
ARPA ORDER NO. 2223

Neil Goldman
© Robert Boizer

David Wile

_________ The Inference of Domain Structure from Informal Process Descriptions

D D C
0... r~ rT~~ ’T ~~: -~‘r~—~In’

-
H I

• U U ~~~~~~~.J LJ L~~~D

,\,:OR~ I . l J lO\ 4~(,J:,\(-J :~ I\%TIT~ ~TI~

l \71 I k S / I ‘~I HI! RN (IH! () R \ I

P I UI’I N STATEMENT A
Approv ed for ru~1c r’~~~ cise;

FJ~ ~ :I : n Ij~ ~~~~ j

—~-
• - • •-- •----.~ • •~~~~ - - — -~~~--- - - ~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~

UN C L A S S I F I E D
S E C U R I T Y C L A S S I F IC AT I O N 3c T NIS PAGE IWN.n Da ta En lace d)

DEDr
~~

1. fSA(1 I &I E L I T A T I A h I D A~~E READ tNSTRUCTIONS
~~~~~ ~~~~~~~~~~~~~~ I~ I ~~ U I~~~I~ 1 BEFORE COMPL ETING FORM

I. REP9~~~~~~~ 4~~~.B_..._. 2 GOVT ACCESSIO N NO. 3 RECIPI ENT’S C A T A L O G  NUMBER

( ‘ c l ISI/RR—77— 6k ) /

4. t~.LL~~ Cgnd S~.bL1JI..~ • . . .~ —.• • .-
~~~ S TYPE OF REPORT & PERIOD COVERE D

(,~~
. The Inference of Domain Structure from

• / • / Research ,/ , /
- •

• I nforma l Process Descr ipt ions ,
~~
. — —

• -
~ 6. PER~~ORM ING ORG. RE~~OR

’
~ II P

7 AUTpiOR(s) - ,.. .- $~ C O N T R A C T OR GRAN T NUM BER(a)

‘ Ne i LGoi dman Robert ’B-~Izer Dav id~~/ I le 1L
~~J DAH j 5-72 c- Ø3o8~ .,~

9 PERFORM I NG O R G A N I Z A T I O N NAME AND A DORESS 10. PROGRAM ELEMENT. PRO.~ECT . T A S K
USC/Info rmation Sciences Institute —

~676 Adm i ra l ty Way
ARPA 04-de r~~ 2223 ~~ .

Marina del Rey, CA 90291
II CONTROLL IN G O F F I C E NAME AND ADDRESS 12. R ~~~~~~~~~~~~~~~~Defense Advanced Resea rch Projects Agency (,j ct~~~~ •777

1L4rir~ 1 1 1 D l Jvu I i50 f l u lV u . -— 1~~~ RtJU~~~W O F PA G E S

Arl ington , VA 22209 25
4 MONITORING A G E N C Y N A M E A A DDRESS(II d ! i fe ro n t from Contro l l i ng Of l i r .) 15. SECURITY CLASS. (of th ia r .por r)

~~~~~~~~~ ~~~~~~~~~ ~~, Unclassified
• - -

~ ~~ 
/ — IS. DECLASSI F ICAT ION DOWNGRADING

• SC H E D U L E

IA DISTRIBUTION STATEMENT (of th u R .port>

This document approved for publi c release and sale; distribution unlimited. 4

¶ 7. DISTRIB U TION STATEMENT (of lh. .b.tracI .nt.r.d In Block 20, Ii dI(l.r.nl Iron , R.port)

IS. S U P PL E M E N T A R Y  NOTES

This pape r was presented at the Workshop on Pattern-Directed Inference
Systems .Ilawai i , May 1977, and was pu bl ished in the SIGART Newsletter 63,
Jun e 1977,

19. KEY WORDS (Continu. on ,.r.ra, aid. If n.c. .w,r .ld ld.ntlfy by block nun~b.r)

artificial intelli gence , domain models . inductive inference , natural
language understand i ng , process spec ification , production systems

A B S T R A C T  (Conlhna. on r.v.ra• aid. If n.cs .a.ry wd Id.ntlfy by block nu.,b.r)

Understanding informa l descri ptions of processes require s access to a body
of knowledge atxut the process domain , and the ability to use that knowledge

• appropriatel y. A great deal of effort has been spent in develop ing methods
for organizing and usi ng domain knowledge; relat ive l y little has been done
to automate acquisition of such knowledge . Since Eng l i sh process du’~scr ipti ons .-~~~~

. - ‘
(continued)

DD 1 j A N 73 1473 EDITION OF ‘ NOV SS IS OSSOLETC UNC L A S S I F I E D
S S 4 1 0 2 14-A l / I l

SECUR ITY CLASSI F ICATION OF THIS ~~A G1 (US’.o 0.1. t”t.,.d)

//(,2j  
?~~~~~~~

- 1’



~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

U N C L A S S I F I E D
SECURITY CLASSIFICATION OF THIS PAGEI’WPI .n Vat . Snt.r.d)

20. (continued)

reflec t the underl y ing structure of the process domain , knowled ge
about that structu re may be inferred from the descri ption itself.
A categorization of important structural knowled ge classes is
presented , and a production system described which interprets
English —like sta tements on the basis of existing structura l
context . A sample of the rules from this system is examined. By
assum i ng conditions required in the rule patterns when a linguistic
structure is not interpretable , it is possible to infer a great
deal of structura l knowledge alout a process domain . This inc re—
menta l g rowth of domain structure presents an alternative to
constructing p rocess understand i ng systems app licable onl y to very
restricted domains , or requi ring extensive additions of doma i n—
specific knowled ge by human ~~perts for each new task.

UNC LASSIF lED
SECURITY CLASSIF ICA TION OF THIS PA GE(WS ~.n Data Ent.r.d)

• ~~- . • . ~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



I

ARPA ORDER NO. 2223

I S I/ RR - 77—64
Och.uber 1977

Neil Goldman ~
Robert Balzer

David Wile 

The Inference of Domain Structure from Informal Process Descriptions

D D C
rn

~

TT

~

ii 
~~~~~~~~~~~~~~~~

7 ‘l~~

_~l~
~ 7 l~~~~I

- - - L)

iN F ORMATION SC1FNCI S I NS T I T U T I

(‘N I t I R c If l ’ (‘1 S~~I I / I l RN (.11./I () R \ / , i

THIS RESEARCH IS SUPPORTED BY THE ADVAN CED RESEARCH PROJECTS A(~FNCY UNDER CONTRACT NO DA I-ICIS 72 C O3OP A RPA ORDER
NI’) 2 2 2 3

V I E W S AND CONCLUSIONS (O~4 T A ’~ 1 U IN T H IS ~T ’ ‘ L V API T I-IF A ,~~T I I U I~ S AND S I-t o’ LU NOT RE INTERPR ETED AS R E P R E S E N T NO TH E
IA I 01 ‘~ ION OR P01 cv 01 AR PA TH E I) S G O V E R N M E N T OR A N Y OTHER PERSON OR A G E N C Y CONNECTED W ’ T H THEM

THIS 1 0 / ~M E N 1 APPR OVED FOR PUFILIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED


~~~~~~~~ .G PAGE BLANK-NOT P IL MED

CON TUN TS

Abstract ,i

1, Introduction I

2. Domain Knowledge 2

3. Represonhnp, a F’ roce~s 3

1. Components of Domain Modcls 4

5. Sources of Domain knowledge 6

6. Linguistic Anal ysis of Eng lIsh Dcscript ioru 5 7
Verb RrgLJIarItIc’~ 8
Implici t ticc of [Jorn.iin Structure 9

lyp~ and InLtanCe Rule 9
R~- latto n R1IlC7 , 10

A’.co(,atIon Ritlc~ 10
ConGtr alnt Rulc~ 10

F xp lic it Dcclaratlons I I
Other RElies I I

7. Example 12

8. Implementation 17

9. Conclusions 111

References 10 

--~~~~~~~ • - -~~~-
‘--.--——

‘—‘~~~~
•‘.

~~ 

•~



-~fJ~ .G PAGE BI..k~O.(-NoT tILM~D

I

V

/1 II S’I’h’/I C’I’

Unders tanding informal descriptIons of proccsses rcquires access to a body of
knowledge about the process domain, and the ability to use that knowledge appropr iatety.
A grea t deal of ef for t  has been spent in develop ing methods for organizing and using
domain knowledge; relatively l i t t le has bccn done to automate acquisition of such
knowledge.

Since Eng lIsh process descriptions ref lect  the underly ing structure of the process
domain, knowledge about that structure may be inferred from the description itself . A
categor izatIon of Important str uctural knowledge classes is presented , and a produc tion
sys tem described which interpr ets Eng lIsh-like statements on the basis of existing
s tructural context.  A samp le of the rules from th us sys tem is examined, By assuming
conditions required in the rule patterns when a linguistic str ucture is not interpretable, it
is possible to infer a great dcal of s t ructura l  knowledge about a process domain. This
increment al gr owth of domain s t r u c t u r e  presents an alternative to constructing
process-understanding systems applicable only to very restricted domains, or requiring
ex tensive additions of domain-specific knowledge by human experts for each new task. 

~~~~
--- -- - ‘ ---- •- -- - - - •• -~~

r ~~

- - - - - --- -

1. INTRODUCTION

People can acquire an understanding of a process from a variety of sources -- for
example, from repeated execution of the process under another person’s guidance or from
observation of another person carry ing it out. Understanding is then a result of
generalization from experience. An understanding of a process may also be acquired from
a description, encoded in spoken or writt en Eng lish (the back of a parking ticket), in
pic tures (the back of a box of Minute Puce), or in a format description language (the
“algorithms” section of Cornmurucat~orzs of t he ACM) .

Process understanding can be measured along several dimensions. One measure is
the ability to execute the process on actual “data ,” or to simulate it on “symbolic data.”
Abilit y to describe the process is another measure. Understanding may also be measured
by the abilit y to prove theorems about the process , to give a rationale for its organiiation,
or to modify it to meet altered goals.

The SAFE (Specification Acquisition from Experts) project at ISI has been
investigating process understanding by translating a process descrip tion writ ten in an
inf ormal, imprecise language with English-like semantics (hereinaf ter referred to as
English) into a process specif ication language with formal syntax and semantics. A special
interpreter exists for the latter language , so processes specified in its notation may be
execu ted on appropriatel y enc oded data.

The nature of Eng lish makes ~t unreasonable to define any mathematical measure of
how well a process description is understood; this is solely within the competence of
human judges--in particular , the human(s) who produced the English description. The
formal specification itself , as welt as observable behavior produced by its execution, may

be used to make this judgment.

We have built an operating prototype process-understand ing system, SAFE , which
has “understood” three short (under 200 words) process descriptions. In t his report no
attempt is made to describe this entire system [3]. We confine our attention to linguistic
aspects of the understanding problem, focusing on the use of a process domain p~odel to
interpret English s tatements.

Although some high level correspondence exists between our investigations and the
issue of representation for episodic memocy [1), our concern is not with the human ability
to store process represenlalions arid execute them, rather , what we are attempting to
automate is the abilit y to translate the ability to trans late from one observable
representa tion (F nglish) into another observable represent ation (a format operational
spec ification) which we are atlempting to automate. 1hi~ translation is a central part of

Thts r.poi’t preserfled as a eaper •1 ihe WocksPiop on Pattern-D,recled inference Systems, Hawaii , May
1977, and pt~~ii shed in tht ~ SiGA RI News ietle r 63, June 1977.

2

computer programming; the moth/alien for automating the task has been outlined
elsewhere E31

2. 1)0*1/U N K Noll I.EI) CE

A compiler understands a formal process specification , suc h as an Algol program, at
the level of “abilit y to execute,” which requires no model of the process domain’s
structure. If a statem ent L MPLOV&E / N,3/ <- (t, 1PLOYEI E IN,3/ • 30 increases an
employee’s Social Security number by 30 when it was intended to give him a raise, the
program will produce incorrect results , but we do not blame this on the compiler. Nor
should we , for the comp iler has insufficient informa tion to see anything wrong with this.

If the compiler is a human, however, and the specification is informa l, more
intelligent behavior is expected. If I ask the computer operator to “Logout Goldman” I do
not expect as a reply “Uoldman is not a job number ”. Rather , I expect the operator to
convert the user name “(oldman” to the job number associated with that name, and logout
that job number. Only if that conversion is ill-defined would I expect problems. If I ask
someone to “delete my .1MP files ” I expect him to fill in the implicit relation and delete
fi les whose extension is “.1MP”.

English descriptions of processes are informal in a variet y of ways. Consider some

examp les from the ‘ lINE X Exccu twc Manual [14]:

L OCOUT . . . clears the user ’s job and re turns it to the
available job pool.

To understand this , we need to know (or infer) tha t an association can exist between a
“user ” and a “job”, whence “clear ” can indicate breaking that association. It also helps to
view “available job pool” a- a set of “j obs ”, whence “re turn ” indicates an addition to that
set , and ~~ can sensibl y refer to the “job” which was cleared.

1 vrt . . . T o print symbolic files on your terminal

Since terminals are output devices , it makes sense to print information on them. However ,
in a clause like “to Ii~ f the names of fil~~ on directory SUBSYS . . .

“
, t he phrase “on

directory SUBSYS” makes more sense when treated as a refinement to “files ” than as the
target location of “list”.

(INK . . . causes each of two users to be able to see output
whic h is being typed on the other ’s terminal ,

If our model of the underlying domain indicates that each user is associated with a
par ticular terminal, this makes sense. hut , if we have a more accurate model of TENEX, and

3

know that terminals are associated w i t h attached jobs, in a one-to-one fas hion, and that
jo bs are associated with users , possib ly many- to-one , t hen t he “terminal for a user ” is not
we ll defined unless the user happens to have exact ly one attached job. (In tact , the
document proceeds to exp lain the ac tion taken by LINK in the ill-defined cases.)

These examples demonstrate some of the ways in which the structure of a process
domain can affect the interpretation placed on English descrip tions. In this paper we shall
consider domain knowledge only as it applies to interpreting semantic relationships
between connected, intersentence linguistic constructs. ~lowever , the same knowledge
mus t be used to analyze relationships between linguistically unconnected information in
English process descriptions [3] .

3. Rb PRRSb N1’i I~G I) I ’I WCESS

Many abstractions are available for specif ying processes (e.g., luring mac hines and
Algol programs). While formall y equivalent , the various representations have proved
useful for different purposes. We have chosen an abstraction designed to limit the task of
understanding English descri ptions to one of removing informality, which consists primarily
of the following:

• Resolving ambi guiti es.

• Filling in unspecified, but required, inf ormation.

• F xplicit l y l i nk ing informa tion distributed in the description.

We view a process as the controlled application of A CTION: to OBJECT:. The ef fec t
of app ly ing an A CTION to OL?.IECTs may be to directl y invoke further AC T iONs , to create
new OBJE CTs or destroy existing ones , and to create or destroy ASSOCIATI ON: between
OBJECT:. The environment in which the process operates consists of a data base of
these associations , some of which may exist prior to its initiation. ihe control of the
process consists of conventional programming language control structures: sequential
invocation of actions , conditiona l invocation of actions based on the content of the data
base, demonic invocation of actions based on additions to the data base, and iteration Over
se ts of objects.

Objects , ass ociations , and actior ,s are primi tive in this view . Issues of object and
rela tionship representation arc not addressable in this formalism , for we believe such
issues rightfull y belong in the task of process implementation , not process specification.

It was shown above how interpretation of informal statements about a process
depends on a context of various types of objects interacting in particular ways. We call
this context a domain model. In this report we are primarily concerned with the use of

_ _ _ _ - . - - - ----- -- .--

4

this model in understanding process descriptions and with techniques for inferring pIeces
of the model from the description itself. We begin by examining the components of a
domain model.

4. COMPONKNTS Ob P0*1/U N bl01ThI.S

An essential part of a domain ’s structure is the categorization of objects into types.
TENEX, for example , manipula tes jobs, users, files , I/O devices , direc tories , and many other

object types. Virtuall y all t he information we use about a domain is par ameterized by the
domain types.

The objects manipulated by a process are instances of these types . Most objects
manipulated by a process are data to that process , that is, the objects themselves are not
mentioned in a specification of the process. hiowever , domains may contain distinguished
objects which are explicit l y mentioned in process descriptions. In the 1ENEX manual, for
ex a m p le, we find references to the I/O devices f ’ IR and LPI , to the directory SUBSYS, and
to access modes READ , WRI1F , EXECUT E; these are all instances in the process domain.

Objects in the domain do not become associated in arbi trary combinations. TENE X
maintains a table of associations between directories and passwords. LOGIN creates a new
as.sociation between a job and a o’ er. As a job atces~..es iil~s, ternary a’.sociations
between jobs , files and acu’ss modes are created. Ilowever , no meaningful associations
exis t between I/O devices and passwords , or between direc tories and dates. We use the
rela tional data base formalism [1,9,11] to describe the permissible associations in the
domain.

In this formalism , a re lat ion is a t im e-varying set of assoc ia tions (ri-tuptes). A given
rela tion is defined over a fixed number of attr ibutes. Eac h attr ibute of a relation is tied to
a single type; seve ral at t r ibutes may be tied to the same type. A triple in a relation is a
pairing of attributes with obj ect s , subject to the restric tion that an obj ect may be paired
wi th an attribute only if that ob ject is an instance of the type to which the attribute is
tied. We will define relations with the notation:

rcldq f (<reI~ teon> (c ot t rj b u tc ~ <type >). . .(<attrebute > <type >))

For example, we might denote a relation co nl ro l -t ty by:

rc ldef (contro l-tt y (f l y ter minal) (controlice job))

For tup les within a relation, we will use the nota tion:

<r elatton~namc >((<attr ibute > <object>), . . (cottr ibutc > <object>))

- — --.----

5

Thus, contr ol- t ty ((t t y i i Y3) (controtlcc ,j’)) WoLild indicate tha t the device 1 1Y3 is
associated with the job J7 in the contro l-tty relation. T he ordering of at tr ibute-type pairs
in a relation definition, and of at t r ibute- object pairs in a triple, is arbitrary.

The actions performable in a domain cannot be app lied to arbi trary operands , but
only to instances of the appropriate t ype . 11 NEX ~an Dl El E a file from a directory,
LOGIN a user , LOGOU1 a job, or A SSIGN a device to a job. But it makes no sense to
LOGOUT a tile or DL FACH an account. We can capture the typ ing restric tions on operands
to an action with a notation analogous to that used to define relations:

ae rdef (<action > (<attr ibute > <type >). . . (<ott rcbu te > <type >))

The types of a domain need not be de- joint. T hey fall naturally into a latt ice under
the relation subtype. ‘ I/ O device ” may be subca tcgori~ed into “input device ” and
“out put device ,” each a super type of “termina l”.

A domain generally has constraints on the state of the association data base.
Cer tain combinations of triples may not coexist , even though they are permissibte

individually. A common examp le of this situation is when a relation is const rained to be a
func tion. We will indicate this by:

funct ion (<relation > <attributc >)

The statement function (cont ro l - f l y t ty) would indicate that the control -t ty relation
defined above cannot simultaneou sly include two tuples with the same job but different

controlling terminals.

Certain domain t ypes have sets as ins tances. Such types are called set-types.
“Directory ” may be modclcd as a set - typ e in the IENUX domain. Sets are generally

homogeneous - - all members of a given set are instanc es of a single domain type.
Furthermore , all sets which arc instances of a given se t - t ype will have the same typing
res triction on their members. This res triction will be indicated by:

sel f yp c-c lemcnts (<s e t- type > <type >)

Thus, settype - e lements (directory file) indicates that the members of any directory must
be files

The ac’.ociat ions that c~ ist a t a given time during execution of a process need not
be independent; the existence of one or more associations satisf ying certain restrictions

may imply the existence of other associations. If the implication holds at alt times , the rule
of implica tion is an inference rule of the domain and is part of the domain model. An

example ci such a rule would be , “If a f i le is named ‘message,’ then its non-owner
protection is append-only.”

6

In summary, a domain model consists of information about types of objects in the
domain, the classes of associa tions which may be formed between those objects , the
actions which may be performed on those objects , par ticular instances of the object types,
par ticular associations which exist between those instances , etc. This information may be
characterized as:

• time-independent -- Whereas any process creates and dest roys associations
(informat ion) as it operates , the domain structure informa tion remains static.

~ c ’ ~ . ’ raining rather than determining - - Each piece of domain descri ption serves
to constrain the universe of processes which can be built within the domain.
lti domain structure does not determine a particular process , however , but only
an infinite clas s of processes.

• needed for the non-pc rf ormative aspects of process understanding rather than
for actual process execution -- A process within the domain must conform to the
constrain ts imposed by the domain, but has no need to access the descriptive
information during its operation.

5. sotJR(;~:s Ob I) OM/I IN k N O Wl~I~I) Ci~

Some knowledge of domain structure needed to understand an English process
description may be ‘~back ground” knowledge , not contained in the description itself.
Construction and use of a large body of background knowledge has been a prime focus of
much Al research, as it applies to process comprehension [16] and to more general natural
language understanding as well [17].

Some experiments reported by Balzer [2), however , indicated that , f or the degree of
process understanding we are considering, humans are able to glean sufficien t knowledge
of domain structure from the text of the description itself . Such information is conveyed
in two modes. One is the declaration- -the explicit statement of structural information.
Declarations are frequently available in formal languages. They are also commonly f ound

in English process descriptions , and have been processed in various forms by a few
English-like language processors [4,12].

Structural charac teristics of the process domain may also be implici t in operational
par ts of an English description, playing a par t in determining the words and syntactic
structures chosen to describe the process. Uy jud icious inference from observable English
patterns and limited interaction with a knowledgeable human informant , it is possible to
uncover much of the implicit structural information.

..
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - . .



- — . --~ —~ ---~ -- .- .—
~~

-. .. .--- .- - -~~~~
- - - -

~~~~~~
.

7

6. LINGUISTIC /J N/1 I~YSI S OF ~NCLISI I I ThSCRIP ’I’IONS

The first action taken by SAF E in understanding an English process description is to
perform a linguistic analysis of the English, which serves two purposes. One is the
conversion of the English to a “descriptive” format; the second is to detect new knowledge
of the process ’s domain which is either implicit or explicit in the text.

The descriptive format is built from six description classes (some of which resemble
the descriptor types of KRL [5]): event/ relation descriptor (ED), object descriptor (00),
set descriptor , conditional descriptor , iteration descriptor , and conjunction descriptor.
Only the first two of these will be of major concern in the remainder of this paper.

An ED is composed of an action or relation, and a (possibly empty) set of
attribute-O0 pairs, where the attributes are a subset of those in the definition of the
specified action or relation. The ED thus describes an event or an association by naming
the event’s action or the association ’s relation and describing objects for some or all of
the attributes of that action or relation. EDs will be indicated by:

[< re lotion/ action > <attri bute> <00> .. . <aft rthute> <00>)

ODs are composed of a domain t ype and any number of modifying EDs. An 00 is a
descriptive reference to a domain object; the referenced object must be an instance of the
type indicated and must participate in events or associations as indicated by the EDs. ODs
will be indicated by:

<t ype> <ED> . .

Each modif ying £0 must contain at least one attribute paired with the special symbol “s”
which indicates the use of the described object in the modifying event/association.

Another form of reference is a direct pointer to a particular domain object. In ati
contexts in which an 00 may be used as a reference , a direct pointer (internal object
name) is acceptable.

In general, the linguistic analysis converts English noun phrases to ODs and clauses
to EDs. For example , the clause “print the text” would become [O UTPUT info (TEXT)]
while “the printed text ” would be converted to (TEXT [OUTPUT info *))

The linguistic analysis is performed by a production system. The rules in this production
system have the general form

S(V) , Ca’) =‘~ > #1(V)

where S is a pattern (interpretation state) in terms of variables V which can match an

~~~~~~.



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

8

Eng lish structure , C is a condition based on domain structure , and A some action. When a
structure being processed matches an S pattern , binding (some of ) the variables V, and
condition C holds, then action A is executed. T his action is one which in general modifies
the ED or OD being conslructed as well as the Eng lish structure. ihe knowledge
expressed by the rule is: “/1 is a procedural representation of the meaning of S under
condition C”.

In the “concre te noun” ru le , for example , S matches a noun phrase with a concrete
noun as its head, binding v 1 to that noun. C tests that names a known domain type,
binding v2 to that type. ihe action A then makes the type of the 00 being constructed.

New structural knowledge of the domain can be obtained when an interpretation
state S is matched but the corresponding condition C does not hold. By assunung C, the
English can be understood. In the concrete noun ~jle, if the noun bound to V

1 
was not

known to name any domain type , a new domain tyne would be created and asserted to
be the name of that type.

In summary, the production rules ex pre ss toe  m aning of linguistic patterns ,
generall y in terms conditional on the ex isting domain moth-I Some of the patterns are
specific to part icutar Eng lish words or small classes of words ; others are based on surface
syntactic structures; still others are based on semantic patterns which could arise from
many different words and syntactic forms When the known structure is inadequate to
make sense of the language, sufficient additional structure is assumed to enable application
of a rule.

We now present a partial samp le of the language anal ysis rules in SAt 11. Nothing
would be gained by an exhaustive listing, for the set of rules is not closed in any sense.
Rules were generated as required by the exa mp le descriptions selecte d for the protot ype
system. Rules were added or generalized but not rep laced for new examp les. ihis samp le
is selected only from rules which can be used to infer structural properties of a domain.

Ihe notions “modif y” and “be an argumen t of” are commonly used in describing
surface syntactic properties of English. In the discussion of the analysis rules, we ex tend
these notions straig ht fo rwa rdl y to the El)s and ODs which result from analyzing English
structures. To present the rules precisely would necessitate introducing considerable
notation. We shall simply describe the rules in terms of patterns , conditions, and actions
and trust that the reader will see them as easily formalizable.

Verh Regularities

The act ions and relations of a domain are generally named in English by verbs. In
the surface syntactic structure of English, verbs are associated with cases , which are
marked by word order or prepositions. When a verb is used to reference a particular

_______



9

action or relation, the eases of the verb and attributes of the action correspond in a

predictable way. This case-attribute mapping for the verb “print” and the action

“OUTPUT” is:

ver brnap ( pr int OU1PUT (object in fo) ( (on at)  where) ) given:
oct def ( OUT PU T (info file) (where out put-dcuice) )

In other words , the direct object of the verb “print ” can be ex pected to spec i f y a fi le for

the action OU1PUT , and the device which OUTPUT should write to is likely to occur
following an “on” or an “at” preposition. Civcn a verb V, an action or relation R, and a
surface case C, verbmaps determine a (possibly empty) set of attributes of R whose

content could be encoded in case C of verb V. Similar uses of surface verb regularities

can be found in a wide variety of natural language “pa rse rs’S [6,15]. The verbmaps enable

SAFE to construct the argument pairs for EDs generated from Eng l ish clauses.

Imp lici t U se  of I) onrnin Si ru r tur e

Many rules are present to pick up references to domain structure which are implicit
in the Eng l ish - -  that is, they are “presupposed ” by the language used rather than being
asserted by it. We shall categor ize each rule roughly according to the category of domain
structure with which it deals.

l ype and Insinnre Rules. Use of concrete nouns in English is the most common

rnethorf for naming types. When such a noun appears as the head of a noun phrase, i t may

name a domain type. “When a user t ypes his password ” would indicate that the nouns
“user ” and “passwor d” name types.

Proper nouns, on the olher hand, refer to particular objects. When a new proper
noun (such as “SUDSYS”) appears , it is assumed to name a new object. Since every object
must be an ins tance of at least one domain type, a new ty pe is created and kept on a list

of “invented” t ypes. In c r tain situat ions described below , an invented type may be
rep laced by another type , thereby revealing the new object as an instance of a known

domain t ype.

Adjectives , like proper nouns, name particular objects. A new object and invented
type are created when a new adject ive is encountered. “l.tead-only ’ in “a read-only file”,
for exa mple, names an instance of a type we might call “file protection”.

When the surface argument of a verb is being processed, the verb’s frame may
predict a specific type for that argument. If the argument is transformed into an instance

of an invented type , then the invented type may be merged with the expected one. For
examp le, “print the file on the XGP” indicates that “XGP” is an instance of output-device,
the type predicted by “print.”

_____ -~~~~ A



~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- - -~~~. --— .-~~

10

Relation Rules. When one OD modifies another , there is some relationship in the
domain between their t ypes. This situation can arise from a variety of Eng lish
constructions, involving noun phrases , adjec tives , proper nouns, an d preposi t ional phrases
(e.g., “a read-only file ,” “the LISP file ,” “the file pro tection ,” “the password for the user ,”
“the user ’s tetetype ,” etc. ) .

ihe implied relation may be direct as in “user ’s password ,” indirec t as in “user ’s
tele t ype ” (shor t for “user ’s job’s teletype ”) or ambiguous as in “user ’s files ” (those in his
direc tory? T hose attached to his job?).

Certain verbs in Eng lish can relate two or more ODs and yield the same
interpretation as the above constructs. Some examp les are: “if the program is in LISP,”
“eac h user has a password ,” “the protec tion assign ed to the file.”

A variety of rules recognize this “description modifying descri ption” si tuation.
Among them are rules for recognizing NI’s modified by NPs, Ni’s modified by adjectives ,
and NPs modified by prepositional phrases . All these rules convert the Ni’s involved to
ODs, and build an intermediate form - -  (MUE)IF IEIS 01)1 00?) . .  eventuall y tr i ggering
another rule which encodes the knowledge fo’ interpreting implied relationships (unless
the ODs are in some way special and a more specific rule consumes the pattern first).
When an implied relationship exists between two or more types , and the known domain
s tructure contains no such relationship, this rule creates a new one. So “user ’s directory ”
could yield a new relation definition:

rctdcf ( user-directory (u user) (dir directory) )

/Lss oei.nion Rules. When an OF) modifies an instance , the OD can be assumed to
descr ibe the instance. 1hi~ amounts to asserting the instance to be of the type present in
the 00, and asser ting each EL) of the 00 to hold on the instance. ihus, if “LISP f ile ” were
transformed into the 00 (f i le [source- language file :4: language LISP 11 t hen “(the)
LISP file MYPROG’ would yield both the f a ct  that “MYI’UOG” named an instance of a file ,
and that the source language of “MYPROG ’ was LISP.

Constraint Rules. The definite articl e “the ” modif ying an 01) generally indicates that
the description will reference a unique obj ect in the context in which it is used - - perhaps
simply because the process guarantees uniqueness in the particular context , or because
the domain structure constrains the data so as to guarantee uniqueness in all contexts. In
the latter situation the definite article may be “consumed” by an existing or assumed
functionality constraint. So, even if it were not known that each ILNEX user had a single
password, an English phrase such as “the user ’s password ” could y ietd the structural
knowledge function ( user-passwor d pw ).



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-—--- ----.-.-

11

Explicit Declarations

A large number of linguistic patterns can indicate domain structure declarations.
Consider the following:

STRUCTURE CATEGORY EXAMPL E

Instance <LISP> is a directory.

Constraint Each directory has exactl y one password.

Association The password for <LISP> is LISP.

Constraint The directory <DOCUMIN1ATION> may contain no
read-protected f iles.

Subtype All user-names must be directory names.

One feature common to these declarative forms is that the main verb does not name
an action. In all cases , the resulting ED will contain a relation rather than an action. The
distinctions between the various forms of declaration depend on whether arguments in this
ED are ODs or instances, on universal and existential quantifiers , and on negatives. Notice
that a declaration may have embedded within it constructions which rely on the implicit
domain struc ture rules (see Constraint Rules) for their interpretation.

Other Rules

We mentioned that some rules are used to understand but not to infer domain
structure. An example of this is a rule for nouns which reference relation attributes. The
noun “number,” for instance , is commonly used to refer to the “size” attribute of the
cardinality relation, where

reldef (cardinality (s set) (size integer))

Such nouns are given case frames much like those of verbs. For “number ” we have

noanmap (number ear dinality (.i~ sizc Xof s))

A rule exists which looks for noun phrases headed by common nouns with riounmaps
defined on them. This rule enables SAFE to translate “the number of files” into an 00 for
an integer which is associated with a set of files under the rotation “cardinality.” We never
make the inductive leap of inferring that a noun names an attribute of a relation; nounmaps
exis t only as built-in linguistic knowledge.

____ -

_ _ ~~~

12

7, EX / I M P I R

A short example will serve to demonstrate how the individual production rules work
together in a way that permits simultaneous analysis of English statements and

augmentation of the domain model. Suppose a domain model as depicted in Figure 1 exists.
This model contains the facts:

• A directory is a set of files.

• A terminal is a kind of output device.

• A relation ‘control-tty ’ associates jobs with terminals.

• A relation ‘job-user ’ associates jobs with users.

• The action OUT PUT operates on a file and an output device.

• The action DELETE operates on a file.

We now exam ine the behavior of the production rules in understanding the following
(artificial) example , which might be part of a description of the process of deleting a file:

(1) Print the filename of each file deleted on the user ’s terminal.

(2) Never delete the file in the directory of the user with filename ‘MESSAGE’.

The actual input to SAFE is a parenthesized version of the English:

(IP) ((Print) (the filename of (each file ((deleted)))) on (the (user ’s) terminal>)

(2P) (Never (delete) (the file in (the directory of (the user)) with ((filename)
‘MESSAGE’)))

By parenthesizing clauses , verb phrases, and noun phrases at all levels , most
common cases of syntactic ambiguity are removed. In (IP), f or example, it is clear that on
the user’s terminal serves as an argument to print , rather than an argument ci deLete or a
post-modifier of name.

each file deleted .

The concrete noun (CN) production recognizes file as the name of a known domain t ype ,

L ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ .. —- .~~~. -

13

User 1: ~~ <

Job-user)

Job

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

KEY FOR FIGURES:

Type

( Objec~~~
Attr ibute type

Relation
Attr ibute type
Operand type

Act ion
Operand type

Figure 1



~~~- - . - - - - . . .  -~~~~ ~~~~~~~~~~ -~~~~~~. -~~~~~~~~~ ----- ~~

and builds an OD 0, specifying file. Delete is recognized as a verb naming a known action,
and the relative clause production creates an ED with action DLLETE and adds it to O~ 0,
now describes a file which has been operated on by DI LE1E.

t he filename of each file deleted

Filename is a new concrete noun, which can be consumed by CN if a new domain type is
created. This is done, and an OD °fn specifying the new type is constructed. Now the
prepositional phrase modifier (PPM) production can apply if a relation exists associating
the types file and filename. None does, so one is created. We will call the new relation
‘file-designator ’. PPM adds an ED to °fn restricting the filename to being one associated
with the file described by O1in ‘file-designator ’.

The definite article the can be consumed by the definite article (DA) production if
‘file-designator ’ is in fact a function (one name per file). ihis is assumed, comp leting
processing of the NP.

t he user ’s termina l

Roth user and terminal arc consumed by CN, genera ting ODs O~ and O~. Synt acticat l y, the
two nouns stand in a modification rclationship. ihe domain model contains no relation
between user and termina l, but it does contain a relational path between them. That is,
‘user-job’ can map from a ucer to a job , which ‘c ontro l - t ty ’ can map to a terminal . The
domain condition on the MODIFIES production is satisfied by such a path, and a new
relation, ‘user-terminal’ is created and defined to be the composition of ‘user-job’ with
‘control-tty ’. An El) is added to O~ restricting the terminal to be one associated with the
user described by 0~ in ‘user- terminal’ .

DA is once more appli cable if ‘u~er- terminaI’ is in fac t a function. This is not known.
(It would be if the two relations which were composed to form ‘user-terminal’ had been
known to be functions.) To consume the definite art ic le , functionality is assumed. This is
actually an invalid assumption; since 1ENEX permits a• user to have multiple jobs,
‘user-terminal’ does not necessaril y determine a unique terminal for a given user,

Print the filename of each file deleted on the user’s terminal.

The verb map for print causes the clause production to make 0j ~ and 0, the arguments of
an ED with action OUT PUT. Ihe universal quantifier each , through productions not
described here, has embedded 0,~ as t he “generic element” of a set descriptor S,0. A
loop constructor production recognizes the pattern of an action applied to a set, when the
actdef of the act ion does not specify a set . iho production creates a loop descriptor,
specif ying a loop over Sin. The loop’s body is the ED describing the application of
OUTPU T to °fn (the set’s generic element) and

_. - -- - - - ..__ .. — --- _....-__—- _-- ~~ —~~____________ —


~~~~~~~~~~~~~~~~~~~ .

15

In summary, linguistic analysis of this sentence has augmented the domain model by
adding a new type, filename, a new relation, ‘file-designator ’, and a relation ‘user-terminal ’
defined as the composition of two previously known relations. P1 itself has been
represented by a loop descrip tor , saying in essence: “for each filename which is associated
in ‘file-desi gnator ’ with any file which has been the operand of DELETE, output that
filename on the terminal which is associated in ‘contro l-tty ’ with a job associated in
‘user-job’ with the user.”

Neuer delete the file in the directory of the user with filename ‘MESSAGE’.

Our description of the analysis of (2) will be limited to highlights emphasizing points
not observed in the analysis of (1). All the nouns are consumed by CN without need for
any assumptions, filename having now been added to the domain model. Quoted strings
are treated as pro’er nouns, so ‘MESSAGE ’ can be consumed by the proper noun
production providing it assumes ‘MESSAGE’ refers to an instance of some (invented)
domain type. Filename ‘MESSAGE ’ has now been refined into a pattern of an 00 modifying
an instance, which matches the pattern of the rule described in the Association Rules
section. The rule can be applied by presuming that the object referred to by ‘MESSAGE’
is an instance of the type filename.

PPM explicates the implicit connection between t he file and wtth filename
‘MESSAGE’ via the relation ‘fiJe-designator ’ created during the analysis of (1). The
relational nature of the domain model thus allows the same rule to understand the
selection of a filename based on a file description, as seen in (1), and the selection of a file
based on the specification of a filename, as in (2), with the same data-path.

PPM explicates the connection between directory and user by assuming the
existenc e of a new relation, ‘user-directory ’. DA assumes that this relation is a function
(One directory per user) in order to consume t he.

Finally, PPM handles the connection between fi le and directory by noting the fact
stored in the domain model that a directory is a set of files. ‘Set-membership ’ is thus the
implicit relation between file and du’ectory. The entire NP the file in the directory of the
user with filename ‘MESSAGE’ has been converted to an 00 specifying “an object of type
file which (i) is a member of the directory associated with the user in ‘user-directory’, and
(ii ) is associated with the filename ‘MESSAGE’ in ‘file-desi gnator

Figure 2 depicts the state of the domain model following linguistic analysis of the
pair of example sentences. The exact initial state of the domain model was not crucial to
SAFE ’s ability to analyze the sentences. Nor was the precise wording of the sentences
themselves crucial. A reasonable , but not isomorphic , analysis would result even it the
initial domain model were empty and only the verb maps and syntac tic knowledge
available. A more complete initial domain model could reduce the number of assumptions
needed to assimilate the sentences. The final domain model, of course, is sufficient to
enable reanal ysis of the sentences with no assumptions.



-- --~~~~- •  --_-
~~~~

. .-~-——- . ..~~~

16

/ File \
designato r

[
Del ~~~~~~~~

File F ~ ii e name
]

I Sett ype-elements

~~~~~M~~soge ’~)

Directory 

~I3—K director>
User 

____________

Job 

!“

~~~I~

__

~
c(Job~ user)

Contr ol TTY

Terminal

Sub—t ype

.1 Output
device

‘k—
~~~ 

indicates functionality
of relation

Fi gure 2 

--~ .--~~~ --- .-~~~~~ 



17

8. IMP! ~:M~;NTI1TION

It would be possible to use these production rules as independent meaning
derivation rules. If suff icient background knowledge of the process domain existed, this
would probably provide an adequate linguistic analysis for our understanding task. Using
the rules to acquire domain knowledge, however , introduces certain complications:

• An English structure may match several rule patterns but none of the
corresponding conditions may be satisfied.

• It may be possible to satisfy a given condition with several alternative
assumptions.

• It is desirable to try more specific rulcs with complex conditions before try ing
general rules. When all rules fail , howeve r, the assumpt ions needed to satisf y
the general rules are usually simpler than those for the complex rules, although
the exact assumptions required depend on existing structural knowledge.

Greater control over the structural assumptions is required than is provided by a
stra ightforward production system implementation. lo obtain this control, we have chosen
to use the rules direc t ly only for analysis. Assump tions are handled by adding special
rules containing Englis h patterns without structural conditions. The action for such rules is
simply a hand-coded function which decides on the “most reasonable” assumption to make,
given the existing contex t. In all cases that assumption is one which would permit one of
the production rules to work in anal ysis mode; thus, if the Eng l ish phrase lea~Iing to the
assumption should reappear , no new assumption will be needed.

The availability of multiple satisf actory assumptions leads to a classic Al search
problem. It is conceivable that we could carry multi ple doma in models through t he
linguistic analysis, choosing one on a simplicity basis in the end. Backup, however , does
not seem to be an applicable approach. There are no “dead ends” in the analysis; it is
always possible to make enough structural assumptions to continue. Currently, however ,
we have chosen to rely on human expertise to choose between alternatives. Whenever
the analysis reaches a stage where alternative assumptions are acceptable , and frequently
when only one is, the system asks for ex ternal verification. While we do not yet
understand the tradeoffs between increased interaction and carry ing uncertainty through
t he anal ysis, this verifica tion of assumptions can be seen as a method used by humans in
understanding process descriptions [2J.

The rule patterns described in Section 6 are not directly applicable to English text;
they are defined in terms of surface structure relations such as “prepositional phrase
modif ying noun phrase ” or “adjective modifying noun.” Recognition and representation of



18

these surface relationshi ps is done explici tl y by some natural language systems [131, and
imp lici t l y by others. However , real English sentences cannot be unambiguously parse d on
a purely syntactic basis. We believe that interpretation rules like those incorporated in
S/I FE will eventuall y be used in natural language understanding systems , since they
are fundamental to disambi gua ti on which cannot be dealt with by syntax alone.

Merg ing the production-based understander with a syntact ic processor is not an
immediate concern of S/W I , however . Eng lis h is but one possible input language for a
process unders tanding system , and is not likel y to become a pract ical one for many years.
An artificial language with Inglish-like semantics is a more likel y can didate at present. We
are currently utilizing the parenthesized Eng lis h input exemplified in the examp le. At the
cos t of having a human pre-processor make the necessary decisions about scope of
conjunctions and dependency of modifiers , we are thus able to process a language which
has no “syn t ac t ic ” ambiguity but which retains most of the semantic properties of natural
English.

9. CONCI.(JS IONS

It is well known that natural language understanding requires the use of
domain-specific know ledge. When the language understanding task is restricted to that of
making inf ormal operational descriptions of processes precise , the bread th of such
domain-specific knowledge required is reduced to the abstract domain model (Section 4).

The full task of making informal descri ptions precise requires additional,
domain-independent , knowledge; in par ticular , it requires extensive knowledge of what
makes a precise process description well-form ed [ 3 ] .

The words and structures chosen to describe a process in a given natural language
reflect the regularities in the domain of that process [10]. In many c ases, these words and
structures can be used to infer the underlying regula ri t ies . lo the extent this inference
process can be autom ated , it will be possible for a machine to understand a process
descr iption without the need for a human to build a comp le te , precise , consis tent
description of the processing domain.

Automatic construction of domain descriptions is desirable for several reasons. Hand
coding of the models is tedious and error-prone work; it is difficult for the same reasons
that formal specification of proc es 5es is diff icult. Domain description is a skill requiring
spec i al training, and is not an appropria te task for the user of the SATE system.

Fur thermore , a domain- specific system would confine the user to a predefined
model. Besides lacking generality, this constra int may make it difficult for a ~user t o~•
determine if his application falls within the prescribed bounds, par ticularly if there exist j
alternative views of the domain. Manual construction of a domain model by a “human

modeling expert ,” drawing inferences from the informal specifications as SAFE does, is

_ _ _ _ _ _ _ _ _  - - .

. 

. . .



_ -  - .~~~~~~~~~~~_. .~~~~~~----- ~~~~~~~~~~~~~~~~~ -~~~~~~~~ -— ~~~~~~~~~~ 

19

reasonable only if that expert can be both thorough in seeing all alternative
interpretations and meticulous in recording his assumptions . The former is probably
impossible for any expert , and the latter extremely difficult. Both are properties of tasks
better suited to mechanical execution.

We believe that the progress made on SMFE demonstrates the feas ib i l i t y  of
automating the construction of domain models from informal specifications, a requisite part
of a domain-independent specification understanding system.

REH’RKNCI?S

1. Abelson, P., “Concepts for representing mundane realit y in plans,” in 0. Bobrow and
A. Collins (eds.), Representatton and Understanding, New York, Academic Press,
1975, pp. 273-309.

2. Balzer , P., Human (Jse of World Knowledge, (JSCfIn(ormation Sciences Institute,
lSl-RR-73-7, March 1974.

3. Balzer , P., Neil Goldman and David Wile , “Informali ty in program specifications ,”
Proceedings of the F tf t h  Jnternat~onal Joint Conference on Artificial
Intelligence, Boston, Mass., August 1977, pp. 389-397.

4. Bobrow, 0., “Natural language input for a computer problem-solving system,” in M.
Minsky (ed.), Semantic Informatio n Processing, MIT Press , Cambridge, Mass., 1968.

5. Bobrow, 0. and 1. Winograd, An Overview of KRL , a Knowledge Representatio n
Language, Xerox Palo Alto Research Center , CSL-76-4 , July 1976.

6. Celce-Murcia, M., “Verb paradigms for sentence recognition,” American Journal of
Computational Linguistics , 1976, 1, microfiche 38.

7. Chamberlin, D., “Relational data base management systems ,” Computing Surveys , 8,
1, 1976, pp. 43-66.

8. Chodorow, U., and 1. Miller , The Interpretation of Temporal Order in Coordinate
Conjunction, IBM RC-6 199, September 1976.

9. Codd, E. F., “A relational model of data for large shared data banks,”
Communications of the ACM, 13,6, 1970, pp. 377 -387.



- . - .- . —.-..-- .— w -.- --~ 
—

20

10. Goldman, Neil, “Conceptual generation,” in H. Schank ted.) Conceptual Information
Process ing, American Elsevier , New York , 19 /b.

11. Grossman , H., Some Data Base Appl ic a t ions of Constraint L rpr esst ons , MIT
1.aboratory for Computer Science , IR-158 , 1976.

12. Hayes , J. R. and H. Simon, ‘Unders tanding wr i t ten problem instructions ,” in Gregg
(ed.) Knowled ge and Cogni tion , Lawrence Eribaum Associates , Potomac , Nd., 1974.

13. Kaplan, P., “A genera l syntact ic processor in natural language processing,” in P.
Rustin (ed ), Natural Language Processing, Al gorit hmics Press , New York , 1973,
pp. 193-241.

14. Myer , T., and J. E3arnaby, T LNEX Executive Manual , Bolt , Bcranelc and Newman, Inc.,
April 1973.

15. Riesbeck, C., and H. Sc hank, Comprch crzsi on by Computer: Anal ysis of Sentences in
Context , Yale University, Dept. of Computer Science , Researc h Report 78, October
1976.

16. Ruth, G., Protosystem 1: An Automat ic Programming System Prototype , NIl
Laboratory for Computer Science , lM~72 , 197 6 .

1 7. Schank, R., and R. Abelson, “Scripts , plans , and know ledge,” Proceedings of the
Fourth International Joint Conference on Arti ficial Intelligence, MIT Artif icial
Intelligence Laboratory, 19)5 , 151-157.

_ _ _ _  ~~~ -.  
_ _ _ _ _


