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Dimensionality and Spatial Modelling:
A Critical Assessment

I. Introduction.

One important concern for any analysis of group decision-
making is the general problem of constructing a procedure for
passing from a set of mown individual preference profiles to
a pattern of social preferences subject tc the fulfillment of
certain specified conditions. In a classic study of the above
problem, Arrow in Social Choice and Individual Values} proposes
certain conditions which specify desirable, while at the same
time seemingly innocuous properties which every social preference
ranking should satisfy. When the conditions are applied over
individual preferences, the social choice is determined; but
the conditions are found to be inconsistent so that no method
of social choice can possibly satisfy all of the specified
conditions. The social choice is shown to be either imposed or
dictated. Arrow's proof demonstrates that if certain of his
conditions are satisfied, the paradox of voting cannot be avoided
80 that given a set of transitive individual preferences, there
does not result a transitive social preference.

The possibility that th: paradox of voting exists such that
social choices may be intransitive suggests serious problems for
decision-making under majority rule, if one feels that social
choice should be dependerit upon the preferences of individuals
in society. One approach which attempts to deal with the
problem is classified under the heading "spatial models of party
eompatition."a‘Generally. the spatial models approach seeks to
identify, elucidate and analyze the conditions, necessary and/or
sufficient, which would indicate the existence of a dominant
position or equilibrium point which a candidate could choose in
order to secure at least a tie in an election or a positive
plurality if an opponent should choose any position which is
not dominant. If certain of Arrow's conditicns were modified
by specifying other necessary and sufrficient conditions which
guarantee an equilibrium point in an election for a candidate,
then Arrow's General Possibility Thcorem might be avoided.
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In the spatial approach, Arrow's conditions for rational
social choice appear to be modified in two general areas: (1)
the assumption of dimensionality in a multidimensional world
and (2) the assumption that individuals act so as to maximize
utility. Most of the additional assumptions in the spatial '
model, but not found in Arrow's work, are related in one way
or another to these two assumptions. In this analysis the main
concern will be with the assumption of dimensionality and
geveral related assumptions; but it will also be necessary to
include some mention of utility, since the two assumptions
must be considered in concert in order to make sense of the
spatial model.

The assumption of dimensionality is interesting in that
the spatial model deals with the property of dimensionality in
a world which is completely uninterpreted empirically, but
which nevertheless has a highly developed formal or mathematical
structure requiring the specific properties of continuity,
infinity and single-peakedness over a set of alternativesordered
on a single dimension. :

Using Arrow's work as a standard for the problem of rational
social choice, it seems appropriate to ask of the spatial
approach first, what are the major properties or characteristics
of the spatial model? Second, is there an analogue in some other
modelling enterprise from which inferences about the spatial
model can be drawn? Third, do the properties of continuity,
infinity and single-peakedness allow for a wide variety of
possible, desirable qualities that a rational choice theory
should satisfy? And fourth, returning to Arrow's formulation,
how does the spatial model in general compare with Arrow's
solution?

Since both Arrow and spatial analysts rely in part upon
formal, empirical and theoretical assumptions in theory construct-
ifon, it would seem appropriate to examine each along these lines.
One acceptable criteria for theory evaluation is: first, the
theory must be examined for internal consistency by means of
logical comparisons among the conclusions derived; second, the

2




theory must be tested for compatability with existing empirical
findings or opportunities fcr empirical testing created by the
theorys and third, the theory must be compared with competing
alternatives so as to ascertain whether or not a scientific
advancement has occurred.

For the most part, Arrow's formulation, demonstration and
conclusions concerning the theory of social choice will be
assumed as given. The reader is directed to Arrow's work Social

_ Choice and Individual Values*for a complete presentation of his
analysis. The mathematical notation concerning the problem of
social choice will be based upon Arrow's logical formulation.

The specific asswptions required by spatial analysis will be
presented in Section II. For a more complete and detailed
explication of these assumptions, the reader is directed to

Riker and Ordeshook, Introduction to Pogitive Polit eory.

I1I. Spatial analysis: the basic model.

According to Riker and Ordeshook, a conceptualization of a
citizens's most preferred candidate is best represented by a
multidimensional model such that a candidate consists of a
unique position on each of n finite dimensions given as a vector,
x= (xl. Xoe soes xn). where x; is the position a citizen most
prefers on dimension i. In order to compare a citizens's most
preferred position with a citizens's actual perception of a
candidate on each dimension, a candidate's position may also
be given as a vector, st (Og. 9%. EPg Gg). where Gj represents
an estimate of candidate j's position on each dimension. Thus
far, the analysis assumes that each dimension relevant to a
citizen's vote is representable in spatial terms. Also, the
spatail analysis is not sensitive to the number of relevant
dimensions and their labels.

Given the vectors x4 and 9j which summarize a citizen's
preferences and perceptions, spatial analysis attempts to represent
the utility a citizen expects to attain from Qj. if a citizen
prefers x. The utility function relating these two vectors is
given as U(x,9.). Two properties are defined in terms of the

above formulation: (1) if ©; = x. then U(x.oj) =K , where A is




‘ gome maximum value; and (2) if Oj # x, then U(x.Gj)'< A. Of
course, an infinite but countable, number of mathematical
formulations of U satisfy the two properties above. This lack
of specificity with regard to the mathematical structure
allows for the inclusion of several assumptions about utility
functions.

One general assumption which satisfies the two properties
above is: U(x.Oj) is concave in 9, so that the peak or maximum
value of a concave utility function is given at @ = x and the
points to either side slope downward from x. This assumption
implies a restriction equivalent to the property of single-
peakedness, since the individual orderings may be represented
on a graph such that the y-axis gives the rank order of the
preference and the x-axis gives the set of alternatives with
the result that any preference curve has one and only one
dominant point or peak.G'This utility function also imposes the
additional requirement that the alternatives along each dimension
be infinite and continuous.

The class of concave utility functions may be narrowed
somewhat if only the quadratic form of the function is considered.
The form is referred to as quadratic, since for one dimension
the distance between xl-Oj is measured as the squared length
between both positions. This length may also be treated as a
norm. The more general expression of the above may be given as
U(x.Oi) =4 - x-Oj“ i. “Thas expression was derived from the
equation U(x.OJ) * A2 i;“ amk(xm'gjn)(xk'ejk)' where a .
is the weighted sum and interaction between dimensions. It must
be noted here that the magnitudes of each dimension depend upon
the units of measurement for each dimension. Also the relative
weights and possible dissimilar scales for each dimension and
between each dimension are unknown. Therefore, the analysis is
limited to theorems which are insensitive to the magnitude of
each dimension. The quadratic form, in addition, indicates
that U(x.Oj) must be symmetric about x.

Together, concavity and its quadratic form imply that as
the distance between the ideal position preferred by a citizen
and the perceived position of the candidate increases, utility
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decreases marginally, so that the slowest rate of decrease is
experienced when Oj and x are near oneanother and the most
rapid when they are apart.

With the addition of the assumption of quasi-concavity,
given as U(x.Oj) =4 (A.-l\x-oj" i). where # is any continuous
monotonically increasing function, the situation in which
U(x.Oj) decreases at a slow rate when x is far from 95 may also
be accommodated within the analysis.

If either the quadratic form or the quasi-concavity
ssumption are required by the spatial model, then the following
restrictions are introduced into the analysis: (1) citizens
may prefer different policies, but the functional forms of their
autility functions are identical; (2) all citizens weight the
issues in an identical fashion; (3) citizens assign the same
degree of relative importance to all issues vis-a=-vis oneanother;
and (4) all citizens use identical scales on each dimension.

III. Physics models as analogues for spatial models.

Since the spatial model for a multidimensional world is
uninterpreted in the sense that it does not specifys (1) the
precise scale of measurement for each dimension, (2) the weights
of each dimension with regard to others, (3) the relevant number
of dimensions to be considered in the model and (4) the labels
which each dimension will be assigned; it might be useful to
examine the technique of dimensional analysis in other scientific
enterprises, namely physics and economics, in order to assess
the significance and implications of the multidimensional
interpretation in the spatial model. In the process of examining
the characteristics of other dimensional models, several questions
are indicated and can be answered. First, what are dimensions?
Second, how are they discovered? And third, how are they related
to empirical, theoretical and formal aspects of the models in
which they are found?

Three concepts of dimension.

When congidering the concept of dimension, at least three
varieties come to mind: ordinary language dimensions, geometrical
dimensions and dimensions as concepts of measurement. All three
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are found in or are potentially applicable to the political
science enterprise, especially the spatial model approach.

The first concept of dimension, the ordinary language
variety, treats the concept as being analyzable by ordinary
language philosophy techniques which one might find in the
works of Wittgenstein or Austin. In this interpretation the
concept may takeva variety of meanings for different individuals,
as well as a variety of meanings for any given individual.
Looking at the concept of dimension then,one finds several
usages most of which may not be synonomous. For the most part,
the meaning of the concept is context dependent. An example of
one use of dimension would be when speaking of the complexity of
some phenomenon, one might say that it had many dimensions for
consideration; meaning that the phenomenon had several facets
all of which are relevant in discussing the phenomenon. Another
use of dimension might be discovered when contemplating the
enormity of some object; in this usage, one might say, for
example, that the size of a Boeing 747 is quite large in its
dimensions with regard to some other object not necessarily
another aircraft. To reiterate, the point being made here is
that the ordinary usage of dimmsion is variable across contexts
in which it occurs and its precision or explication is not
necesaarily highly developed, although its meaning is reasonably
clear in every day discourse.

The second concept of dimension may be referred to as the
geometical concept of dimension. One technical instanceaof the
concept may be characterized with regard to vector spaces, where
a vector space is symbolized as V. The vector space V contains
a set of points- vectors on which two operations are defined:
vector addition and scalar multiplication. Vectors belonging
to a vector gpace may be classified into two classes: linearly
independent and linearly dependent. A linearly dependent set
of vectors occurs when each vector in the set lies in the same
plane and each passes through the origin. If a collection of
linearly independent vectors, which are a set of vectors not in
the same plane, may be represented as a linear combination of
n vectors, then these vectors are a basis for V. In this
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interpretation, dimension becomes dimensions of V given as n.
Por example, in Euclidean n-space, En. n represents the
dimensions of E.

Notice that the geometrical interpretation of dimension
differs from the ordinary language concept in that (1) it loses
its ordinary language connotations becoring a technical term,

(2) its meaning is precise so that agreement and disagreement
about its properties and characterisitcs may be discussed in
common terms, and (3) it is reasonably clear where the concept
fits into the rest of mathematics. The two concepts when viewed
comparatively may be seen not as correct or incorrect, but more
advantageous or appropriate with regard to their use in under-
standing certain phenomenon.

Now, it appears that the political science notion of dimens-
ion may occur variously under both concepts. Of prime concern
here would be its geometrical use, while language philosophers
are concerned with the former concept. In the political science
usage or application of the concept, if I understand it correctly,
an interpreted mathematical structure is somehow mapped into
some political phenomenon in the world or in a possible world.
The procedure for mapping one structure into another may be
undertaken by developing a model and mapping it into a world,
or by taking some aspect of a world and mapping it into a model.
Next, some numerical assignment is given to the elements of the
vectors according to some rule of measurement; this is called
quantification or perhaps scaling in S. S. Stevens' sense of the
term.9 The quantifed phenomenon is manipulated by any variety
of techniques, in this case vector addition and scalar multipli-
cation. A solution is obtained from these operations and this
is taken to be a "description” or “explanation" of the political
phenomenon.

In practice, the above use of dimension in political science
and spatial modelling leads to certain paradoxes and inconsistenc-
ies which are disturbing. In the case of spatial modelling,
consider first a situation wherein the following circumstances
arise. Let a dimension express the quantity: government aid to
education, measured on scale A. Suppose that 50% of the voters
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agree and 50% disagree on the alternatives. According to the
spatial model, either pecsition is acceptable to a candidate.
Next, introduce another dimensions role of government, state
versus federal, with regard to social programs measured on

scale B. Suppose that 100% of the voters agree with the federal
support portion and 0% agree with the state support alternative.
The spatial model would indicate that an optimal loecation occurs
on the federal government alternative given at 100% agreement.
Next, introduce the dimension: aid to education as scale C. Let
100% of the voters favor the position and 0% disagree. Again
the equilibrium point would be at 100% agreement. One conclusion
from scales A, B, and C is that scale A really is dichotomous
being composed of scales B and C, where an optimal strategy
suggests locating at positions which favor federal support and
aid to education. Now consider a situation in which a dimension
is given as federal aid to education, measured on scale A'.
Suppose that the voters split on this issue 50% agreeing and 50%
disagreeing, so that either the disagree or agree position would
be appropriate for a candidate location. Clearly, the above
conclusion does not follow with the addition of this new scale

A' since one would have expected the voters to align 100% in
agreement on this issue. Indeed, this phenomenon, although
perhaps not manifested as clearly as above, occurs frequently in
survey data analysis. The results suggest that different scales,
although relating to the same quantity or relationship, may

lead to alternate solutions.

Instead of viewing the above as the consequence of an
inappropriate use of the concepts dimension and scale, political
science suggests that there may be an error factor creeping in
which alters the results. For example, some respondents may
choose always to respond positively to a question no matter what
it says. Usually, then, the factor is added into the model: in
regression analysis, an "e" is added to the regression equation.
Another frequently observed explanation, given if the error
explanation is not satisfactory, would be that respondents in
a survey are somehow irrational or have undeveloped belief
systems, or have low centrality among attitudinal components.
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Clearly, the phenomenon cannot be explained in tegggﬁff the
concept of dimension being us~d, but must instead¥to other Rirds ok
explanations. Given th't these kinds of phenomenon arising out
of the geometrical use of dimension are undesirable, perhaps it
would be useful to search for another interpretation of '
dimension which can account for these occurrences, even if it
may not in fact solve them, o

This leads us to dimension as a concept of measurement. 1In
this interpretation, the analyst is concerned not only with
dimension in a geometrical sense, but also with respect to
measurement considerations so that the interaction of both
components becomes significant. i

Dimension as a concept of measurement.

In order to understand the concept of dimension,_ it is
necessary first to understand the concept of quantity, symbolized
as q. Generally, quantity is expressed as a magnitude multiplied
by a unit of measurement. An example of the quantity "time"
would be 10 seconds, where 10 is the magnitude and seconds is
the unit of measurement. Although quantities are expressed in
terms of magnitude and unit, quantities are independent of both
(this will be demonstrated later on in the analysis). Most
sciences view the concept as a primative term in the context
of justification. Quantities are classified as primary and
secondary. A primary quantity is one in which the units are
considered to be fundamental in the sense that they are not
reducible to any other quantity. In physies, these would include
mass, length and time. A secondary quantity is one which is
composed of a combination of primary quantities in a functional
relationship. An example would be the equation for force, where
force is equal to mass times acceleration, f = ma. The designat-
ion of primary and secondary quantities is entirely arbitrary
and depends for the most part upon the particular set of rules
governing a scientific paradigm which are convenient to adopt
in defining a system of measurement and upon the purpose of the

analysis. In some systems, for example, the quantity force may
be given as a primary quantity.
9
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The scales used in measuring quantities are also important
in understanding the concept of dimension. By scale I mean (1)
a rule for making numerical assignments to some phenomenon, (2)
80 that the same numerical assignment may be given to the same
object under identical conditions and (3) so that the possibility
of assigning different numbers to different things under the
gsame conditions exists. Scales are usually given as similar
and dissimilar when related to quantities. A similar set of
scales suggésts that all of the units used to characterize s
quantity may be converted to any other unit so that an absolute
ratio between two measurements remains the same regardless of a
change in unit. An example for the quantity time would be 60
seconds are contained in one minute and one minute is contained
in one hour. A class of dissimilar scales does not allow for
conversion of one unit to another while at the same time
preserving an absolute significance between two measurements.
For example, time measured in seconds could not be converted to
time measured in "dogs" so that the same absolute significance
is preserved. This is so0 since dogs may be measured in terms
of weight, color, volumn, number, breed, etc., which may vary
acrogs the set of all dogs so that a relationship which transforms
seconds into dogs is not possible.

Dimension defined.

Keeping in mind the explication of quantity and scale above,
the concept of dimension as measurement may be defined as an
expression of a quantity in terms of one class of similar scales}3

The combination of two or more quantities by means of two
or more dimeesional expressions of these quantities is given as
a functional relationship of the general form:

g = f(xl. xé. e xn).
where q is a secondary quantity expressed as a secondary
dimension, f is a function and X, through x are dimensions of
quantities in the domain of the function}

How dimensions are discovered.

Having defined dimensions as a concept of measurement in
terms of quantity and scale, the analysis will turn next to an
10




explanation of how dimensions are discovered. A practical
example which might te cited would be the determination of the
time of swing of a simple pendulum. Potential quantities to
be considered might be:

name of quantity dimensions
time of swing t
length of pandulum 1l
mass of pendulum m
acceleration or gravity -4
angular amplitude of swing o

By combining the above in the most general functional form,
one obtains t = f(1, m, g, @). Clearly, all of the above
dimensions in the domain of the function seem completely
plausible and potentially relevant, but which ones are relevant
and what is the specific form of the function combining them?
In other words, how is the correct equation, t = f(0) 1/g,
which has been determined by dimensional analysis in physics
discovered? . ¢

One strategy for solving the above problem would be to
combine all of the above dimensions in a multitude of ways
concerning every possible combination, and then test each
empirically to discover an aprropriate formula. Certainly this
is infeasible, first, because as the number of dimensions
increases the number of comtinations increases also so0 that
empirical confirmation becomes increasingly more difficult or
even impossible; and second, because therc is no guarantee that
all of the relevant dimensions are in the list to be analyzed.

Another strategy would be to formulate a mathematical or
formal structurse prior to the determination of either the
quantities or dimensions in the hope that the correct structure
has been chosen. Of course, the strategy evidences at least
two major problems: first, there are an infinite number of

structures vhich may or may not accomocdate the relevant dimensions,

and second, there is no guarantee that all of the relevant
dimensions may be accounted for in the structure which is being
posited.

The most plausible explanation for the discovery and
manipulation of dimensions~ an explanation which will point up
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further difficulties with the two strategies mentioned above- is:
one which alucidates the formel relationship between quantities
dimensions and numerical laws. To tegin, numerical laws may be
defined as a functional relationship between two or more
quantities under specified conditions which may be confronted
with data. Numerical laws are expressed in funetional form in

a manner identical to the dimensional formulae except that the
numerical law is independent of the dimensions which may define
1l |

Since the relationship between quantities is defined as
constituting a numerical law, then if quantities are independent,
numerical laws must be independent also. This may be shown in
three ways. First, take a quantity "time" as the phenomenon for
analysis. In order to demonstrate that time is independent of
the dimensions which may define it, consider at least two classes
of scales which are independent of oneanother and are used to
measure times clock time and mathematical time. Clock time,
expressed in seconds, is simply our everyday means of indicating
time. One notion of mathematical time would be an attempt to
characterize time as being a geometrical entity having length
or extension. Not only does mathematical time differ in that it
has extens. on, but within the (uantity one finds that the kind
of distnace function, that is, Euclidean and non-Euclidean,
offers an infinite number of possible dimensions, none of
which reduce to time in seconds, minutes or hours in the sense
of being classes of similar secales. Clearly, if the same
quantity may be expressed according to a wide variety and infinite
number of independent scales, yet still refer to the same
phenomenon, then the quantity ﬁust exist independently of the
dimensions defining it.

Second suppose that an analyst desires to measure the
quantity gravity, given as g. Through empirical testing and
deductive manipulation, suppose that the secondary quantity for
gravity is determined to be m 'w = g, where w is the quantity
weight and m-! 1s the reciprocal of the quantity mass. Another
analyst sees this &nd proposes a competing formula g = lt'z.
where 1 ias the height an objoct falls and t™2 1g the square of
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the reciprocal of time during which the object falls. Both
formulae are measuring the quantity gravity, yet each is
completely independent and not derivable from the other in terms
of the paradigm governing measurement. From this one can see
that the secondary quantity gravity must be independent of

the dimensions of the primary quantities which define it. And,
the primary quantities are also independent of the dimensions
which define them. Therefore, since a numerical law is
composed of quantities, it too must be independent of the
dimensions which define it.

And third, since the designation of primary and secondary
quantities and their expression in terms of dimensions is
entirely arbitrary, depending upon the purpose and (as will be
discussed later) the theoretical framework of the analysis; it
is not impossible for any quantity or collection of quantities
to have the same dimensions. In gpite of this, the quantities
and numerical laws remain the same. Therefore, again the
independence of quantities from dimensions which express them
is indicated.

Several formal implicetiong of dimensiong as vieswed gbove.

Poirts.cne through three above, suggest several important
consequences for the use of dimensions in an analys:iﬁl.l7 One
would be that even though quantities and numerical laws are
independent oif the dimensions which may be used to express them
and even though the specification of primary and secondary
quantities is for the most part arbitrary, the choices in an
analysis which manifest the character of laws and quantities
detarmine, in part, the functional form the diﬁensional equation
can assume. In like manner the choices with regard to classes
of similar scales in which dimensional equations are represented
also determine in part the formal nature o1 the dimensional
equation. Both opportunities requiring choices, then, may be
seen as limiting the formal, mathematical structures of
dimensional equations.

Another consequence would be that again, since quantities
are arbitrary, and quantities may be expressed in terms of
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different laws and classes of similar scales, solutions to
problems concerning the same phenomenon will necessarily vary
with the possible result that they are contradictory or irrelevant
with regard to oneanother or no comparison may even be possible.
Therefore, in order to make sense of the solution to a problenm,
it is necessary that the prior determinants be specified in

order to discover which interpretations are contradictory,
irrelevant or indeterminant. If the prior determinants are not
specified, then the dimensional equation provides a solution,

but it will not be possible to decide for which problem it
happens to be a solution. If solutions are contradictory,
depending upon prior choices, then clearly the problem is highly
significant, because an analyst does not know which solution to
accept as apprpriate.

Yet another consequence would be that: if the specification
of quantities is arbitrary, if a single quartity may be expressed
in terms of alternative numerical laws and if by definition
classes of similar scales are independent of other classes of
similar scales, then it can be shown to follow that a dimensional
equation cannot be used to deduce the formal structure of a
numerical law a priori. Suppose, for example, that an analyst
is given an uninterpreted dinensional equation xy = z. Clearly,
this equation may represent any numerical law ranging from f =ma
to E = mcz. Therefore, in general one may conclude that
uninterpreted dimensional equations are of dubious value when
presented devoid of the results of prior knowledge which must
have preceded them or should have preceded them. The uninter-
preted equation may still be of interest from a pure mathematical
point of view, however. Next, consider the case wherein an
interpreted model is presented a priori. Initially, it seems
clear that it would be difficult or impossible to think up
dimensions which do not refer to well established numerical
laws. Even if the dimensions happened to be appropriate, there
exists no a priori experience which would dictate their structure
short of listing every structure possible or guessing about the
nature of any particular one. Even if one grants that dimensions
may be thought up and their structure determined, there still

14
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appears to be no way of knowing whether all of the dimensions
are included. An example of this might be that one could list
all of the dimensions in the previous pendulum problem and
derive its precise structure and correctly represent a law,

but in order to do this one would have had to have knowledge

of most all of the other laws of physics, since the dimensional
equation exists with a ceteris paribus assumption with regard to
these laws.. In other words one would have to kxnow that the

laws of gravitational attraction, quantum mechanics, ete, should
or should not be included. '

A final consequence in light of the above would be that it
is incorrect to consider dimensions as transformation formulae
between scales.laThis follows directly from the fact that
dimensions are determined by choices of numerical laws and
similar scales so that a dimension in one class of similar
scales cannot be converted into the same dimension in another
class of similar scales. Therefore, there exists quantities
which cannot be expressed such that given magnitudes and units |
every dimensional representation may be converted into every
other for any quantity which is designated as a primary or
secondary quantity. Instead, it appears to be the case that
the follewing characteristict are indicated: (1) transformation
formulae express functional relationships between magnitudes of
quantities which are uninterpreted, but which have similar or
equivalent scales, (2) dimensional formulae express functional
relationships between quantities being expressed as one class
of independent, similar scales and magnitudes and (3) numerical
laws express functional relationships between quantities,
either primary or'secondary. which are independent of dimensions
which may be used to express them.

Spatial models: gsome formal implications.
In considering the gpatial modelling approach in light of

the formal characteristics of the analysis thus far, the following
implications emerge. First, it has been noted above that our
prior choices among expressions for quantities and numerical laws
determines the structure of dimensional formulae. In the
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spatial model, one is given a votor's vector space
x = (x1 Spsee+X;) and a canddate's vector space -
°j = (Oj. Og.....eg) which stand for dimension in the geometrical

gense of the term. Both vectors are combinsd inte a numerical

law given as U(x.OJ), where this exprescion equals:

>
A -3, e T T T T

Clearly, this exproaoion for quan«itiea. laws and dimensions
does not in fact conform to the idea that the prier choices must
act as determinants for the dimensicnal formula. As it now
stands, tho expression of the formula is true by definition
since it is equivalent to tho "general form® of a dimensional
equation given earlier. VWhat it does not do is specif§: the
precise relationship which each dimension must have to every
other dimension as wall as to the entire saot of dimensions.
This of course applies here to the case of one individual and
one candidate; the problem is more serious and complex when
additional voters and candidates are added.

Second, the analysis has suggestod that dimensions as
concepts of measurezent may gernerate problem solutionsw.which are
contradictory, irrelevant or indotsrminant. In spatial modelling,
cansider a case wherein the seme dimension has two scales which
are not similar by definition, rathar than derivefl empirically
as above in the "ald to education exauple” and which lead to
contradictory soluticns. Suppose that an analyst proposes an
jgsue dimension which has one scala ziven as a valence issue-
"those that merely involve the linking of the parties with some

condition that iz positively or negativoly valued by t!'s electorate;”

and the other scale as a pozition issue~ “those that involve
advocacy of government acticn from a set of alternatlva over
which a distribution of voter pr2ferancecs is defined."” Let the
valence scale and position scele be dircsimilar. Further, let
each scale exist such that if cne is chossn the other 1s precluded
from use. Suppose that the iesue is givon as a position scale
and 100% of the voters agree and 05 dicagree. Next, the gsame
issue issue is given as a valence scale and 100% of the voters
disagree and 0% agrea. Cleoerly, the same dimension has one
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equilibrium position on one scale and another on the second.
Therefore, the choice of scal®*s may lead to different solutions.
Now, let both scales be dissimilar, and stipulate that they
occur concomitantly in the same dimensgion, but the precise nature
of their interaction is indeterminant. Certainly, in this case
the spatial model cannot account for the desired equilibrium
point. This remains the case even thdough the separate scales
above might be considered. Therefore, using the combined scale
will lead to a solution which may bte contradictory, irrelevant
or indeterminant. The obvious relevance of this example for
spatial modelling is that if the dimensions are not specified,
but left in geometrical form, the analysis can be shown under
certain circunstance to generate an equilibrium point; but the
more important question is an equilibrium point in relation to
what? This cannot be addressed in the model.

Third, the above analysis has indicated that although it
is possible to construct .dimensional formulae from quantitive
numerical laws, it is not possible, except perhaps in some
fortuitéus manner to construct dimensional formulae a priori mund
attempt to deduce the structure of numerical laws from them.
Yet in the spaticsl model being analy=ed, this is precisely what
is being done. 1In effect, the use of the most general functiona:
form in terms of the geomatircal concept of dimension is present«c
as if it were pogsible to daduce the formal structure when given
dimensions as concept of neasurement. In ordar to show that
this i3 certzinly not pogsibtle in the model, consider (1)
quantities are not specifind in terms of primary and secondary
classifications, (2) poin® on2 immediately precludes the
possiblity thet numerical laws are or can be specified, (3)
classes of gimilar scales are ca2fined, (#) the nature of the
solutions sra not gcpecified, sni(5) mect importantly, the model
itgelf is only presented in a vary gencral form. Given the abov:
impediments, it is difficult to see how the model can be used to
ald our understanding of numericel lawvn.

Saveral ornirical implications of dinensions.

Thus far the analysis has shown that the formal structure

17




of dimension is determined by the choice of numerical laws and
gsimilar scales, but there is also an emprical component whose
necessity can be'deuonstratedzend the nature of which determines
dimensional formulae in part.

The necessity and determinancy- of the empirical component
in general may be demonstrated in the following example. In
mathematics, it is known by definition, derivation and deductive
proof that the 1st through the nth derivative of any equation
may be computed. For example, the egmation f(x) = X 4x4x+6 has
a 1st derivative 3x2+2x+1 and a 2nd derivative 6x+2 and a 3rd
derivative of 6 and so on. In physics, the variablesin the
equation are made specific such that s = distance, v = velocity,
a = acceleration and t = time. By definition and convention,
distance is a function of time, s = f(t), v is the 1st derivative
of 8 with respect to t and a is the 2nd derivative of s with
respect to t or a is the 1st derivative of v with raspect to t.
These relationships constitute the basic structure for the laws
of motion in physics. :

Given that the laws of motion in physics are based on the
above relationships, it can be shown that it is the empirical
phenomenonwiich gives the equations their form or structure,
while the uninterpreted mathematical equations provide the rules
and conventions for defining and manipulating variables. For
example, using the symbolic notation for equations of motion
A= Dtv = Dis provides no clue as to the actual equations of
motion which are derived by testing a phenomenon empirically,
but merely show conventional analytic relationships. In this
example, if an analyst asked how fast a rocket, is traveling,
then the answer is Dis = v. However, if an analyst wished to
know the precise equation which expresses the relationship so
that if by observation, values for 8, v, a and t are obtained,
then one possible equation might be f(s) = t2+t*1 and velocity
could be given as Dts = v = 2t+1. Clearly, mathematics provides
the set of rules and the set of all possible structures, but it
is the nature of the empirical phenomenon which is given
interpretation in the form of an equation which makes the model
apply to the phenomenon. '
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The empirical component is perhaps best demonstrated by the
nature of dimensional constar*s in dimengional formulae. A
dimensional constant is a constant which has dimensions so that
a change in numerical magnitude is accompanied by a change in
the size of the fundamental units involved. The obvious import-
ance of dimensional constants may be illustrated as follows.
Suppose an analyst wishes to discover the gravitational attract-
ion between two objects. All of the important dimensions and
quantities may be listed for analysis:

pame of quantity dimension
mass of first body m,
mass of second body m,
distance betwsen bodies r
time of revolution t

The most general form would be given as t = f(ml. m, r). It
is clear that on the left side of the equation one finds a unit
of time, but on the right, no such dimension is possible.
Therefore, one might conclude that even though all of the
variables which may be varied are included, there must be gome-
thing missing from the equation which when included will make
the functional expression true. There are of course, an infinite
number of formal expressions which may be considered, dbut there
is no a priori way of discove: ing the nature of this expression.
In this case, the missing element would be the gravitational
costant G, given as m'113t'2. The equation then becomes
t=0 nimz/fz. The inclusion of the constant significantly
alters the expression. Further, the cowstant is not apparent
in any of the quantities which are listed as relevant, and is
therefore not derivable from any of the dimensions not matter
which ones would be indicated. Subsequently, one may ask, how
is it that the constant G comes to be included in the dimensional
formula? The constant is derived by knowledge of the empirical
phenomenon and from the use of certain other numerical laws
which indicate that the constant is appropriate the and indeed
necessitated. This illustrates that dimensional formulae are
not only formal expressions, but also highly empirical in nature.
Sometimes within a dimengional analysis, the dimensional
constants may be left uninterpreted. Generally, the consequences
19




of doing this are as follows: if the number of dimensional
constants is less than the nunber of variables being considered
in an analysis, then dimensional analysis may proceed but
solutions may include an unknown constant or constants. This

is not entirely undesirable, depending on the purpose ¢f the A
analysis and the nature of the solution desired. If the number
of constants is equal to the number of variables in an equation,
then the equation can provide no information at all and
dimensional analysis is impossible.

To summarize briefly, empirical components enter into an
analysis in at least three places: (1) past experience of other
laws, (2) use of laws in devising dimensional formulae and
(3) the inclusion of dimensional constants in dimensional
formulae.2

everal empirical i ications.

The notion that dimsnsional equations are by necessity part
empirical has several implications for dimensional models. Each
of the following points may be seento parallel or correspond
closely to the implications arising out of the formal section of
this analysis. -

Pirst, even though it apvears that the formal or mathematical
rules and structures seem to nake numerical laws and dimensional
equations definitional, this is not the case since’it is the
interpretation of the empirical phenomenon which dictates the
form of the law and structure. This was evidenced by the
discussion of the equations of the laws of motion and the use
of dimensional constants. Therefore, just as the formal
structure of numarical laws was seen as determining the dimenginr~?
equation for the law, the empirical component when interpreted
may be seen as a determinant in part of the formal structure
of numerical laws. Clearly, the empirical and formal determinants
of numerical laws must precede the construction of a dimensional
equation. If this interpretation of dimensional analysis is
not followed, then dimensional formulac are not really dimensional
in the sense of the concept of measurement, but are instead
geometrical dimensions which are of interest in mathematics only.
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Second, the rture of numerical laws suggests that the
same empirical phenomenon may be interpreted in many ways
according to the prior choices made in expressing them. Further,
the analysis has shown that the same mathematical structure
applies to many empirical interpretations of a phenomenon, but
certainly not all. If this view is correct, then it follows
that in order to make sense of the solutions to an analysis,
the empirical and formal determinants must be specified. If this
specification is not forthcoming, contradictory, irrelevant
and indeterminant solutions cannot be identified. This lack of
golution identification, then, would mean that we would not
know what the analysis means in relation to the phenomenon.

Thfrd. given that the empirical and the formal aspects of
numerical laws are variable across interpretations, that
contradictory, irrelevant and indeterminant solutions may exist
and that the empirical component is a necessary element in the
analysis of a phenomenons a conclusion that may be drawn is
that an uninterpreted dimensional analysis, where dimensions
are geometrical entities, does not admit of the possibility of
an a prioril discovery or specification of numerical laws.

Spatial models: some empirical implications.
Having detailed some of the empirical implications for

-dimensional models, the analysis will attempt to relate these

implications directly to the spatial model.

The first implication which must be considered is that
dimensional formulae are in part empirical and that this
empirical portion determines the formal structure of the dimensir--~?
formulae. Consider in the spatial model the mathematical
property of single-peakedness and the numerical law which suggests
that individuals act in such a way as to maximize utility. Other
analyses have shown that single-peakedness over a set of
individual preferences will guarantee a \Dgst > gocial choice
in a model. This remains the case no matter what one calls the

~orderings, that is, it does not matter whether individuals are

maximizing utility or acting according to some other decision

criteria. Therefore, the model gives a suffisient condition

for guaranteeing an equilibrium point independent of whether
21




the empirical phenomenon of utility maximization for individuals
oxists.23 Consequently, it aypears that the addition of the
assumption of utility adds notring to the svatial =24el rince
single-peankedness already has guarantecd the results. More
importantly, the empirical nature of utility maximization as
viewed dimensionally exists in name only, or by definition only,
~=~4 hag not really determined even in part the structure of the
model as the previous analysis has suggested that it should.

By not considering the empirizal component in utility
maximization, and by relying only upon the logical property of
single-peakedness, the spatial model may be seen as highly
restrictive in several potentially undesirable ways: (1) there are
a good many other formal propertias which also gusrantee a best
social choice, but are not accounted for in the spatial modael.
Among these would be the qualitative properties: dichotomous,
echoic and antagonistic proferences; value-restricted preferences:
single-caved and two-group-separated preferences; and taboo
preferences.2 All of these properties may be presented in terms
of utility, but they work independently of the property as wellj
(2) the property of single-peakednecs requires that the number
of individuals concerned in social choice be odd, if a best
point 2»A =~+ an equilibrium point is desired. Clearly, this
limits the model since it cannot guarantee a best point, but
merely an equilibrium point point for even numbers of individuals
or free numbers, that is, numbers of individusls where ocddness
or evenness is irrelevant. In the atove alternative properties,
dichotomous, echoic and antegonistic prefcrences provide a best socia!
choice when the number of individuals free|25 (3) it 1e
possible to find empirical cxciples whare single-peazkednes would
not apply in important cecision-making contexts. Take for
example roll call votin~ in the United Nations Assembly; clearly
the property of single-pzakedacss as a quantity common to
preference orderings is not applicable in all cases; and (&)
the property of single-pecake<ness es it stands in the spatial
model can only demonstrate a sufficient coiidition for an
equilibrium point, but not a necessary One.26 This suggests that
the property is ruch weaker analytically than other rational
choice theories which
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have specified necessary conditions for an equilibrium point as

well as a "best" point. :
The spatial model may also be analyzed with regard to

empirical implications by examining the nature and function of
dimensional constants withiq‘tgg dimensional model. Recall the
general expression: A- € § ank(xn'gjm)(xk'ojk)' where

"3t K\
the dimensional constant a is intended to rspresent the
weighted sum and the interaction between each pair of dimensions.
Clearly, from the above analysis, dimensional analysis in any
empirical sense is impossible since the dimensions and
dimensional constants are expressed in terns of VN knowWNS,
Therefore, the expression can provide us with no information
about the phenomenon under analysis. The-obvious rejsinder to
this would be that alJl that needs to be accomplished is the
empirical interpretation and analysis of the unknown expressions
and a solution wi’l be attained. But, this is precisely the
eriticism being offered in this analysis. The first important
point to be noted here is that in spatial terms, the entire
problem of social cholce reduces to the precise expression of
the Bk constant. In essence then the expression of the entire
mothematical § tructure is somewhat meaningless without information

"about L More importantly, the rejoinder does not consider the

fact that the dimensicnal constants, in physics at Jegst, can-
not be in many cases discovered within the relevant dimensions
of the phenomenon nnder study, but instead derive from other
empirical gnalyses over other dimensions. This it will be
recalled is the cgse in the exvregsion of & <4he.unNniversal
gravitational conrstant. If this view is correct, then the
spatial model - has rceally not solved the probiem. but ingtead
has shown that the constant must be determined in scme other
analysis.

Another irmplicaticn of the empirical analysis was that
since there are possiblities for contradictory, irrelevant and
indeterminant solutiona to dimensional problems, it is necessary
for a dimensional model to specify the exact empirical inter-
pretations and components so that the solutionsto problems can
be made sense of according to the notion of dimension as a
concept cf measurement. When the spatial model is considered
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in light of this implication it will be necessary only to
racall the example of "government aid to education™ presented
earlier in order to assess the consequences of empirical
phenomenon for the spatial model. If the empirical components
are not considered, it will be impossible for the spatial model
to give a solution vwhich can be meaningfully evaluat2d, since
the empirical phenomenon leads to two different equilibrium
points. Since one purpose of spatiel modelling is to discover
a unique equilibrium point, the non-empirical aspect of the
model appears to be unsatisfactory. '

Yet another implication involved when considering empirical
aspects of a dimensional anazlysis is the notion that numerical
laws cannot be deduced from uninterpreted mathematical structures.
This conclusion implies important consequences for the analysis
of empirical phenomenon by means of the spatial model. Initially,
upon examining the spatial modal, one finds that the numerical
law for individual utility maximization over a multidimensiocnal
. world is initially posited’ in the analysis. The law of utility
maximization, although assumed, does not enjoy extensive
theoretical acceptance or empirical support vis-a-vis other
alternatives. Among the more prominent alternate explanations,
one finds the following: (1) given the high cost of information
and lack of information, individuals nay seek a "satisfaétory'
choice, rather than some optimum ona; (2) individuals have a
propensity to act out of jnterest in a game or gamesmanship so
that even when alterrnatives are krowa, and probabilities are
given, individuals attempt tc beat the odds, thereby not
maximizing utility;z%B) in some cases chosing ¢one's mogt preferred
alternative in a votingsituation, may in a sense be wasting it,
since it may not be a possible winner; whereas if a most preferred
alternative is abandoned in favor of some léss .preferred alternat-
ive, then perhaps some gain may be achieved: this point suggests
concepts such as "strategic"” voting{glogrolling and Bayes
minimax strategies which not only concern some maximum choice,
but also the notion of a minimum, as well as positions in
betweens (4) some individuals may not vote for utility on an
individual level, but instead out of altruistic motives; (5)
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it is frequently the case that individuals possess little
information about politics, and vote out of an interest in
citizen duty rather that utility maximizationaaké) it is not
clear how utility would relate to undeveloped belief systems in
which their exist no opinions and non-attitudeéizsince
information appears to be a necesgsary condition for expression
of an individual's position on a set of dimensions; and (7)
for a person to have an optimum choice with a subsequent ordering
should not depend upon the order in which the choices are
presented, and the ordering should not change when the order in
which the alternatives are presented changes without some
genuine attitude change, empirically, this seems for some
individuals not to be the case.33

From the above presentation the analysis has suggested with
regard to utility maximization, that there is substantial evidence
that the phenomenon may not be especially warranted in many
decision-making contexts. Combining this notion with the previous
conclusions that the formal structure for utility maximization
is unknown, there are a multitudinous variety of ways in which
any law could be expressed, some of which may be mutually
exclusive; and the nature of laws and quantities may lead to
solutions which are contradictory, irrelevant or indeterminant;
it seems clear that the possibiltiy for deducing numerical laws
is at worst impossible and at best extremely fortuitous.

Spatial modellings can it be justified?

Thus far, the formal and empirical components of dimensional
models in general, have serious implications for the spatial
model approéch. Perhaps the polemics in this regard may be
presented as followss if the analysis is correct in asserting
that formal and empirical quantities and numerical laws wmust
exist and must be developed in order to derive a dimensional
equation and if the converse is not correct, then the spatial
model cannot be developed a priori. If it cannot be developed

a priori, then it cannot be used to discover laws, in this case

utility maximization in a multidimensional world. Instead, it

appears to remain entirely definitional. The spatial analyst
25
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might object that although the spatial model is uninterpreted,
it may at some time, using the given structure, be made
interpreted and subsequently tested empirically. But, the
problem with this rejoinder is evident: if one needs to
interpret a structure, map it into some empirical repreeentatipn
of a phenomenon and test it empirically, then the spatial model
appears to necessitate an additional, yet unrequired step. This
may e shown by observing that if the empirical phenomenon is
well enough'understood to be cast in dimensional terms, it must
be well enough understood to be cast in terms of quantities and
numerical laws. Since dimensional analysis is an analysis of
an analysis, a dimensional interpretation derives also from

this empirical investigation. The extra step occurs in that
this derived dimensional analysis msut be compared with the
positéd a priori model. Clearly, if an analyst has a "properly"”
derived dimensional model, it would not be especially productive
to have an a priori one also. Furthermore, the complexity of
the simple physics problems like the pendulum problem above,
suggest that the possibility of attaininq a derived and an a
priori model which are identical is not high.

Spatial modelling: the problem of continuity, infinity and
constraints.

Thus far the ‘analysis has discussed some of the apparent
consequences~ formal and empirical- when developing an uninter-
preted dimensional model prior to developing its antecedents.
There exists another problem of an opposite nature, when one
examines the highly specific mathematical assumptions necessary
to construct the dimensional structure of the gpatial mdoel.

The properties of continuity, infinity and single~peakedness
over alternatives on a dimension taken as assumptions may serve
to illustrate this point. :

One potential problem created by the formal assumptions of
infinity andcontinuity over a get of individual preference

orderings occurs when constraints are introduced into the spatial

modelago that certain alternatives which may be desirable and

most preferred become infeasible. A possible example of thia

problem would occur in the real world environment when individuals
26
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desire that x amount of dollars be spent on a social program,
but a budget constraint of x-1 dollars makes the most preferred
amount x infeasible. The problem above may be characterized as
follows: the assumption of gsingle-peakedness is a sufficient
condition for the existemce of an equilibrium point x over the
alternatives in one dimewion; but if the equilibrium point x

is outside the range of feasible alternatives, then one
question becomes, is there some unique point in each subset of
ordered alternatives which represents a best alternative or
equilibrium point?

The following analysis will demonstrate that the existence
of an equilibrium point over any subset of alternatives, where
a constraint is imposed such that x represents only a unique
solution to an unconstraired problem, may not be guaranteed. To
begin, the following notation and definitions will be orfored.35
Let S be the set of all possible alternatives to be considered
for social choice. And let A be any given subset of S. Next,
the concept of a maximal set may be defined: for any given
subset of S, the maximal set M(A) is:

o) [[xex] © (xEL) & My Ea s~Gxpy) ],
which means there exists a set of alternatives in A such that
no better social alternative in A may be found. From the
definition for a M(A), the definition for a choice set C(A) is
given as: (V x) [{x fC(A)} <> é(x €a) & (Vy)((y€a) - ny)n.
which means that there exists some element of A which is at
least as good ag any other element A.

The maximal set M(A) and the choice set C(A) may be shown
to be related as follows: C(A)C M(A). If the alternatives in
S are both reflexive and connected, then C(A) = M(A). Of course,
a unique element in C(A) would be equivalent to an equilibrium
point. Using the concept of choice set, the definition of a
social choice function (SCF) over the subset A may be given as
a functional relation that defines a non-empty choice set for
every non-empty subset of A.

A final definition which must be considered is the property
of 'fOundedness"PG Foundedness is a condition where for any
subset A of S there does not exist an infinitely long descending
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chain of the type (...xBRxZ & x2Rx1) sc that the alternatives

x are infinite. Using the above definitions, two analysts, Sen
and PattanaiK were able to prove the following theorom% a neces-
sary and sufficient condition for R to generate a non-empty
maximal set for every non-empty subset of S ig that P should be
founded over S. If one notes that the binary relations,

R and P, are also reflexive and connected, then an additional
theorem may be derived: generates a choice function over S

if and only if R is reflexive and connected and P is founded

over S.

Next the above analysis will be applied directly to the
spatial model. Take any dimension in the spatial model which
possesses the properties outlined in Section 2. Let a constraint
constant be introduced into the model so that the dimension is
partitioned into two intervals: A = (x, ») and B= (« ,x]|, where
the constraints constant b is given as being less than or equal
to x. In effect, B will be eliminated from the set of
feasible alternatives by stipulation. Graphically, the following
would result, where the shaded area represents B.

ulx,05) a4

7

(B}  {A)
Since by construction, A has as one of its interval end-points
an open-ended element x, such that for any point chosen in A
there exists another point which is more preferred, no
equilibrium point exists for the individual.

Since there exists the possiblity that no dominant position
exists over a given subset of alternatives ordered by an
individual, it remains to be seen what effect this engenders
in the social choice.

Since the constraint constant affects all citizens, some

_;xi

citizens or no citizen, several cases concerning the constant
must be discussed.
28




Case one: consider a situation in which all citizens prefer
the same alternative as their best choice. Let the constraint
constant b for each citizen equal the constraint over the
social cholice preference ordering so that b equals the median
of the density function f(x). Graphically, this may be
represented as follows:

f(x)

-_>xi

Clearly, under the case of unanimity above, no social choice
is engendered.

Case twos consider a situation in which a majority of
citizens prefer as their best choice, alternatives which are
equal to or less than the constraint constant b, so that the
set of alternatives desired by the majority are infeasible.
fraphically, this may be represented as follows:

f(x)

7

X.
> —p 3

In the above case, the majority, assuming that everyone votes,
must prefer an alternative which is greater than b, but less than
any other point. If b = Xne1 and descending from that point the
alternatives are given as Xpo coee Xpu Xg0 then the alternatives
in the feasible subset of S above are not founded. This is true
since no matter what value is substituted for n, there exists at
least one alternative which is more preferred. C(A) is there-
fore empty and no dominant point exists.

Case three: consider a situation in which a constraint
constant is introduced such that the most preferred alternative
for society is not eliminated as a feasible alternative, where
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b is less than the median. Again, all citizens are assumed
to vote. Craphically this may be represented as follows:
f(x)

» X3

In the above representation, i? ig.clear that citizens, whose
most preferred position is less than b, engenders a situation

in which the most preferred point desired by society is not

the equilbrium point, but the x of the distribution, where

x ¥ M. Also since the only restriction is that the constraint

is less than b, there exists the possibility that the equilibrium
point may not be unique.

Case four: it appears that under a world of constraints, an
equilibrium point only guaranteed, when for any given citizen,
the constraint constant b is always unequal to x. This allows
for the complete range of alternatives to be ordered over the
density function f(x).

From the above analysis, the study may now proceed to a
consideration of a world of two or more dimensions, in order
to discover the existence of an equilibrium point under the
existence of constraints. Consider initially a world of two
dimensions x, and X5 which order an individual's preference
profile into a utility function with a most preferred position A.
Craphically, the following results: '

u(x,ei ’
sO0lution to unconstrained
problem
f(xl,xz)
> X,

°). €= preference
direction

indifference contours
X
2
l'ext, let a constraint function be introduced into the
analysis so that the set of feasible alternatives is limited
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by a vector in two dimensions, g(x) = b, where gi(xl.xz) = By
and g,(x;.,x,) = b, such that b = (b;.b,)s and where b = A .
Also let<><1 be any indifference contour not constrained by b.
By construction, = 4 must always be less than b and less than
A Graphically, the following results:

u(x,6, A

\ ' solution to constrained
L\ problem

» X3

\g(xl,xz) = 6

2

In order to show that there does not exist a most preferred
indifference contour for a citizen in two dimensions in the
above analysis, let an indifference contour which is most
preferred equal O(n*l and let the set of indifference contours
descending from that contour equal ., ... &g, o, As in the
case of one dimension, no matter which contour is chosen, such
that the points are elements of the real numbers, there always
exists a contour which is more preferred.

It seems apparant that if the vector x = (xl. Xpseses xn)
is considered, as long as any element x, to 3 contains as
empty choice set in one or more dimensions, then as the number
of constraxned dimensions increases the greater the dispersion

of possiblities about a social equilibrium point.

Several theoretical implications.

For those schools of thought which may advocate a "narrow
thesis of empiricism,” that is, those who deny either the
importance, necessity or existence of theoretical terms?%the
analysis might well have ended above. In so doing, the
empirical and formal components in a dimensional amlysis would
remain the major determining factors. In the following sections,
theoretical considerations will be introduced into the analysis
of dimensions as a concept of measuremnt in order to show that
theoretical concerns are of considerable importance to
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dimensional analysis.

If a dimensional model is to be of any value theoretically,
it must be presented so that its relevance and relationship to
other models, concepts and constructs within a theoretical
paradigm and perhaps between theoretical paradigms is clearly
established. Take for example the dimensional equation for
centripetal force3%iven as £ = g(m, v, r), where f is centripetal
force, £ is a function defined over mass m, velocity v, and
radius r. From the analysis thus far, the designation of
primary and secondary dimensions ir entirely arbitrary. One
gset of dimensions which might be used would be m = m, v = 1t71,
and r = 1 so that the equation for force becomes f = k mvz/i.
where k is a dimensional constant. Suppose that for some
reason our analysis posits the same dimensions for time and
length. Then the analysis would derive f = ml'z. v a 10.

r =1 and it can be seen that any one of an infinite number of
combinations m/r, mv/r, mvz/f. mv"/r would satisfy the equation.
Since dimensional analysis seeks a specific solution, this
solution seems to suggest that the above formula becomes somewhat
meaningless for much of conventional analysis in physics so that
new cbncepts of measurement must be developed for the entire
system. From the above, then, one might conclude that
theoretical import gives rise to the inclusion and/or exclusion
of certain kinds of dimensions in various combinations according
to the theoretical and observational nature of the quantities
being analyzed. The combinations decided upon in turn determine
the kind of theoretical explanation which may be offered and
which may not. 1It, therefore, becomes important for the
dimensional equation to be constructed so that its relevance

to theoretical enterprises or paradigms is clearly established.
If this is not accomplished, then it will be difficult or
impossible to tell from which theory a model is derived or how
it may be included in any theory. Ultimately, its contribution
to scientific knowledge cannot be assessed, that is, it
contribution toward postdiction, prediction and explanation

will be unclear.
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Spatial modelling: is 1t properly included within Arrow's
paradigm?
Apparently, the spatial modelling enterprise derives at

least partially from the work of Anthony Downs, but the main
derivation appears to stem from Arrow's work as characterized

in the introduction. It might be useful to look at both
formulations to discover whether or not the spatial model
interpretation may be considered to be within the same

theoretical framework as that of Arrow. Taking the two approaches:
point by point, the following areas of divergence may de
elucidated.

Initially and emphatically, Arrow prohibits the use of
utility functions of any kind. This is perhaps mest clearly
1llustrated by Arrow's Condition 3, The Independence of
Irrelevant Alternatives, which explicitly eliminates utility
functions, but is not used directly in the proof of the General
Impossibility Theorem.“oArrow's reasoning in this regard may be
summarized as follows;”(l) they are not measurable for one
individual, (2) they cannot be compared across individuals,

(3) there are an infinite number of possible expressions for
utility in terms of functions so that choosing any one is
eggentially a normative judgment, and (4) they are unnecessarily
restrictive with regard to additional and alternate assumptions.
The spatial model, of course, assumes that the possiblity of
expressing individual preferences as utility exists. Although
the approach admits of the possibility of an infinite variety

of functions, they limit their -analysis to the class of functions
listed in the explication of the spatial model. The approach
also considers possible restrictions or assumpfione. gome of the
most important of which are: (1) functional forms of utility
functions for each individual are identical, (2) individuals
weight dimensions in an identical fashion, (3) individuals
assign the same degree of relative importance to all issues
vis-a-vis oneanother.

Another topic wherein divergence is high between the two
approaches would be with regard to the specific assumptions made
about alternatives for social choice. In Arrow's formulation
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of the problem of rational social choice, he explicitly
requires that alternatives be discrete O‘ﬁ{ the entire set of
alternatives, as well as over any subset., Further, he requires
that the set of alternatives for social choice be finiteﬁ3
Apparently, Arrow was aware of potential problems involved in
dealing with continuity and infinity. The spatial model
approach assumes quite the opposite, that is the spatial model
works only when the alternatives ordered for an individual
preference profile are assumed to be continuous as well as
infinite. '

Both approaches essentially require that certain limitation
on the orderings of alternatives for social choice. In other
words, they both define those orderings which will be admissible.
FPor Arrow, orderings are admissible if they satisfy Axioms 1 and
2 and his five conditions. Later in his work, Arrow relaxes
Condition 1 in order to admit orderings which are only single-
peaked?u This causes the problem not to be cast in terms of
social welfare functions any longer, but does provide a sufficient
condition for eliminating the Impossibility Theorem. Other
analysts clearly in the tradition: Sen, Pattanaik and Inada
have added necessary conditions as well, merely by relaxing
Condition 1. The spatial approach also assumes the property
of single~-peakedness, but they also add in utility maximization
thereby violating Condition 3 of Arrow's work. The difference
in the two approaches is clears in the former, the relaxation
of a minimal number of conditions is paramount, while in the
latter, the concern is not with retaining conditions and attain-
ing solutions within the social welfare function framework.

One of the most important characteristics of Arrow's analysis
is that it applies to all decision rules meeting Arrow's five
conditions such that it is completely general.us This means that
any attempt to discover a specific rule which would avoid the
Impossibility Theorem will not succeed unless the axioms and
conditions are changed. The spatial model does not possess this
characteristic, however, since it applies only to methods of
majority decision-making which are compatable to a dimensional
interpretation.
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Yet another significant point of divergence between the
two approaches would be the question of the possibility of a
dimensional solution; this of course has been the central
theme of this paper. Clearly, Arrow's formulation of the
problem is entirely non-dimensional. Therefore, it is not
subject to the kinds of criticism presented above which derive-
from one dimensional assumption or another. In addition to
not being subject to the criticisms above, Arrow's approach is
not affected by the problem of accounting for a fixed structure
which relates to a phenomenon which is highly variable over
time.usArrow's Conditions 2 and 3 account for preference
orderings at any one point in time. The spatial model, however,
is a fixed multidimensional structure which may deal with a
highly variable phenomenon. Therefore, it would seem that the
spatial model is highly restricted in that it cannot account
for dimensions which are highly variable, temporary or possibly
irrelevant.

A final point of divergence which encompasses all of the
above criteria is that of the number of essential assumptions
and restrictions required by each model. For Arrow and indeed
rational choice theorists clearly in this tradition, the problem
of social choice seems to be determined by positing an absolute
minimum number of restrictions upon decision-making situations.47
The spatial model as evidenced throughout this analysis requires
a good deal more in the way of assumptions, and therefore, may
be seen to be considerably more restricted and consequently
highly limited in possibilities for application.

Given the above points of divergence, the possibility for
theoretical commonality between the two may be discovered by
examining the nature of the results which Arrow is trying to
achieve and the results of the spatial analysts in comparison
with group decision rules? To begin with, group decision rules
in general may be shown to be distinguishable into substs of
oneanother according to the degree of restrictiveness imposed
by the conditions characterizing each. The set of rules in
which all others are contained is simply labeled a rule. A rule
may be defined as a functional relation f the range of which
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congtitutes a set of binary weak preference relations defined
over S and the domain of which is a class of ordered gets of
binary weak preference relations defined over the set of all
alternatives S. The notation for a rule is R = f(RI""Rn)'
Contained within the set of rules is the subset dealing only
with social choice. These rules are called group decision rules.
The conditions imposed upon these two kinds of rules are not
stringent. For example, relations may be connected, reflexive
or transitive, but they need not all occur together.

A more restricted group decision rule which requires at
least two necessary conditions, reflexivity and connectedness,
is the social choice function (SCF), defined briefly as a group
decision rule which defines over every non-empty subset of S a
non-empty ¢hoice set, C(A). Stated in less technical terms, a
social choice function exists when for any subset of alternatives
in S, there exists a unique alternative which is as good as or
better than any other alternative in the subset. Along with the
two necessary conditions above, several other conditions may be
added in various combinations in order to guarantee a non-empty
choice set.

The social chocie function may be further narrowed by
requiring it to be a social decision function (SDF). A social
decision function may be defined as a social choice function
such that every social weak preference relation in its range
engenders a social chocie function over S. A social decision
function which has as its range a set of complete social orderings-
that is, orderings which are reflexive, connected and tranasitive-
characterizes a social welfare function (SWF). ,

Initially, it must be noted that the beginning definition
for a rule also is a subset of other less restrictive mathematical
relations, while a social welfare function is highly restricted,
represents only some possible restrictive conditions, but
certainly not all. The above explanation may be represented
more lucidly as follows:

rules © GDR € SCF © SDF < SWF <. other rules

Arrow's theoretical world assumes as a minimum, the conditions
necessary to guarantee a social welfare function. Of course, as
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mentioned earlier, these conditions may lead to intranitive
social preference profiles and dictatorial choices for society.
The imposition of single-peakedness on Arrow's condition 1
eliminates both problems above while only restricting the range
of feasible alternative orderings.

Spatial theorizing is not concerned so much with retaining
Arrow's conditions as it is with representing the necessary
and/or sufficient conditions for an equilibrium point to exist
under majority rule in more than one dimension under the
assumption that individual ordinal utility functions will lead
to the generation of such a point if in fact one exists. In
terms of the functions delineated above, spatial modeling seeks
only a social choice function with its own set of restrictive
conditions.

The initial representation of the sets of rules may be
modified to show Arrow's formulation and the spatial model:

rules € GDR € SCF & SDF € SWF <€ other rules

¥ NV
spatial Arrow
" models

From this it is clear that with the utilization of utility
functions, multidimensicnality and other properties and conditions
the spatial model approach cannot move up the latter of
restrictive subsets to Arrow's SWF and beyond to other more
restrictive rule, since this has become impossible by definition.
This does not of course imply that the SCF subset of the latter
of restrictiveness is somehow inferior to the SDF or SWF. It
does, however, imply that both approaches being considered above
are not theoretically in the same tradition.

An_additional theore tical implication.

An importint consequence of viewing quantities and numerical
laws as being independent of the dimensions which may be used to
express them is that the possibility for theoretical deductive
analysis and manipulation may proceed even though empirical
means for observation and dimensional measuremnt have not been
developed. One good example of this wwald be the development of
the theory of relativity which links Newton's laws of notion
with the laws of motion for light rays.' Generally, the theory

37




-

contains constructs which are as of yet unmeasurable or
unobservable, but nevertheless it can explain both sets of e
phenomenon in a "unified"way better than any other competitor.
This important aspect of deductive theory seems to be most
significant for doing science when the quantities and laws are
interpreted; since if they are not interpreted, the resuls of
any deductive manipulations will be of interest only to the

mathematician or logician.
IV. Summary and conclusions.

In the avbove analysis, three concepts of dimension applicable
to social science were considered: the ordinary language concept,
geometrical concept, and dimension as a concept of measurement.
Each concept was shown to have important consequences in the
pursuit of scientific knowledge when compared and contrasted with
the spatial modelling enterprise.

With regard to formal properties of quantities, numerical
laws and dimensions, it was shown that quantities and laws
determine dimensional models, but that working backwards from
dimensional models in order to deduce unknown quantities and
laws was not generally possible except perhaps in some fortuitous
manner. This lead to the conclusion that dimensional analysis

is not an a priori means for doing sclience, but instead, %?
analysis of an analysis" which has already been completed. It
was also shown that according to this interpretation there exists
a possibility of three kinds of solutions: ccniradictory,
irrelevant and indeterminant. This possibility indicated the
necessity of specifying interpreted dimensions so that a given
solution can be evaluated as a solution to a specific problem.

The anaysis of the spatial model in these terms suggested that
the model could not account for the consequences and implications
of dimeasions as a concept of measurement.

Just as the formal antecedents of dimensional interpretations
determine the formal structure of a dimensional model, the
analysis also suggested that an empirical element must be
considered. The empirical element was shown to be a necessary
element in a dimensional model and the notion further supported
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the impossibility of an a priori interpretation and the
possibility of alternate solutions. Again when compared to

the spatial model, the empirical section of the analysis suggested
that the spatial model could not adequately account for problems
arising in this area.

By combining conclusions derived from the formal and
empirical sections of the analysis, the following conclusion
was drawn: if the spatial model by some fortuitous circumstances
can in fact acoount for ‘the formal and empirical criticisms
rendered, it still appears to be at least an extra step in
gaining knowledge about a scientific interpretation of a
phenomencn.

Next, the analysis attempted to show that the spatial
modelling enterprise appeared to be seeking a solution or
solutions to the problem of rational social choice in a manner
very different from the traditional works in the field. Given
that the spatial modelling enterprise was not realy seeking
gsolutions to problems in the traditional formulation of rational
social choice, it was suggested that the uninterpreted nature
of the model was such that the relationship with other theoretical
paradigms could not be established with the model in this form.
Also closely related to this point is that the mathematical model
does not specify what will and will not qualify as observation

terms according to a theoretical framework. This again

indicated that the model was somewhat unclear as to what it

could provide solutions for with respect to specific phenomenon.
From the above summary, at least two very general conclusions

might be drawn. First, perhaps when doing science, mathematics

and mathematical structures should be viewed as means toward

achieving explanation of a phenomenon and not as ends in them~
selves. This, of course, is not to say that it is improper to
study mathematics as an end, since this is precisely what is

done in the discipline of mathematics: instead, it is improper

to study mathematics as an end in itself when doing science.

And second, perhaps the problems of infinity and continuity,
geometrical concepts of dimension and so on, indicate the need to
develop new or alternate mathematical enterprises which are or
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could be more conducive to social science explanation,
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