
______ -

ARPA ORDER NO. 2223

!SI/ RR 63

Robert Balzer
Neil Goldman

David Wile

~ ~LII~ On the Use of Programming Knowledge to
Understand Informal Process Description

D D C
~~~~~~~~~~~

C’- IU~ .,I •iY 5 i’~C__) i f l
LiJ ~~~~~~~~~~~~~~~~~~~~ Li L~ Li—j Dr~~~i

I \FOR 1%IATIO N SCIFN CI? S I t cS TIT[ I TI

~ I S ’ ’! ‘l i i i  RN .I1!! ) R N ! . i

DL~~~~ETJTIOI~ STATEMENT A
Ac~2~~vcd for public releasel

Dj : ~t r i h u tj ~~ Unlimitod

- ~— - - . - - --~~~.— -~~~~ -~~~~~~~~~~ —-~~~~- - - -- . _ _ _



-
~

-- — - —  -~~~~

U N C L A S S I F I E D
S E C U R IT ,  C L A S S I F I C A T I O N  OF THIS  P A G E .  fWNen D.t. En ts , r d )

(~DT rofS IILI kl TA~r l fW Ar READ INSTRUCTIONS
Ur~ U L#1 U~~ 1’~ I ~~~ ~~~~~ “ BEFORE COMPLETI N G FORM

(1 R .~ &Z- *4MMO~~W~~\ ~2. GOVT ACCESSIO N NO. 3 R E C I P I E N T ’ S  C A T A L O G  N U M B E R

1 1  IS I /RR—77—63 1 ‘
~4

~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~ - 5 YPE OF REPORT & PERIOD COVERED

On the Use of Programming Knowled ge to Under— (~~~)
s t and  Informa l Process Descr i pt ion s 

~~~_ .- - ~~~~~~~~~~~~~~~~~~~~~~
6 P E R F O R M I N G ORG EPORT NUMBER

7 A U T~4O R(a~ -
8. C O N T R A C t O R G R A N r NUM8ER(.)

Robert Ba l zer , Nei l/ Go ldman ; Dav i d~’W i l e (IS
~~DAHO 5— 72- C-

~
3O8

~
I
/fl)

9~ P E R F O R M I N G O R G A N I Z A T I O N N A M E AND A D D R E S S ID. P R O G R A M ELEMEN T PROJE C 1~~ T A S K
REA & WORK UNIT NUMBERS

USC/Info rmation Sciences Institute ~~~~~~~~~
--— - -

L~676 Adm i ra l ty Way
‘

Marina del Rey , CA 90291 ____________________________
IL C O N T R O L L I N G O F F I C E NAME AND ADDRESS
Defense Advanced Research Proj ects A gency :// - ct~~~~- .1?)
1L~OO Wilson Blvd . k ,., ~~~ NUMB ER OF PAG ES
Arlington , VA 22209 12

4 MO N I T O R I N G A G E N C Y NAME & A DDRESS (I I d l f f r r e n t Iran, Con IroIl ln~~Of f I c e) IS SECURIT Y CLA SS. (of th l• report)

~~~ Unclassified
• I

- / IS. , D E C L A S S I F i C A T I O N  DOW NGRAD ING
SCHEDULE

16 D I S T R I B U T I O N  S T A T E M E N T  ‘of t h in  Repor t )

This document approved for public release and sale; distribution unlimited .

17. D ISTRIBUTION S T A T E M E N T  (of the abs t rac t  entered in Block 20 , i i  d i f fe ren t  iron, Report)

lB S U P P L E M E N T A R Y  N O T E S

19 K E Y  WORD S (Continu, on reve rse  sid. If nec....ry ~ ,d i den t i f y  by block numb.,)

forma l specification language , informa l languages , informa l software
specification , meta—eva l uation . natural language understanding ,
sof twa re specificat i on , symbolic—executio n

A B S T R A C T  (Continue or, reve rs e aid. i i  necessary ,d id .n t i iy  by bl ock numb. r)

The goa l of improving and simp lif y ing communication with computers has been
pursued large l y throug h the creation and use of better forma l languages.
This report i nvesti gates an alternative approach by exploring the variety
and extent of iniorma l constructs wh i ch can be introduced into a forma l
language without i mpairing communicatio n. These informa l constructs rep— —

~~

(continued)

DD I N  1473 EDITION OF ‘ N O V 6 5  IS OBSOLE T E UNCLASSIFIED
S “ rl Ir I 2 - O I 4 - , ~I(l S E C U R I T Y  C L A S S I F I C A T I O N  C C ‘T HIS P AG E  (W~,~ n D.t. ff nt., Sd I

/ ‘-



UNCLASS I F  l ED
SECURITY CLASSIFICAT ION OF THIS PAOE(Wh.n Data int•raE)

20. (continued)

-
~~
‘ resent the suppression of certain explicit information which must be
inferred from the surrou rding context. In general , each informa l
construct has severa l possible interpre tations , onl y one on which was
intended by the speaker. The system ’s task is to use the existing
context to focus attention on a small ordered subset of the mos t
probable alternatives and to further reduce it by app l y ing any con-
strain ts or well—formedness rules . The most probable remaining
alternative’ is selected as the intended one. Program descri ptions
were chosen as the example task domain to test this approach because
its rules of context and well— formedness are fairl y well developed~
and because we , as computer scientists , are our own domain experts.

S ECURITY C L A S S I F I C A T I O N  OF THIS PAGEr1V7ISR Data £nI.r.d) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , - - -.. ‘ —4


ARPA ORDER NO. 2223

1SI/RR 77 63
Oi h’ber 1977

, .~~, ~~~~~~

Robert Balzer L

Neil Goldman
David Wile

~~~~~~~~~~~~~~~~~~~~~~ On the Use of Programming Knowledge to
Understand Informal Process Descri pt ion

~~~
‘ ; .

~

D D C

•~i~ 5 1978
I) 1 —~~~

IL ~~~~~~~~~~ ~~ LJ L1 L~

L~ H ~- - .-.- --- -- -
, iNFORMATION SCiENCES iNSTITUTE

(Nil ‘ H ? S I i Y OF Sot iH I RN CAL/t ORN/ I

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENC Y UNDER CONTRACT NO DA HCI5 72 C 030P ARPA ORDER

NO 2 2 2 3

V I E W S AND CONCLUSIONS C O N T A I N E D r~. T H I S STUDY SRI THE A I U 1-’(IR S A N D SH O U L D NOT BE IN T E R P R E T E D AS R E P R E S E N T I N G THE

O F F I C I A L OPINION OP P O L I C Y OF A R P A TH E II S G O V E R N M E NT OH A N Y O T H E R PERSON OR A G E N C Y CONNECTED W I T H THEM

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND S A L E . D I S T R I B U T I O N IS UNLIMITED

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r ev .  ~~~~~~~~~~~~~ ~~~~~~~~~~~~~
‘ -

‘
- . ‘

iii

CONTKNTS

Abstract iv

1. Introduction I

2. Informal Software Specifications 2

3. Formal Target Specification Language 3

4. Types of Informality 3

5. Structural Informalities 4
A. Domain Acquisition 4
B. Implicit Association 4
C. Passive/Active Recognition 4
0. Plurals 5
E. Verb Definition 5

6. Grouping Informalities 5
A. Relative Sequencing 5
B. Omitted Action S
C. Refinements 5

7. Detail lnformalities 6
A. Incomplete Reference 6
B. Omitted Operand 7
C. Alternative Block 7
0. Scope of Conditionals 7
E. Scope of Demons 7
F. Discovered Parameters B
G. Implicit Type Conversion S

8. Conclusion a

References 9 

—~~~~ -- --~~~~~--- . - .--- ~~~~~ --- -—



iv

/J USTRII CT

The goal of improving and simplifying communication with computers has been
pursued largely through the creation and use of better formal languages. This report
investigates an alternative approach by exploring the variet y and extent of informal
constructs which can be introduced into a formal language without impairing
communication. These informal constructs represent the suppression of certain explicit
information which must be inferred from the surrounding context.

In general, each informal construct has several possible interpretations, only one of
which was intended by the speaker. ihe system’s task is to use the existing context to
focus attention on a small ordered subset of the most probable alternatives and to further
reduce it by applying any constraints or weIl-formedness rules. The most probable
remaining alternative is selected as the intended one. —

Program descriptions were chosen as the example task domain to test this approach
because its rules of context and well-formedness are fairly well developed and because
we, as computer scientists, are our own domain experts.

- .-- --- --~~~~~~*- .~~~~~~~~~ - — - —— . --~~~~ ..~~~~ -.—~~~. -~~~~~~~~~ -- ~~ -~~-. .--- . .-



1

I. INTRODUCTION

We believe that current communication between people and computers suffers
greatly from an artificial rigidity imposed by formal input languages. While it would be
more convenient if natural language could be used, that goal has proved most elusive.
Instead, we wish to investigate the use of and justify the need for informal languages for
communication with computer systems.

By ~nformai Language we mean a language with a formal syntax and semantics that
guarantees an unambiguous parse of any input sentence. The semantics are also
constructed so that any input sentence composed entirely of complete constructs has a
unique interpretation. The informality of the language arises from the use of partial
constructs for complete ones; each informal language will have its own set of rules for the
kinds of partial constructs allowed.

For each partial construct appearing in the input, the syntax of the language will
define the set of possible completions of that construct; the system’s task is to select the
correct one.

Generally the selection is based on two factors : an ordering of the possibilities
based on the context in which the part ial construct appears, and a set of weII-formedness
rules based on the properties of the objects in the construct , the operations being
performed on them, and the environment of these operations.

The power of an informal language hence depends upon the use of context and
weIl-formedness rules to select among the possible completions of a partial construct. The
stronger the rules for rejecting possibilities and the better the ordering Ifl suggesting
acceptable completions , the more information can be suppressed from the input and still
remain understandable. This suppression is very important because it focuses attention on
the important components of t he input, makes it more concise and understandable, and
provides an automatic mechanism for maintaining consistency as the environment changes.
These features (as well as syntac tic variabilit y) are precisely the reasons why natural
language is so comfortable to use.

As a simple examp le of an informal specif ication consider the following: “Search for
an invoice for Bill. If one is found..,.’ Understanding this specification requires knowledge
beyond the text itself. let’s begin with ean invoice for Bill”. How are Bill and invoice
related? Bill is a customer and customers are identified by a number which appears as the
customer number on an invoice. Ihus, “an invoice for Bill” means an invoice where
customer number is the number which identifies Bill. In the next sentence the word “one”
must be understood. To do so, we must recognize that searching can result in finding
something and that the thing found will be the thing searched for . Thus “one” in the
second sentence refers to “an invoice for Bill’. 



2

This small example illustrates how information can be suppressed from a
communication if it exists elsewhere and is available to the viewer of the communication to
comp lete the partial constructs. The price we pay for these advantages is an increased
processing by the receiver of the communication and possible misinterpretations. Some of
the partial constructs can be completed straightforwardl y, and their processing is so
ingrained in us that we are normally unaware that we are completing a partial construct;
others we find truly ambiguous or misinterpret because our context was different from
that of the originator of the communication.

For suitable environments in which enough semantic support is offered by the
ordering and well-formedness rules, we believe that a comparable level of comprehension
can be provided by computer systems and that such a capability will be of enormous
benefit to users in interacting with those systems and in formulating coherent , consistent
bodies of information. A further benefit would be that the information could be precisely
restated in a more complete form by the system.

2. INF ORM, IL  SOVTU ’ lIRE SPECIFIC/JTIONS

The area of software specifications represents , we believe, an important field in
which such an opportunity exists. Current specification languages display none of the
informal features we described; in fact , informality is rigorously avoided. Because this
makes such specifications hard to construct , understand, and modify, they are normally
accompanied by a natural language description. Suppose we had a computer system which
accepted an informal software specification , interacted with the specifier to clarify points
of ambiguity, to point out inconsistencies , and to request additional information, and then
automatically reformulated the input into a precise formal specification. Such a system
would certainly help users construct , understand, and modify specifications by relieving
them of the need to attend to myriad details and consistencies.

This is precisel y the task we have undertaken in the Specification Acquisition From
Experts (SAFE) project , the results of which are described in more detail elsewhere [1).
Here we wish to concentrate on the types of informality allowed and briefly indicate how
they are resolved through the ordering criteria and well-formedness rules.

The basic assumption of the SAFE system is that , since a program is being specified,
there are a set of objects to be manipulated by a series of actions. These objects are
related to each other by relations , and the only primitive actions that can be performed
are to create or destroy these relations between the objects or to create new objects.
This model has greatly simplified the semantics of programs , provided a uniform method of
dealing with all data, suppressed representation issues, enabled the program to model the
task domain more directly, and reduced the translation required from input to running
program. It is therefore a key factor in the success of the system.



_ _ _ _ _ _ _ _ _ _ _ _ _  .~~~~~~~~~~~ — —  .- ~~~~~ .- . -

3

3. F O R M I J I  TiIRGE T SPE CIF IC/ J TI ON I 4NCU/I CE

With this general model, the formal specification language into which all the informal
constructs will eventually be translated by the system is quite simple. It is a programming
language whose control statements consist of procedure-calls , if-statements , loops, and
sequences of these statements. The predicate of an if-statement is a pattern which, if

matched in the data-base of asserted relations , causes the then-clause to be executed;
otherwise the else-clause is executed. The loop statement causes repeated execution of
the loop-body for all instances of the loop-pattern matched in the data-base. Notice that
there are no assignment statements; instead, whenever a pattern is matched in the
data-base the variables of that pattern are bound to the objects of the relation matched.

These variables, which always reference an object in the data-base , are merely a
shorthand for the description used to bind the variable. A pattern is simply a relation
followed by its arguments. Each argument can be a literal, a variable, a description (the X
such that <pattern>), or a function whose evaluation produces a literal. When the
variables, descriptions, and functions in a pattern have been replaced by their literal
values, the pattern becomes a tuple which can be retrieved from, added to, or removed
from the data-base.

The language also supports demons so that event-driven processing can be
specified, constraints so that checking can be automatically performed (thus suppressed
from the program), and inference rules so that information can be automat ically converted
between equivalent forms as needed. ihese facilities are designed to provide the
maximum flexibility in precisely descr ibing the logical behavior of a program at the
expense of drastically reducing the efficiency of the logical program. Since the
specification is intended only to define the desired logical behavior , we feel that the
suppression of optimization issues and the resulting simplification of the specification are
decided advantages. In [2) we have addressed the issue of how such programs expressed
in the formal specification language could be optimized.

4. TYPES OF IN F ORMlI i~ITY

There are three categories of informality based upon when and how the informality
is resolved; they are obviously dependent on the basic approach adopted by the SAFE
system--i.e., that the process of understanding an informal specification depends upon
determining the structure of the domain in wh ich the program will operate (what objects
exist, how are they interrelated, what constraints must they satisf y), collecting
unconnected fragments of processing to be applied to the objects of the domain,
synthesizing these fragments into a coordinated outline (or plan) of processing, and

supplying details to this outline to produce a well-formed program.



- --.- ... - --.- .- . . - - .- -~~-- - . - --

4

T hese activities have been implemented in three phases: the Linguistics Phase
comprises both the structuring of the domain and fragment-collecting activities ; it is
followed by the Planning Phase, which builds the program outline, and the Meta-Eva luation
Phase, which supplies details to the outline. This approach--extracting individual
fragments from the input, assembling them into a plan, and detailing the plan--is the same
as that used by Simon in the Understand (3] system. To simplif y implementation, both the
SAFE and Understand systems have chosen to omit any feedback path from a phase to a
previous one, which means that an ambiguity in a phase must either be resolved correctl y
(via a well-formeuness rule or by asking the user) or passed to the next phase.

We can now present the informalities allowed in SAFE category by category and
discuss the information and processes used to resolve them. Examples of informal
specifications which are processed by the three phases to produce a complete formal
specification together with a description of the processing involved are given in [1).

5. STRUCTIJR.1I. INFORM/lI ITIES

These informalities are handled by the Linguistic Phase, which uses both grammatical
and dictionary linguistic information to resolve ambiguity, then queries the user if this
knowledge is insufficient. No struct ural iriforma lities are passed to other phases.

A. Domain Acquisition - We have found that a great deal of the structural
domain-specific knowledge needed to understand a specification is implicitly
contained in the specification itself and can be automatically extracted. Without
such a capability the user would have to laboriousl y construct a formal
structural model for the domain; wi th it , non-inferrable aspects of the domain
can simply be included as part of the specification as is normall y done in human
communication. This informalit y repr esents a major ef for t  w.ithin the SAFE
project and is more fully covered in [4).

B. Implicit Assoctatton - Several constructs which indicate that one object is
associated with another without specify ing the associati on it self (suc h as “the X
of V”, “V’s X, “X for V”, etc.) are allowed in the •nput. The system attempts to
determine a unique path between objects of these types. If one can be found, it
is used to resolve the ambiguity. If multip le paths are found, the user is asked
which was intended;, if none are found, a single relation between the two types
w ith an unknown name is assumed. Subsequent associat ions between these
t ypes are assumed to use this same relation; if it is identified exp licitly, that
name becomes the relation name.

C. Passioe/Actw. Recognition - The use of the passive voice in the input and the
fact that certain verbs can refer to either an action or a result of th it action
cause ambiguities as to whether the construct should be treated as an action to 

~~~-.. - -~~~~ . . - .


--- ---~~~ -- , . .. ---~~—--- ..-~~~~~~~~~~~ - - - . . - . .

5

be performed, a pattern to be retrieved, or a statement of the way things are
expected to be at some point. These possibilities are resolved either
linguistically or by the user.

0. PLuraLs - The use of plurals in the input can indicate loops, specification of a
“gener ic element,” or groupings of objects into a set.

E. Verb Definition - Many natural language verbs have more than one meani~ g.
When multiple meanings are found in the dictionary and they cannot be
linguistically resolved, the user is asked to resolve the ambiguity. Repeated
references to the same verb are assumed to refer to the same meaning.

6. GROUPING INF ORM/JI.ITIES

The Planning Phase uses program structural knowledge (the semantics of the various
control statements), program well-formedne~s criteria (e.g., instances of objects and
relations must be produced before they can be consumed), some linguistic knowledge (e.g.,
that people tend to exp lain the normal case first arid then provide refinements and/or
exceptions), and an important assumption (that all exp lained actions must be invoked
somewhere- -otherwise , why bother to define them) to assemble the individual processing
fragments into a program outline.

A. Relat ive Sequencing - Whenever an exp licit statement of the relative sequencing
of two or more actions is omitted , an attempt is made to determine their relative
sequencing though a producer/consumer analysis. If one produces an objec t or
relation consumed by another , then it must precede that action. Ihis rule is the
major determinant of the sequencing of the program outline. If two or more
ac tions which are not explicitly sequenced do not consume either directly or
indirectly the results of any of the others, then the relative sequencing of these
ac tions is irrelevant and they are placed in a parallel execution block.

B. Omitted Action - If a consumed object or relation is not produced anywhere and
there is a known action which produces it , then the action is added to the
program outline so that it precedes the consumption. If more than one way of
producing the result is known, they are all placed in an alternative execution
block which precedes the consumption. ihis remaining ambiguit y is passe d to
the next phase for resolution.

C. Refinements - Several processing fr agments may refer to the same action rather
than different actions which must be sequenced. Refinements are recogni7ed by
their reference to the common action and/or use of a refinement statement (e.g.,
“during X...”) and are then merged into a separate program plan for the refined
action.

~

~~~~~~~~~~~~~ . .



r 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

7. ITh T/ I IL INF ORM I U T IKS

The final category of informalities is handled by the Meta-Evaluation Phase. It deals
with two types of informalities: exp licit and implicit. The forme r are already-identified
partial constructs in the program plan which must be comp leted (primaril y object

reference constructs which must be uniquely bound to a parameter of an action, an

iteration variable of a loop, an object retrieved from the data base , a previously
referenced object , or an object associated with one of these). In general, a large number
of such possiblities exist for each reference ambiguity, and a program plan contains many
of these.

It is clear that these ambiguities cannot be resolved in isolation from one another
but are highly interdependent. These interdependencies are all related to how the
program behaves dynamically and correspond to a set of well-formedness rules. The most
effective way of testing that these rules are satisfied is to check them during the
execution of the program. We therefore built a special program interpreter which checks
these well-formedness rules as it executes a program. Since these rules must be satisfied
for all executions of the program, it is executed on symbolic rather than actual data.

These well-formedness rules are based on the total dynamic state of the
computation and, hence, are not associated with individual decisions of which possibility to
select for an informality. Thus, when one of these rules is violated, the cause of the
violation cannot be associated with a particular decision. Instead, the decisions are made
one at a time as they are encountered during the Meta-Evaluation of the program; when a
well-f ormedness rule is violated, the system backtracks through the decisions and resumes
Meta-Evaluation of the program at the point of the revised decision.

This sequential decisionmaking and backtracking , together with a reasonable initial
ordering of the possibilities, reduces the large space of possible bindings to a manageable
size. In addition, these rules can uncover other hidden problems in the program for which
specific remedies are known. The discovery of these problems and their resolution
creates a set of additional implicit inlormalities.

A. IncompLete Reference - This explicit informality arises because in natural
communication the first usage of an object is not labeled and then reused for
later references to that object. Instead, references tend to include as little
detail as required to reference objects from the current context. ihis might

simply be a pronoun (“it” or “one”), a type name (“the message ”), or a partial
description (“the red one”) when the desired object is already part of the
context. Otherwise either a full reference suffic ient to unambiguously select the
desired object from the data base, or simply a type name if the desired object is
associated with an object already in context , must be used. Any references in a
description may themselves be incomplete. All these ambiguities are resolved in


~~~~~~~~~~~~~~~~~~~~~~ --.-~~~~ -~~~~~ .

7

the context established by the running program rather than the context of the
input description. This context is the set of objects already bound and
accessible in the program block. This includes the parameters of the program,
embedding iteration variables , and bindings established in preceding statements.

Descriptive references are resolved by pattern matching them with the run-time
data base, which may bind them either to stored objects or to objects already in

context. Pronouns are replaced by a type name reference of the type required
for that argument. For both these typed references and those which exp licitly
occur in the input, an ordered set of possibilities is constructed. These
possibilities are all drawn from the current context by their degree of closeness
to the typed reference according to the following categories relating the type
(X)  of the reference to the type (Y) of an object in the context: X equals V, X is
a subt ype of Y, X is a part of Y, V is a part of X, X is connected via a path to V,
and X is a supertype of V. Within a category the objects are ordered by their
use in the program as: scope objects (iteration variables and objects bound in
an if-statement predicate), parameters , and other (the remaining objects in the
context ). These possibilities are examined as necessary during the backtrack
Meta-Evaluation of the program.

B. Omitted Operand - This explicit informality is an extreme case of an incomplete
reference and is treated exactly like the pronoun case except that literal
instances of the required type are added as possibikties before any supertype
ones. Furthermore , if a literal instance is selected as the accepted binding, and
all other literal instances are also accepted , then the omitted operand is treated
as a don’t-care situation.

C. Alternative Block - This exp licit informality indicates that one of the alternatives
was intended. Ihis construct is created by the Planning Phase for omitted action
informalities that it is unable to resolve. The possibilities are examined, as
necessary, during the backtrack Meta-Evaluation of the program.

0. Scope of Conditionals - This implicit informality arises because the end of the
THEN or ElSE clause in a conditional is almost never explicitl y signaled.
Statements following a conditional are presumed by the Planning Phase to be
outside the scope of the conditional. If such a statement unconditionally uses
the results of a statement already in the conditional, then it is included in that
branc h of the condij ional.

E. Scope of Demons - This implicit informality arises because the pattern specified
to activate a demon may well be too general and cause it to be activated
inappropriately. If the repeated activation of a demon causes an error , rather
than backtrack , the user is first asked whether the demon should be activated in
the current situation.

- -

~ 

. . . . - 



~~~~~~~~~~~~~~~~~~~~~~~~ 
_

8

F. Discovered Param eters - Often actions are described without explicitly spec ifying
their parameters. The description uses these implicit parame ters as if they
were already par t of the established context. When an explicit typed reference
occurs for which no antecedent can be found by the binding mechanism, an

attempt is made to interpret the antecedent as being an implicit parameter of
that type. The parameter is added to the definition of the routine, and all calls
to the routine are updated to include a missing operand of that type.

G. Implicit Type Conversion - When a typed or descriptive reference of
inappropriate type occurs as an operand, then it is processed normally. t o
determine its actual reference. In addition, it is replaced by a typed reference
of the required type which is bound to an object (X), associa ted with the original
one (V) by one of the following relations: X is a subtype of V, X is a par t of
Y, V is a part of X, X is connected via a path to V, or X is a supert ype of V.
Recognition of the need for type conversion may come either via a static
analysis of the program or during execution and may depend upon the existing
set of binding decisions.

8. CONClu SION

As can be seen from the preceding sections , the SAFE system is prepared to accept
a wide range of intorma lities. Some of these informalities are exp licitl y recognizcd in the
input and replaced by an ordered set of possibilities. Others are only recognized by
failure of a we ll-formedness rule during Mela-Evaluation. ihe explici t informalities are
resolved via a backtracking search through the sets of poss ibilities while the implicit ones
are resolved via special solutions associated with the particular well-formedne ss rule
w hich discovered the implic it informality.

Whether or not a particular informal construct can be correct l y resolved is cri ticall y
dependent on the context in which it appears. The more highly developed this context is
the more likely the correct completion will be selected by the system.

Speakers naturall y supply additional context and/or limit their use of informal
cons tructs in complex situations so that the required informalit y resolution processing does
not overl y tax the receiver of the comm unication. That is , informal constructs are used
when the speaker perceives that the constructs can be easil y and successful ly resolved by
the receiver. Thus , once a minimum performance threshold has been reached by a
computer system resolv ing informalities, we should expect quite broad system applicability
because of the self-regulating use of iriforma lities which reduces the range of difficulty in
resolving such informalities.

L

9

The current performance of the SAFE system on a few examp le program
descriptions, though far from the minimum required threshold, indicates the basic feasibility
of our approach and provides a step towar d its realization. Progress will be made as we
devise better rules defining program context and welt -formedness, and make better use of
such rules in rejecting possible completions of informal constructs.

RRH~RENCRS

1. Balzer , R., N. Goldman and 0. Wile, “Informali ty in program specification”,
Proceedings of Fifth Intcrnational Joint Conference on Art~f&ciaL InteWg.nce,
August , 1977 , and USC/Information Sc iences Institute, lSl/RR-77-59.

2. Balzer, R., N. Goldman and D. Wile , “On the transformationa l implementation
approach to programming,” 2nd International Conference on Software Eng ineering,
October 1976, IEEE Catalog No. 76CH1125-4C, pp. 337-349.

3. ~4ayes, J. R. and H. Simon, “Understanding wri t ten problem instructions,” In Gregg,
Knowledge and Cognition, Lawrence Erlbaum Associates , Potomac, Md., 1974.

4. Goldman, N., R. Balzer and 0. Wile “The inference of domain structure from
informal process descriptions,” Proceedings of Workshop on Pattern Directed
Inference Systems , Hawaii , May 1977.

_ _ _ _ _ - _ _-~-. -.. -- --~~~~~~~~

2.
N

z

~Ef l~

0
— 0

0~

CD

0
3

3-
CD

C
CD
0

0
Ia
a
3
3
3
ID

3
0

Sa.
IC
0

0
C
3
a-
S
0
0
3a.
3

3a

9,
S
0
0

a
0
9~.a
0
3
0

-.4
~1

- - — .. .
~~~~~ 

- — ...———-— .— 
~~~~~~~~~~~~~~~ . . . . . . ., ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .~~~~ .~~~~~~. .  ~~~ . ~~~

. —

