ARPA ORDER NO. 2223

ISI/RR 77-63
October 1977

S t -
4 i ‘j J
Robert Balzer | =
Neil Goldman
David Wile

ADAU481953

On the Use of Programming Knowledge to

Understand Informal Process Description

- Tin

O. 1

S

18

Ll A
T
€D L

=

Cows
=L S

INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way/ Marina del R(')/(.‘a/z/m'mu 90291
A UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1511

DISTRIEUTION STATEMENT A

Approved for public releasej
Distribution Unlimited

e — =

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
/ ;’/ T REPORT NUMBER | Xz, GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
WP ¢ ISI/RR-77-63 | l
; é 1 4» U.D.E&and,&mww - 5/'7]'_\195 OF REPORT & PERIOD COVERED
{ On the Use of Programmung Knowledge to Under= ; (/@)
\~,f stand Informal Process Description ™ \j21AResearch ’?i!ﬂ}(~)//
—— e 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
. ./---T __._.—-....»..- — .
)0 > Robert/Balzer, Nell/GoIdman, Davnd/W|le {/ift) DAHC 15-72- C-~ 5308 ,;::)
L s e L U/ ST et
i 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJEC? , TASK
USC/Information Sciences Institute {7’A35“1!355UMTNUﬁEE"
L4676 Admiralty Way b Ll O?def::EZEE,//

Marina del Rey, CA 90291
11. CONTROLLING OFFICE NAME AND ADDRESS p u.é,.auoamv—e Y
Defense Advanced Research Projects Agency a/, \/ ctlllr~ID77f
1400 Wilson Blvd. /T T NUWBER OF PAGES
Arlington, VA 22209 12

14 MONITORING AGENCY NAME & ADDRESS(/f dlllsranl lrom Con(ro”lnﬂ Olllro) 1S. SECURITY CLASS. (of this report)

/,g; /:§‘r‘ . Unclassified

y 15a. DECLASSIFICATION DOWNGRADING
. ,' =y SCHEDULE

16. DISTRIBUTION STATEMENT /of this Report)

This document approved for public release and sale; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
formal specification language, informal languages, informal software

specification, meta-evaluation, natural language understanding,
sof tware specificati on, symbolic=-execution

ABSTRACT (Continue on reverse aide if necessary and identify by block number)

The goal of improving and simplifying communication with computers has been
pursued largely through the creation and use of better formal languages.
This report investigates an alternative approach by exploring the variety
and extent of informal constructs which can be introduced into a formal 2
language without impairing communication. These informal constructs rep= —%,<"s

(continued)

DD , 5% 1473 eoiTion oF 1 NOV 65 15 OBSOLETE UNCLASS IF1ED

S/N 0102-014-6601

SECURITY CLASSIFICATION &F THIS PAGE (When Deta Entered)
2% /

40 _frh‘\‘

UNCLASS IFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

20. (continued)

~“ resent the suppression of certain explicit information which must be
inferred from the surrourding context. In general, each informal
construct has several possible interpretations, only one on which was
intended by the speaker. The system's task is to use the existing
context to focus attention on a small ordered subset of the most
probable alternatives and to further reduce it by applying any con-
straints or weil=-formedness rules. The most probable remaining
alternative' is selected as the intended one. Program descriptions
were chosen as the example task domain to test this approach because
its rules of context and well=-formedness are fairly well developed,
and because we, as computer scientists, are our own domain experts.z

s s

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

N —

ARPA ORDER NO. 2223

ISI/RR 77-63
October 1977

Robert Balzer
Neil Goldman
David Wile

On the Use of Programming Knowledge to
Understand Informal Process Description

o zieke

o [vy g "‘\—-\ ’r—'.ﬁ(

= ..,_‘r
L
,h—s..J_a

D

u s

INFORMATION SCIENCES INSTITUTE

4676 Admivalty Way[Marina del Rey/ California 90291

UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1511

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHC1S5 72 C 0308 ARPA ORDER

NO 2223
VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE
OFFICIAL OPINION OR POLICY OF ARPA THE LI S GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION 1S UNLIMITED

CONTENTS

Abstract iv
1. Introduction 1
2. Informal Software Specifications 2
3. Formal Target Specification Language 3
4. Types of Informality 3
5. Structural Informalities 4
A. Domain Acquisition 4
Implicit Association 4
Passive/Active Recognition 4

Plurals §
Verb Definition §

moom

6. Grouping Informalities 5
A. Relative Sequencing §
B. Omitted Action §
C. Refinements §

7. Detail Informalities 6

Incomplete Reference 6
Omitted Operand 7
Alternative Block 7

Scope of Conditionals 7
Scope of Demons 7
Discovered Parameters 8
Implicit Type Conversion 8

OMMoOm@>

8. Conclusion 8

References 9

ABSTRACT

The goal of improving and simplifying communication with computers has been
pursued largely through the creation and use of better formal languages. This report
investigates an alternative approach by exploring the variety and extent of informal
constructs which can be introduced into a formal language without impairing
communication. These informal constructs represent the suppression of certain explicit
information which must be inferred from the surrounding context.

In general, each informal construct has several possible interpretations, only one of
which was intended by the speaker. The system’s task is to use the existing context to
focus attention on a small ordered subset of the most probable alternatives and to further
reduce it by applying any constraints or well-formedness rules. The most probable
remaining alternative is selected as the intended one.

Program descriptions were chosen as the example task domain to test this approach
because its rules of context and well-formedness are fairly well developed and because
we, as computer scientists, are our own domain experts.

1. INTRODUCTION

We believe that current communication between people and computers suffers
greatly from an artificial rigidity imposed by formal input languages. While it would be
more convenient if natural fanguage could be used, that goal has proved most elusive.
Instead, we wish to investigate the use of and justify the need for informal languages for
communication with computer systems.

By informal language we mean a language with a formal syntax and semantics that
guarantees an unambiguous parse of any input sentence. The semantics are also
constructed so that any input sentence composed entirely of complete constructs has a
unique interpretation. The informality of the language arises from the use of partial
constructs for complete ones; each informal language will have its own set of rules for the
kinds of partial constructs allowed.

For each partial construct appearing in the input, the syntax of the language will
define the set of possible completions of that construct; the system’s task is to select the
correct one.

Generally the selection is based on two factors: an ordering of the possibilities
based on the context in which the partial construct appears, and a set of well-formedness
rules based on the properties of the objects in the construct, the operations being
performed on them, and the environment of these operations.

The power of an informal language hence depends upon the use of context and
well-formedness rules to select among the possible completions of a partial construct. The
stronger the rules for rejecting possibilities and the better the ordering in suggesting
acceptable completions, the more information can be suppressed from the input and still
remain understandable. This suppression is very important because it focuses attention on
the important components of the input, makes it more concise and understandable, and
provides an automatic mechanism for maintaining consistency as the environment changes.
These features (as well as syntactic variability) are precisely the reasons why natural
language is so comfortable to use.

As a simple example of an informal specification consider the following: "Search for
an invoice for Bill. If one is found..." Understanding this specification requires knowledge
beyond the text itself. Lel’s begin with "an invoice for Bill". How are Bill and invoice
related? Bill is a customer and customers are identified by a number which appears as the
customer number on an invoice. Thus, "an invoice for Bill" means an invoice where
customer number is the number which identifies Bill. In the next sentence the word "one"
must be understood. To do so, we must recognize that searching can result in finding
something and that the thing found will be the thing searched for. Thus “one” in the
second sentence refers to "an invoice for Bill".

This small example illustrates how information can be suppressed from a
communication if it exists elsewhere and is available to the viewer of the communication to
complete the partial constructs. The price we pay for these advantages is an increased
processing by the receiver of the communication and possible misinterpretations. Some of
the partial constructs can be completed straightforwardly, and their processing is so
ingrained in us that we are normally unaware that we are completing a partial construct;
others we find truly ambiguous or misinterpret because our context was ditferent from
that of the originator of the communication.

For suitable environments in which enough semantic support is offered by the
ordering and well-formedness rules, we believe that a comparable level of comprehension
can be provided by computer systems and that such a capability will be of enormous
benefit to users in interacting with those systems and in formulating coherent, consistent
bodies of information. A further benefit would be that the information could be precisely
restated in a more complete form by the system.

2. INFORMAL SOFTW ARE SPECIFICATIONS

The area of software specifications represents, we believe, an important field in
which such an opportunity exists. Current specification languages display none of the
informal features we described; in fact, informality is rigorously avoided. Because this
makes such specifications hard to construct, understand, and modify, they are normally
accompanied by a natural language description. Suppose we had a computer system which
accepted an informal software specification, interacted with the specifier to clarify points
of ambiguity, to point out inconsistencies, and to request additional information, and then
automatically reformulated the input into a precise formal specification. Such a system
would certainly help users construct, understand, and modify specifications by relieving
them of the need to attend to myriad details and consistencies.

This is precisely the task we have undertaken in the Specification Acquisition From
Experts (SAFE) project, the results of which are described in more detail elsewhere [}
Here we wish to concentrate on the types of informality allowed and briefly indicate how
they are resolved through the ordering criteria and weli-formedness rules.

The basic assumption of the SAFE system is that, since a program is being specified,
there are a set of objects to be manipulated by a series of actions. These objects are
related to each other by relations, and the only primitive actions that can be performed
are to create or destroy these relations between the objects or to create new objects.
This model has greatly simplified the semantics of programs, provided a uniform method of
dealing with all data, suppressed representation issues, enabled the program to model the
task domain more directly, and reduced the translation required from input to running
program. It is therefore a key factor in the success of the system.

3. FORMAL TARGET SPECIFICATION LANGUAGE

With this general model, the formal specification language into which all the informal
constructs will eventually be translated by the system is quite simple. It is a programming
language whose control statements consist of procedure-calls, if-statements, loops, and
sequences of these statements. The predicate of an if-statement is a pattern which, if
matched in the data-base of asserted relations, causes the then-clause to be executed;
otherwise the else-clause is executed. The loop statement causes repeated execution of
the loop-body for all instances of the loop-pattern matched in the data-base. Notice that
there are no assignment statements; instead, whenever a pattern is matched in the
data-base the variables of that pattern are bound to the objects of the relation matched.

These variables, which always reference an object in the data-base, are merely a
shorthand for the description used to bind the variable. A pattern is simply a relation
followed by its arguments. Each argument can be a literal, a variable, a description (the X
such that <pattern>), or a function whose evaluation produces a literal. When the
variables, descriptions, and functions in a pattern have been replaced by their literal
values, the pattern becomes a tuple which can be retrieved from, added to, or removed
from the data-base.

The language also supports demons so that event-driven processing can be
specified, constraints so that checking can be automatically performed (thus suppressed
from the program), and inference rules so that information can be automatically converted
between equivalent forms as needed. These facilities are designed to provide the
maximum flexibility in precisely describing the logical behavior of a program at the
expense of drastically reducing the efficiency of the logical program. Since the
specification is intended only to define the desired logical behavior, we feel that the
suppression of optimization issues and the resulting simplification of the specification are
decided advantages. In [2] we have addressed the issue of how such programs expressed
in the formal specification language could be optimized.

4. TYPES OF INFORMALITY

There are three categories of informality based upon when and how the informality
is resolved; they are obviously dependent on the basic approach adopted by the SAFE
system--i.e, that the process of understanding an informal specification depends upon
determining the structure of the domain in which the program will operate (what objects
exist, how are they interrelated, what constraints must they satisfy), collecting
unconnected fragments of processing to be applied to the objects of the domain,
synthesizing these fragments into a coordinated outline (or plan) of processing, and
supplying details to this outline to produce a well-formed program.

These activities have been implemented in three phases: the Linguistics Phase
comprises both the structuring of the domain and fragment-collecting activities; it is
followed by the Planning Phase, which builds the program outline, and the Meta-Evaluation
Phase, which supplies details to the outline. This approach--extracting individual
fragments from the input, assembling them into a plan, and detailing the plan--is the same
as that used by Simon in the Understand [3] system. To simplify implementation, both the
SAFE and Understand systems have chosen to omit any feedback path from a phase to a
previous one, which means that an ambiguity in a phase must either be resolved correctly
(via a well-formedness rule or by asking the user) or passed to the next phase.

We can now present the informalities allowed in SAFE category by category and
discuss the information and processes used to resolve them. Examples of informal
specifications which are processed by the three phases to produce a complete formal
specification together with a description of the processing involved are given in [1].

5. STRUCTURAL INFORMALITIES

These informalities are handled by the Linguistic Phase, which uses both grammatical
and dictionary linguistic information to resolve ambiguity, then queries the user if this
knowledge is insufficient. No structural informalities are passed to other phases.

A. Domain Acquisition - We have found that a great deal of the structural
domain-specific knowledge needed to understand a specification is implicitly
contained in the specification itself and can be automatically extracted. Without
such a capability the user would have to laboriously construct a formal
structural model for the domain; with it, non-inferrable aspects of the domain
can simply be included as part of the specification as is normally done in human
communication. This informality represents a major effort within the SAFE
project and is more fully covered in [4].

B. Implicit Association - Several consiructs which indicate that one object is
asscciated with another without specifying the association itself (such as "the X
of Y", "Y’s X, "X for Y", etc.) are allowed in the input. The system attempts to
determine a unique path between objects of these types. If one can be found, it
is used to resolve the ambiguity. If multiple paths are found, the user is asked
which was intended;, if none are found, a single relation between the two types
with an unknown name is assumed. Subsequent associations between these
types are assumed to use this same relation; if it is identified explicitly, that
name becomes the relation name.

C. Passive/Active Recognition - The use of the passive voice in the input and the
fact that certain verbs can refer to either an action or a resuit of that action
cause ambiguities as to whether the construct should be treated as an action to

be performed, a pattern to be retrieved, or a statement of the way things are
expected to be at some point. These possibilities are resolved either
linguistically or by the user.

D. Plurals - The use of plurals in the input can indicate loops, specification of a
"generic element," or groupings of objects into a set.

E. Verb Definition - Many natural language verbs have more than one meaning.
When multiple meanings are found in the dictionary and they cannot be
linguistically resolved, the user is asked to resolve the ambiguity. Repeated
references to the same verb are assumed to refer to the same meaning.

6. CGROUPING INFORMALITIES

The Planning Phase uses program structural knowledge (the semantics of the various
control statements), program well-formedness criteria (e.g., instances of objects and
relations must be produced before they can be consumed), some linguistic knowledge (e.g.,
that people tend to explain the normal case first and then provide refinements and/or
exceptions), and an important assumption (that all explained actions must be invoked
somewhere--otherwise, why bother to define them) to assemble the individual processing
fragments into a program outline.

A. Relative Sequencing - Whenever an explicit statement of the relative sequencing
of two or more actions is omitted, an attempt is made to determine their relative
sequencing though a producer/consumer analysis. |f one produces an object or
relation consumed by another, then it must precede that action. This rule is the
major determinant of the sequencing of the program outline. If two or more
actions which are not explicitly sequenced do not consume either directly or
indirectly the results of any of the others, then the relative sequencing of these
actions is irrelevant and they are placed in a parallel execution block.

B. Omitted Action - If a consumed object or relation is not produced anywhere and
there is a known action which produces it, then the action is added to the
program outline so that it precedes the consumption. If more than one way of
producing the result is known, they are all placed in an alternative execution
block which precedes the consumption. This remaining ambiguity is passed to
the next phase for resolution.

C. Refinements - Several processing fragments may refer to the same action rather
than different actions which must be sequenced. Refinements are recognized by
their reference to the common action and/or use of a refinement statement (eg.,
"during X..") and are then merged into a separate program plan for the refined
action.

e Y e L

7. DETAIL INFORMALITIES

The final category of informalities is handled by the Meta-Evaluation Phase. It deals
with two types of informalities: explicit and implicit. The former are already-identified
partial constructs in the program plan which must be completed (primarily object
reference constructs which must be uniquely bound to a parameter of an action, an
iteration variable of a loop, an object retrieved from the data base, a previously
referenced object, or an object associated with one of these). In general, a large number
of such possiblities exist for each reference ambiguity, and a program plan contains many
of these.

It is clear that these ambiguities cannot be resolved in isolation from one another
but are highly interdependent. These interdependencies are all related to how the
program behaves dynamically and correspond to a set of well-formedness rules. The most
effective way of testing that these rules are satisfied is to check them during the
execution of the program. We therefore built a special program interpreter which checks
these well-formedness rules as it executes a program. Since these rules must be satisfied
for all executions of the program, it is executed on symbolic rather than actual data.

These well-formedness rules are based on the total dynamic state of the
computation and, hence, are not associated with individual decisions of which possibility to
select for an informality. Thus, when one of these rules is violated, the cause of the
violation cannot be associated with a particular decision. Instead, the decisions are made
one at a time as they are encountered during the Meta-Evaluation of the program; when a
well-formedness rule is violated, the system backtracks through the decisions and resumes
Meta-Evaluation of the program at the point of the revised decision.

This sequential decisionmaking and backtracking, together with a reasonable initial
ordering of the possibilities, reduces the large space of possible bindings to a manageable
size. In addition, these rules can uncover other hidden problems in the program for which
specific remedies are known. The discovery of these problems and their resolution
creates a set of additional implicit informalities.

A. Incomplete Reference - This explicit informality arises because in natural
communication the first usage of an object is not labeled and then reused for
later references to that object. Instead, references tend to include as little
detail as required to reference objects from the current context. This might
simply be a pronoun ("it" or "one"), a type name ("the message"), or a partial
description ("the red one") when the desired object is already part of the
context. Otherwise either a full reference sufficient to unambiguously select the
desired object from the data base, or simply a type name if the desired object is
associated with an object already in context, must be used. Any references in a
description may themselves be incomplete. All these ambiguities are resolved in

the context established by the running program rather than the context of the
input description. This context is the set of objects already bound and
accessible in the program block. This includes the parameters of the program,
embedding iteration variables, and bindings estahlished in preceding statements.

Descriptive references are resolved by pattern matching them with the run-time
data base, which may bind them either to stored objects or to objects already in
context. Pronouns are replaced by a type name reference of the type required
for that argument. For both these typed references and those which explicitly
occur in the input, an ordered set of possibilities is constructed. These
possibilities are all drawn from the current context by their degree of closeness
to the typed reference according to the following categories relating the type
(X) of the reference to the type (Y) of an object in the context: X equals Y, X is
a subtype of Y, X is a part of Y, Y is a part of X, X is connected via a path to Y,
and X is a supertype of Y. Within a category the objects are ordered by their
use in the program as: scope objects (iteration variables and objects bound in
an if-statement predicate), parameters, and other (the remaining objects in the
context). These possibilities are examined as necessary during the backtrack
Meta-Evaluation of the program.

Omitted Operand - This explicit informality is an extreme case of an incomplete
reference and is treated exactly like the pronoun case except that literal
instances of the required type are added as possibilities before any supertype
ones. Furthermore, if a literal instance is selected as the accepted binding, and
all other literal instances are also accepted, then the omitted operand is treated
as a don’t-care situation.

Alternative Block - This explicit informality indicates that one of the alternatives
was intended. This construct is created by the Planning Phase for omitted action
informalities that it is unable to resolve. The possibilities are examined, as
necessary, during the backtrack Meta-Evaluation of the program.

Scope of Conditionals - This implicit informality arises because the end of the
THEN or ELSE clause in a conditional is almost never explicitly signaled.
Statements following a conditional are presumed by the Planning Phase to be
outside the scope of the conditional. If such a statement unconditionally uses
the results of a statement already in the conditional, then it is included in that
branch of the conditional.

Scope of Demons - This implicit informality arises because the pattern specified
to activate a demon may well be too general and cause it to be activated
inappropriately. If the repeated activation of a demon causes an error, rather
than backtrack, the user is first asked whether the demon should be activated in
the current situation.

F. Discovered Parameters - Often actions are described without explicitly specitying
their parameters. The description uses these implicit parameters as if they
were already part of the established context. When an explicit typed reference
occurs for which no antecedent can be found by the binding mechanism, an
attempt is made to interpret the antecedent as being an implicit parameter of
that type. The parameter is added to the definition of the routine, and all calls
to the routine are updated to include a missing operand of that type.

G. Implicit Type Conversion - When a typed or descriptive reference of
inappropriate type occurs as an operand, then it is processed normally. to
determine its actual reference. In addition, it is replaced by a typed reference
of the required type which is bound to an object (X), associated with the original
one (Y) by one of the following relations: X is a subtype of Y, X is a part of
Y, Y is a part of X, X is connected via a path to Y, or X is a supertype of Y.
Recognition of the need for type conversion may come either via a static
analysis of the program or during execution and may depend upon the existing
set of binding decisions.

8. CONCIUSION

As can be seen from the preceding sections, the SAFE system is prepared to accept
a wide range of informalities. Some of these informalities are explicitly recognized in the
input and replaced by an ordered set of possibilities. Others are only recognized by
failure of a well-formedness rule during Mcla-Evaluation. The explicit informalities are
resolved via a backtracking search through the sets of possibilities while the implicit ones
are resolved via special solutions associaled with the particular well-formedness rule
which discovered the implicit informality.

Whether or not a particular informal construct can be correctly resolved is critically
dependent on the context in which it appears. The more highly developed this context is
the more likely the correct completion will be selected by the system.

Speakers naturally supply additional context and/or limit their use of informal
constructs in complex situations so that the required informality resolution processing does
not overly tax the receiver of the communication. That is, informal constructs are used
when the speaker perceives that the constructs can be easily and successfully resolved by
the receiver. Thus, once a minimum performance threshold has been reached by a
computer system resolving informalities, we should expect quite broad system applicability
because of the self-regulating use of informalities which reduces the range of difficulty in
resolving such informalities.

The current performance of the SAFE system on a few example program
descriptions, though far from the minimum required threshold, indicates the basic feasibility
of our approach and provides a step toward its realization. Progress will be made as we
devise better rules defining program context and well-formedness, and make better use of
such rules in rejecting possible completions of informal constructs.

REFERENCES

Balzer, R, N. Goldman and D. Wile, "Informality in program specification”,
Proceedings of Fifth International Joint Conference on Artificial Intelligence,
Aupust, 1977, and USC/Information Sciences Institute, ISI/RR-77-59.

2. Balzer, R, N. Goldman and D. Wile, "On the transformational implementation

approach to programming,” 2nd International Conference on Software Engineering,
October 1976, IEEE Catalog No. 76CH1 125-4C, pp. 337-349.

3. Yayes, J. R. and H. Simon, "Understanding writlen problem instructions,” In Gregg,

Knowledge and Cognition, Lawrence Erlbaum Associates, Potomac, Md,, 1974.

4, Goldman, N, R. Balzer and D. Wile "The inference of domain structure from

informal process descriptions,” Proceedings of Workshop on Pattern Directed
Inference Systems, Hawaii, May 1977,

v

T — s 2 e o o v - v e S PR T = ST e " et S ——
o . . -

On the Use of Programming Knowledge to Understand Informal Process Descriptions ISI/RR-77-63

Robert Balzer Neil Goldman David Wile

(ET

USC / INFORMATION SCIENCES INSTITUTE
4670 Admralyy Way Moo 4 Ry Caltfornee %091

N 2l P S

e 2

