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PREFACE

p

This investigation was conducted by the U. S. Army Engineer

Waterways Experiment Station (WES) under Department of the Army

Project hA161101A91D, Ii-House Laboratory Independent Research Program,

sponsored by the Assistant Secretary of the Army (R&D).

The investigation was conducted by Dr. B. Rohani during the

calendar years 1975 and 1976 under the general direction of Messrs. J. P.

Sale, Chief, Soils and Pavements Laboratory, and Dr. J. G. Jackson, Jr.,

Chief, Soil Dynamics Division. The report was written by Dr. Rohani.

Directors of WES during the investigation and the preparation of

this report were COL G. H. Hilt, CE, and COL J. L. Cannon, CE. Tech-
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MECHANICAL CONSTITUTIVE MODELS FOR ENGINEERING MATERIALS

PART I: INTRODUCTION

Background

1. Development of mechanical constitutive models (defined as

load-deformation or stress-strain relationships) for engineering ma-

terials has received considerable attention in recent years, particu-

larly in the field of geotechnical engineering. The primary reason for

such efforts is the fact that with the advent of high-speed electronic

computers and the development of new methods of numerical analysis, a

variety of complex engineering problems can be solved provided realistic

constitutive relationships for the materials of interest are available.

Stress-strain relationships for a number of materials, such as soil,

rock, and concrete, are often nonlinear even when the magnitudes

of the strains involved are small. This type of nonlinear behavior,

referred to as physical nonlinearity, has been the subject of investiga-

tion at the U. S. Army Engineer Waterways Experiment Station (WES) since

early 1960; special emphasis has been placed on modeling the mechanical

behavior of earth materials. During the fall of 1971, an elementary

course on mectani,.al constitutive relationships was offered at the

Vicksburg Graduate Center, WES, and a series of lecture notes was pre-

pared for use by the students taking this course. The purpose of the

lecture note3 was to acquaint the students with some of the basic

physical concepts and mathematical tools availaile for developing con-

stitutive relationships. The lecture notes were purposely kept to an

elementary level, and were prepared vith the foim-wation of constitutive

relations for earth materials in mind.

Objective

2. The objective of this report is to document the lecture notes

•L "



in a format that can be used for engineering training throughout the

Corps of Engineers, U. S. Army, or as materials for self-study and

referpnce pruposes.

3. Some of the basic mathematical tools necessary for the develop-

ment of constitutive relationships are presented in Part II. Included

in Part II are: a brief discussion of indicial notation, matrix

algebra, development of basic equations related to eigenvalue problem,

the Cayley-Hamilton theorem, and Cartesian tensors (with emphasis on

second-order tensors). A number of numerical examples are included in

this part of the report in order to help the reader to better understand

the subject matter. Part III includes a summary of appropriate equa-

tions from continuum mechanics required for this elementary presenta-

tion of the subject of constitutive relationships. Constitutive

equations of elastic materials are developed in Part IV. The so-

called incremental constitutive equations are discussed in Part V.

Constitutive equations of simple viscoelastic materials are discussed

in Part VI. Constitutive equations of plasticity are contained in

Palt VII.



PART II: MATHEMATICAL PRELIMINARIES

4. Some of the basic mathematical tools necessary for treatmen'

•nd understanding of the physical concepts to be presented in the en-

suing parts of this report are developed in this part. The development

io, kept to an elementary level and is confined to orthogonal Cartesian

coordinate system. In order to establish a common basis of terminology

and notation, both indicial and matrix notations are briefly discussed.

However, indicial notation is used for most of the presentations

throughout this report in order to keep the number of equations to a

minimum.

Indicial Notation

5. The development of indicial notation is based on a number of

agreements motivated by m4.niaturization of a large system of equations

or variables. For example, if three variables are denoted by X1 ,

X2 , and X, we can simply denote them by X, , where the subscript

i is called an index and we agree that it takes on values 1, 2, and 3

(three-dimensional geometry). Similarly, the system of equations

A, = X 1 + Y A A2 = X2 + Y2 , and A 3- X3 + Y3 can be expressed as

A, = Xi + Y ' An index which is not repeated in any single term is

called a free index. Thus, the index i in Xi and A= Xi + Yi is

a free index. Furthermore, a free index must appear in every term of

am expression. Systems which depend on one free index, such as X

and Ai , are called systems of first order. The terms X, , X2

and X are called the components or elements of the system. A first-

order system, therefore, has three components. Systems which depend

on two free indices, such as Aii , are called systems of second order.

Since the indices take on values 1, 2, and 3, a second-order system

has nine components. Similarly, we can define systems of third order

which depend on three free indices and have twenty-seven components,

e.g., A In this report, however, we will be dealing mainly with
ijkf

first- and second-order systems.



6. If an index appears twice in a term it is called a dummy index.

For example, the index i in A.i is a dummy index. By agreement, a

dummy index implies that the term is to be summed with respect to this

index over the range of the index. Thus Aii = All +A22 + A33
X Yi = X1Y1 + X2 Y2 + X3 Y3 , and Sij = 1 (C 1 1 + CA2 2 + C33 .

It is noted that the indices i and j in the last expression are

free indices. The particular letter used for the dummy index in an
operation is immaterial; thus, Aii - App = Atom , XiYi = XpYp = XmYm

and Sij = CmmEij = CkkEij . This characteristic of dummy indices is

very useful for manipulating several expressions that have common

indices. For example, consider the following expressions

A - BC (1)
m rmr

B =D E (2)
r mr m

In the first expression the index m is free and the index r is a

dummy. In the second expressiot, the index r is free and the index m

is a dummy. The index r in Equations 1 and 2 is i-alled a connecting

index. If we substitute the second expression into the first expres-

siin and use the same letters for indices, we obtain

A =D E (3)

Equation 3 is meaningless since it is not consistent with the rules

(agreement:-) of indicial notation; the index m appears three times

on the right-hand siie of this expression. To obtain the correct ex-

pression we must first •werhaul the dummy index m in Equation 2.

Using the useful characteristic that the particular letter used for a

dummy index is immaterial, we can write

B =D E (I4)
r Dr p
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Substituting Equation 4 into Equation 1 we obtain

S~~A -=D E C(5
m pr pmr

Equation 5 is notationally correct; there is no question as to which

index is the free index. Expanding the dummy indices p and r over

their range, Equation 5 takes the following form

A m D Dpl pCml + Dp2EpCm2 + Dp3EpCm3

!DIEICal + DI2EICm2 + D1 EICm3

+ D2 1E2Cml + D22E2Cm2 + D23E2Cm3

+ D31E3Cml + D32E3Cm2 + D333m3 (6)

Equation 6 (or Equation 5) has three components. The first component,

for example, becomes

A, D11EIC11 + D12EIC12 + D131EC13

+ D21E2C 11÷ D22E21C2 + D23E2C13

+ D E3C + D E3C + D E C (7)
3.13 11 32 312 33 313

which is quite long in comparison with the compacted indicial form.

7. Another agreement in establishing indicial notation is the use

of commas in the subscripts to represent partial derivatives. Thus,

we agree that

U •(8b)

R "T 7



Similarly,

au au
E -- a -(

nk aX n 5,n UrnUm,k

In Equation 3,-: im s a dummy index and n and k are free indices.

Expanding tne •anmmy inde: r , ",quati• 8c takes the following form

Er n Ul,nU,k +2, U2,k + U3,n3,k (9)

Equation 9 (or Equation 8c) has nine components. For example, the El 3

component becomes

E U1 U + U U +1 U 1(0
13 1,1 1,3 2,192,3 3,1U33 (10)

8. In indicita notation the condition of symmetry of a second-

order system is denoted by

Bij Bji (11)

The condition of skew-symmetry is denoted by

Cij =-Cji (12)

Equation 11 results in conditions

B12  B21

conditionsB23 B 32 of symmetry (13)

B31 H 13

8 i!:



whereas Equation 12 indicates that

Cll 11C 22 =C 3 3 =

2 C 2 ) conditions of

C 2 -C skew-symmetry (lh)C23 -32

C 31 -C13

Using the above conditions, an asymmetric (i.e., neither symmetric nor

skew-symmetric) second-order system Tij can be expressed as the sum

of a symmetrical system 1/2(Tij + Tji) and a skew-symmetrical system

112 ij - Tj i.e.,

T.= !2(T j + T1j) + 1/2(Tij - Ti) (15)

9. In using indicia. notations, one often deals with quantities

that have no free index. Such quantities are referred to as scalars

or zero-order systems. For example, the following quantities are

scalars

A

A nB (16)

D D Dmn np pm

It is noted that ail indices in Equation 16 are dummy indices. The ex-

* panded form of the last expression in Equation 16, for example, becomes

9

:• w * w
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D DD D DifD + D D Di + D D D
mn nwopm ln nppl 2n np p2 3n np p3

D= D Dl +D D D + D DpD
1ilp pi 12 2p p1 13 3p p1

+ D Di D + D +D
21 lp p2 + D2 2 D2 pDp 2 + D2 3 3p p2

+ D Di D + D Di D +D D Di
31Dlpp3 32D2p p3 33D3p p3

=D Dl Dl + D D1D +D D D1
11 11 11 11 12D21 11 13D31

+DID3DII + DDI3 + DID3D
12 21 11 12D22 21 122331

+Dl D D +D fi Di +D D Di
13 3111 13 32 2 13 3331

+ D Di D + D DD + Di D Di
21 1112 21 12 22 2113 32

+ D22D21D12 + D22D22D22 + D22D23D32

+D Di D +D Di D +Dl D Di
23D31D12 23D32D22 23D33D32

+ D31DllD3 I D31D12D23 + D31D13D33

+ D3 2 D2 1 D1 3 + D3 2 D2 2 D2 3 + D3 2 D23 D33

+ D33D311D3 + D33D32D23 + D33D33D33 (17)

The compactness of indicial notation is once again demonstrated by the

F :above expansion.

Matrix Algebra

10. Another convenient method for representing a large number of

equations or quantities is through matrix notation. A matrix is an

array of numbers or components of a system. For example, the components

of a first-order system Xi can be arranged as

10

!.l



SX

or{X} X (18a)

SX3

'," ~ or .

S[x] -- [x x2 x3] (18b)
1

Equation 18a represents a 3-by-i (3 rows and 1 column) column matrix

whereas Equation 18b represents a 1-by-3 (1 row and 3 columns) row

matrix. Similarly, the components of a second-order system A can

be arranged as

All A12 13

(A] A A A (921 22 23 (19)

A A A31 32 33

Equation 19 represents a 3-by-3 square matrix. We are mainly interested

in 3-by-3 matrices in this report. Some useful types of matrices are:

a. Diagonal matrix in which all elements other
than those on the diagonal are zero.

•)BII 0 0

0 B 0 (20a)1 22
x0 0 B 3

9' 1 b. Unit matrix in which all off-diagonal elementsJ, -- are zero and every diagonal term is unity.

11 ,en
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0 0 o o(20b)

c. Symmetrical matrix in which off-diagonal terms
are symmetrical.

B11 B1 2 B13

1B B 12 B22 B23 (20c)

1B3 B23 B33

d. Skew-symmetrical matrix in which every diagonal
term is zero and off-diagonal terms are skew-
symmetric.

0 012 013

[c] = 1cz2 o C2 3  (20d)

-C13 -C2 3 0

In indicial notation the counterparts of Equations 20c and 20d are given

by Equations 11 and 12, respectively. Similarly, in indicial form

Equation 20a can be expressed as Bij = 0 for i # .

11. The transpose (A]* of a square matrix (A] is obtained by

completely interchanging every row with its corresponding column:

1123 A31

[A)*] 12 A22 A 32  (21)

A13 A23 A33 J

12



In indicial notation Aij= Aji In view of Equations 11 and 12, in

the case of a symmetric matrix B =, = Bij , and in the case of a skew-

symmetric matrix Cij = -Ci.

12. Matrices obey certain prescribed rules of matrix a±gebra.

Addition or subtraction of matrices having the same number of rows and

the same number of columns is accomplished by adding or subtracting

corresponding elements. For example, consider the following 3-by-3

matrices:

all 812 a13

([a]= a21 a22 a23 (22a)

a31 a32 833J

b11 b1 2 b1 3

[b]- b21 b22 b23 (22b)

*1 b b31 32 33

TNo 3-by-3 matrices can be obt-Uned by adding or subtracting matrices

(a] and [b( thus,

al b I

1 ., a1 12 b1 2 a13 + 1 3

(c] a] +(b] a21 + bpl a2 2 + b2 2 a2 3 + b 233 (23a)

a Y, b 31 - b 32 33 + b33

Fll .1 - 1 a 1 2 -b 1 2 a1 3 - 1 3

(d] (a- [b] - a2 1  b2 1 a22 b 22 a23 - b2 3  (23b)

a31 - ba 3 2 - b32 a3 3 - b3 3

13
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In indicial notation the second-order systems [c] and [d] can be ex-
pressed by cij = aij + bij and dij = ij - bij . A matrix can be

multiplied by a number k by simply multiplying every element in the

matrix by k . Two matrices can be multiplied together if they are

comformable, i.e., if the number of columns of the first matrix is equal

to the number of rows of the second. A p-by-q matrix and a q-by-s

matrix are conformable and can be multiplied together. The result of

multiplication is a p-by-s matrix. For example, consider the multipli-

cation of matrices (a] and (b] given in Equation 22:

(a][b] = [e] (214)

The matrix (e] is a 3-by-3 matrix whose components are obtained from

the following rule, expressed in indicial notation, governing matrix

multiplication:

eij aikbj (25)

(e.g., e 2 3 = a2 1b 1 3 + a 2 2 b2 3 + a 2 3b3 3 , e22 a 2 1b1 2 + a 2 2 b2 2

+ a2 3b 3 2) . From Equation 25 it should be noted that [a][hbi [b][a]

For further examples of matrix multiplication consider the following:

[a)2 [m]

[a,]3 [n]

(a][(b]e] =[(p]

(26)

(a] 2 Eb] ( (q]

(a] 2 (b]2 = 2 t]

(atlbila]E[] Es]

l. . . . . . . . . . . . . . -i . , - , i i.. . i 4l
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Using the rule governing matrix multiplication (Equation 25) it followA

that the components of matrices (m] , (n] , (p] , (q] , (r] , and

[S] take the following forms

m amij 'ak kj

nij =aikakfafj

Pij - kkfafJ
(27)

=j a ikkfbfj

rij aikakfbfgbgj

*

sij -aikbkfafgbgj aibkfagfbggjj

Note that in the last expression in Equation 27 the definition afg = agf

is invoked. Furthermore, it should be noted that in Equations 25 and

27 the indices i and J are the only free indices.

13. The sum of the diagonal terms of a square matrix is called

the trace of the matrix and is denoted by tr (e.g., trace of

[a] - tr[al - a,, + a2 2 + a3 3 ) . In indicial form,

trta]= aii (28)

Similarly, in view of Equations 25 through 27,

tr([a][bj) -a ik~i

tr[a 2 = a ik (29)

tr(al3 = aik3 kaf

15



All indices in Equation 29 are dummy indices, indicating that the trace

of a matrix is a scalar. Also, tr([a][b]) = tr([b][a]) even though

[a][b] # [b][a] . This can be verified by expanding the indicial form

aikbki bikaki

14. The determinant of a square matrix is denoted by det(a] , or

simply lal , and is expressed as (for a 3-by-3 square matrix)

hll a,2 a13

a21 a2 2 a2 3  f a11 (a2 2a3 3 - a2 3 a32 ) - a12 (a2 1 a3 3 - a2 3a1)

Ia 31 a32 &33 + a1 3 (a2 1 a32 - a22a31) (30)

It is noted that the determinant of a matrix is also a scalar. In con-

junction with the determinant of a matrix we define the minor and

cofactor. The minor of an element a.U of the matrix [a] is obtained
by eltlg he thro ad th i

by deleting the i th row and .j column and forming the determinant of

the remaining terms. For example, the minor of a1 2  element isi12

given as

a&21 '23
minor of a12 a 3 3131 = a21a33 - 2 3a3 1  (31

The cofactor of an element a j is the minor of that element with a

sign attached to it according to the following criterion

cofactor of a i = (-1)i+j minor of aij (32)

Thus, the cofactor of a12 element is given as

cofactor of a12 ' (-1)1+2 (a 21 a 3 3 - a23a-3 i)

In view of the definition of minor and cofactor the determinant of

16



the matrix [a] can be expressed as

lal = all(cofactor of all) + a 1 2 (cofactor of a 1 2 )

+ a3 (cofactor of a13) (34)

!t should be pointed out that Equation 34 is not unique in calculating

the determinant of the matrix [a] . The same final products will re-

sult from expansion on columns or other rows, e.g.,

lai = al 2 (cofactor of a12+ a 2 2 (cofactor of a 2 2 )

+ a3(cofactor of a) (35)32 32

15. Finally, we define the inverse [a] of a square matrix [a]

such that

[a]-1(a] [a][a]-l =Ij (36)

The inverse matrix is given by

[a]-t OT)

where the matrix (A] , called the adJoint of (a] , is determined by

replacing the elements of [a] by their corresponding cofactors; thus,[ 522a33 - a32823 '32a13 - '12'33 a12'23 - "22a131
(A) a 31823 - a2,a33 '11'33 - '31'13 a21a13 - "11'23 (8

•- "31a22 al2 - a132 alSg22 - 12a2.11

From Equation 3T it follows that the inverse exists provided &al # 0

Solutions of Linear Algetraic Equations

16. Consider a set of linear algebraic equations

17
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8.ll1 +a1212 + a1 3x3 = k I
a21xI + '22x2 + a23x3 k2  (39)

31xI + a' 2x2 + a 33x3 = k3

In indicial notation Equation 39 can be expressed as

aij=J ki (h0)

In matrix notation Equation 39 takes the following form

[a]{x} = {k) (hi)

where [a] is a square matrix of coefficient-, {x) is a column matrix

of unknowns, and {k} is a column matrix with known elements. The

objective is to solve for the elements of the column matrix {x} . Pre-

multiplying both sides of Equation 41 by (a]-I results in

[a '([al{xl = [a]-l(ki (42)

or, in view of Equation 36,

NU)= {x) Wa 1{4 (43)

From Equation 43 it follows that once the inverse of the coefficient

matrix is determined the solution for (x) is obtained by performing

the indicated matrix multiplication.

Eilenvalue Problem

17. In a number of engineering problems the following system

of algebraic equations is often encountered

18



where the elements of the column matrix {x} are the unknowns to be

determined, X is a scalar parameter, and {(0 is a null column matrix

(all elements being zero). According to Equations 43 and 37, a non-

trivial solution of Equation 44 exists only if the determinant of the

coefficient matrix vanishes, i.e.,

allX a12 a13

a21 a22- 8 a23 0 (45)

a a_.. a -

31 asp 33

The expansion of the above determinant yields the following cubic equa-

tion in X

3 a l2 + II - III = 0 (46)

where
I Ia - tr[a] ahnm (4'ia)

II a sum of the minors of the diagonal elements of (a]
a

aI: 8 iIal 8 3HI 81
'32 '3 31 a33 821 '22

Equation 46 is called the characteristic eqiuation of the matrix (a]
18. The three roots X I , Iand X3 of the characteristic

equation are called the characteristic values or eittenvalues of (a]

For every eigenvalue Xi (assuming that all three roots are distinct)

"Equation 46 is satisfied and hence Equation 44 has nontrivial

solutions:

19



xl
X = x} (148)

x~t

Every such solution of {x) is called a characteristic vector or

eigenvector of [a] . The eigenvectors {x i)) corresponding to

eigenvalues A can be grouped together to form a square matriA re-

ferred to as a modal column matrix. i.e.,

xx] '1 1 l 122 '13[ f21 f 22 f23 [21 722 723

31 3ý L 3132 33]

For ,•ach eigenvalue and the corresponding eigenvector, Equation* 44 can

be written as

[a•]{x(xi) A i{x(Xi)} (50)

Since (a] is a 3-by-3 matrix, Equation 50 can be expressed in the

following form for all of the eigenvalues X1 , A2  and A3

'11 '12 a13] l [7 127x31 r~l x.12 x13] X1 0' 01
CB21  ý! - ii 1211-221231 1121122123110 X2 0 j (51)

[1a3 &2 a33 j x~l 13ItY33j x~lX 3 0~ X O 3J

Equation 50 is also satisfied if each eigenvector is multiplied by an

arbitrary constant ci , i.e.,

talci~x(Ai)} = ciAi(x(Ai)) (52)

Therefore, an eigenvector is indeterminate to the extent tha% it can be

multiplied by an arbitrary constant. Selecting an eigenvector

20



{Cx)} c x (53)

i'? •at' • i)

appropriate to eigenvlue Xi ,the corresponding modal column matrix

becomes

r 1 2 13] Y13
=U 021 U~22 U23 '12 c2x22 x2

. 31 32 '33 '2'32 Y33

X2 '22 "3 0'
X3 X0 10 cJ (54~)3 3 33.

It is observed from Equation 54 that a modal column matrix is indeter-

minate to the extent thLt it can be postmultiplied by a diagonal matrix

of arbitrary constants ci . Nov utilizing the modal column matrix
Equation 51 can be expressed as

(i[ala] = [IdtA,] (55)

where tAj is a diagonal matrix with elements X 1 X2 ' A 3
Premultiplying Equation 55 by [l("1 we obtain

[il' 1 (a](u] =(56)

Poatmultiplying Equation 55 by (L 'V1  gives

(a] = ) . ]-z (5T)

From Equation 56 it is observed that the modall column matri'x [u

which Is found by grouping the eigewveetors of [a] diagonalizes the

21



matrix [a] . Furthermore, the elements of the diagonalized matrix are

the eigenvalues of [a]l . This diagonalization process is an important

part of the eigenvalue problem and its significance will be realized

when dealing with second-order systems.

19. As an example of an eigenvalue problem, consider the follow-
ing system of equations

(2 - X)x - x2 +x3=

-Ax + (3 - X)x2 + 7x3 0

-8xj - X2+ (11 - )x3 0

In matrix form the above system of equations is expressed as

-8 7 -1 0 10 x2

-8 ~ - -111 00l]J) x3I 1

or (see Equation 44)

([a] - Xlj){xl - {01

The characteristic equation of (a] is given as kSee Equations 45

and 46)

2 - -1 1

-8 3 - 7 = 3 + 16A20 68x + 8o = o

-8 -1 11

where it is noted that I = 16 ,n = 68 , and III = 80 . Solutiona a a
of the craracteristic equation yields the following eigenvalues for the

matrix a]

X 1 2 2 10

22



For each value of X there exists three homogeneous equations. For

=A = 2 we have

-x 2 + X3 =0

+ + 7xs = 0

-8x. - x2 + 9x3 = 0

where it is noticed that xI1=i, x2 i, 13 = 1 is a nontrivial

solution. The eigenvector corresponding to XI then becomes (see

Equation 53)

{(IAl)} = c1

Similarly, for XA 2 =X ,

,:, h U ),x.) = C2  { - l

and for X= 10,
3

(0

Si ,,-a )• )} =3 c3  1

The modal column matrix becomes (see Equation 54)
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c 1 cI 2 0

•icI 1e2 c 3

Using Equation 56 it can be verified that the modal column matrix trans-

forms the matrix [a] into a diagonal matrix with elements X ,

and X3 i.e.,

c e c2 c3 3 7 cI -e c3 o 4 o

cI c2 C -8 ii 1 c c c 0 0lO

[c 2fb [2 - 'f 2 0]3 ji
Cayley-Hamilton Theorem

20. The Cayley-Hamilton theorem plays an important role in ex-

pressing higher powers of square matrices. It simply states that a

square watrix satisfies its own characteristic equation. The result

of the theorem is given here without proof. Let (a] be a 3-by-3 matrix

and its characteristic equation be given as (see Equation 46)

I A 2 + II= -III1 0 (58)3 la a a

If (a] satisfies its characteristic equation it follows that

[ a] 3  ,II, I - I,(a] + I (a] 2  (59)

Note that the constant IIIa is multiplied by a unit matrix tI .
From Equation 59 it follows that

j=a ]3 [a] = aIII + (I1a - I IIa)(a] + - ia (60)(a] a a a a a +(a 1 )

24 :



Similarly,

[a] 5 = [a] [a] a •llla12 III al I a) + (aiiIa- a2IIa

+ 1)[a+ (31 _ 2i1ll1.+ IIa)>[

+ I!ja] + a IIa.a] (61)

It is clear from the examples given in Equations 60 and 61 that using

the Cayley-Hamilton theorem,(i.e., Equation 59) we can express any
2

power of [a] greater than 3 in terms of [a] and [a] . Accordingly,

a polynomial representation of [a] , i.e.,

(g] = f((a]) = k0 tI. + kj[al + k2 [a] 2 + k3 [a] 3 +...+ kn(a]n (62)

where O , k *l' kn are constsats, can be exbressed as

[g] = nO['I. + n1 [a] + n 2[a] 2  (63)

where the coefficients n. ' i and n2  are now polynomial functions

of I , IIa , and IIIa

21. For an illustrative example of the Cayley-Hamilton theorem,

consider the following matrix

(c] 3-1 -2

1 0 -3j

The characteristic equation of (c] is given as

3
X3 + 3A- 7A - 17 = 0

where it is -oted that

• '-"I = -3
-•-3

•: II = -7

III 17
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77,1

We substitute [c] for X in the characteristic equation and multiply

the constant term by a unit matrix tI , i.e.,

3 -1- +3 3 -1 -2 7 :-1-
f' 0 - j1 0o 3 1 0-3

[ 31 12 [21 0-12i

-17 0 1 = 27-11-38 + 21 24

: 0 3-6 -3 6 27

21-7 -14 0 17 0 00 0

0-2 [ 0 17 0 0

resulting in a nall matrix [0]

Cartesian Tensors

Cartesian coordinate

22. Let us consider the orthogonal Cartesian coordinate system

xk (Figure i) with unit vectors iI , i 2 , and i 3 along the x,

x2 , and x 3  axes, respectively.

133

Figure 1. Orthogonal Cartesian coordinate
systetn
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From elementary vector analysis the dot products of these unit vectors

are given as

i iI :2 • i2 ±3=1

iI i 2 =il • 3 =i 2 •i 3  0

or, in indicial notation,

ip" ir = (65)

pp r

This product is denoted by 6pr and is known as the Kronecker delta;

thus,

i -± • -- r(66)
p r pr 1lpr

The counterpart of 6 in matrix notation is the unit matrix (I]pr

(see Equation 20b). From Equations 65 and 66 it follows that

6pp =3 (6 ).

6 :=3}(6T)
pr rp

Transformation matrix

23. The vector V with components (x1 , x2 , x3 ) in thexk

coordinate system (Figure 2) can be expressed in vector form aF'

V = x 1I + x 2i 2 + x3 '3 = xpip (68)

If we fix the origin and rotate the axes forming a new coordinate system

with corresponding unit vectors i (Figure 2)3 then the vector

2T



'C':

V with components ( xj , x1) in the primed (rotated) system can

be denoted by

V = x'i' (69)

k(x' 1X2, V3)

1001

/\I
13 /

a I

Figure 2. Orthogonal Cartesian coordinate

systems Xk and xj

In view of Equations 68 and 69

The dot product of Equation TO with i results in

28
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xpip ik Xsisik (71)

Since ip ik 6pk ,Equation 71 reduces to

x 'i' • (72)xk s s k

By the definition of dot product,

' i = cos(x; ,x.) (Xk)

where cos(xs, xk) is the cosine of the angle between the x; and

sks

xk axes. We denote cosl'xs xk) by ask

ask- cs(xs,' x1 7)

In view of Equations 73 and 74, Equation 72 takes the form

=k= a•• (75)

Similarly, the dot product of Fquation 70 with i results in the

following relation

a ax (76)

E4uation 75 relates the components of the primed system (rotated) to

the components of the unprimed system. Equation 76 relates the com-

ponents of the unprimed system to the components of the primed system.

The matrix a is called the transformation matrix and consists of

the folloving table of direction cosines:
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Table of D~rection Cosines

X1 all '12 '1l3

x' 2  21 a 2 2  '23

a 31 a32 a33

where all cos(x , xl) , a2 = cos(xI Xl) 2= cos(x , x2).

etc.

24. Equations 75 and 76 can now be utilized to establish certain

properties of the transformation matrix. Differentiating Equation 75

with respect to xi yields

xki a=kx; (77)

Since Xki = 6 ki , i.e., Xl,l Xl 2 0, etc., Equation 77

reduces n

6xi (78)

From Equation 76, xs = asX , and thus

x' as xmi =as 6 i (79)

Substituting Equation 79 into Equation 78 results in

hki &sksmmi6k =a a ks6i (80)

In view of the definition of 6m , Equation 80 reduces to

aka = 6ki (81)
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Similarly, by differentiating Equation 76 and folloving the same pro-

cedure we get

apaip =ki (82)

Equations 81 and 82 describe the basic properties of the transformation

matrix. Expanding Equation 81 yields

2 2  2  = l =1
all 21 31 611 1

2 2 2 1 (83a)
a12 + a 2 2 + a 3 2

2 + 2 2
a13 a23 a33

all a12' a 2 1 a22 + a 3 1 a32 12

all '13 + '21 '23 + a31 a33 0 (83b)

a12 a13 + a22 a23 + a32 a3 3 =0

Similarly, expanding Equation 82 yields

2 2 2..
ai + a12 + a13 -81

2 2 a2 1(84~a)
2+ a2 + 23

a3 1 +a 3 2  33

(all a2l + "12 a2. + a13 a23 0

al82l+a2 832 + a23 833 0 (84ib)

Equations 83a and 84a indicate that the sum of the squares of the

eleents of any column or'rov of the transformation matrix is unity and
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called normalization conditions. Equations 83b and 84b indicate that

the sum of the products of corresponding elements in any two distinct

columns or rows is zero and called orthogonality conditions. Through
algebraic manipulations of Equations 83 and 84 it can also be shown that

la12 = 1 (85)

25. For a numerical example of a transformation matrix consider

the following rotation (Figure 3) of the xk coordinate system:

\iue3 R45d. • roain/ fx

113

Figure 3. Rigid-body rotation of x
coordinate system

The transformation matrix as associated with this rotation can be

constructed easily:

2 2

sk mc s~ ,X 1)s -72 -2 0

",, ,0 0 1
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It can readily be verified that the above matrix satisfies Equations 83

through 85.

First-order tensor

26. If with a coordinate transformation = aksXs (see Equa-

tion 76), the three quantities A in the unprimed coordinate system
5

transform to three quantities A in the primed reference frame by

= As (86)

then A is a tensor of the first order. We already know that A is
5 5

a vector. Therefore, a vector is a tensor of first order. Within the

context of indicial notation, a first-order tensor is a first-order

system, i.e., it has one free index. Any quantity whose value does not

change with coordinate transformation is called a tensor of order zero

or a scalar (see Equation 16). A scalar is, therefore, invariant to

rigid-body rotation of the coordinate system. Considering the scalar

product of Ail with itself we obtain

.A•A = aksAsakpAp (87)

Since asap 6 (see Equation 81), Equation 87 becomes

• A. - AsAp6sp (88)

In view of the definition of 6p , Equation 88 reduces to

AjAq - AsAs (89)

Equation 89 indicates that the sum of the square of the elements (com-

ponents) of a first-order tensor (vector) is invariant to rigid-tody

rotation of the coordinate axes. This quantity is the only invariant

associated with a first-order tensor. The magnitude or length of the

vector A is given as and is, therefore, invariant to rigid-

body rotation of the coordinate system.
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27. For an example of transformation of a first-order tensor,

consider the vector Ak with components

A = {1$

in the k coordinate system. The magnitude of the vector is

=ý Ill) -2 (J) () 19

If the coordinate system undergoes a rigid-body rotation as shown in

Figure 3, the components of the vector in the rotated system can be

calculated from Equation 86, i.e.,

A I r2• r2 15 r2A •¢) €o

a l= A1 + a 2 2 A2 + a 2 3 A3  2, (5) + 2(10) 2

A2=~ 1 1  +9 a A r

It is noted that the magnitude of the vector is not affected by the co-

ordinate transformation, i.e.,

)2 + (5r2 + (2)=2

Second-order tensor

28. Consider two first-order tensors ui and vi associated

with coordinate system xi . Since u and vi are first-order

tensors we may write (see Equation 75)

Sui = a n.u n' (90a)

vi= %,v' (90b)
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Combining the vectors ui and vi we can construct the second-order

system uivj , which we may call the array Tij , i.e.,

"ulvI ulv2 ulv3

uivj Tij = '2vl u272 u2'3 (91)

u3vl u3v2 u3v3

In view of Equation 90 the product uivj can be written as

Tij uivj n anmjVm anmjunm (92)

Equation 92 provides the array of nine-number T . Denoting the arrayij
u'v' by T' Equation 92 becomesnlm 1nm

T =a a .T' %93)

where T' is referred to the primed coordinate system. Similarly,nm

starting from u ainun and vi = aimvm , we can derive

Til a aj T (94)
ij ipjMnIM

Any quantity T that transforms according to Equation 94 is called
nm

a second-order tensor. Within the context of indicial notation, a

second-order tensor is a second-order system, i.e., it has two free

indices. Accordingly, the addition, subtraction, and multiplication

of second-order tensors are governed by the rules expressed in Equa-

tions 23 through 27. In matrix notation the transformation laws

(Equations 93 and 94) are expressed as

[T] [a] [TI][a] (95)

[T' -(al[T][a] (96)

35



where (a] is the transpose of (a]

29. The second-order tensor is an extremely important tensor in

mechanics and will be used extensively in this report. In particular,

we are interested in second-order symetric tensors such as stress and

strain tensors. It was shown in Equation 89 that there is one invariant

associated with a first-order tensor (vector). In the case of a second-

order symetric tensor, however, there are three independent quantities

that remain constant with respect to coordinate transformation. These

independet invariants are

IT= tr[T] Ti (97)

2
YT t[jT ik~ki (98)

TI; • = tr[T]3 T TikTmi (99) mi

From 4quation 94 it follows that

tr[T]= T 1i =ainaimTnm (100)

According to the property of the transformation matrix (Equation 81),

ainaim = 6 UM , and Equation 100 becomes

tr[T'] = 6 nmTnm (101)

In view of the definition of. 6 , Equation 101 reduces tonm

tr(T' = T nn tr(T] (102)

indicating that tr[T] is an invariant. Similarly, from Equation 94,

T1k &.k3a" , ji akpaiT. and
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tr[T'] 2 = T' T'ik ki

sa T a. a.T(13inalm nm kp is ps

a: = in ais% aT ps(13

Again using the property of the transformation matrix (Equation 81),

na 6n akm.a = 6 , and Equation 103 becomes

tr[T ]2  6 T 6T (104))

i•,~n aiai m= p m

In view of the definitions of 6 and 6 , Equation 104 reduces to
ns MP

tr[T'] 2  T T = trT] (105)
sm ms

2indicating that tr[T]. is an invariant. Using the same procedure it

can be shown that

tr[T'] 3 = tr(T] 3  (106)

indicating that tr[T]3 is also an invariant.

30. The three invariants of the second-order tensor (IT * 
1 T '

SI--) can be related to the coefficients in the characteristic equation

of the tensor (Equation •4r). By algebraic manipulation it can be shown

that

IIT = -i(I (107b)

Nov, using the CayleyHamilton theorem (Equation 59) in indicial form,

T T T II•6 IITij + ITTnT (108)

37
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and taking the trace of the tensor (putting i = J), we obtain

T TT 3111T IITTi + IT T (109)
ik km mi Tla~~TTi ni

In view of Equations 97, 98, 99, and 107, Equation 109 results in

11 3III1- 3 11TIT + IT (ll1a)

T 3 T 2'TT~T (Tob

Equations 107 and 110 indicate that the coefficients in the character-

istic equation of the tensor are also invariant.

31. For an illustrative example of transformation of second-order

tensors, consider the following tensor associated with an co-

ordinate system: [ij:
[.12

[2 o 8j

From Equations 97, 98, and 99 we have

= tr[T] 18

T•!IIT =tr[T]2 126

III tr[T] 3  066

Also, from Equation h7,

II = 99

HIT = 160

where it is ncted that Equations 107 and 110 are satislied. If the

coordinate system xk undergoes a rigid-body rotation, such as the one
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shon nigrotation inmpneis ofthe tei~s:: in the (rted

coodinte otaionin igue 3isgiven as

sk 2 2

L0 0 1

From Equation 94 it follows that

T a a T + a a T+ a a Tl

-l a11 11 11 + 12aJIT21  i a 3a1

+ a aT+aaT+ aT
il j2T12 + i2'j222 +'3J2T32

+il J313 3 + 12 j3T23 + a13a33T33

Substituting for the components of T adawe obtain
ij an sk

I Tt .18 IT

IT'126 UT

III~f 966 I T

39 
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T = IT

M'IT, = 160 IIIT

indicating the invariant nature of these quantities.

32. We now proceed to establish some useful relationships for

second-order tensors. Consider a second-order symmetric tensor whose

elements in the xk coordinate system are given as Tij = Toi . Using

the transformation law of second-order tensors, we saek 6 transformation

matrix that will transform Ti. into a diagonal form T (i.e., TjJ

= 0 for i # J) associated with an xi coordinate system. The axes

xi are called the principal axes (or principal directions) of the

tensor and the elements of T' are called the principal values of the

teusor. A diagonalization process was previoir.ly demonstrated for

3-by-3 matrices in conjunction with the eigenvalue problem. It was

shcwn that the modal column matrix, which is found by grouping the

eigenvectors of a square matrix, diagonalizes the matrix as indicated

by Equation 56. Furthermore, it was shown that an eigenvector is in-

determinate to the extent that it can be multiplied by an arbitrary

constant. If the arbitrary constant is chosen to be the inverse of the

leugth or magnitude of the eigenvector, then the eifenvector is said to

be normalized. The modal column matrix of normalized eigenvectors is

called a normalized modal column matrix. Denoting the normalized modal

column matrix by [i] , the diagonalization relation (Equation 56) fjr

the matrix [T] can be written as

l-- 1[T]N] kill)

In view of the properties of a transformation matrix, the transformation

law of a second-order tensor (Equation 96) can be written as

TO) [a]J T][a] (112)

Comparison of Equation 112 with Equation 111 indicates that the trans-

pose of the normalized modal column matrix is the transformation matrix

4o
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which transforms Ti. into a diagonal form. Furthermore, the elements

of the diagonalized matrix are the eigenv~lues of Tij . In the case of

second-order sFmmetric tensors, the eigenvalus (principal values) are

always real. It should be noted that the normalization of eigenvectors
is necessary in order to conform with the )aurmalization conditions of

the transformation matrix (Equations 83a and 84a).

33. For a numericel example of disgonalization of a second-order

symmetric tensor consider the tensor T.• whose elements in the

coordinate system are given as

-2 2 10]

ij 2-i

10 8-

The characteristic equation of Tij is given as

-2- A 2 10

2 -11 - 8 (X -9X + 9)X + 18) 0

10 8 -5 X

The eigenvalues of Tij are, therefore,

X1 = 9 X2 X-9 ; 3=-18

Next, we determine the normalized eigenvectors for Tij For X = 1

we can write down (see Equation 44)

-1x. + 2x2 + lo 3 = 0

2x - 20x2 + 8x 3  0

lox, +8x 2 -1I4x3 =o

Solving the above system of equations and considering the normalization
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2 2 2I
condition of the eigenvector (i.e., +x. 2+ x=1. h3oraie

elgenvector corresponding to A beccmes )tnozaie

12

2

2

33

2
31

2 2 l

2 2

3

2 1 2

3 3
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2 1 23 3: 3

= 2 2 1

1 2 2
-3. -3.

As was stated previously, the transformation matrix which transforms Ti,

into a diagonal form is the transpose of the normalized modal column

matrix. This can be verified by using [i] as the transformation matrix

[a] in-Equation 96, i.e.,

[T'] = [all]Ta]* [1"]*ET][u)

2 1 2 -2 2 10 2 2 1
3 3 3 3 3 3
2 2 1 1 2 2

3 ~33

1 2 2 2 1 2
- 2 2 10 8 -5 2 3

Performing the above matrix operation we obtain

9 00 X 1 0 0

IT'] = 0 -9 0 :0 X 2 0
0 0 -18 0 0 X 3

34. Consider three second-order symmetric tensors Ai, Bmn,

and C . Using the Cayley-Hamilton theorem it was shown previouslyrs
that a polynomial representation relating the components of two tensors

takes the form given in Equation 63. In indicial, rotation Equation 63

is expressed in the following form
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A 3ij - fj(B) = 0 6ij + n.Bij + n2Bik4B (113)

The counterpart of Equation 113 expressing the components of one tensor

in terms of the components of two other tensors was derived by Rivlin
1and Ericksen. The Rivlin-Ericksen equation given here without proof

has the following form

Ai3 -ij(Bmn, Crs) 0 '06ij + nlBij + n2Bkkj

+ C3 c C + inClkCkj r s(BikCk + CikBM)"3 ij +CP n4 i k •BJ kj 5Ak i

+ 1I(BikBkpCpj + Cik kpBpj)

+ n T(Bio kpC p + C AC kpB p)

A n8(Bik~kpCptCtj + CikCkpBptBtj) (111)

where the coefficients no , n8 are polynomial functions of

the invariants of B and Crs and the following Joint invariants

i1 = BabCba

12 = BabCbcCca

(115)R3 ab BhbcCca(i)

1- BbBbcCdCda

It is noted that when dependence on C disappears, Equation 114 re-
rs

duces to Equation 113. Equations 113 sW 1114 are the bases for most of

the presentations in the ensuing parts of this report.
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PART III: SUMMARY OF BASIC CONCEPS FROM CONTINUUM MECHANICS

"Stress Tensor

35. In Cartesian coordinate system xi , we define the stress
tensor a at a point as

ij
F

= limit F1 (116)
Ai +0 Ai

where F. is force in the coordinate direction j and Ai is the area

normal toith axis on which the force F acts. Figure 4 depicts the

12

/933

X3

Figure k. Stress components

positive directione of the components of the stress tensor. In the

absence of distributed body or surface couples the stress tensor is

symetrical, i.e., oa u i . Accordingly, the state of stress at a

point can be described by six independent stress components.

Tuivaria•,ts of stress tensor

36. Stress tensor is a second-order symetric tensor and it obeys
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the transformation law given in Equation 914, i e.

iJj

where a! is referred to x!4 (rotated) coordinate system. As wasij
shown in Part II, a second-order tensor has three independent invariants

(Equations 97, 98, and 99). In the case of stress tensor we define

these invariants as

J - I - y (118)i• a nn

1 1c (119)

I; 3 a ik1m:L(120)

Stress deviation tensor

37. Stress tensor can be expressed as the sum of two second-

order symmetric tensors in the following manner

ai = ij + • n~J(121)

where the tensor

1
8 ij a ij nn 6ij (122)

is referred to as the stress deviation tensor and a nn6 j/3 is

called the sphericea stress tensor. An important property of the stress

deviation tensor is that its trace is equal to zero, i.e.,

S =i -n =0 (123)
ii ii nn

The stress deviation tensor, therefore, has only two independent invari-

ants. We denote these invariants as
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2 2  S 2ik (124)3-- I 1SikSki

The invariants of stress and stress deviation tensors can be related by

using Equation 122. In view of Equations 122 and 118,

J2 SikSki

2 (ik 3 Jl~ik)ai 31k

2

1 g(ikaki - 3 Jllik'ki + 9 6 ik i (126)

Since 6 ik = ii a g , and 'iki 2J2 , Equation 126

becomes

- 2 (127)
J2'= 'Y i1

Similarly, it can be shown that

21 +~ ýL2  j 3  (128)- 33 2 272 1

Principal stresses

38. The three principal values of stress tensor are referred to

as principal stresses and are denoted by (using the principal directions

as reference axes) 'i0 0

0]a 0 (129)

LO 0 a3 i

It should be pointed out that the ordering of the principal stresses in

Equation 129 does not imp'-, that the numerical value of a is greater

than 02 )r a3 As discussed in Part II, the three principal values

are the roots of the characteristic equation of the tensor
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3r 2

X + 11 I 0 (130)

where

Iu -Jl = a (131a)

22023 1llal 3  'll122

10 = a + + (131b)
032a33 a31a33 a21a22

Ii a f (131c)

The two coefficients II and III are usually denoted by J 2  and
a a2

J3 1 respectively, and can be related to Jl 1 2, and J3 by using

Equations 107, 110, 118, 119, and 120.

J = 12 g (132)
2 1

III 'Y1 *~ 3  1 2 J 3+J (133)

The invariants of stress deviation tensor can also be expressed in terms

of J 1 , and J " In view of Equations 127, 128, 132, and 133,

we obtain

2 1 j 2 (134)

3 1 J

3 3 312 27 3 (135)
J3i - • ;2 + T7 2

Principal stress space
and octahedral stresses

"39. Since the three principal stresses are orthogonal, they form

a three-dimensional space called the principal stress space (Figure 5).

Of particular interest in the principal stress space are the octahedral

planes. The direction cosines of a norm-l to an octahedral plane are

(Figure 5)
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N
a2

N =NORMAI TO OCTAHEDRAL

7Oct-
3!

9 -3

Figure 5. Principal stress space

cos (N, a) = cos (N, a2 ) = cos (N, a) = cos (540 44')

I'
(136)

The normal and shear stresses on octaheýral planes are denoted as
SaOct amd Toct respectively. The magnitude of aot and Toct can

be determined from the transformation law of stress tensor2

G0 ol0z

-ctI 0 00 =* 3(o+ 02 3+ (137)•O0t = :" d2 -

.I~ . .



and

S+ 
2 j(03 

a) 1 + a 2 + 03

- (a a2)+ ( -j1 a 3) + (02 a 2 (138)

Using Equation's 124 and 118 it can be shown that for a general state of

stress

0 oct 3 1 (139)

(14.0)
•Oct, =J g L (7ý0

Equations 139 and 140 indicate that the octahedral stresses are also

invariant. The octahedral space (Toet versus act) is commonly used

for plotting stress paths for various laboratory tests. In this report

we will use 3/ oct versus aoct space (i.e., 2--rsus J /3)

for defining stress paths.

Examples of sim-

ple states of stress

40. The following st-Aes of stress are often utilized in the

laboratory in order to determine the stress-strain properties of a

material:

a. Spherical or hydrostatic state of stress.

0 0
S0 o

3 i

01 1 2.3 3
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b. UnWaxial state of stress.

a 0 0 S11

0 = 0.
0 0

c. Cylindrical state of stress.

"aI 1 0 0

a ij = 0 a3 0

0 0 a3

d. Triaxial state of stress. 2

"aI 0 0

0= [ 02 ] 3

0 0 •

2 1

e. Pure shear.
I~ _ 21

0 a2 0

a [ 21 0 f 1

L 0 0 0. . .

Note that in examples a through d all stresses are principal stresses.

Stress paths associated with the above states of stress can be readily

defined in the versus J /3 space. The stress path associated

with spherical or hydrostatic state of stress is shown in Figure 6a. It

is noted that for spherical state of stress J' is zero. The stress

path associated with uniaxial state of stress is shovn in Figure 6b.

For uniaxial state of stress 7 = oi//i and Jl/3 = ao/3 result-

ing in the expression r3 (Jl/3) for the stress path.i2
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. 3 3
a. SPHERICAL OR HYDROSTATIC b. UNIAXIAL STATE OF STRESS

STATE OF STRESS

jvTiI ___ i______Z__
3 3

c. CYLINDRICAL STATE OF STRESS d. CYLINDRICAL STATE OF STRESS
(CONSTANT J 1/3) (CONSTANT a)

e. PURE SHEAR

Figure 6. Stress paths associated with simple states of stress-
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Figures 6c and 6d depict special stress paths associated with cylindrical

state of stress. In Figure 6c the material is first loaded hydro-

statically and then sheared while Jl/3 is kept constant. In Figure 6d

the material is first loaded hydrostatically and then sheared by in-

creasing a1 while keeping 03 constant. Since for cylindrical state

of stress V = (a1 - a3)I/ and J/3= (l + 2a3)/3 it follows

that the expression for the stress path of Figure 6d becomes

r= /(Jl/3 - a3) The stress path associated with pure shear

test is shown in Figure 6e. In the case of pure shear Jl/3 =0 . In

the actual laboratory coordinate system, the stress components a1 and

a2 = 03 associated with cylindrical state of stress are usually de-
noted by a (axial stress) and ar U e (radial stress), respectively.

a xial
In the case of triaxial state of stress, the stress components aI

a2 , and a. are denoted by a , a , and a , respectively. For

pure shear the only nonzero stress component 012 is generally denoted

by t

Strain Tensor

41. Let us consider a cylindrical specimen of length to and

extend it to length I The ratio £1A. is defined as the stretch0

X= •/•o (141)

The question is, what is the axial strain in the specimen? There are

several measures of strain that can be used to determine the axial
3strain c in the specimen. These measures, named after Cauchy, Green,

Hencky, Almansi, and Swainger, respectively, are:

: cC
C X 1(14i2a)

cG l z) (142b)
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e = knX (14 2c)

f 1 1- (14•2d)

S (142e)

In order to demonstrate the difference between the various measures of

strain given in Equation 142, let k = 2Z0  (i.e., let the length of

specimen be doubled). The stretch X 2 in such case and from Equa-

tion 142 it follows that

C = 100%

C = 150%

= 69% (1h3)

e = 37.5%

As observed from Equation 1h3, for a stretch of X = 2 , the difference

between the various measures of strain is quite appreciable. Now let

9 = 1.25t 0 , which gives a stretzh of ? = 1.25 • in view of Equa-

tion 12, for • = 1.25 the various measures of strain become

e= 25%

G
C 28%

H
c 22% U44l)

= 20%

It 13 observed in this case that the difference between various measures

or" strain is uut as appreciable as vas the ease for X = 2 . If the
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stretch X is further reduced, say 1 = 1.1 , Equation 142 will result

€C = 10% 
•;

GC 10.5% 
:

£ =9% (145)

A =8.7%

S
£",9%

Therefore, for small deformations (infinitesimal strain theory) the

various measures of strain will yield approximately the same results.
Our interest here is also within the framework of infinitesimal strain I

theory and we adopt the Cauchy measure of strain for further analysis.

42. In order to determine strain-displacement relations and de-

fine the infinitesimal strain tensor, we consider a particle P with

position vector x. in the x coordinate system as shown in Figure 7.

1 i

IX
U,

XI

X X

X3

Figure 7. Particle displaceretnt iu
Xi coordinate system
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We assume that the particle undergoes displacement ui and assumes a

new position vector x as depicted in Figure 7. From Figure 7 we can

write

+ = (146)

or

U i - (147)

Since x. is a function of x, i.e., xi xiCxj) , we ean differen-

tiate Equation 146 with respect to x thus,

6ij +(48)•!!i + ui,j ; ,=,j 18i

The terms x. and u are called the coordinate gradient and dis-

placement gradient matrices, respectively. The displacement gradient

matrix can be expressed as the sum of a symmetrical system and a skew-

symmetrical system (see Equation 15)

[(ui,j = g (ui + uj,i) + ( - uji) (149)

The first term in Equation 1.49 is symmetrical and is called the infini-

tesimal strain tensor e ; thus,

E = (ui,j + uj,) (150)

The second term in Equation 149 is skew-symmetric and is called the

rotation tensor i; thus,

ij 2 (uj, - uji(

Equation 150 relates the components of infinitesimal strain tensor with

components of displacement vector.

L 56

K 1 7



43. To demonstrate the application of Equation 150, consider a

rod of length k0 extended to length k as shown in Figure 8.

12

I
£ It=

Figure 8. Rod in uniaxial extension

The boundary conditions associated with displacement uI in the xI,

direction are

u -0 at x, 0

For homgenous tate 1 tt at ~ ~0(152)u t' -to at . o

For a homogeneous state of strain to exist in the rod, the displacement

uI must be a linear function of xI Thus,

u 1 =Cx 1 (153)

where C is a constant. In view of Equation 152, Equation 153 becomes

" 0
S: T x•(154,)

Substituting Equation 154 into Equation 150 we obtain

cl " 1 (u_,l+u 1 ,1 ) u_, = 0 (155)

5? ~0I
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which is the Cauchy measure of strain (see Equation 142a),

Invariants of strain tensor

44. Strain tensor is a second-order tensor and obeys the trans-

formation law given in Equation 94, i.e.,

jj =aina 4mem (156)

where e' is referred to the x' coordinate system. There are,

therefore, three independent invariants associated with the strain

tensor. As for the invariants of stress tensor, we define the invari-

ants of strain tensor as

I =1 E

I1 =I _ n (157)

2 2 2(158)
-2 1- I 12cki

13 3I 3-ikl anmi (159)

Strain deviation tensor

45. Strain tensor can be expressed as the sum of two symmetric

tensors in the following manner

ci= Eij + e 6 (160)
ij ij 3 nn ij

where the tensor

E = -£ 6(161)ij ij 3 nnij 6

is referred to as the strain deviation tensor and enn 6 i/3 is called

the spherical strain tensor. As for invariants of stress deviation

tensor, we defir.e the invariants of strain deviation tensor as

"Y2- HE iEikE=i (162)
2 2
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3I 3 7 =3 E• i (163)

The invariants of strain deviation tensor can also be expressed in terms

of the invariants of strain tensor as follows:

-12
2' 2 6 1(14

I y2 - 2 1
3ý 3 3'2 27 1(15

Principal strains

46. The three principal values of strain tensor tre referred to

as principal strains and are denoted by (using the principal directions
:•:" as reference axes)

Th ricpa tris[r th ot ftecaatrsi qainolei= E2 0 (166)

S ' The principal strains are the roots of the characteristic equation of

strain tensor

"X•3 -I CX2 + ll - IMe• =0 (167)

where

IC=ih =~ (168a)
II 'L

C 22 C£23 Ei 11£131 C £ E£12

II + + (168b)

£32 £33 C 3 33 a21 £22

III IC 1 (168c)
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The two coefficients II€ and IIIe are denoted by 12 and 13.

respectively, and are related to the invariants II. 12 , and 13

as follows:

2and 13

2(171)

-- ,13 1 3 12 2 1 (1r2)

Examples of simple
states of deformation

h7. The following states of deformation are often utilized in

the laboratory in order to determine the stress-strain properties of

the material:

a. Uniform dilatation.

y1

3

II II
ci =-6l 0 •

3. 3 2+TExample of sipl

b. Uniaxial state of strain.

60 .0:
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0 00

c. Cylindrical state of strain (£2 = £3).

0 0

£ 0 £2

0 0£2]

d. Triaxial. state of strain.

0 0

£ij 2 o
0 0 C3

e. Simple shearing deformation (no volume change).

0 r 12 0

Cij E 21 0 0

L 1 0 0]

Note that in examples a through d all strains are principal strains.

Strain-Rate Tensor

48. The time derivative of infinitesimal strain tensor is re-

ferred to as rate of infinitesimal strain tensor, or simply strain-rate

tensor, ; thus,

•ij dt i cj) (3)
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where d/dt indicates differentiation with respect to time. In view of

Equation 150, the strain-rate tensor takes the form

i - (vj + vji) (1114)

where vj = components of velocity vector.

Invariants of
strain-rate tensor

49. Strain-rate tensor is a second-order symmetric tensor and,

like the stress and strain tensors, it obeys the transformation law

given in Equation 94. Similarly, we define the invariants of strain-

rate tensor as

1 .£ (175)E nn

12 It ik ki(176)

1 3 iktkmm (177)

Strain-rate deviation tensor

50. Strain-rate tensor can be expressed as the sum of two sym-

metric tensors in the following manner

+

. -i += 6 (178)
iJ ij 3 nni ij

where the tenser

ij ij 3 nn ij (179)

is called the strain-rate deviation tensor and 1 6 /3 is called
nn i3

the spherical strain-rate tensor. We define the invariants of strain-

rate deviation tensor as
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I2 2 I E* E* (18o)

33 E - iktkm~mi1
S~E

The invariants of strain-rate deviation tensor can also be expressed in

terms of the invariants of strain-rate tensor:

_ 2 2 (
]I

. - . 2 +2(183)
31= 3 - 111 7I

Principal rates of strain

51. The three principal values of strain-rate tensor are dencted

by

o0 0

[ t 2 0 (184)
0 0 •3

"I
and are called the principal rates of strain. The principal rates of

strain are the roots of the characteristic equation of strain-rate

tensor

3 1 X 2 + II X II= 0 (185)

where

"C 1 nn (186a)
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L22 23 11 13 11 12

II= + + (186b)

The two coefficients II• and III are denoted by .:and '

spectively, and are related to the invariants as
-•. follows :

II i2(187)

31 -
I3 = III= 3 1 21l 1 +6 (188)

The invariants of strain-rate deviation tensor can also be expressed in

terms of 1, I, and i *1 2

2
= i1  £2 (189)

S2 (190)I--•~ ~ --I i2 + F7 Ii 10)l

Equations of Continuity and Motion

52. The motion of any continuum is governed by the following laws:

a. Conservation of mass.

b. Conservation of energy.

c. Balance of linear momentum.

d. Balance of argular momentum.

e. Principle of inadmissibility of decreasing entropy.

6LI
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These laws constitute the basic axioms of continuum mechanics.1  In the

absence of distributed couples, the balance of angular momentum leads to

the symmetry of stress tensor, - aji . If mechanical energy is theii
only form of energy to be considered in a problem (as is the case in 1

this report), the above principles lead to the continuity equation

2L + (Pv = 0 (191)

at (i) ,i

and the equations of motion

, + f -pa (192)

where p = mass density , vi = components of velocity vector ,

fi = components of body force, and a= components of acceleration

vector . Equations 191 and 192 are applicable to all materials.

Constitutive Equations

53. Equations 191 and 192 constitute four equations that involve

I ten unknown functions of time and space: the mass density p , the

three velocity components vi , and the six indept • stress com-

ponents ij The body force components f1  art -n quantities and

the acceleration components ai are expressible in terms ot the veloc-

ity components vi . Obviously, Equations 191 and 192 are inadequate

to determine the motion or defornation of a medium subjected to ex-

ternal disturbances, such as sur-face forces. Therefore, six additional

equations relating the ten unkno, m variables p , vi , and a j are

required. Such relationships Pre referred to as constitutive equations,

which relate the stress tensor a to deformation or motion of theij
medium. As was pointed out previously, Equations 191 and 192 are

applicable to all materials, whereas constitutive equations represent

the intrinsic response of a particular materiul. Furthermore, a con-

stitutive equation provides a mathematical description or definition of

an ideal material rather than a statement of a universal law. The
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general form of a constitutive equation miaZ be expressed by the func-

tional form (considering only mechanical effects)

fiv , , ) (193)

or

N•giJ(Crs mn a ab acd p) =0 (194)

where 6 cd time derivative of stress tensor . Equations 191, 192, and

194 (or Equation 193) , therefore, constitute ten equations in ten un-

know•s and will lead, in conjunction with kinematic relations given

by Equations 150 and 174, to a complete description of the boundary-

value problem. In addition to the above-mentioned equations, boundary

conditions in terms of boundary displacement and/or surface forces must

also be specified to completely define a particular problem of interest.

54. In order for constitutive equations to describe physical ma-

terials adequately, the functional forms f or giJ must remain

invariant with respect to rigid motion of spatial coordinate x. . This

requirement stems from the fact that the response of a material is

independent of the motion of the observer. Furthermore, the functionals

Sij or gij must be consistent with the general principles of con-

servation or balance of m'xss, momen•um, and energy.

55. We adopt Equation 194, relating four second-order symmetric

tensors rs rab , and 6 cd , as a basis for development of

various constitutive equations in the following parts of this report.

i6
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PART IV: CONSTITUTIVE EQUATIONS OF ELASTIC MATERIALS

56. For an elastic material, the state of stress is a function of

the current 3tate of strain only. Furthe:rmore, an elastic material re-

turns to its initial state after a load-unload cycle of deformation (no

permanent strain). The stress tensor can, therefore, be expressed in

terms of strain tensor

a. F (mn) (195)

where Fi = elastic response function. Two different procedures have

been utilized in order to determine the response function F for iso-ij
tropic materials. The first procedure, referred to as Cauchy's method,

is based on the Cayley-Hamilton theorem (Equation 59). The second pro-

cedure, referred to as Green's method, is based on conservation of

energy. Both of these methods are dealt with in this part of the report.

Cauchy's Method

57. The response function Fi. in Equation 195 can be expanded

as a polynomial in the strain tensor cij, i.e.,

aij =a 0 + aliJ+ 2 a 2  +a3cmmn:nj +... (196)

-Iwhere a0, I , ... an are real coefficients. Utilizing the Cayley-

Hamilton theorem we can express Equation 196 in the following form (see

Equations 62 and 63)
•a

a ij '0 6 ij + ½I ij + ý2CimmiJ (197)

where 00 *i , and *2 are elastic response coefficients which are

polynomial functions of strain invariants. Equation 197 is referred to

as the Cauchy elastic c, astitutive equation. Alternately, for an

elastic material we can express

67

.
-1111'i>ii 

m L



e j - 6o %j + Vlalj + vic• (198)

where T ,and T2 are elastic response coefficients which are

polynomial functions of stress invariants. From Equation 197 it follows
that for isotropic elastic materials the initial state of stress is
hydrostatic, i.e.-,

a = a0•iJ when ; =0 (199)°ij 0 jj

Also, using the transformation law of a second-order tensor (Equa-

tion 94), it can be shown that Equation 197 is form invariant with re-

spect to rigid motion of a spatial coordinate system, i.e.,

Mn mi nj ij

- 0Oamian 6 ij + OlamiaCi 1 + *2amia' £ikC'

-+ 21.Em + kr2 kn' (200)

where e' is referred to the primed (rotated) coordinate system. We
mn

can now utilize Equation 197 to develop various types of isotropic

elastic constitutive equations.

Linear elastic material

58. For linear elastic materials the response coefficient

vanishes. The response coefficient is a constant and is a

linear function of the first strain invariant. Assuming that the initial

state of stress is zero, the constitutive equation of linear elastic ma-

terial can be written as

C ij = AI 1 6ij + Be.. (201)

where A and B are material constants. In order to determine the

pbysical meaming of the material constants A and B let us consider a

simple shearing deformation defined by
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,212

"e S0 (120O"

cij = 21 j (202)

LO 0 O

For this state of deformation, Equation 201 reduces to

S •12 o

0i = B e 0 0 (203)

L 0 0J

Since e is half the shearing strain (see Equation 150), it follows

that B is two times the shear modulus which we define as G ; thus,

B = 2G (204)

Next, we consider uniform dilatation defined by

"I1

-0 0

I1 I1

cij = t 0 j0 (205)

0 0

For this state of deformation, Equation 201 becomes (invoking Equa-

tion 2o04)

a ij ( Al + 2 11) (206)

Taking the trace of ci (let i J j) we obtain
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(A 21I (207)3 3 ( I1

Equation 207 relates pressure (J1 /3) to volumetric strain (Ii). The

slope of the pressure-volumetric strain relation is defined as bulk mod-

ulus K ; thus,

2GA + K(208) 3{
or

2GA K K- (209)
3

The constant A is usually denoted as X and is referred to as the

Lame constant. In terms of the shear and bulk moduli, the constitutive

equation of linear elastic material (Equation 201) then becomes

a = K:Ia + 2G ij ij (210)

The expression e - I /j/3 is recognized as the strain deviation

tensor E (Equation 161); thus,
ij

J KliJ + 2GE (211)

From Equations 122, 207, and 208, it follows that the constitutive equa-

tion of linear elastic materials can also be written as

Sij =2GE (212a)ii ij

-- KI (212b)

3 11

Equation 212 indicates that for linear elastic materials volumetric

strain is caused by hydrostatic stress only, and that the shearing re-

sponse of the material is independent of pressure.
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59. Using Equation 212 we can readily express the strain tensor

in terms of stress tensor

S
Eii - 2G (213a)

J1

S 1 3-(213b)

or, using Equation 161,

J, SiJ1 i +i (214)
-ij 9-K i +2G ,

60. We will now proceed to examine the behavior of linear elastic

materials under various states of stress and deformation. Let us first

consider uniaxial state of stress, a common laboratory test, defined by

0a 00

"0 [o 0 j (215)

0O 0 01

For this state of stress, Equation 214 results in

(3K + G\

9(K)

C - 0 2G 8-3 3 0 (216)oj o
0 0 (pGK0

Equation 216 indicates that under uniaxial state of stress

0, 3K+ +G 1 (21T)
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£2 ~C 3  ~(218)€2- 3= -kK+ 2 €el

IT The ratio al/CI under uniaxial state of strebs is referred to as

Young's modulus E , and the ratio of radial strain to axial strain is

called Poisson's ratio v ; thus (for an incompressible elastic material

- 1/2)

E 3K +G (219)3K + G

3K- 2G (220)
v= 6K + 2G

61. Another common laboratory test is the uniaxial strain test

defined by

[0- 0 ] (221)

0: 0 0j

For this state of deformation, Equation 211 results in

(K + 4G/3)cl 0 0

a -j 0 (K - 2G/3)£ 1  0 (222)

0 0 (K - 2G/3)c 1

From Equations 222, 219, and 220 it follows that under unlaxial strain

condition

E(1 - v)
ea = (K + 4G13)c= (+v)(1 ) Cl (223)

(3K - 2G\ 0 (224
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It is noted that a2 is the radial stress required to prevent radial

strain. The ratio al/eI under uniaxial state of strain is referred to
as the constrained modulus M ; thus,

M=K+ 4G/3 E (225)

Using Equations 223 and 224 we can determine an expression for the

stress path associated vi-h the uniaxial state of strain in the

versus J1 /3 space:

7 =1 2G ,JI13 (226)
2= l3x

In terms of Poisson's ratio v , the equation of the stress path becomes

'0/ (22T)

62. Next, let us consider the behavior of linear elastic mate-

rials under .iondition of plane strain defined by

"FEI 11C12 O0

: 21 22 0 (228)

0O 0 0j

For condition of plane strain, Equation 211 results in

(C+ ý. G) El 2G 03 1I + (K -
S(K - (229)

+ (K + • G)

0 (0 )&



,r•

From Equation 229 it follows that

33 = + 2o)(1 + 02) 2 V(O11 + a22) (230)

Equation 230 gives the magnitude of stress 033 necessary to maintain

plane strain condition, i.e., C33 = 0

63. The counterpart of plane strain is the condition of plane

stress defined by

[,,"l 12 0

0 ij = 2 c22 (231)

,•-0 0 0

For plane stress condition, Equation 214 results in

112

+ 0

21)o 0 (232)

+1- + 1-~2

0 0 (-CF~ + 022

From Equation 232 it follows that

C (C +•(° ÷ C• (233)
£33 -9K -al+ 2-v 1i + U 22

Equation 233 gives the magnitude of straii c33 produced by condition

of plane stress, i.e., a 33 = 0
64. The constitutive equations of linear elastic material ex-

pressed in terms of various combinations of elastic constants are given

in Table I for ready use.
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Nonlinear elastic material

65. Constitutive equations for various classes of nonlinear

elastic material can be developed from the general form of the Cauchy

elastic constitutive equation (Equations 197 and 198). Before we de-

velop constitutive equations for various classes of nonlinear elastic

material it would be beneficial to examine the significance of the

second-order terms ei and aima in Equations 197 and 198. Con-

sider a simple shearing deformation of amount 2y defined by the follow-

ing strain tensor

= 0 Y01
e ij = 0 (234)

000

For this state of deformation, Equation 197 results in the following ex-

pression for the stress tensor

1 0 0 0 y0 y2 00

aij = 0 0 1 0 + Y 0 0 + ¢2 0 y (235)

0 01 0 00 0 00

From Equation 235, the shearing stress and shearing strain are reiated

by

a1 2 = O1Y (236)

and the normal stresses are given as

al, = a22  * 0 + 02Y (237a)

a 33 = 0 (23Tb)

Equation 237 indicates that to maintain a simple shearing deformation
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(Equation 234), normal stresses must be applied to the boundaries of the

specimen. Since two of the normal stresses are unequal, Equation 237

predicts the occurrence of normal deviatoric stresses

S 1  s22 = 1 2 (238)

on the shearing planes. This is a direct consequence of the second-

order term eimm in Equation 197 and is a departure from the linear

theory where *2 = 0 . We now consider the counterpart of simple shear-

ing deformati. i, i.e., simple shearing stress, and show that Equa-

tion 198 will predict volume change for this state of stress. Consider

a simple shearing stress of amount T defined by the following stress

tensor

0
Tj 0 (239)

For this state of stress, Equation 198 results in the following expres-

sion for the strain tensor100:° OtOi 2i °
0 [0T0 00

J= 70 0 1 01 + Ti 0 + *2 0 (240)

0o0 : o 0 2 o L 0

From Equation 240 it follows that

I' I; ll=II 3T0 + 2T T 2 (phl)

which indicates that simple shearing stress is accompanied by volume

change. Also, from Equation 240 it follows that there are normal devia-

toric strains
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E11  E22 3= (242)

associated with the volume change. The occurrence of deviatoric strains

is a direct consequence of the second-order term aimam in Equa-

tion 198. From these two examples we can conclude that in the case of

nonlinear elastic materials volumetric strains are caused by both the

hydrostatic anid shearing stresses. Also, the shearing response of the

material is dependent on the hydrostatic state of stress. In order to

further demonstrate these coupiing effects we consider a combined state

of hydrostatic and simple sheazing stress given by the following stress

tensor

a 0 (243)

EO El 0

where P superimposed hydrostatic stress. For this state of stress,

Equation 198 results in the following expression for the strain tensor

1 0 0 P T + T 2 2PT 0

E iiJ i0 0 1 0 + V1 T P 0 + 2 2PT p2 + T2 0 (244)

00 1 0 1 P 0 0 P2

The volumetric strain II then becomes

ii 11 = 3TO + 3RlP + T'2 (3P2 + 2"12 ) (245)

and the shearing straiu 12 tkes the form

£12 = Y 1 t + 2Y2PT (246)

Equations 245 and 246 once again illustrate the coupling which exists

T8



between the .Lydrostatic stress (or volumetric response) and the shearing

response of nonlinear elastic materials.

66. We will now proceed to develop constitutive equations for

various classes of nonlinear elastic material within the framew( -k of

the Cauchy elastic constitutive equation (Equations 197 and 198). The

simplest form of nonlinear elastic material is the second-order stress-

strain relation where terms in strain up to the -cond power are re-

tained in the stress-strain relationship. To derive the constitutive

relationship for second-order elastic material we will start from Equa-

tion 197 and express the response coefficients 00 1 0i . and 2 in

appropriate polynomials of strain invariants. Accordingly, for second-

order material we can write

=0 CI 1 2 + C3I-- (247a)
10 II1 02 1 2

C + C5I (24TO)
C4 +5 1

= 06 (24Tc)

where Cl through C6 are material constants which must be determined

experimentally. Since the constitutive equations of second-order elas-

tic material must degenerate to the first-order equation (Equation 210)

if second power terms in strain are neglected, the material constants

C and Ch should be replaced by (K - 20/3) and 2G , respectively.

The constitutive equation of second-order elastic material then befcomes

2 -1

ij K - 2G/3)I1 + C2I .2

+ (2G + C Il)e + C6Cim•, (248)

6T. Equation 248 contains six material constants. The physical

meaning of these constants and the manner in which they can be deter-

mined from laboratory test results can be demonstrated by examining the
behavior of second-order elastic materials under various states of

stress and deformation. Let us first consider a simple shearing
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deformation defined by Equation 202. For this state of deformation
2

I1 0 and = 2 12 and Equation 248 results in the following rela-

tions for the components o:' stress tensor

a12  2G£l 2  (249a)

11 = 2 2 =(03 + C6 )£2 2  (2h~b)

a C 2  (249c)033 3 12

Equation 249a indicates that a 4econd-order elastic stress-strain rela-

tionship predicts a line4.r relation between shearing stress and shearing

strain. Equations 249b and 24 9c give the magnit de of normal stresses,

as a function of shearing strain, required to maintain shearing deforma-

tion. It is noted that the normal stresses are not uniform, thus re-

sulting in normal deviatoric stresses

1 2
S 22 3 612 (250)

on the shearing planes. ITh• significance of the material -instant•- C3

and the combination (C3 + C6 ) is realized f."om Equations 249c and 249b,

respectively.

68. We next consider uniform dilatati.in def•.nd by Equation 205.

For this state of deformation 1 = I/6 and Equation 248 results in
2o1

the following relationship between pressure and volumetric strain

SK1 + + C3 + C5 +-9 I (251)

Equation 251 describes a parabolic stress-strain relationship. The

mateAal constants K and the combination (C2 + C3/6 + C5 /3 + C6/9)

can be determined from experimental data by curve fitting techniques.

It is noted that K is the initial slope of the pressure-Nolumetric

strain curve azi. is a positive constant. If the combination of the ma-

terial constants in the parentheses is also positive, the stress-strain

curve will be concave to the stress axis. If, on the other hand, this

80o
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combination is negative, the stress-strain curve will be concave to the

s'rain axis.

69. We will next consider uniaxial state of strain defined bý

Equation 221. For this state of deformation I, = 1 and 12 C 1/2

and equation 248 results in

(K + 4 G)cl + (C2 C+ + C ) 2 (252)CI3 2 2 + i C3 +5 + 6 1l

a2  =K - e + 2 + 2 (253)

Equations 252 and 253 also describe parabolic stress-strain relation-

ships. The combinations of material constants (C2 + C3/2 + C5 + C6 )

and (C2 + C3/2) can be determined from experimental data by curve fit-

ting techniques. As was pointed out previously, the shape of the stress-

strain curves predic by Equations '52 and 253 depends on the sign of

the combination of the material constants in the parentheses. The

stress-strain curves will be concave to the stress a.cis if these combina-

tions are positive, and concave to the strain axis if they are negative.

Since i is the only norvanishing strain component in uniaxial strain

configu-ration, we can use Equations 252 and 253 to relate stress dif-

ference a1 - a to strain difference el , i.e.,

CI - 2 = 2GcI + (C5 + C6 ) (254)

Again, the shape of the stress-strain curve is determined from the

sign of the combination (C5 + C6) of the material constants.
70. More complicated states of stress and deformation, such as

plane strain and triaxial stress conditions, can also be studied withint ithe framework of second-order stress-strain law. Such states of stress

generally lead to lengthy mathematical expressions between stress and

strain components. For example, consider cylindrical state of strain

defined by
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I 0 0

TiC 0 2 (0 255)ij

0 00

2 2
For this state of deformation C + 2e and I =1/21 + 2C1

1 2 2 (C 2;
and Equation 248 results in the following expressions for the components

of stress tensor

4 + L3+ C5 2Cs
l K+ + G)C + 2 0 C + (2K- 2G)e2

+ (4c2 + C3e 2 + (4c 2 + 2C5/) 1 c2  (256)

02 a =(K - ~-G) 6 + (02 + + (2K + ~e
32 (C 2 3• 32 2-

+ (402 + 03 + 205 + CZ+ (402 + c5)C~ (257)

Various stress paths may be em:ployed in a laborato:y test maintaining a

cylindrical state of strain. The most common stress path used with this

state of strain is to keep the lateral stress a3 constant while in-

creasing a1 (Figure 6d). For this stress path it is possible, in prin-

ciple, to solve for e in term of el , using Equation 257 (since a32 1
is a constant), and then substitute the resulting expression into Equa-

tion 256 to develop a relationship between a1 and c1 * Other stress

paths such as constant J /3 path (Figure 6c) and uniaxial stress test1
(Figure 6b) can also be considered.

71. 'klAlowing the same procedure we can develop and analyze more

complic•ted nonlinear elastic stress-strain laws. Let us consider a

third-order law where terms in strain up " the third power are retained

in the stress-strain relationships. Accordingly, the response coeffi-

cients 0 , 1 and ý2 (Equation 197) for a third-order stress-

strain law take the following forms
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K= - G)l +i I + 03I C Il + C8 +2 C9I3  (258a)

2-5 1 101 112 (258b)
€i 2 + CSI + CII 1 (25lI2

¢206+012Il (26 2c)

where C7 through C12 are six additional material constants which

must he determined experimentally. A third-order elastic stress-strain

law foemulated within the framework of Equation 197 (Cauchy's method),

therefore, contains twelve material constants. In view of Equation 197

the constitutive equation of third-order elastic material becomes

ai Y G)1 + C I + 2 + CI + 0

J ~~~+ (G + C5I1 + CIO1 2+C) 29+~G~ 5I 1  0101+1 2 l ij~i + (C6 +0C1211 )e (259

It is noted that if third-order terms in strain are neglected, Equa-

tion 259 reduces to Equation 248 (constitutive equation of second-order

elastic materials). It was pointed out previously that a second-order

* elastic stress-strain relationship predicts a linear relation between

*• shearing stress and shearing strain. Nonlinear relation between shear-

ing stress and shearing strain is due to third- or higher-order terms in

strain tensor. This phenomenon, which is a departure from second-order

effect (see Equation 249a), can be demonstrated by examining the behav-

ior of third-order elastic materials under simple shearing deformation

defined by Equation 202. For this state of deformation I, = 0
12= 12 , and = 0 and Equation 259 results in the following re-

lation for the shearing stress 12

0 12 2 0

T = 2Gc12 + Cll1 e 12 (260)

Equation 260 is a third-order equation in shearing strain e2 The

behavior of third-order stress-strain law under various states of stress
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and deformation can al-t be studied similar to the second-order law. In

the next section we will consider less complicated and perhaps more

useful forms of elastic stress-strain laws referred to as quasi-linear

elastic material.

4uasi-linear elastic material

72. Nonlinear elastic stress-strain laws are too complicated for

application in all engineering problems. In many engineering problems

only an approximate or gross behavior of the material under considera-

tion needs to be modeled. For this reason, we will develop a number of

simple stress-strain laws for simulating the gross behavior of a number

of materials. We will start with Equation 197 (or Equation 198) by

making the assumption that the response coefficient 02 is zero. The

basic constitutive equation then becomes

a = 00iJ + 01C (261)

where, as before, 00 and *1 are polynomial functions of strain in-

variants. Equation 261 is usually called a quasi-linear relation. From

Equation 261 it follows that

3 *0 + l (262a)

S = 1E ij (262b)

In view of Equations 124, 162, and 262 we can write

2
It2 (263a)

2

"0 3 1 iI (263b)
3 3
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Substituting Equation 263 in Equation 261 results in the following gen-

eral constitutive equation for quasi-linear elastic material

1 J2/ 1
J= •- i + iJ -- .i (264)
ii ij 3 /

It is only necessary to postulate (based on experimental evidence) math-

ematical expressions for J and in terms of strain invariants in

order to utilize Equation 264 for any material of interest. The inverse

of Equation 264, resulting in strain-stress law, can be obtained from

Equation 198 by assuming that Ti is zero and following the above pro-
2

cedure. The resulting relationship becomes

11 + ( - (265)

To use Equation 265 we need to express I and -' in terms of stress1 Y2
invariants. For example, in the case of the linear elastic materialo

j= 2G4I (266a)
J21

KI (266b)
3 1

and Equations 264 and 265 reduce to constitutive equations of linear

elastic materials (Equations 210 and 214, respectively).

73. We will now proceed to develop constitutive equations for
various classes of quasi-linear elastic materials which are of interest

for engineering application. For the simplest class of quasi-linear

elastic material, in which there are no couplings between the deviatoric

and volumetric responses of the material, we can write

3" fl(tl) (267a)

f ~= 2(1) (26Th)
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where the functions fl and f 2 must be determined based on experi-

mental evidence. A good approximation for a number of materials (such

as clay soils) is to assume the following relations for f and f
J1 2i

•-- (P + PB)e - P (268a)
3 0 B B (6a

(268b)J2=kl + k2

where P k, ,and k2  are material constants which must be de-

termined experimentally. Equations 26 8 a and 268b are depicted graphi-

cally in Figure 9. It is observed from Figure 9 that P defines an0
initial hydrostatic state of si ass (for materials that can sustain ten-

sion, P can be taken to be zero) and P defines the maximum hydro-
0 B

static tensile stress that the material can sustain before it fails

(breaks) at such a tension. For materials that cannot sustain tension,

the material constant P is zero. In this case P defines the stateB 0
of "ease" or the initial stress state of the material. The material

constant k is proportional to the inverse of the initial shear modu-
1

lus and k2  is the inverse of the ultimate shear strength of the mate-

rial. Substituting Equations 268a and 268b in Equation 264 results in

the following quasi-linear elastic constitutive equation

aij +P0 + PB)e - PB]Sj i - i (269)

The inverse of Equation 269 resulting in strain-stress law can be ob-

tained by inverting Equations 268a and 268b and substituting the result-

ing expressions for I1 and inito Equation 265 as follows:

iJ___+p+ _ _ •- (270)

L jj 3 O + 1 k 'T ' j -)
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Figure 9. Assumed relationships for quasi-linear
elastic material
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74. Equation 269 (or Equation 270) is a simple but useful consti-

tutive equation which can be used to study the stress-strain behavior of

a number of physically nonlinear materials. It contains only five mate-

rial constants which have physical meaning and can easily be determined

experimentally. Having determined the numerical values of these mate-

rial constants we can use Equations 269 and 270 to predict the behavior

of the material under any state of stress and deformation. For example,

consider condition of uniaxial strain defined by Equation 221. For this

state of deformation 1 1 and C /3, and Equation 269 results

in

2
(P + P)e - P + 3 - (271)

01 0 B B k2
k + - -E

1

T2=03= (P0+PB)e +B - (272)

k + k2

Equations 271 and 272 predict stress-strain curves that may initially be

concave to the strain axis and then become concave to the stress axis as

the vertical strain I increases. Using Equations 271 and 272 we can

determine the stress path associated with the state of uniaxial strain

"in the versus J /3 space, i.e.,
2 1

•:: 
£n 3-+ PBP

S0 (273)
:: : k 2- + P B

k2 3__Br kI + in
1 L PO + P-B

Next consider the behavior of the material under condition of uniaxial

stress defined by Equation 215 (assuming that P = 0). For this state

of stress J =01 and a /3 and Equation 270 results in
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[l (3 + PB 3 l'

e l a- in PB + " k (274)

2

-1

C in (275)2k2 2
PB 2

75. A more complicated quasi-linear elastic material model can

now be constructed by assuming that the shearing response of the mate-

rial is a function of both the hyTdrostatic and the deviatoric stresses,

while the volumetric response is only a function of pressure. Accord-

ingly, Equation 267a is still valid while instead of Equation 26Th we

can write

Various forms of Equation 276 can be utilized to construct a material

model. A useful form for materials such as sand can be developed by

using Equation 268b and assuing that the ultimate shear strength of the

material is a function of J /3 . For a first-order approximation we
1

can assume that the ultimate shear strength is a linear function of

hydrostatic stress; thus,

lk2 k2 '3 1- (277)

2

where k2  and k3 are material constants that must be determined ex-

perimentally. Utilizing Equations 277, 268a, and 268b in Equation 264

results in the following constitutive relationship
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S= (PO + PB)e - ~iP i )

RZ11 k2 +k 3  I]
+• -I 3-I 6lJ (278)

k2 + klk PO + PB)e 1  - PB]d + j

It is noted that when dependence of shear strength on hydrostatic stres.

disappears (i.e., when k3 = 0) Equation 278 reduces to Equation 269.

76. To examine the significance of the dependency of shear

strength on hydrostatic stress let us consider the behavior of Equa-

tion 278 under cylindrical state of strain (Equation 255). For this

state of deformation I= (C - C2)//3 and I, = e + 2e and we2 1 2 1 1 2
can, after arranging terms, obtain the following relationship

- =(01 ,)Ikk,, + klk3[• (0l- a2) + C2} (.. i._..•• ± - 1(2T9)

1 2
+k 4k~ oa +o -- - )

' 3 -2) 22 3R k3 2

if we consider a stress path where 2 = 3 is kept constant during the

test (Figure 6d), Equation 279 .an be used to relate stress difference

(aI - a) to strain difference (e - e2) for a constant value of

The qualitative behavior of Equation 279 is depicted in Figure 10. It

is observed from Figure 10 that the shear strength of the material in-

creases with increasing confining stress a2. If k is set to zero
2 3

in Equation 279 it is noted that the dependency of shear strength on con-

fining stress disappears.

77. The next step in developing more complicated quasi-linear

elastic stress-strain relationships is to assume that volumetric strain

1 1 is caused by both the hydrostatic and deviatoric stresses. For such

material we can write

1 g , (280)
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Figure 10. Response predicted by Equation 279 for cylindrical
state of strain

where the function g must be poetulated, based on experimental re-

sults, for any material of- interest. Equation 280 can be simplified

further by expressing the volumetric strain I as the sum of two comn-

ponents, i.e.,

1, (281)

where =contribution due to hydrostatic stress and g =contribu-

tion due to deviatoric stresses. For the contribvtion due to hydro-

static st-ress we can use the inverse of Equation 268a

gh(3) a PO ( 2B) (282)

*As a first-order approximation, for the contribution due to deviatoric

stresses we can express gsas
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=gs - i(283)

where & is a material constant that can be positive or negative de-

pending on whether the material contracts or expands, respectively, dur-

ing the application of deviatoric stresses. In view of Equations 281

through 283 the relationship for the volumetric strain (Equation 280)

becomes

S= n + 7J (284)
0 B 2

During a hydroste.tic test (Figure 6a) T' = 0 and Equation 284 reduces
2

to Equation 282. To formulate the constitutive equation for this class

of quasi-linear material we combine Equations 268b and 277 to develop an

expression for 2I, and then substitute this expression and Equa-

tion 284 in Equation 265. The resulting constitutive equation becomes

Ci 1 1 n 3Po B + 75 6iJ

+ 3j - 6-J (285)

78. Equation 285 allows for the dependency of shear strength on

hydrostatic stress and the coupling of volumetric strain and deviatoric

stresses. If the material constants k and a are set to zero these
3

cross-effects will disappear and Equation 285 will reduce to Equa-

tion 270. It should be noted that these cross-effects (in particular

the coupling of volumetric strain and deviatoric stresses) are due to

scalar nonlinearity (invw~riants) and are different from the second-order

effects discussed in the development of constitutive equations for non-

linear elastic materials. To illustrate this point further, let us

examine the behavior of Equation 285 under a simple shearing stress
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defined by Equation 239. For this state of stress (taking P0  to be

zero) T13= O and * = -C and from Equation 285 it follows that
1 72

sii =1 i= (286)

indicating that simple shearing stress is accompanied by volume change.

However, Equation 285 indicates that there are no normal deviatoric

strain components associated with the volume change, i.e., El E22

= E 0 . In the case of nonlinear elastic material, on the other
33

hand, it was shown that there are normal deviatoriIc strains associated
with volume change due to simple shearing stress (see Equation 242).

Finally, it should be pointed out that for certain stress paths Equa-.

tions 278 and 285 will produce inelastic stress-strain response (these

stress paths will be discussed in Part V in conjunction with incremental

stress-strain laws). This is a consequence of the dependency of the

shearing response of the material on the hydrostatie- state of stress

(Equation 276). To avoid such possibility the use of Equations 278

and 285 should be restricted to stress paths where J /3 and -' do

not decrease, i.e., they remain 9onstant or increase.

Green's Method

79. In order to develop the constitutive equations of elastic ma-

terials based on Green's method we first state two of the fundamental

laws of mechanics: 5

a. The first law of thermodynamics, which is a statement of
the law of conservation of energy: "The work that is
performed on a mechanic.: system by external forces plus
the heat that flows into the system from the outside
equals the increase of kinetic energy plus the increase

of internal energy."

b. The law of kinetic energy: "The work of all the forces I
(internal and external) that act on a system equals the
increase of kinetic energy oi the system."

Mathematically, we can express the first law of thermodynamics as 5

We + =AT + AU (28T)
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where

We = work performed on the system by external forces

= heat that flows into the system

AT = increase of kinetic energy

AU increase of internal energy

The law of kinetic energy can be stated as

W + Wi = AT (288)•e 1

where W. = the work performed by internal forces in the system. in

view of Equations 287 and 288 we can write

W. = AU (289)

Since we are only dealing with mechanical energy weassume that Q = 0

and Equation 289 reduces to

wi = -AU (290)

80. We will now proceed to derive the constitutive equation of

Green's elastic materials. If V is a material volume (region) within

a deformaule body and S is the surface enclosing this region, and if

this region undergoes an infinitesimal displacement tSu (the symbol 6
i

defines a small variation), the work of external forces can be expressed

as

We dS + ffV ajj 6uJ fiSui dV (291)

where n direction cosines of the outward normal to surface S. The
j

first integral in Equation 291 is due to tractive forces on S and can
5

be transformed to a volume integral by using the Divergence Theorem,

JJ. ainj6 11 s =ffj 0 (6u dV + 6uiij dV (292)
ff• -inj 19 iL



The second integral in Equation 291 is due to body forces f. acting on

material in V Combining Equations 292 and 291, the work of external

forces becomes

SW a i (6u.) + Sui(a + fi)] dV (293)
e fff. Iji1i i jijij Ali

Now, let us assume that during the displacement 6u. the materil. vol-

ume V is in equilibrium and the change in kinetic energy is zero. The

equations of motion (Equation 192) then take the form

aiJJ +f, 0 (294)

which are referred to as the equations of equilibrium. Since the stress

tensor is symmetrical, application of Equations 294 in Equation 293 re-

Ssults in the following expression for 6W
•IF e1ffj 1 .,

6W = a (ýu ) dV (295)•.e f]V

Similar to Equations 149 through 151, the infinitesimal displacement

gradient (ýu i) can be expressed as

(U ), j = i +hi (296)

In view of Equation 296, Equation 295 becomes

ýW e f-- . i riJ + crjn i dV (297)

Since a ji F Wij (symmetry of stress tensor) and iij is skew-

symmetric, the expression aji 6Mij is zero and Equation 297 reduces to

ff1 hijcj dV (298)
e offfV av

Invoking the assumption that AT = 0 during the infinitesimal displace-

ment, and since Q0 0 , Equation 287 can be written as
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Sw = 6u (299)e

The internal energy associated with the material volume V can be ex-

pressed as

U = fff U0 dV (300)

where U is the internal energy per unit volume, referred to as the
0

internal energy density. In view of Equations 298, 299, and 300, we can

write

fffv iJ6e.i dV =fff kU0 dV (301)
V V

which leads to

6Uo =a °iJ6•i (302)

Since the internal energy density function U0 depends on the strain

components ei, the variation U0 due to eiJ can be expressed as
u0 i

6U 0 DE Ci (3031)
ij

In view of Equations 302 and 303, the stress tensor au takes the fol-

lowing form

SU0
iJ = i(304)

Equation 304 is referred to as the Green elastic constitutive equation.

81. For isotropic materials the strain energy function U0  must

be invariant and, thus, a function of strain invariants. Therefore, for

isotropic materiali we can write

= l u • '•1J 3 (305)



If the material under consideration is incompressible, I1 0 and
UO U0 ýI2 ' Y3)" For sach material, an arbitrary hydrostatic state

of stress may be superimposed on the existing state of stress given by

Equation 304. Using chain rule of differentiation, Equation 305 can be

expressed as

aUo al 3Uo 3I-- 3Uo I-
u0 a 1  at0 a 2  a0 3

aij DIi i 3I i 3C (306)
1 ij a i j 2iJ1. j

Since

3I11 (307a)
3e ij

!ij

337b

SCim ( 307c)

E Equation 306 can be written as

i,3IUo IU0 I)U0
Ci= a i + - ciJ + aI- 6 C (308)

ii a1 K j ~ ~ a im mj
2 3

Comparison of Equation 308 with Equation 197 indicates that the Green

and the Cauchy elastic constitutive equations have the satne form. The

difference between the two formulations is that the response coeffi-

cients 60 S $1 . and ý2 in Equation 197 are independent whereas the

corresponding response coefficients WUo/ail , WUo/A 2 , and U0/ai 3

in Equation 308 are not. By differentiating the response coefficients

in Equation 308 with respect to strain invariants, it follows that the

following relationships exist between these coefficients
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au 0

2/_ \(309a)

-21

/a\ (l 0 )

a9,3)
=J (309b)

3

______ 37J (309c)
3 2

The consequence of the above restrictions imposed on the response coeffi-

cients will be realized when we develop second- and higher-order elastic

stress-strain laws using Equation 308. The Green elastic material can,

therefore, be considered as a special type of Cauchy elastic material

where the response coefficients are restricted by Equation 309.

82. The inverse of Equation 308 (the counterpart of Equation 198)

can be determined by assuming that there exists a function r so that0

U0 +r 0 =rii LiJ (310)

Equation 310 holds for elastic materials where application of a positive

stress increment results in a positive strain increment and vice versa.

The function r0 is referred to as the complementary energy density

function. From Equation 310 it follows that

ro =_-U0 + a ijE (311)

Differentiating Equation 311 with respect to a yields
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ar-•0  a 0 + a iJ +e i a.
mn ran fl mn

Since U is a function of strain it follows that
0

au 0  au ac
-- -i (313)

Combining Equations 313 and 312 results i(n

30 aij +o I ij
S(on

In view of Equation 304 the second expression in Equation 314 is zero.

Equation 314 then becomes

*ar a
aco = i (315)

-ij aomn

Since

(0 i#m or J#n

(316)

i m, j n

Equation 315 becomes

= "(317)

or

C 0j (318)
ii

Equation 318 is the inverse form of Equation 304.

83. For isotropic materials r"0 is a function of stress invari-

ants given by Equations U18 through 120, i.e.,
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1*r

E 0j = '( 'i 2'7j 3  (319)

Using chain rule of differentiation, Equation 319 can be expressed as

ar0 aJ1  ar0 ai ar ai0j 1 J oj+0 _2 0ai +a 3 j (320)
-ij ai a a -aari ai1 ii 72 73 i

SLnce

= •(321a)

ij

2-ij aij (321b)

ao ij
a-•lj=atamJ( 321c )

Equation 320 takes the following form

ar0  ar0C I[ •% = -" 6ij + -- j + --o ,,,,, (322)
2j 3

Equation 322 has the same form as Equation 198. The response coeffi-

cients in Equation 322, however, are not independent. It can readily be

shown that relations similar to Equation 309 exist between these

coefficients.

84. The complementary energy density function r can also be
0

expressed in terms of strain invariants by utilizing Equations 308 and

310. From Equations 308 and 310 it follows that
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-ijij

aT 8

3I 2 18 3 /mm)F-j U
au 8 au0  au00 + - -+37S 2 U0(323)

2 3

Since for a given material U0 is known, we can use Equation 323 to ex-

press the complementary energy density function in terms of strain in-

variants. However, to obtain an inverse constitutive relationshir

(Equation 322) we need to express r0  in terms of stress invariants.

This can be accomplished, at least in principle, by first expreesing the

stress invariants in terms of strain invariants using Equation 308.6

The resulting expressions can be inverted to obtain strain invariants in

terms of stress invariants and then substituted in Equation 323 in order
to express r in terms of J and J We will now develop

ine0 of 1 'J 2 3
constitutive equations for various classes of elastic materials utiliz-

ing Green s method (i.e., Equations 308 and 322).

Linear elastic material

85. For linear elastic materials only terms in strain up to the

first power are retained in the stress-strain relationship. It then

follows from Equation 308 that the strain energy density function U0

must be quadratic in strain in order for the resulting stress-straln re-

lation to be of first order. Assuming that the initial state of stress

is zero, U0  takes the following form

U0 A I + A 21 2 (324)
0 12 2 1

where Al and A2 are material constants. Substituting Equation 324

in Equation 308 results in

S 2A 1 6 + A (35
iJ 12A i lii (325)
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Equation 325 is identical with Equation 201, indicating that both

Green's method and Cauchy's method result in the same stress-strain rela-

tion for linear elastic materials. In view of Equations 20h and 209 the

material constants A2 and A1 become

K G (326a)
'2 z2 3

A, 2G (326b)

The Rtrain energy density function for linear elastic materials (Equa-

tion 324) can then be expressed in terms of shear modulus G and bulk

modulus K as follows:

K22G (327)
2 1 2 1

It is noted that the exnression - I/6) is the second invariant

of strain deviation tensor Y-- (Equation 164). We can therefore &Tite

U0 = 2GI' + T 1 (328)

Since for linear elastic materials Jl/3 = KI1 and N-•= 2G (Equa-

tion 266), the strain energy density function can also be written as

• i Jl

NOil~~* I (329)

where r N and J 1 1/6 can be considered as energy due to distor-

tion and volume change, respectively, during a deformation process. The

strain energy density function can also be expressed in terms of stress

inva-iants or various cther combinations of elastic nmoduli end invari-

ants. For example, the counterpart of Equation 328 becomes

/J2

L2 + 2 (330)UO 2G 2K
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In view of Equations 323 and 327 the complementary and strain energy

density functions for linear elastic materials are identical. For

linear elastic materials we can, therefore, write

UO -r 0 =r aiiJ (331)

be 86. We can now examine the nature of the restrictions that must

be placed on the linear elastic moduli due to the existence of strain

energy density function U0 . Expanding Equation 324, we can write

1 )(2 2 2 ~ 2 2
U - + 2 + 3 + + 2 + C3 + C2

+ 2A2(11%22 + 22'33 + 'n133) (332)

Equation 332 is quadratic in strain and can be expressed in the qua-

dratic form

6 6
Uwr ando =c= E ) (333)

I where ei and c denote the six independent components of the strain

tensor. The matrix c = c is expressed in terms of A1  and A2

and has the form

A+ A2 A2 A2  0 0 0

A- A + A A 0 0 0

AI1
A2 A2 2 - +2

cii A A2  4+A 2  01 0 0 (334)

0 0 0 A 0 0

0 0 0 0 A1  0

0 0 0 0 0 A1
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The strain energy density function U0 is a positive quantity. Accord-

ing to the theory of quFAratics, in order for U to be a positlve quan-
0 5tity ,a: the miL .- of the ?Jaaonal elements of cij must be positive.

Imposing ihk1- restrictlon o-. t"_ 4 iagonal mincrs of the matrix cij

leads t. the following in, ,,U.L ties:

All > 0 (335a)

A
+- A2 > 0 (335b)

A,
•-+ 3A2 > 0 (335c)

In view of Equations 326, 219, and 220, the above inequalities impose

the following restrictions on the linear elastic moduli G , K , E

and v

G > 0 (336a)

K > 0 (336b)

E > 0 (336c)

-i < V < 1_ (336d)2

It is emphasized that negative values of Poisson's ratio v have not

been found experimentally for isotropic elastic materials.

Non) inear elastic material

8T. We will now proceed to develop constitutive equations for

various classes of nonlinear elastic materials within the framework of

Green's method (Equations 308 and 322). As in the ( -velopment of non-

linear Cauchy elastic constitutive equations, we will tcart with second-

order stress-strain relation where terms up to the second power are re-

tained in the stress-strain relationship. The strain energy density

function for a second-order stress-strain law, therefore, must be cubic
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in strain. Assuming that the initial state of stress is zero, the most

general cubic relation for U0 takes the following form

=O2GI3f+If 2),~2 +AI + A1 3 + AI (33T)
0 (2\23/1 3l2 hi 3

where A through A. are additional material constants associated3
with second power terms in the stress-strain relationship. It is noted

that if third power terms in strain are neglected Equation 337 degen-

erates to the corresponding expression for linear elastic material (see

Equations 324 and 326). Substituting Equation 337 in Equation 308 we

obtain the following second-order stress-strain law

aY = -11 + 3A4 + A 6,j

+ (2G + AS3I + A5Cim'mj (338)

Equation 338 contaiis five material constants whereas its counterpart

based on Cauchy's method (Equation 248) contains six. This reduction in

material constants is a consequence of thermodynamic restrictions im-

posed on the response coefficients of Green elastic material (see Equa-

tion 309). It was noted that in the case of linear elastic materials

both methods resulted in the same equation and their difference was not

apparent. The difference between these two methods becomes more pro-

nounced when considering higher-order nonlinear elastic and quasi-linear

elastic materials.

88. Let us now consider the stress-s'rain relationship for third-

order elastic materials. The strain energy density function for a

third-order elastic material must contain strain terms up to the fourth

power. Again assuming that the initial state of str-ess is zero, the

strain energy density function for a third-order elastic material takes

the following representation

+2 - z1
+AyI+ A8 11 3 + A9 11 (339)
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where A6 through A are additional material constants. It is noted
6 9

that when fourth power terms in strain are neglected Equation 339 re-

duces to Eauation 337 (strain energy function for second-order material).

Substituting Equation 339 in Equation 308, we obtain the following third-

order stress-strain law

0 = [ + +A + 1A6 3 + A I + 2A9 1 I=- ["K ai1 + 3I4112 1 8 iJ2
"ij3 2 l+ 4A 3A 9 A lim~J (30

+ 2G + A3 11 + 2A 2 + A Ij)cij + (A + A I e e (340)

Equation 340 contains nine material constants. The counterpart of Equa-

tion 340 based on Cauchy's method (Equation 259), on the other hand,

contains 12 material constants. Therefore, in the case of third-order

stress-strain law the effect of thermodynamic restrictions is to reduce

the n'miber of material constants by three. In the next section we will

consider quasi-linear elastic materials within the framework of Green's

method.

Quasi-linear elastic materials

89. If the strain energy density function U0  is independent of

the third strain invariant 13 , Equation 308 reduces to

a au 0 + - (341)aij 1  ij aT
2

SEc..tion 341 is the counterpart of Equation 261 (constitutive equation

of quasi-linear elastic materials based on Cauchy's method). In the

case of Equation 341, however, the response coefficients are restricted

by Equation 309a. From Equation 341 it follows that

.T DU au
1 -0+ -I1 (342a)=i= 3 1 a7,2

au0
Sij - Eij (342b)

2
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Using Equations 124, 162, and 342, we can obtain expressions similar to

Equation 263 for the response coefficients in Equation 341, i.e.,

0 2
- - =(343a)

2 F2

U0 1 J 1 I

_31= 3 3 (343b)
12

The inverse of Equation 341, leading to strain-stress relationship,

takes the form

=ar 0  ar0
0 0

-ij 91 i j- + ij (344)
#a72

90. In order to examine the nature of the restriction placed on

the response coefficients by Equation 309a, we substitute Equation 343

in Equation 309a as follows:

(3145)

Therefore, the functional forms of J and must satisfy theVi2# 2

above differential equation. In the case of quasi-linear elastic mate-

rial based on Cauchy's method, it was noted that the functional forms of

i and were not restricted. If we consider a material for

which J depends on II only (i.e., volumetric stratn is caused only

by hydrostatic stress), then Equation 345 reduces to

3• I! = : (346)
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Equation 346 can be satisfied only if is of the form

Equation 347 indicates that for a quasi-linear elastic material for

which J 1  depends only on 11 , the shearing response of the material

is independent of hydrostatic stress. In view of Equations 341, 343,

and 347, the constitutive equation for this class of material becomes

[ýl('lj 'ij + [ý2(E2') (Cij l~l (348)

The functions f and f2 can be postulated, based on experimental

evidence, for a given material. For example, Equation 269 is a special

case of Equation 348 where the functions f and f2 are obtained from
Equations 268a and 268b, respectively.

91. Equation 348 is the simplest form of equation for quasi-

linear elastic material in that there is no coupling between the devia-

toric and the volumetric responses of the material. Equations for more

complicated forms of quasi-linear elastic materials can be developed by

expressing the str.ain energy density function U0 as a polynomial func-

tion of I1 and 12 , or by postulating mathematical expressions for

and J 1 /3 that will satisfy Equation 345 and will include

various degrees of coupling as desired.

loe-



PART V: INCREMENTAL CONSTITUTIVE EQUATIONS

92. Incremental constitutive equations are often used to describe

the stress-strain behavior of materials in which the state of stress is

a function of the current state of strain as well as of the stress path

followed to reach that state. The general form of the constitutive

equation for this class of material behavior is generally expressed as

ij ij (mn rs

whereoFi is a response function. Equation 349, which is a special

case of Equat'on 194, expresses the components of one tensor in terms of

thL• components of two other tensors. Therefore, in view of Equation 114,

the functional form of F takes the following representation

ij =0iJ + fljiJ + n2 ik kj + qBij

""+l4Oik'kj + f5(•ik kj + )ik kJ

T6 + ik kpp + ik kppj)

7 ik kppA ik kppj

+ n8( ik kp pt tj + "ikkp4pt~tJ) (350)

w'here the respcnse cocfficients no n "" 8 are polynomial func-

tions of the invarints of n and o and the following Joint
inn rs

invariant.a

12 = ab ba (35Ia)

2 ab-oc'ca (5h
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............ , * . .~. . 'mx r'.'v'rw 7f> '

3 ab bc ca (35lc)

n b a (351d)

93. We can simplify Equation 350 by assuming that the materials

of interest are rate independent. To eliminate time effects, Equa-

tion 350 must become homogeneous in time. This can be accomplished by

eliminating all terms containing second and higher powers of m in
mn

Equation 350. Accordingly, the response coefficients n8 I n6 , and

n2 must vanish, n 7 , n5 s and nI must be independent of &mn and

functions of stress invariant alone, and 14 '13 • and n0  must be

of degree one in ýmn " Imposing the above restrictions on the response

coefficients in Equation 350, we obtain

a n• nn • + ni YU +n4'ik' + n 5• R +a•

i iJ lij + 3  + 4 aikokJ + ik kJ ik kj

+ R1(kkj+ (352)7 (ik kp pj +ik'kp pj

The response coefficients n4 , 13 and nO can now be written as

TO fi 80I1 + 81I1 + 82112 (353a)

n3 a 8311 + 8011 + 85112 (353b)

T 64 = 8611 + BTr1 + 88112 (3538)

where, similar to n7, 15 , and n, the response coefficients

80 ,..,8 are independent of tmn and functions of stress invari-

ants alone. Substituting Equation 353 in Equation 352, we obtain the

following incremental constitutive equation for rate-independent

materials
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IT 1

6iJ= ($Oil + a1Hi + a8211)Sij + nl1iJ

3 1Bi + 001I + 05 2) ij

+ (86i+. + 8T111+ 88T2)oikokj

+ 5S( ik kJ + 'ik kj)

T T(ikokp pj + ik kp pj) 3h

Equation 354 is the most general incremental constitutive relationship
for rate-independent material. It contains twelve response coefficients

which are polynomial functions of stress invariants. Since each term in

Equation 354 contains a time derivative d/dt (i.e., Equation 354 is

homogeneous in time), both sides of the equation can be multiplied by

dt , resulting in the following differential form

do ij = (00 de nn + a 1 d'ab °ba + $2 d~ab abc'ca )6 j

+ (83 de nn + B4 dab Obu + S5 deab Obaca)aij

de +8 dEab oa + b8 d Eab obca i)a kakj

+ TI dF 3 + n5 (de1 k a + aik dek)

+nT (dftk Akpapj + t ikakp dcpj) (355)

where dcij and doj are referred to as the strain increment and

stress increment tensors, respectively. From Equation 355 it is ap-

parent that incremental constitutive equations are first-order differen-

tial equations. To obtain unique solutions to these equations ve need

to prescribe some initial conditions. The integration of the differeu-

tial equations for a given stress path and initial condition will lead
t ill



to stress-strain relationships. Various classes of incremental con-

stitutive equations can be obtained from Equation 355 by specifying the

highest degree of stress that appears on the right side of the equation.

In the following sections we will develop and examine various classes

of incremental constitutive equations.

Incremental Constitutive Equation of Grade-Zero

94. If the right side of Equation 355 is independent of stress,

the incremental constitutive relationship is referred to as grade-zero.

In this case nj in 8In hi cae 7 = n5 =I 2 = a 3 = 04 = 5 = 06 = 7 = $8 = 0,

and n and B0 become constants. Thus, for grade-zero, Equation 355

reduces to

dci = B0 dn + nl deii (356)

It is noted that Equation 356 has the same form as the constitutive

equation of linear elastic material (Equation 201). In order to in-

clude the linear elastic stress-strain law as a special case of Equa-

tion 355, the material constants B0 (0, 0, 0) and n1 (0, 0, 0) will
2

be replaced by K - - G and 2G , respectively. 4ccording1y, Equa-

tiou 356 may be expressed as

=(K - G)dcnn S + 2G dc (357)

Equation 357 is the constitutive equation of linear elastic material

(see Equation 210) expressed in incremental form. In order to obtain

a relation between stress and strain, Equation 357 must be integrated.

If we adopt the condition that aij = 0 when cj = 0 , integration of

Equation 357 result s in the same stress-strain relations as predicted

by linear elastic constitutive equation. For example, consider the

condition of uniaxial strain (Equation 221) where dcnn n dc 1 . For

this state of deformation Equation 357 results in
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1 2do1  (K-ZG) dE1 +2G de (358a)

do2 = (K - G)dE1  (358b)

Integrating Equation 358 and using trt condition that l = 2= 0 when

S0 ,we obtain

0=(K + 1L. G E1  (359a)

a2 = - Z (359b)

which are identical with the relationships predicted by linear elastic

stress-strain law (Equation 222). Equation 357, which is the simplest

form of incremental constitutive relationship, therefore does not mani-

fest any nonlinear behavior.

Incremental Constitutive Equation of Grade-One

95. If terms up to the first power of stress are retained in the

right side of Equation 355, we obtain the incremental constitutive equa-

tion of grade-one. This can be achieved by allowing the response co-

efficients n7 9 08 8 67' 86 8 5 1 4 , and 82 to vanish, and

the remaining response coefficients to take the following forms

2e0 3 K-1 1 3I •

01 fii2 (360b)

8 3 x 3  (360c)

S2G +)J (360d)

T15 (360e)
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where X1 through 5 K, and G are material constants that must

be determined experimentally. In view of Equation 360, the incremental

constitutive equation of grade-one becomes

idoj = n- ZG + 1iJ1 dcnniJi + '2 'ab balji

+ X denniij + (2G + 1J1) dci + )5(dcik akj + 'ik dekj) (361)

Equation 361 contains seven material constants. It is noted that Equa-

tion 361 reduces to incremental constitutive equation of grade-zero

(Equation 357) when the material constants 1i ' X2 ' X3 " X4 , and

X5 vanish. For a given initial condition and stress path, Equation 361

can, in principle, be integrated in order to obtain stress-strain rela-

tionships. The differential equations generated from Equation 361 for

vario-us states of stress and deformation are coupled first-order equa-

tions. It is not possible, in general, to obtain closed-form solutions

for these equations. Therefore, numerical integration schemes must be

utilized.

96. Let us examine the behavior of Equation 361 under hydrostatic

state of stress (Figure 6a). For hydrostatic state of stress, Equa-

tion 361 results in

22
doii = dJl =3(K- G+Il)ll÷2J dI

+ XJ3 d1U + (2G + 4J) dl +4 3 di1 (362)

Equation 362 can be written as

1'l = 1 (36V

+ (31+ '2+ '3 + '4+ 3. 5) 11

Integrating Equation 363, we obtain the folloviig relationship between

volumetric strain and pressure
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1 W
dI ~ (364ia)

1 dI f - + KJl
0 0

or

I I ltn'3 , (364b)

where K= 3il + X2 + '3 + 1: + 2X5/3 We can invert Equation 364b

to relate pressure to volumetric strain, i.e.,

eK (365)

It is of interest to note that Equation 365 has the same form as Equa-

tion 26 8a, which was postulated to describe the pressure-volumetric

strain behavior of quasi-linear elastic materials. In fact, it is noted

that the ratio K/K1  in Equation 365 corresponds to P3  (the maximum

tensile stress that the material can surtain before it breaks) in

Equation 268a. It is important, however, to realize that unlike Equa-

tion 26 8a, Equation 365 is the outcome of a theory (i.e., the incre-

mental constitutive equation of grade-one).

97. In order to examine the coupling of the deviatoric and

volumetric responses of the incremental constitutive equation of grade-

one we will examine the behavior of Equation 361 for a state of simple

shearing deformation. The strain increment tensor associated with

simple shearing deformation is given as

0 d 1210
d- = d' 0 0 (366)

12 040
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where it follows that denn 0 For this state of deformation, Equa-
tion 361 results in the following expressions for the nonvanishing

components of stress increment tensor

dol1  do22 = 2(X2 + X 5 ) dce 2 a12 (367a)

d3 =2i de a (36T7)33 2 12 12

d1 2 - [ +22 + '33 + 5(11 22 d61 2  (367c)

Equation 367 is a set of first-order differential equations which must

be integrated to relate stresses to shearing strain cl2 . Without

going through the process of integration, however, we can draw certain

conclusions about the response of the material in simple shearing de-

formation. First, to maintain a simple shearing deformation (no volume

change), normal stresses must be applied to the boundaries of the speci-

men. Second, since two of the normal stresses are unequal, Equation 367

predicts the occurrence of normal deviatoric stresses on the shearing

planes. It is recalled that the same behavior was predicted for non-

lineor elastic material (Equation 235). As was pointed out previously,

the cncurrence of normal deviatoric stresses on the shearing planes is a

second-orter effect due to tensorial nonlinearity (in this case the last

term in Equation 361) and is a depari.ii-e from linear theories where

such nonlinearity does not exist.

Incremental Constitutive Equation of Grade-Two

98. If we retain terms up to the second power of stress in the

right side of Equatiov 355, the resulting incremental constitutive equa-

tion is referred to as grade-two. Thus, for incremental constitutive

equation of grade-two the response coefficients 88, 87a , and 85

vanish, and the remaining response coefficients in Equation 355 take the

following forms

272
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ai 812 + x8 i (368b)

* 82 - i9 (36 8c)

03 -3 + •oJ1 (368d)

04 =(368e)

'6 ='i12 (368f)

nI = 2G+ X1 3Jl + X14J2 (368g)

I 5  1 5 1

1T = l 6  
(3681)

where XI through X16, K , and G are material constants. In view

of Equation 368, the incremental constitutive equation of grade-two

takes the following representation

do = K -Z G + 6Jl+ l +de

+ 2 + 8 1 dcab Oba'ij + 9 dcab ObccaiJ1

+( + 11 Jde a + X dE 0a

3 101 n ii ) ab badij

+ 112 de no u koj

(2G + •J 4÷1 + A3 ÷d

+ +i J )(dc a k dE
5 15 1 ik kj + h'i'j

+ i(dE oepk +M9 40 ikkp cpQ)(39
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Equation 369 contains 18 material constants. It is noted that Equa-

tion 369 reduces to Equation 361 (constitutive equation of grade-one)

when X6  through X16 are set to zero. Similarly, we can develop in-
cremental constitutive equations of grade-three (or higher grades) by

retaining the third power (or higher powers) of stress in the right side

of Equation 355. However, due to mathematical complexities of incre-

mental constitutive equations of grade-one or higher, they are seldom

utilized to solve actual engineering problems. For this reason, a class

of incremental constitutive equations, usually referred to as variable-
7,8

mod.li constitutive models, is often used for solution of many en-
gineering problems. The variable-moduli models are relatively simple

in that they do not contain second-order effects due to tensorial

nonlinearity.

Variable-Moduli Constitutive Models

99. The basic constitutive relation of the variable-moduli models

is given by

doij =K dnn 6ij + 2Gadcij -d de n j) (370)

It is noted that Equation 370 has the same form as the incremental con-

stitutive equation of grade-zero (Equation 357). In the case of
variable-moduli models, however, the equivalent bulk and shear moduli;%

K and G , respectively, are assumed to be functions of stress invwri-

ants. Depending on the functional forms of these moduli, various
classes of variable-moduli models can be constructed. Since Equa-

tion 370 does not include any second-order term, or terms involving
Joint invariants of stress and strain increment tensors, it can readily

be integrated (fcr a given stress path and initial condition) to yield

stress-strain relationships. Various classes of variable-moduli models

are examined in the folloving sections.

Constant-shear-modulus model

100. As implied, for a constant-shear-modulus model, G is
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constant and K is a function of stress invariants. If we further

assume that volumetric strains are caused only by changes in pressure

(i.e., there is no coupling between volumetric strain and deviatoric

stresses), the bulk modulus K becomes a function of Jl/3 only. As

a first-order approximation, let us assume that K is linearly related

to pressure, i.e.,

K=K 0 K (371)

where K0 (an initial bulk modulus) and are material constants.

Substituting Equation 371 in Equation 370, we obtain the following in-

cremental constitutive equation for a constant-G model

SK i de 6 (372)
Ea ij K0 + )dnn d 3 n i

Equation 372 is also a special case of incremental constitutive equation

of grade-one (Equation 361). That is, if we set the material constants

_5 4 and X2 to zero, and replace K and X with K0
and Ki3 , respectively, Equation 361 reduces to Equation 372.

101. We will now proceed to examine the behavior of Equation 372

under various states of stress and deformation. Under hydrostatic state

of stress, Equation 372 reduces to

i• i

dl dJIdlI (373)

:itegration of Equation 373 (with the initial conditions that I1 0

when J 0) results in the following relationship between pressure ana

volumetric 3train
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Equation 374 is of the same form as Equation 365 (pressure-volumetric

strain relation for incremental constitutive equation of grade-one).

102. For simple shearing deformation (Equation 366), Equation 372

predicts the same behavior as for linear elastic material (Equation 203).

Under conditions of uniaxial strain, Equation 372 results in the follow-
ing expressions

dal = + ÷ El del + - G del (375)

d- =3 d (376)

Since there is no coupling between volumetric strain and deviatoric

stresses, we can eliminate J 1 /3 from Equations 375 and 376 by using

Equation 374. Substituting Equation 374 in Equation 375 and noting that

I, = eI for uniaxial strain condition, we obtain

S~Klel

daI K e dc + L G dI (377)
1 0 1 3 1

Equation 377 can now be integrated to relate vertical stress a1 to

vertical strain e1 Using the initial conditions that cI - 0 when

a0 = 0 , integration of Equation 377 results in

• h KO

1 =3 1 Ge + (el 1 (378)

Similarly, we can obtain an expression for the radial stress 02

02 - G= (379)

Combining Equations 379o 378, and 374, we obtain the following relation

for the stress path associated with the condition of uniaxial strain
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kn (380)

Equations 378 through 380 indicate that a constant-shear-modulus model,

with a bulk modulus which is linearly dependent on pressure (Equa-

tion 371), can predict nonlinear stress-strain relationships under uni-

axial strain condition.

103. We -;ill next examine the behavior of Equation 372 under

conditions of uniaxial stress. For uniaxial state of stress, J =. a

and Equation 372 results in• the following expression for the increment

of axial stress do1

do, K + de + 2G d= - -de. (381)1 0 K 3  nn3

The increment of volumetric strain de can be eliminated from Equa-
nn

tion 381 by using Equation 373 (this can be done because volumetric

strain is a fuaction of pressure alone); thus,

do dI 2GdoI1
do = + 2Gde (382)

1 3 1 3(K
3 0 + Klo)

Integrating Equation 382 (with initial conditions that oa 0 when

C 1 0) ,we obtain
°I 3K,0 + kol

1 I 3KO++l= tn 3 ) (383)
3K,

Equation 383 relates axial strain c1 to axial stress oI . Similarly,
we can obtain an expression for radial strain 2 = C3 in terms of

axial stress

1 Ln 1(384)(3K 0 .i)
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Again it is noted that highly nonlinear stress-strain curves can' result

from a constant-shear-modulus constitutive model.

104. Since the shear modulus is constant, Equation 372 can be

integrated to yield a total stress-strain relation similar to that for

quasi-linear elastic models. In terms of the stress and strain devia-

tion tensors, Equation 372 results in (assuming zero initial conditions

or both stresses and strains)

Sij =2GEij (385)

In view of the definitions of Si and E (Equations 122 and 161,
ij ii

respectively), Equation 385 can be written in terms of the stress and

strain tensors

U = 3 6ij + 2G (Cj- 3 iJ (386)Oii

It is noted that Equation 386 is a special case of quasi-linear elastic

material (Equation 264). Substituting Equation 374, for J1/3 , into

Equation 386, we obtain the following quasi-linear stress-strain rela-

tionship for the constant-shear-modulus model

(ije: l e - 1) i3 - - (387)

It is noted that Equation 387 satisfies Equation 346, indicating the

existence of a strain energy function for the constant-shear-modulus

model. Using Equations 343 and 387, we can derive the following expres-

sion for the strain energy function

U 2GI..+ ( e li -(388)uo ÷ 1  - -

It ca•x easily be verified that if we substitute Equation 388 into Equa-

tion 341 we obtain Equation 387.
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Constant-Poisson' s-ratio model

105. Another type of variable moduli model is the constant-

Poisson's-ratio model where, by analogy to linear elastic materials, it

is assumed that the ratio G/K is constant. In terms of elastic

Poisson's ratio v , this ratio is given by (see Equation 220)

3 (1 2V)(389)

From Equation 389 it is obvious that K and G will have similar func-

tional forms. In order to examine the consequence of this condition,

let us assume that the functional form of K is given by Equation 371.

As was pointcd out previously, Equation 371 indicates that volumetric

strains are caused only by changes in pressure. In view of Equa-

tions 389 and 371 the constitutive equation takes the following form

doij -(K 0 + 3 n d ij

+ ( 0 + 3.dA.) dE dn 6 ii (390)

It can also be shown that Equation 390 is a special case of incremental

constitutive equation of grade-one (Equation 361).

106. The behavior of Equation 390 under hydrostatic state of

stress is identical with that of Equation 372. However, the behavior

of Equation 390 under deviatoric state of stress is quite different

than that of Equation 3T2. For example, consider a series of constant-

pressure shear tests (see Figure 6c) conducted at P] , P2 . and P 3

where P 3 > P2  PI I The deviatoric response' of Equation 390 for these

constant-pressure tests is depicted in Figure lia. It is observed from

Figure 12a that the deviatoric response 2.s dependent on the super-

imposed hydrostatic state of stress (in this case G varies linearly

with pressure). In the case of a constant-shear-modulus model (Equa-

tion M72), on the other hand, the deviatoric response does not depend

on the superimposed hydrostatic stress. Let us now consider two
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model duribg constant-preasure shear test

Scombinc- constant-pressure shear and hydrostatic tests defined by stress

paths abed and abc'd' shown in Figure lib. The deviatorie responses of

Equation 390 for these tvo tests are also depictf-d in Figure 1.1b. For

S~the stress path abed it is observed that the stress-strain curve during

i unloading (line ed) is above the loading curve (line ab). This type of

Sbehavior results in an enery-enersting loop which is contrary to the
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observed behavior of real material. For the stress path abc'd' the

stress-strain relation during unloading is along path ctd', which re-

sults in permanent deformation. Furthermore, if the stress cycle

abc'd'a is repeated several times, the stress-strain response will

result in an unrealistically excessive amount of deformation as shown

by the dashed lines in Figure llb. In order to avoid these undesirable

behaviors, the use of variable-moduli models for which G is a function

of hydrostatic stress should be restricted to stress paths where J /3

and J1 remain constant or increase. Variable-moduli models have been2
used to simulate the hysteretic behavior of earth materials during

8
cyclic or near-cyclic conditions. For this type of problem, two sets

of expressions are usually specified for the moduli K and G : one

set for loading and one set for unloading. A set of criteria or logics

are also specified to determine whether the material under considera-

tion is being loaded or unloaded so that the proper set of moduli can

be used. Application of variable-moduli models for treating hysteretic

effects will be discussed later.

107. Let us next consider the behavior of a constant-Poisson's-

ratio model under conditions of uniaxial strain. For this state of

deformation, Equation 390 results in

do (1 + (Ito + il " dC (391)

1 ~3 O 3 l

do do .(1-( 0i~o ÷ d~l (392)

We can eliminate J1 /3 from Equations 391 and 392 by using Equa-

tion 37T. Substituting Equation 374 in Equations 391 and 392 and noting

that I 1 for condition of uniaxial strain, we obtain
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d02  ( ) -eC de 1  (394)

Integrating Equations 393 and 394 ana using the initial conditions that

a, 2 =0 when c = 0 results in

1 2

= ( K(i

Equations 395, 396, and 374 can be combined to obtain an expression for

the stress path associated with the condition of uniaxial strain,

i.e.,

= 2i 3 (39T)

As anticipated, the uniaxial strain stress path for a constant-Poisson's-

ratio model is linear (see Equations 226 and 227). The constant-shear-

modulus and constant-PoIsson's-ratio models are elementary versions of

variable-moduli models. More complicated forms of variable-moduli

models are discussed below. These models are referred to as nonlinear

variable-moduli models in that both tbe shearing and the volumetric

responses are nonlinear and are represented by different functional

forms.

Nonlinear variable-moduli models

108. More complicated, and perhaps physically more realistic,

forms of variable-moduli models can be formulated by expressing K and
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G as separate polynomial functions of stress invariants. If we make
the assumption that there is no coupling between volumetric strain and

deviatoric stresses, then bulk modulus K becomes a function of J1 /3

alone. For a first-order approximation we will adopt Equation 371 for

the bulk modulus. A different functional relation can be postulated for

the shear modulus G . As a first-order approximation, we will assume

that G is linearly related to the first and second invariants of

stress tensor, i.e.,

G G=0 + 1 - + G (398)

where GO (an initial shear modulus), GI , and G2  are material con-

stants. In view of Equations 398 and 371 the constitutive relationship

for this type of variable-moduli model becomes

do K dc 6

+ 2 GO + +G +G+ ) id •d 6•) (399)

It is noted that Equation 399 reduces to Equation 372 (constitutive

equation of constant-shear-modulus model) if G and G2 are set to

zero. Also, it can readily be shown that Equation 399 is a special case

of incremental constitutive equation of grade-two (Equation 369).

109. The behavior of Equation 399 under hydrostatic state of

stress is identical with the behavior of constant-shear-modulus and

constant-Poisson's-ratio m-dels, since the functional form of bulk

modulus is the same for all these models. For deviatoric states of

stress, however, the behavior of Equation 399 differs considerably from

that of constant-shear-modulus and constant-Poisson's-ratio models.

For example, consider a state of simple shearing deformation defined by
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Equation 366. For this state of deformation, Equation 399 results in

(assuming zero initial state of stress and deformation)

doll = do22 = do33 = 0 (400a)

S2 2 12 12

Integrating Equation 400b we obtain

It is noted from Equations 372 and 390 that for this state of deformation

the constant-shear-modulus and constant-Poisson's-ratio models predict a

linear relationship between the shearing strain c12 and the shearing

stress 012 . It should also be noted that within the framework of

variable-moduli models normal stresses are not required in order to

maintain a state of simple shearing deformation. As was shown pre-

viously, to maintain a simple shearing deformation in the case of in-

cremental constitutive equations of grade-one (or higher grades), normal

stresses must be applied to the boundaries of the specimen (see Equa-

tion 367).

110. A more useful description for shear modulus, especially forB
modeling the stress-strain behavior of soil, is to express G in terms

of J 1 /3 and4I2 rather than .2 For ammple, for a first-order

approximation we can express G as

G0=GO + G 1- 3 4 (40O2)

where 0 is a material constant. The sign of C2 will determine
62 2

whether the material softens (G" < 0) or stiffens > 0) during shear.

For this description of shear modulus the constitutive equation becames

126



1'
doi (KO + L +dr# dci

+ 2(G + G -i + (de dc 6i (403)

For a state of simple shearing deformation (Equation 366), Equation 403

results in (assuming zero initial state of stress and deformation)

doll = do22 =0o =0 (404a)

Sdl2 = 2(Go + Yo12)d12 (404b)

Integrating Equation 404b we obtain

C12 I kn G(05)
I0

Equation 405 also describes a nonlinear relation between the shearing

strain e12  and the shearing stress a12

111. Let us next consider the behavior of Equation 403 under

cylindrical state of strain utilizing the stress path depicted in

Figure 6d. For this stress path TO = /3 (Jl/3 - a3) , vhere a3 =2

is the confining stress which remains constant during the deformation

process. From Equation 403 the increment of stress difference associ-

ated with cylindrical state of strain becomes

do °-; == 2o- : Go +( C11 L, + d d (4066)

1~4 2 (00+3 02 %7) (1 62) fote

We can elimi~nate J!/3 fror.justidn 406 by using the equation for the

stress path, and noting that (a I - 02)/4 4ve obtain
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do - da
1 2(oy

2-0. + G'2 + ( - a2) 3

For a given value of confining stress ao , Equation 407 can be inte-

grated to yield a relation between strain difference E1 - C2 and

stress difference a1-02 . Denoting the confining stress 02 by a

and carrying on the integration, we obtain

c - = n 1O+G ~2 31 + 2

r3rl

lo G
xzn[G++(01 a2) 0 1

o 0c

It is noted from Equation 408 that tae shearing response of the material

is dependent on the magnitude of the confining stress aa. If 0 1 is

set to zern in Equation 408, this dependency disappears (i.e., shear

modulus becomes in~dependent of hydrostatic stress, see Equation 402).

112. Next we will consider the behavior of Equation 403 under

conditions of uniaxial strain. For this state of deformation,

dc =dc 1  and Equation 403 yields the following expression for the

increment of vertical stress do 1

do1 = (KO tt dc 1 + (+oGitl+ 479dei (409)

We can eliminate J /3 and from Equation 409 by using Equa-

tion 374 end noting that V7 = [ 3 (a 1 - J1/3)/2 ; thus,

1 232- - 4- 2/.3- kcI-3 G O + o + +02)G(e 1) (10
dc 100131 3~ 2)o
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It is noted that Equation 410 reduces to Equation 377 (the corresponding

expression for a constant-shear-modulus model) when G2 and G are

set to zero. Equation 410 is a first-order differential equation and

has the following solution (assuming zero initial state of stress and

deformation)

.K .

S r32[ 3--0 1

---2 2

G, - e2 (Y3 (+11)

Again, it is noted that Equation 1411 reduces to Equation 378 when G2

and GIare set to zero. The radial stress a2  required to pr-event
radial strain can be determined by direct integration of Equatiov ~403
(similar to the procedure followed to obtain o)or by using Equa-

tions 374 and 1411. From Equation 374 it follows that

3K2

a2  1 e1 (412)

A fr it ituation 412 by using Equation 411. The uniauial strain stress
path for this model can be determined by using Equations 411 and 374.

Equation 3th can be inverted to relate In a 1  in this case) to Jl/3

The resulting relation can then be substituted into Equation 3411 to

2 i

T e resu l in terea of J 1 /3 t which, in conjunction with the
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expression r3 (ji - Jl/3)/2 , will result in the stress path.

113. More complicated forms of nonlinear variable-moduli models

can be developed and analyzed as for the preceding models. The choice

of any particular model, however, must be based on the experimental

observation of the stress-strain behavior. of the material of interest.

Treatment of hysteretic behavior

114. As was pointed out previously, variable-moduli models have

been used to simulate the hysteretic behavior of earth materials during

cyclic or near-cyclic loading conditions. To show the procedure by

which the hysteretic behavior is simulated, we express the basic consti-

tutive relation of the variable-moduli models (Equation 370) in ter-as

of the hydrostatic and deviatoric components, i.e.,

dJ 1
-- = K dI, (413a'

dSij = 2G dEij (413b)

where dSij and dE are, respectively, the deviatoric stress and

strain increment tensors. It is postulated that the basic form of

Equation 413 is valid for all loading conditions (initial loading, un-

loading, and reloading). However, the functional forms of K and G

change depending on whether the material under consideration is being

loaded or unloaded. As depicted graphically in Figure 12, for initial

loadings the response of the material is governed by

dJ1

"= K• d (414a)

dSij 20t dEij (4l1b)

where Ki and Gi are, respectively, the bulk and shear moduli associ-

ated with initial loading. During unloading and reloading we assume that

the response of the material is governed by

132l/l| 4
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dJ1

-- K dlI (45a)
3 u 1

dS = 2Gu dEij (4i5)

where K and G are, respectively, the bulk and shear moduli as-u u

sociated with unloading and reloading.

115. To complete the specification of the model we need a cri-

terion to define the loading condition during a deformation process.

We adopt as our criterion the quantity

dW = cij deij (416)

Vhich defines the rate at which the stresses do work during the deforma-

tion process. According to this criterion, dW > 0 define6 loading

(initial loading or reloading) and dw < 0 defines unloading. The

condition dW = 0 is referred to as neutral loading. The neutral

states of loading associated with the rate of work criterion impose

c.-.tain restrictions on the material constants in the constitutive equa-

tions for loading and unloading and require special considerations.

The material constants must be chosen sc that the loading and unloading

constitutive equations become identical whenever dW = 0 , i.e., neutral

loading. This requirement must be met in order to obtain a unique

solution for a boundary-value problem involving cyclic loading condi-

tions. From Equations hlh and 415 it is apparent that variable-moduli

models, in general, do not satisfy this requirement.

116. In view of the definition of deviatoric strain increment

tensor we can express Equation 416 in the following form

dW S + 6 s~ (d1m _ 1 ri (417a)

or
r.• Jl

dW= S dE +I d! (47hb)
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SWe can eliminate mn and dlI from Equation 417b by using Equa-

tion 413; thus,

S dS Jl dJl
dW- mn n -(418)

2G 9K

Since = i/2(SmnSmn), it follows that A

dj S dS(419)

where dJ' is the increment of the second invariant of stress devia-
2

tion tensor. Equation 418 can, therefore, be written as

dJ J
dW + - (- 2o)

2G 9K(40

For variable-mod'uli models in which G = G(72) and K = K(JI) the rate

of work can be separated into hydrostatic and deviatoric components.

Equation 420 can then be used with the interpretation that dJ2/2G is

rate of work due to deviatoric stresses and J dJl/9K is rate of work

due to hydrostatic stress. Accordingly, two criteria for defining

various loading conditions can be prescribed. For the deviatoric part

of deformation, loading and unloading are defined according to whether

dJý is positive or negative, respectively. For the hydrostatic part 3

of deformation, loading and unloading are defined according to whether

dJ1  is positive or negative, respectively. In this manner, it is

possible for the material to unload in shear while loading in pressure

or vice versa. It should be pointed out that these criteria also do

not satisfy the requirement of neutral loading. Because of the require-

ment of neutral loading, the validity of variable-moduli models for

'creating hysteretic effects has been questioned. 9  Hysteretic effects

and permanent deformation can be treated within the framework of in-

cremental theory of plasticity without violating the requirement of

neutral loading.
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PART VI: CONSTITUTIVE EQUATIONS OF
SIMPLE VISCOELASTIC MATERIALS

117. For viscoelastic materials, the state of stress is a func-

tion of both the state of strain and time rate of strain. The stress

tensor can, therefore, be expressed as

U -iJ (mn) (421)

where Fi = viscoelastic response function. In view of Equation 11h,
A

the response function Fi, takes the following form

Y ij~~ T10 j Y j 1'kk n3cij = O + + n2Cikk + e

+ f4Cik kj 5 nS(Eik~kJ + Lik kj)

+1 6(Sik kp pj + ik kp pj)

+ n 7(Cik kp Pj + &ik kp pj)

+ t8 (Cikkp~pt~tJ + ik kp PptCtJ) (422)

where the response coefficients n 0 n8 " are polynomial functions

of the invariants of c and 9 and the following Joint invariantsMn rs

11, b (423a)

S2 ab ibbc ica (423b)

11 C C (43c3 ab bc ca (k23c)

14 = cabbcdd (423d)

It is noted that when dependence on r disappears, Equation 422 re-

duces to the constitutive equation of Cauchy elastic material (Equa-

tion 197). Various classes of viscoelastic materials can be described
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by Equation 422 by proper selection of the response coefficients

T .O ' " We will be dealing with simple viscoelastic materials

in this report.

Kelvin-Voigt Material

118. The constitutive equation of Kelvin-Voigt material, which

describes the simplest type of viscoelastic material, can be obtained

from Equation 422 by allowing the coefficients r2  , 5

Ti , and n8 to vauish and the remaining coefficients to take the fol-

lowing forms

o = X•1 + X1l (424a)

""= 2G (424b)

"T23 G2 (424c)

Accordingly, the constitutive equation of Kelvin-Voigt material becomes

a.ij X 164 +X vl6 ij + 2Gcij + 2Gv~ij (425)

The coefficients X and Gv , analogous to the elastic constants X

and G , are the dilatational and shear viscosity coefficients, resPec-
tively. Again it is noted that if Xv and Gv are set to zero Equa-

tion 425 reduces to the constitutive equation of linear elastic material.

119. Let us examine the behavior of Kelvin-Voigt material under

uniaxial state of strain defined by Equation 221. For tbIs state of

deformation, Equation 425 results in

a1 = 1 + 1xvil + 2GcI + 2Gv 1 (426a)

02 = X€1 + XV 1 (426b)

where c is the strain in the direction of motion in a uniaxial strain

configuration and a2 is the lateral stress required to preven'. lateral
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strain. Equation 426a can be written in a more compact form by collect-

ing terms

a= (I + 2G)c 1 + (X + 2G)i 1  (427)

The term X + 2G is recognized as the constrained modulus M (see

Equation 225). Analogous to M we denote the term X + 2G by M

which is the viscosity coefficient associated with the conditions of

uniaxial strain. Equation 427 may now be written as

a1 = Me- + M C1(428'

Equation 428 is bhe counterpart of the differential equation of motion

for a linear spring and a linear dashpot connected in parallel (Fig-

ure 13).

120. We will now examine the behavior of Equation 428 for an ap-

plied constant stress of magnitude a . For an applied constant stress

go 'Equation 428 becomes

a - 1 +ME (429)

Integrating Equation 429 (with initial conditions that = 0 at

t 0) we obtain

1 -2 e(/ M ](430)

Equation 430 describes the strain-time response in uniaxial strain con-

dition due to an applied constant stress of magnitude a0  (Figure 13).

In view of Equations 430 and 426b, the lateral stress-time response dur-

ing application of u0 becomes

121. Let us next examine the behavior of Equation 428 due to ap-

plication of a time-varying stress condition defined by

7.L.
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Figure 13. Behavior of Kelvin-Voigt material in
uniaxial strain configuration

a = i 0(1 - e-) (432)

vhere c is a constant. Substituting Equation 432 in Equation 428 and

integrating the resulting expression (with initial conditions that

C1  0 at t 0) ve obtain

a [ 0 C M v - (u /N , ) t l a 0

c1  j~[1.(NM ee (433)
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Equation 433 describes the strain-time respons.s in uniaxial strain condi-

tion due to application of stress-time history given by Equation 432.

We can eliminate the time t between Equationis 432 and 433 to obtain

the following strain-stress relationship

M/cM

C M0 _ am + M(M\ cam / a' (434)

Equation 434 indicates that the stress-strain response is not unique and

is dependent on the constant c

122. Analogous to nonlinear elastic material, we can construct

nonlinear viscoelastic constitutive relationships by retaining some of

the second-order terms in Equation 422. For example, taking n5 = r6

= = n8 = 0 in Equation 422, a second-order viscoelastic constitutive

relationship, often referred to as the nonlinear Kelvin solid, can re-

sult, i.e.,

ij = no 0j ij+ ' l'ij + n2'ikfk + n ij + Y ikk (435)

It is noted that in Equation 435 there is no tensorial coupling between

the strain and strain-rate tensors. Various classes of nonlinear Kelvin

solid can be developed, similar to nonlinear elastic material, by expand-

ing the response coefficients nQ0 n ."" , 1 in terms of the invariants

of the strain and strain-rate tensors.

Maxwell Material

123. Rate-dependent constitutive relationships can also be ex-

pressed as

j % ij = nmn ' ars) (436)

Equation 436 is identical with Equation 349. The most general form of

Equation 436 is given by Equation 350 :ýnd contains nine response
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coefficients. If we neglect all second- and higher-order terms in Equa-

tion 350 (i.e., let '2 = = T15 = n6 = T'T = 1n8 = 0), and assume that

the remaining coefficients take the following forms

"o= -%J1 + X I (143-a)

"i-2G (437b)

n3 = -28 (4 37c)

Where a X m Gm , and are material constants, we obtain

Cyl= (-.a=J + X )6 + 2Gij - 2B0aij (438)

Equation 438 is the constitutive equation of Maxwell material. It con-
tains four material constants. It is noted that if we set am and Om

to zero and integrate Equation 438, we obtain the constitutive equation

of linear elastic material (replacing G by G and X. by X).

124. Let us consider the behavior of Maxwell material under uni-

axial state of stress defined by Equation 215. For this state of stress,

Equation 438 results in

S -aJ + 2)+ 2G4 -2a9a)

0 = (-amJl + XI1) + 2Gm ( 439b)

"where al is axial stress and i and 2 are axial and lateral
1 2

strain-rate components, respectively. Since for uniaxial state of

stress J 1 = al and 1i = jl + 2i2 , Equation 439 can be written in the

following form

6+ (a+ 20m)a 1 ( + 2 1 2A m2 (414a)

1141



We can eliminate 12 from Equation 440a by using Equation 440b; thus,

Ix G (30X + aG +20 G
m+ m + mm m* mm> (1441)ý3G~ ~~ m 2 m Xm+ 2G

Denoting (3GX + 2G; m/( + Gmm by E m (elastic Youms modulus)

and (3GX + 2Gm +ciG + 2B.G; by rLmEquation 441lcan be
m m mmmm m m

written as

___ al
E m =E- m (442)

Equation 442 is the counterpart of the differential equation of motion

for a linear spring and a linear dashpot connected in series (Figure 14).

If a is suddenly applied and then held constant 61 = 0 , and integra-

tion of Equation 442 results in a steady linear increase of axial strain

C with time (Figure 14).

125. Analogous to nonlinear Kelvin solid, we may develop a non-

linear Maxwell solid by taking n15 = 06 = n7 = 8 = 0 in Equation 350.

The constitutive equation of nonlinear Maxwell solid then becomes

dij = n0 6 ij + nliiJ + Y2•ikA + n3Yij + n4'ikokJ (443)

Equation 443 can be used to construct various classes of nonlinear

Maxwell solid by expanding the response coefficients no0  T """ , N in

"terms of the infariants of the stress and strain-rate tensors.

Standard-Linear Material

126. Rate-dependent constitutive relationships can also be ax-
pressed as

S6Saij = i'(Ors ' mn' •1 p4

Equation 444 reduces to Equation 436 if dependence on cpq disappears.

The simplest form of Equation 444, vhich is referred to as the
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Figure i14. Behavior of Maxwell material in
uniaxial stress configuration

constitutive equation of standard-linear materials, is expressed as

where a A , S " G , G1 , and 80 are material constants. As
expected, if G and Xs are set to zero, Equation 445 takes the form

of the constitutive equation of Maxwell material (Equation 1438).

12T. Let us consider the deviatoric response of standard-linear
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material. From Equation 445 it follows that

Sj =2G E ij + 2GE ij - 28sS j (446)

Equation 446 is the counterpart of the differential equation of motion

for a linear spring and a Kelvin-Voigt element connected in series (Fig-

ure 15). It can be shown that the material constants G , G , and

8 and the parameters of the corresponding spring and dashpot model are
S

related through the following relationships

G 2nq•" s "qs s
S S(

4 47a)
q + p•s s + s

1 _____(s1mS: (44Tb3
28 q + p

G 2psq
5 s 5 (4 47c)

8s q + PS

If the deviatoric stress (say S1 2 ) is suddenly applied and then held

constant 812 = 0 , and integration of Equation 446 results In the fol-

lowing deviatoric strain-time response

1283G
5 2801 G

Equation 448 is depicted graphically in Figure 15. As indicated in Fig-

ure 15, the material exhibits an initial elastic response (similar to

Maxwell material)

S S
_2(t 0 ) (=4 4)

2G ss

and an asymptotic elastic behavior (similar to Kelvin-Voigt material)3 0_( a - os S 0o(q s + p s)
S0-- 5 +ps) (450)
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128. Similar to the nonlinear constitutive equations of Kelvin

and Maxwell materials, we may develop a constitutive equation for a non-

linear standard solid containing second-order terms in stress, strain,

and strain-rate tensors. This can be accomplished by combining Equa-

tions 435 (nonlinear Kelvin solid) and 443 (nonlinear Maxwell solid),

i.e.,

6i = 0iJ+ Tll~iJ + fl2 eikekJ + U3i

ij 0 6±j nli 2i'j n3&

T1+ &ik• + n5 ij + n6aikkj (451)

Various classes of nonlinear standard solid can be developed by expand-

ing the response coefficients n. in terms of the invariants

of the strain, strain-rate, and stress tensors.

129. Constitutive equations of viscoelastic materials can also be

formulated in integral forms or series forms with differential oper-
10ators. Discussion of these types of constitutive equations is beyond

the scope of this report.
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I
PART VII: CONSTITUTIVE EQUATIONS OF PLASTICITY

130. Constitutive equations of plasticity are designed to de-

scribe the stress-strain behavior of hysteretic materials. The basic

assumption employed in develcping these equations is that for each load-

ing increment the corresponding st-ain increment can be considered as

being the sum of the plastic (permanent) and elastic (recoverable)

stra4 ns. Mathematically, the strain increment tensor deij is ex-

pressed as

e pde =d~e + de (452)

ij ii ij

where de i and diJ are, respectively, the elastic and plastic
ij ii

strain increment tensors. The elastic strain increment tensor is givei±

iL terms of incremeutal elastic relation I
=j 2G K i

The elastic moduli G and K can be assumed to be constant or fuNc-

tions of stzAs invarients, as dictated by test data. However; to be
consistent with path dependency of elastic materials, and to eliminate

any possibility of energy generation or hysteretic behavior during

elastic deformation (see Figure U1), the forms of G and K should be
restricted to

G = G(7Jf) (454a)

K = K(J 1) (454b)

Durzng unloading, or during loading where the state of stress is below

a specified state referred to as yield stress, the behavior of the mate-

rial is defined completely by Equation 453. At the onset of yielding

(when the state of stress is such that the yield stress is reached), and

during subsequent loading, the material will experience both elastic and

1 T4.



plustic deformation and Equation 452 will govern the behavior of the

material. Therefore, for a complete description of the material we

need to specify the form of the plastic strain increment tensor dJ

Guidelines as to how the plastic strain increment tensor can be spec-

ified were established by Drucker 11 by introducing the concept of mate-

rial stability. For a stable material, the work done by a set of stress

increments whein applied on a specimen of the material is positive.

Furthermore, if the stress increments are ivemoved, the net work per-

formed by them d xing the load-unload cycle is zero or positive. If we

denote the set of stress increments by doij , and denote the correspond-

ing change in the state of strain due to application of do i. by deii ,

"then the first condition of stability can be stated as

do. de > 0 (455)
ij ii

In view of Equation 452, the second condition of stability can be ex-

pressed as

do de - doil dee = do d P> 0 (456)ij ii i ij ij ij -

Equations 455 and 456 provide guidelines for determining the form of

the plastic strain increment tensor. We also need to specify the form

of the yield function 6 , which defines the limit of elastic behavior.

Depending on the specification of 6 , various types of plastic consti-

tutive equations can be established. In general, we will be concerned

with ideal and work-hardening plastic materials.

Ideal Plastic Material

A 131. For an ideal plastic material the yield Inction 6 (or

yield surface) is fixed in the principal stress space, i.e., it does not

move cr expand during plastic deformation. The yield surface is only a

function of stress tensor. or function of invariants of stress tensor

for an isotropic material. Unlimited plastic flow takes place when
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j = k * where k is a material constant defining the onset of

yielding. During plastic deformation then

d6 8 d = 0 (457)
oij

The stability condition for an ideal plastic material is specified Ly

do -:e = o (458)
ij

For uniaxial stress configuration, for example, Equation 458 indicates

that during plastic deformation the stress remains constant while the

strain increases. Since all admissible stress increments do satisfy-
ij

ing Equation 457 must also satisfy the stability postulate given in

Equation 458, it follows that

where A is a positive scalar factor of proportionality and is depen-

dent on the particular form of the yield function 6 . Equation 459 is

often referred to as the plastic flow rule. Inherent in Equation 459

is the normality condition which indicates that the plastic strain in-

crement (viewed as vector) is normal to the yield surface 6 . Another

consequence of the stability postulate is the convexity condition, which

requires that the yield surface 6 must be convex in the principal

stress space. In view of Equations 453 and 459, the complete expression

* Ifor the strain increment tensor becomes

* dS ddi
dc Ai 4. -¾ +A-1

ij 2G 9K ij (460,

Equation 460 prevails in the plastic range (d6 = 0). In the elastic

range, and during unloading from a point on the yield surface (d6 < 0),

the behavior of the material is governed by Equation 453.

132. In order to use Equation 460 we must determine the form of

the proportionality factor A . This can be accomplished by combining
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Equations 457 and 460. From Equation 460 we can determine the stress

increment tensor daij

di 2Gd - 2GA--+ (I dJ 6ij (461)

ij 2Gdii ac (3 9)K 1

Substituting Equation 461 in Equation 457 we obtain

2G-~-2-dci G ~aGA 3L + 2G-~ dJ,8 - 66 =0 (462)aarij a ij au± 0± (3 \ 9K~ iao i

We can eliminate dJ from Equation 462 by using Equation 460., hrom
1

Equation 460 it follows that

dJl = l (463)

In view of Equations 463 and 462, the propo)rtionality factor A takes

the following form

Sd~ij +3K - 2G

aa ii (464)
3_4 ..• 3K - 2G a i 2_ _

aul 30i vaa0 oij
ii ij

It is rxcted that all indices in Equation 464 are dummy indices, indicat-

ing the scalar character of A . Equations 464 and 460 can now be com-

bined to give an expression for the strain increment tensor

d: + 3 dl 6

d Si + Mnni -+*- (465)
ij 20 9K 'I + - ,' IZAL 2 3a 6

acy 3a 6G a
1• _. mn-mn _. 1n °I J

It follows from Equations 461, 463, and 464 that the stress increment

tensor takes the following representation
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'4 e + 3K- 2G dI '4
d'mn 1 3mn mn

dai =2G d~ + KdI 6 n'nl ]

3 amn + 2G (466)

In order to use Equeations 465 and 466 we only need to define the form

of the yield function 6 for a particular material of interest. For

a number of engineering materials, particularly soils, the yield func-

tion is generally expressed in terms of and 7.. i.e.,ij i
For the above specification of 6 it follows that

~~ +1~ V ~ L (468)

Application of Equation 468 in Equations 465 and 466 res.;,.ts in

3K dE'ý + G 'A S dE

1 andn m

-'+---• + -u 2dcij 2G 9K ij + / 2

x ( ij- + (4&69)
ii 2~4 2
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3K dI + G S
1 ai ~-j-V- mn n

daij = 2 G dEij + K dIl 6i2

9K() + G

(K 2L i G / 4 Si

Equations 469 and 470 are, therefore, special cases of Equations "465

and 466, respectively, where the yield function j is restricted by

Equation 467. In the next section we will discuss the procedure by

which these equations can be utilized for specific yield functions.

Prandtl-Reuss material

133. Prandtl-Reuss material is the most widely used, and perhaps

the simplest, ideal elastic-plastic material. The yield condition asso-

ciated with the Prandtl-Reuss material is the well-known Von Mises cri-

terion given by

S(471)

Equation 471 describes a right-circular cylinder in the principal stress

space vith its central axis the line of hydrostatic stress as shown in

Figure 16. When the state of stress is such that Equation 471 is satis-

fied, the material would flow plastically, undergoing plastic as well as

elastic strains. When the stresses are less than those satisfying Equa-

tion 471, the material will undergo elastic strains only.

134. In order to obtain the constitutive equation of Pra itl-

Reuss material we simply substitute Equation 471, for the yield function

, into Equation 469. Completing the substitution, and considering the

fact that during plastic deformation 3= k , we obtain

dS j dJl S mndE
dc - + + - (4U72)" G §K iJ 2 ijS2k
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Figure 16. V.n Mises yield surface in principal stress space

Similarly, substituting Equation 471 in Equation 470 we obtain the fol-

loving expression for stress increment tensor

GS dE
doij = 2G dE.j + K dI 6 inn S (4T3)iJ3J 1 ij 2 i

The quantity Sn dEmn in Equations 4T2 and 473 is recognized as tl-.e

rate of work due to distortion. Expanding this quantity with respect to

the plastic and elastic components we obtain

idea S. (de + d n) (4T4)

Since dEe - dS /2G (see Equation 413b), Equation 447 becomes%n an

S ds9
SandE n an (1g 5)S mn÷sEan 2G +._ (4T5)

The quantity S dSmn is the increment of the second invariant of
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stress deviation tensor (see Equation 419) and is zero for the Von Mises

yield criterion. Equation 475 reduces to

S dE S dEP (476)
mn Mn mnmn

indicating that in the plastic range the rate of distortional work is

only due to plastic deformation. Also, f'rom Equations 472 and 473 it

follows that

dt - = de (477)ii 3K ii

In view of Equatinn 452, Equation 477 indicates that

dcip = o (478)

That is, no plastic volume change can occar in the plastic range for

Prandtl-Reuss material.

135. We can now summarize the Prandtl-Reuss equation in the fol-

lowing manner. During elastic loading (4T2 < k) and during unloading

.((/ aij )dai < 0), the elastic constitutive equation (Equation 453)

prevails. In the plastic range k and (a6/3aij)doij = -0) Equa-

tion 472 (or Equation 473) governs the behavior of the material. The

Prandtl-Reuss constitutive equation can then be expressed as

do 2G dEij + K dI 6iJ ij 1 ij

when 7 < k or do < 0 (4T9a)SdUij ij

GS dE
doij = 2G dEij + K dI 6 - m Si,

when VJ• = k and do = 0 (479,)

Bij

136. In order to demonstrate the application of Equation 479, we

vill examine the behavior o' Prandtl-Reuss material under conditions of
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uniaxial strain. For uniaxial strain conditions the strain increment

and strain deviation increment tensors are given as

de 0 0

dcii = 0 0 (480a)

310 0.j

2 de 0
3 1

dE =0 dc 0 (480b)

0 0 de31

In the elastic range the behavior of the materiel is governed by Equa-

tion 4T9a.

do, (K + G) de dc1  3+ G)d (481a)

2G
do -do2 do d3 =2G del - dJI (481b)

For virgin loading in the elastic range, Equation 481 governs the be-

havior of the material. It should be noted that if the initial state of

stress and swrain is zero, for virgin loading, Equation 4881 can be used

in terms of total rather than incremental quantities. In the uniaxial
strain test

' o " €° (482)

Thus the material will yield when

-1 ( =k (483)
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In view of Equations 481 and 483, the value of vertical stress a at

yield becomes
r3 •(3 +h~k F3 M •

01= 6i~~G kc= I (484)

Thus, when a, reaches the value given by Equation 484, the material

yields and continued application of vertical stress causes the material

to move along the yield surface, undergoing plastic as well as elastic

strains. In the plastic range Equation 479a no longer applies and re-

course to Equation 479b is necessary. According to Equation 479b, the

deviator stress increment dS.i in the plastic range is given by

GS dEdSI= G EI mn mn.
dS 2G S (485)

The rate of work S dE for conditions of uniaxial strain reduces tomn mn

Sm mn S1 dE1 + 2S2 dE2 (486)

Utilizing the fact that Sii = dEii 0 Equation 486 reduces to

S.dE ma S dE (48)

In view of Equations 480b and 487, Equation 485 becomes

cs2

i1. --1 3 L 2 QE (488)

In the plastic range k = J 3 2 and Equation 488 reduces to

dS1 =0 (489)

Since dS 1= 0, Equation 489 indicates that dS.= 0 also, and

do1  dS1 + di = 1 dJl3 (49oa)

do2 = ds2 + dJjl3= M 13 (490b)
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Equation 490 indicates that the material behaves as though it were a

fluid once it has reached its limiting shear resistance. From Equa-

tions T79b and 4 80a, it follows that

dJ /3 K de1  (491)

Substituting Equation 491 into Equation 490a, the vertical stress-strain

increment relation in the plastic range becomes

doI K de (492)1 1

Thus, the loading slope of the aI versus 1 curve breaks, or softens,

when yielding occurs and becomes equal tct the bulk modulus. Accordingly,

the loading slopes of the principal stress difference-pressure curve and

the principal stress difference-strain difference curve become zero.
Since P = 0 , the slope of the pressure-volumetric strain curve

remains constant. Once the matdrial -unloads, it behaves as a linear

elastic solid again, satisfying Equation 481. If unlcding is continued

until the lower yield surface corresponding to

31 (a-. 02) = -k (493)

is reached, the material flows plastically again and Equation 479b

governs the behavior of the material. The foregoing analyses are

depicted schematically in Figure 1T. From Figure 17 it can readily be

seen that for a Prandtl-Reuss material, the vertical stress-strain

curve associated with uniaxial strain configuration would break or

soften when yielding occurs and would remain concave to the strain axis

with continued application of vertical stress.

137. Let us next examine the behavior of Prandtl-Reuss material

under a plane stress condition defined by

aI 0 0
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Figure I1. Behavior of Pran~dtl-Reuss mate'rial under

I conditions of uniaxial straira
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For this state of stress !

a+ a~ a aa (495)2 3 \l 3 13)

Thus, the material will yield when I(
C2 + a a a 3k2  (496)

1 3 1 3

Equation h96 describes an ellipse in the aI , 03 coordinate system

(Figure 18). We will consider a stress path where a3 is held constant

at k while cl is increased. At. the start of the test (assume a

compression test), point A in Figxre 18, a, = 0 According to Equa-

tion 496 the material yields when la 2k , point B in Figure 18.

Prior to yield the behavior of the material is governed by Eouation 479a

P
1de So3, k

k

A 

P

PP de,

AB AND AC ARE STRESS PATHS kI
deP- PLASTIC STRAIN INCREMENT VECTOR

Figure 18. Von Mises yield curve for special plane stress condition
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9KG d =ddo1= de1 E de1 (497a)
3K+G 1

de 3 = + 2G dl = -_v de (497b)

de2 = de3 (497c)

At point B the material yields and it follows from Equation 459 that

dep = 0 (498a)
3

dep _de (498b)2 1

Unlimited plastic deformation takes place at yield. It is noted from

Equation 498 that, as expected, deP = 0 . If we now repeat the same

test and change the direction of a1 (i.e., a tension test), we find

that the material yields when aI = -k , point C in Figure 18. At

point C the material yields in tension and from Equation 459 it follows

that
de2 = 0 (499a)

d -dcp (499b)

The concept of normality can be demonstrated from this simple example by

3uperimposing the plastic strain coordinates on the stress coordinates

ýn Figure 18. As shown in Figure 18, in the case of the compression

test dEP = 0 and the plastic strain increment vector dep is per-3 1
pendicular to the yield suxface at point B. In the case of the tension

test, on the other hand, dcp = -dE indicating that the plastic strain
1 3increment vector is peruendicular to the yield surface at point C.

Drucker-Prager material

138. The Von Mises yield condition was modified by Drucker and

Prager12 to include the effects of the bydrostatic stress on the shear-

ing resistance of the naterial. The yield function v was assumed to

take the following form

= - afJ k (500)

16o
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where f, a positive material constant, represents the frictional

strength of the material. Equation 500 describes a right circular cone
in the principal stress space (Figure 19). Substituting Equation 500

mu2
il @ /

I //

I oli

IC'

Figure 19. Drucker-Prager yield surface in
principal stress space

! ! into Equation 469 we obtain the following stress-strain relationship

associated with the Drucker-Prager yield function

dS- WdE / iG G d~

de +21
ij 2G 9K ij + + G

x ( f e1ij) (501)

From Equation 501 it follows that
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IG
_ S dE 3Ka1  d11

de -a n mnq f I52

k 3 f 9Ka 2 + G

indicating that for Drucker-Prager material, as a consequence of depen-

dency of yield function on hydrostatic stress, plastic deformation is

accompanied by volume expansion (it is noted from Equation 502 that if

af = 0 the plastic volumetric strain is zero also). The increment of

total volumetric strain dI can be determined from Equations 501 and

500. From Equation 503. we have

de dI Ka dI
dJ[ (503)

1 3 9Ka f + G

Solving for dI and tonsa lering the fact that during plastic deforma-
Stion •~- �fJ1= k (Equation 500), we obtain

dJ 3a
3dI Gk l 9Ka2 + G)- - amn de (504)

It should be .pointed out that the volume change is due to scalar non-

• • linearity and represents uniform dilatation. For example, consider a
simple shearing stress defined by the following stress increment tensor

[W 0 a W]
depoi = N'j oK21 + G) f dem 305)

SFrom Equations 501 and 504 it follows that for this state of saress
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deI = dc2 = dc3  (507)

That is, there are no normal deviatoric strains associated with the

volume expansion.

139. Substituting Equation 500 in Equation 470 we obtain the

following relationship for the stress increment tensor for the Drucker-

Prager material

-S dm -3KOL dI
V~mn f 1

doij -- 2G dEij +KdI 9K + Gd

f /ý
x× S.j 3Ka ) (508)Sj f 3Kfij .

Equation 508 (or Equation 501) governs the behavior Gf Drucker-Prager

material. The effect of the dependency of the yield function on hydro-

static stress can be further demonstrated by examining the behavior of

Drucker-Prager material under uniaxial state of strain (Equation 480).

The elastic behavior of the Laterial is given by Equation 481. The mate-

rial yields when

f1 - 2) -aaf(a 1 + 22) k (509)

In view of Equations 481 and 509, the value of vertical stress 01 at

yield becomes

=/• 3K +4 •l VMkI (510)
6G - 9/j KL 2G - 3F3 KOL

f f

It is noted that if a is set to zero, Equation 510 reduces to Equa-

tion 484, the corresponding expression for Prandtl-PReuss material. The

effect of af in this case is to increase the value of the vertical

stress 01 at yield. When u reaches the value given by Equation 510,

the material yields. Continued application of vertical stress causes

the material to move along the yield surface, undergoing both elastic

and plastic deformation. From Equation 508 the incremental relation be-

N"een vertical stress and vertical strain becomes
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2

do .. ..) el 3. deI (511)doI- (K+ •9K6f + G

d�1 f

Again it is noted that when a f is set to zero Equation 511 reduces to

Equation 492, the corresponding expression for Prandtl-Reuss material.

As was pointed out previously, for Drucker-Prager material plastic de-

formation is accompanied by volume expansion (see Equation 502). Accord-

ingly, using Equations 504 and 509, we obtain the following incremental

relation for volumetric strain in the case of uniaxial strain test

19KCf (2/ri G - 3Kaf
dJ1 = dI1 + 3K dI1 (512)

91"a + G
f

When af is set to zero, Equation 512 reduces to the corresponding

expression for elastic material. The increment of plastic volumetric

strain then becomes

O= a(9Kal 2Y'3 G) d- 3K +2dJ 1 (513)3KG(l + 23af

In order for the uniaxial strain-stress path to reach the yield surface,

the following condition should hold

2G (514)

Therefore, as expected, the increment of plastic volimetric strain is

negative (expansion).

Work-Hardening Plastic Material

140. In the case of work-hardening plastic material, the yield

surface 6 is not Ci•tid but expands, or trmaltes, as plastic defor-

mation takes place. The material can then sustain stresses beyond those

required to reach the initial yield condition. Therefore, we can use a

loading concept in thrh case of work-hardening plastic mqterial according

to the direction of the stress increment tensor do (viewed as vector).

ii
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During loading from a point on a given yield surface the stress vector

is pointing outward and thus (3j/8ai)do > 0 . During unloadiAg the

stress vector is pointing inward and thus (aj/3ai)daij < 0 Accord-

ingly for work-hardening plastic material we define

do > 0 loading (515a)

do < 0 imnloading (515b)•ii

The condition (a/a•oi)doiu = 0 (i.e., when do is taxigent to yield
ij ijij

surface) is known as neutral loading and produces no plastic deformation

in the case of work-hardening material. The stability condition for

work-hardening plastic material is given %s

dodij d 0 (516a)

do dcj > 0 (516b)

where, unlike th- ideal plastic material, the equality sign in Equa-

ption 516b holds only when dePj = 0 . For work-hardening plastic mate-
11rial Drucker has shown that the expression for plastic strain incre-

ment tensor is similar to Equation 459 where the proportionality factor

A depends on stress, plastic deformation, and history of plastic de-

formation. We can, therefore, use Equation 460, in conjunction with

the loading conditions given by Equatiou 515, for calculating the strain

increment tensor. During loading from a point on the yield svrface

• / ij)dij > 0),Equation 460 governs the behavior of the mat'erial.

In the elastic range, and during urloading from a point on the yield

surface ((06/1aij)d ij < 0), the behavior of the material is governed by

Equation 453. 1hen (3/ai )(i0 0 (neutral loading), dcP = 0 wid
ij ij ij

Equations 460 and 453 become identical (thus establishing continuity at

a load-unload interface).

141. We now adopt a yield condition of tne following type

6 ~1  ~ k (517)
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for strain-hardening material. Equation 517 indicates that the yield

surface is not fixed in the principal space and that it changes as

plastic deformation takes place. We further assume that k is a con-

stant. Following the same procedure as was used to derive an expression

for A in the case of ideal plastic material we obtain

SSciJ ~+ 3K6- 2G ••

ij,' (518)

•ij 8ij iji

Equation 518 is the expression for the proportionality factor A asso-

ciated with the strain-hardening yield condition given by Equation 517.

It is 'noted that Equation 518 reduces to Equation 464 when the dependency

of the yield function on the plastic strain disappears (i.e., ideal
plastic material). In view of Equations 518 and 460, the strain incre-

ment tensor associated with the yield condition of Equation 517 becomes

dc i dj - + W l

i 2G 9K ij

[de. + 2Gd, 1A- 6 1Da an 6G 1l ac mn

+ Mn 6Gr.o (519)
[L.L+~E~~ 6  2 aL2L

30mu ac~ 60 aumn Up 30 M
Mn

We can also derive an expression for the stress increment tensor

doij 2G dEij + K UI1 6*j

[ de + 1-2G U 6
MXI mn

,a 3a 60 G, 60mn)2 p au I
L ma mn 3C n =j

X[(-3K;2G 8A. 6iJ + 2G 8A (520)
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For a number of engineering materials, soils in particular, the yield

function • is expressed in terms of l, and , i.e.,~s~n)~(Ji~kk

6p CP(521)

For the above specification of • , Equations 519 and 520 become

d S3K dI " + G S

+~ W.

ii 2G 9K 2i ~
9K 0A +-iG

Pj aj

and
3K dId

1i ij 1I ij2 n
dca =20dEi + KdIl 6 -6' . 3  L L

It is noted that Equations 522 and 523 reduce to Equations 469 and 4T0,
respectively, when the dependency of the yield function on p

i o disappears.

Sl142, In order to demonstrate the application of Equation 522 (or
• Equation 523) let us consider an elliptic yield function defined by the
• • following equation (Figure 20)

, 9, y ) , ac(i-)(~F~= 1 5

Equation 524 has been uscd sueeess±.ully for modeling the stress-strain

b)ehavior of earth materials. 1 3 For a first-order approximation, the

variable Y , which controls the expansion of the yield surface, is

assumed to take the form

kkk
G
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HOMZONTALTANGENT

A TANGENT

"y"J

Figure 20. Work-hardening elliptic yield surface

where A is a material constant which must be determined experimentally.

In order to obtain the constitutive equation for the assumed work-

hardening yield surface we substitute Equation 524, for the yield sur-

face 6 , into Equation 522. Completing the substitution and consider-

ing the fact that

agI= amy (526)
acpk 3Y Up~

we obtain

dS- dJ 3KQ2 (2J. - Y)dI1 + 2GS dEl4 \.. , _ .Mn M_.

_x [Q(?j + Si] (52T)
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143. Let 's now examine the behavior of Equation 527 under hydro-

static state of stress (Figure 6a). For hydrostatic state of stress

J= Y and Equation 527 becomes

dl U3K_+ A) dJL W (528)3KA e

It should be noted that for this state of stress the same results could

have been obtained directly from Equations 452, 453, and 525 without

recourse to Equation 527. For virgin loading, Equation 528 can be in-

tegrated to yield (assuming zero initial pressure and volumetric strain)

fl K eKIl (529)

During purely elastic deformation (Equation 453)

dJ1 = 3K d1 (530)

Since Ke < 3K (Equatibn 528), it follows that plastic compaction pro-

duces an apparent softening of the effective bulk modulus. Figure 21

depicts the behavior of the material under hydrostatic state of stress.
The behavior of the material from point 1 to point 2 is governed by

Equation 529 (the material undergoes plastic as well as elastic deforma-

tion). If the material is unloaded fro& point 2 to point 3, and then

* reloaded from point 3 to point 2, the behavior is elastic and the re-

sponse of the material is governed by Equation 530.

4hh. Let us next examine the behavior of Equation 527 under a

constanL-pressure shear test (Figure 6c). The qualitative behavior of

the model is depicted in Figure 22. The material is first hydro-

statically loaded from point 1 to point 2. The response of the material

from point 1 to point 2 is governed by Equation 529 and is identical to
that 5howun in Figurr•. 21 (the material undergoes both psast•ie and olastic

deformation). The material is then sheared from point 2 to point 3 by

increasing f while J is kept constant. Since J is kept con-
211

stant, all volume changes from point 2 to point 3 are plastic. From
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Figure 22 Behavior of work-hardening elastic-pla,•ic
material during constant-pressure shear test j

Equation 459 it follows that the increment of plastic volumetric strain

is given as i

d p 3AIR ! (531)
1

In view of Equation 524, Equation 531 becomes

d =3R(2J - Y) (532)kk 1

Since A is positive, Equation 532 indicates that the plastic volumet- i
ric strain during the shearing process is positive (oompaction). At

point 3 dc = 0 (normality condition) and the yield surface ceases tc

expand. The shearing response of material, expressed in terms of

versus then reaches its maxitmum value (for the particular value



of J at point 2) asymptotically at point 3. As shown by the dashed
1

lines in Figure 22, if the material were to unload from any point during

the shearing process it will behave as a linear elastic material. This

simple example points out the basic difference between ideal and work-

hardening plastic materials. That is, for ideal plastic materials the

yield surface is fixed and does not expand during plastic deformation.

Unlimited plastic flow takes place at the onset of yielding. In the

case of work-hardening material, on the other hand, the yield surface

moves, or expands, causing the material to harden as plastic deformation

takes place.

1T2
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