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Abstract

Let A and B be Hermitian matrices and let c(A,B) = inf{|x (A+iB)x|
: |x|l=1}. The eigenvalue problem Ax = A\Bx is called definite if
c(A,B) > 0. It is shown that a definite problem has a complete
system of eigenvectors and its eigenvalues are real. Under pertur-
bations of A and B, the eigenvalues behave like the eigenvalues of
a Hermitian matrix in the sense that there is a 1-1 pairing of the
eigenvalues with the perturbed eigenvalues and a uniform bound for
their differences (in this case in the chordal metric). Perturbation
bounds are also developed for eigenvectors and eigenspaces.
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Perturbation Bounds for

the Definite Generalized Eigenvalue Problem

G. W. Stewart

1. Introduction
In this paper we shall be concerned with deriving perturbation bounds

for the eigenvalues and eigenvectors of the generalized eigenvalue problem
1.1) Ax = ABx ,

where A and B are Hermitian matrices of order n. When B is positive
definite, as it is in most applications, the problem can be reduced to a

Hermitian eigenvalue problem of the form

1.2 B V212, oy

1/2 is the positive definite square root of B. Thus, in this

where B
case, the eigenvalues are real.

When A and B are replaced by A = A + E and B = B + F, the eigen-
values and eigenvectors will be perturbed by quantities that are functions
of E and F. In principle one can apply the existing theory for Hermi-
tian eigenvalue problems to (1.2) and obtain bounds on these perturbations;
however, this approach is unsatisfactory for a number of reasons, which we
shall now sketch (for a more complete discussion and examples see [3,10,12]).

When B is ill conditioned, that is when B is relatively near a
singular matrix, the eigenvalues of (1.1) will typically be spread out,with
some small and some large. The small ones may be relatively insensitive

to perturbations in A and B. However, since the problem (1.2) has large
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must also be large, and so will its corresponding
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eigenvalues, B
perturbation. The perturbation theory for (1.2) will then predict large
perturbations for all the eigenvalues, even the small ones. A second
difficulty is that the perturbation in B must be restricted so that B
remains positive definite, even though perturbations that make B indefinite
may have little effect on some of the eigenvalues. Finally, although the
large eigenvalues of the problem usually undergo large perturbations, their
reciprocals will undergo only small perturbations. This suggests that the
usual Euclidean metric on the line is not appropriate for reporting the

sizes of the perturbations in the eigenvalues.

In [12] the author has developed a perturbation theory for the non-
Hermitian generalized eigenvalue problem that circumvents these difficulties,
first by avoiding the use of inverses and second by using the chordal
metric on the Riemann sphere (cf. Section 3). In [3] Crawford has described
a class of Hermitian problems, called definite problems in this paper, that
admit of a nice perturbation theory in the chordal metric. It is the pur-
pose of this paper to strengthen and extend Crawford's results. In particu-
lar we shall obtain the one-one pairing of eigenvalues with their perturbed
counterparts that holds for the Hermitian eigenvalue problem. In addition
we shall obtain perturbation bounds for eigenspaces that are related to
the perturbation bounds of Davis and Kahan [4] for invariant subspaces of
Hermitian operators.

Throughout this paper A and B will be Hermitian matrices of order

n, and
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A=A+E, B=B+F

will be Hermitian perturbations of A and B. The Euclidean vector norm

and the spectral matrix norm will both be denoted by | +||.

2. The geometric theory

Recently there has emerged an elegant geometric theory for the real
symmetric generalized eigenvalue problem that is based on the quadratic
form xT(A+iB)x. For topological reasons, this theory does not apply when
n = 2, In this section we shall extend this theory to the Hermitian problem
in such a way that the restriction n # 2 is removed. We shall return to
the real case at the end of the section.

Our ultimate goal is to replace the generalized eigenvalue problem
(1) by an equivalent problem in which B is positive definite. Specifi-

cally for any real ¢ let

A‘p-'Acos(p—Bsinw,

B¢=Asin<p+Bcos«>.

Then it is obvious that any matrix X for which XHAX and XHBX are .

diagonal also diagonalizes Aw and B(p. Thus (1.1) has a complete set
of eigenvectors if and only if the problem wa = XB(px has the same set.
We shall attempt to choose ¢ so that B‘p is positive definite. The

condition under which this can be done is that the pair (A,B) be definite

in the following sense.
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Definition 2.1. The pair of Hermitian matrices (A,B) is definite if
(2.1) c(AB) o inf (1 @asiB)x} > 0 .
=1

The eigenvalue problem (1.1) is definite if (A,B) is definite.
The proof that c(A,B) > 0 implies that B" is positive definite
for some ¢ involves the geometry of the set over which the infimum

in (2.1) is taken. Let

v = (< asiB)x : fIxi=1}

C-(xH(A+iB)x:x€C"}
sf{fav:veV,a201}.

Then c(A,B) = inf {|v| : v € V}. Moreover, C is the pointed cone genera-
ted by the closed, bounded set C. We may now state our fundamental theorem.

Theorem 2.2. The cone C is convex. If (A,B) is definite,
then C 1lies properly in a closed half plane passing through the origin.
Moreover there is a real number ¢ such that B‘p is positive definite and

C(A,B) = )\mm(B") ’

where )‘min(B(p) denotes the smallest eigenvalue of B".
Proof. The set V is just the field of values of A + iB, which
is known to be convex (e.g. see [7]). Hence the cone C generated by V

is convex. Now suppose that c(A,B) > 0. Let the infimm in (2.1) be
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attained at x, and let v, = %'(Ads)xo. Since V is convex
Vg € V satisfies Ivol = inf {|v] : v€ V} = c(A,B) > 0, V must lie in
the closed half plane H = {z : R(\'Ioz) z vl 2), which does not contain the
origin. Since V is bounded, it must be contained in a cone that is
properly contained in the half plane H - Vor which passes through the
origin.

To prove the last part of the theorem, let Vv, Co. and H@ denote
the field of values, the cone, and the half plane associated with the

pair (A@,B‘p). Since
A, + B = e'® (A+iB) , |

it follows that V‘p, Cw, and Hq> are just V, C, and H rotated clock-
wise through the angle ¢. Choose ¢ so that H" lies in the upper
half plane. Then XA x; = 0. Moreover for |x| = 1, xHB"x > c(A,B)
= c(A,B). Hence

0<c(AB) = ¥Bx, = inf x'Bx .

[Ix/l=1

This shows that B is positive definite, X, is an eigenvector of B@
corresponding to Xm‘m(Bcp)’ and c(A,B) =\ min(Bcp)'“

Since in the above B" is positive definite, the Hermitian matrix
B‘;I/ 2A“,B(;l/ Z exists and can be diagonalized by a unitary matrix Y. It
is easily verified that X = B’;I/ Yy diagonalizes both A and B, and

hence A and B. This proves
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Corollary 2.3. If the problem (1.1) is definite, then there is a
nonsingular matrix X such that XHAX and )e"BX are both diagonal.

If we set X'AX = diag(usiys. .., ) and X'BX = diag(vy,vpseeeivp)s
then the eigenvalues of (1.1) are given by Ay = ui/vi. This admits the
possibility of infinite eigenvalues when v; = 0; however, the indeter-

minant case p; = v; = 0 cannot occur in a definite problem.

i

The number c(A,B) will play an important role in the perturbation
theory of the next two sections. The following theorem shows that it
does not vary wildly with perturbations in A and B. This result is
required in Section 3, where it is the number c(7\,§) that appears in
the bounds.

Theorem 2.4.

c(A,B) = ca,B) - [IENZ+IFIZIY2 |

Proof.

c@A,B) = "iﬁfl (fase)x)? + peamx)Hl/?
x =

> inf [T %0212 - s [08E) % o) 4Y/2
lIx||=1 Ix/=1

> c(A,B) - [ sup (xHEx) + sup (xHFx) i/
fIxll=1 lIxll=1

= cA,B) - [IENZIFIZ1 Y20

We turn now to the case where A and B are real. It is natural in

this case to restrict the vector x in (2.1) to lie in R" and define
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V, = (' (A*iB)x : lixll=1, x € R")

c.(A,B) = inf {|v] : v € Vr} .

Brickman [1] has shown that if n ¥ 2, then Vr =V, and consequently
c.(A,B) = c(A,B). It follows that Theorem 2.2 is valid for n ¥ 2, and
in particular we can restrict our attention to real vectors. That this

happy state of affairs does not hold for n = 2 is shown by the example

(1 o) (o 1
A= B =
0 -1 1 0)
for which c(A,B) = 0< 1 = cr(A,B). However, we have the following
corollary of Theorem 2.2.
Corollary 2.5. For n = 2, if c(A,B) > 0 then cr(A,B) = c(A,B).
Proof. By Theorem 2.2 we may find a ¢ such that B'o is positive
definite and an eigenvector x of Bo such that ||x||=1 and xuﬂwx = c(A,B).
Since x"wa =0, A is indefinite. Now if the eigenvalue C(A,B) is of
multiplicity one, then x must be a scalar multiple of a real vector vy,
which then satisfies yTA‘py = 0 and yTBwy = c(A,B). If c(A,B) is of mlti-
plicity two, then any nonzero vector is an eigenvector. Since A‘p is real

and indefinite, there is a vector y of nom unity such that yTAwy =0

and yTB(py = c(A,B).o

For the real case, much of the material in this section is implied by

earlier work [1,2,3,5,6,14]. Hestenes [6] has characterized C as in
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Theorem 2.2, and Crawford (3] appears to be the first to introduce the
rotated problem. I am indebted to Hans Schneider for pointing out that :
the restriction n # 2 can be removed in the complex case. The charac-
terization of c(A,B) as the smallest eigenvalue of a positive definite
B(p is new and replaces an incorrect statement in Crawford's paper.

The number c(A,B) appears repeatedly in the bounds to be derived

in the next sections, which is why we have taken some pains to ascertain
when the computationally simpler number cr(A,B) is equal to c(A,B).

Crawford was the first to realize the importance of the value of c(A,B),
as opposed to the relation c(A,B) > 0, and for this reason it is appro-

priate to refer to c(A,B) as the Crawford number of the problem (1.1).

3. Perturbation bounds: eigenvalues

In this section we shall develop perturbation bounds for the eigen-
values of the definite generalized eigenvalue problem. For the Hermitian
eigenvalue problem Ax = A\x, it is well known tlat if the eigenvalues are
ordered so that xl < )‘2 v S xn and those of the perturbed problem

~

A% = Ak are ordered so that il < iz s ... =X then
3| s IA-AL,  (3=1,2,...,m) .

We shall obtain a similar pairing of eigenvalues with their perturbed
counterparts; however the ordering that defines the pairing must be

defined in terms of certain angles associated with the eigenvalues of (1.1).




-9 -

Let the pair (A,B) be definite and let [IEI% + [FI% < c(A,B),
so that by Theorem 2.4 the pair (A,B) is also definite. Let C and

i C denote the cones associated with the two pairs. Then by Theorem 2.2
the complement of C U C contains a ray R extending from the origin.

For each nonzero point 1 + iv € € define 6(u,v) as the angle subtended by
R and {a(u+tiv) : a = 0} measured clockwise. By construction, 6 is
continuous on C U C.

Now let Ax; = xini, where X; # 0. We define the angle associated

with xi to be
. G(X?Axi’x?nxi) '

and throughout the rest of this section we shall assume that 91 = 92 - GO
=6 . If B is positive definite, this corresponds to the natural
ordering )‘1 < xz S xn of the eigenvalues. However, if B is not
positive definite, this need not be. For example, if C 1ies in the right
half plane then the positive eigenvalues will precede the negative ones.
The 8 have a characterization that is completely analogous to the
min-max characterization of the eigenvalues of the Hermitian problem.
Theorem 3.1. Let the problem (1.1) be definite and let its eigen-

values be ordered to that e1 < 92 S e en. Then

(3.1) 6, = min max 6 (x Ax, X 1Bx)
dim(X)=i xeX
x#0

and

|
|
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(3.2) 6 = xax  min 0 (x'Ax,x'Bx) .
dim(X)=n-i+1 xeX
X#0

Proof. As in Section 2, choose ¢ so that Bcp is positive definite.
Let the ray defining 6 be rotated counterclockwise through ¢ and use

this new ray to define a new function ew’ Then

H I H H
ew(x wa,xlB‘px) = 8(x Ax,x Bx) ,

and without loss of generality we may drop the subscripts ¢ and assume
that B is positive definite.

For B positive definite we have (7]

H

A. = min max X Ax

L dim(X)=i xeX B
x#0

But because V is in the upper half plane, the mapping A + 6(A\,1) is

increasing. Hence

. Ax
6. = 6(\.,1) = min max 8 o |
i L xX (;“r; )

= min max e(xHAx,xHBx) .
dim(X)=1i x€X
x#0

A proof of (3.2) follows from the characterization

| LR S

A, = min min (s]
1 dim(X)=n-i+1 ;;x x”};x .
0
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As a consequence of Theorem 3.1, a number of separation theorems for
the eigenvalues of symmetric matrices generalize to the definite problem
(1.1). For example, if A and B are principal submatrices of A and
B of order n-1, then the eigenvalues xl""’xn-l of the problem

Ax = \Bx satisfy

~

58 =6,=0,s...20 ,s@ .

=5

2

However, our main interest in the theorem is that it can be used to prove
the following perturbation theoren.
Theorem 3.2. Let (A,B) be definite and let the eigenvalues of

Ax = ABx be ordered so that el < 62 AR en. Let

* e = (EIZHIRIAY2

and assume that ¢ < c(A,B) so that ('A,ﬁ) = (A+E,B+F) is definite. Let the

eigenvalues of Ax = ;»'i be ordered so that 51 < 52 € ive = én. Then

G B SR
(3.3) lel‘ell < sin HA—’BT

Proof. Let )(i be a minimizing subspace in the equality (3.1).

Then
g T T
(3.4) ei < max 9[x (A+E)x, x (B+F)x] .
X€X.
i
x#0

Let x ¢ Xi be a vector of norm unity for which the maximum in (3.4) is

attained. Then since 6(x Ax,x'Bx) = 6., the point (x (A%E)x,x" (A+F)x)




e

must lie in the circle of radius e sketched below.

The maximm increase n of e[xT(A+E)x,xT(B+F)x] over 6; occurs when the

circle is situated as shown below.

Elementary geometry now gives m = Sin-l[e/c(A,B)], which shows that
"éi =6; *n. The result 6; - M =6 follows from a similar argument applied
to the characterization (3.2) of 6;.0
There are some observations to be made about the theorem. First,
the bound (3.3) immediately implies a bound in the chordal metric. Speci-

fically, let X = p/v and X = W/v. Then the chordal distance between

kandiis
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X(X,i) - e - :'-\’L
IIJ. +v /p_ +§

But it is easily seen that

X(X,X) = sin |6(H9V)'em»“")| .
Then it follows from (3.3) that

€

X(Xi,ki) = ETK:ET

Note that this inequality is somewhat weaker than (3.3),since eigenvalues
that have angles differing by amounts near n will have a chordal differ-
ence near Zzero.

The second observation that the theorem implies the classical bounds
for the Hermitian eigenvalue problem. Specifically let B = I, and let

xi(T) = Xi/T be the eigenvalues of the problem
(3.5) Ax = Xi(T)(TI)x "

Let c(t) = c(A,7I) be the Crawford number for the problem (3.5). Note that
when T is large, c(t) =T + 0(1). If we consider a Hermitian perturbation

in A of norm ¢, then we have the bounds

(3.6) o, ()-8, (7)] = sin”! Eyc Lt 0(:12)

Since xi(r) and ii(r) approach 0 as 1/t, we have




(3.7 6,8, ()| = N @-X @) + 0 (-17)

T

Combining (3.6) and (3.7) and multiplying by T, we get

I)‘i-)\il =e ¢+ 0(?),
which gives the classical result when 1 -+ «.

Finally we note that it follows from the results in [12] that

for a simple eigenvalue A and ¢ sufficiently small,
1
Z Z
T

Since cz(A,B) < (xl;Axi)2 + (x?Bxi)z, it is seen that we pay a price in the

+ O(ez) X

x(xi,xi)s

sharpness of our bounds to gain freedom from considerations of multiplicity.

4. Perturbation bounds: eigenspaces

In this section we shall derive perturbation bounds for the eigen-
vectors of the definite problem (1.1). These bounds imply that eigenvectors
corresponding to poorly separated eigenvalues are very sensitive to pertur-
bations in A and B; however, the subspace spanned by the eigenvectors
corresponding to a cluster of eigenvalues may be relative insensitive. We
shall, therefore, phrase our bounds in terms of subspaces rather than indi-
vidual eigenvectors. This approach is analogous to the one taken in the
ordinary eigenvalue problem, where one bounds perturbations in invariant

subspaces corresponding to clustered eigenvalues [4,8,9,11].
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We begin by noting that if x 1is an eigenvector of (1.1), then
Ax and Bx are dependent. Following [10], we can generalize this
idea to subspaces.

Definition 4.1. A subspace X is an eigenspace of (1.1) if
dim(AX+BX) = dim (X) .

Clearly any set of eigenvectors of (1.1) spans an eigenspace. Con-
versely, if the problem is definite, then an eigenspace is spanned by a
set of eigenvectors. To see this, we first note that the space A(px +
B(px, where Aq) and Bq> are defined as in Section 2, is the same as
AX + BX. Hence we may assume that B is positive definite. Now let )(1
be an eigenspace of dimension £ spanned by the columns of the full rank
matrix X1 Then dim(BXl) = £, and B)(1 has an orthogonal complement
X, =C.

1
Let the columns of the n x (n-£) matrix Xz span XZ, so that )(';‘BX1 = 0.

X2 of dimension n-£. Since B is positive definite X

But from the definition of eigenspace and the fact that dim(BXl) =2,
we have that AX ¢ BX. Hence XAX, = 0. It follows that

M1 0

(4.1) (X X,) AR, X,) =
0 M,
and
N 0
T 1
(4.2) (X,X,) B(X}5Xp) = .
0 N2

Now the problems Miy = XNiy (i=1,2) are definite; hence M; and N; can be

-
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simultaneously diagonalized by nonsingular matrices Yi. Then
(lel’XZYZ) is nonsingular and diagonalizes A and B. In particular
the colums of XlY1 are eigenvectors spanning Xl.
Turning now to the perturbation theorem, we consider an eigenspace
Xy of dimension € of the definite problem (1.1). Let Xz be its
complementary eigenspace. Let the columns of X1 = (xl,xz,...,xz) and

X .,xn) be eigenvectors spanning X, and Xys chosen so that

) = (x2+1"‘
Mi and Ni (i=1,2) in (4.1) and (4.2) are diagonal. Set

Ml = diag(p,l,...,p,l) N1 = diag(vl,...,vl)

MZ = diag(u“l,...,,_;n) NZ - diag(v“_l,...,vn) .

We shall use the same notation for the perturbed eigenvalue problem
Ax = XBX, except that all quantities will be overlined with tildas. We
shall assume that both problems are definite.

We begin with a lemma which furnishes a possible basis for the
perturbed eigenspace. We will obtain sharper results if we recognize
that certain infima that are bounded below by Crawford numbers are actually

taken over eigenspaces. Accordingly, we define
c(A,B;X) = inf {|xI(A+iB)x| : x € X,|x|=1} .

Lemma 4.2. For i = 1,2,...,n let X, = “i/“i and A, = ﬁi/;i’ and

let
5 = min {X(xi,ij) L R T L IR

If 6 > 0, then there is a matrix Q whuse colums satisfy




Y . — *m————""

L A

llq;l
5 pr—pre——
;T X (A,B;X,)6

such that
RO +Q < X

where R(X) denotes the column space of X.
Proof. Let Ez denote operator defined by restricting §2 to the
space ')’(2. By rotating the problem, we may assume that ,32 is positive

definite and
BT = c.Bixy)

Note that under this assumption N, is positive definite.

We shall seek Q in the form J
Q=Xp .

From the definition of eigenspace R(X1+Q) C 3(1 if and only if i
R[ﬁ(xl'«Q)] 1 3(2. This is equivalent to requiring that ')'(;ﬁ(xlﬁ(zl’) =0

or

(4.3) XIBx

2 l=-N2P-

To develop an expression for igﬁxl, note that since

A&-BxN, = B-PXM

we have




T ———

a1 =

) %T
xZAxIN szx1 X (EXN; -FXM) = XR

But Nzigﬁ = ﬁzigﬁ, so that
~ ~T~ ~ ...T... ~ ~T
szsz1N1 - NZXZBlel = NZXZR

~

Hence, because M2 and NZ commute, if we choose P to satisfy

MZPN = NZPM1 -XZ

then NZP will satisfy (4.3).

! - e s h L’ sl
Let T5i Vi vjui. Then the hypothesis & > 0 implies that

TJi # 0 (i=1,...,2;j=2+1,...,n). Consequently P is uniquely defined
and its (j-%,i) element is given by

iTr.
Pig i =2
J-%,1 1:1]

where T, denotes the i-th colum of R. It follows that the i-th column

of Q = iZP is given by

n o XX
. q. = Z Al )r =S, ’
i i jele1 Tij - Ol i |

and our problem is reduced to determining bounds on HSiH.

e o1/
Let YZ " (yl+1’yl+2) ..,)’ ) = XZ 2 / . Then

n V.
j=L+1 i) JJ




.

’ But if :1;2 is the operator defined at the beginning of the proof

/2 y

XZ‘QZXZN
so that the colums of E%/ ZYZ are orthonormal. Hence the eigenvalues

1/2 =1/2
of B2 EZ

| Tk v | ~-1/2T
| YB,Y, = K

are v./%... Hence
) 1)

(4.9) syl = 0B Y28y %s B3/ 98,21 = 1N/ %s B3 %

mytginglt nax, (V552 1)

% ¢

<

where &, = c(7\,§;3(2).
Now from (4.5)

(4.5) Q; = S;r; = S;(Exyvy*Fgu,) o
Hence
(4~6) ”qlll = llsi||||xi||e'ui"vi .

Combining (4.5) and (4.6) we see that

o 22 fiZ?

= oE g)i- L) €
S = Mmax. = .0
T & R 957viis | €5

The bound in the theorem may be written in the form

Il
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where IIXII?". s lei j|2 denotes the Frobenius norm of X. Thus the bound
depends directly on the perturbation and inversely on the gap between
the eigenvalues, with the Crawford number determining the size of the
effect. Unfortunately R(X1+Q1) need not be an eigenspace unless

dim [R(X1+Q1)] = ¢, When & =1, so that X1
X;, We can assure this by requiring that lq;ll < lIx,|l.

is the single eigenvector

Theorem 4.3. Let 6§ = min {X(x ) 22,3, ...0). If 5/8 <

c(l,ﬁ;xz),then there is a vector q, sat1sfying

bl 4
"xlu 6c(7\,§;X2)

<))

~

such that X *q is an eigenvector of AX = ABX corresponding to )‘1'
When 2 < 1, we must take into account the effect of near dependencies

among the colums of X. Define

inf(X,) = inf |IX,x]| .
=1 i

Then if ||Q| < inf(Xl), rank(X+Q) = rank(X) = &. These considerations lead
to the following theorem.

Theorem 4.4. Let

n= ﬂiAHEﬂ[B"; }
6c(~ ﬁ 3( ) »B3X

If n < 1 then R(X*Q) = 3(1.

Proof. It follows from the proof of Theorem 4.3 that if xj is

scaled by a factor a, then q. is scaled by the same factor. Hence we

J
may assume that llxj |l = 1. We first find a lower bound on inf()(l). By
rotating (A,B), we may assume that if ~B1 denotes the restriction of B

to )(1 then ,I\SJ is positive definite and inf(gl) = c(A,B;Xl). Of course,
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(4.7) By Il = IBII = Aanasi® .

T =
L% = Ny

from which it follows that the colums of U = ,l}'i/ leNil/ 2 are orthonormal.

Hence

1= infW) = 1B/ 20N, 2lingCx)

Since the colums of Xl have norm unity, we have vy 2 c(A,B;Xl). Hence

from (4.7)
c(A,B;Xl) 1/2
(4.8) inf(x) 2{ ——
Al “+ sy

But

ellXilg
(4.9) Iy s —= = &F

5c2 5c2

and the result follows from (4.9) and (4.10).o

When 2 = 1, Theorem 4.5 does not reduce to Theorem 4.3 because we
have given too much away in the bound (4.9). The principal application
is to the case & > 1, where the condition n < 1 not only guarantees that
;‘1 = R(X*Q) but also implies that X, and ?(1 are acutely situated with

respect to one another. In fact a slight modification of the proof of

Theorem 4.1 in [13] gives the following corollary.
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Corollary 4.5. Let le and P',-(

onto )(1 and ;(1. If n < 1, then

denote the orthogonal projections
1

It is unfortunate that rn contains the factor /%, since it grows
with dimension of Xl. The presence of this factor is a direct consequence
of the fact that Lemma 4.2 bounds |IQllg/|Xll instead of [IQII/IIF|l. For the

Hermitian eigenvalue problem, Davis and Kahan [4] have been able to obtain

bounds in the spectral norm imposing additional restrictions on the loca-
tion of the eigenvalues. Whether such bounds can be obtained for the

definite generalized eigenvalue problem is an open question.
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