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1. INTRODUCTION

In recent years considerable interest has developed in the effect of
transient electromagnetic signals on communication systems. Of
particular concern is the disruption or damage caused to sensitive
electronic components by a high—level transient voltage or current.
Since the character of the disruption depends on the shape of the
transient wave form , an important part of any failure analysis is an
estimate of the voltages or currents coupled into the system from the
electromagnetic signal. In uhf and vhf communication systems the
antenna provides a major coupling path into the system for a nuclear
electromagnetic pulse (EMP). It is, therefore , important to develop
methods for predicting an antenna ’s response to EM? transient signals.

Analytical techniques have been shown to be useful for many simple
antennas , but complicated antenna structures often have anomalies which
are overlooked in the analytical model. Experimental techniques
utilizing simulators have been developed and used to test systems at low
levels and at threat levels. These techniques provide much useful
information but the simulator facilities are usually large and expensive
to build , operate and maintain. It is, therefore , advantageous to
develop techniques which permit economical evaluation of an antenna’s
coupling to an EMP. Since communication antennas are generally linear
devices, low—level testing is appropriate.

The Harry Diamond Laboratories (HDL) has recently been engaged in
the development of a simple, low-àost, easily implemented technique to
obtain the time-domain impulse response of uhf and vhf antennas . The
objective is to provide research , development, test and evaluation
(RDT&E) laboratories with a reliable means of evaluating EM? coupling to
antennas.

There are two experimental time—domain methods for assessing the EM?
vulnerability of antennas~ One method is to illuminate the test antenna
with a transient waveform that approximates the EM? waveform and observe
the induced voltage or current. This method . ields the desired result
directly but is not well suited to testing of communication antennas
because it is difficult to synthesize the variety of waveforms that may
excite the antenna in an operating configuration. The second method is
to illuminate the test antenna with a wide-bandwidth signal, usually a
short pulse , and observe the induced voltage or current. The voltage or
current and the incident field are then deconvolved to obtain the
transfer function of the antenna. (Since communication antennas are
linear devices, this operation is valid.) If the incident field is a
very short pulse , the induced voltage is approximately the impulse
response of the antenna and the deconvolution can be replaced by a
simple normalization. The advantage of this method over the first is

5
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that the response to any waveform can be easily computed once the
transfer function is known for the desired angle of incidence and
polarization.

The transverse electromagnetic (TEM) horn method for antenna
transient measurements is described in section 2 of this report. The
characteristics or the TEM horn radiator and the implementation of the
test method are described in detail , including sources of error.
Methods for processing the measured data to obtain accurate estimates of
antenna transfer functions are discussed in section 3.

2. TEM HORN METHOD OF TESTING

The first step in the development of a short-pulse
transient—measurement facility is selecting a means of illuminating the
test antenna. Three methods of illuminating the test antenna with short
pulses were considered : (1) parallel plate waveguide , (2 )  dipole or
bicone radiator , and (3) TEM horn radiator. The parallel plate
waveguide method was rejected because of the large size of the structure
and the difficulties of properly terminating the waveguide. Also , such
a structure is cuiribersome, is expensive to construct and does not permit
testing in the presence of a finitely conducting ground. Dipole and
biconic radiators are often used for EMP simulators. They can radiate
short pulses of electromagnetic energy that effectively illuminate the
test antenna. However , reflection of the exciting current from the ends
of the dipole or bicone limits the time window over which the test
antenna’s response may be observed .

The TEN horn radiator is an excellent alternative to dipoles and
bicones for antenna transient measurements. The TEM horn, which is
similar to an open-sided pyramidal horn, is a very wide-bandwidth
antenna that transmits a single short pulse followed by only low-level
signals. There fore , the response of the test antenna can be observed
for a very long time with minimum distortion of the impulse response.
Furthermore , the TEN horn is much smaller than a dipole or bicone
capable of radiating comparable bandwidth signals.

The use of the TEM horn for antenna transient measurements is
depicted in figure 1. The test antenna is illuminated by a short pulse
of energy that is radiated from the TEM horn when it is excited by the
fast rise—time pulse. The induced voltage is measured by an appropriate
receiver (e.g., a sampling oscilloscope) and recorded on an x—y
recorder.
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Figure 1. Antenna transient measurements by using a TEM horn
radiator .

2 ,1 Characteristics of TEM Horn

Since the TEM horn is a key element of the measurement , its
characteristics are discussed . Susnian and Laznensdorf1 have reported
their results on transient antenna measurements using an unbalanced TEM
horn over a ground screen. Balanced TEN horns using one and two coaxial
transmission line feeds have been designed , built and tested. A typical
TEM horn radiator using the two coaxial line feed is shown in figure 2.
The two methods of feeding the antenna are shown in figure 3. The two
coaxial line feed provides a better balanced transition that results in
much less current flowing on the exterior of the feed lines and ,
therefore , less unwanted radiation and conduction coupling from them
than does the one coaxial line feed. Both methods can be readily imple-
mented using commercially available pulse switches, but the two feed
line approach requires the pulse created by closing the switch to travel
through transmission lines before reaching the radiator. The dispersion
of these lines causes a slight broadening of the radiated pulse , which
is not significant for EM? frequencies but may be for other
applications. In the receive mode , the two coaxial line antenna
requires a receiver capable of providing the algebraic difference of the
two signals.

The radiation characteristics of the TEM horn can be quali-
tatively studied by considering the radiation from accelerating charges2
at the leading edge of an exciting current step. Figure 4 depicts the

1L. Susman and D. Lamensdorf , Picosecond Pulse Antenna Techniques ,
Rome Air Development Center Technical Report ~~ TR-71-jL4. (May 1971). I

2M. Handel sman, Time Domain Impulse Antenna Study, Rome Air
Development Center Technical Report RADC -TR-?2-105 (May 1972).
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Figure 4. Radiation from TEM horn: (a)  current flowing
on antenna and (b) radiated field .

situation at several instances in time. The current traveling on the
antenna is depicted on the lef t side and the radiated field is depicted
on the right. Since the TEN horn has a small flare angle, radiation
from the bend at the feed point is small and is ignored ir. this
analysis. The current wave traveling out length L of the antenna with
velocity v radiates strongly in the forward direction. The energy
radiated during the L/v seconds th .~t the current wave is traveling
toward the observer arrives in the far field during only (1 - cos O)L/v
seconds where 0 is the angle between the conductor carrying the current
and the direction of observation . A fter being reflected from the
aperture , the current is traveling away from the observer and does not
radiate as strongly in the observer’s direction. Furthermore , the
energy radiated during L/v seconds arrives in the far field during
(1 + cos 0)L/v seconds . If the antenna is matched to the feed line , the

0
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returning current wave reenters the transmission line and radiation
ceases. The resulting radiated waveform is a short, high-amplitude
pulse followed by a long , low-level undershoot. If the antenna is not
matched to the feed line , a portion of the current is reflected back
onto the antenna and radiates an unwanted signal th~.t limits the
observation window to 2L/v seconds , which is only slight~.y better than a
dipole of comparable size .

A simple , approximate analytic expression for the electric
field radiated in any direction by the TEM horn antenna can be derived
by considering harmonic excitation and modelling the conducting sheets
of the antenna as thin wires. The det tils of this analysis are given in
appendix A. The radiated electric field is

E
0

(r , 0 , III , t )  = L I ~~~~(l + C )u(r +
~~ )

-2u(T+C A:~\ + ( l - c \ u ( T  -~~~~~~~~~n c /  \ n j  \ c /

E~~(r,0,I~,t) 

~~~~ 
‘n ~~ + C )u(T +

_
2u(T + C 

~~

)+  
(1 - c )u(t - 

~~~~~~~~~~~ 

(1)

where

c = velocity of light ,

= permeability of free space,

= amplitude of current wave on nth wire ,

A
n 

= sin (0 — e )  + cos e sin o 11 - cos (
~ 

—

B = [sin 0 sin 0 cos - + cos 0 cos —

= sin 0 sin o~ cos (
~ 

- + cos e cos o ,

D~ = sin 0 n 5~ fl (~ 
-

0
n ’ ~n 

= spherical coordinate directions of nth wire ,

u ( t )  = unit step function ,
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= t — n c ,

L = length of wires .

The z axis is oriented along the center line of the antenna. These
expressions are easily obtained from the usual frequency domain
expression for radiation from a traveling current wave (see , for
example , Walter 3) .

The Fourier transform of the ideal waveform corresponding to a
1-rn-long TEM horn is shown in figure 5 along with the spectrum of the
three-irllpulse signal radiated by a bicone of 1-rn half-length.  These
spectra assume that zero rise time signals excite the antennas. The
finite rise time of the actual signals modifies the high-frequency
portion of the radiated waveform as can be seen in the data of figure 6.
The 0—deg waveform has the basic shape depicted in figure 4. The
positive pulse is broadened and rounded (fig. 6) because of the f inite
rise time of the current step. The ripples in the undershoot are the
result of ripples on the incident current step. Of f boresight , the
radiation changes in the manner predicted by equation (1) . The increase
in amplitude of the positive pulse at 30 deg is due to improved
radiation at angles farther off the direction of the current flow. The
waveform radiated to the rear—-l80 deg-—is approximately the mirror
image of the forward waveform but is lower in amplitude and more spread
out due to the radiation of much of the high-frequency energy in the
forward direction and to some recapture of backward traveling energy.

There are two important characteristics that must be considered
when the TEM horn is used as a transient radiator. First, the antenna
feed line must be well matched and balanced to prevent unwanted
reflections and radiation. The two coaxial line method minimizes this
problem and should always be used when accurate results are required .
Second , since the TEM horn differentiates the exciting current waveform ,
the energy content of the r sdiated pulse is small compared to the energy
content of the step function excitation. This is not a significant
disadvantage for low-level testing because the “step function ” is
actually a fast rise—time pulse that lasts only long enough to observe
the complete transient response of the antenna (usually less than 1 u s) .
Therefore , the duty factor is low (<0.01 percent) and the average power
requirements are easily met by ordinary laboratory equipment .

3c. H. Walter , Traveling Wave Antennas , McGraw-Hill Book Co., New
York (1965).
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Figure 5. Normalized amplitude spectra of ideal pulses radiated by
1—rn-long, 50-ohm TEM horn and biconic antenna of 1-rn
half-length.
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Figure 6. Actual signal radiated by TEM horn at several angles in
E-plane .
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2.2 Antenna Transient Measurements

The implementation of the TEM horn method of antenna testing is
straightforward but care must be taken to insure that maximum accuracy
is obtained. The TEN horn radiator is used to illuminate the test
antenna and the voltage delivered to the antenna ’s load is detected with
an appropriate receiver and recorded . The receiver/recorder used to
obtain the data presented here was a laboratory sampling oscilloscope
and an x-y recorder (see fig. 1). The sampling oscilloscope can be used
because the pulse generator , a vibrating mercury switch , provides
approximately 300 pps with excellent pulse-to-pulse stability . Other
possible receivers for transient antenna measurements include boxcar
averagers , real-time oscilloscopes and transient data recorders. The
most important requirement of the receiver/recorder is that it
accurately display transient signals having bandwidths of 50:1 or
greater and instantaneous dynamic ranges of 30 to 50 dB.

The ordinary laboratory equipment illustrated in figure 1 meets
the minimum requirements. However , standard prog rammable test equipment
under the control of an instrumentation computer provides much greater
accuracy , bandwidth and dynamic range . Real-time or postoneasurement
signal averaging techniques~~5 are effective ways to improve transient
antenna measurements . Also , computer controlling of the experiment
permits efficient handling of the large quantities of data that can be
produced by these measurements . Automated testing is recommended for
users requiring high accuracy or for users planning extensive transient
testing. The results presented im this report , however , illustrate the
effectiveness of transient testing with ordinary laboratory equipment.

In addition to the precautions that should be observed in
constructing and using the TEN horn radiator (see sect. 2.1), special
consideration should be given to the layout of cables and test
equipment. The broad bandwidth signals used in transient testing are
capable of exciting many resonances within the experimental setup.
Therefore, it is imperative that unwanted coupling to the equipment and
cables be minimized. Signal and power cables that are not part of the
test antenna and that are exposed to the illuminating field should be
shielded as much as possible and oriented orthogonally to the electric
field. In some cases , ferrite beads placed around cables will help to
reduce unwanted coupling. Direct exposure of the receiver/recorder to
the electric field should be avoided or minimized. Direct connections

~F. J. Deadrick, E. K. Miller , and H. G. Hudson , The LLL Transient-
Electromagnetics-Measurement Facility, University of California Lawrence
Livermore Laboratory Report UCRL-5l933 (October 1975).

5c. L. Bennett, Impulse Response Measurements and Results , Proceed—
ings of National Conference on Electromagnetic Scattering (June 1976).
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between the transmit and receive antennas, such as trigger signal cables
and ac power lines, should always be checked to insure that they do not
provide coupling paths.

A useful variation of the test procedure described above is
easily obtained from the time—domain reciprocity theorem ,6,7which states
that the receive transfer function , hR(t), of an antenna is related to
the transmit transfer function , hT(t), by

h
R
(t) lx

_fO
~ h~,(-r ) dT . (2)

This means that the electric field radiated by the test antenna when it
is excited by a step function is proportional to the receive transfer
function. In some cases , it may be more convenient to interchange the
transmit and receive antennas in figure 1 and use reciprocity to obtain
h
R(t).

2.3  Transportability and Field Implementations

The TEN horn antenna shown in figure 2 is an excellent
transient radiator for laboratory testing. However , if
very—low—frequency excitations are required , a longer antenna must be
used (see fig . 5) and out—of—doors testing will be required. A large
TEM horn constructed of conducting sheets as shown in figure 2 would be
heavy and would experience considerable forces from winds. To overcome
these problems , a TEM horn using thin wire conductors was designed.
This antenna is lightweight and experiences little wind loading.
Furthermore , the antenna is constructed to permit easy assembly and
disassembly for transportable field testing.

A prototype of the 1-rn feed section for a wire TEN horn
radiator is shown in figure 7 . The inset shows the construction of the
two coaxial line feed. The semirigid coaxial lines pass through a brass
tube that provides structural support and the outer conductors of the
coaxial lines are soldered to the end cap to insure that currents flow
from one transmission line to the other with minimum reflection.
Operational models will be permanently encapsulated in strong ,
lightweight fiberglass instead of Plexiglas. The TEM horn radiator is
assembled by connecting lengths of flexible wire to each of the elements

6H. J. Schmitt , Transients in Cylindrical Antenna, lEE Monograph
377 E (April 1960) , 292.

7B. R. Mayo , Generalized Linear Radar Analysis , Microwave Journal , 4
(1961), 79. 
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Figure 7. Prototype of 1-rn-long feed section for wire TEM horn
radiator . Inset shows feed lines that are attached to
antenna .

protruding from the feed section and anchoring them at the aperture as
shown in figure 8. Intermediate supports can be used as required , but
very long antennas are needed only for extremely low frequencies.

Because of its relatively small size , the TEM horn can be
easily rotated to provide either horizontal or vertical polarization .
Also , the TEM horn is a self-contained radiator that does not require
termination to the ground . Therefore , it can be readily elevated to
provide illumination from above the test antenna.

Key design criteria for the wire TEM horn radiator are
essentially the same as for the solid conductor antenna. The impedance
should be matched at the feed point and remain relatively constant along
the length of antenna. The impedance of the wire TEM horn feed section
is shown in f igure  9. By keeping wire separations less than about one
half of the pulse length , TEM mode propagation is maintained and the
impedance remains relatively constant despite increasing wire separation
as the antenna flares.
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Figure 8. Very long wire TEM horns for field testing are easily
assembled by connecting lengths of wire to feed section.

—0.2 67 FEED POINT 25 50 75 APERTURE
DISTANCE Icns I

— 0.4 43

— 0 5 -  -25

Figure 9. Time-domain ref lectometer plot of impedance of prototype
wire feed section shown in figure 7.

2.4 Typical Results

Many antennas have been tested by using the TEM horn method.
Some of the tests were performed inside the HDL anechoic chamber and
some were performed out—of—doors at HDL’s Woodbridge Research Facility.
Figure 6 shows the electric field radiated by a l-m-].ong TEM horn.
Figure 10 shows the electric field radiated in the 0—deg boresight
direction by a 2—rn-long TEM horn. The negative undershoot following the
main pulse lasts for approximately 12 ns (twice as long as for the 1—rn
antenna) as is predicted by equation (1). The positive radiation that
follows the negative undershoot is due, in part , to reflection of
currents from the single coaxial feed line used for this TEM horn.

16 
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Figure 10. Radiated electric field of 2-rn-long TEN horn.

A standard gain dipole was tested by using the TEM horn method
and the results are shown in figure 11. Another antenna that has been
tested is the Army ’s AS-l852 (fig. 12). The voltage delivered to a
50-ohm load for various angles of incidence in the E-plane is shown in
figure 13.

A yagi antenna with three stagger-tuned driven elements also
was tested. The transient response of the antenna (fig. 14) appear s to
be a modulated , damped sinusoid . The fundamental frequency of 280 MHz
and the modulation frequency of 30 MHz are clearly discernible. The
effective height versus frequency of the antenna (obtained from
transient data) closely resembles the spectrum of an amplitude modulated
wave. The three elements of the yagi are tuned to approximately 250,
280 and 310 MHz.

The data of figures 11, 13 and 14 were obtained by using the
1-rn TEM horn shown in figure 2 inside the anechoic chamber. The data
that follow were obtained out-of-doors at the Woodbridge Research
Facility by using the 1—rn wire TEM horn shown in figure 7 or the 4-rn
wire TEM horn formed by attaching extra lengths of wire to the 1-rn
antenna as discussed in the previous section.

The electric field radiated by the 1-rn—long wire TEM horn is
shown in figure 15. The antenna used as the field probe is shown in
figure 16. The voltage received by this antenna is an excellent
reproduction of the electric field up to the time when the currents
reflected from the shorting disk return to the feed point (approximately
18 as for this antenna). The response of the yagi antenna in figure 14

17 
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Figure 11. Transient measurements of standard gain dipole.

to this electric field is shown in figure 17. The electric field that
illuminates the yagi includes the direct and the ground reflected
signals. Therefore, the voltage in figure 17 is the antenna’s response
to the total ground-interacted field. For some applications, it is very
useful to be able to measure directly this ground-interacted transfer
function. For other applications, the free space transfer function is
required. Then the incident field and the measured response must be
deconvolved by using one of the technniques discussed in section 3.

The electric field observed at a distance of 19 m from the 4—zn
wire TEN horn is shown in figure 18. The trailing edge of the pulse
remains positive for an extended period because the ground-reflected
pulse arrives at the observation point about 3 as after the direct
signal and cancels the negative undershoot. (The electric field is
vertically polarized for this measurement.)

The response of the 1-rn TEN horn in figure 2 to this electric
field is shown in figure 19. Several important features are evident in
this response. The received voltage is approximately proportional to
the incident electric field. This proportionality is what is expected
since the receive transfer function of the TEM horn is identical to the
field radiated when the TEM horn is excited by a step function (see

18
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Figure 15. Radiated electric field of l-m-long prototype wire
TEM horn observed at distance of 11 m.
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Figure 16. Antenna used to observe early time behavior of electric field .

fig. 4). This follows from the time-domain reciprocity theorem .6’
7

After the initial pulse, the received voltage differs substantially from
the incident electric field. The deviations can be traced to the
characteristics of the TEM horn antenna. Some of the negative
undershoot is due to the negative undershoot characteristic of the

J. Schmitt , Transients in Cylindrical Antenna , lEE Monograph
377 E (April 1960), 292 .

7B. R. Mayo , Generalized Linear Radar Analysis, Microwave Journal , 4
(1961), 79.
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Figure 17. Response of yagi antenna to total, ground-interacted
electric field .
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Figure 18. Radiated electric field of 4-rn-long wire TEM horn antenna
observed at distance of 19 m .
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Figure 19. Response of 1-rn-long TEM horn to signal from 4-rn-long TEN
horn.

transfer function in figure 4, but the extreme negative undershoot
following the initial pulse is due to the ground reflected pulse that
arrives from an off—boresight direction where the transfer function has
an initial negative spike (see fig. 6). Another portion of the received
voltage that is characteristic of the 1-rn antenna is the small
reflection or ringing caused by a small mismatch at the feed point.
This ringing has a period of about 6 ns.

In spite of the distortions caused by the 1-rn TEM horn , the
electric field radiated by the 4—rn wire TEM horn can be seen to possess
the characteristic positive pulse and negative undershoot. In this
case, the undershoot lasts for about 24 ns. (2L/v = 26.7 ns for the 4-rn
antenna.)

The response of the AS-1852 antenna (see fig. 12) to the field
of the 4-rn TEM horn is shown in figure 20. Also, the response of the
U.S. Army AS—2l69 log—periodic dipole array (fig. 21) was measured .
Results for incidence from the forward and backward directions are shown
in figure 22. (See fig. 20 to 22 on pp. 25 and 26.)

2.5 Sources of Measurement Error

Proper layout of cables and equipment, as discussed in
section 2.2, will minimize measurement errors due to unwanted coupling .
However, the measurements are affected by other errors. One source of
error is the receiver/recorder. A statistical model of the receiver/
recorder shown in figure 1 was studied 8 and an estimate of the error in

8Daniel H. Schaubert, Arthur R. Sindoris, and Frederick G. Farrar , A
Measurement Technique for Determining the Time-Lt’main Voltage Response
of uhf Antennas to EMP Excitation, Harry Diamond Laboratories TR-1778
(August 1976).
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Figure 20. Response of AS-1852 antenna to signal from 4-rn-long TEM
horn .

~~~~~~~~~~
I5

Figure 21. The AS-2169 log—periodic dipole array ; operating
frequency : 30 to 76 MHz.
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Figure 22. Re sponse of AS-2169 log-periodic antenna to signal
from 4-rn-long TEM horn: incidence from (a) forward
and (b) backward directions.

the recorded waveform was obtained. Errors in the recorded voltages are
estimated to be less than 10 percent of peak values , nominally 3 to
5 percent. One of the most critical parameters of the receiver is time
jitter of the sampling time base.

Another possible -source of error is the pulse generator that
drives the TEM horn. Pulse-to-pulse and long-term stability are
necessary. The vibrating mercury switch that was used is very stable,
but spark gap pulsers, if they were used , could introduce additional
noise or errors into the measurement.

To use the transfer function to compute EM? response it is
necessary to assume that the test antenna is illuminated by a plane
wave. This means that the separation between the TEM horn and the test
antenna must satisfy the far—field criterion for all frequencies of
interest. To do so, the maximum path length difference between points
on the transmit and receive antennas must be small compared to the width
of the radiated pulse.
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Secondary illumination of the test antenna by reflected signals
also can contribute errors to the measured response. Unwanted
reflections (as distinguished from the intentional ground reflection
that defines the ground-interacted transfer function) that arrive after
the initial pulse cause distortions in the late-time response of the
antenna. These distortions cannot always be removed by deconvolution
because they do not arrive from the sane direction as the initial pulse.
(Recall that hR (t) is, in general, dependent upon the angle of
incidence.)

Some of the data presented in this report were taken inside the
HDL anechoic chamber. The chamber walls attenuate reflected signals
more than 30 dB at 200 MHz and above, but less than 10 dB below 50 MHz.
It was found that useful data on EMP coupling could be obtained in the
anechoic chamber for antennas that operate above 200 MHz and for scale
models of lower—frequency antennas. The advantages . of testing in the
anechoic chamber include excellent signal-to-noise ratios and the
ability th isolate the receiver/recorder by placing it outside t~e
chamber. The absorption of the chamber walls permits determination of
the free space transfer functions for high frequencies (reater than
200 MHz).

3. DATA PROCESSING

The response voltages measured by using the TEN horn method
represent an approximation to the receive transfer function of the test
antenna. The response , v(t), is an approximate transfer function
because the incident electric field is an approximate impulse , that is,

v ( t )  
..L 

e(t — T)h
R
(T) di , (3)

where e(t) incident electric field ~ 6(t).

An improved estimate of the transfer function can be obtained by
deconvolving the measured voltage and the incident field. The
improvement that can be achieved is limited to correcting for the
nonideal impulse waveform that radiates directly from the TEM horn to
the test antenna. The effects of reflections arriving from various
angles of incidence cannot be corrected by deconvolution because hR

(t)
depends also on the angle of incidence. Three methods of processing the
measured data to obtain hR(t) are discussed below. Another method ,
direct numerical solution of the time-domain convolution integral
equation , was tried and found to be unsatisfactory because of the poor
conditioning of the convolution equation. The kernel functio” , e(t),
and the forcing function, v(t), are measured data and contain noise that
causes the solution to be unstable.

27
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3.1 Method I: Normalization

The simplest form of data processing does not attempt to
correct the measured waveform to account for the incident waveform.
Instead, the measured voltage is simply normalized to account for the
amount of energy in e(t). That is, hR(t) is evaluated from

h
R
(t) = Cv( t) , (4)

where
1

C — 
area of the incident pulse

This normalization is consistent with the usual requirement that the
unit delta function have an area of one. Figure 18 demonstrates the
computation of the area of the pulse.

Figures 23 and 24 show transfer functions obtained by -
normalizing the response voltages measured at the Woodbridge Research
Facility by using the 4-rn wire TEM horn radiator. The area of the
incident pulse was 2.40 x l0~~ Vs/rn.

TIME In,)

Figure 23. Time—domain transfer function of AS-l852 antenna obtained
via normalization method.
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Figure 24.  Transfer functions of AS—2169 log-periodic antenna obtained
via normalization method : incidence from (a) forward and
(b) backward directions.

3.2 Method III Fast Fourier Transform

Equation (3) can be numerically deconvolved by dividing the
Fourier transform of v(t) by the transform of e(t). The fast Fourier
transform (FFT) algorithm makes this operation practical, but
measurement and numerical noise must be filtered out in order to obtain
useful results. A rectangular bandpass filter applied to the spectrum
of v(t) has yielded good results. The cutoff frequencies of the filter
are established by using the following criteria (see also fig. 25):

29
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Figure 25. Bandwidth selection criteria for FFT deconvolution method :
(a) spectrum of incident field and (b) spectrum of response.

a. The filter passband includes all of the test antenna’s
designed operating band.

b. The high—frequency cutoff eliminates all points of the
incident field spectrum that are more than the signal-to-noise ratio
below the peak components.
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c. The low—frequency cutoff eliminates all points of the
response voltage spectrum that are more than the signal-to—noise ratio
below the peak components and that have wavelengths much greater than
the largest dimension of the test structure.

The corrected transfer functions in figures 26 and 27 were
obtained by using the FFT method. Since the illuminating pulse is very
broad band, these transfer functions are not dramatically different from
those calculated by using simple normalization. The transfer functions
in figure 27 were convolved with the electric field radiated by an EMP
simulator and compared to a previously measured response. 9 The results
(fig. 28) show very good agreement. Peak amplitudes compare to within
10 percent and all significant details of the response are predicted.
The accuracy of the TEM horn method of testing and its low cost and ease
of implementation make it a useful technique for determining critical
coupling paths and highly vulnerable configurations p~rior to high-level
system tests. Also, the method can be used to verify computer codes and
data from previous tests. The relatively small size of the TEM horn
allows it to be transported and setup in configurations not possible
with other transient radiators.

I I I I
10 20 30 40

TIME In,)

Figure 26. Transfer function of AS-1852 obtained via FFT method.

9werner J .  Stark , Transient Response of  a U g-Periodic Antenna Based
on Broad-Band Continuous-Wave Measurements, Harry Diamond Laboratories
TR—1 792 (April  1977) .
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Figure 27. Transfer functions of AS-2169 obtained via FFT method .
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- 3.3 Method III: Singularity Expansion Method

The singularity expansion method (SEM) of transient data
analysis provides a promising alternative to the FFT method. Like the
FFT method , the SEM procedure derives the corrected transfer function by
forming the quotient of the frequency-domain representations of the
response and the incident field. The SEM procedure, however , uses the
Laplace transform (complex frequency) representation of the data. The
transform representation is obtained via a unique curve—fitting
algorithm due to Prony, which has been applied recently to transient
scattering analysis. 10-12 Van Blaricuin and Schaubert 13 have
successfully used the technique to obtain a corrected transfer function
for the AS—l852 antenna (fig. 29).

~~~~~~~~~~~~~~~~~~ I ~~~~~~~~~~V _
_____ S~~GU LAP (TV E XPAN S ON

U, 
-~~ — — FAST FOURIER TRANSFORM

I I I
S 15

T IME (n o)

Figure 29. Comparison of transfer functions obtained via FFT and
SEN techniques.

10M. L. Van Blaricum and R. Mittra, A Technique for Extracting the
Poles and Residues of a System Directly from Its Transient Response,
IEEE Trans. Antennas Propag., AP-23 (November 1975), 777.

11C. E. Baum, Use of Singularities in the Complex Plane and
Eigenvalues of Integral Equations for Transient and Broadband
Electromagnetic Analysis and Synthesis, Proceedings of AP-S
International Symposium (June 1975).

12F. M. Tesche , On the Analysis of Scattering and Antenna Problems
Using the Singularity Expansion Technique , IEEE Trans. Antennas Propag.,
AP— 21 (January 1973), 53.

13 M .  L.  Van Blari cum and D. H .  Schaubert , An Experimental Transien t
Transf er Function via Prony ’s Method , Proceedings of USNC/URSI Meeting
(October 1976). 
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The SEM , procedure consists of approximating a transient
waveform, f(t), by a finite sum of complex exponentials; that is,

N

A e5n
t 

. (5)
n~~. 

n

Prony’s algorithm allows one to compute the complex pole frequencies ,
Sn’ and complex residues, ~~~ from the sample~d function values, f(mL~t).Completeness of the representation in equation (5) for antenna problems
has not been proven , but numerous analytical and experimental results
have verified the engineering usefulness of the expression. The Laplace
transform, F(s), is obtained immediately from equ~tion (5):

N A
~~
-‘ nF ( s )  ~~~~~~ - 

. (6)
n=1 5 5

n

In addition to possible computational savings, the SEM rep-
resentations are useful because the waveform f ( t )  is completely defined
by a relatively small set of complex numbers (the coefficients A and
poles 

~~~ 
Also, equation (6) can be rewritten as n

F ( s )  = ~~-~-~~-~- , (7)
Q( s )

where P and Q are polynomials. In this form, the theorems of lumped
element circuit analysis are directly applicable to the transfer
function. If P and Q satisfy the realizability criteria, an equivalent
lumped—element circuit model of the antenna can be obtained. Another
advantage of equation (5) is that it can be analytically convolved with
typical EMP waveforms to obtain a closed form expression for the
response signal.

4. CONCLUSION S

A transient testing procedure that provides reliable estimates of
coupling to communication antennas has been demonstrated . The pro-
cedure, which uses a TEM horn to transmit a very short pulse of energy,
is easy and inexpensive to implement and provides a direct measurement
of the impulse response of the antenna. Because the pulse is radiated
and not contained by a guiding structure , direct measurement of
ground-interacted transfer functions is possible. on the other hand,
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testing in a minimum reflection environment provides the free space
transfer function . The TEM horn was chosen as the transmit antenna
because it is much smaller than a biconic or dipole antenna capable of
radiating the very wide bandwidth pulses that are needed for EMP
coupling measurements. Since the TEM horn does not require a
termination to ground , it can be easily moved and elevated to provide
illumination from various angles of incidence. Furthermore, wire grid
TEM radiators have been built and shown to be excellent transient
radiators for field and transportable testing requirements. The TEM
horn is, however, useful only for low—level testing since it requires
step function (long duration , high—energy pulse) excitation.

Posttest processing of the data can be performed in a variety of
ways. The simplest way requires only a scaling of the received voltage
to determine the approximate transfer function. More sophisticated
processing , however , can yield more accurate estimaten of the transfer
function. Furthermore , if computer-controlled test equipment is
available, a large number of data points can be averaged to further
improve the accuracy of the results.

Antennas of practical interest, including two Army communication
antennas, have been tested by using the TEM horn method. The measured
responses were processed to obtain the antennas’ transfer functions,
which were used to predict the responses to a pulse from an EM?
simulator. Comparison with measured simulator data indicated that
accuracies of 5 to 10 percent can be achieved with ordinary laboratory
test equipment .
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APPENDIX A. --RAD IATION FROM THE TEM HORN

A simple , approximate analytic expression for the field radiated by
the transverse electromagnetic (TEM) horn can be derived when the
conducting surfaces of the horn are modelled by wires as shown in
figure A—l . The feed point is located at the origin, the z axis is
along the boresight direction of the antenna and the wire elements are
of length L. The impedance of the antenna is assumed to be matched to
the source so that no reflections occur at the feed point. At the aper-
ture , the current reflection coefficient is R. Assuming harmonic
excitation and uniform current flow (a valid assumption since the
impedance of the TEN horn is constant along its length ) ,  the current on
the nth wire is

= i e JWt [e 3~~5~~ + Re~~~~~”~] , 
(A 1)

where

s = position variable along wire ,

= magnitude of nth current ,

13 = propagation constant along wire.

For a perfect ope~i circuit R = —1 and i (s) = 0 at s L.

By using the standard technique of computing the vector potential A ,
the fields radiated by i are readily determined . Figure A-2 shows the
angles y, O

~
, 

~~ 
0 and relating the point of observation and the

nth wire.

— 
3i
0 rL . ~~~~A = -— ‘ i (s, ds , (A—2 )

n n 4nJ ~ r
0

where

= unit vector in direction of nth wire ,

= permeability of free space ,

k = u/c = propagation constant o~ fr ee space ,

r = distance between source and observation points.
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Figure A-i. Wire model used to compute approximate radiated fields of
TEM horn .

Sn

nIh WIRE

OBSERVATION POINT I

I -~t~~~~~ I

I I

Ficjure A-2.  Coordinate variables for expressing radiat ion of nth
wire .
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When r is large~ the far—field approximation reduces equation (A—2) to

-jkr0
= -

~~~ 
f i. 

j  ( s ) e 3k cos ~~~~ dsn n 4TT r Jo n
- j  (kr 0-w t)

= 

~~n J
~L [e~

13L
e~~
(k cos i —

cos y + 13)s] ds
)J I Le i r0 wt)

5n 4,ir (e~
A sin B 

+ Re~
8 sin 

A ) , (A-3)

where

A = (k cos y +

L
B = (k cos y -

This vector potential can be used to determine the far-zone fields

= VxA) of the nth wire when it is excited by a single frequency, w.
The fields radiated by the TEN horn when it is excited by a transient
signal are obtained by summing (integrating) the weighted response over
all frequencies and adding together the fields radiated by each wire in
the model . For example , the radiated fields due to a step excitation
are found by multiplying equation (A-3) by 1/u (the spectrum of a step
function) , integrating and adding the contributions of each wire.
Expressing y in terms of 0~, ~~~~ 

0 and 4, and setting R = —1 and 8 =
the step response of a typical TEM%orn is obtained :

F cl.i N A
E
0
(r,O ,~~,t) = ~~~ 

~~~~~ 

I _ ~ (l + c~~ u ( T  + 

(A-4)
—2u(T + C —

~~ + (1 — C ~U (T  — —
~~n c ,  \ f l/  \ C l

E4,
(r , T ,4 , , t) = 

~~~~~ 

I
n 

+ C )u(T +

/ L ’ (A—5)
-2u T + C —) + (1 - C )u r - — 

~~~~~~~~~~~~~~~ 
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APPENDIX A

where

c = velocity of light,

= permeability of free space,

= amplitude of current wave on nth wire,

= sin (o  
— o~) + cos 0 sin e~ [1 — cos (4, —

B~ = [sin 0 sin 0~ cos (~ 
— ~n ) + cos —

c~ = sin e sin 0n cos (4, - 4 , )  + cos 0 cos 0 ,

D~~~~sin

= spherical coordinate directions of nth wire ,

u(t) = unit step function,

T = t - n c ,

L = length of wires.

These expressions can be used to determine the radiated fields in any
direction. Furthermore, replacing the step functions with delta
functions yields the impulse response , which can be used to compute the
fields for any excitation.
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