
F - 2 _ - - — - ____ ___ ______

$D—Ao4$ 072 MARYLAND UN IV COLLEIC PARK DEPT OF COMPUTER sczuicg pi• taitPgRnmaATzoM 101.105 FOR THE DEFINITE WCRALIZLØ EIWIVALUE PRO—nc cu pOCT 77 . 5 N STEWART N000fl—76—C—flft
UNCLASSIFIED YR—NI ii.

All
A0da 072

E 140
DM1

FIL~~f l

L a -



/ / COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNWERS1TY OF MARYLAND
COLLEGE PARL MARYLAND

20742

Cl, 
~~~~~~~~ 

_ _



F’ ,  ~~1

(i
~~~
i I

91 
~~~~~L L J ~l 7 7 / 

~‘i ~‘i~:./
- 

- Perturbation Boris&ds for
I the Definite Gmieralized Eigenvaiue Problem , / C’ ....

by

L ,Tfà. w/stewart_7
0

Abstract

Let A and B be Hermitian n~trices and let c(A ,B) - inf{fx~
’(A+iB)xI

IIx!I—l }. The eigenvalue problem Ax — ).3x is called definite if
c(A,B) > 0. It is shown that a definite problem has a coui~ lete
system of eigenvectors and its eigenvalu es are real . tkider pertur-
bations of A and B , the eigenvalues behave like the eigenvalues of
a Her mitian matrix in the sense that the re is a 1-1 pairing of the
eigenvalues with the perturbed eigmivalues and a uniform bound for
their differences (in this case in the chordal metric) . Perturbation
bounds are also developed for eigenvectors and eig~ ispaces .

This work was supported in part by the Office of Naval Research under
Contract No. N00014-76-C-0391.
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Perturbation Bounds for

the Definite Generalized Eigenvalue Problem

C. W. Stewart

1. Introduction

In this paper we shall be concerned with deriving perturbation bounds

for the eigenvalues and eig~ 1vectors of the generalized eigenva lue problem

(1.1) Ax — ) B x ,

where A and B are Hermitian matrices of order n. When B is posit~ve

definite , as it is in n~st applications, the problem can be reduced to a

Hermitian eigenvalue problem of the form

(1.2) B ’2AB~~
”2y — Xy

where B”2 is the positive definite square root of B. Thus, in this

case, the eigenvalues are real.

When A and B are replaced by A - A + £ and B - B + F, the eigen-

values and eigenvectors will be perturbed by quantities tha t are functions

of E and F. In princ iple one can app ly the existing theory for Hermi-

tian eigenvalue problems to (1.2) and obtain bounds on these perturbations ;

however, this approach is unsatisfactory for a nunber of reasons , which we

shall now sketch (for a nx re con~lete discussion and exan~les see [3,10,121).

When B is ill conditioned, that is when B is relatively near a

singular matrix, the eigenvalues of (1.1) will typically be spread out, with

some small and some large. The small ones may be relatively insensitive

to perturbations in A and B. However, since the problem (1.2) has large
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eigenvalues, B 112AB 112 nust also be large, and so will its corresponding

perturbation. The perturbation theory for (1.2) will then predict large

perturbations for all the eigenvalues, even the small ones. A second

difficul ty is that the perturbation in B imist be restricted so that B

remains positive definite , even though perturbat ions that make B indef inite

may have little effect on sane of the eigenvalues. Finally , although the

large eigenvalues of the problem usually undergo large perturbations , their

reciprocals will undergo only small perturbations . This suggests that the

usual Euclidean metric on the line is not appropriate for reporting the

sizes of the perturbations in the eigenvalues.

In [12] the author has developed a perturbation theory for the non-

Hermitian generalized eigenvalue problem that circuwents these difficulties,

first by avoiding the use of inverses and second by using the chordal

metric on the Riemann sphere (cf. Section 3). In [3] Crawford has described

a class of Hermitian problems , called definite problems in this paper, that

admit of a nice perturbation theory in the chordal metric. It is the pur-

pose of this paper to strengthen and extend Crawford’s results. In particu-

lar we shall obtain the one-one pairing of eigenvalues with their perturbed

counterparts that holds for the Hermitian eigenvalue problem . In addition

we shall obtain perturbation bounds for eigenspaces that are related to

the perturbation bounds of Devis and Kahan [4] for invariant subspaces of

Hermitian operators .

Throughout this paper A and B will be Hermitian matrices of order

n , and

_ _ _ _  44
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A - A + E, ~~— B + F

will be Hermitian perturbations of A and B. The Euclidean vector norm

and the spectral matrix norm will both be denoted by (. 11 .

2. The geometric theory

Recently there has emerged an elegant geometric theory for the real

syninetric generalized eigenvalue problem that is based on the quadratic

form xT(A+iB)x. For topological reasons , this theory does not apply when

n = 2. In this section we shall extend this theory to the Hermitian problem

in such a way that the restriction n ~‘ 2 is rem*wed. We shall return to

the real case at the end of the section .

Our ultimate goal is to replace the generalized eigenvalue problem

(1) by an equivalent problem in which B is positive definite. Specifi-

cally for any real cp let

A~ = A cos p - B sin p

Bq, =Asin (P + B c os (P

Then it is obvious that any matrix X for which ~ AX and X~BX are

diagonal also diagonalizes A~ and B~. Thus (1.1) has a couq lete set

of eigenvectors if and only if the problem A~x = )~B~x has the same set.

We shall attempt to choose cp so that B~ is positive definite. The

condition under which this can be done is that the pair (A,B) be definite

in the following sense. 

-~ ---—----- —-—— —- -— — - - -- --- - —
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Definition 2.1. The pair of Hermitian matrices (A,B) is definite if

(2.1) c(A,B) inf ( l x H (A+iB)xf } 0
IIxII—l

The eigenvalue problem (1.1) is definite if (A,B) is definite.

The proof that c(A,B) 0 i~~lies that B~ is positive definite

for some p involves the geometry of the set over which the infini.in

in (2.1) is taken. Let

V — {x~(A+ iB)x : 11xfl ’lJ

and

C - {xH (A+th) x : x ( C~}

~~(av:VEV , a~~~0J

Then c (A,B) - inf { lv i  : v E V}. ttreover, C is the pointed cone genera -

ted by the closed, bounded set C. We may now state our fundamental theorem.

Theorem 2.2. The cone C is convex. If (A,B) is definite,

then C lies properly in a closed half plane passing through the origin .

• tibreover there is a real nunber p such that Bq, is positive definite and

• c(A,B) - Xmin(Bq,)

where Xmin( B )  denotes the smallest eigenvalue of B~.

Proof. The set V is just the field of values of A + iB , which

is known to be convex (e.g. see [7]). Hence the cone C generated by V

is convex. Now suppose that c(A ,B) > 0. Let the infinun in (2.1) be

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

-

~~~~~~~~~~~ -- - —~~~~—--
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attained at x0 and let v0 - x~(A+iB)x0. Since V is convex

V
0 

E V satisfies 
~
v0~ — inf ( l v i  v ( V) — c(A B) > 0, V ~~ t lie in

the closed half plane H - (z : R(~’0z) ~ 1v01 2} , which does not contain the
origin. Since V is bounded, it imist be contained in a cone that is

properly contained in the half plane H - v0, which passes through the

origin.

To prove the last part of the theorem, let V
’P
, ~~ and H~ denote

the field of values, the cone, and the half plane associated with the

pair (A
~
,B
~
). Since

+ iB e’~(A+iB)

it follows that V , C , and H are just V, C, and H rotated clock-
‘9 (P (9

wise through the angle p . Choose ~p so that lies in the upper

half plane . Then x~A x0 - 0. ~breover for lixil - 1, x~
1B~x ~ c(A ,B)

— c(A ,B). Hence

0 < c (A ,B) = x~B x0 - inf xHBx
I t x i I — l

This shows that B is positive definite , x0 is an eigenvector of B
’P

corresponding to XIthl (B
’P
) .  and c (A,B) X miii ( B )  .o

Since in the above B is positive definite , the Hermitian matrix

B 112A~B 112 exists and can be diagonalized by a unita ry matrix Y. It

is easily verified that X B,9
1”2Y diagonalizes both A

’P 
and B~, and

hence A and B. This proves

-~
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Corollary 2.3. If the problem (1.1) is definite , then there is a

nonsingular matrix X such that X!~AX and XHBX are both diagonal.

If we set XHAX — diag (IL1~ IL2 , . . . , i ~~) and )~ BX diag(v 1, v 2 , . . . , v~) .

then the eigenvalues of (1.1) are given by )
~ - ~~/v 1 . This ac~Uts the

possibility of infinite eigenvalues when v
~ 

- 0; however , the indeter

• minant case - - 0 cannot occur in a definite problem.

The ntither c(A ,B) will play an inçortan t role in the perturbation

theory of the next two sections . The following theorem shows tha t it

does not vary wildly with perturbations in A and B. This result is

required in Section 3, where it is the nuthe r c(A ,B) that appears in

the bounds .

Theorem 2.4.

c(A ,B) ~~ C(A ,B) - [ II E I I 2+ II F Il 21~~
2

Proo f.

c(A,B) = inf ( [xH (A+E) x1 2 
• [xH (B+F) xJ Z }L’2

IIxII”l

~ inf [(x x) 2+(xHBx) 2 J~~’2 
- sup [(xHEx) Z+(x ulFx) 2

J~uf2
11x 11 1 0x11 1

~ c(A ,B) - [ sup (xHEx) Z+ sup (xHFx) 2] u/’2
J x I J — l IIx II—l

= c(A ,B) - [IIEH 2+11F112] ”2.o

We turn now to the case where A and B are real . It is natural in

this case to restrict the vector x in (2.1) to lie in R’1 and define

- --~-. 



- 7 -

V~. — {x~(A+iB)x : II xII’ l, x E

and

Cr(A i B) - inf ( l v i  : v E Vr )

Brickinan [1] has shown that if n ~ 2, then Vr V , and consequent ly

Cr(A~
B) — c(A ,B). It follows that Theorem 2.2 is valid for ii ~ 2, and

in particular we can restrict our attention to real vectors. That this

happy state of affairs does not hold for n - 2 is shown by the exa~~le

/ 1  o\  / 0  1\) B — (  I ,
\0  - 1/  \ l  0/

for which c(A ,B) — 0 < 1 - Cr (A~B)~ However , we have the following

corollary of Theorem 2.2.

Corolla ry 2.5.  For n = 2 , if c(A,B) 0 then C r (A~B) 
- c(A ,B).

Proof. By Theorem 2.2 we may find a (p such that B~ i s positive

definite and an eigenvector x of B such that I Ix I J ” l and XHBq,X - c(A , B).

Since x11A~x = 0, A~ is indefinite. Now if the eigenvalue c(A,B) is of

multiplicity one, then x must be a scalar multiple of a real vector y,

which then satisfies yTA,y = 0 and yTB~y - c(A ,B). If c(A ,B) is of mu lti-

plicity two , then any nonzero vector is an eigenvector. Since A is real

and indefinite, there is a vector y of norm unity such that yTA
’P
y - 0

and yTBy = c (A , B) .o

For the real case , much of the material in this section is in~ lied by

earlier work [1 , 2 , 3 , 5 , 6, 14]. Hestenes [6] has characterized C as in
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Theorem 2.2 , and Crawford 13] appears to be the first to introduce the

ro tated problem . I am indebted to Han s Schneider for pointing out that

the restriction n ~ 2 can be reeoved in the con~ lex case. The charac-

ter izat ion of c(A B) as the smallest eigenvalue of a positive de finite

B(p is new and replaces an incorrect statement in Cra wford ’ s paper .

The nir~er c(A ,B) appears repeatedly in the bounds to be derived

in the next sections , which is why we have ta ken some pains to ascertain

when the computationally simpler ntmI er cr (A,B) is equal to c(A, B ) .

Crawford was the first to realize the impor tance of the value of c ( A , F ,

as opposed to the relation c(A ,B) > 0, and for this reason it is appro-

priate to refer to c(A,B) as the Crawford nisnber of the problem (1.1).

3. Perturbation bounds: eigenvalues

In this section we shall develop perturbation bounds for the eigen-

values of the definite generalized eigenvalue problem . For the Hermitian

eigenvalue problem Ax = Xx, it is well known that i f  the eigenva lues are

ordered so that ~~ ... ~ and those of the perturbed probl em

Al = Xl are ordered so that A1 ~~ ... 
~~ 

then

lX 1-A 1 1 ~ DA-AI~ , (i—1 ,2,. . . ,n)

We shall obtain a similar pairing of eigenvalues with their perturbed

counterparts ; however the ordering that defines the pairing imist be

defined in terms of certain angles associated with the eigenvalues of (1. 1 ) .

_ _  -
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Let the pair (A ,B) be definite and let H Ell2 + 11 F1l 2 c(A,B),

so that by Theorem 2.4 the pair (A~ ) is also definite. Let C and

C denote the cones associated with the two pairs. Then by Theorem 2.2

the complement of C U ? contains a ray R extending from the origin.

For each nonzero point •
~~ 

+ iv £ define e(u ,v) as the angle subtended by

R and {a(u+iv) : a ~ 0) measured clockwise. By construction, e Is

continLx)us on C U C.

Now let Ax~ 
= X1Bx

~
, where x1 p~ 0. We define the angle associated

with to be

0 1 
— 6(x

~Ax~,x~Bx.) ,

and throughout the rest of this section we shall assixne that 
~

~ 
6~. If B is positive definite, this corresponds to the natural

ordering k~ ~ X
2 ~ •. .  ~ X of the eigenvalues. However, if B is not

positive definite , this need not be. For example, if C lies in the right

half plane then t e positive eigenvalues will precede the negative ones.

The 0~ have a characterization that is completely analogous to the

mm -max characterization of the eigenvalues of the Herinitian problem .

Theorem 3.1. Let the problem (1.1) be definite and let its eigen-

values be ordered to that 61 
$ 0

2 ~ 
... 

~ 
6~. Then

(3.1) 6~ = miii max 0(xTAx ,xTBx)
dim (X)”i xEX

xj~O

and

~~~~~~~~~~~~
-
~~- 

--
~~~~

—-~~~~~~~~~~~~~~~~~ 
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(3.2) 0. itax mm 0(xTAx ,xTBx)
1 dim (X ) n-i+l XEX

xp~0

Proof. As in Section 2 , choose ~p so that B~ is positive definite .

Let the ray defining 0 be rotated counterc lockwise throug h ~p and us~

this new ray to define a new function 8~. Then

O(p (xA (px b x
1B(px) 8(xt1Ax ,x11Bx)

and without loss o general ity we may drop the subscripts ~p and ass~.ane

that B is positive definite.

For B positive definite we have [7]

II
X . - mm max

1 dim(X) i x(X x11Bx
x~0

But because V is in the upper half plane, the mapping X -, e(X ,1) is

increasing . Hence

0. = 0(X ., 1) — mm nx0 (~~~ , i
1 1 dim(X)i xEX

x,’ 0

= mm max e(x11Ax ,x11Bx)
dim(X)-i x(X

xj~0

A proof of (3.2) follows from the characterization

miii min 0
1 dim(X)=n-i+l xEX x Bx

xj~0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ _ ___ _~_1_~ — — --— - — - -
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As a consequence of Theorem 3.1, a niither of separation theorems for
the eigenvalues of synii~etric matrices generalize to the definite problem

(1.1). For example , if A and ~ are princ ipal submatrices of A and

B of order n-l, then the eigenvalues 
~~~~~

,• ~~~~ of the problem

Ax = XBx satisfy

ei s 6
i 
$0 2~~~

O2
$

However, our main interest in the theorem is that it can be used to prove

the following perturbation theorem.

Theorem 3.2. Let (A,B) be definite and let the eigenvalues of

Ax XBx be ordered so that 01 ~ 
02 $ ... 5 0~. Let

= {11E 11 2+11 F11 2 }”2 
,

and assume that e < c(A,B) so that (A,B) = (A+E ,B+F) is definite. Let the

eigenvalues of ~3z = Xl be ordered so that ~ e 2 $ ... ~~ Then

(3.3) I0~-~~I $ Sin
1 

c(A ,B)

Proof. Let X1 be a minimizing subspace in the equality (3.1) .

Then

(3.4) 81 ~ 
max e[xT(A+E)x, xT CB÷F) x]
xEX

~x,’ 0
Let x K X1 be a vector of norm unity for which the maximum in (3.4) is

attained. Then since 8(xTAx,xTBx) 
~ 

the point (xT(A+E)x,xT(A+F)x) 
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must lie in the circle of radius e sketched below.

(

7 

~ ~~~~~~~~~~~~~~ (xT~~,xT~~)

The maximum increase r~ of e(xT (A+E) x,xT(B+F)x] over occurs when the

circle is situated as shown below.

Elementary geometry now gives ~ - sin~ (&/c(A ,B)~ , which shows that

~~~

. + rj. The result e~ - ‘1 ~ 0m follows from a similar argument applied
to the characterization (3.2) of 01.0

There are some observations to be made about the theorem . First ,

the bound (3.3) innediate ly implies a bound in the chordal metric . Speci-

fically, let X = p/v and A = p1;. Then the chordal distance between

X and X is

-- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~ -~~——--~~-
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X (X ,X) — — hLV -

,2~~7

But it is easily seen that

x(X ,~) = sin I8(ii.,v)-0 G~,) I  .

Then it follows from (3.3) that

x(X ~~~i’ i — c(A,B)

Note that this inequality is somewhat weaker than (3.3) , since eigenvalues

that have angles differing by amounts near u will have a chordal differ-

ence near zero.

The second observation that the theorem implies the classical bounds

for the Hermitian eigenvalue problem. Specifically let B = I , and let

= X~/’r be the eigenvalues of the problem

(3 .5) Ax =

Let c(~t) = c(A ,-r I) be the Crawford number for the prob lem (3.5). Note that

when ~r is large , c (’r) = ‘r + 0(1) . If we consider a Hermitian perturbation

in A of norm ~~, then we have the bounds

(3.6) Je~(t)-e1(’r)J ~ smn
1 
cAj 

= + o(..4
)

Since X~(~r) and ~1 (-r) approach 0 as lit, we have
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(3.7) Ie m (.r)~ m (.t)I = $ X m (T)-
~~

(’r) I + 0 (4).
Combining (3.6) and (3.7) and mult iplying by ~r , we get

Ix 1-~ I e +

which gives the classical result when -r -+ =.

Finally we note that it follows from the results in [12] that

for a simple eigenvalue X~ and ~ sufficiently small,

x(xm,Xm) < 
e 

+ O(~
2)

I (x~Ax~
2+ (x

~
Bx
~
)2

Since c2(A,B) s (x~Ax~
) 2 

+ (x~Bxm) 2 , it is seen that we pay a price in the

sharpness of our bounds to gain freedom from considerations of multiplicity.

4. Perturbation bounds: eigenspaces

In this section we shall derive perturbation bounds for the eigen-

vectors of the definite problem (1.1). These bounds imply that eigenvectors

corresponding to poorly separated eigenvalues are very sensitive to pertur-

bations in A and B; however, the subspace spanned by the eigenvectors

corresponding to a cluster of eigenvalues may be relative insensitive. We

shall, therefore, phrase our bounds in terms of subspaces rather than indi-

vidual eigenvectors. This approach is analogous to the one taken in the

ordinary eigenvalue problem, where one bounds perturbations in invariant

subspaces corresponding to clustered eigenvalues [4,8,9,11].

~~~~~ — i_~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~

LZ 
-
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We begin by noting that if x is an eigenvector of (1.1), then

Ax and Bx are depend ent. Following [10] , we can generalize this

idea to subspaces .

Definition 4.1. A subspace X is an eigenspace of (1 . 1) if

dim(AX+BX) $ dim (X)

Clearly any set of eigenvectors of (1.1) spans an eigenspace . Con-

versely, if the problem is definite, then an eigenspace is spanned by a

set of eigenvectors. To see this , we first note that the space A(pX +

B X , where A and B are defined as in Section 2 , is the same as
(p (p

AX + BX. Hence we may assume that B is positive definite. Now let X1

be an eigenspace of dimension £. spanned by the columns of the full rank

matrix X1. Then dim(BX1) = 1, and BX1 has an orthogonal complement

X2 of dimension n-L. Since B is positive definite X1 • X2 =

Let the columns of the n x (n-fl matrix X2 span X2, so that 4BX1 
= o.

But from the definition of eigenspace and the fact that dim(BX1) 
=

we have that AX c BX. Hence 4AX1 - 0. It follows that

T(4.1) (X~,X2) A(X1,X2) =

\ 0 M2

and

T 
(N 1 0

(4 .2) (X1,X2) B(X1,X2) = (
0 N2

Now the problems M~y = XN1y (i=l ,2) are definite; hence Mi and N~ can be

— —~~~~~~- - . ~~~~~~~~~
-
.
-~~~~~~~

-
~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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simultaneously diagonalized by nonsingular matrices Y 1 . Then
(X1Y1,X2Y2) is nonsingular and diagonalizes A and B. In particular

the columns of X1Y1 are eigenvectors spanning X1.

Turning now to the perturbation theorem , we consider an eigenspace

• of dimension t of the definite problem (1.1). Let X 2 be its

complementa ry eigenspace . Let the columns of X1 = (x1,x2,. . . ,x~) and

X2 
= ~~~~~ . - ,x~) be eigenvectors spanning X1 and X 2, chosen so tha t

M~ and N
~ 

(i=l,2) in (4.1) and (4.2) are diagonal . Set

= diag(~1,. ..,~~
) N1 = diag(v 1, . .  .,v t )

= diag(IL~~1~...,p~) N2 = diag(v~~1,. .. ,v~~ )

We shall use the same notation for the perturbed eigenvalue problem

= XB5C, except that all quantities will be overlined with tildas. We

shall assume that both problems are definite.

We begin with a lenma which furnishes a possible basis for the

perturbed eigenspace. We will obtain sharper results if we recognize

that certain infima that are bounded below by Crawford numbers are actually

taken over eigenspaces. Accordingly, we define

c(A,B;X) = inf {I x ”(A+iB) xI : x E X , Il x II —l } .

Lenuna 4.2. For i = l,2 ...,n let = 
~~~

/v
~~ 

and A1 = ~~~~~~ and

let

= mm {X(X ~~A~) : i=l,...,t; j~~+l,...,n}

If 6 > 0 , then there is a matrix Q whose columns satisfy
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- 

x(A ,B;X 2)o

such that

R(X1 +Q) c

where R (X) denotes the column space of X.

Proof. Let B2 denote operator def ined by restricting 
~2 to the

space X2. ~ rotating the problem, we may assume that is positive

definite and

= c(A ,~ ;X2)

Note that under this assumption N2 is positive definite.

We shall seek ~ in the form

Q = X2P

From the definition of eigenspace R(X 1+Q) c 
~l if and only if

R [~ (x14Q) I ~ This is equivalent to requiring that ~~ (X1+~2P) — 0

or

(4 .3) = -F42P .

To develop an expression for ~C~~X1, note that since

(A-E)X1N1 
= (~-F)X1M~

we have

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _______________
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X
’
~AX1N1 

- = ~~(EXN1-FXM1) a

But N24A = 12123, so that

• M~~BX1N1 N2X2BX1M1 = ~2~~R -

Hence, because M2 and N2 coninute, if we choose P to sat isfy

M2PN1 - N2PM1 
=

then N2P will satisfy (4.3).

Let r~ = 

~~ 
- 

~~~~~~~~~~ 

Then the hypothesis 6 - 
() implies that

~ 0 (i=l ,...,2~;j=R+1 ,... ,n). Consequently P is uniquely defined

and its (j-9~.,i) element is given by

~Tr.
= -J 1

‘~j-R~i r..
13

where r. denotes the i-th column of R. It fo11o~s that the i-th colijmi

of Q = ~2P is given by

I 
~• q- = I r . S.r .

1 \ j — ~+l T j J /  1 1 1

and our problem is reduced to determining bounds on !IS~!!.

Let — 
~ +l’~~+2’~ 

“‘~
‘
~) 

= X2N2 .  Then

n v .
S. = ~ -~~~ — ~~~1 j =t +l -rj~J ~
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But if is the operator defined at the beginning of the proof

- ~~~~~~~~~~~~~~ ~

so that the columis of 
~~
‘
~~2 are ortlx)nonnal . Hence the eigenvalues

are ~~~~~~~ Hence

(4.4) II S~)I — ~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~

_____________ $ ~~~~~~~~~~~~~

where 
~2 = c(A ,~ ;~ 2).

Now from (4 . 5)

(4 . 5) q1 = S~r 1 = S
~
(Exmv~

+Fxj~~
)

Hence

(4.6) 1Iq111 $ II II IIx~IIe 4v~

Combining (4.5) and (4 . 6) we see that

____ 

~~~~~~~
— 

~2 ~ I 1.L
~

S
J

-v .ii
J~ 

— 

~~~ 

.0

The bound in the theorem may be written in the form

____ 
6

-~~~~~-

-• - -
~ --- ~~~~~~~~~~~LL 
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where II X II ~ � t x ~~I
2 denotes the Frobenius norm of X. Thus the bound

depends directly on the perturbation and inversely on the gap between

the eigenvalues, with the Crawford nimiber determining the size of the

effect. Unfortunately R(X1+Q1) need not be an eigenspace unless

• dim [R(X1+Q1)J & . When 9. = 1, so that is the single eigenvector

we can assure this by requiring that 114111 < 1x 111.
Theorem 4.3. Let 6 = mm {X(X

1~~~~~) : j—2 ,3,.. . ,n) . If ~/6 <

c(A,~ ;X2),then there is a vector q1 satisfying

~ • $ —  < 1ildil 6c(A ,B;X 2)

such that x1 
+ q is an eigenvector of A& = x~ corresponding to

When 9. < 1, we must take into account the effect of near dependencies

among the columns of X. Define

inf(X1) = inf I(X1x11II x I I l
Then if II QII < inf(X1), ranlk(X+Q) - rank(X) = 9.. These considerations lead

to the following theorem.

Theorem 4.4. Let

________ 
1/2

- ~~~~~ f~~AII 2+ II BII 2
6c(A,B;X~) ~ 

c(A,B;X 1)

If 1 < 1, then R(X1+Q) 
=

Proof. It follows from the proof of Theorem 4.3 that if x
3 

is

scaled by a factor a , then q~ is scaled by the same factor. Hence we

may assume that IIx~JI = 1. We first find a lower bound on inf(X1). By

rotating (A ,B), we may assume that ~ denotes the restriction of B

to X1 then 
~ 

is positive definite and inf(,~1) = c(A ,B;X1). Of course,

‘a

• - -

-
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(4.7) II~l ll ~ II BI I ~ 4jiAII 2+ 11 B 11 2

Now

4B1X1 = N 1,

from which it follows that the columns of U B~
’2X1N~

112 are orthonormal.

Hence

1 = inf(U) $ Ii~~
”2 lI llN~

1”2 lI in f(X1)

Since the columns of X1 have norm unity , we have ~ c(A ,B; X1). Hence

from (4.7)

I c(A,B;X )1 1/2
(4.8) inf(x) >~~ 1

fr~1AII 2+ii B11 2

But

eII X II F
(4.9) 11

~
11 F ~ 6c 6c2

and the result follows from (4.9) and (4.lO).o

When 9. = 1, Theorem 4.5 does not reduce to Theorem 4.3 because we

have given too much away in the bound (4 . 9) . The principal application

is to the case 9. > 1, where the condition i~ < 1 not only guarantees that

= R(X1+Q) but also implies that X1 and are acutely situated with

respect to one another. In fact a slight modification of the proof of

Theorem 4.1 in [13] gives the following corollary.
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Corollary 4.5. Let P~ and P~ denote the orthogonal projections
1

onto X1 and X1. If i < 1 , then

• 

- 

~
‘X1

I1F $

it is unfortunate that 1 contains the factor ~~~~~, since it grows

with dimension of X1. The presence of this factor is a direct consequence

of the fact that Lenina 4.2 bounds 11Q11 p/ II X II F instead of II Q I I / II F I I . For the

Hermitian eigenvalue problem, Devis and Kahan [4] have been able to obtain

bounds in the spectral norm imposing additional restrictions on the loca-

tion of the eigenvalues. Whether such bounds can be obtained for the

definite generalized eigenvalue problem is an open question.

Ii
,

I
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