain.

Objects in the domain do not become associated in arbitrary combinations. TENEX
maintains a table of associations between directories and passwords. LOGIN creates a new
association between a job and a user. As a job accesses files, lernary associations
between jobs, files and access modes are crcated. However, no meaningful associations
exist between I/0 devices and passwords, or between directories and dates. We use the
relational data base formalism [/,9,11] to describe the permissible associations in the
domain.

In this formalism, a relation is a time-varying sct of associations (n-tuples). A given
relation is defined over a fixed number of atlributes. Each attribute of a relation is tied to
a single type; several attributes may be tied to the same type. A tuple in a relation is a
pairing of attributes with objecls, subject to the restriction that an object may be paired
with an attribute only if that objcct is an instance of the type to which the attribute is
tied. We will define relations with the notation:

reldef ( <relation> (<attributc> <type>). . .(<attribute> <type>) )
For example, we might denote a relation control-tty by:
reldef ( control-tty (tty terminal) (controllce job) )

For tuples within a relation, we will use the notation:

<relation-name>( (<attribute> <object>). . .(<attribute> <ob ject>) )




Thus, control-tty ( (tty 11Y3) (controllee j/) ) would indicate that the device T1Y3 is
associated with the job J7 in the control-tty relation. The ordering of attribute-type pairs
in a relation definition, and of attribute-object pairs in a tuple, is arbitrary.

The actions performable in a domain cannot be applied to arbitrary operands, but
only to instances of the appropriate type. TtNEX can DELETE a file from a directory,
LOGIN a user, LOGOUT a jeb, or ASSIGN a device to a job. But it makes no sense to
LOGOUT a file or DETACH an account. We can capture the typing restrictions on operands
to an action with a notation analogous to that used to define relations:

actdef ( <action> (<attribute> <type>). . .(<attribute> <type>) )

The types of a domain nced not be disjoint. They fall naturally into a lattice under
the relation subtype. "I/O device” may be subcalcgorized into “input device” and
"output device,” each a superlype of "terminal®.

A domain generally has constratnts on the state of the association data base.
Certain combinations of tuples may not coexist, even though they are permissible
individually. A common example of this situation is when a relation is constrained to be a
function. We will indicate this by:

function ( <relation> <attribute> )

The statement function ( control-tty tty ) would indicate that the control-tty relation
defined above cannol simultancously include two tuples with the same job but different
controlling terminals.

Certain domain typecs have sets as instances. Such types are called set-types.
"Directory” may be modcled as a sct-type in the T1ENEX domain. Sels are generally
homogeneous -- all members of a given set are instances of a single domain type.
Furthermore, all sets which are instances of a given set-type will have the same typing
restriction on their members. This restriction will be indicated by:

scttype-clements ( <set-type> <type> )

Thus, settype-elements ( directory fule ) indicates that the members of any directory must
be files.

The associations that exist at a given time during execution of a process need not
be independent; the exislence of onc or more associations satisfying certain restrictions
may imply the existence of other associations. I the implication holds at all times, the rule
of implication is an inference rule of the domain and is part of the domain model. An
example of such a rule would be, "If a file 1s named ‘message,” then its non-owner
protection is append-only."




In summary, a domain model consists of information about types of objects in the
domain, the classes of associations which may be formed between those objects, the
actions which may be performed on those objeccts, particular instances of the object types,
particular associations which exist between those instances, etc. This information may be
characterized as:

® time-independent -- Whereas any process crcates and destroys associations
(information) as it operales, the domain structure information remains static.

< constraining rather than delermining -- Bach picce of domain description serves
te constrain the universe of processes which can be built within the domain.
The domain structure does not determine a particular process, however, but only
an infinite class of processes.

® needed for the non-performative aspects of process understanding rather than
for actual process execulion -- A process within the domain must conform to the
constraints imposed by the domain, but has no necd to access the descriptive
information during its operation.

5. SOURCES OF DOMAIN KNOW LEDGE

Some knowledge of domain structure needed to understand an English process
description may be "background" knowledge, not contained in the description itself.
Construction and use of a large body of background knowledge has been a prime focus of
much Al research, as it applies to process comprehension [16] and to more general natural
language understanding as well [17]

Some experiments reporled by Balzer [2], however, indicated that, for the degree of
process understanding we are considering, humans are able to glean sufficient knowledge
of domain structure from the text of the description itself. Such information is conveysd
in two modes. One is the deciaration--the explicit statement of structural information.
Declarations are frequently available in formal languages. They are also commonly found
in English process descriptions, and have been processed in various forms by a few
English-like language processors [4,12]

Structural characleristics of the process domain may also be implicit in operational
parts of an English description, playing a part in determining the words and syntactic
structures chosen to describe the process. By judicious inference from observable English
patterns and limited interaction with a knowledgeable human informant, it is possible to
uncover much of the implicit structural information.




6. LINGUISTIC ANALYSIS OF ENGLISH DESCRIPTIONS

The first action taken by SAFE in understanding an English process description is to
perform a linguistic analysis of the English, which serves two purposes. One is the
conversion of the English to a “"descriptive” format; the second is to detect new knowledge
of the process’s domain which is either implicit or explicit in the text.

The descriptive format is built from six description classes (some of which resemble
the descriptor types of KRL [5]): event/relation descriptor (ED), object descriptor (OD),
set descriptor, conditional descriptor, iteration descriptor, and conjunction descriptor.
Only the first two of these will be of major concern in the remainder of this paper.

An ED is composed of an action or relation, and a (possibly empty) set of
attribute-OD pairs, where the attributes are a subset of those in the definition of the
specified action or relation. The ED thus describes an event or an association by naming
the event’s action or the association’s relation and describing objects for some or all of
the attributes of that action or relation. EDs will be indicaled by:

[<relation/action> <attribute> = <OD> ... <attribute> = <0D> ]
ODs are composed of a domain type and any number of modifying EDs. An OD is a
descriptive reference to a domain object; the referenced object must be an instance of the
type indicated and must participate in events or associations as indicated by the EDs. ODs
will be indicated by:

{ <type> <ED>..<ED>}

Each modifying ED must contain at lcast one attribute paired with the special symbol "s"
which indicates the use of the described object in the modifying event/association.

Another form of reference is a direct pointer to a particular domain object. In all
contexts in which an OD may be used as a reference, a direct pointer (internal object
name) is acceptable.

In general, the linguistic analysis converts English noun phrases to ODs and clauses
to EDs. For example, the clause "print the text" would become [ OUTPUT info = {TEXT} ]
while “"the printed text" would be converted to {TEXT [ OUTPUT info = x ]}

The linguistic analysis is performed by a production system. The rules in this production
system have the general form

SW), CV) ==> AWV)

where § is a pattern (interpretation state) in terms of variables V which can match an
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English structure, C is a condition based on domain structure, and A some action. When a
structure being processed matches an S pattern, binding (some of) the variables V, and
condition C holds, then action A is executed. This action i1s one which in general modifies
the ED or OD being constructed as well as the English structure. The knowledge
expressed by the rule is: "A is a procedural representation of the meaning of § under
condition C".

In the "concrete noun” rule, for example, $ matches a noun phrase with a concrete
noun as its head, binding v to that noun. C tests that vy names a known domain type,
binding v, to that type. The action A then makes v, the type of the OD being constructed.

New structural knowledge of the domain can be obtained when an interpretation
state S is matched but the corresponding condition C does not hold. By assuming C, the
English can be understood. In the concrete noun :ule, if the noun bound to v, was not
known to name any domain type, a new domain type would be created and v, asserted to
be the name of that type.

In summary, the production rules express the meaning of linguistic patterns,
generally in terms conditional on the existing domain model. Some of the patterns are
specific to particular English words or small classes of words; others are based on surface
syntactic structures; still others are based on semanlic patterns which could arise from
many different words and syntactic forms. When the known structure is inadequate to
make sense of the language, sufficient additional structure is assumed to enable application
of a rule.

We now present a partial sample of the languape analysis rules in SAFE. Nothing
would be gained by an exhaustive listing, for the set of rules is not closed in any sense.
Rules were generated as required by the example descriptions selected for the prototype
system. Rules were added or generalized but not replaced for new examples. This sample
is selected only from rules which can be used to infer structural properties of a domain.

The notions "modify” and "be an argument of" are commonly used in describing
surface syntactic properties of English. In the discussion of the analysis rules, we extend
these notions straightforwardly to the EDs and ODs which result from analyzing English
structures. To present the rules precisely would necessitate introducing considerable
notation. We shall simply describe the rules in terms of patterns, conditions, and actions
and trust that the reader will see them as easily formalizable.

Verb Regularities
The actions and relations of a domain are generally named in English by verbs. In

the surface syntactic structure of English, verbs are associated with cases, which are
marked by word order or prepositions. When a verb is used to reference a particular




action or relation, the cases of the verb and atiributes of the action correspond in a
predictable way. This case-attribute mapping for the verb "print" and the action
“"OUTPUT" is:

verbmap ( print OUTPUT (objecct info) ( (on at) where) ) given:
actdef ( OUTPUT (Ginfo file) (where output-device) )

In other words, the direct object of the verb "print" can be expected to specify a file for
the action QUTPUT, and the device which QUTPUT should write to is likely to occur
following an "on" or an "at" preposition. Given 2 verb V, an action or relation R, and a
surface case C, verbmaps determine a (possibly empty) set of attributes of R whose
content could be encoded in case C of verb V. Similar uses of surface verb regularities
can be found in a wide varicty of natural language “parsers” [6,15]. The verbmaps enable
SAFE to construct the argument pairs for EDs generaled from English clauses.

Implicit Use of Domain Structure

Many rules are present to pick up references to domain structure which are implicit
in the English -- that is, they are “"presupposed” by the language used rather than being
asserted by it. We shall categorize each rule roughly according to the category of domain
structure with which it deals.

Type and Instance Rules. Use of concrete nouns in English is the most common
method for naming types. When such a noun appears as the head of a noun phrase, it may
name a domain type. "When a user types his password" would indicate that the nouns
“"user" and "password” name types.

Proper nouns, on the other hand, refer to particular objects. When a new proper
noun (such as "SUBSYS") appears, it is assumed to name a new object. Since every object
must be an instance of at least one domain type, a new type is created and kept on a list
of “invented” types. In certain situations described below, an invented type may be
replaced by another type, thereby revealing the ncw object as an instance of a known

domain type.

Adjectives, like proper houns, name particular objects. A new object and invented
type are crealed when a new adjective is encountered. “Read-only” in "a read-only file",
for example, names an instance of a type we might call “file protection™.

When the surface argument of a verb is being processed, the verb’s ‘rame may
predict a specific type for that argument. If the argument is transformed into an instance
of an invented type, then the invented type may be merged with the expected one. For
example, "print the file on the XGP" indicates that "XGP" is an instance of output-device,

the type predicted by “print."




10

Relation Rules. When one OD modifies another, there is some relationship in the
domain between their types. This situation can arise from a variety of English
constructions, involving noun phrases, adjectives, proper nouns, and prepositional phrases
(e.g., "a read-only file,” "the LISP file,” " the password for the user,”
“"the user’s teletype,” etc.).

" on

the file protection,

The implied relation may be direct as in "user’s password,” indirect as in "user’s
teletype” (short for "user’s job’s teletype"”) or ambiguous as in "user’s files" (those in his
directory? Those attached to his job?).

Certain verbs in English can relate two or more ODs and yield the same
interpretation as the above constructs. Some examples are: "if the program is in LISP,"
“"each user has a password,” "the protection assigned to the file."

A variety of rules recognize this “description modifying description” situation.
Among them are rules for recognizing NP’s modified by NP’s, NPs modified by adjectives,
and NPs modified by prepositional phrases. All these rules convert the NPs involved to
0ODs, and build an intermediate form -- (MODIFIES 0D} 0Dp) -- eventually trigpering
another rule which encodes the knowledge for interpreting implied relationships (unless
the ODs are in some way special and a more specific rule consumes the pattern first).
When an implied relationship exists between two or more types, and the known domain
structure contains no such relationship, this rule creates a new one. So “"user’s directory"
could yield a new relation definition:

reldef ( user-directory (u user) (dur directory) )

Alssociation Rules. When an OD modifies an instance, the OD can be assumed to
describe the instance. This amounts to asserting the instance to be of the type present in
the OD, and asserting each ED of the OD to hold on the instance. Thus, if "LISP file" were
transformed into the OD {file [source-language file = #* language = LISP ]} then "(the)
LISP file MYPROG" would yield both the fact that "MYPROG" named an instance of a file,
and that the source language of "MYPROG" was LISP.

Constraint Rules. The definite article "the” modifying an OD generally indicates that
the description will reference a unique object in the context in which it is used -- perhaps
simply because the process guarantees uniqueness in the particular context, or because
the domain structure constrains the data so as to guarantee uniqueness in all contexts. In
the latter situation the definite article may be "consumed" by an existing or assumed
functionality constraint. So, even if it were not known that each TENEX user had a single
password, an English phrase such as "the user’s password" could yield the structural
knowledge function ( user-password pw ).

TSP AT W e s
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Explicit Declarations

A large number of linguistic patlerns can indicate domain structure declarations.
Consider the following:

STRUCTURE CATEGORY  EXAMPLE

Instance <LISP> is a directory.

Constraint Each directory has exactly one password.
Association The password for <LISP> is LISP.

Constraint The directory <DOCUMENTATION> may contain no

read-protected files.
Subtype All user-names must be directory names.

One feature common to these declarative forms is that the main verb does not name
an action. In all cases, the resulting ED will contain a relation rather than an action. The
distinctions between the various forms of declaration depend on whether arguments in this
ED are ODs or instances, on universal and existential quantifiers, and on negatives. Notice
that a declaration may have embedded within it constructions which rely on the implicit
domain structure rules (see Constraint Rules) for their interpretation.

Other Rules

We mentioned that some rules are used to understand but not to infer domain
structure. An example of this is a rule for nouns which reference relation attributes. The
noun “"number,” for instance, is commonly used to refer to the "size" attribute of the
cardinality relation, where

reldef ( cardinality (s set) (size integer) )
Such nouns are given case frames much like those of verbs. For "number” we have
nounmap ( number cardinality (% size)Xof s) )
A rule exists which looks for noun phrases headed by common nouns with nounmaps
defined on them. This rule enables SAFE to translate "the number of files” into an OD for
an integer which is associated with a set of files under the relation "cardinality." We never

make the inductive leap of inferring that a noun names an attribute of a relation; nounmaps
exist only as built-in linguistic knowledge.
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7. EXAMPLE

A short example will serve to demonstrate how the individual production rules work
together in a way that permits simultaneous analysis of English statements and
augmentation of the domain model. Suppose a domain mode! as depicted in Figure 1 exists.
This model contains the facts:

® A directory is a set of files.

® A terminal is a kind of output device.

® A relation ‘control-tty’ associates jobs with terminals.

@ A relation ‘job-user’ associates jobs with uscrs.

® The action QUTPUT operates on a file and an output device.

® The action DELETE operates on a file.

We now examine the behavior of the production rules in understanding the following
(artificial) example, which might be part of a description of the process of deleting a file:

(1) Print the filename of each file deleted on the user’s terminal.

(2) Never delete the file in the directory of the user with filename ‘MESSAGE’.

The actual input to SAFE is a parenthesized version of the English:
(1P) ((Print) (the filename of (each file ((deleted)))) on (the (user’s) terminal))
(2P) (Never (delete) (the file in (the directory of (the user)) with ((filename)

‘MESSAGE")))

By parenthesizing clauses, verb phrases, and noun phrases at all levels, most
common cases of syntactic ambiguity are removed. In (1P), for example, it is clear that on
the user’s terminal serves as an argument to print, rather than an argument of delete or a
post-modifier of name.

... cach file deleted . . .

The concrete noun (CN) production recognizes file as the name of a known domain type,

Raita i & oottt v R R i
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and builds an OD Of specifying file. Delete is recognized as a verb naming a known action,
and the relative clause production creates an ED with action DELETE and adds it to O,. Of
now describes a file which has been operated on by DELETE.

... the filename of cach file deleted . . .

Filename is a new concrete noun, which can be consumed by CN if a new domain type is
created. This is done, and an OD O[n specifying the new type is constructed. Now the
prepositional phrase modifier (PPM) production can apply if a relation exists associating
the types file and filename. None does, sO one is created. We will call the new relation
‘file-designator’. PPM adds an ED to Ofn restricting the filename to being one associated
with the file described by O, in ‘file-designator’.

The definite article the can be consumed by the definite article (DA) production if
‘file-designator® is in fact a function (one name per file). This is assumed, completing
processing of the NP.

... the user's terminal . . .

Both user and terminal are consumed by CN, generating ODs 0,, and 0. Syntactically, the
two nouns stand in a modification relationship. 1he domain model contains no relation
between user and terminal, but it does contain a relational path between them. That is,
‘user-job’ can map from a user to a job, which ‘control-tty’ can map to a terminal. The
domain condition on the MODIFIES production is satisfied by such a path, and a new
relation, ‘user-terminal’ is created and defincd to be the composition of ‘user-job’ with
‘control-tty’. An ED is added to O, restricting the terminal to be one associated with the
user described by O, in ‘user-terminal’.

DA is once more applicable if ‘user-terminal’ is in fact a function. This is not known.
(It would be if the two relations which were composed to form ‘user-terminal’ had been
known to be functions.) To consume the definite arlicle, functionality is assumed. This is
actually an invalid assumption; since TENEX permits a-.user to have mulliple jobs,
‘user-terminal’ does not necessarily determine a unique terminal for a given user.

Print the filename of each file deleted on the user’s terminal.

The verb map for print causes the clause production to make ofn and O, the arguments of
an ED with action QUTPUT. The universal quantifier each, through productions not
described here, has embedded O,n as the “"generic clement” of a set descriptor S!n. A
loop constructor production recognizes the pattern of an action applied to a set, when the
actdef of the action does not specify a set. The production creates a loop descriptor,
specifying a loop over S[n. The loop’s body is the ED describing the application of
OUTPUT to O,n (the set’s generic element) and O,.
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In summary, linguistic analysis of this sentence has augmented the domain model by
adding a new type, filename, a new relation, ‘file-designator’, and a relation ‘user-terminal’
defined as the composition of two previously known relations. Pl itself has been
represented by a loop descriptor, saying in essence: "for each filename which is associated
in ‘file-designator’ with any file which has been the operand of DELETE, output that
filename on the terminal which is associaled in ‘control-tty’ with a job associated in
‘user-job’ with the user."

Never delete the f.le in the directory of the user with filename ‘MESSAGE".

Our description of the analysis of (2) will be limited to highlights emphasizing points
not observed in the analysis of (1). All the nouns are consumed by CN without need for
any assumptions, filename having now been added to the domain model. Quoted strings
are treated as proner nouns, so ‘MESSAGE’ can be consumed by the proper noun
production providing it assumes ‘MESSAGE’ refers to an instance of some (invented)
domain type. Filename ‘MESSAGE® has now been refined into a pattern of an OD modifying
an instance, which matches the pattern of the rule described in the Association Rules
section. The rule can be applied by presuming that the object referred to by ‘MESSAGE’
is an instance of the type filename.

PPM explicates the implicit connection between the file and with filename
‘MESSAGE® via the relation ‘file-designator’ created during the analysis of (1). The
relational nature of the domain model thus allows the same rule to understand the
selection of a filename based on a file description, as seen in (1), and the selection of a file
based on the specification of a filename, as in (2), with the same data-path.

PPM explicates the conncction betwecn directory and user by assuming the
existence of a new relation, ‘user-directory’. DA assumes that this relation is a function
(one directory per user) in order to consume the.

Finally, PPM handles the connection between file and directory by noting the fact
stored in the domain model that a directory is a set of files. ‘Set-membership’ is thus the
implicit reiation between file and directory. The entire NP the file in the directory of the
user with filename ‘MESSAGE® has been converted to an QD specifying "an object of type
file which (i) is a member of the direclory associated with the user in 'user-directory’, and
(i1) is associated with the filename ‘MESSAGE’ in ‘file-designator .

Figure 2 depicts the state of the domain model following linguistic analysis of the
pair of example sentences. The exact initial state of the domain model was not crucial to
SAFE’s ability to analyze the sentences. Nor was the precise wording of the sentences
themselves crucial. A reasonable, but not isomorphic, analysis would result even if the
initial domain model were emply and only the verb maps and syntactic knowledge
available. A more complete initial domain model could reduce the number of assumptions
needed to assimilate the sentences. The final domain model, of course, is sufficient to
enable reanalysis of the sentences with no assumptions.

ashei W1 SV, T TIPS
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8. IMPLEMENTATION

It would be possible to use these production rules as independent meaning
derivation rules. If sufficient background knowledge of the process domain existed, this
would probably provide an adequate linguistic analysis for our understanding task. Using
the rules to acquire domain knowledge, however, introduces certain complications:

° An English structure may match scveral rule patterns but none of the
corresponding conditions may be satisfied.

® It may be possible to satisfy a given condition with several alternative
assumptions.

[] It is desirable to try more specific rulcs with complex conditions before trying
general rules. When all rules fail, however, the assumptions needed to satisfy
the general rules are usually simpler than those for the complex rules, although
the exact assumptions required depend on existing structural knowledge.

Greater control over the structural assumptions is required than is provided by a
straightforward production system implementation. 10 obtain this control, we have chosen
to use the rules directly only for analysis. Assumptions are handled by adding special
rules containing English patterns without structural conditions. The action for such rules is
simply a hand-coded function which decides on the "most reasonable” assumption to make,
given the existing context. In all cases that assumption is one which would permit one of
the production rules to work in analysis mode; thus, if the English phrase |eaaing to the
assumption should reappear, no new assumption.will be necded.

The availability of multiple satisfactory assumplions leads to a classic Al search
problem. It is conceivable that we could carry multiple domain models through the
linguistic analysis, choosing one on a simplicity basis in the end. Backup, however, does
not seem to be an applicable approach. There are no "dead ends" in the analysis; it is
always possible to make enough structural assumptions to continue. Currently, however,
we have chosen to rely on human expertise to choose between alternatives. Whenever
the analysis reaches a stage where alternative assumplions are acceptable, and frequently
when only one is, the system asks for external verification. While we do not yet
understand the tradeoffs between increased interaction and carrying uncertainty through
the analysis, this verification of assumptions can be seen as a method used by humans in
understanding process descriptions (2]

The rule patlerns described in Section 6 are not directly applicable to English text;
they are defined in terms of surface structure relations such as “prepositional phrase
modifying noun phrase” or "adjective modifying noun." Recognition and representation of




these surface relationships is done explicitly by some natural language systems [13], and
implicitly by others. However, real English sentences cannof be unambiguously parsed on
a purely syntactic basis. We believe that interpretation rules like those incorporated in
SAFE will eventually be used in natural language understanding systems, since they
are fundamental to disambiguation which cannot be dealt with by syntax alone.

Merging the production-based understander with a syntactic processor is not an
immediate concern of SAFE, however. English is but one possible input language for a
process understanding system, and is not likely to become a practical one for many years.
An artificial language with English-like semantics is a more likely candidate at present. We
are currently utilizing the parenthesized English input exemplified in the example. At the
cost of having a human pre-processor make the necessary decisions about scope of
conjunctions and dependency of modifiers, we are thus able to process a language which
has no "syntactic” ambiguity but which retains most of the semantic properties of natural
English.

9. CONCILUSIONS

It is well known that natural language understanding requires the use of
domain-specific knowledge. When the language understanding task is restricted to that of
making informal operational descriptions of processes precise, the breadth of such
domain-specific knowledge required is reduced to the abstract domain model (Section 4).
The full task of making informal descriptions precise requires additional,
domain-independent, knowledge; in particular, it requires extensive knowledge of what
makes a precise process description well-formed [3).

The words and structures chosen to describe a process in a given natural language
reflect the regularities in the domain of that process [10]. In many cases, these words and
structures can be used to infer the underlying regularitics. To the extent this inference
process can be automated, it will be possible for a machine to understand a process
description without the need for a human to build a complete, precise, consistent
description of the processing domain.

Automatic construction of domain descriptions is desirable for several reasons. Hand
coding of the models is tedious and error-prone work; it is difficult for the same reasons
that formal specification of processes is difficult. Domain description is a skill requiring
special training, and is not an appropriate task for the user of the SAFE system.

Furthermore, a domain-specific system would confine the user to a predefined
model. Besides lacking generality, this constraint may make it difficult for a user to-
determine if his application falls within the prescribed bounds, particularly if there exist
alternative views of the domain. Manual construction of a domain model by a "human
modeling expert,” drawing inferences from the informal specifications as SAFE does, is
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reasonable only if that expert can be both thorough in seeing all alternative
interpretations and meticulous in recording his assumptions. The former is probably
impossible for any expert, and the latter extremely difficult. Both are properties of tasks
better suited to mechanical execution.

We believe that the progress made on SAFE demonstrates the feasibility of
automating the construction of domain models from informal specifications, a requisite part
of a domain-independent specification understanding system.
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