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PREFACE )

This investigation was conducted by the U. S. Army Engincer
Waterways Experiment Station (WES) under Department of the Army
Project 4A161101A91D, .I1-House Lahcoratory Independent Research Program,
sponsored by the Assistant Secretary of tne Army (R&D).

The investigation was conducted by Dr. B. Rohani during the
calendar‘yEars 1975 and 1976 under the general direction of Messrs. J. P.
Sale, Chief, Soils and Pavements Laboratory, and Dr. J. G. Jacksom, Jr.,
Chief, Soil Dynamics Division. The report was written by Dr. Rohani.

Directors of WES during the investigation and the preparation of
this report were COL G. H. Hilt, CE, and COL J. L. Cannon, CE. Tech~
nical Director was Mr. F. R. Brown.
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MECHANICAL CONSTITUTIVE MODELS FOR ENGINEERING MATERIALS

PART I: INTRODUCTION

Background

1. Development of mechanical constitutive models (defined as
load-deformation or stress-strain relationships) for engineering ma-
teriasls has received considerable attention in recent years, particu-
larly in the field of geotechnical engineering. The primery reason for
such efforts ig the fact that with the advent of high-speed electronic
computers and the development of new methods of numerical analysis, a
variety of complex engineering problems can be solved provided realistic
constitutive relationships for the materials of interest are available.
Stress-strain relationships for a number of materisls, such as soil,
rock, and concrete, are often nonlinear even when the magnitudes
of the strains involved are small. This type of nonlinear behavior,
referred to as physical noniinearity, has been the subject of ianvestiga-
tion at the U. S. Army Engineer Waterways Experiment Station (WES) since
early 1960; special emphasis has been placed on modeling the mechanical
behavior of earth materials. During the fall of 1971, an elementary
course on mectanical constitutive relationships was offered at the
Vicksburg Graduate Center, WES, and a series of lecture notes was pre-
pared for use by the students taking this course. The purpose of the
lecture notes was to acquaint the students with some of the basic
physical concepts and mathematical tcols availasle for developing con-
stitutive relationships. The lecture notes vere purposely kept to an
elementary level, and wvere prepared vith the formilation of constitutive

relations for earth materials in mind.

Objective

et

2. The objective of this report is to document the lecture notes




in a format that can be used for engineering training throughout the
Corps of Engineers, U. S. Army, or as materials for self-study and

reference pruposes.
Scope

3. Some of the basic mathematical tools necessary for the develop-
ment of constisutive relationships are presented in Part II. Included
in Part II are: a brief discussion of indicial notation, matrix
algebra, development of basic equations related to eigenvalue problem,
the Cayley-Hamilton theoram, and Cartesian tensors (with emphasis on
second-order tensors). A number of numerical examples are included in
this part of the report in order to help the reader to better understand
the subject matter. Part III includes a summary of appropriate equa-
tions from continuum mechanics required for this elementary presenta-
tion of the subject of constitutive relationships. Constitutive
equations of elastic materials are developed in Part IV. The so-
called incremental constitutive equations are discussed in Part V.
Constitutive equations of simple viscoelastic materials are discussed
in Part VI. Constitutive equations of plasticity are contained in
Paprt VII,
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PART II: MATHEMATICAL PRELIMINARIES

L, Some of the basic mathematical tools necessary for treatmen®
tnd understending of the physical concepts to be presented in the en-
suing parts of this report are developed in this part. The development
in kept to an elementary level and is confined to orthogonal Cartesian
coordinate system. In order to establish a common basis of terminology
and notation, both indicial and matrix notations are briefly discussed.
However, indicial notation is used for most of the presentations

throughout this report in order to keep the number of equations to a
minimum.

Indicial Notation

5. The development of indicial notation is based on a number of
agreements motivated by minjaturization of a large system of equations

or variables. For example, if three variables are denoted by Xl .
X2 , and X3 » we can simply denote them by Xi » where the subscript

i 1is called an index and we agree that it takes on values 1, 2, and 3
(three-dimensional geometry). Similarly, the system of equations

Al = Xl + Yl . A2 = X2 + Y2 , and A3 = X3 + Y3 can be expressed as

Ai = Xi + Y1 . An index which is not repeated in any single term is

called a free index. Thus, the index i 1in Xi and Ai = Xi + Yi

a free index. Furthermore, a free index must uppear in every term of

is

an expression. Systems which depend on one free index, such as X
and Ai , are called systems of first order. The terms X1 ’ X2 ’

and X3 are called the components or elements of the system. A first-

i

order system, therefore, has three components. Systems vhich depend

on two free indices, such as AiJ , are called systems of second order.
Since the indices take on values 1, 2, and 3, a second-order system
has nine components. Similarly, ve can define systems of third order
vhich depend on three free indices and heve twenty-seven conmponents,
e.8., Aijk . In this repor%, however, ve vill be dealing mainly with
first- and second-order systems.




6. If an index appears twice in a term it is called & dummy index.
For example, the index i in Aii is a dummy index. By agreement, a
dummy index implies that the term is to be summed with resp:2ct to this

index over the range of the index. Thus Aii A11 + A22 + A33 N
Xj¥y = XYy + XY, + XYy, end Sy = ConBiy = (Cjy +Cpp # 933)EiJ .
It is noted that the indices i and J in the last expression are

free indices. The particular letter used for the dummy index in an

operation is immaterial; thus, Aii = App = Amm s XiYi = Xpr = XmYm R

and Sij = Cmmgij = CkkEij « This characteristic of dummy indices is

very useful for manipulating several expressions that have ccmmon

indices. For example, consider the following expressions

A, =BC . (1)
Br = Dmrbm (2)

In the first expression the index m is free and the index r is a
dummy. In the second expression the index r 1is free and the index m
is a qummy. The index r in Equations 1 and 2 is ~alled a connecting
index. If we substitute the second expression into the first expres-

sion and use the same letters for indices, we obtsein
A =D EC. (3)

Equation 3 is weeningless since it is not consistent with the rules
(agreement:) of indicial notation; the index m eppears three times
on the right-hand side of this expression. To obtain the correct ex-
pression we must first averhaul the dummy index m in Equation 2.
Using the useful characteristic that the particular letter used for a
dumy index is irmaterial, we can write

B =D E (L)
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Substituting Equation 4 into Equation 1 we obtain

A =D EC (
m Pr p mr

\n
-

Equation 5 is notationally correct; there is no question as to which
index is the free index. Expanding the dummy indices p and r over
their range, Equation 5 takes the following form

Ay = DyECy * DB o ¥ DogB C oo
= Dy 1B G * DiofyCpp * DysiCig
* D Balhy * DopfaCip ¥ DogBolyg
* DaiBalmy ¥ Daofaln ¥ D3gfalyg (6)

Equation 6 (or Equation 5) has three components. The first component,
for example, beccmes

A, =D EC

1 % P1BCyy v D5 C

1251012 ¥ D145 C

1371713

+ D _EC

2182011 ¥ DpofoC

2282012 ¥ DogBol

2372713

+ D_.EC

31E3¢11 ¥ D3ptsC

3283C10 * D33BsC (7)

3373713
which is gquite long in compariscn with the compacted indicisl form.
T. Another agreement in establishing indiciael notation is the use

of commas in the subscripts to represent partiasl derivatives. Thus,

we agree that
aF
3?: = F.i (8e .
BUi
o = Ui,J {8b)
J
1




Similarly,

E. =Sy U (8¢)

In Equation 32, m is & dummy index and n and k are free indices.

Expanding tre cummy inder m , .quatiu1 8c tekes the following form

Ex = 9,0%,k * Y2,n%,x * Y3,n¥3,k (9)

Equation 9 (or Equation 8¢c) has nine components. For example, the E13

component bvecomes

E,..=1U (10)

13 = Y1,1%,3 * Ys,1Y,3 * U3 1Y3,3

8. In indicial notaticn the condition of symmetry of a second-

order system is denoted by

BiJ = BJi (11)

The condition of skew-symmetry is denoted by

ciJ = -ch (12)

Equation 11 results in conditions

Bp = By
conditions
= 1l
B23 B32 of symmetry (13)
By = By3

RS e

3 R R
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whereas Equation 12 indicates that

€10 Cpp =C33=0

C,n = =C

12 21 conditions of (1h)
¢ o skew-gymmetry

23 32

C31 = =Cy3

Using the above conditions, an gsymmetric (i.e., neither symmetric nor

skew-symmetric) second-order system T can be expressed as the sum

iJ
of a symmetrical system 1/2(:1'iJ + TJi) and a skew-symmetrical system

1/2('Tij - Tji) , i.e.,

T, = 1/2(’TiJ + Tji) + 1/2('":ij - Tji) (15)

9. In using indicial notations, one often deals with quantities
that have no free index. Such quantities are referred to as scalars
or zero-order systems. For example, the following gquantities are

scalars

A B (16)

D D
mn np pm

It is noted that all indices in Equation 16 are durmy indices. The ex-

panded form of the last expression in Equation 16, for example, becomes
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= +
Dmnanme DlnanDpl * D2nanDp2 DBnanDPB

= DllDlprl + D12D2prl + D13D3pup1

* 051D * DopPopPro + Dol Do

'gi + +
- D31P1 P35 ¥ D3P Ppg * D33Py Do

! D;1Dy3Dy9 *+ DyyDypDpy + DyqDygDay ;

1]

* DyoDpyPiy * DypDoolpy + DypDysDay

* DygD3y0y * DysPapPsy * DygDsalsy

+

S A ST R G

* DpyDyqDy 5 *+ DpyDy Doy + Doy Dy 2Dy

+

* DyoDoyPip + DopDogDos + DppDosDsy

+

* DpgD3iPyp * DpgDapDoy * DpDssDsy

sy el liiaad

* Dg3D19D15 + DgyDy Doy + DygyDygDag

+

+

* DDy Dyg + DypDyoDpg + DagDogDay

(17)

<+

* D33D3y Dy * DagDyoDpg + DgygDaglag

The compactness of indicial notation is once again demonstrated by the

i above expansion.

Matrix Algebra

10, another convenient method for representing a large number of
equations or quantities is through matrix notation. A metrix is an
array of numbere or components of & system. For example, the components

of & first-order system Xi can be arranged as

10




%
{xt = { x, (18a)
X3
or
[x] = [xl X, x3] (18v)

Equation 18a represents a 3-by-l1 (3 rows and 1 column) column matrix

whereas Equation 18b represents a l-by-3 (1 row and 3 columns) row

matrix., Similarly, the components of & second-order system Aij can
be arranged as
A1 A2 A3
(Al = ] Ay App Ay (19)
A3 g0 Ag3 : §
L e :
Equation 19 represents a 3-by-3 square matrix. We are mainly interested ; -
in 3-by-3 matrices in this report. Some useful types of matrices are: : f
&, Diagonal matrix in which all elements other
than those on the diagonal are zero. ]
I 7
Bll 0 O !
(8] = 0 B, 0 (20a)
i 0 O B33- :

b. Unit matrix in which all off-diagonal elements
are 2ero and every diagenal term is unity.

n
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[100

fiJ= (o110 (20b)

001

¢. Symmetrical matrix in which off-diagonal terms i
are symmetrical. i

B11 Bip Bys] f
[B] = | By, By, Byg (20¢) :
| B13 Bog Bas |
4. Skew-symmetrical matrix in which every diagonal
term is zero and off-diagonal terms are skew-
symmetric.
[ 0 Cpp Oy
el = |-C;, 0 Cp (20a)
--C13 -023 0 ]

In indicial notation the counterparts of Equations 20¢ and 204 are given
by Equations 11 and 12, respectively. Similarly, in indicial form

Equation 20a can be expressed as BiJ =0 for L1#J.
&
11. The transpose [A] of a square metrix ([A] is obtained by

completely interchanging every row with its corresponding column:

- 1
Ayy Ay Ay

(21)

" =
Al = | Ay Ay Agy

| A13 423 A33

12
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=A,, . In view of Equations 11 and 12, in
i} Ji %,

“he case of a symmetric matrix Bij = Bij , and in the case of a skew-
#* A
symmetric matrix C

= -C .
1J id
12. Matrices obey certain prescribed rules of matrix aigebra.

Addition or subtraction of matrices having the same number of rows and

In indiecial notation A

the same number of columns is accomplished by adding or subtracting
corresponding elements.

For example, consider the following 3-by-3
matrices:

811 812 813

(a] = 851 8yp 8pq (22a)

%31 %32 33

13 B1o Byg

] = boy oy b£3 (22v)

33 Pap Pag ]

Two 3~by-3 matrices can be obt:ined by adding or subtracting matrices
[a] and [b] ; thus,

817 ¥ By, 815+ Dy 8yq + D5

(el ={al + (bl = Jay +by 8, + by, 850 + by (23a)

|23 " P31 %32 ¥ P32 %33 * Pa3

s N
&)1 = Py 815 " Pyp 8y5 = Pyq

(a) = [a] - [d] = [ay - by 8y = by, 853 = Byg

(23b)

%31 = P21 832 ~ P32 833 " P33

_J

13

e e e oty i A




2T

AT

T

Ry Locls

T

R

e e D N R

In indicial motation the second-order systems [c] and [d] can be ex-
pressed by ciJ = aij + bi,j and diJ = a’i,j - biJ + A matrix can be
multiplied by & number k by simply multiplying every element in the
matrix by k . Two matrices can be multiplied together if they are
comformable, i.e., if the number of columns of the first matrix is equal

to the number of rows of the second. A p-by-q matrix and a q-by-s
matrix are conformetle and can be multiplied together. The result of
multiplication is a p-by-s matrix. For example, consider the multipli-

cation of matrices [a] and ([b] given in Equation 22:
(al(v] = (e] (24)

The matrix [e] is a 3-by-3 matrix whose components are obtained from
the following rule, expressed in indicial notation, governing matrix

multiplication:

€55 = B3Py (25)

(e.8vs €pg = Byybyq + Byolog ¥ 85ubg 4 €y T 85 by, + 8y Dy,

+ a23b32) . From Equation 25 it should be noted that [al[b) # {v][a] .

For further examples of matrix multiplication consider the following:
[a)? = [m)
(a]® = [n]
(allvi{a] = (p]
(26)
(al?(v] = (q]
(al?(v]? = (r]

(al(v}{a] (v} = (s)

1b




Using the rule governing matrix multiplication (Equation 25) it follows
that the components of matrices [m] , [n] , {pl, {al, [r]l, and
[s] take the following forms

By © %%y
Bis = BiBrrry
Py = 85 Pyrdey

LRIy

r

(27)

15 = %4x%%ePrey
*
515 = ®ixPke®eele) = CikPre®erley
»

Note that in the last expression in Equation 27 the definition afg = agf
is invoked. PFurthermore, it should be noted that in Equations 25 and
27 the indices i and J are the only free indices.

13. The sum of the diagonal terms of a square matrix is called

the trace of the matrix and is denoted by tr (e.g., trace of
(a] = tr[a] = 8, 8yt a33) . In indicial form,

tr{a) = a4 (28)
Similarly, in view of Equations 25 through 27T,
tr(lal[v]) = aikbki
tr[a}2 = a8
{29)
3
tr(al” = a; 0 80

tr([a]bi(al) = 8,0 B

15

R R
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All indices in Equation 29 are dummy indices, indicating that the trace
of a matrix is a scalar. Also, tr{[al{b]) = tr({bl{a]) even though

f [alib] # [b][a] . This can be verified by expanding the indicial form
4 811 = Pikki ¢

1k, The determinant of a square matrix is denoted by det{a] , or
q simply |a| , and is expressed as (for a 3-by-3 square matrix)

' ®11 %12 %13
g Bp1 8 83| = 813(8pp833 = 83agp) - ayplenag5 - apgay)
] 831 832 833 *+aygleyag, —ayeg)  (30)

It is noted that the determinant of a matrix is also a scalar. In con-
Junction with the determinant of a matrix we define the minor and
cofactor. The minor of an element a, j of the matrix [a] is ‘obtained
by deleting the ith row and jth column and forming the determinrent of
the remsining terms. For example, the minor of a5 element is

: given as

5 | 821 823

3 minor of &, = . S 851843 = 8yq8y) (31)

3 %33

The cofactor of an element 8y j is the minor of that element with a
sign attached to it according to the following criterion

cofactor of 84 = (-1)“‘, minor of 8y, (32)

Thus, the cofactor of a5, element is given as

)1+2(

« cofactor of a,, = (-1 851833 = 8p484)

In view of the definition of minor and cofactor the determinant of

16

s Ly Y




the matrix [a] can be expressed as
la| = a,,(cofactor of a,,) + & ,(cofactor of a ,)

+ 313(cofactor of a13) (34)

Tt should be pointed out that Equation 34 is not unique in calculating
the determinant of the matrix [a] . The same final products will re-
sult from expansion on columns or other rows, e.g.,

la] = a12(cofactor of a),) + aaz(cofactor of 322)

+ a32(cofactor of 332) (35)

15. Finally, we define the inverse [a]? of a square matrix [a]
such that

(al™l{a) = [al[a]™ = 1] (36)

The inverse matrix is given by

la]™? = {%} (37)

vhere the matrix [A] , called the adjoint of ([a] , is determined by
»
replacing the elements of [a] by their corresponding cofactors; thus,

822833 ~ 832823 832813 T B12%33 812%23 T %20%13
(A} = Jag 1853 = 851853 81855 = 8518)3 858,53 = 8853 (38)
85832 = 83180 831810 < 813835 81382 T %28

From Equation 37 it follows that the inverse exists provided |a| # 0.
Solutions of Linear Algebraic Equations

16. Consider a set of linear algebraic equations

17
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. 8% * 8o%p 83Xy = Ky
ByyX) + 8%y * a23x3 = k2 (39)

8% * 8%p * 833%3 T Ky

g In indicial notation Equation 39 can be expressed as

z 8,,x, =k, (40)
/S In matrix notation Equation 39 takes the following form

[al{x} = {k} (k1)

where [a] is a square matrix of coefficient., {x} is a column matrix
of unknowns, and {k} is a column matrix with known elements. The
objective is to solve for the elements of the column matrix {x} . Pre~
multiplying both sides of Equation Ll by [a.]"l results in

[al ™ (al{x} = [a] (k) (k2)
or, in view of Equation 36,

fdix} = {x} = [a]™1(x) (43)
From Equation 43 it follows that once the inverse of the coefficient

matrix is determined the solution for {x} is obtained by performing
the indicated matrix multiplication.

Eigenvalue Problem

1T. In a nuxmber of engineering problems the following system
of algebraic equations is often encountered

([a] = AfT)x} = {0} (L)

18
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where the elements of the column matrix {x} are the unknowns to be
determined, A is a scalar parameter, and {0} is & null column matrix
(all elements being zero). According to Equations 43 and 37, & non-
trivial solution of Equation Lk exists only if the determinant of the
coefficient matrix vanishes, i.e.,

P 813

8y 8yp = A 8yq =0 (45)
83) 8 833 = A

The expansion of the above determinant yields the following cubic equa-
tion in A :

3 2 -
A -IAT+IIN-III =0 (46)
where
Ia = tr{a) =fahn (47a)
IIa = gsum of the minors of the diagonal elements of [a]
820 B3] 1917 %3] {11 %12
= + + (4T0)
832 843] [%31 %33] |*21 %22
111 ={a| (47¢)
a

Equation 46 is called the characteristic ejuaticn of the matrix [a] .

18. The three roots A s A, » and As of the characteristic
equation are called the characteristic values or eigenvalues of ([a] .
For every eigenvalue A, (assuming that all three roots are distinct)
Bquation U6 is satisfied and hence Equation 4l has nontrivial
solutions:

19
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X
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3

3

5

<

X1

=} = { x,y (48)

X

3i

Every such solution of {x} 1is called a characteristic vector or
eigenvector of [a] . The eigenvectors {x(xi)} corresponding to
eigenvalues Ai .can be grouped together to form a square matria re-

ferred to as a modal column matrix, i.e.,

(71) (%2 ﬁa)’ (%)) %, %3]
[x] ={%00 % (Xo0) {(Xp3,1 = | %21 X2 %23 (49)
X31) *32 x33‘ Lxsl X320 *33

For cach eigenvalue and the corresponding eigenvector, Equation 44 can

be written as

[al{x(2,)} = xi{x(xi)} (50)

Since [a] is a 3-by-3 matrix, Equation 50 can be expressed in the
folloving form for all of the eigenvalues xl . A2 , and A3 .

- - . < - - -
81 %12 831 %1 %12 3 X1 %2 %3] |20 0
821 "oz %e3f [¥a1 o2 Xo3| ° | %21 Xo2 %3] |0 220 (51)

83) 835 833] | *3) *2n %33 ?MW%°°%
- - - - _J

Equation S0 is also satisfied if each eigenvector is multiplied by an
arbitrary constant C » i.e.,

[a]ci{x(li)} = cili{x(li)) (52)

Therefore, an eigeavector is indeterminste to the extent that it can be
pultiplied by an arbitrary constant. Selecting an eigenvector

20




{u(ki)} = {uyy = (53)

=
[
[ 3
(£]
[ ad
gt
[ nd [ d

appropriate to eigenvalue 2 {0 the corresponding modal column matrix

becomes

1
111 ¥1p Y3 ©1%17 %12 ©3%13

(] Yoy Hop Vo3 €1 Xo1 CoXpo C3¥pg

Y31 ¥32 V33 €1¥31 €2¥32 C3%33

%1 X2 X3] [0 0
= 1%y Xyp Xpq ) |0 ¢, O
| X3 Xgp X33 0 0 ¢ (54)

It is observed from Equation 54 that a modal column matrix is indeter-
minate to the extent thet it can be postmultiplied by a diagonal matrix
of arbitrary constants ¢ g Now utilizing the modal column matrix

{u] , Equstion 51 can be expressed as

(allu] = (WllA] (55) ‘

vhere [A] is a diagonal matrix with elements ALs Ay, amd Ay
Premultiplying Equation 55 by [u]™! wve obtain

) 2al{n) = A (56)

Poatzultiplying Equstion 55 by (u]™l gives

(a) = [ultAd[p]2 (s7)

From Equation 56 it is cbserved that the modal column matrix [u]
vhich is found by grouping the eigenvectors of {a] diagonalizes the

ral




ﬁ
i matrix [a] . Furthermore, the elements of the diagonalized matrix are
3 the eigenvalues of [a] . This diagonalization process is an important
g part of the eigenvalue problem and its significance will be realized
ks when dealing with second-order systems.

19. As an example of an eigenvalue problem, consider the follow=-
3 ing system of equations

(2 - k)xl - X, + %320

E -le + (3 - X)xa + Tx3 =0
- -8x1 - %, + (11 - X)x3 =0

In matrix form the above system of equations is expressed as

2-1 1 100 %) 0
-8 3 7] -x]010 X,5 = 0

-8-111 001l X4 0]

or (see Equation 4l)
([a] - AfTINx} = {0}

The characteristic equation of [a] is given as (See Equations 45

and 46)
2~ -1l 1
8 3.3 1 =23 +160° - 680 +80 =0
: -8 -1 1 -2

vhere it is noted that I = 1%, II = 68 , and I = 80 . Solution
of the ckaracteristic equation yields the following eigenvealues for the

patrix [a) :

=L, A, =10

A, =2, 3

2

22




For each value of A there exists three homogeneous equations. For

A= Al = 2 we have

-x2 + x3 =0

By Ty = 0

8y - xp +9x3 =0

where it is noticed that x = 1, x, = 1, x3 =1 1is a nontrivial
solution. The eigenvector corresponding to Al thken becomes (see
Equation 53)

{u(ll)} =c¢ (1

Similariy, for A =i, =14,

2

and for A = A3 =10 ,

{u(KB)} = ¢y 1

The modal column matrix becomes (see Equation 54)

23

[ N ]




TR T ISR A YA

b ¢ ©p 0 1
%_ [wl = ey ¢, cq
b ¢, ¢y Cy
G - -
¢ Using Equation 56 it can be verified that the modal column metrix trans-
?; forms the matrix [a] into a diagonal matrix with elements A s Ay
%: and g, i.e.,
;" - -1 p- - e~ - -
e c207 21 1fe; e, 0 20 0]

ey =¢, Cq -8 3 7 ¢y —¢y cqf = oLk o

¢, Cp Cq -8 =111 {{c 0 0 10

b vl b - e hes -

Cayley~-Hamilton Theorem

20. The Cayley-Hamilton theorem plays an important role in ex-

pressing higher powers of square matrices. It simply states that a

5l
-
.

square ustrix satisfies its own characteristic equation. The result

of the theorem is given here without proof. Let [al bYe a 3-by-3 matrix
and its characteristic equation be given as (see Equation U6)

3 2 -
AC - TAS+II A= 1III =0 (58)

If [a] satisfies its characteristic equation it follows theat ]
(a3 = 111 _t1] - 11 _[a] + I_(a)? (59)
a a a

Note that the constant III_ is multiplied by a unit matrix (1l .
From Equation 59 it follows that

lal = [a13(a] = 1111, [1] + (117, - LIT.){a] + (Tﬁ - IIa)[ala (60)
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Similarly,

5 _ L _f 2 2
(a]’ = [a]'[a] = (maxa - maua)m + (IaIIIa - 1P,

+ I‘L’z)[a] + (12 - erII_ + IIIa)[a]2 (61)

It is clear from the examples given in Equations 60 and 61 that using
the Cayley-Hamilton theorem.(i.e., Equation 59) we can express any

pover of [a] greater than 3 in terms of [a] and [e.]2 . Accordingly,
a polynomial representation of [a] , i.e.,

. (el = £([a]) = Kk [H + k [a] + ka[a]2 + k3[a]3 +oo+ kn[a]n (62)
vhere ko s kl s seey kn are consteats, can be expressed as

[g] = ngfxd « n_[a] + nylal? (63)

Vs

vhere the coefficients LR and N, are now polynomial functions
of Ia s IIa , and IIIa .
3 21. TFor an illustrative exampie of the Cayley-Hamilton theorem,
consider the following matrix
1 20
el=]3-1-2

1 90-3
The characteristic equation of [c] is given as
Bendom-17=0
,i vhere it is ~oted that
: I.=-3
II, = -1

IIIc = 17

25




We substitute [c] for A in the characteristic equation and multiply
the constant term by a unit matrix [IJ , i.e.,

- - p p- -y

12 o3 1 2 o 12 0
3-1 2| +3]3 -1 2] 7|:-1 -2
|1 0 -3 |1 0 -3 |1 0 -3
(1 0 o (3 14 12 21 0 -12]
1T {0 1 0} = |27 -11 -38 + |-6 21 24
0 1] L13 -6 =31 _-6 6 27
714 0] 17 0 0 0 0 . 0

- |21 -7 -1k - }J0 17 O =
7 0-21 0 0 17 ]

resulting in a nall matrix [O0] .

Cartesian Tensors

Cartesian coordinate

22, Let us consider the orthogonal Cartesian cocrdinate system
X, (Figure 1) with unit vectors i, » iy, snd 13 along the x, ,
Xy s and x3 axes, respectively.

!
)

> >4

&
Figure 1. Orthogonal Cartesian coordinate
system xk
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From elementary vector analysis the dot products of these unit vectors
are given as

il'il=12'i2=i;s.13=l
(6k)
11 . i, = il . 13 =i, i3 =0
or, in indicia; notation,
{Op#r (65)
i «i = 5
P r lp=r

This product is denoted by Gpr and is known as the Kronecker delts;
thus,

Op#r
iP.ir=6pr= lp=r (66)

The counterpart of 6pr in matrix notation is the unit matrix [I|
(see Equation 20b). From Equations 65 and 66 it follows that

PP (67)

éprarp =3

Transformation matrix

23. The vector V with components (xl v Xo s x3) in the x,
coordinate system (Figure 2) can be expressed in vector form as

V= xlil + x4, ¢ x3i3 = xpip . {68)

If we fix the origin and rotate the axes forming a new coordinate system
x; » vith correspoading unit vectors iy (Figure 2), then the vector

27
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V with components (xl . xé . xé) in the primed (rotated) system can

be denoted by

\ - (xloxzvxs)
’; (8,5, )

Figure 2. Orthogonal Cartesian coordinate
systems X and xi

In viev of Equations 68 and 69
LER ]
xpip = xsis

The dot product of Equation TO with ik results in

(69)

(710)




x1i <31 =x'i! i (11)

Since ip . ik = ka s Equation Tl reduces to
x = x4 (12)
By the definition of dot product,

i1 = cos(x; . xk) (73)

where cos(x; » xk) is the cosine of the angle between the xé and

]
x, axes. We denote c:c:s(xs . x.k) by ey

8y, = cos(x! , x) (T4)
In view of Equations 73 and Th, Equation T2 takes the form

X, = 8yl (75)

Similarly, the dot product of Squation 70 with 11': results in the
folloving relation

x = 8 s (76)

Bjuation 75 relates the components of the primed system (rotated) to
the components of the unprimed system. Equation 76 relates the com-
ponents of the unprimed system to the components of the primed system.
The matrix a is called the transformation matrix and consists of

sk
the folloving table of direction cosines:

4 it bt Lt s i

f
k]
@
-1
W
1
k!
5
4
A
A
4
i
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4
b
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Table of Direction Cosines
X X3 X3

X 11 | %2 | &3

1 K

) fo1 | %22 | 323
A |

*3 81 | %32 | %33

where a); = cos(xi . xl) » 8By = cos(xé . xl) > 8p = cos(xi . x2),

etc.

24, Equations 75 and T6 can now be utilized to establish certain
properties of the transformation matrix. Differentiating Equation T5
with respect to X yields

X T sk%s,i (17)

Since xk,i = ski s 1e€4y xl,l =1, xl,2 =0 , etc., Equation T7

reduces ‘o
6§, = a_.x (78)

From Equation 76, x; =8, % and thus
5,1 Sunt * e (1)

Substituting Equation 79 into Equation 78 results in

Si = SoxBemdnmi (80)

In viev of the definition of §&_, , Equation 80 reduces to

a.a., R
sk si ki

30
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Similarly, by differentiating Equation 76 and following the same pro-
cedure we get

8 plip = 811 (82)

Equations 81 and 82 describe the basic properties of the transformation
matrix. Expanding Equation 81 yields

ot el S
sl e L it G el e g o
pipiSpapipibompaetnian i R Y i

o 2 2 _ . _
&) *ay tay =8 =1

2

aia tay, t 332 =1 (83a)
o 2 2 _
ajgtapytagg=l

8); 8p% 8y Bgp ¥ 8g1835 = 85 =0
8)) 83 * 8y 8y3 * 83 833 =0, (83p)

815 8,3+ 8y 8y3 + 835833 =0

Similarly, expanding Equation 82 yields
o 2 . 2 _
ay) tepteg=l
“Sl + aga + 523 =1 (8la)
°§1 * a§2 * “gs =1
8, 8y * 858y, * 8385350

8)) 83 * 8583 * 838330 (8kv)
8y) 83) * 855 83y + 853 333 =0

Equations 83a and 8ka indicate that the sum of the squares of the
elements of any column or'xov of the transformation matrix is unity and

1




called normalization conditions. Equations 83b and 8kb indicate that : ;
the sum of the products of corresponding elements in any two distinct

columns or rows is zero and called orthogonality conditions. Through
algebraic manipulations of Equations 83 and 84 it can also be shown that

fal® = 1 (85)

25. TFor a numerical example of a transformation matrix consider

the following rotation (Figure 3) of the x, coordinate system: ﬁ
.

% $ .

A Y 1

\

/
&
AN

\ /
C /\f‘
—= Xy

Figure 3. Rigid-body rotation of xk
coordinate system

The transformation matrix “sk associated vith this rotation can be

constructed easily:




It can readily be verified that the above matrix setisf.es Equations 83

through 85.
First-order tensor

26. If with a coordinate transformation xﬁ = 8y X (see Equa-
tion 76), the three quantities As in the unprimed coordinate system
transform to three quantities Ai in the primed reference frame by

A = ot (86)

then As is a tensor of the first order. We already know that AS is
a8 vector. Therefore, a vector is a tensor of first order. Within the
context of indicial notation, & first-order tenmsor is a first-order
system, 34e., it has one free index. Any quantity whose value does not
change with coordinate transformation is called a tensor of order zero
or a scalar (see Equation 16). A scalar is, therefore, invariant to
rigid-body rotation of the coordinate system. Considering the scalar
product of A& with itself we obtain

Ay = o hslihy (87)

Since aks&kp = GSP (see Equation 81), Equation 87 becomes

A& = AAS (88)
s p sp
In view of the definition of Gsp » Equation 88 reduces to
KA = A, ()

Equation 89 indicates that the sum of the square of the elements (com-
ponents) of a first-order tensor (vector) is invariant to rigid-body
rotation of the coordinate axes. This quantity is the only invariant
associated wvith a first-order tensor. The magnitude or length of the
vector As is given 55117;;:; and is, therefore, invariant to rigid-
body rotation of the coordinate systenm.

33
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27. For an example of transformation of a first-order tensor,
consider the vector Ak with components

in the xk coordinate system. The magnitude of the vector is

[ - N2+ 002 + (202 = VIE5

If the coordinate system undergoes a rigid-body rotation as shown in

Figure 3, the components of the vector in the rotated system can dbe
calculated from Equation 86, i.e.,

. _2 V2 (g o 1572
Al = aj A+ e hy +a Ay =5 (5) + 5 (10) = 25
| - Y
A2=a21A1+322A2+a23A3-—2—‘ (5)+—§(10)~§'2—'

Ay = agh) +agphy v Al =2

It is noted that the magnitude of the vector is not affected by the co-
ordinate transformation, i.e.,

2 2
V- ) BE) w2 v
Second-order tensor
28.

Consider two first-ordsr tensors u:l and vi associated

with cocrdinate system X . Since uy and v; are first-order
tensors we may vrite (see Equation 75)

u

i = 84U (90a)
v, o= anve (90v)

3k
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Combining the vectors uy and v, wve can construct the second-order

system uivJ , which we may call the array TiJ y 1.€4,

“'1 M2 13
Wy = Tiy = [0V BV V3 (91)
U3y 3 3V |
In view of Equation 90 the product uivd can be written as
= = 1 [ - ty!
Tig = UgVy = 8pgUnep sV = 8,48 uvy (92)

Equation 92 provides the array of nine-number T Denoting the array

iy °
Iyt ]
u vy by T' , Equation 92 becomes

T =g ,a8 T :93)

vhere Tém is referred to the primed coordinate system. Similarly,

starting fram ui =&, u and vi =8 , we can derive

nn imvm
TiJ = ainajm$nm (9)

Any quantity Tnm that transforms accerding to Equation 94 is called
a second-order tensor. Within the context of indicial notation, a
second-order tensor is a second-order system, i.e., it has two free
indices. Accordingly, the addition, subtraction, and multiplication
of second-order tensors are governed by the rules expressed in Equa-
tions 23 through 27. In matrix notation the transformation laws
(Equations 93 and 94) are expressed as

(1] = [2)"[1')(a) (95)

(r'] = [a)(T)la)"

35
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vhere [a] 18 the transpose of (a] .
29. The second-order tensor is an extremely important tensor in

mechanics and will be used extensively in this report. 1In particular,
ve are interested in second-order symmetric tensors such as stress and
strain tensors. It was shown in Equation 89 that there is one invariant
associated with a first-order temsor (vector). In the case of a second-
order symmetric tensor, however, there are three independent quantities
that remain corstant with respect to coordinate transformation. These

independent invariants are

Ip = tr[T] = Tyy (97)
T, = tel1l® = 7,1, (98)
T, = tr[1)3 = T4 TnTn (99)

From Equation 94 it follows that

- ] -
tr[T'] = T4 = %ip®ipTam (100)

According to the property of the transformation matrix (Equation 81),
8 8in = anm » and Equation 100 becomes
‘1=
tr{T']) =6 T (101)
In view of the definition of Gnm » Equation 101 reduces to

tr(T'] = Top = tr(T] (102)

indicating that tr(T] is an invariant. Similarly, from Equation 94,

Tik = °in°km?nm * Tii = akpaisTps » and

i e e e e b A =
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T Txi

ainakm?nmgkpaisTps

= ainaisTankm.akaps (103)

tr(T?

Again using the property of the transformation matrix (Equation 81},

884 = Gns . akmékp = Gmp , and Equation 103 becomes

tr[T')? = 8 1o nmbmpTps {(104)

In view of the definitions of 6ns and Gmp , Equation 104 reduces to

P=7 1 .= tr(T]? (105)

tr{T’
sl m;

indicating that tr[T]? is an invariant. Using the seme procedure it

can be shown that

tr[T‘]3 = tr[T]3 (106)

indicating that tr[T]° is also en invariant.
30. The three invariants of the second-order tensor (IT , I ,
TTT&) can be related to the coefficients in the charecteristic equation

of the tensor (Equation 47). By algebraic manipulation it can be shown
that

T, = If. - a1, (107s)
11, = %(1.? - 'I'fT) (1070)

Now, using the Saylev.Hamilton theorem (Equation 59) im indicial form,

1.€@4y

R g > m.rsu - nT'riJ + LT, T 2 (108)
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and taking the trace of the tensor (putting i = J), we obtain

Ty BTy = 3TTp = LTy, + Il Ty (109)
In view of Equations 97, 98, 99, and 107, Equation 109 results in
- 3
III; = 3IIIy = 31T, + Iy (110a)
Ll _lsp .13
IIIT =3 Iy - 5 glg + 2 15 (110b)

Equetions 107 and 110 indicate that the coefficients in the character-
istic equetion of thewtensor are also invariant.

31. For an illustrative example of transformetion of second-order
tensors, consider the following tensor associated with an x, co-

ordinete system:

hie
T.,={160
1
298]

From Equations 97, 98, and 99 we have

[
"

tr[T] = 18

(1]

= t2[7]% = 126

—
—~
1

"
e
(o)
ON

ooy 3
IIIT = L'I‘[T]
Also, from Equa.tion ’41,

IIT = g9

IIIT = 160

where it is ncted that Equations 107 and 110 are satisfied. If the
coordlnate system X undergoes a rigid-body retation, such as the one
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shown in Figure 3, the components of the teusor in the x} (rotated)
system can be calculated from the transformation law of second-order
tensors (Equation 94). The transformation mat»ix associated with the

I . N
sl

4 |
- : coordinate rotation in Figure 3 is given as

i ] , AR

ﬁ
0

ol i

I ol

sk

From Equation 94 it follows that

[

gL Ty = 82 Tn1 ¥ 2in®2Tne * %in®y3Tn3
E T 88Tt eetnTa * ATy

' *agq8yoTn tap8iTh, +8yaey 0T

. + ailaj3Tl3 312333T23 + 813333T33
3 ‘
é Substituting for the camponents of Tij and ask , we obtain

6 1 V2

‘ 't = - ‘: ~
Tl 1 42 o
/Z -z 8 L
s Now, utilizing Equations 97, 93, 99, and 47 we obtain ﬁ

fEi - _ ]

; Iy, =18 =1,

‘ II,, = 126 = II,

LA

Ol ey it s in e it il et 5 o st
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IIT' = 99 = IIT

IIlg, 160 = 111,

indicating the inveriant nature of these quantities.

32. We now proceed to establish some useful relationships for
second-order tensors. Consider a second-order symmetric tensor whose
elements in the X coordinate system are given as Tij = Tji . Using
the transformation law of second-order tensors, we s=ek & transformation
matrix thet will transform Tij into a diagonal form Tij (i.e., Tij
=0 for i#J) associated with an xi coordinate system. The axes
x; are called the principal axes (or principal directions) of the
tensor and the elements of TiJ are called the principal values of the
tetisor. A diagonalization process was previouely demonstrated for
3-by-3 matrices in conjunction with the eigenvalue problem. It was
shewn that the modal column matrix, which is found by grouping the
eigenvectors of & square matrix, disgonalizes the matrix as indicated
by Equation 56. Furthermore, it was shown that an eigenvector is in-
determinate to the extent that it can be multiplied by an arbitrary
constant. If the arbitrary constant is chosen to be the inverse of the
leugth or magnitude of the eigenvector, then the eigenvector is said to
be normslized. The modal column matrix of normalized eigenvectors is
called a normalized modal column matrix. Denoting the normalized modal
column matrix by [u] , the disgonalization relation (Equation 56) for

the matrix [T] can be written as

tAd = It Tiiud (111)

In view of the properties of a transformstion matrix, the transformation

law of & second-order tensor (Equation 96) can be written as

-1
(7] = [tal*] [7){al" (112)

Comparison of Equation 112 wita Equation 11l indicates that the trans-
pose of the normalized modal column matrix is the transformation matrix

4
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which transforms Tij into a diagonal form. Furthermore, the elements
of the diagonalized matrix are the eigenvilues of Tij « In the case of
second-order symmetric tensors, the eigenvalues (principel values) are
always real. It should be noted that the normalization of eigenvectors
is necessary in order to conform with the surmalization conditions of
the transformation matrix (Equations 83a and 8ka).

33. For a numericel example of diagonalization of a second-crder
symnetric tensor consider the tensor Tij whose elements in the x,

coordinate system are given as

-2 210
Tyy=) 2-1 8
10 8-5

The characteristic equation cf TiJ is given as

-2 - A 2 10
2 <11 - A 8 = (A=-9)(2 +9)(A+18)=0
10 8 -5 = A

The eigenvalues of Tij are, therefore,
A, = 9 H Az = ‘9 H A, s -18

Next, we determine the normalized eigenvectors for TiJ . For A= kl

we can write down (see Equation Lk)

-llx, + 2x, + 10x3 = 0
ex, - 20x,
10x, + 8x2 - 1hx3 =0

+ Bx3 =0

Solving the atove system of equations and considering the normalization
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: condition of the eigenvector (i.e., x,f + xg + xg = 1), the normalized
eigenvector corresponding to Al beccaes
z 2
3
= !
Similarly, for A =, and A =, , ve obtain
3 3
2
3 A = —-— 3
fu(x, )} 3 ;
3
1 %
2
< N A S\~
{u( 3)} 3
3 2
'z.’ 3
A The normalized modal column matrix then becomes
2 _2 L
3 3 3
¢ 1 2 2
= | = - =<
l=135 3 -3
- 2 1 2
' | 3 3 3] ‘
and




L
3

2 1 2

3 3 3

Y 2 2 1
L o2 2
(-3 -3 3]

As was stated previously, the transformation metrix which transforms Tij
into a disgonal form is tne transpose of the ncrmalized modal column
matrix. This can be verified by using [u]* as the transformation matrix
{a] in.Bguation 96, i.e.,

(7] = [a)(T){a]" = [W1"[TI[0]

2 L 21°r 172 .2 _1]
3 3 3| |° °ew [3‘3‘3

- 2 2 1 _ 1 2 _2
=i-3 3 3| |2 8il3 3 -3
1 2 2 2 1 2

-3 -3 3] 1 85)l3 3 3

Performing the above matrix operation we obtain

- 1 r .
9 0 O Ao oo
[r')=]0-9 o]-= 0 X, 0
0 0-18 0 0 Ay
o . - «l

mn
and Crs . Using the Cayley-Hamilton thecrem it was shown previously

that a polynomial representation relating the componeats of two tensors
takes the form given in Equation 63. In indicial rotation Equation 63
is expressed in the following form

34k, Consider three second-order symmetric tensors AiJ s B _,
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Ay = 23,(B) = g + nyByy + BB (113)

The counterpart of Equation 113 expressing the camponents of one tenmsor
in terms of the components of twc other tensors was derived by Rivlin
and Ericksen.1 The Rivlin-Ericksen equation given here without proof
has the following form

=f ! =
iy = €54\, » Cpg) = g8y *+ MyByy + nByB,
¥ ngCiy + MOy Oy + M(ByyCyy + CiyByy)
+ n6(Bikkacpj *+ G poJ)

n, (B )

ik kp pJ 1k kp PJ

+ ng(Byy B rCotCeg * CixCipBptBey) (114)

vhere the coefficients Ny » +esy Ng are polynomial functions of
the inveriants of an and Crs and the following jJoint invariants

n1 = Babcba

n2 ahcbccca
(115)
ll3 BathcCca

I, = Bab Cedcda

It is noted that when dependence on Crs disappears, Equation 11k re-
duces to Equation 113. Egquations 113 and 114 are the bases for most of
the presentations in the ensuing parts of this ruoport.
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PART III: SUMMARY OF BASIC CONCEPTS FROM CONTINUUM MECHANICS

Stress Tensor

35. In Cartesian coordinate system X, , we define the stress

tensor ¢ at a point as

b

F
imit L (126)
i

6., =1
1 A+ 0

vhere F, 1is force in the coordinate direction J and Ai is the ares

normal to ith axis on which the force Fj acts. Figure U depicts the

]
l"zz
i r—

023/ @ A2

%2 ‘il

i .
wtf—

asly,

%

4

Figure 4. Stress components

positive directions of the components of the stress tensor. In the
absence of distributed body or surface couples the stress tensor is
symmetricel, i.e., o4 j =0 TR Accordingly, the state of stress at a
point can be deseribed by six independent stress components.

Iuvarisants of stress tensor
36. Stress temsor is a second-order symmetric tensor and it obeys

s A" L 1 e



the transformation law given in Equation 94, i.e.,
] -
Oy = 84840 (117)

where G%d is referred to xi (rotated) coordinate system. As was
shown in Part II, o second-order tensor has three independent invariants
(Equations 97, 98, and 99). In the case of stress icmsor we define

these invariants as

J.=1 =g (118)

1 [o] nn
= _ 1l .1
9o =5 1y = 2 953 %4 (129)
T =i7F =1
J3 =3 IIO = 3 %41%m%mi (120)

Stress deviation tensor

37. Stress tensor can be expressed as the sum of two second-

order symmetric tensors in the following manner

Lo s (121)
where the tensor

§ (122)

is referred to as the stress deviation tensor and onn613/3 is
called the spherical stress tensor. An important property of the stress
deviation tensor is that its trace is equal to zero, i.e.,

Opn = O (123)

The stress deviation tensor, therefore, has only two independent invari-
ants. We denote these invariants as

T !

ko




3"=-;-n =%s S (124)

=-§-s R (125)

o
RN

The invariants of stress and stress deviation tensors can be relasted by
using Equation 122. In view of Equations 122 and 118,

T

= 1
2 =755k
21 1 1 |
, "2 ("11: -3 Jlaik) ("ki -3 J16ki)

1 2 Ji §

=399 - 3 I 1958 -5 8318k _‘ (126) ;
Since 8,8, =3, Oy =9y » 80 050, = 2J, » Equation 126 | %
becomes i ;
- = 1.2 ' ;
29~ (127) 3

257 +5 53 (123)

Principal stresses
38. The three principal values of stress tensor are referred to

as principal stresses and are denoted by (using the principal directions

e gt s s

as reference axes)

~

PPN, S

oy 0 O W
el = |0 0,0 (129)

It should be pointed out that the ordering of the principal stresses in
Equation 129 does not imp' that the numerical value of 9 is greater
than Oy X Oq . As discussed in Part II, the three principal values
are the roots of the characteristic equation of the tensor
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3 2 _
AT = TIAT4+IIN - TII =0 (130)

where
I,=d, =0, (131a)

%1%3 %11%2

I = (131v)
932933] [“31%33 °21°22
I, = c ' (131c)
The two coefficients IIc and IIIG are usually denoted by J2 and
J3 s respectively, and can be related to Jl N 32 . and J3 by using
Equations 107, 110, 118, 119, and 120.
= =< (52 - o7
J,=1II =3 (Jl - 2J2) (132)
I, =11l =3, -3.J0 +33° (133)
3 s Y3TY%17¢%

The invariants of stress deviation tensor can also be expressed in terms

of Jy» 75, and J; . Invievof Equations 127, 128, 132, and 133,
we obtain
T o= % Ji -3, (13%)
T - .]; 2_ 3
Ty dy =300, + 55 97 (135)

Principal stress space
and octahedral stresses

39. Since the three principal stresses are orthogonal, they form
a three-dimensional space called the principal stress space (Figure 5).
Of particular interest in the principal stress space are the octahedral
planes. The direction cosines of a normel to an octahedral plane are

(Figure 5)
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Figure 5. Prinecipal stress space

cos (N, ol) = cos (N , 02) = cos (W, 03) = cos (S4° Li')

o1 e

(136) ;

The normal and shear stresses on octahelral planes are denoted as

Ot and Toot respectively. The magnitude of o oot and <t

can
be determined from the transformation law of stress tensor2

oct

PR P o)

Q
|

1
=3 (ol + o, + 03) (137)

oy
B
N

oct
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and

Toct =
3 3/ \3

3
- _1; 2 ‘1’ 2 - 2
N 3‘[("1 = 0p)" + (g = 93)" + (g - ag) (138)
Using Equations 12k and 118 it can be shown that for & genersl state of
stress
d
1
Yoct = 3 (139)

- g.-v
Toet -\/ 3 J (1%0)

Equations 139 and 140 indicate that the octahedral stresses are also

invariant. The octshedral space (To y versus ooct) is commonly used

for plotting stress paths for various laboratory tests. In this report

3 T .
we will use V3/2 Toot VEYSUS 0 . space (i.e., \IJ2 ersus Jl/3)
for defining stress paths.

Examples of sim- i
ple states of stress

ho'

The following s*tutes of stress are often utilized in the

laboratory in order to determine the stress-strain properties of a
naterial:

8. Spherical or hydrostatic state of stress.

#
[~
[A]
]
Q
]
ey
wl-

< gkl it ¥




b. Uniaxial state of stress.

g, 0 O

¢. Cylindrical state of stress.

13 3

4. Triaxial state of stress.

010 0
oi,j= 0 620
LO 0 03
e. Pure shear.
. . ———r= Ty
4]
12
%2
ci,j- 0210 0
9 0 O

B

Note that in examples g through d all stresses are principal stresses.
Stress paths associated with the gbove states of stress can be readily

defined in the Jé versus J1/3 space. The stress path associated

vith spherical or hydrostatic state of stress is shown in Figure 6a. It
is noted that for spherical state of stress 35_ is zero. The stress
path associated with uniaxial stete of stress is shown in Figure 6b.

For uniaxial state of stress Té = cl/ﬁ and 31/3 = 01/3 result-

ing in the expression V -J-é =3 (Jll 3) for the stress path.
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3
a. SPHERICAL OR HYDROSTATIC
STATE OF STRESS

\Fg

J;
3

¢, CYLINDRICAL STATE OF STRESS
(CONSTANT J,/3)
Vi

|

4

3
b. UNIAXIAL STATE OF STRESS

/|vs
/l

i

E
d. CYLINDRICAL STATE OF STRESS
(CONSTANT c3)

4

3

¢, PURE SHEAR

Figure 6.

52

Stress paths associated with simple states of stress-
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Figures 6c and 6d depict special stress paths associated with cylindrical
state of stress. In Figure 6¢c the material is first loaded hyéro-
statically and then sheared while J1/3 is kept comstant. In Figure 6d
the material is first loaded hydrostatically and then sheared bty in-
creasing o while keeping 03 constant. Since for cylindrical state
of stress \[_- (o) =@ )//_ and J/3 = (c + 20 )/3 it follows
that the expression for the stress path of Figure 6d becones

\[T;T /-'(J /3 - Iy ) . The stress path associated with pure shear

test is shown in Figure 6e. In the case of pure shear J1/3 =0. In
the actual laborsastory coordinate system, the stress components o and
5 3 associated with cylindrical state of stress are usually de-
noted by o, (axial stress) and o, = dg (radial stress), respectively.

c, =0

In the case of triaxial state of stress, the stress components ol .
02 , and 03 are denoted by ox s 0y s and oz , respectively. For

pure shear the only nonzero stress component o is generally denoted

12
by T .

Strain Tensor

41. Let us consider a cylindrical specimen of length 20 and
extend it to length & . The ratio 2/20 is defined as the stretch
A .

= 9,/9.0 (141)

The question is, what is the axial strain in the specimen? There are
several measures of strain that can be used to determine the axial

3

strain € in the specimen.” These measures, named after Cauchy, Green,

Hencky, Almansi, and Swainger, respectively, are:
- =) -1 (1b42a)

(52 - 1) (142v)
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= LnA (1koe)
A
€ =%G-%§ (1h24)
A
E.S =1 - %\'— (1k42e)

In order to demonstrate the difference between the various measures of
strain given in Equation 142, let & = 220 (i.e., let the length of
specimen be doubled). The stretch ) =2 in such case and from Equa-

tion 142 it follows that

100%

[y}
Ll et et e (S R e S Sy e e L s ) . . o .
ERCA & R R e o B S5t B o oty o o v e S i a3 E s e
R e e i e S B i B S P B %

150%
H
69% (143)

m (@]
] [}

m
1]

37.5% j

€’ = 50%

As observed from Equation 143, for a stretch of A = 2, the difference
; between the various measures of strain is quite appreciable. WNow let
i % =1.250, , which gives a stretsh of } =1.25 . in view of Eque-
tion 142, for A = 1.25 the various measures of strain become

-~

remrana e Tt aus e

A AW

§ e = 25% §
i ¢ = 288 §
| e = 228 (1b4) :
P = 188 5
¢S = 208 ' é

It i35 observed in this case that the difference between varicus measures
ot strain is mol &s appreciadblc es wes the case for A =2 ., If the
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stretch ) is further reduced, say ) = 1.1 , Equation 1k2 will result
in ‘

10%

m
fl

10.5%
e = o8 (1k45)
eA = 8.7%

[y
1}

¥

9% i

™
f

Therefore, for small deformations (infinitesimal strain theory) the

various measures of strain will yield approximately the same results.

(3

Our interest here is also within the framework of infinitesimsl strain

theory and we adopt the Cauchy measure of strain for further analysis.

42, In order to determine strain-displacement relations and de-

fine the infinitesimal strain tenscr, we consider a particle P with

coordinate system as shown in Figure T.

position vector Eg in the Xy

A

ol

—- Xy

Figure 7. Particle displacerent iun
X, coordinate system
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We assume that the particle undergoes displacement u, and assumes &
new position vector ?& as depicted in Figure 7. From Figure T we can

write

X, vu, =X, (1Lk6)
or : .

u =X - X (147)

Since ;; is a function of 2; » Leew, x; = §£(§3) , we can differen-~
tiate Equation 146 with respect to SZJ ; thus,

Gij + U g =X g (148)

The terms x 3 and vy 3 are called the coordinate gradient and dis-
’ ]

placement gradient matrices, respectively. The displacement gradient
matrix can be expressed as the sum of & symmetrical system and a skew-

symmetrical system (see Equation 15)

1
= = +— - Lo
o 43 (u 1,9 % 9,1 i) (“1,3 “J,i) (1k9)
The first term in Equation 149 is symmetrical and is called the infini-
tesimal strain tensor eij 3 thus,

1

€3 =5 (uy g+ uy ) (150)

The second term in Equation 149 is skew-symmetric and is called the

rotation tensor Qij 3 thus,

1
aia =3 (“i..j - (1.1)

Equation 150 relates the components of infinitesimal strain tensor with

components of displacement vector.




43. To demonstrate the application of Equation 150, consider &
rod of length 20 extended to length & as shown in Figure 8.

%2

)

¥

—e- X
Figure 8. Rod in uniaxial extension

The boundary conditions associated with displacement Uy in the Xy

direction are

w = 0 at x = 0
(152)

u1 2§ - 20 at x1 = 20

For a homogeneous state of strain to exist in the rod, the displacement
U, must be a linear function of x, - Thus,

w = Cx; (153)
where C 1is a constant. In view of Egquation 152, Equation 153 becomes
£ - 20
WETETOX (154)
0

Substituting Equation 154 into Equation 150 we obtain

1 £ -2,
fn="2 (“1,1 tu )=y = R (155)
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vhich is the Cauchy measure of strain (see Equation 142a).

Invariants of strain tensor
L4, Strain tensor is & second-order tensor and obeys the trans-

formation law given in Equatiom 9L, i.e.,

1 =
€1y = ®p®ynin (156)
where Eij is referred to the xi coordinate system. There are,
therefore, three independert invariants associated with the strain
tensor. As for the invariants of stress tensor, we define the invari-

ants of strain tensor as

Il = Ie =€ (157)
T 177 -1
L= =% o (158)
E - §
I, =3 IOI, =S ee e (159)

Strain deviation tensor
45, Strain tensor can be expressed as the sum of two symmetric

tensors in the following manner

= i
€y, = EiJ *3 emaiJ (160)
where the tensor
E,, =€, ->¢ 8§ (161)
i) iJ 3 "nniy

is referred to as tne strain deviation tensor and ennGiJ/3 is called
the spherical strain tensor. As for invariants of stress deviation

tensor, we defire the invariants of strain deviation tensor as

1
g =5 BB




= _l== _1
!''=2 < JIT = = 3
3531 = 3 By (163) ;.:
The invariants of strain deviation tensor can also be expressed in terme
of the invarisnts of strain tensor as follows: ‘
;
= _= 1.2 f
' = - ! -
2 I2 6 Il (164) : 3
T1=T 217 +2 13 (165) | %
3 37172 2171
Principal straing i
46. The three principal values of strain tensor are referred to }
as principal strains and are denoted by (using the principal direciions | 3
as reference axes) 2
r - { 4:
€y 0 o i ‘
[ei={0 ¢ 0 (166) t :
i ;

|

i 0 o 23“ }

The principal streins are the roots of the characteristic equation of '

strain tensor ;
3 2 - : “
A= I AT+ IIA - IIT_ = 0 (167) _ ,

vhere
I =1y =€ (168a) i
®22 %23] I'n1 %131 [|*n1 G2
I, = + + {168p)
®32 %33] |°m1 ®33] [fa °C22

mr = |e| (168¢) |
| 3
3R
5
59 &
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The two coes®ficients IIe and IIIe are denoted by I
respectively, and are related to the invariants I, ,. I, , and Té
as follows:

The invariants of strain deviation tensor can alsoc be expressed in terms

of I1 . I2 , and 13 :

Examples of simple
states of deformation

the laboratory in order to determine the stress-strain properties of
the material:
8. Uniform dilatation.

5 and I3 s
\ _ ,
(11 -2 2) (169)
I, =IIT =T, -T1 +%13 (170)
3 € 3 271 61
= _ _3; 2 _
=34 -5 7)
_‘ = ,]_', ~2__ 3 ¢ ‘i
D=L -3LL,+5 1 (172) ;
%
4T. The following states of deformation are often utilized in
I ) :
l .
3 0 © %

Wl
[
o

(=]
o
w"_lt—t

b. Uniaxisl state of strain.

E
b
A
s
3

2
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el 00
eij = 0 0 0
0 0 0

3

€ 0 o°

eiJ = 0 €, 0

0 © €5

4. Triaxial state of strain.

i € 0 0 ]

eij = C €5 0

0 0 e3
o -l

€. Simple shearing deformation (no volume change).

F -

0 512 0

eij = e21 0 0
0 0 0

Note that in examples a through d all strains are principal strains.
Strain-Rate Tensor
L8. The timec derivative of infinitesimal strain tensor is re-

ferred to as rate of infinitesimal strain temsor, or simply strain-rate
tensor, éiJ 3 thus,

he

d
i = 35'(615) (173)
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vhere d/dt indicates differentiation with resypect to time. In view of
Equation 150, the strain-rate tensor takes the form

==
f10 8 g0 7,0 (arh)
where v, = components of velocity wvector.

Invariants of
strain-rate tensor

49, Strain-rate tensor is a second-order symmetric tensor and,
like the gtress and strain tensors, it obeys the transformation law
given in Equation 94. Similarly, we define the invariants of strain-

rate tensor as

I, =1, =¢& (175)
—_— - _1;..._ _ l‘. .
T _lw== _1, .
I, = 3 I, =5 ¢ ikékmemi (177)

Strain-rate deviation tensor

50. Strain-rate tensor can be expressed as the sum of two sym-
metric tensors in the following manner

¢ 6 (178)

13 ° Bi3 ¥ 3 “anyy

13

where the tenscy

oo _1g (1719)
Eij = eiJ 3 ennsij

is called the strain-rate deviation tensor and énnGiJ/3 is called
the spherical strain-rate tensor. We define the iuvariants of strain-

rate deviation tensor as

62
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(180)
= _1 N R (181)
Iy =311 =3 E, E E

The invariants of straih—rate deviation tensor can also be expressed in

terms of the invariants of strain-rate tensor:

Ty =T, - % ii (182)
- - - g . - g— -3
L=, -35L L+5 1 (183)

Principal rates of strain

51. The three principal values of strain-rate tensor are dencted

by
¢ o o]
(81=| 0 & o (26%)
K

and are called the principsl rates of strain. The principal rates of
strain are the roots of the characteristic equation of strain-rate
t.ensor

3 2 -
A7 = TS+ IT - IIT, = 0 (185)
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II, = + + (186v)

32 %33 31 ©33 21 S22

1, = |é| (186c)

The two coefficients IIé and IIIé are denoted by ia and i3 s re-

spectively, and are related to the invariants il . 12 » and I3 as

follows:

L _.1;.2 —
i, =1, =35 (Il - 212) (187)

(188)

The invariants of strain-rate deviation tensor can also be expressed in

3

terms of 1l . 12 » and I3 :
—-— 1 02 .
1 = = -
=3I -1, (189)
. 3
—' - . --l. . a 2 »
3=I-3 4L +5 1) (190)

Equations of Continuity and Motion

52. The motion of any continuum is governed by the following laws:

a. Conservation of mass.

Iz 1

Conservation of energy.

Balance of linear momentun.

Balance of angular momentum.

[
d.
&

Principle of insdmissibility of decreasing entropy.

£ o3t
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These laws constitute the basic axioms of continuum mecha’nics.h In the
absence of distributed couples, the balance of angular momentum leads to
the symmetry of stress tensor, cij = Uji + If mechanical energy is the
only form of energy to be considered in a problem (as is the case in
this report), the above principles lead to the continuity equation

. A s

4 lovy) g =0 (191)

and the equations of motion

ime

where p = nass density , v, = components of wvelocity vector , ;

f1 = camponents of body force , and a, = components of acceleration
vector . Equations 191 and 192 are applicable to all materials.

AR T gy

oy

R

Constitutive Equations

? 53. Equations 191 and 192 constitute four equations that involve
ten unknown functions of time and space: the mass density p , the
three velocity components Vios and the six indepe *, stress com-
ponents oiJ . The body force components fi ar: m quantities and
the acceleration components 8, are expressible in terms of the veloc-
ity components v - Obtviously, Equations 191 and 192 are inadequate
to determine the motion or deformation of & medium subjected to ex-

ternal disturbances, such as surface forces. Therefore, six additicnal

equations relating the ten unknown variables p , Vi and 0iJ are
Such relastionships are referred to as constitutive equations,

required.
vhich relate the stress tensor oiJ to deformation or motion of the ; i
medium. As was pointed out previously, Equations 191 and 192 are
applicable to all materials, whereas constitutive equations represent
the intrinsic response of a particular materiul. Furthermore, a con-
stitutive equation provides a mathematical description or definition of

an ideal material rather than a statement of a universal law. The




general form of a constitutive equation msy be expressed by the func-

tional form (considering only mechanical effects)

fij (v Oop p) =0 (193)

or
gij(ers s € s Ogp s Oog s p) =0 (194)
where écd = time derivative of stress tensor . Equetions 191, 192, and

194 (or Equation 193) , therefore, constitute ten equations in ten un~
kaowns and will lead, in conjunction with kinematic relations given
by Equations 150 and 174, to a complete description of the boundary-
value problem. In addition to the above-mentioned equaetions, boundary
conditions in terms of boundary displacement and/or surface forces must
also be specified to completely define a particular problem of interest.

54. TIn order for constitutive equations to describe physical ma-
terials adequately, the functional forms fij or giJ must remain
invariant with respect to rigid motion c¢f cpatial coordinate X This
requirement stems from the fact that the response of a material is
independent of the motion of the observer. Furthermore, the functionals
fij or gij must be consistent with the general principles of con-
servation or balance of mx38, momenium, and energy.

55. We adopt Equation 194, relating four second~order symmetric
tensors ¢ s & , Oab , and 6cd » 88 a vasis for developmert of

rs mn
verious constitutive equations in the following parts of this report.
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PART IV: CONSTITUTIVE EQUATICNS OF ELASTIC MATERIALS

56. For an elastic material, the state of stress is a function of
the current state of strain only. PFurthermore, an elastic material re-
turns to its initial state after a load-unload cycle of defermation (no
permanent strain). The stress tensor can, therefore, be expressed in

terms of strain tensor

o4 = Fij(emn) (195)
whare Fij = elastic response function. Two different procedures have
been utilized in order to determine the response function FiJ for iso-
tropic materials. The first procedure, referred to ac Cauchy's method,
is based on the Cayley-Hamilton theorem (Equation 59). The second pro-
cedure, referred to as Green's method, is based on conservation of

energy. Both of these methods are deslt with in this part of the report.

Cauchy's Method

v

as a polynomial in the strain tensor eiJ ,» 1.2,

7. The response function Fi' in Equation 195 can be expanded

°ij = 8, + alsij + a2€imemJ + aBEimemnenJ AREE (196)

where 85 s 8y 5 ... & are real coefficients. Utilizing the Cayley-
Hamilton theorem we can express Equation 196 in the following form (see

Equations 62 and 63)

O13 = 9081y * 4185y * ofinn; (197)
where 00 , ¢1 , and ¢2 are elastic response coefficients which are
polynomial functions of strain invariants. Bquation 197 is refeired to
as the Cauchy elastic c.astitutive equation. Alternavely, for an

elastic material we can express

R T e o Ca e S,




€5 = WOGiJ + yloij + ‘l’aoimamJ (198)

vhere ¥ Wl » and ¥, are elastic response coefficients which are

0°’ 2
polynomial functions of stress invariants. From Equation 197 it follows
that for isotropic elastic materials the initial state of stress is

hydrostatic, i.e.,

Oy = $gSyy vhen €5, =0 (199)

Also, using the transformation law of a secound-order tensor (Equa-
tion 94), it can be shown that Equation 197 is form invariant with re-
spect to rigid motion of a spatial coordinate system, i.e.,

' =
Cmn amianjoij

0%mi%ng0is * 1%mi%03%15 * *2%mi®n3S1kCky

] 1 ' 1
%0%mn ¥ 91%mn ¥ 928nkCin (200)
where eén is referred to the primed (rotated) coordinate system. We
can now utilize Equation 197 to develop various types of isotropic
elastic¢ constitutive equations.

Linear elastic material

58. For linear elastic materials the response coefficient ¢2
vanishes. The response coefficient ¢1 is a constant and @0 is a
linear function of the first strain invariant. Assuming that the initial
state of stress is zero, the constitutive equation of linear elastic ma-

terial can be written as

o5 = ulcij + Beij (201)

vhere A and B are material constants. In order to determine the

physical meaning of the material constants A and B 1let us consider s
simple shearing deformation defined by
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0 €l2 0
£33 = |52 0 o (202)
LO 0 Q

_ i
0 Be12 0

oy3 = Bey, O 0 (203)
0 0 0,

Since e, is half the shearing strain (see Equation 150), it follows
that B 1is two times the shear modulus which we define as G ; thus,

B = 2G (20k)

Kext, we consider uniform dilatation defined by

- -
1
5 0 O
I I
=1 = 1 .
€1y 36” 0 3= 0 (205)
I
1
_0 0 3]

For this state of deformation, Equation 201 becomes (invoking Equa-
tion 204)

1
oy = (AIl + 26 3—1)613 (206)

Taking the trace of O34 (let 1 = J) we obtain




2 AR

RSP R T RO P T e

gt R £ L

S e e

o3 By e

Equation 207 relates pressure (Jl/3) to volumetric strain (Il)' The
slope of the pressure-volumetric strain relation is defined as bulk mod-

ulus K ; thus,

A+ %9-= K (208)
or
A=K-28 (209)

The constant A 1is usually denoted as A and is referred to as the
Lame constant. In terms of the shear and bulk moduli, the constitutive

equation of linear elastic material (Equation 201) then becomes

I
- 2
o4 = KIlaij + 2G(;ij -3 613) (210)

The expression id 1 iJ/3 is recognized as the strain deviation
tensor Eij (Equation 161); thus,

Oy4 = xIlciJ + 2GEiJ (211)

From Equations 122, 207, and 208, it follows that the constitutive equa=-

tion of linear elastic materials can also be written as

siJ = acEid (212a)
91
3= KL, (212v)

Equation 212 indicates that for linear elastic materials volumetric
strain is caused by hydrostatic stress only, and that the shearing re-
sponse of the material is independent of pressure.
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59. Using Equation 212 we can readily express the strain tensor

in terms of stress tensor

e O Sit Sa Y m G ) TIPSR o

s
1] = 2G (213a) ; :
! ;
J !
- —J:- ) '
I, =5 (213b) |
or, using Equation 161, : ;
J S
L Al (21k)

€33 %9k %43 ¥ 36

HIE I D O TN S P

60. We will now proceed to examine the behavior of linear elastic
materials under various states of stress and deformation. Let us first

consider uniaxial state of stress, s common laboratory test, defined by

9 0 0 |
o3 =0 00 (215) :
0 0 o0
For this state of stress, Equation 214 results in
(13K + G ]
r(_§R§-— 9y 0 0
= 26 ~ 3
iy 0 (Z5), 0 (216)
0 0 (ZG - 3K
18KG 1l
he ol
Equation 216 indicates that under uniaxial state of stress
i
0. = & (2a7) ‘




3K - 26

€2 S B3 6K + 26 )

under uniaxial state of stress is referred to as

(218)

The ratio ol/el
Young's modulus E , and the ratio of radial strain to axial strain is

called Poisson's ratic v ; thus (for an incompressibie elastic material

= 1/2)
_ _9KG
AE T3 (229)

61. Another common laboratory test is the uniaxial strain test

defined by
el ¢ O
€y = 0 0 0 (221)
0O 0 0

Por this state of deformation, Equation 211 results in

QK + hG/3)el 0 0
o5y = 0 X - 2G/3)el 0 (222}
) ) (K - 26/3)¢
I ']

From Equations 222, 219, and 220 it follows that under uniaxial strain

condition

0 = (K + l&G/B)C (l f(i)zlv_)_ 2‘) l (223)

_ K - 20,
%2 = 93 % (3x + §6)° (1 %1 (224)
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It is noted that 9, is the radial stress required to prevent radial
strain. The ratio ol/ 2 under uniaxial state of strain is referred te
as the constrained modulus M ; thus,

M=K+ l4(}/3 = (l E(t).(-lv-)jm) (225)

Using Equations 223 and 224 we can determine an expression for the
stress path associated wich the unjaxial state of strain in the \l :fé

versus Jl/3 space:

\/'F_é = 27‘53; 3,/3 (226)

In terms of Poisson's ratio v , the equation of the stress path becomes

= 31 - 2v
! =
{J 5 7-]%—".—\;5—1' J l/ 3 {227)
62. Next, let us consider the behavior of linear elastic mate-
rials under condition of plane strain defined by

= {¢ 0 (228)

eid

For condition of plane strain, Equation 211 results in

F(K * %G) &1 ey, 0
26
* (K - T)eaa
26
oy = 2e,, (x - -3—)511 0 (229)

+ (K +%G)622

e e b & 1 —————— S A 175 0
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From Equation 229 it follows that

3K - 2G

33 © (EK + ec)(".u +0p) = vloyy +ay,) (230)

Equation 230 gives the magnitude of stress 033 necessary to maintain

plane strein condition, i.e., 533 =0 .
63. The counterpart of plane strain is the condition of plane

stress defined by

033 =10 g 0 (231)

o o 0

For plane stress condition, Equation 214 results in

q
¢4
1.1 12
, (51? * 3'6)"11 26 0
. (L ! )o‘
9K ~ 66/°22
ag
] %21 11
€4y 35 (91( -6-6-)011 0 (232)
11
AT 3G)°2a
11
0 0 (91( - 35)("11 *+ 0g,)
ke -l

From Equation 232 it follows that

= (i _1 o
"33~ (9x B EE)("n *oy) = -y, (e ¥oegp) (233)
Equation 233 gives the magnitude of strain €344 produced by condition

of plane stress, i.e., 033 =0 .
64. The constitutive equations of linear elastic material ex-

pressed in terms of various combirations of elastic constants are given

in Table 1 for ready use.
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Nonlinear elastic material

65. Constitutive equations for vurious classes of nonlinear

elastic material can be developed from the general form of the Cauchy
elastic constitutive equation (Equations 197 and 198). Before we de-
velor constitutive equations for various classes of nonlinear elastic
material it would be beneficial to examine the significance of the

and o, G in Equations 197 and 198. Con-

€
im™mJ im mJ
sider a simple shearing deformation of amount 2y defined by the follow-

second-order terms €
ing strain tensor

o y o]
&3 = |Y 0o (234)
0 00

For this state of deformetion, Equation 197 results in the rollowing ex-

pression for the stress tensor

100 0y 0 2 0 o
- 2
ciJ = ¢0 01 of + °1 Yy O O} + ¢2 0 Y- o0 (235)
0 01 0 0 0 0 0 O
L . L 4 L o

From Equation 235, the shearing stress and shearing strain are reiated
by

O = $;Y (236)

and the normal stresses are given as
01y = Opp = 85 * &Y (237a)
33 = % (2370)

Equation 237 indicates that to maintain a simple shearing deformation
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(Equation 234), normal stresses must be applied to the boundaries of the
specimen. ©Since two of the normal stresses are unequal, Equation 237
predicts the occurrence of normal deviatoric stresses

2 (238)

5,, =8

= 1
11 7 Spp = 3 6,

on the shearing planes. This is a direct consequence of the second-
order term eimFmJ in Equation 197 and is a departure from the linear
theory where ¢2 = 0 . We now consider the counterpart of simple shear-
ing defourmati. 1, i.e., simple shearing stress, and show that Equa-

tion 198 will predict volume change for this state of stress. Consider
a simple shearing stress of amount 1t defined by the following stress

tensor
o,, =]t 0 O (239)

For this state of stress, Equation 198 results in the following expres-
sion for the strain tensor

10 0 0t 0 2 0 o]
- 2
eij-v001o+leoo+v20 ©“ 0 (2L0)
0 0 1 0 0 0 0 0 o0

From Eguation 240 it follows that

- 2
€y = 1) = 39, + Y1 (Pb1)
vhich indicates that simple shearing stress is accompanied by volume

change. Also, from Bquation 240 it follows that there are normal devia-

toric strains

7
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il =

A -
h22 =3 WQT (2k2)

associated with the volume change. The occurrence of deviatoric strains
is a direct consequence of the second-order term oimomj in Equa-

tion 198. From these two examples we can conclude that in the case of
nonlinear elastic materials volumetric strains are caused by both the
hydrostatic and shearing stresses. Also, the shearing response of the
material is dependent on the hydrostatic state of stress. In order to
further demonstrate these coupiing effects we consider a combined state

of hydrostatic and simple shearing stress given by the following stress

tensor

g., =1t P O {243)

where P = superimposed hydrostatic stress. For this state of stress,

Equation 198 results in the following expression for the strain tensor

1 . r " r 5 5 .

1 0 O P t O P+ 1 2Pt 0
e..=¥lo 1 ofl+vlct p o]+ vlope P+ 1% 0 (2Lk)
ij 0 1 2

0 0 1 0 0 P 0 0 p2

- - b . - -!

The volumetric strain Il then becomes
€., =1, =3¢ + 3 P+Y (3P2 + 212) (245)
ii 1 0 1 2

and the shearing strain €a takes the form

€% YT ¥ 2?2P1 (246)

Equations 245 and 246 cnce sgain illustrate the coupling which exists

proses




between the .ydrostatic stress (or volumetric response) and the shearing
response of nonlinear elastic materisls.

66. We will now proceed to develop constitutive equations for
various classes of nonlinear elastic materisl within the framewc .k of
the Cauchy elastic constitutive equation (Equations 197 and 198). The
simplest form of nonlinear elastic material is the second-order stress-
strain relation where terms in strain up to the second power are re-
teined in the stress-strain relationship. To derive the constitutive
relationship for second-order elastic material we will start from Equa-~
tion 197 and express the response ccefficients ¢O , ¢l , and ¢2 in
appropriate polynomials of strain invariants. Accordingly, for second-

order material we can write

b = O, + C2I§ +c.T, (247a)
o = O * CsTy (k7o)

where Cl through C6 are material constants which must be determined
experimentally. Since the constitutive equations of second-order elas-
tic material must degenerate to the first-order equation (Equation 210)
if second power terms in strain are neglected, the material constants
C, and C) should be replaced by (K -~ 2G/3) and 2G , respectively.

1
The constitutive equation of second-order elastic material then beaomes

- 2 =
Oy = [(K - 2G/3)Il +C I+ 0312]6ié

+ (2G + csIl)eiJ + C6eim£mj (2L8)

67. Equation 248 contains six material constants. The physical
meaning of these constants and the manner in which they can be deter-
mined from laboratory test results can be demonstrated by examining the
behavior of second-order elastic materials under various states of
stress and deformation. Let us first consider a simple shearing

79
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deformation defined by Equation 202. For this state of deformstion

I1 =0 and fé = eie » and Equation 248 results in the following rela-
tions for the components o stress tensor

o, = 2Gey, (249a)
_ _ 2

011 = Opp = (c3 + c6)e12 (2491)
- 2 .

033 = C3%pp (2k9c)

Equation 249a indicates thrat a second-order elastic stress-strain rela-

tionship predicts a linear relation between shearing stress and shearing
strain. Equations 249b and 24Jc give the magnit Ae of normal stresses,

as a function of shearing strain, required to maintain shearing deforma=-
tion. It is noted that the normal stresses are not uniform, thus re-

sulting in normal deviatoric stresses

= =L 2
= 8,5 = 5 Ceely (250)

n

on the sheering planes. Th» significance of the material _onstants C3
and the combination (C3 + C6) is realized f:om Equations 24uc aand 249b,
respectively.

68. We next conéider uniform dilatation defined by Equation 205.
For this state of deformation fé = Ii/G and Equation 248 results in
the following relationship between pressure and volumetric strain

:;—1- = KI, + (02 + %03 + %— Cg + %— c6)1§ (251)
Equation 251 describes a parabolic stress-sgpain relationship. The
material constants K and the combination (92 + C3/6 + 05/3 + C6/9)
can be determined from experimental data by curve ficting techniques.

It is noted that K is the iritial slope of the pressure-volumetric
strain curve a1l is a positive constant., If the combinatlon of the ma-
terial constants in the parcntheses is also positive, the stress-strain

curve will be concave to the stress axis. If, on the other hand, this

80
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combination is negative, the stress-strain curve will be concave to the
serain axis.

69. We will next consider uniaxial state of strain deflned by
Equation 221, For this state of deformation I, =€ and fé = e§/2
and equation 248 results in

; : o, = (K + %-G)el + (02 + %-03 * 0t cs)ei (252)
\é
2 %3\ 2
o, = 0, = (K - §-G)el + (C2 + 5;)81 (253)

Equations 252 and 253 also describe parabolic stress-strain relation-

F ! ships. The combinations of material coastants (C2 + C3/2 + CS + C6)

% ' and (C2 + 03/2) can be determined from experimental dats by curve fit-

,g ting techniques. As was pointed out previously, the shape of the stress-
-g strain curves predic by Equations 752 and 253 depends on the sign of

the combinction of the materisl constants in the parentheses. The

stress~strain curves will be concave to the stress axis if these combina-

tions are positive, and concave to the strain axis if they are negative.

l"g Since € is the only aonvanishirg strain component in uniaxial strain

e L N U PN TR O

‘§ configuration, we can use Equations 252 and 253 to relate stress dif-
;% ference 0, ~ 9 to strain difference € s i.e.,
<‘ §
b = 2Ge, + (Co + Co)e (254)
9 "% &1 57 V6%

#,
it

Again, the shape of the stress-stfain curve is determined from the
sign of the combination (C5 + 06) of the material constants.

TO. More complicated states of stress and deformation, such as
plane strain and triaxial stress conditions, can also be studied within
the framework of second-order stress-strain law. Such states of stress
generally lead to lengthy mathematical expressions between stress and
strain components. For example, consider cylindrical state of strain
defined by

|
i
i
t

81
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r -
el 0 O
= (
€3 0 e, O (255)
P 0 €2
For this state of deformation I. = ¢, + 2¢ ang I, = 1/2(;:2 + 262)
1 1 2 2 1 2

and Equation 248 results in the following expressions for the components

of stress tensor
g, = (g + E-q)e + {C, + E§-+ C. +C 52 + (éK - E-G)e
1 3 1 2 2 5 6/°1 3 2

2 . .
+ (h02 + 03)52 + (hca + 2\,5)&182 (256)

C
cn = 2 _3).2 26
02 = 03 = (K -3 é)el + (52 + 5 ) 1 ﬁ (2K + 3 €5
+ (hc +C,+2C_+C )32 + (hc + C. Je, e (257)
2 3 5 6/72 2 5/ 172

Various stress paths may be eaployed in a laborato:y test maintaining s
cylindrical state of strain. The most common stress path used with this

state of strain 1s to keep the lateral stress 03 constant while in-

creasing o. (Figure 6d). For this stress path it is possible, in prin-

1
ciple, to solve for €, in term of €1 » using Equation 257 (since ¢

3
is & constant), and then substitute the resulting expression into Equa-
tion 256 to develop & relationship between 9, and € - Other stress

paths such as constant Jl/3 path (Figure 6¢) and uniaxial stress test
(Figure 6b) can also be considered.

T1. ¥wllowing the same procedure we can develop and analyze more
complicated nonlinear elastic stress-strain laws. Let us consider a
third-order law where terms in streir up ¢ the third power are retalned
in the stress-strain relationships. Accordingly, the response coeffi-
cients ¢, , ¢, > and ¢, (Equation 197) for a third-order stress-
strain law take the following forms
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3
)I + 021 + 0312 + CoIy + CgLI, I+ 0913 (258a)
- 2 =
¢, = 26 + CSIl +C 0T + I, (258b)
¢ = Cg * Ci o0y (258¢c)

where C7 through 612 are six additional material constants which
must “e determined experimentaliy. A third-order elastic stress-strain
law formulated within the framework of Equation 197 (Cauchy's method),
therefore, contains twelve material constants. In view of Equation 197

the constitutive equation of third-order elastic material becomes

.2 2 0T v i
93 '[K -3 G)Il +CoTy + CoT, + CpIy + Gy Ty + c9I3:| i3

¥ (?‘G *OgL 4 CyoTy c1112) ¥ (Cg ¥ Cpplyeyyeyy  (259)
It is noted that if third-order terms in strain are neglected, Equa=-
tion 259 reduces to Eyuation 2uB (constitutive equation of second-order
elastic materials). Tt was pointed out previously that a second-order
elastic stress-strain relationship predicts a linear relation between
shearing stress and shearing strain. Nonlinear relation between shear-
ing stress and shearing strain is due to third- or higher-order terms in
strain tensor. This phenomenon, which is s departure from second-order
effect (see Equation 249a), can be demonstrated by examining the behav-
ior of third-order elastic materials under simple shearing deformation
defined by Equation 202, For this state of deformation Il =0,

Té = eie , and Té = 0 and Equation 259 results in the following re-

lation for the shearing stress 012

— 3
9, = ZGsl + cll 1o (260)

Equation 260 is a third-order equation in shearing strain €12 . The
behavior of third-order stress-strain law under various states of stress
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and deformation can alsn be studied similar to the second-order law. In
the next section we will consider less complicated and perhaps more
useful forms of elastic stress-strain laws referred to as quasi-linear
elastic material.

JQuasi-linear elastic material

T2. Nonlinear elastic stress-strain laws are too complicated for
application in all engineering problems. In many engineering problems
only; an spproximate or gross behavior of the material under considera-
tion needs to be modeled. For this reason, we will develop a number of
simple stress-strain laws for simulating the gross behavior of a numover
of materials. We will start with Equation 197 (or Equation 198) by
making the assumption that the response coefficient ¢2 is zero. The

basic constitutive equation then becomes

%y = ¢0613 *+ 864y (261)
vwhere, as before, ¢O and ¢1 are polynomial functions of strain in-
variants. Bquation 261 is usually called a quasi-linear relation. From
Equation 261 it follows that

1 _ 1
T= 6t 3 61 (262a)
S;y = 61E;, (262v)
In view of Equations 124, 162, and 262 we can write
(263a)
L (263b)
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Substituting Equation 263 in Equation 261 results in the following gen-
eral constitutive equation for quasi-linear elastic material

oy

1

UiJ = 3—'613 (264)

+

It is only necessary to postulate (based on experimental evidence) math-

ematical expressions for Jl and 3% in terms of strain invariants in

order to utilize Equation 264 for any material of interest. The inverse
of Equation 264, resulting in strain-stress law, can be obtained from
Equation 198 by assuming that ¥, is zero and following the above pro-

2
cedure. The resulting relationship becomes
I J
= X L
€5 = 3 613 + (%ij -3 613) (265)

To use Equation 265 we need to express Il and f; in terms of stress

For example, in the case of the linear elastic material:

\Fé‘ = 2Gﬁé_ (266a)

== K (266b)

invariants.

I &y

w

and ‘Equations 264 and 265 reduce to constitutive equations of linear
elastic materials (Equations 210 and 21k, respectively).

T3. We will now proceed to develop constitutive equations for
various classes of quasi-linear elastic materials which are of interest

for engineering application. For the simplest class of quasi-linear

elastic material, in which there are no couplings between the deviatoric

and volumetric responses of the material, we can write

]

§l‘= £,(1)) (2672)
7 - f2( 'fé) (2670)

b TR < e S




where the functions fl and f2 must be determined based on experi-

mental evidence. A good spproximation for e number of materials (such

as clay soils) is to assume the following relations for f, and f2

1
J ol
1_ 1
3= (Py+Pyle " - Py (268a)
A%
3y = 2 _ (268b)
]
k) +k, T}

where PB s O kl

termined experimentally. Equations 268a and 268b are depicted graphi-

, and k2 are material constants which must be de-~

cally in Figure 9. It is observed from Figure 9 that P0 defines an

initial hydrostatic state of si ess (for materials that can sustain ten~

sion, P, can be taken to be zero) and Py

static tensile stress that the material can sustain before it fails

defines the maximum hydro- %

(breaks) at such a tension. For materials that cannot sustain temsion,
the material constant PB is zero. In this case PO defines the state
of "ease" or the initial stress state of the material. The material
constant kl is proportional to the inverse of the initial shear modu-

lus and k, is the inverse of the ultimste shear strength of the mate-

2
rial. Substituting Equations 268a and 268b in Equation 264 results iu

the following quasi-linear elastic constitutive equation

aIl 1 Il
= - —e - — 2
93 (PO+PB)e Py 5i3+k T €y "3 Y (269)
1 2 V2
The inverse of Equation 269 resulting in strain-stress law can be ob=-

tained by inverting Equations 268a and 268b and substituting the result-

ing expressions for Il and E; into Equation 265 as follows:

€ -}.lgDMG +__i__-/o' -
1~ 3|e Po+ P JI1d 7k \T

0
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—- VOLUME GECREASING (+)

COMPRESSION (+ )—

~a—TENSION (~ )|

& PRESSURE-VOLUMETRIC STRAIN RESPONSE (2Q. 268a)

Kol iy

VI

b. DEVIATORIC RESPONSE (EQ. 28)

Figure 9. Assumed relationships for quasi-linear
elastic material
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74. Equation 269 (or Equation 270) is a simple but useful consti-
tutive equation which can be used to study the stress-strain behavior of
a number of physically nonlinear materials. It contains only five mate-
risl constants which have physical meaning and can easily be determined
experimentally. Having determined the numerical values of these mate-
rial constants we can use Equations 269 and 270 to predict the behavior

of the material under any state of stress and deformation. For example,

consider condition of uniaxial strain defined by Equation 221. For this

state of deformation I, = e, and I} = e$/3 , and Equation 269 results

1 1 2
in
e g €
- 1l 371
o = (PO + PB)e - P+ = (271)
2
Lt EAa
3
ac ; €
= = 1 -3 1
oy =05 = (Po + PB)e - PB - k2 (212)
k., +—¢
1 '/5 1

Equations 271 and 272 predict stress-strain curves that mey initially bde
concave to the strain axis and then become concave to the stress axis as
the vertical strain €1 increases. Using Equations 271 and 272 we can
determine the stress path associated with the state of uniaxial strain

in the \IE' versus J./3 space, i.e.,
2 1

I = 0 B (273)

Next consider the behavior of the material under condition of uniaxial
stress defined by Equation 215 (assuming that P0 = 0). For this state
of stress J, = 0, and 35 = 05/3 and Fquation 270 results in
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T5. A more complicated quasi-linear elastic material model can
now be constructed by assuming that the shearing response of the mate-
rial is a function of both the hydrostatic and the deviatoric stresses,
while the volumetric response is only a function of pressure. Accord-
ingly, Equation 267a is still valid while instead of Equation 26Tb we

JJ: =z, ,[1 , (276)

Various forms of Equation 276 cen be utilized to construct a material
model. A useful form for materials such as sand can be developed by
using Equation 268b and assuning that the ultimate shear strength of tue
naterial is a function of Jl/3 . For a first-order approximation we
can assume that the ultimate slhear strength is a linear function of
hydrostatic stress; thus,

cah write

~ J]_
=k, +ky 3= (217)

PG"O—-'

2

where ﬁ2 and k3 are material constants that must be determined ex-

perimentally. Utilizing Equations 277, 268a, and 268b in Equation 264
results in the following constitutive relationship
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aIl

oi,j = [(P0 + PB)e - PB]GiJ

- { aIl ]
. k, + k3 7(Po + PB)e - PB'

I
1

i oL, - (ei,j -3 ‘Sij) (278)
k1k2 + klk3 (PO + PB)e - PB + Ié

It is noted that when dependence of shear strength on hydrostatic stres
disappears (i.e., when k3 = 0) Equation 278 reduces to Equation 269.
76. To examine the significance of the dependency of shear
strength on hydrostatic stress let us consider the behavior of Equa-
tion 278 under cylindrical state of strain (Equation 255). For this
state of deformation f; = (el - 62)//5' and I, =€, +2¢, and we

1 1 2
can, after arranging terms, obtain the following relationship

(ol - 02){k k. +k k3[3 (c - 02) + oél}

k, + k3E§ (cl - 02) + cé] - ;% (o1 - 02)

(e

-¢) =

1° %2 (2719)

if we consider a stress path where 02 = 03 is kept constant during the
test (Figure 6d), Equation 279 can be used to relate stress difference
(0l - 02) to strain difference (el - 82) for a constant value of o, .
The qualitative behavior of Equation 279 is depicted in Figure 10. It
is observed from Figure 10 that the shear strength of the material in-
creases with increasing confining stress gy - If k3 is set to zero
in Equation 279 it is noted that the dependency of shear strength on con-
fining stress disappears.

TT?. The next step in developing more complicated quasi-linear
elastic stress~strain relationships is to assume that volumetric strain
I1 is caused by both the hydrostatlic and deviatoric stresses. For such

material we can write
Jl
= P !
L =g\3» VI (280)
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Figure 10. Response predicted vy Equation 279 for cylindrical
state of strain

vhere the function g must be postulated, based on experimental re-
sults, for any material of* interest. Equation 280 can be simplified
further by expressing the volumetric strain I. as the sum of two com-

1
ponents, i.e.,

L= gh(;_l) * gs(\@) (261)

where g, = contribution due to hydrostatic stress and g = contribu-
tion due to deviatoric stresses. For the contribuvtion due to hydro-

static stress we can use the inverse of Equation 268a

Iy
J) =+ P
1) _ 1 3 B
(—=—2.n = = (282)
En\3 a P, * Py

As a first-order approximation, for the contribution due to deviatoric

stregses we can express gs as
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g = aya! (283)

where a is a materisl constant that can be positive or negative de~
pending on whether the material contracts or expands, respectively, dur-
ing the application of deviatoric stresses. In view of Equations 281
through 283 the relationship for the volumetric strain (Equation 280)

becomes
1 il + PB 1f='
= = P . ... ~ 1
Il o ‘n PO + PB ta J2 (284)

During e hydrostetic test (Figure 6a) 3; = 0 and Equation 284 reduces
to Equation 282. To formulate the constitutive equetion for this class
of quasi-linear material we combine Equations 268b and 277 to develop an
expression for \f%g , and then substitute this expression and Equa~

tion 284 in Eguation 265. The resulting constitutive equation becomes

T78. Equation 285 allows for the dependency of shesr strength on
hydrostatic stress and the coupling of volumetric strain and deviatoric
stresses. If the material constants k3 and & are set to zero these E
cross-effects will disappear and Equation 285 will reduce to Equa- ‘
tion 270. It should be noted that these cross-effects (in particular
the coupling of volumetric strain and deviatoric stresses) are due to ;
scalar nonlinearity (inveviants) and are different from the second-order !
effects discussed in the development of constitutive equations for non-
linear elastic materials. To illustrate this point further, let us
examine the behavior of Equation 285 under a simple shearing stress
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defined by Equation 239. TFor this state of stress (taking P, to be
zero) Jl/ 3=0 and 35_ = t° and from Equation 285 it follows that

=1, = at (286)
K]

indicating that simple shearing stress is accompanied by volume change.
However, Equation 285 indicates that there are no normal deviatoric
strain components associated with the volume change, i.e., Ell = E22
= E33 = 0 . In the case of nonlinear elastic material, on the other
hand, it was shown that there are normal deviatoric strains associated
with volume change due to simple shearing stress (see Equation 242).
Finally, it should be pointed out that for certain stress paths Equa-
tions 278 and 285 will produce inelastic stress-strain response (these
stress paths will be discussed in Part V in conjunction with incremental
stress-strain laws). This is a consequence of the dependency of the
shearing response of the material on the hydrostatir state of stress
(Equation 276). To avoid such possibility the use of Equations 278
and 285 should be restricted to stress paths where J,/3 and J} do

not decrease, i.e., they remain constant or increase.

Green's Method

T9. 1In order to develop the constitutive equations of elastic me-

terials based on Green's method we first state two of the fundamental

laws of mechanics:S

8. The first law of thermodynamics, which is a statement of
the law of conservation of energy: "The work that is
performed on a mechanics: system Ly external forces plus
the heat that flows into the system from the outside
equals the increase of kinetic energy plus the increase
of internsl cnergy."

b. The law of kinetic energy: "The work cf all the forces
(internal and external) that act on a system equals the
increase of kinetic energy oi the system."

Mathematically, we can express the first law of thermodynsmics ass

W+ Q= af + AU (287)
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where

W = work performed on the system by external forces
Q = heat that flows into the system

A% = increase of kinetic energy

AU = incresase of internal energy

The law of kinetic energy can be stated as
W+ W, = AT (288)
e i

where Wi = the work performed by internal forces in the system. I
view of Equations 287 and 288 we can write

-

W, = Q- AU (289)
Since we are only dealing with mechanical energy we assume that é =0

and Equation 289 reduces to

W, = =AU (290)
80. We will now proceed to derive the constitutive equation of
Green's elastic materials. It V is a material volume (region) within
a deformavle body and S is the surface enclosing this region, and if
; (the symbol &
defines a small variation), the work of external forces can be expressed

tais region undergoes an infinitesimal displacement su

as
B, = Hs 0,y du; dS +Hv £ 8u, av (291)

where nJ = direction cosines of the outward normal to surfece S . The
first integral in Equation 291 is due to vractive forces on S and can
be transformed to a volume integral by using the Divergence Theorem,5

i.e.,
Hb ay4nyduy 48 ’HL 9y (8uy) 4 av + va Sugoy, g v (292)
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The second integral in Equation 291 is due to body forces f, acting on
material in V . Combining Equations 292 and 291, the work of externsal

forces becones

§we =}"U;,':cji({s’ui)’J + §ui(c'ji,3 + fi)] av (293)

Now, let us assume that during the displacement 5ui the material vol~
ume V is in equilibrium and the change in kinetic energy is zero. The

equations of motion (Equation 192) then taks the form

g, +f, =0 294
13,3 v 53 (294)
which are referred to as the equations of equilibrium. Since the stress
tensor is symmetrical, application of Equations 294 in Equation 293 re-
sults in the following expression for §we

ffj (B (295)

Similar to Equations 149 through 151, the infinitesimal displacement

gradient (8u,) can be expressed as

17,3

(Gui),J = Geij + 6Qij (296)

In view of Equation 296, Equation 295 becomes

. £ .
= iy 29"
Gwe f.{}v\ojiﬁeij +q mij) av (297)
Since Uji = 0, i3 (symmetry of stress tensor) and 5&13 is skew-
symmetric, the expression cjiGQ 3 is zero and Equalion 297 reduces to
8w, =vaoijse“ av (298)

Invoking the assumption that AT = 0 during the infinitesimal displacee-

ment, and since é = 0 , Equation 287 can be written as
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?swe = §U (299)

The internal energy associated with the material volume V can be ex~

pressed as

U=vaUO av (300)

where U0 is the internal energy per unit volume, referred to as the
internal energy demsity. In view of Equations 208, 299, and 300, we can

write

”’{’ cuéem av =Hj; éuo av (301)

which leads to

80y = 0548¢;, (302)
Since the intermal energy density function UO depends on the strain

components eiJ s the varistion SUO due to Seij can be expressed as

U = ) 8e (303)
0 aei'j i -
In view of Equations 302 end 303, the stress tensor oij takes the fol-
lowing form
oy = ::O (304)
iJ

Equation 304 is referred to as the Green elastic constitutive equation.
81. For isotropic materials the strain energy function UO must
be invariant and, thus, a function of strain invariants. Therefore, for
isotropic materials we can write
3U0 11,12,13

P oy (305)

"]
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If the material under consideration is incompressible, Il =z 0 and

UC = Uo(fé , fé). For ruach materisl, an arbitrary hydrostatic state

of stress may bLe superimposed on the existing state of stress given by ;
Equation 304. Using chain rule of differentiation, Equation 305 can be
expressed &s

AUy eI, AU 9T, oy, o,
%3 3L e v T G TS %e (306)
1%y 0T, Py o7, Py

Since
BIl
=46 (307a)
bey, A4
222 = Sy (307b)
id
aié
=g, ¢ (307¢)
aeij im™mJ
Bquation 306 can be written as
U 10) oU
0 0 0
O,, g C,, +~—¢,, +—¢, € (308)
i) BIl i) 312 | 813 im m}

Comparison of Equation 308 with Equation 197 indicates that the Green
and the Cauchy elastic constitutive equations have the same form. The
difference between the two formulations is that the response coeffi-
cients ¢0 . ¢l , and ¢2 in Equation 197 are independent whereas the
corresponding response coefficients GUO/BI1 . BUO/GTé , and auo/afs
in Equation 308 are not. By differentiating the response coefficients
in Equation 308 with respect to strain invariants, it follows that the
following relationships exist between these coefficients
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(au ) 90y,
P) 9 -
9T, _ 31, /
.- oI
¥, 1
(aU ) EUO)
5 (=2 -
3L i} I
- 31
I 1
U U
) (= —
9T, _ CE
I 31,

(309a)

(309b)

(309¢)

The consequence of the above restrictions imposed on the response coeffi-

cients will be realized when we develop second- and higher-order elastic

stress-strain laws using Equation 308.

The Green elastic material can,

therefore, be congidered as a special type of Cauchy elastic material

where the response coefficients are restricted by Equation 309.

82. The inverse of Equation 308 (the counterpart of Equation 198)

can be determined by assuming that there exists a function T

U, +7T

0" Yo% %351

so that

(310)

Equation 310 holds for elastic materials where application of a positive

stress increment results in a positive strain increment and vice versa.

The function PO is referred to as the complementary energy density
function. From Equation 310 it follows that

0

Differentiating Equation 311 with respect to ¢
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aro _ BUO .o aei1 ‘e 8011 (312)
3o 90 ij %o i) %¢
mn mn mn mn

Since U0 is a function of strain it follows that

U aUu,. 3e,
aoO = aeo ao_lJj (313)
mn ij "mn

Combining Equations 313 and 312 results in

Mo oo oy, Vo )2y (311)
3¢ i} 3¢ iJ de, ETs;
mn mn i} mn

In view of Equation 304 the second expression in Equation 31k is zero.

Equation 314 then becomes

90
0 . ¢ 3711 (315)
mn

Since

0 i#mor J#n
90
ij
=k = (316)
mn

1 i=m, J=n

Equation 315 becomes

€ = . (317)
mn uumn
or
3PO
€4y = 3;:; (318)

Equation 318 is the inverse form of Equation 304.

83. For isotropic materials ro is a function of stress invari-

ants given by Equations 118 through 120, i.e.,
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€ (319)

) aro(&l,Jz,J3)
iJ aoi 3
Using chain rule of differentiation, Equation 319 can be expressed as

BFO aJl BFO 8J2 BPO 8J3

€,, = + — + — (320)
iJ aJl BciJ aJe aoiJ oF 3oiJ
3
Since
aJl .
3°13 = 513 (3218)
33'2
Fa?f:,j_ = oi,j (321b)
333
a"m = oimcm (321c)
Equation 320 takes the following form
ar ar ol
0 9] 0
g, 6, +—o0,, +—0, 0 (322)
i aJl i aJa i) 3J3 im md

Equation 322 has the same form as Equation 198. The response coeffi-
cients in Equation 322, however, are not independent. It cen readily be
shown that relations similar to Equation 309 exist between these
coefficients.

84. The complementary energy density function I, can also be
expressed in terms of strain invariants vy utilizing Equations 308 and

310. From Equations 308 and 310 it follows that
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5L, Si3 Y = f13 Y = Cinmy)ti3
1 oT 5T
2 3
3U 3u 3U
24+ L2437 L.y (323)
L o, * 2 3 0
oI, o1,

Since for a given material UO is known, we can use Equation 323 to ex-
press the complementary energy density function in terms of strain in-
variants. However, to obtain an inverse constitutive relationship
(Equation 322) we need to express I, in terms of stress invariants.
This can be accomplished, at least in principle, by first expressing the
stress invariants in terms of strain invariants using Equatior 308.
The resulting expressions can be inverted to obtain strain invariants in
terms of stress invariants and then substituted in Egquation 323 in order
to express Po in terms of Jl , Eé , and 33 . We will now develop
constitutive equations for various classes of elastic materials utiliz-
ing Green's method (i.e., Equations 308 and 322).
Linear elastic material

85. For linear elastic materials only terms in strain up to the
first power are retained in the stress-strain relationship. It then
follows from Equation 308 that the strain energy density function UO
rust be quadratic in strain in order for the resulting stress-strain re-

lation to be of first order. Assuming that the initial state of stress

is zero, UO takes the following form

= 2
Ug = AT, + AT] (324)

vhere A, and A, are material constants. Substituting Equation 324
in Equation 308 results in

= 2,16 1€ (325)

%3 o11%5 *

171
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Equation 325 is identical with Equation 201, indicating that both

Green's method and Cauchy's method result in the same stress-strain rela-
tion for linear elastic materials. In view of Equestions 204 and 209 the
material constants A2 and Al become

A2 =

(M

G

Al = 2G (3260)

The strain energy density function for linear elastic materials (Equa-
tion 324) can then be expressed in terms of shear modulus G and bulk
modulus K as follows:

= 12\,K.2
U0-26(12-311)+211 (327)
It is noted that the expression (fé - I§/6) is the second invariant
of strain deviation tensor T; (Equation i64). We can therefore write

- T 5 2
Uy = 26I3 +3 I (328)

Since for linear elastic materisals Jl/3 = KI, and VJé = 2GVE§ (Equa-
tion 266), the strain energy density function can also be written as

J
U, = VJé\IIé + %5-1- I, (329)

where 3% Ié and JlIl/6 can be considered as energy due to distor-
tion and volume change, respectively, during a deformation process. The
strain energy density function can alsc be expressed in terms of stress
invariants or various cther combinations of elastic moduli end invari-

ants. For example, the counterpart of Equation 328 becomes
fj,
3' _l
2 3
= = ¢
Up =36 + —o% (330)
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In view of Equations 323 and 327 the complementary and strain energy
density functions for linear elastic materials are identical. For

linear elastic materials we can, therefore, write

=pr =21
Uu=T=5 15613 (331)

86. We can now examine the nature of the restrictions that must
be placed on the linear elastic moduli due to the existence of strain
eaergy density function UO . Expanding Equation 324, we can write

A \
A o 2 2 o 2 2
Uy = (2 + Aa)(eu tegt e33) + A1(€12 et e23)
* 2y(s)q%ap ¢ Sppfay ¥ £1p833)  (332)

Equation 332 is quadratic in strain and can be expressed in the qua-
dratic form

6
U = 3 Z:CiJSiRJ (333)

vhere €y and ej denote the six independent components of the strain
tensor. The matrix ciJ = cJi is expressed in terms of Al and A2
and has the form

Len, &, A, O 0 0
A2 -2— + Aa A2 0 (] 0
A
Y A, 2 Y4 0 0 0 (334)
iJ
0 0 0 A, 0 0
0 0 0 o & o0
0 0 0 0 0 A
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The strain energy density function Uo is a positive quantity. Accord-

ing to the theory of qumdratics, in order for U, to be a positive quan-

° 5

tity al) the mii vis of the 3iagonal elements of ¢ must be positive.

ij
Imposing 1his restriction o, tu. diagonal mincrs of the matrix cij
leads to the following inr cue 17 %ies:
4y >0 (3358)
:\l
T tA >0 (335v)
21- +34,>0 (335¢)

In view of Equations 326, 219, and 220, the above inequalities impose
the following restrictions on the linear elastic moduli G, K, E,
and v :

G>0 (336a)
X>0 (336b)
E>O0 (336¢)
~l <y < %- (336d)

It is emphasized that negative values of Poisson's ratio w have not
been found experimentally for isotropic elastic materials.
Nonl inear elastic material

87. We will now proceed to develop constitutive equations for
various classes of nonlinear elastic materials within the framework of
Green's method (Equations 308 and 322). As in the ¢=velopment of non-
linear Cauchy elastic constitutive equations, we will scart with second-
order stress-strain reiation where terms up to the second power are re-
tained in the stress-strain relationskip. The strain energy density
function for a second-order stress-strain law, therefore, must dbe cubic
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in strain. Assuming that the initial state of stress is zero, the most
general cubic relation for Uo takes the following form

= K G\.2 - 3 -
= == m =
U0 2G12 (2 3)11 + A3I1I2 + AhIl + ASIB (337)
where A3 through A. are additional material constants associated

with second power terms in the stress-strain relationship. It is noted
that if third power terms in strain are neglected Equation 337 degen-
erates to the corresponding expression for linear elastic material (see
Equations 32k and 326). Substituting Equation 337 in Equation 308 we
obtain the folloving second-order stress-strain law

A 2, .7
%y = [(K -5e) vt A31.2] 843

+ (26 + A3Ii)eid + ASEimsm,j (338)

Equation 338 contains five material constants whereas its counterpart
vased on Cauchy's method (Equation 248) contains six. This reduction in
material constants is a consequence of thermodynamic restristions im-
posed on the response coefficients of Green elastic material (see Fqua-
tion 309). It was noted that in the case of linear elastic materials
both methods resulted in the same equatien and their difference was not
apparent. The difference between these two methods becomes more pro-
nounced when considering higher~order nonlinear elastic and quasi-linear
e2lastic materials.

88. Let us now consider the stress-s’yvain relationship for third-
order elastic materials. The strain energy density function for a
third-order elastic material must contsin strain terms up to the fourth
power. Again assuming that the initial state of stress is zero, the
strain energy density function for a third-order elastic material takes

the following representation

= . (X _G\2 - 3., 4
Uo = 2012 + 5~ 3)11 + A31112 + Ahll + A533 4 AeIl ;

2 - > -
+ AT, ¢ AL T ¢ %1112 (339)

Ao tar A s n s
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where A6 through A9 are additional material constants. It is noted
that when fourth power terms in strain are neglected Equation 339 re-
duces to Equastion 337 (strain energy function for second-order material).
Substituting Equation 339 in Equation 308, we obtain the following third-
order stress-strain law

-2 2 34 AT +28 1T
oij = K? - 3 d)Il + 3AhIl + A3I2 + hA6Il + A813 + 21519Il]:2]6i'j

+ (2(; + AT+ 2A7'f2 + A9I§)e T (ag + AgLy Jes s (340)
Equation 340 contains nine material constants. The counterpart of Equa-
tion 340 based on Cauchy's method (Equation 259), on the other hand,
contains 12 material constants. Therefore, in the case of third-order
stress-strain law the effect of thermodynamic restrictions is to reduce
the mmber of material constants by three. In the next section we will
consider quasi-linear elastic materials within the framework of Green's
method.
Quasi-linear elastic materials

89. If the strain energy demsity function U

is independeni of

0
the third strain invariant 13 , Equation 308 reduces to
1) 1)
=0 _90
9y = 3T S1y * T ey (3b1)
1 3I2

Ecuation 341 is the counterpart of Equation 261 (constitutive equation
of quasi-linear elastic materials based on Cauchy's method). In the
case of Equation 341, however, the response coefficients are restricted
by Equation 309a. From Equation 341 it follows that

J ou au
Zelelr 2 (342a)
3 oI 371 =
1 9l
2
BUO
SiJ = ;ET-EiJ (342b)
2
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Using Equations 124, 162, and 342, we can obtain expressions similar to
Equation 263 for the response coefficients in Equation 341, i.e.,

(343a)

(343b)

The inverse of Equation 341, leading to strain-stress relationship,

takes the form

BFO BPO
eiJ =-5:T-1-6ij +;3-_°i.j (3h4k)
2

Q0. In order to examine the nature of the restriction placed on
the response coef.icients by Equation 309a, we substitute Equation 343

in BEquation 309a as follows:

3
9—; <. (345)
ot \3

o

Therefore, the functional forms of J1 and 3; T; must satisfy the
above differential equation. In the case of quasi-linear elastic mate-
rial based on Cauchy's method, it was noted that the functional forms of

J, and VE" T' were not restricted. If we consider s material for
2] "2

1l
which Jl depends on I1 only (i.e., volumetric strain is caused only

ty hydrostatic stress), then Equation 345 reduces to

I
19 3
T + oo =0 (3u6)
3 47 3T,
2
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Equation 346 can be satisfied only if 3% 1! is of the form

“

(347)

Equation 347 indicates that for a quasi-linear elastic material for
which Jl depends only on Il + the shearing response of the material
is independent of hydrostatic stress. In view of Equations’ 341, 343,

and 347, the constitutive equation for this class of material becomes

oy = (B 6y + BT oy - £ 126y) (348)

The functions fl and 52 can be postulated, based on experimental
evidence, for a given material. For example, Equation 269 is a special
case of Equation 348 where the functions fl and 52 are obtained from
Equations 268s and 268b, respectively.

91. Equation 348 is the simplest form of equation for quasi-
linear elastic material in that there is no coupling between the devia-
toric and the volumetric responses of the material. Equations for more
complicated forms of quasi-linear elastic materials can be developed by
expressing the strain energy density function Uo as a polynomial func-
tion of Il and I2 s or by postulating mathematical expressions for
\ﬁé]'fé and J,/3 that will satisfy Equation 345 and will include

various degrees of coupling as desired.
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PART V: INCREMENTAL CONSTITUTIVE EQUATIONS

92, Incremental constitutive equations are often used to describe
the stress-strain behavior of materials in which the state of stress is
a function of the current state of strain as well as of the stress path
followed to reach that state., The general form of the constitutive

equation for this class of material behavior is generslly expressed as

6iJ = Fij(émn » O, (349)

where ii is a response function. Equation 349, which is a special

J

case of Equat’on 194, expresses the components of one tensor in terms of
the components of two other tensors, Therefore, in view of Equation 11k,

the functional form of %i takes the following representation

J

G197 Mgdiy ¥ Myt Mofydyy ¥ g0y,

0050y ¥ N5y Oyy + 0géyy)
+ “6(Eikékp°pj + oikékpépj)

* gy * Oy

+ 0 ) (350)

g,

& 2
*+ ngle 0%t %y * Yik kppttes

where tne respcnse coefficients “0 » e++ s Ng are polynomial func-

tions of the invarisnts of émn and Opg and the following Joint

invariants

n o= éaboba (351a)

N, =¢ (351v)

. O
2 abooc ca
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3 = abebcoca (351c)

. ® ,
€0 be’ca’da \3514)

93, We can simplify Equaticn 350 by assuming that the materials
of interest are rate independent. To eliminate time effects, Equa-
tion 350 must become homogeneous in time., This can be accomplished by
eliminating all terms containing second and higher powers of émn in
Equation 350. Accordingly, the response coefficients Ng s Mg and
5 must vanish, nT ’ n5 , and ny must be independent of émn and
functions of stress invariant alone, and ny, n3 , and Ny must be
of degree one in émn . Imposing the above restrictions on the response
coefficients in Equation 350, we obtain

& + 0, &

13 = Mo%iy * Mfiy t Mg0ig * MOuTky * g€y 0y * Opdyy)

+ n7(éik°kp°pj + oikokpépj) (352)

The response coefficients ny, s n3 s end N, can now be written as

ng = Bl * 8y7 + BT, (353a)
ng = B3L) + Byl + Bglly (353v)
n, = 8L, + Bl + Bgll, (353¢)

where, similar to n7 N ns , and N s the response coefficients

BO s ees s 38 are independent of émn and functions of stress invari-
ants alone., Substituting Equation 353 in Equation 352, we obtain the
following incremental constitutive equation for rate-independent ;

materials
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65 = (Boly + 81y +

+ nS(éikOkJ

do

*(BBdem*Bhde

ab

" deiJ + 0 (deik

+ no (deik okpopj +

vhere de

1

to prescribe some initial conditioms.

111

+ (851) + BT + BT )oy

* %ixxy

+ (83000 *

gy = (B dep, + By degy Oy + By de

+ (86 dsnn + 87 deab o

%1x%

TRy AT T R T IR T T T BT T e e i rp e

BT 85y + Mty

i

+ (8611 + Bl + 38“2)°ik°kJ

)

Oikokpépj) (354)

Equation 354 is the most general incremental comstitutive relationship
for rate-independent material. It contains twelve response coefficients
vhich are polynomial functions of stress invariants. Since each term in
Equation 354 contains a time derivative d/dt (i.e., Equation 354 is
homogeneous‘in time), both sides of the equation can be multiplied by

dt , resulting in the following differential form

ab obcoca)6

1

Opa + Bs d€gp 04,000,094y

va * 88 %ap %eca%ikky

i € )

Kt kJ

D de_,) (355)

pJ

and doiJ are referred to as the strain increment and
stress increment tensors, respectively. From Equation 355 it is ap-
parent that incremental constitutive equations are first-order differen-

tial equations. Tn obtain unique soluticns to these equations ve need

The integration of the differen-

tial equations for a given stress path and initial cordition will lead

[PPSR
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to stress-strain relationships. Various classes of incremental con-
stitutive equations can be obtained from Equation 355 by specifying the
highest degree of stress that appears on the right side of the equation.
In the following sections we will develop and examine various classes

of incremental constitutive equations.

Incremental Constitutive Equation of Grade-Zero

94k, 1If the right side of Equation 355 is independent of stress,
the incremental constitutive relationship is referred to as grede-zero.
In this case Ny = Mg = Bl = 82 = 83 = Bh = B5 = 86 = B7 = 88 =0,
and n and BO become constants. Thus, for grade-zero, Equation 355
reduces to

do

+n de (356)

13 = Bo depp 4y 1]
It is noted that Equation 356 has the same form as the constitutive
equation of linear elastic material (Equation 201). In order to in-
clude the linear elastic stress-strain law as a special case of Equa-
tion 355, the materigl constants B, (0, 0, 0) and n (0, 0, 0) will
= G and 2G , respectively. Accordingly, Equa-

3
tion 356 may be expressed as

be replaced by K -

- 2
doiJ = (K -3 G)dcun SiJ + 26 deiJ (357)

Bquation 357 is the constitutive equation of linear elastic material
(see Equation 210) expressed in incremental form. In order to obtain
a relation between stress and strain, Equation 357 must be integrated.
If we adopt the condition that °iJ = 0 when ciJ = 0 , integration of
Equation 357 results in the same stress-strain relations as predicted
by linear clastic constitutive equation. For example, consider the
condition of uniaxial strain (Equation 221) where dcnn = dcl . PFor
this state of deformation Equation 357 results in

MG T RS T
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do, = (K - %-G) de, + 26 de, (358a)

do, = (K - %-‘) de, (356b)

Integrating Equation 358 and using tic condition that 0y =05 = 0 when

€ = 0 , we obtain
o, = (K + E-G)e (359a)
1 3 1
o, =(k-2g (3590)
2 = - 3 el

vhich are identical with the relationships predicted by linear elestic

stress-strain law (Equation 222). Equation 357, which is the simplest

form of incremental constitutive reletionship, therefore Jdoes not mani-
fest any nonlinear behavior.

Incremental Constitutive Equation of Grade-One

95, If terms up to the first power of stress are retained in the
right side of Equation 355, we obtain the incremental constitutive equa-
‘tion of grade-one. This can be achieved by allowing the response co-
efficients n, , Bg , 8-r v Bg s 85 » B8, » and B, to vanish, and
the remaining response coefficients to take the following forms

By = K - %-c + ilJl (360a)
B, = A, (3600)

By = i3 (360c)

n =2+ Ny (3604)

ng = is (360e)




where il through i5 s K, and G are material constants that must
be determined experimentally. In view of Equation 360, the incremental

constitutive equation of grade-one becomes

2 - ~
doij = (K - §-G + lel) denn Gij + ka deab obaaij

+ Ay de o, + (2(; + thl) de (361)

3 + As(de de

13 1k Oy * Oax 98xy)

Equation 361 contains seven material constants. It is noted that Equa-
tion 361 reduces to incremental constitutive equation of grade-zero
(Equation 357) when the material constants il , 12 . 13 » A, » and
ks vanish. For a given initial condition and stress path, Equation 361
can, in principle, be integrated in order to obtain stress-strain rela-
tionships. The differential equations generated from Equation 361 for
vari~us states of stress and deformation are coupled first-order equa-
tions, It is not possible, in general, to obtain closed~form solutions
for these equations. Therefore, numerical integration schemes must be
utilized.

96. Let us examine the behavior of Equation 361 under hydrostatic
state of stress (Figure 6a). For hydrostatic state of stress, Equa-
tion 361 results in
=4y = 3(1( -%c + ilJl) a1, + i, 41

doii

- - 2 -
+ A3J1 a1, + (2¢ + thl) dIl + 3 "5"1 dIl (362)

Equation 362 can be written as

aJ

1
) = a3 +h 01, +23 )‘i]
(123!»351

Integrating Equation 363, ve obtain the following relationship between
volumetric strain and pressure

(363!
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1
B} 1
f a1, = f KTED (36ke)
0 0

or
3K + KlJ
= i 1
I = K n ( T ) (36Lb)

vhere X, = 3Al + xz + A3 + xh + 2%5/3 « We can invert Equation 364b

to relate pressure to volumetric strain, i.e.,

J . I -
2.5 () (565

It is of interest to note that Equation 365 has the same form as Equa-~
tion 268a, which was postulated to describe the pressure-volumetric
strain behavior of quasi-linear elastic materials. In fact, it is noted
that the ratio K/K1 in Equation 365 corresponds to PB (the maximum
tensile stress that the material can surtain before it breaks) in
Equation 268a. It is important, however, to reaiize that unlike Equa-
tion 268a, Equation 365 is the outcome of a theory (i.e., the incre-
mental constitutive equation of grade-one).

97. In order to examine the coupling of the deviatoric and
volumetric responses of the incremental constitutive equation of grade-
one we will examine the behavior of Equation 361 for a state of simple
shearing deformation. The strain increment tensor associated with
sinple shearing deformation is given as

0 de, O
deua de,y 0 © (366)
0 0 ©
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vhere it follows that denn = 0 . For this state of deformation, Equa-
tion 361 results in the following expressions for the nonvanishing
components of stress increment tensor

do, ) = do,, 2(>‘2 + Asj de,, 0y (367a)

i d033 = 2AQ delg P . (3670)

. do., = [?G *+ A0, v 0,y + 033) + Xs(cll + °22i] de,,  (367c)

N Equation 367 is a set of first-order differential equations which must

be integrated to relate stresses to shearing strain €5 Without
going through the process of integration, however, we can draw certain
conclusions about the response of the material in simple shearing de-
formation. First, to maintain a simple shearing deformation (no volume
9 change), normal stresses must be applied to the boundaries of the speci-
men. Second, since two of the normal stresses are unequal, Equation 367
predicts the occurrence of normal deviatoric stresses on the shearing
planes. It is recalled that the same behavior was predicted for non-
linear elastic material (Equation 235). As was pointed out previously,
- the ccurrence of normal deviatoric stresses on the shearing planes is a
; second-oraer effect due to tensorial nonlinearity (in this case the last
term in Equation 361) and is a departuce from linear theories where

such nonlinearity does not exist.

Incremental Constitutive Equation of Grade-Two

98. If we retain terms up to the second power of stress in the
right side of Equatiop 355, the resulting incrementsl constitutive equa-
tion is referred to us grade-two. Thus, for incrementsal constitutive
equation of grade-two the response coefficients 88 » BT , and 85
vanish, and the remaining response coefficients in Equation 355 take the
following forms

204 P32 e i3 5
By =K =36+ XJ ¢4y + A0, (368a)
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By = Ay + Agdy (368b)

B, = 39 (368c)

By = 13 + ilOJl (368a)

B, = ill (368e)

Bg = X, (368¢)

n, =26+ thl + ilBJi + ilQEé (368g)

ng = A, + ille (368h)

Ny = 116 (3681)

where Xl through i16 , K, and G sare material constants., In view

of Equation 368, the incremental constitutive equation of grede-two
takes the following representation

_ 2 = s 2,z =
doy = (x -S04k Rl xTJg) depy 84y

+ (A, +AgT)) dey 0y By ¥ Ag 8, 0 0aby

+ (A3 + xloJl) denn 93 + 111 de, obaoij

+ A12 denn cikokJ
- : 2 - —
+ (26 + NIy * *13J1 + lthe) deiJ
3 3 Y
+ (XS + klle)(deik Ok G dekJ;

+ X glae, % p°ny * C1x%kp depJ) (369)
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Equation 369 contains 18 material constants. It is noted that Equa-

T M tion 369 reduces to Equation 361 (constitutive equation of grade-one)
when X6 through i16 are set to zero. Similarly, we can develop in-
cremental constitutive equations of grade-three (or higher grades) by
retaining the third power (or higher powers) of stress in the right side
}E of Equation 355. However, due to mathematical complexities of incre-
mental constitutive equations of grade-one or higher, they are seldom
utilized to solve actual engineering problems. For this reason, a class
of incremental constitutive equations, usually referred to as variable-

7,8 is often used for solution of many en-

g o iperrry
-

modvli constitutive models,
gineering problems. The variable-moduli models are relatively simple
in that they do not contain second-order effects due to tensorial

i
{

nonlinearity.

Variable-Moduli Constitutive Models

99. The basic constitutive relation of the variasble-moduli models

o e e L P e B S e Ry e

is given by

- do,, =Kde 6
N nn

1
1 + QG(deiJ - Jdey, 613) (370)

1
It is noted that Equation 370 has the same form as the incremental con- .
& 3 stitutive equation of grade-zero (Equation 357). In the case of .
o . variable-moduli models, however, the equivalent bulk and sheer moduli,
P 2 K and G , respectively, are assumed to be functions of stress invgri-
ants. Depending on the functional forms of these moduli, various
classes of variable-moduli models can be constructed. Since Equa-
tion 370 does not include any second-cirder term, or terms invoiéing
Joint invariants of stress and strain increment tensors, it can readily
be integrated (fcr a given stress path and initial comdition) to yieid
gstress-strain relationships. Various classes of varisble-moduli models
are examined in the following sections.
Constant-shear-modulus model

100. As implied, for a constant-sher-modulus omodel, G is

i

18




constant and K is s function of stress invarisnts. If we further
assume that volumetric strains are caused only by changes in pressure
{i.e., there is no coupling between volumetric strain and deviatoric
stresses), the bulk modulus K becomes a function of J1/3 only. A4s
a first-order approximation, let us assume that K i3 linearly related

to pressure, i.e.,
Y
K=K, +K 3~ (371)

where KQ (an initisl bulk modulus) and Rl are material constants.
Substituting Equation 371 in Equation 370, we obtain the following in-
cremental constitutive equation for a constant-G model
do =K+~il& 5, +2cfae,, - Lae a\ (372)
13 S\ %o * & 37 & 01y i3 73 %m %4y

Equation 372 is also a specisl case of incremental constitutive equation
of grade-one (Equation 361). That is, if we set the material constants
xs s ~xh . X3 , and Xe to zero, and replace K and Xl wvith Ko
and K1/3 , respectively, Equation 361 reduces to Equation 372.

101. We will now proceed to examine the behavior of Equation 372
under various states of stress and deformation. Under hydrostatic state

of stress, Equation 372 reduces to

— (3713)

1ategration of Equation 373 (with the initial conditions that I,=0
when J1 = 0) results in the following relationship between pressure and

volumetric strain

<y
75

_ % (e§1I1 A 1)

'

3
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Equation 37k is of the same form as Equation 365 (pressure-volumetric
strain relstion for incremental constitutive equation of grade-one).

102. For simple shearing deformation (Equation 366), Equation 372
predicts the same behavior as for linear elastic material (Equation 203).
Under conditions of uniaxial strain, Equation 372 results in the follow-

ing expressions

- 9 )
dol= K0+Kl§-— d€1+§Gd€l (375)
do. = do. ={K. + K fl- de. -2¢a (376)
39 "\ fo TR 3 1737 9% 1

Since there is no coupling between volumetric strain and deviatoric
stresses, we can eliminate J1/3 from Equations 375 and 376 by using
Equation 374. Substituting Equation 374 in Equation 375 and noting that

Il =€ for uniaxial strain condition, we obtain
K, e
L M& 4
dol = Koe de, + 3 G dey (377)

Equation 377 can now be integrated to relate vertical stress % to
vertical strain €, . Using the initial conditions that e, = 0 when

1 1
o, = 0 , integration of Equation 377 results in
K K. e
o, = E—Ge e 2l (378)
1 3771 &
1

Similarly, we can obtain an expression for the radial stress 02

K K €
=:-‘3-(ex1 1. 1)-§cel (319)
X

%

Combinirg Equations 379, 378, and 374, we obtain the following relation
for the s*ress path associated with the condition of unlexial strain
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Equations 378 through 380 indicate that a constant-shear-modulus model,

(380)

with a bulk modulus which is linearly dependent on pressure (Equa-
tion 371), can predict nonlinear stress-strain relationships under uni-
axial strain condition.

103. We will next examine the behavior of Equation 372 under
conditions of uniaxial stress. For uniaxiasl state of stress, J1 =0y
and Equation 372 results in the following expression for the increment

of axial stress dol

(381)

o
= & 1) ae L
do = (KO + K 3 ) de =+ 26 (del -3 de )

The increment of volumetric strain denn can be eliminated from Equa-

tion 381 by using Equation 373 (this can be done because volumetric
strain is a fuaction of pressure alone); thus,

do QGdol

do =-3i+2(}de -

1 1 (382)

3(31(0 + Klol)

Integrating Equation 382 (with initial conditions that o, = 0 vhen

€ = 0) , we obtain
g 3K, + Rlo
S S U 0 11
Rt W x, (383)

Equation 383 relates axial strain €, to axial stress o, . Similarly,
wve cen obtain an expression for radial strain €y = €q in terms of
axial stress

3K+ Ko o

in

2 3K, 3%,

A A s e A b e A AR, A
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Again it is noted that highly nonlinear stress-strain curves cen result
from a constant-shear-modulus constitutive model.

104. Since the shear modulus is constant, Equation 372 can be
integrated to yield a total stress-strain relation similar to that for
qQuasi-linear elastic models. In terms of the stress and strain devia-

tion tensors, Equation 372 results in (assuming zero initial conditiuns
or both stresses and sprains)

siJ = 2(}}::iJ (385)

In view of the definitions of Sij and Eij (Equations 122 and 161,

respectively), Equation 385 can be written in terms of the stress and
strain tensors

<
—

1 1
oy =3 Gij + 2G (eij -5 513) (386)

It is noted that Equation 386 is a specisl case of quasi-linear elastic
material (Equation 264). Substituting Equaticn 374, for J1/3 , into
Equation 386, we obtain the following yussi-linear stress-strain vela-
tionship for the constant-shear-modulus model

K [ x.1 I
51 5L 1
oid-—--;S (e -1 61J+2G(eij--—-3 6i3) (387)

It is noted that Equation 387 satisfies Equation 346, indicating the
existence of a strain energy function for the constant-shear-modulus
model. Using Equations 343 and 387, we can derive the following expres—
sion for the strain energy {unction

~ 2
K I oI
UO=2(;12+—:Q %—ehll-ll--}— -Tl (388)
5\ L5

It ca» eesily be verified that if we substitute Equation 388 into Equa-
tion 341 we obtain Equation 387.

122




.
i
|
h
1.
K :
2
L
£
to
+
I
|
[
t B

EE iy

v

PO o KE A e Uy T SR G b O e P AR RS F A VA LIS et S e A I RS N

Constant-Poigson's-ratio model

105. Another type of variable moduli model iz the constant-
Poisson's-ratio model where, by analogy to linear elastic materials, it
is assumed that the ratio G/K is constant. In terms of elastic

Poisson's ratio v , this ratioc is given by (see Equetion 220)
G_3 51 -2v) =
K- 21+v) 8 (389)

From Equation 389 it is obvious that K and G will have similar func-
tional forms. In order to examine the consegquence of this corndition,

let us assume that the functioral form of XK is given by Equation 3T1. §
As was pointzd out previously, Eguation 371 indicates that volumetric !
strains are caused only by changes in pressure. In view of Equa-

tions 389 and 371 the comstitutive equation takes the fullowing form

J
= kK =
doij = (FO + Kl 3 ) denn 613

. - Y1 1
+ 23(1{0 + K i’) \deié -3 deman) (390)

I

It can also be shown tihat Equation 390 is a special case of incremental
constitutive equation of grade-one (Equation 361).

10€. The behavior of Equation 390 under hydrostatic stete of
stress is identical with that of Equetion 372. However, the behavior
of Equation 390 under deviatoric state of stress is quite Qifferent
than that of Fquation 372. For example, consider e series of constant-
pressure shear tests (see Figure 6¢) conducted at Py, P, and P3 R
where P3 > P2 > Pl . The deviatoric ressponse of Equation 390 for these
constant-pressure tests is depicted in Figure lia. 1t is observed from
Figure 1la that the deviatoric response :s dependent on the super=
imposed hydrostatic state of stress (in this case G varies linearly
with pressure). In the case of a constant-shear-modulus model {Equa-
tion 372), on the other hand, the deviatoric response does not depend i

on the superimposed hydrostatic stress. Let us now congsider two
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Figure 11, Behavior of constant-Poisson's-ratio varisble-moduli
model during constant-pressure shear test
combined conoiant-pressure shear and hydrostatic tests defined by stress
paths abed and abe'd' shown in Figure 11b. The deviatoric responses of
Equation 390 for these two tests are also depicted in Figure 11b. For
! the stress path abed it is observed that the stress-strain curve during
unloading (line cd) is above the loading curve (line ab). This type of
behavior results in an energy-generating loop vhich is contrary to the
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observed behavior of real materisl. For the stress path abc'd' the
stress-strain relation during unloading is along path c'd', which re-
sults in permanent deformation. Furthermore, if the stress cycle
abc'd'a is repeated several times, the stress-strain response will
result in an unrealistically excessive amount of deformation as showm
by the dashed lines in Figure 11b. In order to avoid these undesirable
behaviors, the use of variable-moduli models for which G is a function
of hydrostatic stress should be restricted to stress paths where J1/3
and Jé remain constent or increase. Variable-moduli models have been
used to simulate the hysteretic behavior of earth materials during
cyclic or near-cyclic conditions.8 For this type of problem, two sets
of expressions are usually specified for the moduli K and G : one
set for loading and one set for unloading. A set of criteria or logics
are also specified to determine whether the material under considera-
tion is being loaded or unloaded so that the proper set of moduli can
be used. Application of variable-moduli models for treating hysteretic
effects will be discussed later.

107. Let uws next consider the behavior of a constant-Poisson's-
ratio model under corditions of uniaxial strain. For this state of
deformation, Equation 390 results in

d—1+-liéx+'f-1-)a (391)
0, = 3 0 K1 3 € 391
2 - . N
do3=d02=(1-38) Ko+ K 57 (392)

We can eliminste J1/3 from Equations 391 and 392 by using Equa-
tion 37h. Substituting Equation 374 in Equations 391 and 392 and noting
that I1 - el for condition of uniaxial strain, ve obtain

. K.c
""1'(1’%8) Kge 1 aey (393)
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a0, -.~(1 - % e) K e 1 ae, (394)

Integrating Equations 393 and 394 and using the initial conditions that
0, =0, = 0 when € = 0 results in

K K €
ol=-_é(1+§§)(el(“-1) (395)
K - K €
o, =-.£lo-(l--§-8)(exl 1. l) (396)

Equations 395, 396, and 3Tl4 can be combined to obtain an expression for
the stress path associated with the condition of uniaxial strain,

i.e.,

= J
r‘v =28 1
J; = = 3 (397)

As anticipated, the uniaxial strain stress path for a constant-Poisson's-
ratio model is linear (see Equations 226 and 227). The constant-shear-
modulus and constant-Poisson's-ratio models are elementary versions of
variable-moduli models. More complicated forms of variable-moduli
models are discussed below., These models are referred to as nonlinear
variable-goduli models in that both the shearing and the volumetric
responses are nonlinear and are represented by different functional
forms.
Nonlinear variable-moduli models

108. More complicated, and perhaps physically more realistic,
forms of variable-moduli models can be formulated by expressing K and

126




G as separate polynomial functions of stress invarianis. If we make
the assumption that there is no coupling between volumetric strain and
deviatoric stresses, then bulk modulus K becomes & function of Jl/3
alone. For a first-order approximation we will adopt Equation 371 for
the bulk modulus. A different functional relation can be postulated for
the shear modulus G . As a first-order approximation, we will assume
that G 1is linearly related to the first and second invariants of
stress tensor, i.e.,

15t 60, (398)

vhere G, (an initial sheer modulus), G, , and G, are material con-
stants. In view of Equations 398 and 371 the constitutive relationship
for this type of variable-moduli model becomes

!

do, =(K0 +K13—) de ) 8,
+2{G. +¢G J—1+GF dc,, - S de 6 (399)
o ¥ 0y 3% Gxdpfldegy = Jdey, 6y 9

It is noted that Equation 399 reduces to Equation 372 (constitutive
equation of constant-shear-modulus model) if Gl and 62 are set to
zero. Also, it can readily be shown that Equation 399 is a special case
of incremental constitutive equation of grade-two (Equation 369).

109, The behavior of Equation 399 under hydrostaiic state of
stress is identical with the behavior of constant-shear-modulus and
constant-Poisson's-ratio models, since the functional form of dulk
modulus is the same for all these models. For deviatoric states of
stress, however, the behavior of Equation 399 differs considerably from
that of constant-shear-modulus and constant-Poisson's-ratio models.

For example, consider a state of simple shearing deformation defined by
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Equation 366. For this state of deformation, Equation 399 results in
(assuming zero initial state of stress and deformation)

do,, = do,, = dc33 =0 (s00a)
ao,, = 2[c. + 60°,) ae (400b)
12 0 2712 12
Integratiang Equation LOOb we obtain
G.G

It is noted from Equations 372 and 390 that for this state of deformation
the constant-shear-modulus and constant-Poisson's-ratio models predict a

linear relationship between the shearing strein ¢ and the shearing

12
12 It should also be noted that within the framework of

variable-moduli models normal stresses are not required in order to

stress ¢

maintain a state of simple shearing deformation. As was shown pre-
viously, to maintain a simple shearing deformation in the case of in-
cremental constitutive equations of grade-one {or higher grades), normal
stresses must be applied to the boundaries of the specimen (see Equa-
tion 367).

110. A more useful description for shear modulus, especially for
modeling the stress-strain behavior of soil.8 is to express G in terms
of J,/3 and\Fgr rather than J, . For axample, for a first-order

2 2
approximation ve can express G as

J —
d.a .05 )
G =G+ G, 7 ¢ 62‘155 (%02)

-

vhere 62 is a material constant. The sign of 62 31 determine

vhether the material softens (62 < 0) or stiffens (62 > 0) during shear.
For this description of shear modulus the constitutive equation becomes
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(GO + Gl =+ G,‘,J;>( de U) (03)

For a state of simple shearing deformation (Equation 366), Equation 403
results in (assuming zero initial state of stress and deformation)

doy, = da,, = do33 =0 (404a)

do,, = a(c + G2 12)de (LOkb)

Integrating Equation 404b we obtain

G, + G0
ep =3t m| 222 (405)
G 0

Equation 405 also describes a nonlinear relation between the shearing
strain €15 and the shearing stress 012 .

111. Let us next consider the behavior of Equation 403 under
cylindrical state of strain utilizing the stress path depicted in
Figure 6d. For this stress path{?é-= 3 (J1/3 - 03) » where 03 = 02
is the confining stress which remains constant during the deformation
process. From Equation 403 the increment of stress difference associ-

ated with cylindrical state of strain beconmes
J

1 A ]
do) - do, = 2 (GO + 6 3t cev Ja)(del - dee) (L06)

We can eliminate J /3 fror uation 406 by using the equation for the
stress path, and noting that d = (o - 0, )3 » ¥e obtain

et a =it SRR AR U S L L L e



do, - do
de, - de, = —— L 2 (LoTt)

~

G G
216, + 6oy + (0 - o) |57+ 5

For a given value of confining siress Op Equation 407 can be inte-
grated to yield a relation between strain differente g = & and
gtvress difference gy = 0y o Denoting the confining stress O by 9,
and carrying on the integration, we obtain

1
€, = €, = -
1" % 6, &,
of = + =
3 i
i /Gl 62
Gy + 6o, * (og - °2)\'3-+F
x in T TGO 3/ (Lo8)
0 l¢c

It is noted from Equation 408 that tue shearing response of the material
is dependent on the magnitude of the confining stress Oy If G1 is
set to zern in Equation 408, this dependency disappears (i.e., shear
modulus becomes irdependent of hydroststic stress, see Zquation 402).
112. Next we will consider the behavior of Eguation 4N3 under
conditions of uniaxial strain. For this state of deformation,
denn = del and Equation 403 yields the following expression for the
increment of vertical stress dol :

J J
R | 4 =+ 3, V7!
dol =(xo + K T) dgl + 3 (GO + 6 3=+ G, Ja)del (L09)

We can eliminate Jl/3 and \I 3é from Equation 409 by using Equa-
tion 374 and noting that \IJ;_, = Y3 (0, - 3,/3)/2 ; thus,

do K K€
1 23~ . L L 0fx L1 273 ¢ i1
del‘Tca"l 1\04»300;&1 x1¢3cl- 3 ca)e -1 (L10)
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It is noted that Equation 410 reduces to Equation 377 (the corresponding
expression for a constant-shear-modulus model) when 52 and Gl are
set to zero. Equation 410 is a first-order differentisl equation and

has the following solution (assuming zero initial state of stress and

T R T R R

s m g T T e e T T P S -
B - o -

deformation) ;
| N i
1§ : K H
0z L, _2834
3 ~ K1+3G1-352) ke 3@.{;5 "
- 15 ke 365 s
k. Gl = "_ e - e i
P _2/3 % ’
Y 3 I 073 % ?
B
ofz . b 2/3 - )y ]
; }:(‘H*3G1‘ 3 Ga) '(Ko+ GO)J
; 2 +
243 -
3 : I 3 G
f | ; 2v3 .
L ——= Gt
xl1-e3 21 (L11)

4

Again, it is noted that Equation 411 reduces to Equation 378 when 62

and Gl are set to zero. The radisl stress o, required to prevent

2
radial strain can be determined by direct integration of Equatior 403
(similar to the procedure followed to obtain ol) or by using Egue~

tions 374 and 4ll. From Equation 3T4 it follows that

3K K, € Y
o, =20 (21 -2 (812) ;
2 2R1 2 i

In order to relate o, to axiel strain €, wve sinply eliminate 9
from Equation 412 by using Equation 411. The uniaxial strain stress
path for this model can be determined by using Equations 411 aad 374.
Equation 3TL can be inverted to relate I (e1 in this case) to /3.
The resulting relation cea then be substituted into Equation 411 to
express 0, in terma of J,/3 vhich, in conjunction vith the
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expression 3; =3 (01 - J;/3)/2 , will result in the stress path.

113. More complicated forms of nonlinear variable-moduli models
can be developed and analyzed as for the preceding models. The choice
of any particular model, however, must be based on the experimental
observation of the stress-strain behavior of the material of interest.
Treatment of hysteretic behavior

114, As was pointed out previously, variable~moduli models have
been used to simulate the hysteretic behavior of earth materials during
cyclic or near-cyclic loading conditions. To show the procedure by

which the hysteretic behavior is simulated, we express the basic consti-~
tutive relation of the variable~moduli models (Equation 370) in terms
of the hydrostatic and deviatoriec components, i.e.,

-

dJy .
-5 = K a1, (b13a
dsiJ = 2G dEiJ (413b)

where dsij and dEiJ
strain increment tensors. It is postulated that the basic form of
Equation 413 is valid for all loading conditions (initial loading, un~

loading, and relcading). However, the functional forms of X. and G

are, respectively, the deviatoric stress and

change depending on whether the material under consideration is being
loaded or unloaded. As depicted graphically in Figure 12, for initial
loadings the response of the material is governed by

4J,
3= = K, dI, (41ka)
dsiJ = 2, dEiJ (51kb)

vhere K! and G! are, respectively, the bulk and shear moduli associ-
ated vith ini“iel lomding. During uriloading and reloading ve assume that
the respoase of the material is governed by
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a7,
- =K, I, (4158)
dSi'j = 26, dEiJ (k15b)

where Ku and Gu are, respectively, the bulk and shear moduli as-
sociated with unloeding and reloading.

115. To complete the specification of the model we need a cri-
terion to define the loading condition during a deformation process.

We adopt as our criterion the quantity

W = o, dsi (416)

vwhich defines the rate at which the stresses do work during the deforma-
tion process. According to this criterion, dW > 0 defines Lloading
(initial loading or relcading) and dw < 0 defines unloading. The
condition dW = 0 is referred to as neutral loading. The neutral
states of loading associated with the rate of work criterion impose
c¢.-tain restrictions on the material constants in the constitutive equa-
tions for loading and unloading and require special considerations.
The material constants must be chosen sc¢ that the loading and unloading
constitutive equations become identical whenever dW = 0 , i.e., neutral
loading. This requirement must be met in order Lo obtain a unique
solution for a boundary-vaiue problem involving cyclic loading condi-
tions. From Equations M14 and 415 it is apparent that variable-moduli
models, in general, do not satisfy this requirement.

116. In view of the definition of devistoric strain increment

tensor we can express Equation 416 in the following form

I at,
dw = Smn + -5— (Smn dEmn + T 6mﬂ) (hl’{a)
or
I
dW =8 dE  + -==aI (b1TD)
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We can eliminate dE . end dI, from Equation 41Tb by using Equa-
tion 413; thus,

Smn dSmn Jl dJl

aw = o + T (L418)

T -
Since T} = 1/2(smnsmn), it follows that

é =5, 45 {419)

where djg is the increment of the second invariant of stress devia-
tion tensor. Equation 418 can, therefore, be written as

T

dJ2 Jl aJ

~ 1
== * 5% (420)

For variable-mecduli models in which G = G(Eé) and K = K(Jl) the rate
of work can be separated into hydrostatic and deviatoric components.
Equation 420 can then be used with the interpretation that dEE/EG is
rate of work due to deviatoric stresses and Jl dJ1/9K is rate of work
due to hydrostatic stress. Accordingly, two criteria for defining
various loading conditions can be prescribed. For the deviatoric part
of deformation, loading and unloading are defined according to whether
dEE is positive or negative, respectively. For the hydrostatic part
of deformation, loading and unloading are defined according to whether
dJ1 is positive or negative, respectively. 1In this manner, it is
possible for the materisl to unload in shear while loading in pressure
or vice versa. It should be pointed out that these criteria also do

not satisfy the requirement of neutral loading. Because of the require-
ment of neutral loading, the validity of variable-moduli models for
vreating hysteretic effects has been questioned.9 Hysteretic effects

and permanent deformation can be treated within the framework of in-
cremental theory of plasticity without violating the requirement of
neusral loading.
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PART VI: CONSTITUTIVE EQUATICNS OF
SIMPLE V1SCOELASTIC MATERIALS

117. For viscoelastic materisls, the state of stress is a func-
tion of both the state of strain and time rate of strain. The stress

T

tensor can, therefore, be expressed as

oyy Fﬁ(emn s €.) (421}

it daasy R TR ERTR
.

vhere ﬁij = viscoelastic response function. In view of Equation 11k,
the response function ﬁij takes the following form

O35 = Mofig ¥ MS1y * MoSipky * N3ty
iy ¥ syt tncig)

* ng (eikekpep,j * € ik®kptpy)

frpra o

* 1y Catipbyy * Sindiotny)

+ ng (sikekpéptétj + éikékpeptetj) (k22)

where the response coefficients My s +++ s Ng are polynomial functions
of the invariants of €on and érs and the following Joint invariants

[
i
¢
S
H
1.
\
+
3
A
\
4
¥
1
6 -
¥

M= e tie (423a)
n2 = eabébcéca. (k23v)
T3 = eqpueten (k23c)
My = eabebcécdéda (ka3a)

It is noted that when dependence on érs disappears, Equation 422 re-
duces to the constitutive equation of Cauchy elastic material (Equa-
tion 197). Various classes of viscoelastic materials can be described
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by Equation 422 by proper selection of the response coefficients
My s «oo 5 Ng - We will be dealing with simple viscoelsstic materials
in this report.

. e - i e+ o —— e g

Xelvin-Voigt Material

118. The constitutive equation of Kelvin-Voigt material, which
describes the simplest type of viscoelastic material, can be obtained
from Equation 422 by allowing the coefficients Ny s My s Mg s Mg s
n7 , and ng to vaiaish and the remaining coefficients to take the fol-
lowing forms

Ny = AIl + AvIl (42oks)
n = 26 (42kv)
ng = G, (42ke)

Accordingly, the coastitutive equation of Kelvin-Voigt material becomes

o,, = AL S,, + AVIIG

13 1853 + 2Gei + 26 ¢, (k25)

i3 J vi]

The coefficients kv and Gv , analogous to the elastic constants A
snd G , are the dilatational and shear viscosity cosfficients, resnec-
tively. Again it is noted that if lv and Gv are set to zero Equa=-
tion 425 reduces to the constitutive equation of linear elastic material.

119. Let us exsmire the behavior of Kelvin-Voigt material under
uniaxial state of strain defined by Zquation 221. TFor this state of
deformation, Equation 425 results in

oy = kel + Avel + 2Gel + 268 (L26a)

G, = Aey ¥ A &) (L26vb)

where el is the strain in the direction of motion in a uniaxial strain

configuration and 9 is the lateral stress required to preven. latersl




strain. Equation 426a can be written in a more compact form by collect-
ing terms

o, =+ 2G)°1 + (xv + 2Gv)él (4271)

The term A + 26 is recognized as the constrained modulus M (see
Equation 225). Analogous to M , we denote the term A\, v 26, by M,
which is the viscosity coefficient associated with the conditions of
uniaxial strain. Equation 427 may now be written as

o, = Me. + M & (428}

Equation 428 is the counterpart of the differential equation of motion
for a linear spring and a linear dashpot connected in parallel (Fig-
ure 13).

120. We will now examine the behavior of Equation 428 for an ap-
plied constant stress of magnitude 9y - For an applied constant stress

Ty Equation 428 vecomes

Oy = Me, + M &) (b2g)
Integrating Equation 429 (with initial conditions that €, =0 at
t = 0) ve obtain

-(M/Mv)t

%
g = -e (430)

Equation 430 descrites the strain-time response in uniaxial strain con-

dition due to an applied constant stress of magnitude 9% (Figure 13).

In view of Equations 430 and 426b, the lateral stress-time response dur-
ing application of Y% becomes

A -(M/N 1t
A v A v
o, = 00 M + (ﬁ; - ﬁ)e (431)

121. Let us mext examine the behavior of BEquation 428 due to ap-
plication of a time~varying stress condition defined by
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Figure 13. Behavior of Kelvin-Voigt material in
uniaxial strain configuration

o, = a,(1 - e~Sh) (432)

1

wvhere c¢ is a constant. Substituting Equation 432 in Equation 428 and
integrating the resulting expression (with initial conditions that

81'0 at t = 0) we obtain
o cN -(N/N )t o
e, =21 + —Y— o \]-—o——e-Ct (L33)
1 N (N-cﬁv) J K-chlv
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Equation 433 describes the strain-time responss in uniaxial strain condi-
tion due to application of stress-time history given by Equation 43Z.

We can eliminate the time t between Equaticas 432 and U433 to obtain
the following strain-stress relationship

M/cM

v
€ = o - o __ 1- 2 + g% / - a (434)
1° 8 TM- o % MM - cuvi \ 9

Equation 434 indicates that the stress-strain response is not unique and
is dependent on the constant c¢ .

122. Analogous to nonlinear elastic material, we can construct
nonlinear viscoelastic constitutive relationships by retaining some of
the second-order tcerms in Equaticn 422. For example, taking ns = ng
= n7 =ng = 0 in Equation 422, a second-order viscoelastic constitutive
relationship, often referred to as the nonlinear Kelvin solid, can re-
sult, i.e.,

04y = "0613 + Mgy ¥ Mepyy + Nty + "heikékj (435)

It is noted that in Equation 435 there is no tensorial coupling between
the strain and strain-rate tensors. Various classes of nonlinear Kelvin
solid can be developed, similar to nonlinear elastic material, by expande
ing the response coefficients Mg s =o0 5 My in terms of the invariants
of the strain and strain-rate tensors.

Maxwell Material

123. Rate-~depeadent constitutive relaticnships can also be ex-
pressed as

613 = Fij(émn R °rs) (436)

Equation 436 is identical with Equation 349. The most general form of
Bquation 436 is given by Equation 350 ~nd contains nine response

0



coefficients. If we neglect all second- and higher-order terms in Equa-
tion 350 (i.e., let n,=m = Ng = Mg = Ny = ng = 0), and assume that
the remaining coefficients take the following forms

ng = -amJl + kmil (437a)
ny =26 (4370)
ng = -28, (437e)
Where @ s Am s Gm s and Bm are material constants, we obtain
09 = (-a,J) + *mil)“i; +2G¢,, - 280, (438)

Equation 438 is the comstitutive equation of Maxwell material. It con-
tains four material constants. It is noted that if we set o and Bm
to zero and integrate Equation 438, we obtain the constitutive equation
of linear elastic material (replacing Gm by G and A by A).

124k, Let us cousider the behavior of Maxwell material under uni-
axisl state of stress defined by Equation 215. For this state of stress,
Equation 438 results in

g, = (-umJl + kmll) + 26 & - 280 (439a)
0= (-amJl + mel) + 26 ¢, (4390b)
where ay is axial stress and él and é2 are axial and lateral

strain-rate components, respectively. Since for uniaxial state of

stress J, = 0, and il = él + 2é2 » Bquation 439 can be written in the

1l 1
following form

61 + (am + 2iim)ol = (xm + :ecm)el + 2xméa (L40a)

a0, = AL + (2xm + acm)ez (Lhob)
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We can elimirate é2 from Equation LY40a by using Equation 44Ob; thus,

_ xm + Gm . 3Bmkm + ume + 2Bme
1 )% * 2 %
BGmkm + 2Gm 3Gmkm + “Gm

(kh1)

Me
|

2 3 1
Denoting (?Gmxm + 2Gm)//(km + Gm) by E (elastic Young's modulus)

2
and (BGmAm + 2Gm) / (3Bm)«m +taG + QBme) by n, » Equation 441 can be
written as

., % 9
E, B = o (th)
LT,

Equation 442 is the counterpart of the differential equation of motion
for a linear spring and a linear dashpot connected in series (Figure 14).
If 9 ics suddenly applied and then held constant 61 = 0 , and integra-
tion of Equation U42 results in a steady linear increase of axial strain
€ with time (Figure 14).

125. Analogous to nonlinear Kelvin solid, we msy develop a non-
linear Maxwell solid by taking n5 =ng = n7 = ng = 0 in BEquation -350.

The constitutive equation of nonlinear Maxwell solid then becomes
Gy = gSyy ¥ Mgy ¥ pfp by ¥ g0y, ¥ o0 (4u3)

Equation 443 can be used to coustruct various classes of nonlinear
Maxwell solid by expanding the response coefficients Ng » soo o My in
terms of the invariants of the stress and strain-rate tensors.

Standard-Linear Material

126. Rate-dependent constitutive relationships can also be ex-
pressed as

8y = 1. (00 v s €50) (L)

Bquation Ll reduces to Equation 436 if dependence on € disappears.
The simplest form of Equation Lul, which is referred to as the
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Figure 1i. Behavior of Maxwell material in
uniaxial stress configuration

constitutive equation of standard-linear materials, is expressed as

*

613 = (.as.,l +A,I, ¢ xgll)an + 268, + 0., - 280, (bLs)

vhere @, » i; . As » 5; . Gs , and Bs are material constants. As
expected, if GS and Aa are set to zero, Equation U5 takes the form
of the constitutive equation of Maxwell material (Equation 438).

127. Let us consider the deviatoric response of standard-linear
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material. From Equation 445 it follows that

§..=2GF + 20 E

i aE1j (446)

13 = 2BgS4;

Equation 446 is the counterpart of the differential equation of motion
for a linear spring and a Kelvin-Voigt element connected in series (Fig-
ure 15). It can be shown that the material constants 5; » G, and

Bs and the parameters of the corresponding spring and dashpot model are
related through the following relationships

G. 2ng
s S'sS
—_ = —= (4lTa)
BS qS + ps
1 ns
= (447v)
285 q'S + pS
G 2p_q
8 878
—_z — (bh7e)
BS qS + ps

If the deviatoric stress (say 312) is suddenly applied and then held
1o = 0 » and integration of Equation L46 results in the fol-
lowing deviatoric strain-time response

constant é

S .8 G -(6_/G_)t
Bp=—2fi-l1-—2=]e = ° (448)
s QBSGS

Equation 448 is depicted graphically in Figure 15. As indicated in Fig-
ure 15, the material exhibits an initial elastic response (similar to
Maxwell material)

8 S
B ,(t = 0) = ;% = 50 (kb9)
8

and an asymptotic elastic behavior (similar to Kelvin-Voigt material)
El (t = ®) = GOes = SO(qs * ps)
2 bs 2qsp8

(450)

kb
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128. Similar to the nonlinear constitutive equations of Kelvin
and Maxwell materials, we may develop a constitutive equation for a non-
linear standard solid containing second-order terms in stress, strain,
and strain-rate tensors. This can be accomplished by combining Equa-
tions 435 (nonlinear Kelvin solid) and 443 (nonlinear Maxwell solid),

i.e.,
I3 = + »
O35 = MoSyy * MSay * Mafincky * Matyy
+ "héikékj + ng0yy * NgdiyOyg {(451)
Various classes of nonlirear standard solid can be developed by expand-
ing the response coefficients Ny s »ee s Mg in terms of the invariants
of the strain, strain-rate, and strzss tensors.
129. Constitutive equations cf viscoelastic materials can also be
formulated in integral forms or series forms with differential oper-
10

ators. Discussion of these types of constitutive equations is beyond
the scope of this report.

146

R DT RTSTEY Ya il Yo A s e



PART VII: CONSTITUTIVE EQUATIONS OF PLASTICITY

130, Comstitutive equations of plasticity are designed to de~
scribe the stress—-strain behavior of hysteretic materials. The basic
assumption employed in develcping these equations is that for each load-
ing increment the corresponding st—ain increment can be considered as
being the sum of the plastic (permanent) and elastic (reccverabdle)
straing, Mathematically, the strain increment temsor de 13 is ex-
pressed as

de

= 3s© Y
= deg, + dsiJ {452)

8 J

where dei j and def j sre, respectively, the elastic and plastic

strain increment tensors. The elastic strain increment tensor is giveu

in terms of incremeutal elastic relation

ae§J =ise—é1+§;—lsm (453)
The elastic moduli G and K can be assumed to be constant or fune-
tions of strags invarients, as dictated by test data. However, to be
consistent vith path dependency of elastic materials, and to eliminate
any possibility of energy generstion or hysteretic behavior during
elastic deformation (see Figure 11), the forms of G and K should be

restricted to

G = G(Eé) (454a)
K= K(Jl) (454b)

During unloading, or during loading where the state of stress is below
a specified state referred to as yield stress, the behavior of the mate-
rial is defined completely by Equation 453. At the onset of yielding
(vhen the state of stress is such that the yield stress is reached), and
during subsequent loading, the material will experience both elastic and




plustic deformation and Equation 452 will govern the behavior of the

material. Therefore, for a complete description of the material we
P
iy

Guidelines as to how the plastic strain increment tensor can be spec-

need to specify the form of the plastic strain increment tensor de

ified were established by Druckerll by introducing the concept of mate-
rial stability. For a stable material, the work done by a set of stress
increments wheun applied on a specimen of the material is positive.
Furthermore, if the stress increments are iemoved, the net work per-
formed by them 4 ring the load-unload cycle is zero or positive, If we
denote the set of stress increments by doij , and denote the correspond-
ing change in the state of strain due to application of dﬁij by deiJ s
then the first condition of stability can be stated as

dcij degy > 0 (455)
In view of Equation 452, the second condition of stability can be ex-

pressed as

doy ey, - doy, de;j = do, deli)J >0 (456)
Equations 455 and 456 provide guidelines for determining the form of
the plastic strein increment tensor. We alsc need to specify the form
of the yield function § , which defines the limit of elastic behavior.
Depending on the speciiication of § , various types of plastis consti-
tutive equations can be establishea. In general, we will be concerned

with ideal and work-hardening plastic materials.

Idesl Plastic Material

131. For an ideal plastic material the yiela Pauction § (or
yield surface) is fixed in the principal stress space, i.e., it does not
move cr expand during plastic deformation. The yield surface is only a
function of stress tensor, or funciic: of invariants of stress tensor

for an isctropic material. Unlimited plastic flow takes place when
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6(013) =k , vhere k 1is a material constant defining the onset of
yielding. During plastic deformation then

d6=—§'ﬁ-d0
acri.j

The stablility condition for an ideal plastic material is specified iv

1 =0 (457)

dg 0 (458)

13 %55
For uniaxial stress configuration, for example, Equation 458 indicates
that during plastic deformation the stress remains constant while the
strain increases. Since all admissible stress increments daij satisfy-
ing Equation 457 must also satisfy the stability postulate given in
Equation 458, it follows that

3P =} 24 (459)

where A is a positive scalar factor of proportionality and is depen-
dent on the particular form of the yield function 4 . Eguation U459 is
often referred to as the plastic fiow rule. Inherent in Equation 459
is the normality condition which indicates that the plastic strain in-
crement (viewed as vector) is normal to the yield surface § . Another
consequence of the stability postulate is the convexity condition, which
requires that the yield surface § must be convex in the prineipal
stress space. In view of Equations 453 and 459, the camplete expression
for the strain increment tensor becanmes
dei,j”%‘t*;(}"sm +f\-a%f-d- (4607

Equation 460 prevails in the plastic renge (df = 0). In the elastic
range, and during unlcading from a point on the yield surface (df < 0),
the behavior of the material is govermed by Equation u53.

132, In order to use Equation 460 we must determine the form of
the proporticnality factor A . This can be accomplished by combinirg

i .




o L I
..;—". R e e Ee o
i

- 3

R R

Equations 457 and 460. From Equation 460 we can determine the stress
increment tensor do

i3
do, = 26 de,, - 20k —ﬁ— +(3- B, s, (461)
Substituting Equation 461 in Equation 457 we obtain
26 -é%: ae;, - 26k 55% 53-6-— :- )dJl oy b1 ™ 0 (462)

We can eliminate dJ , from Equation 462 by using Equation b46Q. Ferom
Equation 460 it follows that

= X -—86—
&, = XK <dIl - A aoﬁ 613 (463)

In view of Equations 463 and 462, the proportionality factor A takes
the following form

——ﬁ-aa ae, +T3K°2Gdl 2 s

. o, ij . 1 30 iJ

R= il 1] 5 (46k)
34 aﬁ+3x-2c(aﬁ 5)'
iioi'j I-)oi:J 6G 13 i3

It is nwcted that all indices in Equation 464 are dummy indices, indicat-
ing the scalar character of A , Equations 464 and 460 can now be com-
bined to give an expression for the strain increment tensor

1 A
aﬂ - 26 .. _af
as, &, e, ¥ g 9 T Son a8
€y =26 Yo %y t| T, aﬁ _.L e ( L, )2 3o, (465)
30 3o

It foliows from Equations 461, 463, and 46L that the stress increment
tensor takes the following repressntation
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36 3K - 2G 3k
A ] dIl aomn 6mn

do,., = 2G 4dE,, + K 41, §,, -
1 3 T g of +3K-2(‘:('86 s )2
]

Lacmn acmn 6G aomn mn

‘ (3!<-_?§--3-Ls )sid+2c;—3-6— (466)

3 Bomn mn aciJJ

In order to use Equetions 465 and 466 we ohly need to define the form
of the yield function § for a particular material of interest. For
a number of engineering materials, particularly scils, the yield func-
i.e.,

tion is generally expressed in terms of Jl and 3;

= I} =
flo ) = (3, » V3p) =% (x67)
For the above specification of { it follows that

of _af o, af AVIE a1 o (458)
3oiJ Wy 3oy, 35 aoiJ 9y i T

Application of Equation 468 in Equations 465 aund 466 resuits in

- .
3kar, M-+ S_ M o 4
as,, aJ 1) Ty VT, = omm
i Y 2 INJ;
A€y =6 *ok Sigt 3 2
af 2 Y
ok (3-) + (-2
L 1 BVJé_

and

s MM




- .
3K I, b S _ 34 s dE

' '\’ [

= 26 aB,, + K aI) &, - 22

9K (é—) .o f24Y

a\JJé

k1 S L g (k70)
33, °13 N \(_ \/—2

Equations 469 and 470 are, therefore, special cases of Equations %465
and 466, respectively, where the yield function § is restricted by
Equation 46T. In the next section we will discuss the procedure by
vhich these equations can be utilized for specific yield functions.
Prandtl-Reuss material

133. Prandtl-Reuss material is the most widely used, and perhaps
the simplest, ideal elastic-plastic material. The yield condition asso-
cigted with the Prandtl-Reuss material is the well-known Von Mises cri-
terion given by

ey
e

dcij

X 13K

f=VNI3=k (k71)

Equation 471 describes a right-circular cylinder in the principal stress
space with its central exis the line of hydlrostatic stress as shown in
Figure 16. When the state of stress is such that Equation 471 is satis-
fied, the material would flow plastically, undergoing plastic as well as
elastic strains. When the stresses are less than those satisfying Equa-
tion 4T1, the material will undergo elastic strains only.
134. In order to obtain the constitutive equation of Pra itl-

Reuss material we simply substitute Equation U471, for the yield function
§ , into Equation U69. Completing the substitution, and considering the

fact that during plastic deformation 3% = k , we obtain

deiJ % * R Gia* o Sn {u12)
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Figure 16. Von Mises yield surface in principsl stress space

Similarly, substituting Equation 471 in Equation 470 we obtain the fol-
lowing expression for stress increment tensor

Gsmn dEmn j
W2 Sy (3)

do., = 2G 4B

1 1 + K dIl )

The quantity § dE in Equations 472 and 473 is recognized as the
rate of work due to distortion. Expanding this quantity with respect to
the plastic and elastic components we obtain

_ e
San 3B = Spp (dEmn * dEin) (474)
Since dEgn = dsmn/ZG (see Equation 413b), Equation 4T4 becomes
Smn dSmn
San Fn = 25 * S B (75)

The quantity Smn dsmn is the increment of the second invariant of
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stress deviation tensor (see Equation 419) and is zero for the Voa Mises

yield criterion. Equation 475 reduces to

mm mn mn mn

S dE =§ a8 (476)

indicating that in the plastic range the rate of distortional work is
only due to plastic deformation. Also, from Equations 472 and 473 it
follows that

4J

de,, =

1 e
—_ = 7\
11 ° 3K de (477)

ii

In view of Equatinn 452, Equation 477 indicates that
D _
deg; =0 (L78)

That is, no plastic volume change can occur in the plastic range for
Prandtl-Reuss material.

135, We can now summarize the Prandtl-Reuss equation in the fol-
lowing manner. During elastic loading V—:T-_é-< k) and during unloading
((aﬁ/aoij)dc. < O), the elastic constitutive equation (Equation 453)

i —
prevails. In the plastic range ( Jé =k and (36/305.3 )doi,j = 0), Equa-

tion 472 (or Equation 473) governs the behavior of the material. The
Prandtl-Reuss constitutive equation can then be expressed as

do,, = 2G dC +KdI161

1 1 J

wvhen VJ! <k or _3_6_“ <0 (47%a)
2 aom i)
oS dE
=26 dE,, +KdI, §,, - —=2_ MO g4

iJ iJ 174 k2 iJ

do
vhen VE' =k and . dg,, = 0 (L79v!}
2 90 1) i)

136. In order to demonstrate the application of Equation 479, we
will examine the behavior of Prandtl-Reuss material under comditions of
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uniaxial strain. For uniaxial strain conditions the strain increment
and strain deviation increment tensors are given as

'del 0 0]
deg, = 0 0 0 (480a)
o o o
2% del 0 0 ]
aE;, = fo -%del 0 (480b)
Lo 0 --]3-‘del-

In the elastic range the behavior of the materiel is governed by Ejua-
tion 479a.

- 4 - - 3x+hc)
dol-(K+3G) del-Mdel-( 5K a7, (481a)
do, - dg, = do. - do, = 26 de. = 22 4J (L81b)
1 2 1 3 1 X ™1

For virgin loading in the elastic range, Equation 481 governs the be-
havior of the material., It should be noted that if the initial state of
stress and scrain is zero, for virgin loading, Equetion 481 can be used
in terms of total rather than incremental quantities. In the uniaxial
strain test

- 1
J=—= (o, = 0,) (482)
2 Vi 1l 2
Thus the material will yield when
L (0, -0, =k (483)
1 2

V3




In view of Equations 481 and 483, the value of vertical stress o, &t

yield becomes

g

/3 (3K+L4G) . _ V3M
1= % k=3 k (484)

Thus, vhen 0, reaches the value given by Equation U48L, the material
yields and continued application of vertical stress causes the material
to move along the yield surface, undergoing plastic as well as elastic
strains. In the plastic range Equation 479a no longer applies and re-
course to Equation UT9b i3z necessary. According to Equation 479b, the

deviator stress increment dS1 in the plastic range is given by

GS dEmn /
—Z 5 (185)

ds, = 2G dEl -
k

1

The rate of work Smn dEmn for conditions of uniaxial strain reduces to

Smn dEmn = Sl dEl + 282 dE2 (486)

Utilizing the fact that S, =dE 0 Equation 486 reduces to

ii

=3 :
smn d.Emn =3 sl dEl (487)

In view of Equations 480b and 487, Equation 485 becomes

as, = 28 g¢ Y (488)
173 172 s |
2_T _3.2
In the plastic range k =J)! = K'Sl and BEquation 488 reduces to
s, =0 (489)
Since dsii = 0, Equation 489 indicates that S, = 0 also, and
do, =4S, +dJ /3 = aJ,/3 (490a

do, = ds, + dJl/3 = dJl.'3 (4gob)
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Equation 490 indicates that the material behaves as though it were a
fluid once it has reached its limiting shear resistance. From Equa-
tions 479b and 480a, it follows that

ey /3 = K de (491)

1
Substituting Equation 491 into Equation 490a, the vertical stress-strain

increment relation in the plastic range becomes

do, = K de, (492)

Thus, the loading slope of the ol versus el curve breaks, or softens,
when yielding occurs and becomes equel to the bulk modulus. Accordingly,
the loading slopes of the principal stress difference-pressure curve and
the principal stress difference-strain difference curve beccme zero.

Since deik
remains constant. Once the material unloads, it behaves as a linear

= 0 , the slope of the pressure-volumetric strain curve

elastic solid again, satisfyiag Equation 481. If unicading is continued
until the lower yield surface corresponding to

-0,) = & (k93)

is reached, the material flows plastically again and Equation L79b
governs the behavior of the material. The foregoing analyses are
depicted schematically in Figure 1T. From Figure 17 it can readily be
seen that for a Prandtl-Reuss material, the vertical stress-strain
curve associated with uniaxial strain configuration would break or
soften vhen yielding cccurs and would remain concave to the strain axis
with continued application of vertical stress,

137. Let us next examine the behavior of Prandtl-Reuss material

under a plane stress condition defined by
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Figure 17. Behavior of Prandtl-Reuss material under
conditions of uniaxial strain




For this state of stress
= 1(2 2
1 = = -
23 (ol + oy 0103) (495)
Thus, the material will yield when

2. 2 2
o] * Oy = 0105 = 3k (496)

1 03 coordinate system
(Figure 18). We will consider a stress path where 03 is held constant

at k while dl is increased. At the start of the test (assume a

compression test), point A in Figure 18, g = 0 According to Equa-
tion 496 the material yields when 0, = 2%k , point B in Figure 18.

Prior to yield the behavior of the meterial is governed by Ecuation 479a

Equation 496 describes an ellipse in the o

P
0’1 01161

7
--//-'—%'k

P
4»0'3.63

'AB AND AG ARE STRESS PATHS
de” = PLASTIC STRAIN INCREMENT VECTOR

Figure 18. Von Mises yield curve for special plane stress condition
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S do, = KG_ de, = E de

E:' 3K + G 1 (497a)
v. AR
NG . [3K - 26 _
% . d€3 = - (m) del = -y del (497v)
E O de, = deg (49Tc)
E- :
: At point B the material yields and it follows from Equation 459 that
deg =0 (498ea)
b _ Y
dey, = -de; (4o8b)

A Unlimited plastic deformation tekes place at yield. It is noted from

E ' "LS Equation 498 that, as expected, deik = 0 . If we now repeat the same
”% test and change the direction of 9y (i.e., & tension test), we find
‘g that the material yields when o, = -k , point C in Figure 18, At
. 'fﬁ point C the material yields in tension and from Equation 459 it follows
»3 that
ui ded = 0 (499a)
T ae] = -ae) (499b)

The concept of normelity can be demonstrated from this simple example by
superimposing the plastic strain cocrdinates on the stress coordinates

|
i .n Figure 18. As shown in Figure 18, in the case of the compression
i

| fod test de§ = 0 and the plastic strain increment vector def is per-

pendicular to the yield surface at point B. In the case of the tension

ol test, on the other hand, de{ = -deg indicating that the plastic strain

increment vector is pervendicular to the yield surface at point C.
Drucker-Prager material
138. The Von Mises yield condition was modified by Drucker and

RN
' 9 Prager12 to include the effects of the hydrostatic stress on the shear-

ing resistance of the material. The yield function 4 was assumed to
take the following form

6 = 3;,_ -eJd =k (500)
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vhere G, 5 8 positive material constant, represents the frictional
strength of the material. Equetion 500 describes a right circular cone
in the principal stress space (Figure 19). Substituting Equation 500

%
!

Figure 19. Drucker-Prager yield surface in
principal stress space

into Equation 469 we obtain the following stress-strain relationship
associated with the Drucker-Prager yield function

G
—==75__dE - 3Ko, dI
ds1 dJl ‘rgg mn mn £ 1
de,, = +—==34
iJ 26 9K iy gr'xf. . G
Siy
N 0845 (501)

From Equation 501 it follows that
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G -
3} Smn dEmn - 3Kaf d;l
acl, = 30, 2 (502)

9Ka§ +G

indicating that for Drucker-Prager material, as a consequence of depen-

dency of yield function on hydrostatic stress, plastic deformation is

§
H
{
§
E

accompanied by volume expansion (it is noted from Equation 502 that if
G = 0 the plastic volumetric strain is zero also). The increment of
total volumetric strain dIl can be determined from Equations 501 and

500, From Equation 501 we have

G ,
N = (Gmn e - J, dIl/3) - 3Ka, 4T,
1 2 (503)
al, =3¢ - 3ap 2
l OKay, + G

Solving for dIl and cons? lering the fact that during plastic deforma-

tion 3% -ad, =k (Equation 500), we obtain

Viy a3,

30,
dxl = -—?ﬁﬁﬁ;_- 9Ka + G) “ % %m damn (504)

The increment of plastic volumetric strain deik then becomes

R A 3, ar,
...._____. —_— - — cae
A€y = ~3xak (9K°‘ ¥ G) % %mn %mn T X (505)

It should be pointed out that the volume change is due to scalar non-
linzarity and represents uniform dilatation. For example, consider a

simple shearing siress defined.by the following stress increment tensor

From Equatious 501 and 504 it follows that for this state of siress
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That is, there are no normal deviatoric strains associated with the
volume expension.

139. Substituting Equation 500 in Equation 470 we obtain the
following relationship for the stress increment tensor for the Drucker-

Prager material

G
= Smn dEmn - 3K0.f dIl
2
do,, = 26 4E,, + X 4I, §,, ~
i iJ 174) 9Ka§ +G

G !
S,, - 3Ka_§, 08
ﬁ ij 713 (508)
2 y
Equation 508 (or Equation 501) governs the behavior ¢f Drucker-Prager
material., The effect of the dependency of the yield function on hydro-

static stress can be further demonstrated by examining the bebavior of

x

Drucker-Prager material under uniaxial state of strain (Equaticn L80).
The elastic behavior of the usterial is given by Equation 481. The mate-
rial yields when

1 -
7_; (0, = 0,) - aglo; + 20,) = k (509)
In view of Equations U481 and 509, the value of vertical stress ol at
yield becomes
l=‘/§L3K“ﬁlk= 3 M (510)

66 - 9v3 Ka, 26 - 33 Ko,

g

It is noted that if aq is set to zero, Equation 510 reduces to £qua-
tion 484, the corresponding expression for Prandtl-Reuss material. The
effect of ae in this case is to increase the value of the vertical
siress 9y at yield. Wwhen 9y reaches the value given Ly Equation 510,
the material yields. Continued application of vertical stress causes
the material to move along the yield surface, undergoing both elastic
and plastic deformation. From Equation 508 the incrementsl relation be-

+ -een vertical stress and verticel strain becomes
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de (511)

h)
do,=(1<+—e de. -
+ 3 1 9Kuf,+c 1

Again it is noted that when a,
Equation 492, the corresponding expression for Prandtl-Reuss material.

is set to zero Equation 511 reduces to

As was pointed out previously, for Drucker-Prager material plastic de-
formation is accompanied by volume expansion (see Equation 502). Accord-
ingly, using Equations 504 and 509, we obtain the following incremental

relation for volumetric stfain in the case of uniaxial strain test

23 )
) 9Kaf ( 3 G - 3Kuf

= (512)
1 91:af, +G

aJ dI. + 3K 4I

1 1

When an is set to zero, Bquation 512 reduces to the corresponding

expression for elastic material. The increment of plastic volumetric

strain then becomes

a.(9Kay 2¥3 G)

aJ, (513)

de

P _ .
ka1 + 2/3 a))
In order for the uniaxial strain-stress path to reach the yield surface,
the following condition should hold
._Z_G._) 301‘
/3 K

Therefore, as expected, the increment of plastic volumetric strain is

(514)

negative (expansion).

Work-Hardening Plastic Material

146. In the case of work-hardening plastic material, the yield
surface § 1is not fixed bLut expands, or translates, es plestic defor-
mation takes place. The material can then sustain stresses beyond those
required to reach the initial yield condition. Therefore, we can use a

loading concept in the case of work-hardening plastic material according

to the direction of the stress increment tensor doiJ (vieved as vector).
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During loading from a point on a given yield surface the stress vector
is pointing outward and thus (aﬂ/acij)daiJ > 0 . During unloading the
stress vector is pointing inward and thus (36/3013)d013 < 0 . Accord-

ingly for work-hardening plastic material we define

28 do,, >0 loading (5158.)
30, i}
id
séi— do,, < 0 wmloading (5150b)
°i3 i

The condition (aﬁ/acij)doij =0 (i.e., when do,, is tangent to yield

J
surface) is known as neutral loading and produces no plastic deformation
in the case of work-hardening material. The stability condition for

work-hardening plastic material is given ms

doij deiJ >0 (516a)

P
dogy degy 2 0 (516b)

where, unlike th= ideal plastic material, the equality sign in Equa-
tion 516b holds only when dsgj = 0 . For work-hardening plastic mate-
rial Druckerll has shown thet the expression for plastic strain incre-
ment tensor is similar to Equation 459 where the proportionality factor
A depends on stress, plastic deformation, and history of plastic de-
formation. We can, therefore, use Equation 460, in conjunction with
the loading conditions given by Equatimn 5195, for caleulating the styain
increment tensor. During loading from a point on the yield surface
(<86/a°ij)d°ij > O), Equation 460 governs the behavior of the material.
In the elastic range, and during urloading from a point on the yisid
surface ((36/3°1J’d°15 < O), the behavior of the material is govcrned by
Equation 453. Wnen (3f/d0, Jdoy, = 0 (nevtral loading), de}i"} = 0 and
Equations 460 and 453 become idantical (thus establishing continuity at
a load-unload interface),

141, We now adopt a yield condition of the following type

§ = 5(ciJ . cfm) = x (517)
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for strain-hardening material. Equetion 517 indicates that the yield
surface is not fixed in the principal space and that it changes as
plastic deformation takes place. We further assume that k is a con-
stent. Following the same procedure as was used to derive an expression
for R in the case of ideal plastic material we obtain

24 3K ~ 26 54
50, . €55 Y g 43 3o, %4y
ij id
(518)

A=
ag& azL + T8 ('3%6" 61352 - _%L %ﬂ"
ij ij ij / 3:»:1'j i)

Equation 518 is the expression for thg proportionslity factor A 8880~
ciated with the strain-hardening yield condition given by Equation 517.
It is ‘noted that Equation 518 reduces to Equation 464 when the dependency
of the yield function on the plastic strain disappears (i.e., ideal
plastic material). In view of Equations 518 and 460, the strain incre-

ment tensor associated with the yield condition of Equation 517 becomes

e Lt D s AAA S A L S

VAN g e g A d

rl

i

L ds dd

? de, = -:il + = 6

. [ —35- de + 3K6' 26 g7 M4

3 G 1 3¢ ~—mn a4

i * > 30, (519)
¢ 35 2G _ af _of i

o 30 G ao 2P 30

We can also derive an expression for the stress increment tensor

doiJ = 2G dE13 + K dIl Gid
3 O
30 %m Tdfl 30 ‘mn
_ mn
o a4 ,x-26( of . 3 3
d0__ 3¢ 6G 30 mn P 3
mn mn mn 13 mn
u nn o
3K - 2G 36 8‘
* [( 3 aamn lsmn) Gid + 26 3oid] (520)
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For a number of engineering materials, soils in particular, the yield

function f is expressed in terms of J

1

-:t

3 2 3

and eik s, 1.e.,

‘(oij s € )-‘ 6(Jl . J' , ekk) (521)
For the above specification of § , Equations 519 and 520 become
i 3 . G af 1
3K aT + =5 gE
as,, aJ L ATy aWTy ™
ds =—-i'i+._.2:6 + 2
i 2G 9K "iJ 2
o (Y 4 of AN 2 o
aJ a7 ap 3J
b 2 kk -
« (oo, e =5 ) G2
1 2 Jé 3 V 2
and -
[ 3k ar EJL —ﬁ;—smn a®
V 9 Jé
doij = 2G dEiJ + K dIl Gij
9 %_) of 26X - 5 )
1l an" aekk l-
x (3¢ A 5 ——ﬁ—s (523)

&Jl i}

N

It is noted that Equations 522 and 523 reduce to Equations h69 and 470,

respectively, when the dependency of the yield function on eik

disappears.
142, In order to demonstrate the application of Equation 522 (or

Equation 523) let us consider an elliptic yield function defined by the
following equation (Figure 20)
) \Ij_‘T ”
5(J1 N Y) =3 -9+ q2

Equation 52% has been used successfully for modeling the stress-strain
Yehavior of earth materials.l3 For a first-order approximation, the

=0 (524)

variable Y , which controls the expansion of the yield surface, is
assumed to take the form

(525)
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Figure 20. Work-hardening elliptic yield surface
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vhere A is a material constant which must be determined experimentally.
In order to obtain the constitutive equation for the assumed work-
hardening yield surface we substitute Equation 524, for the yield sur-
face § , into Equation 522. Completing the substitution and consider-
ing the fact that

y-
¢
!
g.
|
b,
‘
‘
‘p
b

R (526)
: P P
aekk Bekk
we obtain
2
as;, a7 3KQ (2.7, - Y) dI, + 26S__ dE
1 1 Y. 1 mn mn
TR TR U by 2 s T .
i - t s - Y
9KQ (2Jl Y) + U6Ty + AJ1(2J1 x)

x [Q2(2J1 - Y)GU R Sij] (527)
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143. Let ns now examine the behavior of Equation 527 under hydro-
static state of stress (Figure 6a). For hydrostatic state of stress
J, =Y and Equation 527 becomes

1
aI =L§K_+—A.2.dJ =-I]é—-dJ
e

— (528)
1 KA 1

1
It should be noted that for this state of stress the same results could
have been obtained directly from Equations 452, 453, and 525 without

recourse to Equation 527. For virgin loading, Equation 528 can be in-

tegrated to yield {assuming zero initial pressure and volumetric strain)
J, =KI (529)

During purely elastic deformation (Equation 453)
a7, = 3K 4T, (530)

Since K_ < 3K (Equation 528), it follows that plastic compaction pro-
duces an apparent softening of the effective bulk modulus. Figure 21
depicts the behavior of the material under hydrostatic state of stress.
The behavior of the material from point 1 %o point 2 is governed by
Equation 529 (the material undergoes plastic as well as elastic deforma-
tion). If the material is unloaded froa point 2 to point 3, and then
reloaded from point 3 to point 2, the behavior is elastic and the re-
sponse of the material is governed by Equation 530.

1k4, Let us next examine the behavior of Equation 527 under a
constant-pressure shear test (Figure 6c). The qualitative behavior of
the model is depicted in Figure 22. The material is first hydro-
statically loaded from point 1 to point 2. The response of the material
from point 1 to point 2 is governed by Equation 529 snd is identical to
that shown in Figurc 21 (Lhe meteriel undergoes both plastic and elastic
deformation). The material is then sheared from point 2 to point 3 by
increasing J! while J, is kept constant. Since J, is kept con-

2 1 1
stant, all volume changes from point 2 to point 3 are plastic. From
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Figure 21. Behavior of work-hardening
elastic-plastic material under hydro-
static state of stress
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: Figure 22 Behavior of work-hardening elastic-plastic
material during constant-pressure shear test

: Equation 459 it follows that the increment of plastic volumetric strain
is given as ;

ak, = 3k %1}; (531)

In view of Equation 524, Equation 531 becomes

FEITE SRR, Ko}

v _ .3
dey, = 34\(2.11 - Y) (532)

Since A is positive, Equation 532 indicates that the plastic volumet-
ric strair during the shearing process is positive (compaction). At
point 3 degk 0 (normsality condition) and the yield surface ceases tc
expasnd. The shearing response of material, expressed in terms of J'

versus V , thnen reaches its maximum value (for the particular value

o




of Jl at point 2) asymptotically at point 3. As shown by the dashed |
lines in Figure 22, if the material were to unload from any point during :
the shearinrg process it will behave as a lineer elastic material. This :
simple example points out the basic difference between ideal and work-

hardening plastic materials. That is, for ideal plastic materials the

yield surface is fixed and does not expand during plastic deformation.

Unlimited plastic flow takes place at the onset of yielding. In the

case of work-hardening material, on the other hand, the yield surface

moves, or expands, causing the material to harden as plastic deformation

takes place.
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