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Abstract
A bivariate failure model is proposed in which the residual

lifetime of one component is dependent on the working status of

5 the other. General properties of the model are discussed, and
| : the maximum likelihood estimates of the parameters are found

| in a bivariate exponential-like special case.

Keywords: Bivariate failure model, bivariate exponential
distribution, maximum likelihood estimation.
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1. INTRODUCTION

A new bivariate failure model is proposed in which the
residual lifetime of one component is dependent on the working
status of the other component. This is applicable when the
failure of one component puts more (possibly less) strain on the
remaining components, for example, the kidneys. Section two
derives properties of the lifetimes, including their joint Laplace-
Stieltjes transform.

In the third section a bivariate exponential-like special
case is considered. In this example maximum likelihood estimates
of the parameters are obtained and their asymptotic distribution
studied. This model is compared with the bivariate exponential

models of Freund [3] and Marshall and Olkin [4].

2. MODEL DEFINITION AND GENERAL PROPERTIES

Label the two components of the system A and B with lifetimes
S and T respectively. The lifetimes of the two components are de-
pendent, in that the failure of one component affects the residual
lifetime of the other. To describe S and T, let X, Y, U, V be
non-negative mutually independent random variables with X and Y

absolutely continuous. Then we write

0
]

min(X,Y) + U - I{X>,Y}
(2«1}

=
I

min(X,Y) + V- I{X<Y}

We will obtain an expression for the joint survival distribution
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F(s,t) = PriS>s, T>t}. Assuming s<t and conditioning on the

values of X and Y, we obtain

F(s,t) = [ J Pr{S>s, T>t|X=x, Y=yl}dF, (x)dF,(y).
) X s
Now partition the region [0,») x [0,») into 12 subregions based on

the relative sizes of x,y,s,t. The only non-zero contributions are

Pr{V, t-x)} on the region [s,t] x [x,~) and 1 on the region [t,=) x [t,=).

Thus the following can be established.

Theorem 1:

t

Fx(t)FY(t) + Jsfv(t-x)ﬁy(x)df‘x(x) if s8<t

F(s,t) = {Fy(s)Fyl(s) if s=t¢
S

FX(S)FY(S) + JtFU(s—y)Fx(y)dFY(y) if s> t.

The joint Laplace-Stieltjes transform of (S,T) is defined to
be f*(a,b) = J J e_as-th(ds,dt), where F(ds,dt) is the measure
0’0
determined by the survival function F(s,t). This measure can be

represented by

FY(s)dFv(t—s)de(s) if s<t
F(ds,dt) = ?Q(s)pvdpx(s) + Fy(s)pydFy (s) if s=t (2.2)
Fx(t)dFU(s—t)dFY(t) if s> ¢t,

where p; = Pr{v=0} and p; = Pr{U=0}. This expression is used to

*
evaluate £ (a,b) and we get




Theorem 2:

* S ¥ -(a+b)s= * ¥ -(a+b)s=
£f (a,b) = £ (b J F j
a,b) V( )| e Y(S)dFX(S) ok fU(a) e Fx(s)dFY(s)'

0 0

These integrals cannot be evaluated in general, but can be for

certain important special cases. In particular we have

Corollary 3: If Y has an exponential distribution with parameter

B, then

£ (a,b) = £, (b) £, (a+b+8) + <f;(a)s/a+b+s)[1-f;(a+b+e)1.

Moments can be calculated by differention using this expression. ¥

3. ESTIMATION IN A SPECIAL CASE

As a special case suppose that X and Y are exponentially

distributed with parameters o and B respectively, Pr{U >t} = ge = 7,

Pr{V‘»t:}==qe—G t, where a, 8, o, °>0, 0 < g < 1, t>0. Freund's

[3] model corresponds to the case gq=1. The parameter g allows
for simultaneous failure of the components, since Pr{S=T! = 1l-q = p.
Using results from section 2, properties (including moments) can

be derived. In particular,

[ -(a+B)t . qae Pt [=(a+B-B")8 _-(a+B-B")¢E e
e + heﬁ— Le -e ] il 8<%
F(s,t) = { gkt if s=¢
-(a+R)s Be-a‘s -(a+B=a")t =(a+B=-a’)s
e + (;L"’BTG-’_ [e - ] if s t
(3.1)




Marshall and Olkin [4] defined a bivariate lack of memory

property by Pr{S >s+A, T>t+A} = Pr{S>s, T>s}*Pr{S>A, T>A}

for all s, t, B> 0. The survival distribution (3.1) possesses
this property and has mixtures of exponential distributions as

marginals.

The measure determined by (3.1) however is not absolutely
continuous. If we let My represent Lebesgue measure on R.y then
the measure defined by u(A) = uz(A) + ul{x:(x,x)s*A} is a suitable
dominating measure for maximum likelihood estimation. This is
the same dominating measure used by Bhattacharyya and Johnson [1].

Consider a sample of N independent observations on (S,T),

((S],tl),...,(S ,t.)}. The following notation simplifies the

N N
likelihood function. Let A, = {(Si,ti)lsi< e Ay = {(sy,t))[s; >t}
and A,y = {(si,ti)[si=ti}_ Further let N, = #A N, =#A,, N, =#A,,
S;=18;s Sy= Esi, R= Zsi, T =}\Zti’ T,=]t,. Here #A is the number

1 o i 1 -

of items in A. Then L, the likelihood function, can be expressed
as

L = (a8”)N1(1-p) N3(a+B)N3(sa‘)N2exp[-(a+8)(sl+R+T2)-

" (S,=T,) =B (T,=5,)1. (3.2)

Solving for the maximum likelihood estimates, one obtains

Theorem 4:

(1) If N1=N2=0, then §=1 and a, B8, a”, 8° cannot be estimated,




(i)Y TE Nl=0, but NZ#O, then p=N3/N,a =0,8 =N/(Sl+R+T2),
&‘=N2/(SZ-T2),and g” cannot be estimated.

(iii) If N;#0, but N,=0 then §=N3/N, 8=0, &=N/(sl+R+T2),

2
é'=Nl/(Tl—Sl), and «” cannot be estimated.
Cive) If Nl#O and N#0 then
a=(N/S +R+T,) (N} /N +N,)
B=(N/S|+R+T,) (N, /N +N,)
a”=N,/(8,=T,)
8°=N,/(T)=S,)

=N3/N.

It is easy to obtain the biases in these estimators. Using
a Lehmann, Scheffé partitioning operation (cf. Zacks (5], p. 50)

it can be shown that

Theorem 5: The vector (Nl, N2, Sl+R+T2, SZ-TZ, Tl-Sl), (and thus
the vector of maximum likelihood estimators) is a minimal sufficient
statistic of the sample {(sl,tl),...,(sN,tN)}.
To obtain the asymptotic distribution of the maximum like-
lihood estimates we need to restrict the parameter space as follows.
*
Let 8 = Ham,wﬂsﬂpH0<tl<a<M1“.”0<t5<p<M5<lL On this

space the regularity conditions presented by Chanda [2,p. 56] are

satisfied. Thus we have

Theorem 6:

(1) (as 8s 6”, B PY="(a, B, a°y 8%, p) as N*» with probability

one.




1 2% = A =, =
(ii) N*(a=a, B-B, a”“-a”, B"=B°, p-p) is asymptotically
distributed as multivariate normal with mean 0 and covariance

matrix ), where

a+B-pB e 0 0 0
% (a+B) 2 (a+B)

p a+B-pa 0 0 0
Ta+BY? B(a+B)?

. |
) = 0 0 (1-p) 8 0 0

{a ) S{a+rB)

0 0 0 (1-p)a 0
(B™) “ (a+B)

The parameters can also be estimated by maximum likelihood for a
censored sample.

We see that this model generalizes Freund's model to include
simultaneous failure of both components. It differs from the model
of Marshall and Olkin in that the residual lifetime of one component
is not independent of the status of the other component. We feel

that these features will aid in the application of the model.

p(1-p)

S—— |
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