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For estimating the mean of a p-variate normal distri-
bution a family of estimators known as Stein's estimators
are known to dominate the maximum likelihood estimator and
are therefore minimax when p>3, under quadratic loss, equal
to the sum of squared errors of the components of the
estimator. It is shown in this paper for a subfamily, the
vector consisting of any K components of the estimator is
also minimax for estimating the corresponding components of

the mean vector, where 3<K<p.




1. Introduction. Let the p-component vector X = (xl....,xp)

1
be normally distributed with mean 6 = (“l""’OK) and
2
convariance o°1 where p>3, 1 denotes the identity matrix and
o is known. For estimating 6 let the loss be equal to the

sum of squared errors, given by
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e |

L(6,8) =

: (6i-9.)

1

where §(X) = (GI(X),....GP(X)) is an estimate of 6, based on X.
The maximum likelihood estimator X is minimax but inadmissible
for p>3 with respect to the given loss function. The inadmiss-
ibility of X was first proved by Stein (1955). An estimator

which dominates X and is known as Stein's estimator, is given

by
T -
(1.1) s*(x) = (1- U tle
P > E
where § = I X; and 0<v<2. The risk of &* is given by
i=1
(1.2) R(6*,8) = E L(8%,0)

"

2 5 2y 2 oz
po”(1-v(2-v)(p-2) E(ﬁg))‘
pe” = R{X,8}.

A

We are interested in assessing the performance of &%

component-wise. Let

*
(1.3) Ry = E(8;-0;)
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denote the contribution to the risk of &* from the ith com-
ponent. It is shown in the following section that for any
integer K, such that 3<K<p

2

Koo
(1.4) ) Ri < Ko©

for 0<v«< .  The above inequality shows that &%* is

minimax for estimating three or more components of 6. We
also generalize the above result for the case in which the
variances of the components of X are different but known or
unknown up to a constant factor. The result is extended to

another class of estimators.

*
2. Main results. We shall compute the value of R.» the

contribution to the risk of &* from the ith component.

First we consider the case where o 1is known. We let o =1,
without loss of generality. Let fm (y) denote the density
function of a chi-square random variable with m degrees of

freedom and
g(0) = (20) P2 exp-Lx-0)' (x-0))

denote the normal density function. For any integrable
function ¢, we have
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where Ky denotes a non-central chi-square random variable

A
p A

with m degrees of frecdom and noncentrality parameter equal

to X. Similarly

b ) 2 2
(---—) l. .\i;‘(x -\) = i: ‘;“\l"':'v' ‘-.) + Ui |¢ Q(\pﬂ"d q)-
) E - X119
Let = 8'6, We have l{("-p'l,\' ; ¢ /“¢~(g. g + 1: %)
where P
a a(a+l) v

SR 05N 2 2 A E XV ENSY) < T T

denotes the confluent hypergcometric function. From (1.3),

(2.1) and (2.2) we get by direct computation

* \ - hl iy ) 2 S
(2.3) R, = (1-4R2))2 o;l(l-if,l‘-:-’-r’ 30a-2ely 4 1)

“p*2,A "p*d, Ape2, A
=1+ (p-2) e M2 g 1R e 15 Beze BB e 1 B

2

2
+ 92 (v_(p-2) @(g,g + :;%) + 2V @(gzg ‘1, %)

i p(pe2 p
:
- 2% eB+ 1, B v 2s )

*
An upper bound on the value of Ri is obtained below, from the
following formulas, where prime denotes derivative with respect

to ¥,

a(¢(a+1,b3y)-0(a,biy)) = vo (a,biy) = 5 o(a*1,b+15y)
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(b-a) ¢ (a,b + 1;y) = bé(a,biy)-bé (a,b;y).
Since 0<v<2; we have

(2.4) v@(g -1.2 'i:ii-£4¢g.g ¢ }i¥)

<200 -1, 1:h-03,0 + 1:3)

2 y p A
= - g2 tGE 2y

The quant ity inside the braces on the right side of (2.3) 1is 4

by the given formulas, equal to

-

(2.5) (v© p-Z % %g)(¢(g’g + |;%)-¢'(g,g + l;%))

v - ‘ ) 5. A
spery e2) » ek e 259,

From (2.3), (2.4) and (2.5) we have

, ™ vip-2) _-A/2, P D > | o
(2:6) Ri SR LE ET%:?T C J(%.f + -.?)((v(p-l) + 4)@1 2)).

B ko 3
2.9 & B, ok SROEZ) o Mg B 3. X tuip-2) ¢ 4-2K)

VIK=2
for v < 1%¥7:l » where R, denotes the contribution to the

risk of X from the ith component.
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Using in (2.3) the asymptotic property of the confluent

hypergeometric function, given by
o(a,biy) = HBY 'y a0 T, y20

we have that for large values of 2

-
0

i 2

- Y X
. (2.8) R; = 1+ 2P 2)(v(p-2) + 2) Y = o).

From (2.8) it follows that v<2(K-2)/(p-2) is a necessary
condition for the inequality (1.1) to hold uniformly in 8.
Moreover, it is known that X is admissible for p<2. There-
fore, the inequality (2.7) cannot be true for K<3. Hence, we
have shown the following result.

*
R. < ¢ R. holds for
AR

ne~mps

Theorem 2.1. The inequality
] 1

all 8 if and only if 3<K<p. and 0<v<2(K-2)/(p-2).
Now we consider the case when 02 is unknown but there

is available an estimate T, say, such that T § ozx;

/m, inde-
pendent of X. In this case, substituting T for 02 3 (25

Stein's estimator is given by

(2.9) sea(x) = (1-VR BTy
= (1- !lg;ll)x

é where v = vIT. To compare &§** with the maximum likelihood

estimator X we let o0 = 1, as before, without loss of generality. .




Substituting v for v (1.2) and taking expectation with respect

to the distribution of T we find that
R(8**,08) < R(X,6)

for v<2m/(m+2). Similarly, we substitute v for v in (2.3)
and taking expectation with respect to thedistribution of T,

we obtain the risk of é** due to the ith component, given by
S Sye M2y u(ne2) : B
(2.20) Ry =1+ (p-2)e “O[N(SECEL ¢ (-1} + 1:37)

-20(B,B + 1;5)

e :
o] RUEBD o BB 2ip Do BE 1

-2 e G, B nph.

Let v<2m/(m+2). Applying the method used in deriving (2.6)

we get

<1+ e MR eG -LE + 1p-eGE e 1)

2.11 i
2y R

2 1
P o (m;ig(p-ﬁ + Z_I;’)m(fz’-,% + 1;%)4 (13-.‘% i 1;%”

1

p(p*

1+ WUP-Z) o M2 g (BR 4 200l (UM RoD) 4 4)-2)).




Therefore, for 3 K p

o
A2 % R, <K %%ﬁ;;f} e M2, 8.5 - z;%)(“(“i%)(Pill v 4-2K)

T

< K

Zm(K-2
for v < RN

From (2.12) we obtain the following theorem extending
the result of Theorem 2.1. The necessary part of the theorem
is obtained by considering the asymptotic property of the

confluent hypergeometric function as in the proof of Theorem 2.1.

K aa K
Theorem 2.2. The inequality I Ri I Ri holds for
i=1 i=1

all 6 if and only if 3<K<p and 0<v<Zm(K-2)/(m+2)(p-2).
If the loss function is suitably modified then the results
given above hold also for the case in which the components of

X are independent but have unequal variances, as shown below.
d 2

Let xi ~ N(ei,oi), and let the loss function be given by

p

(2.13) L(6,0) = (8,-6,)%/0%.

i=1

First suppose that the variances are

A P
known. Let S = Xi/of. Consider the estimator
i=1

(2.14) § = (1-v(p-2)/8)X

It is easy to see that the conclusion of Theorem 2.1 is valid




for 5 with respect to the loss given by (2.13). Next, suppose

that the variances are known up to a constant factor, that is,

let o? = avi where a is unknown but the Vg's are known. If an

estimate T is available for a, such that, T g a Ai/m then

the conclusion of Theorem 2.2 is valid with respect to the loss

(2.13) for the estimator.

-~
~

(2.15) § = (1-v(p-2)T/S)X.
h ; P x2/y
where S = DR, i/»i.
On the other hand, if the loss function is not modified,
that is, we consider the original loss function equal to the
-~ A
sum of squared errors, then we can use the estimators n andn

for § and &, respectively, in the two cases considered in the

preceding paragraph, where

A

J 2
(2.16) ny = (A-v(p-2)/0;S*)X,

R = (l-v(p-Z)T/o%S*)Xi

B

P >
where §* = § Xi/o.. It follows from Theorem 1 of Berger
(1976) that S dominates the maximum likelihood estimator X.
By direct computation we have for the contribution to the risk

of n from the ith component

A - 2
(2.18) R; = E(n;-0,)

2v?

2 i 2
ol 4 Zv(p-Z)E(;?-i-z S IR CRE DB e
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X % P 2. 2
where Yi - d N(E_'l) and V= [ Y:/o%. From (2.18) we
TEe, 70

have for 3<K<p

(2.19), 0, R; < 'Zl o] * 2v(p-2)E(§ - ¢) * vo(p-2) Eq
13
K 5 K
I AR S > R.
o L T Sl
for 0<vc< £%§}$l . Similarly, for the risk of n we have
K =2 K
(2.20) I R< L[ Ry
i=1 i=1
2m(K-2 i : o
for O<v< - It is casily shown that the sufficient
(m+ p-é

conditions given above for the inequalities (2.19) and (2.20)
are also necessary. Therefore, the conclusions of Theorem
2.1 and Theorem 2.2 hold for the estimators 3 and ;, respec-
tively.

Remark: A wide class of estimators for the mean of a
multivariate normal distribution is known (see e.g. Bock
(1975)) to dominate the maximum likelihood estimator. It
would be interesting to investigate whether some of these
estimators have the component-wide minimax property of Stein's
estimator, shown above. It is also interesting to investigate
similar property for the estimator s* , obtained by substi-
tuting for the quantity inside the paranthesis on the right

side of (1.1) by its positive part, the cstimator §* is known to

dominate &%*.
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