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INTRODUCTION

On-going development of crystal resonators for high precision frequency
control has led to specific conclusions regarding identification and manage-
ment of various error budget entries. The constraints imposed by stringent
performance requirements for digital communication, position location, and
sensor systems provided, e.g., the impetus that produced a new ceramic reso-
nator package.‘»z* This enclosure is a high-alumina flat-pack that uses spe-
cial sealing techniques. It is adaptable for various roles, such as (1) high
g-force and fast warm-up and (2) maximum frequency precision with minimum
long-term aging.

Given the design of the ceramic flat-pack and the necessity of mounting
the AT-cut quartz resonators on four supports for high-shock applications, a
significant contribution to the frequency error arises from forces transmitted
from the alumina package to the quartz. The subject of frequency perturba-
tions in quartz vibrators produced by external forces has received both
experimental® *°* and theoretical?®~27* attention. It is known that the fre-
quency changes are due to both the static deformation of the crystal lattice
and a nonlinear elastic constant effect.2!=25 In this report certain results
involving the force-frequency effect are applied to the question of mounting
an AT-cut circular resonator on four points in a manner adaptable to use in
the ceramic flat-pack. It is found that an optimum orientation of the mount-
ing supports exists with respect to the crystal axes, and also that misalign-
ments about the optimum produce minimal frequency shifts.

THE FORCE-FREQUENCY EFFECT

Figure 1 defines the geometry under consideration. The crystallographic
X axis is the datum from which angle ¢ is measured; force F, acts along the
crystal plate diameter with azimuth ¢, while the diametric force F, is applied
at azimuth ¢ + y. The points of application of F, and F, represent the
positions of the mounting supports. The problem i1s to find the proper values
of angles ¢ and y to ensure a minimum sensitivity of frequency to applied
force.

Although it is not necessary for the mounts to be diametrically paired
as shown in Figure 1, virtually all of the experimental data exist in this
form as well as most theoretical results. In addition to this, it turns out
that the force-frequency effect due to opposing forces acting across the
crystal diameter is superposable.!® This means that the separate contribu-
tions to the frequency shift under loads F, and F,, each acting alone, add
linearly to produce the overall frequency excursion seen when F, and F, act
together. This fact leads to a simple solution to what is otherwise a very
difficult problem.

The force-frequency effect produced in circular crystal plates acted upon
by a diametric pair of forces F at angle y is characterized by Ratajski'“

* See list of references beginning on 12.
1
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FIGURE 1. DEFINITION OF MOUNTING ANGLES WITH RESPECT TO CRYSTAL AXES.
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by means of a force-frequency coefficient K¢ (p). For a plate of diameter D, ‘
thickness 2h, nominal frequency f,, and frequency constant N, K¢ (y) is
defined as

Ke () = &0 20D
0 F

(1)

= [

In Equation (1), Af is the frequency change brought about by application of
compressional force F. For the AT-cut of quartz,

N=2h-. f,=1.660 MHz-mm. (2)

¢ (¥) in Equation (1) can be interpreted as being a proportionality factor
re]atlng the fractional frequency change Af/f, to the average stress acting
across the crystal diameter F/(2h<D). For overtone operation of resonators,
it is found that Af and f, are each multiplied by the harmonic number so that
K¢ (v) is invariant, for a given value of the azimuth. The azimuthal depen-
dence arises from the anisotropic nature of the crystal lattice.

To determine a compensated mounting configuration, the variation of
K¢ (¢) with ¢ must first be accurately determined. With time, the theoretical
curves have become increasingly better fits to the experimental data. How-
ever, at present, it is felt that the greatest accuracy in characterizing
K¢ (p) versus y is to be had by using the experimental results.

To this end, the data for the AT-cut given by Ratajski!“ representing a
compilation from a number of sources, were subjected to a least-squares fit.
From symmetry considerations the function K¢ (p) must satisfy the relations:

Ke (-¥) = K¢ (+9), (3)
and
Ke (m/2 - ¢) = K¢ (1/2 + ¢). (4)
With due regard for these symmetries the functional form adopted for K¢ (p) is
b 2
Ke (9) =] g A, cos" y. (5)
n:

A five-term least-squares fit gives the following coefficients:

o Ay = -9.21 ‘ ' (6)
o A = +31.82 (7)
o A, = +64.5] (8)
o A, = -95.15 (9)
o A, = +32.27, (10)

all in units of 107!% m.s/N. The resulting curve is shown in Figure 2. It
will be seen that the curvature at y = 00 is quite small; the second
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derivative of K¢ (y) is only -8.94/radian?, in units of Ap. A comparison
between the fit to the experimental data using Equations ?5)-(10) and the
latest theoretical results is given in Table 1. The agreement is satisfactory.

NAPERVOEH

THERMAL EXPANSION

In the sequel it will be necessary to have an expression for the thermo-
elastic coefficient a), (y), usually called the thermal expansion constant.
Applying the transformation law for second-rank tensors to coordinate axes
rotated first about the X axis by 6, and then about the Y' axis by angle y,
we obtain for quartz:

al, (¥) = o), (cos®y + siny sin®6) + a,, (sin®y cos?s). (11)

This result is independent of rotations about the initial Z axis. Using the
numerical values for a-quartz,

$ %o

13.72, (12)
7.48, (13)

and

] .,

in units of 107%/K, gives the results shown in Figure 3 for 6 values of 0° :
(Y-cut), +35.259 (AT-cut), and -49.20 (BT-cut).

THE FOUR-POINT MOUNT

The anisotropy of quartz with respect to thermal expansion, shown by
Equations (11)-(13), will in general produce unequal forces on the mounting
supports because the ceramic flat-pack holder is isotropic, and differential
strains will be azimuth-dependent. Since, by Equation (1), the Af produced
by a force is proportional to both the force and to the value of K¢ (y) at the
azimuth of the force, and it is desired that the algebraic sum of both fre-
quency shifts equal zero, we have

Ke (W) + o(w,)* Ko (v +y) = 0. (14)
In Equation (14), the geometry of Figure 1 is used, and :
p(v,y) = F/F, (15)

is the force ratio. Because the forces depend on the differential expansion
coefficients for a fixed temperature change, the force ratio is given by

p(v,y) = (o), (w+v) -a)/(af, (¥) - a), (16)

) & ¢}

where
® a, = 6.5 x 10°8/K (17)

is the thermal expansion coefficient of alumipa (99.9%).

5
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Insertion of Equation (11) into Equation (16) and the result into
Equation (14) yields the desired relation between y and y for which the total
frequency change is zero. The result of solving Equation (14) is shown in
Figure 4. The locations where the curve crosses the y = 00 axis represents
the case where the four-point mount degenerates into a two-point mount. About
those locations the mounting points are close together, and the sensitivity to
mounting misalignment is large. At the points marked "A" and "B," the indi-
vidual contributions to Af are each zero, and the mounting locations are
symmetrically disposed about the X and Z' axes. Furthermore, the sensitivity
to errors in mounting is minimized. This defines the optimum mounting con-
figuration for this problem. Angles y and y are related by

2y +y=m (18)

for the optimum configuration. The variation of K¢ (y) in the vicinity of
point "A" with the angle constraint of Equation (1§) is given in Table 2.
Table 3 is a compilation of solutions to Equation (14) as function of ¢ and v,
in the vicinity of point "A." From Table 3 it is seen that for

e vy = 560, (19)

substantial errors in y, the crystallographic orientation with respect to the
mounting points, the frequency change is quite small.

The ceramic flat-pack enclosure incorporating mounting pads spaced
according to Equation (19) will not be subject to large manufacturing errors.
By reasonable attention to keep

e U = 620, (20)

the force-frequency effect contribution to the resonator frequency error may
be readily minimized. The angular spread between the four mounts should be
sufficient to permit this design to be used in high shock applications.

Figure 5 shows a polar plot of K¢ (y) against y. Diameters are drawn
through the locations K¢ () = 0, defining the positions of the optimal
mounting configuration. Black circles simulate the positions of fixation of
the quartz plate. Considerations similar to those given in this report apply
to the design of mounting supports for SC-cut!’~!® crystals. In the case of
doubly rotated cuts in general, the K¢ (¢) versus ¢ curve does not exhibit
symmetry, and the resulting sensitivigies to errors in Y and y are increased.

CONCLUSIONS

The four-point mounting problem for circular AT-cut quartz resonator
plates subjected to thermally induced mounting forces has been solved. A
locus of acceptable configurations has been determined, and from this locus
the position of minimum sensitivity to mounting errors has been found.
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FIGURE 4. ANGLE psi VERSUS ANGLE gamma ON LOCUS OF ZERO FREQUENCY SHIFT.




TABLE 1. COMPARISON OF K¢ () VALUES

Ratajskil* EerNisse?’ |
Condition j
on K¢ (y) v Ke (v) v ke (v)
maximum 0 24.2 0 24.5
zero 62.0 0 64.7 0
minimum 90 -9.2 90 -11.5

(v in degrees; K¢ (y) in 10725 mes/N)

TABLE 2. psi AND gamma IN THE VICINITY OF K¢ = 0.

¥ ¥ Ke (¥)

61.98 56.04 -1.15

| 61.99 56.02 -0.46
| 62.00 56.00 0.24
| 62.01 55.98 » 0;93

62.02 55.96 1.62

(v and v in degrees;
Ke () in 10727 mes/N)




TABLE 3. Ke(w) + o(w,¥)* Kc(y + v) VERSUS psi AND gamma. |
5
¥ 51 | 52 | 53 | 54 | 55| 56 | 57 58 | 59 | 60 61
57 [2.46|1.96| 1.43| 0.87 |0.29 | -0.32| -0.95 | -1.61| -2.28 | -2.97 | -3.67
58 [12.69|2.16( 1.61( 1.03 {0.42|-0.20 -0.85 | -1.52 -2.21 | -2.91 | -3.62
'
59 [2.88|2.33|1.76|1.15|0.53| -0.11| -0.78 | -1.46 | -2.15 | -2.86 | -3.58
60 ||3.04| 2.47|1.87|1.25|0.61|-0.05| -0.72 | -1.42| -2.12 | -2.84 -3.56
61 [3.17|2.57|1.96| 1.32 |0.66 | -0.01| -0.70 | -1.40| -2.11 | -2.83| -3.56
62 |13.26|2.64|2.01|1.36 |0.69| 0.00| -0.69 | -1.40| -2.12 | -2.84| -3.56
63 [3.31|2.682.03(1.37 {0.69|-0.01( -0.71|-1,42| -2.14 | -2.86 | -3.59
64 [3.33|2.68|2.02|1.340.65| -0.05| -0.75-1.47| -2.19( -2.90| -3.62
65 [3.31)|2.65[1.98|1.29 {0.60| -0.11| -0.82 -1.53| -2.25| -2.96| -3.67
66 [3.26| 2.59|1.90| 1.21 [0.51| -0.20| -0.91| -1.62| -2.32| -3.03| -3.73
i
i 67 {13.17| 2.49(1.80| 1.10 | 0.40

(v and vy in degrees;

Ke() + o(s¥)* Kelw +¥) in 107 mes/N)

-0.30| -1.01} -1.72| -2,42| -3.11] -3.80

10
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