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ABSTRACT: A two-component failure system in which failure of

the secondary component affects the residual life of the primary

component is discussed . From two classes of policies and two

criteria, optimal policies for replacing the secondary component

are derived .

1. Introduction

The bivariate failure model considered is a special case of

one used by Tosch anti Holmes [2) (see also [3]). Of the two

components, one is considered essential to the functioning of the

system and is called the major component. The other component is

minor in that the system can function without it. The residual

lifetime of the major component depends on whether the minor

component is functioning or failed. At the failure of the minor

component a decision is made whether to replace it or not. This

decision is based upon the particular replacement policy being

used. It is the aim of this paper to find policies that are

optimal in some sense.
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In section 2, we formally define the model and give an ex-

ample of its applicability. Further , the replacement policy

classes P and H and the criteria and r2 for comparing policies

are defined . In sections 3 and 4, details of the calculations

needed to find optimal policies are given for the classes P and

11 respectively. A numerical example is included . The mean residual

lifetime function , m1 (t) is discussed by examples in section 5.

Some extensions of the results of section 4 are discussed in

section 6.

2. Definition of the Model and Example

Label the two components of a system by A and B and let their

lifetimes be given by S and T respectively. We let A be the major

or primary component of the system. B is the minor or secondary

component. This means that the system functions if and only if

A functions. We assume that the residual lifetime of A depends

on whether B is functioning or not. If B never failed then S=X,

where X is a given random variable. At the failure of B, however ,

A has a residual lifetime distributed as U, another given random

variable. It is further asgumed that X ,U and T are mutually in-

dependent, positive random variables with finite means. A generali-

zation of this model which includes a change in the residual life

of B at a failure of A is discussed in Tosch and Holmes [2).

When B fa ils , it can be replaced instantaneously so that

there iL ~ffect on the residual lifetime of A. If B is not

replacec the residual lifetime of A is U. When A fails,

the system fails and all failed components are replaced . The

.—--—- - - .- - .- ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ..-



- -

3

system then begins functioning again.

Let S1,S2 be the failure times of the system. Let

the minor component have an exponential ly distributed lifetime,

that is, T exp(B). At the failure of A, if B is working, the

residual lifetime of B is exponentially distributed with parameter

8. Thus {s1,s2 } is a renewal process. Let S be a random

variable with the same distribution as the inter-renewal times

S1,S2-S1 Under any replacement policy we have

E(S) < E(X)+E(U) < (2.1)

The inter—renewal periods will be called cycles.

As an application of this model , let A and B be two electrical

generators supplying a hospital. Suppose A supplies 3/4 of the

electricity while B only supplies 1/4. When generator B fails, A

is powerful enough to supply all of the power but with added risk

of failure itself. B, however, is unable to supply all of the

power needed, so that A must be repaired whenever it fails. When

generator B fails, we make the decision either to fix it immediately

or wait until A fails to repair them both.

The following notation will be used :

c--cost of replacing component B

K--cost of replacing component A
(2.2)

(R;P)-—the length of the interval R using replacement policy P

C(R;P)--the total costs incurred during interval R using policy P.

R may be random or fixed . We now introduce the criteria and

~ 

.
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replacement policices to be considered .

A natural criterion to use is that of minimizing the

stationary average costs per unit time . That is, minimize

lim EC((01tJ;P),
t-•.
~ 

t

,here P comes from a particular class of policies.

Since (S1 S2
,... } is a renewal process and E(S) ~ ~~, by

a theorem due to Johns and Miller (c.f., Rossil), p. 52), we

have

lim EC((O,t);P) — 
EC((O,Sj;P) . (2.3)

t — E ((O,ShP)

This is the basis for the following criterion .

Definition 1. Let be the criterion which judges policy P

better than policy Q if and only if

EC((O,S);P) 
< EC((O,S ;Q)E((O ,S];P) E( (O,S ;Q)

It is also reasonable to consider money already spent as

gone and only consider future costs. In particular , consider

only the costs from time t , a failure time of B, until the end

of the present cycle.

Definition 2. Let be the criterion which judges policy P

better than policy Q if and only if

~ 

— — 
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EC((t;S);P) EC([t;S];Q

~~T E€ ;s ) ;P) ETTt;SJ;Q)

given a failure of B at time t.

We will now define the policies to be considered .

Definition 3. Let be the replacement policy by which B is

replaced ar~’ -time it fails before fixed time t, measureed from

the beginning of the cycle. It is not replaced if a failure

occurs after time t. Let P be the class of such policies.

Each time B fails , a decision is made whether to replace it

or not. Of course, once a decision is made not to replace B,

there are no more decisions to be made in that cycle . The

criteria selected require the calculation of future costs in the

cycle. Therefore to judge a policy we have to specify what actions

will be taken in the future of the cycle and not just at a failure

time of B.

Definition 4. Let Ti be the class of policies where, given a

failure of B at time t, our decision whether to replace B or not

is based on a comparison between the policies of not replacing

B and continuing to replace B until A fails.

3. Optimizing in class P with criterion

We seek to find t > 0 so that EC((O,ShPt) is a minimum. Let
E((O,S);Pt)

~ 

d(t) E((0,S);P
~= fE

((O,s);P t J x_x)dF (x)

1E( (0,S] ; Pt I XII.x)dF (x)+I E ((O,S];Pt J X=x)dFx (x). (3.1)
0 t+
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On the interval (O,t), E((0,SI;P IX—x)—x , since A fails before

we would have stopped replacing B. On (t~~ ), we have

f E((O,S];P ~X=x)dF (x)=J J E((0,S);Pt IX ’.x,T’1y)dF~
(x)8e

~~~
’dy

t+ t x 
~

t~ ~t+y
= J J E ((O,S);Pt IX x.T9F)dF

~
(x) e

0 t+

+f f 
E((0,SJ;P~ IX x,T y)dF

~
(x)Be

~~~
’dy (3.2)

O t+y

In both of these integrals X t, so that at time t both components

are functioning and the residual lifetime of B is exponentially

distributed with parameter ,. We condition on this lifetime ~..o

that B would fail at time t+y. In the first integral of (3.2)

we have the relation t < x < t+y which means A fails sooner after

t than B would have. This implies

t~~ r t+y=J J xdF
~
(x)Be

~~~
’dy+ f f ( t + y + E ( U ) ) d F  ( x ) B e ~~~’dy

0 t+ ~0’t+y 
X

._ J
~f

m 
Be

_ 8
~dyxdF (x)4

f 
(t+y+E(U))Be~

8
~
’dydF (x)

t x-t t o  x

=f~e
_8 t)xdFX (x)+f [(t+E(u))(l_e

_

~~~~
t))+1_e~~~~

c_t)1
(x_t4))dF X (x)

J~~
_B
~~

_t) 
[x- t—E(U)—x+t-

~
-)+t+E(U)4}dFx (x)

=(t+E (U)4)~ x (t)_ (E(U)4)fe~~~~
_t)

dFx (x).

_ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Substituting these quantities into equation (3.1) to obtain an

expression for d(t), we have

d(t)=E ((O
~S]sPt)_f

xdFx (x)+(t+E(U)~4)Fx
(t)

_ (E(U)+~ )fe~~~
3
~~
t)dFx (x). (3.3)

Let n(t) EC((0,SJ;Pt)J EC((0.SI;P 1X_x )dFx (x)

f
E c ( ( o , S ) ;P t I xi.x)dF (x)+f EC((0,SJ ;P IX 1x )dF (x). (3.4)

0 x

On the interval (0,t], EC((0,S);P IX x) c$x+K since x is the

length of the cycle and Bx is the expected number of times that

B had to be replaced. The second integral in (3.4) is handled as

above in the derivation of d(t). After simplifying we have

n(t)=c(8t+l)i~x (t)+K+c8f xtWx (x)_cf e 8
~~~

t)dFx (x). (3.5)

We wish to minimize for t > 0. is  differentiable,

so that the global minimum will occur at the extremes or at a

time t where the derivative is zero. The values at the extremes

are given by
*K + c ( l — f  ( 8 ) )

LL~~ V I  — X
1 * ‘

(E(U) +-~) ~~~~~~~~~~~~~~~

where f~ is the Laplace—Stieltjes transform of F~
, and

n(t) 
— K+cBE(x) (3 7)m d(t~ 
- 

E(x)

The numerator of the derivative controls the sign. Let

r(t) be the numerator of the derivative , then it can be shown
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that:

r(t)=c8E(U) (~~~(t)+(8f xdFx
(x)_

~ x (t)+8E(U)t~x (t))fe~~~~
c_ t)dFx(x))

_ KIFx
(t)_ (~E(U)+l)f e 8(x t)dFx (x)). (3.8)

This expression is difficult to work with in general , but

may be evaluated , at least numerically , for particular applica-

tions.

Example 1. Consider the application in the beginning of the re-

port. Let T~exp (4), X exp(2) and c=l000, K 3 000, E~U) .25.

The graph of ~~~~~~~~~~~~~ 0 t < 3 is given below.

• 11,000

10,500 .

10,000

0 1 2 3

Figure 1. A graph of n(t)/d(t).

In this example, is monotone decreasing , so that the optimal

policy is to always replace B when it fails.
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The difficulty in this derivation probably lies in the choice

of the class of policies . We are assuming that if it is not optima l

to replace B at time t+s1, then it is not optimal to replace B had

it failed instead at t+s2, where 
~2 

> 

~l 
> 0. If the failure rate

function of X, h
~~
(t) f

~~
(t)/F

~
(t)

~ 
is like that in Figure 2. that

assumption would certainly not be justified .

h~ (t)

t t+s t+a time
1 2

Figure 2. Example of the Function h
~~
(t).

Here it may not be optimal to replace B if it fails at time

t+s1, since A is approaching a very critica l period where it is

likely to fail anyway . At time t+s2, however , component A is

very reliable and therefore it may be optimal to replace B at

that time.

4. 0ptimizi~g in the class II

Throughout the rest of the paper, we assume that a failure

of B has occurred at time t. All probabilistic statements are

conditioned on that assumption . The class IT and criterion r2
will be considered first. At time t, component B has failed and

- 
j
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we must decide whether to replace B or not . ~~~~~ won ’t replace B

if and only if the policy of not replacing B is “better TM than

always replacing B until A ~ t~ ls. “Better ” here depends on the

criterion being used , in this case r2. Let fl~ be policy of not

replacing B at time t , and be the policy of replacinq ~ until

A fails. The optima l decision will be to replace B at time t

if and only if

EC( (t;S);fl1) EC ((t,SI;~ 0
) (4.1)

E ( t t ; SI ; ~ E ( F t  ,s )

Under h
o
, S-t=u so that

E( [t,S) ;~ 0
) E (U) . ( 4 . 2 )

The costs involved are those of replacing B and A once each so

that

EC([t ,SJ ;~ 0
) c+K (4.3)

Under the residual length of the cycle is the residual length

of X after t. The expected value of this length is

I ~~~~~~E ( [ t , S ] ; 1 11) m (t )  
~t: 

(4.4) 

~~~-- -  - -  - - - - - - ~~~~~ - --
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Finally , the expected costs incurred during this period are

c+K+c8m (t ) , the last term enters in since 8mx (t) is the ex-

pected number of times we wi l l  have to replace B in the interval

(t ,S]. Therefore

EC ((t,S),111
)=c+K+cLm

~
(t) (4.5)

Combining these into (4.1) and doing the algebra , we obtain

Theorem 6: In class IT with criterion r 2 , it is optimal to replace

a failed component B at time t if and only if

(c+K—cBE(U))m
~
(t) > (c+K)E(U) .

Since m
~
(t
~ 

is not monotone in general, these policies will not

have the cutoff point between replacing and not replacing as did

the policies presented in the previous section. The following

corollary is immediate .

Corolla~y 7: If c~E(U) 
> c+K then it is optimal never to replace

component B.

The condition c~ E ( U )  c+K is equivalent to ~~~~ 11 ~

Heuristically this says that E(U), the expected lifetime of A

without B, is so much larger than E(T), the lifetime of B , that

it is not worth the risk of c dollars to even have a component B

in the system. Under normal circumstances then , this condition

will not be satisfied.

_ _   
- - -- - - — ~-- -~~ -~-— .—--~~ -- ~--—- -
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If X~ e x p ( c z ) , then m~~
( t ) =

~
- which implies

Coro1lary~ 8: If X~exp(cz), then in class TI with criterion r2,
it is optimal to

i) never replace B, if (c+K—8E(U) ) <

ii) always replace B, if (c+K—8E (U) ) > cz(c+K)E(U).

This resu lt is very intuitive since at any failure of B ,

the future looks exactly the same as at any other failure of B.

This implies that the same decision should be made at each failure

of B.

In example 5, we have (c+K—c~E(U))~ - = (3O00)~ - = 1500, while

(K+c)E(TJ)= (4000)(.25)=l000. So that in H under criterion r2,
it is optimal to always replace B when it fails.

Basing the criterion only on future costs has the drawback

that K, the cost of replacing component A , is distributed only on

the future time in the cycle. For this reason , we will consider

the same class II but with criterion r~ . Let flQ~
h1 l be as before.

Under F1, it is optimal to replace B at time t if and only if

EC((0,S [;J1 ) EC((O,S);hT 4 6
E((0,S];fl1) E((0,S);110 

. )

As before it is easy to obtain expressions for these quantities.

We have

E ( ( 0 , S J ; f l 0
) t+E(tJ) (4.7)

E((0,S];fl1)t+m~ (t). (4.8)

L. ~~~~~~~~~~~~~~~
—=

~~~~~~~~~~~~=- 
-
~~~
- 

~~~~~~~~~~~~~~~~~~~ - _ _ _ _ _ _
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These follow since the cycle is already t units old when we make

our decision. The expected number of times we have replaced B

in (0,t) is ~t at a cost of cI3t so that the other quantities

can be wr i t ten  as:

EC( (0,S I ; fl0)c ~t+c+K , (4•9)

EC((0,SJ ; fl
1~

cL
~
t+c+K+c

~
m
~
(t). (4.10)

Combining these into (4.6), our decision is to replace if

c
~
t+c+K+c

~
m
~
(t) c~ t+c+K (4.11)

t+m
~
(t) t+E(U)

from which we get

Theorem 9: In class II with criterion r1, it is optima l to re-

place component B at time t if and only if

(K+c_c
~
E (U))m

~
(t) > c~E (U)t+ (K+c)E(U).

Corollary 10: If K+c < c~E (U) then it is optimal to never

replace B.

The proof is trivial. The remarks on the condition following

corollary 7 are valid here also .

Returning to example 5, (c+K—c
~
E (U))m

~
(t)=1500 for all

t 0. (K+c)E(U)=1000 and ci3E(TJ)=l000. Therefore it is optimal

— ---~ -—~—— ~~ - ------~~~~~---- .—- —
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under F1, to replace B if and only if 1500 l000t+l000, i.e.,

if t is in the interval [0 , 2 ) .

There is a large similarity in the conditions needed for

replacement under and r2. In fact , we have

Corollary 11: If the optimal decision under is to replace

B then it is also the optimal decision under r2.

The converse of the corollary is clearly not true as example

5 illustrates.

With criterion F1 then , it is optimal to replace B when

the mean residual lifetime of A is greater than the given linear

function . The next section includes graphs of mean residual

lifetime functions for various distributions to illustrate the

possible policies.

5. The Function m1(t)

The following figures illustrate the various forms of m1 (t).

Figure 3. m1 (t) for a Weibull Distribution with 8 > 1

2
F1(t)=e ~
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In this case there will be a unique time t*, where we w ill re-

place B if it fails before t*, but not afterwards.

Figure 4. m1(t) for a Weibull Distribution with ~ < 1

In addition to the previous policy , in this case , there could

be t11 t2 so that if B fails in (t1,t2) we will replace it;

otherwise we will not.

___ t

Fiqure 5. m1(t) for a Mixture of Exponentials

______________________________________ _—~~~~
_ ._ —— — - _~~~~~~~—— —
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~1(t) .5e St+.5e
_t 

-

The same possible optima l policies exist here as in the previous

example.

0 1.0 2.0 3.0

Figure 6. m1(t )  for a Mixture  of Weibull Distr ibut ions

4 1~(t) 0. 7e +0. 3e

Depending on the given constants, there are a variety of optimal

polici2s that could occur here. One possibility is that there

exists t1,t2,t3 so that we replace on the intervals [0,t1),

(t 2,t3) and do not otherwise.

6. Extensions

The costs that have been considered are very simple. What

has been done is easily extended to more complicated costs. The

_ _  _ _- -_ . -~~~~~~~~~~~~~~~~~~~~~
-.-.

~~~~
_ -~~ .-_—‘_- - -_---- _ _- — —- . _--- _ -—  —_ - ~~---
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extensions will be applied to optimizing in the class H under

criterion F 1.

Suppose that the components are not replaced but are repaired .

Let K be a random variable which gives the repair cost of component

A , and ~ be the random repair cost of B. If we let K=E(K) and

c=E (t ~) ,  then the analysis is exactly as before and the optimal

policy is given by Theorem 9.

Suppose instead that the system has to be stopped in order

to make any replacements, and that a penalty cost of 6 is charged

for each unit of time that system is not functioning . Let H1
be the random length of time needed to replace A and H2, the

time needed to replace B. Assume that the components cannot be

replaced simultaneously . Let c ’=c+YE(H2), K’=k+yE(H1). The

analysis goes as before and the optimal policy is given by

Theorem 9 with K ’ ,c ’ substituted for K ,c.

If the components can be replaced simultaneously then there

is a change, since if we did not replace B when it failed , A

and B could be replaced at the same time. In this case, it is

optimal to replace B at time t if and only if

c’ 8t+c ’+K’+c’ Bm
~
(t) c’ 6t+c+K+ yE (max(H 1,H2)) (6.1)

t+m
~
(t) t+E(U)

The last extension to be discu.~sed deals with the random

variable U. It has been assumed that U and X are independent.

This is often not even a good approximation. Suppose U is

____ ____ • —--_ - - ._
~~~ --- _ _
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dependent on the residual l ifet ime of X , in that ,  E ( U ) = cm x (t ) + ó ,

> 0,6 > 0. In this case , it is optimal to replace B at time

t if and only if

cBt+c+k+c8m
~
(t) 

< 
c~ t+c+K . (6.2)

t+m
~
(t) t+cm

~
(t)+6

This reduces to the condition

• c8crn~~(t ) + m ~~
( t ) [c8ct+ ( K + c ) c_ (K + c ) + c 8 6 ] + c 8 6t + ( K + c ) 6  < 0. ( 6 . 3 )

So in this case , there is a quadratic relationship between t and

m
~
(t). Note c=0 corresponds to the case in section 4.

Other extensions can be made with little change in the

form of the optimal policy. If we do not restrict P to being

exponential then we must include repairing B when A fails into

our model to retain the renewal process.

p
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